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Zusammenfassung

Geschäftsprozessmanagement hilft Unternehmen und Organisationen dabei, wiederkehrende
Arbeitsabläufe — sogenannte Geschäftsprozesse — zu verstehen, zu verbessern und zu au-
tomatisieren. Ein zentraler Bestandteil davon ist ein formales Geschäftsprozessmodell, dessen
Erstellung kostspielig ist, da es die Zusammenarbeit zwischen Prozessbeteiligten und Prozes-
sanalysten erfordert. Die automatische Generierung formaler Geschäftsprozessmodelle ist ein
Forschungsbereich, der die Erstellung solcher Modelle erleichtern soll, indem Informationen aus
bestehenden natürlichsprachlichen Prozessbeschreibungen extrahiert werden, woraus automatisch
ein entsprechendes formales Prozessmodell synthetisiert wird. Obwohl dieses Forschungsfeld
in den letzten Jahren zunehmend an Bedeutung gewonnen hat, basieren viele Ansätze zur
Extraktion von Prozessinformationen weiterhin auf Systemen mit handgeschriebenen Regeln.
Dies erschwert deren Anwendung in neuen Domänen, Beschreibungssprachen und Prozessmodel-
lierungssprachen. Ansätze, die auf maschinellem Lernen und Deep Learning basieren, bieten hier
erhebliche Vorteile, da sie Extraktionsregeln automatisch aus Daten ableiten und dadurch leichter
übertragbar sind. Dennoch sind solche Ansätze bisher selten, was sich durch den hohen Bedarf an
Trainingsdaten erklären lässt. Diese Arbeit stellt die folgenden drei Ansätze vor, um den Mangel
an ausreichend großen Trainingsdatensätzen in der Prozessinformationsextraktion zu beheben.
Beschleunigte Sammlung von neuen Trainingsdaten durch angemessene digitale Unterstützung,
effizientere Nutzung von vorhandenen Trainingsdaten und die Anwendung von vortrainierten
Sprachmodellen. So ebnet diese Arbeit den Weg für zukünftige erfolgreiche Anwendungen von
Text-zu-Modell-Methoden.
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Abstract

Business process management helps businesses and organizations with understanding, improving,
and automating reoccurring workflows, called business processes. One integral part to this
is a formal business process model, which is expensive to create, as it needs collaboration
between process participants and process analysts. Automatic generation of formal business
process models is a research field working on facilitating the creation of formal process models,
by extracting the information contained in existing natural language process descriptions and
synthesizing a formal process model. While this field of research has become increasingly popular
in recent years, many process information extraction approaches still rely on hand-written rules,
which makes them hard to transfer to new application domains, description languages, or process
modeling languages. Approaches based on machine learning and deep learning would provide
significant benefits in this regard, as extraction rules are derived from data automatically and are
therefore easier to adjust. Yet, these approaches are still rare, which can be explained by their
need for large amounts of training data. This thesis presents three options to mitigate the lack
of large training datasets in process information extraction, which are as follows. Facilitating the
collection of new training data via proper tool support, more efficient use of existing training
data, and the application of pretrained language models. Thus, this thesis paves the way for
successful applications of text-to-model methods in the future.
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Introduction 1

Chapter 1

Introduction

The central goal of Business Process Management is reducing the complexity in coordination
of labor in modern organizations [75]. Benefits of proper management include, among others,
increased productivity, quality, or compliance with regulations [23]. Typically, to achieve these
benefits a formal model of the business process is needed, which is very expensive to create as it
needs intensive collaboration of process analysts and process owners [29]. Research estimates the
cost of creating an as-is process model without any improvements at 60% of the time allocated
for the business process management project as a whole [33]. To facilitate the creation of process
models, researchers turn to analyzing process data already available at organizations. Although
process mining methods have shown practical success using such data by analyzing logs of
workflow events, another widespread source is often overlooked by practitioners: Textual process
documentation, such as employee notes, legislation, or standard operating procedures. In such
documents the process is described in natural language and contains information needed to create
a (rough) formal process model, which can subsequently be refined with process stakeholders.

Since process descriptions are not created with machine-readability in mind, text-to-model can
be understood as a two-step task [8]. First, all process relevant information has to be extracted
from the text, which includes finding process elements such as actors and activities. Second, the
extracted process information is transformed into a formal process model in a given modeling
language, such as Business Process Model And Notation (BPMN)1. Figure 1.1 visualizes the
text-to-model task.

Extracting relevant process information is a challenging step, as various issues with the
nature of language complicate information extraction [75]. These issues include, but are not
limited to, linguistic ambiguity and implicit information [76], that require careful integration of
expert knowledge into methods dealing with them. Thus, even today the extraction of process
information is still done with rule-based systems [53]. Defining such rules requires extensive
understanding of the targeted process modeling language, as well as natural language processing.
The resulting rules are hard to transfer across organizations, data sources, and process modeling
languages, which impedes reusing existing systems.

Research in the closely related field of natural language processing has shifted to machine
learning approaches with great success, e.g., in identifying the role of words in a sentence [14],

1See https://www.omg.org/bpmn/, last accessed Jan 14, 2025.

https://www.omg.org/bpmn/
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Figure 1.1: Motivating example of a short process description fragment, the corresponding
process information, and finally the generated process model fragments.

finding named entities [43], or automatic translation [82]. While machine learning approaches
alleviate the most urgent issues of rule-based approaches, they require large amounts of training
data, which needs expensive manual processing before use. We identify this fact as the main reason
for slow adoption of powerful, yet flexible data-driven approaches towards process information
extraction [3, 53, 52, 51]. Lack of data is still a significant hurdle in the development of new
approaches, even when pretrained generative large language models (colloquially known as
generative artificial intelligence) are used. Here, rigorous evaluation on many different data
sources is essential to assess their practicality, especially in light of the large variation in terms
of the structure, style, and contents of textual documents that contain process information [2].

This thesis and the reprinted publications, starting with Chapter 5, propose and evaluate three
options of addressing the lack of high-quality training data for process information extraction
systems. Each option can be assigned to a stage in the development of such a system, as shown
in Figure 1.2.

1 Efficient Annotation (EA): Simplifying the collection of training data for process infor-
mation extraction methods, i.e., by identifying how to reduce the workload of the data
annotation task.

2 Data Efficiency (DE): Use existing training data more efficiently, and even create new,
synthetic training data by leveraging data augmentation for process information extraction.
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Figure 1.2: Contributions of this thesis for developing new machine learning approaches for
process information extraction.

3 Pretrained Models (PM): Using pretrained models from the field of natural language
processing, either as core component of process information extraction methods, or as way
of creating features for other, smaller models.

The remainder of this thesis is structured as follows. Chapter 2 defines basic terms and concepts
needed throughout the rest of this thesis and the reprinted work. Chapter 3 discusses work
related to this thesis. In Chapter 4 we give an extended overview over the work reprinted in this
thesis. Chapter 5 presents our initial approach towards applying machine learning in process
information extraction. Chapters 6 and 7 contain publications where we integrate pretrained
machine learning models to reduce the amount of process information extraction data needed for
training extractors, and can therefore be seen as representatives of option 3 (PM). In extension,
Chapter 9 reprints our approach towards process information extraction using large language
models, therefore removing the need for training data entirely. Chapters 8 and 12 reprint our
investigations into creating synthetic data from a limited dataset using data augmentation
techniques, i.e., option 2 (DE). Chapters 10 and 11 contain reprints of our papers discussing
how to facilitate the creation of large, high-quality process information extraction datasets, i.e.,
option 1 (EA). Finally, in Chapter 13 we discuss our contributions, limitations, and present
avenues of future work and further research.

This thesis would not have been possible in its current form without the help and support
of my supervisors, colleagues, and students. To reflect this, the scientific “we” is used in the
remainder of this thesis.
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Chapter 2

Preliminaries

In the following chapter we define key concepts and terms we will use throughout the remainder of
this thesis. In Section 2.1 we discuss business process models in general and explain fundamental
differences in two approaches towards business process modeling. Section 2.2 discusses two main
tasks that must be solved by all approaches towards automatic business process modeling, and
presents datasets used for developing new solution approaches. In Section 2.3 we will define core
concepts of supervised machine learning. Section 2.4 will give a brief overview of terminology
and ideas of modeling natural language, and as an extension of that, how generative models
are used to solve tasks that are not explicitly in their training objective. Finally, Section 2.5
introduce the terms data augmentation and oversampling.

2.1 Business Process Modeling

A business process model is a conceptual model that describes a business process, that is, a
set of (partially) ordered events, activities, and decision points, involving actors and objects,
collectively leading to a desired outcome [23]. Depending on the language used to model the
business process, there are up to five main perspectives contained in the model.

1. The functional perspective defines how activities are to be done, which is usually information
stored in activity labels, annotations of activities, etc.

2. The behavior perspective of a process is defined by its activities and their order of execution,
the control flow.

3. The data perspective adds information about physical and digital data (and material) that
is created, consumed, and transformed during a process.

4. The organizational perspective contains the process participant responsible for or affected
by an activity, which additionally may include, for example, information about company
structure or employee capabilities.

5. The operational perspective of a process defines the tools, machinery, and systems used
during a process.
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There are two major approaches to describing the behavioral perspective of a process, called
imperative and declarative modeling.

Imperative Modeling. For processes where the sequence of tasks is well known, and deviates
rarely, imperative modeling of a process can be useful. In imperative models, the order of
execution is given as a sequence of steps, which may contain branching to express exclusive or
parallel workflows. Popular imperative modeling languages include BPMN and UML.

Declarative Modeling. In contrast to imperative modeling, which describes the normal,
expected workflow, declarative models define constraints that have to hold throughout the
execution of a process. Constraints define, for example, if a given activity is required, if executing
one activity prevents execution of a second, or if executing one activity requires execution of
another activity first. As long as all constraints in a declarative process model are satisfied, any
sequence of activity executions is allowed, which grants much greater freedom during execution
of a process. A commonly used formalism for declarative process modeling in both academia and
industry is Dynamic Condition Response (DCR) [70].

2.2 Automated Generation of Business Process Models

In this section we will discuss how a formal business process model can be extracted from a
natural language process description automatically. We first give a high-level overview of the
two steps in the text-to-model task, process information extraction and process model synthesis.
We then define process information extraction in more detail (Section 2.2.1), challenges that
need to be addressed during this step (Section 2.2.2), as well as two datasets used for developing
new extraction approaches (Sections 2.2.3 and 2.2.4). Finally, we give a short algorithm for
synthesizing a formal business process model from extracted process information (Section 2.2.5.

Generating a business process model from natural language texts can be described by a
two step procedure [8], which is visualized in Figure 2.1. First, all the information that is
relevant to a process model has to be extracted, i.e., fragments of a text that describe parts of
the process. Next, the extracted information is transformed into an actual process model, i.e.,
the concrete process model described by the text is synthesized. Some work labels approaches as
direct text-model transformations, if they use deep neural networks [8]. We argue that this is
not the case, even if these approaches treat the text-to-model as a machine translation problem,
where an input in a natural language has to be translated into a formal language describing the
model (e.g., XML for BPMN). Such approaches still have to extract process relevant information
implicitly, which is then present latently, e.g., in embeddings as visualized in Figure 2.1.

2.2.1 Business Process Information Extraction

As stated in the introduction to this section, generating a formal business process model from
natural language text is a two step procedure. This section describes the first step, which is
detecting and classifying the information relevant to the business process. Figure 2.2 conceptually
visualizes how process information is usually extracted from natural language.

The input to this step is a text in natural language that describes a process, which we will
call a (process description) document from now on. In essence, extracting business process
information is closely related to general information extraction, that is, we use an extraction
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Figure 2.1: Visualization of the two steps in the text-to-model task. Information may be extracted
implicitly and only be represented latently in the extraction model.

approach to find fragments of text in a document, which describe a concept we want to extract,
or describe how these concepts relate to each other. To extract process relevant information from
natural language text, the document is usually first segmented into sentences. Each sentence
is then split into tokens, a procedure called tokenization. A token can usually be thought of
as a single word, but some tokenization methods subdivide words further into subword tokens
(e.g., preprocessing → pre, process, ing), or group words together if they belong to a known
phrase (e.g. New York). A sequence of tokens is called a span. The surface form, i.e., the specific
linguistic construct of a span may refer to a relevant concept, e.g., a process participant, which
we then mark with a corresponding type. Such typed spans are called entity mentions, i.e., a
single mention of a conceptual entity, which exists throughout the entire document, potentially
even across documents. Detecting and extracting these entities is closely related to named entity
recognition, a subfield of natural language processing [43]. It is the consensus that named entities
refer to so called rigid designators, which are generic (e.g., proper names of persons or companies),
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Figure 2.2: Overview of the process information extraction pipeline.

or natural (e.g., species or protein names) [43]. In process information extraction entities often
refer to process relevant concepts, which can be rigid designators (think process participants), but
also entities that are more akin to events [81], such as activities in the workflow. We therefore
refrain from using the term named entity recognition, and instead use entity mention detection.

Resolving whether two given entity mentions refer to the same entity (concept), is called
entity resolution. In process information extraction this step becomes especially relevant for
the organizational perspective (process participants) and data perspective (data objects), where
process elements are mentioned multiple times throughout the document, and are often referred
to using pronouns or slight variations of the original surface form. Entity resolution is also
needed for the other perspectives, for example to resolve multiple mentions of the same task. Yet,
this is much less prevalent in the current state of the art and requires further research. If two
entities interact with each other, they form a relation, e.g., to express that a task is performed
by a specific process participant. Relations are usually directed, i.e., they have a source (head)
entity argument and a target (tail) entity. Additionally, relations have a type describing the kind
of interaction between their arguments. Relations contain important information about many
perspectives of the process, such as the order of execution between activities, which is integral to
the behavioral perspective.
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2.2.2 Challenges in Business Process Information Extraction

While our current description of the process information extraction task characterizes it as a
direct application of general information extraction, there are several characteristics of process
descriptions, which set the two fields apart. The following list does not claim exhaustiveness, but
instead shall serve as an illustration of the differences between the two fields, and the challenges
this thesis addresses. Consider the following process description fragment for the examples of
business process specific challenges below. “The process begins when a new order comes in. The
contract is finalized by the sales department. It is then sent to the development team, which
compiles a list of requirements.”

1. Ambiguous Information. Process descriptions often contain ambiguities that need
knowledge about the world to resolve. It might refer the contract or the sales department,
both interpretations are at least feasible — sending a team is common in specific contexts,
e.g., in consulting or construction. Knowledge about the world can disambiguate the
sentence, since sales teams are rarely sent somewhere, and therefore sending the contract
is more likely to be the correct interpretation.

2. Implicit Information. Sometimes information is not stated explicitly, since mentioning
one action implies a corresponding reaction, or knowledge about the word dictates certain
behavior (see ambiguous information). For the human reader it is obvious that after the
sales team sends the contract, the development team experiences the event of receiving it,
even though the text only implies it. Process information extraction approaches need to
either identify that some information is implied (and therefore missing), or have models of
the world that allow automatic completion, such as modern large language models do.

3. Process Meta Information. Descriptions of business processes often involve statements
about the execution of process instances. This includes, for example, information when
a process instance starts or ends. Simple rule-based methods for extracting process
information based on dependency parsing would incorrectly extract the process (object)
and the task begin (predicate) from the first sentence. These systems usually have to
compensate for this, e.g., by means of dictionaries with black listed actor names and tasks.

2.2.3 The PET Annotation Schema and Dataset

The PET dataset is the currently largest one, and serves as a benchmark for comparing different
extraction approaches in the realm of process information extraction from natural language text
process descriptions [8]. PET contains a total of 45 process descriptions in natural language, where
process relevant information was annotated (marked) by three process modeling experts [9]. The
corresponding annotation schema is focused mainly on imperative process modeling, specifically
BPMN [9] and the defines seven entity types and six relation types. Figure 2.3 shows how a
fragment of a process description document might be annotated with PET and the corresponding
formal process model in BPMN.

Note, that Bellan et al. do not use the concept of entity mentions in their original publication
of PET [9], and therefore call typed spans entities, instead of entity mentions. We will continue
to use the term (entity) mention to refer to typed spans of text in the PET dataset.
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Figure 2.3: Document annotated with the PET annotation schema and corresponding formal
process model in BPMN.

While an enumeration and explanation of all types of mentions and relations is out of scope
for this section, it is important to note that mentions in the PET dataset directly map to
modeling elements of BPMN. For example, Actors in PET can be mapped to swimlanes, or
Activity Data mentions to data objects. Relations in PET define associations between elements,
e.g., Actor Performer relations map Actors to the Activities they execute (perform), or Uses
relations associate Activity Data with the Activity that uses said data object during execution.

The PET dataset is one of the most important datasets in current research on business
process information extraction, as it combines and standardizes several datasets. Through
PET extraction approaches become directly comparable. Yet, it also contains issues that need
addressing in future research. First, while mentions of entities are annotated in the process
description, coreferences between them are not given, i.e., the data used to resolve entity mentions
to their corresponding entities is missing. We addressed this fact in one of our publications and
provided a solution approach [53]. Next, the processes described in PET are only moderately
complicated. Current research proposed datasets with far more complex underlying processes [31],
albeit targeting declarative process modeling languages. Finally, the annotation schema of PET
does not allow annotation of implicit process information, and is fairly rigid when it comes to
overlapping (and non-continuous) token spans containing process information.

2.2.4 The ATDP Annotation Schema and Related Datasets

The Annotated Textual Description of Processes (ATDP) language has first been proposed by
Sànchez et al. [65] to address interpretational ambiguity in natural language process descriptions.
Figure 2.4 shows a fragment of a process description document annotated with the ATDP
annotation schema (excluding scopes) and the corresponding process model in DCR.

They use the notion of scopes, into which certain parts of the textual description fall. Scopes
are recursive, i.e, a single scope may contain any number of (smaller) child scopes. Non-leaf
scopes are typed, which defines the control flow between child scopes, e.g., sequential ordering,
exclusivity, or iteration. Leaf scopes (i.e., scopes with no child scopes) contain at least one
fragment (entity), which are typed with one of the three fragment types Activity (workflow step),
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Figure 2.4: Document annotated with ATDP as used by Quishpi et al. [62] and corresponding
formal process model in DCR.

Role (process participant), or Business Object (manipulated data). Fragments are connected
with relations, which create associations between them, for example Agent, defining the role
performing an activity, as well as control flow relations, such as Response, defining that executing
one activity triggers the eventual execution of the other activity.

Annotating a textual process description with ATDP thus structures information in a tree,
similar to a process tree, and fixes it to a single interpretation, that makes ambiguities explicit.
Multiple interpretations allow for the generation of more than one realizations of the process
model, of which a domain expert may then choose the most appropriate one.

To the best of our knowledge, Quishpi et al. [62] published the only use of ATDP in a concrete
dataset for process information extraction, albeit in an incomplete version not considering the
extraction of scopes. The dataset uses all three entity types, and an additional constraint, for
a total of eight constraint (relation) types. Since this approach does not consider scopes, the
interpretation mechanism explained earlier is not utilized, which makes the implementation
limited in usefulness. Still, the approach of Quishpi et al. towards mention and relation extraction
using pattern matching on dependency trees is powerful and fairly robust, even on new datasets [3].
Additionally, the ATDP dataset is useful for developing new process information extraction
approaches, serving as fundamentally different extraction target compared to the PET dataset.
We used the ATDP dataset for exactly this purpose in our work [3, 52].

2.2.5 Model Synthesis from Process Information

Generating a model from explicitly extracted process information is usually done with a deter-
ministic layouting algorithm. We will sketch an example for an algorithm used in some of our
papers here, but note that researching model synthesis is out of scope for this thesis, and requires
further research (see Chapter 13).

Synthesizing a BPMN model from process information in the PET data annotation schema
works in three major stages. First, in the Consolidation phase, we assign conditions to the
mentions of their respective decision points (XOR gateways). Next, all mentions of gateways are
merged, if they refer to the same decision point in the process. Finally, for all activities that
are not assigned an executing actor, we find the closest actor mention in the text left of it. In
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Figure 2.5: Result of a simple deterministic model synthesis algorithm.

the second stage, the Vertex stage, we create process elements for all mentions, e.g., Tasks,
Data Objects, Swimlanes (actors), etc. The final Linking stage connects related elements, e.g.,
successive tasks with Sequence Flows, if they are located in the same Swimlane, or Message Flows
otherwise. We also create Data Associations between data objects and tasks, adding the label of
the data object to the label of the task, to generate labels like “register the claim” instead of
just “register”. Sometimes, we extracted control flow relations between a gateway in one lane
and a task in another lane. In such a case we also have to insert auxiliary tasks, since message
flows are only allowed between Tasks in BPMN. The resulting model is then interpreted as a
directed graph, which we traverse and draw into a graphical diagram, see Figure 2.5.

2.3 Artificial Intelligence

For a human it might appear easy to read a description of a business process and draw a business
process model that reflects the information contained in it. Yet, to formalize the skills needed to
do so, encode them so a machine may use them is non-trivial. Doing so would make this machine
a weak artificial intelligence [67]. Despite how the term is used colloquially in recent years,
artificial intelligence fundamentally describes systems that mimic the human ability to make
informed decisions [80]. While strong artificial intelligence describes a computer system that is
able to actually understand, weak artificial intelligence merely simulates this understanding [67].

In this section we will discuss the fundamental approaches to simulate human decision making
and understanding of problems. First, Section 2.3.1 describes systems that directly use human
knowledge encoded in rules. Section 2.3.2 explains, how machines can derive these (or similar)
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rules directly from data, a paradigm called machine learning. Finally, we will briefly discuss
artificial neural networks and their use as statistical models in machine learning in Section 2.3.3.

2.3.1 Rule-based Systems

Traditionally, simulating human decision making was (and is) achieved through expert systems,
which come to solutions to complex problems by applying expert knowledge. This knowledge
has to be represented in such a way that computers can reason over it, commonly in If-Then
constructs [80]. Rule-based systems require interpretable features as inputs, i.e., information
needs to be processed first, before it can be used in a rule-based system. In the context of
process information extraction, this requires, among others, transforming a string input (text)
into tokens, tagging those tokens with part-of-speech tags, parsing dependencies, or calculating
the distance between tokens. Only then rules can be applied, for example, “If two actions are
consecutive, then there is a control flow connection between them.” (paraphrased from the
annotation guidelines of PET [8]), or “Any verb that is the first dependency of the word ‘whether’,
is an action.” (paraphrased dependency tree pattern from [62]).

2.3.2 Machine Learning

In contrast to rule based systems, where a human engineer defines rules that derives one or more
outputs from a number of inputs, machine learning aims to derive these rules automatically. To
this end a model has to be configured in such a way that a given metric is optimized on a given
dataset. What metric is used, is dictated by the method, for example, in linear regression a line
is fitted to a set of points, in such a way that the mean squared error between line and data is
minimal. If the calculation of said metric relies on a known true output, i.e., it is labeled, we call
the corresponding machine learning method supervised. Unsupervised methods rely on metrics
that solely use observable inputs, e.g., for k-means clustering, where a set of n clusters is formed,
such that the average inner-cluster distance is minimal [48]. Using this metric, we only need
to know about the position of a data point in the feature space to automatically assign it to a
cluster of similar points, which then can be interpreted by a human.

Methods using datasets where only a portion is labeled and the remainder unlabeled, are
called semi-supervised. The fundamental idea behind semi-supervised learning is to learn a
representation of inputs x from unlabeled and labeled data, and use labeled data to learn a
mapping from that representation to outputs, which follows from the assumption, that if two
inputs x are close, so should the corresponding outputs y [12]. Finally, reinforcement learning
methods optimize a policy of when to take specific actions given environmental inputs, so that the
total reward for a sequence of actions is maximal, given a reward function. Unlike the previous
classes of machine learning, reinforcement learning uses simulation, i.e., dynamic data, instead of
a fixed dataset for learning.

2.3.3 Neural Networks

Artificial neural networks are inspired by biological neural networks in their fundamental compo-
nent, the neuron [30]. For the remainder of this thesis, we will use the terms neural network and
neuron to describe the artificial variant, and not biological one.
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Artificial neurons, like their biological counterparts, form weighted connections with each
other. These connections are directed, meaning the output of one artificial neuron serves as
the input of others. According to the definition by Goodfellow et al. [30], modern artificial
neural networks organize artificial neurons in layers with a shared activation function. Such
an activation function is a vector-valued function that maps the weighted layer inputs to an
activation (output). Stacking multiple layers can then be understood as connecting them in a
function chain [30]. A neural network composed of stacked layers is called feed forwards, if it
does not contain cycles. If there are connections between layers, such that the output of a layer
eventually becomes its input again, we call such a neural network recurrent [30].

By forward propagation of an input vector through the network, i.e. evaluating the corre-
sponding chain of functions, we eventually obtain an output vector. This output can then be
interpreted as the prediction of the neural network, which can be used to calculate a prediction
error. The exact way of calculating this error depends on the dataset as described in the previous
paragraph. After obtaining the error, the contributions of each weight are calculated in a
process called back propagation [30]. Weights are then adjusted according to their individual
contributions, usually with gradient descent methods, to minimize the error [30]. By repeating
forward propagation, backward propagation, and corresponding weight adjustments, the neural
network converges to an optimal configuration — it learned to model the given dataset.

Generally, neural networks with more parameters can describe more complex data. The
theorem of general universality of neural networks states, that a neural network with at least
one hidden layer, and enough neurons in this layer can describe any arbitrary function [15]. In
practice, the depth of neural networks has become the determining factor of model expressiveness,
giving rise to the era of deep learning. With increases in number of parameters and layers comes
also an increase in required training data. This leads to correspondingly large training data
sets, sometimes containing hundreds of thousands, millions, or even billions of training examples.
Collecting such datasets has therefore become increasingly infeasible for every learning task,
giving rise to the idea of training models on generally applicable knowledge, and then adjusting
them for specific problems.

2.4 Large Pretrained Models in Natural Language Processing

The following Section 2.4.1 will expand on the idea of pretraining large models with huge datasets.
Section 2.4.2 will briefly discuss the model architecture enabling pretraining on this large scale.
Finally, Section 2.4.3 explains how modern generative language models are used, even without
fine tuning them on specific tasks.

2.4.1 Pretraining and Fine Tuning Models

The concept of pretraining was made popular by the use of neural networks in language modeling.
Here, large collections of natural language documents are used in training models for predicting
masked tokens [20], or the continuation of sentences [63]. During this training, the model learns
many rules about natural language, such as grammar, as this is needed for optimal prediction
performance. Such a neural network is then called a (large) language model (LLM) and can be
used for other tasks, by minor adjustments and additional training on a much smaller dataset.
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This step is called fine tuning, and reduces the data needed to train useful models, since many of
the concepts learned during pretraining can still be applied in this new task.

While pretrained models are very common in language modeling, other tasks make use of
pretraining as well. This holds generally for tasks that require the extraction and subsequent
composition of low-level abstract features into high-level rules. A prominent example of such a
task is computer vision, where edges, shapes, and textures are features of increasing complexity,
which might be extracted by a pretrained model, and then combined in rules during a fine tuning
step on application-specific data [13].

Pretrained models are generally very large, which makes them computationally expensive
to train and use. For this reason pretrained models became only popular in recent years
through innovations in computation-efficient model architectures. Most notably, the transformer
architecture allows more parallel computations during training, enabling the training of massive
neural networks on very large datasets [77].

2.4.2 Transformers

The core concept of a transformer are stacks of attention layers [77]. These attention layers are
trained to assign weights (attention) to elements of an input sequence based on their importance
for answering a given query [77]. Through this mechanism transformer architectures are able
to consider the entire input sequence at once, contrary to previous architectures, which had to
process the input element by element. This enables better parallelization during training the
model, compared to the sequential computation needed in previous architectures [77].

Transformers originally use two separate embeddings for encoding inputs and decoding the
corresponding outputs, which is useful for many tasks, where input sequences significantly differ
from expected output sequences, such as machine translation. Today, transformers are often
either encoder-only, or decoder-only, depending on the task they are trained on. Encoder-
only architectures like BERT [20] use training objectives, where the target can benefit from
bi-directional encoding of the input, such as predicting a missing (masked) token in a given
sentence. Since for these tasks the input and output sequences are part of the same distribution
(e.g., language), encoding them both using the same embedding is permissible, and thus, more
efficient.

On the other hand, decoder-only architectures are autoregressive (non bi-directional), meaning
any element of their output sequence depends only on previous elements, never on future ones.
They are usually trained on a next element prediction task, i.e., given an incomplete sequence
the model has to predict the most likely next element in that sequence. Generative pretrained
transformers, such as GPT2 [64], are pretrained using large collections of natural language
texts, and show impressive performance when applied to previously unseen tasks. Modern large
language models are generative pretrained transformers with many billion trainable parameters.

2.4.3 Prompting

The way such generative pretrained large language models are used today, differs fundamentally
from traditional deep learning, where one would design a neural network architecture and train
it with a large dataset, or even use a pretrained model as basis for a custom architecture that is
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then fine tuned. Instead, models like GPT3.5 [10] are now used as so-called few-shot learners
through prompting them in natural language. Few-shot learners are machine learning models
able to learn a new task or class with a small number of examples, while zero-shot learners can
do so without any training data. If large language models are given example turns of natural
language input (prompt) and expected natural language output, they are able to answer a final
prompt analogously to the examples given before, making them few-shot learners2. Since the
training data is given in the context of the input, i.e., before stating the actual problem, this
method of prompting is also called in-context learning [10].

2.5 Data Augmentation

One of the options of mitigating the lack of data in process information extraction is using the
existing data more efficiently. This can either be achieved by smaller models, or by inflating
the datasets procedurally. Data augmentation represents a means of doing just that, by either
perturbing examples in the dataset, such that their label is preserved, or by oversampling
examples [68]. Literature defines data augmentation as methods, that change existing examples,
without inflating the dataset, while oversampling adds synthetic examples to the dataset. In
practice, the two terms often intersect, e.g., when applying data augmentation to synthetic data.
In this thesis we will use the term data augmentation to denote techniques that create new,
synthetic training examples on the basis of existing data.

The intuition behind data augmentation can best be understood visually, that is, for image
classification data, as Figure 2.6 shows. There, targeted changes (perturbations) are performed
on the image of hand-written “9”. This image is part of the MNIST database of handwritten
digits [41], which contains 16x16 pixel pictures of digits written by humans. As such, it can be
used for an image classification task — each picture needs to be mapped to the digit it contains.
The style with which humans write digits greatly varies from person to person, some might
angle them more, some might embellish them with serifs, some might keep them extremely
simplistic. Furthermore, the conditions under which a picture is taken can vary, such as lighting,
the pen used for writing, or the camera used for taking the picture. All these factors are not
guaranteed to be contained in the training data, and thus influence the performance of a model
during real-world application. Data augmentation aims to simulate these variations procedurally,
changing original data examples via controlled perturbations.

Figure 2.6 shows the original picture of a handwritten “9”, and three types of such pertur-
bations — rotation, translation, and the addition of noise. The second row shows the same
perturbations, but with much higher intensity. Here, the label of the picture is invalidated, i.e.,
the picture no longer shows a “9”, but a “6”, “0”, or just noise. This highlights the importance
of properly controlling data augmentation techniques. We will discuss this in more detail in
Chapters 8 and 12.

2Note that many modern large language models are able to function in zero-shot settings as well.
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Figure 2.6: Examples of perturbations on an image from the MNIST digits dataset, containing
the digit “9”. The first row contains the original and three perturbations that preserve the label,
while the second row contains the original and three perturbations that invalidate the label.
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Chapter 3

Related Work

The goal of this section is to give the reader context of previous and parallel work in the fields of
research this thesis contributes to. We will first give an overview of approaches towards process
model generation from natural language text in Section 3.1. Next, we will discuss general methods
of data augmentation, as well as specifically for natural language processing and business process
management in Section 3.2. Finally, Section 3.3 presents datasets that are useful for developing
new process information extraction methods.

3.1 Automatic Model Generation

Related work on automatic process model generation can be organized into four distinct categories,
based on the main approach towards extracting the information contained in a textual description,
and thus, defining an automatically generated process model.

Constrained Language Methods. Ivanchikj et al. [35] present SketchMiner, a tool for
describing the process in constrained language, from which BPMN diagrams are extracted
automatically. Caporale [11] proposes a controlled language based on sentence templates and
corresponding parser to describe business processes and generate process models in BPMN.
Methods that require constrained language present a tradeoff between the complexity of a precise
formal modeling notation and the convenience of imprecise natural language descriptions. No
knowledge of the formal modeling language is needed to produce a formal model, instead users
only have to fill in templates of descriptions in constrained language. While such an approach
makes parsing of the information contained in descriptions trivial, it best serves as a tool for
supporting the communication between process owners and process analysts [11]. For this reason
methods using constrained language are not well suited for exploiting existing natural language
process descriptions.

Rule-Based Methods. Related work in this category usually showcases striking performance
during evaluation on the dataset they are designed for, extracting process information with
high levels of precision and recall. Yet, all methods share a common inflexibility, i.e., the rules
they define are specific to a particular subset of process perspectives and languages. Changing
and extending them requires expert knowledge in both natural language processing, as well as
the target business process modeling language. This is mainly founded in the sophisticated
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use of natural language processing for feature engineering and subsequent, manually defined
rules. Friedrich et al. [29] use part-of-speech tags, the dependency graph of sentences, as well as
word information from a lexical database to extract process relevant information and generate a
process model in BPMN. Sokolov et al. [71] suggest integrating semantic unification into process
model extraction pipelines could improve extraction quality, when using partial descriptions
or external knowledge sources, but do not report empiric results. Lopez et al. [46] focus on
extracting declarative process models in the DCR formalism from natural language, using a
tool called the Process Highlighter. Van der Aa et al. [1] present the currently leading method
for extracting declarative process models from text, using the results of syntactic parsing and
word-level features in a set of manually defined rules. Sanchez et al. [66] and Quishpi et al. [62]
employ process information extraction techniques based on regular expressions for syntactic
dependency trees and part-of-speech tags. Sintoris and Vergidis [69] propose a transformation
pipeline for the automatic generation of BPMN process models, albeit without reporting its
application or evaluation. Sonbol et. al [72] treat the generation of a formal process model
from natural language text descriptions as a machine translation problem, and present a natural
language processing pipeline to extract process relevant information and layout it in BPMN.

Supervised Machine Learning Methods. Unlike rule-based methods, supervised machine
learning methods automatically learn, that is, derive what parts of a process description are
relevant for generating process models. This is usually done by adjusting parameters of a machine
learning model, until its predictions, i.e., the extracted process relevant information closely
resembles the expectation found in a so-called training dataset. For this reason, machine learning
methods can potentially be transferred to new process domains and languages, provided they
are retrained with appropriate data. In [61], Qian et al. propose a neural method for entity
and relation classification, which assumes relevant text fragments to already be extracted in a
preprocessing step.

Methods Based on Pre-Trained Models. The limiting factor of applying supervised machine
learning methods to process model extraction, is the lack of readily available training data.
Pre-training machine learning models on out-of-domain data, i.e., data not immediately related
to the target task has become more popular with the advent of so-called large language models,
such as BERT [20]. This reduces the amount of training data needed to obtain a useful extraction
model drastically, as the pretrained model only needs fine tuning. Recent generative approaches
further reduce the amount of training data, often to less than three examples, sometimes to none.
Thus, methods based on generative large language models reduce the problem to text completion,
which is often referred to as prompting. In [44], Licardo et al. define an extraction pipeline,
which revises process descriptions, extracts process relevant entities and activity execution
order using a transformer fine-tuned on additional training data, and finally creates a BPMN
diagram. Bellan et al. [7] use in-context learning with GPT3 to extract process relevant facts
from natural language process descriptions. In [40], Kourani et al. present an approach for
extracting activities and their execution order from a process description using a pretrained
large language model and human review. In [16], Daclin et al. present an early-stage concept
for using pretrained large language models and structured data to transform speech to text and
subsequently extract a formal process model in BPMN, qualitatively evaluated on just a small
number of easy examples. Klievtsova et al. [38] present six prompts for extracting graphical
process models from natural language texts, concluding that modern large language models are
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ready to be applied in real-world text-to-model scenarios. A empirical study of the application
of different pretrained large language models on multiple datasets did not exist before this thesis,
instead previous work often just studied feasibility.

3.2 Data Augmentation

Data augmentation is a well explored technique for making machine learning models more robust
and use training data more efficiently. For this reason it is a possibility to mitigate the lack
of training data present in process information extraction. For this reason we will first discuss
prominent examples of data augmentation applications in research fields, then review how data
augmentation is applied in natural language processing, and finally how it is applied in business
process management tasks.

Examples of Data Augmentation. Data augmentation has long been a technique to comple-
ment incomplete or partial data in many classical algorithms, such as expectation maximiza-
tion [18], or the calculation of posterior distributions [74]. Here data augmentation is understood
as a ways of altering numerical data, so that algorithms converge to more suitable results or lead
to more robust parametrization of stochastic models. The original idea for data augmentation
on images is often attributed to Baird [5] and his work on modeling defects in images (scans) of
physical documents, resulting in synthetic data useful in developing robust models for document
image analysis. Wang et al. [79] published one of the earliest systematic reports of data augmen-
tation as a technique to improve deep neural networks for image recognition, and propose it as
an alternative to other regularization approaches, such as dropout [73].

Natural Language Processing. The NL-Augmenter framework [21] is a shared research
effort that collects a total of 117 augmentation techniques to date 3. These augmentations
are targeted specifically at natural language processing tasks, including, but not limited to,
named entity recognition, machine translation, question answering, or sentiment analysis. Li
et al. [42] collect and categorize 16 data augmentation techniques, but focus on techniques
applicable to text classification, text generation, and structured prediction, all of which are
not directly applicable to process information extraction. Similarly, Pellicer et al. [57] survey
data augmentation techniques for datasets used in sentence classification and emotion detection,
which are not immediately useful in information extraction tasks. Wang et al. [78] propose a
data augmentation method based on reinforcement learning, using four simple perturbations and
reporting impressive improvements in entity relation prediction for medical datasets.

Business Process Management. In [36] Käppel et al. evaluate nine simple data augmentation
techniques (e.g., random deletion) for predictive process monitoring, i.e., predicting how a business
process evolves over time. Huo et al. [34] propose data augmentation based on large language
models for intent recognition in robotic process automation, more specifically for automating
repetitive tasks through chatbots.

3See the NLAugmenter repository in GitHub for an up to date list: https://github.com/GEM-benchmark/
NL-Augmenter/tree/main/nlaugmenter/transformations, last accessed Feb. 7th, 2025.

https://github.com/GEM-benchmark/NL-Augmenter/tree/main/nlaugmenter/transformations
https://github.com/GEM-benchmark/NL-Augmenter/tree/main/nlaugmenter/transformations
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3.3 Dataset Initiatives and Support

López et al. [45] collect, annotate, and publish 37 descriptions of declarative processes, focusing
on the extraction of process roles, activities, and three types of constraints (relations) between
them. In [9], Bellan et al. publish the PET dataset, which consists of 45 natural language
process descriptions, collected from previous dataset initiatives, and annotated with extraction
targets for process elements and their relations. Bellan et al. present a tool for visualizing the
annotations of process descriptions in [6], supporting future dataset collection efforts, if they
use the PET annotation schema. Caporale [11] proposes a tool for the collaborative collection
of process models, with a mechanism for recommending similar process models. The Model
Judge [17] is a tool developed by Delicado et al., aimed at novices in using BPMN for business
process modeling, supporting them with recommendations of potential process elements in a
textual description, and aligning existing process elements with their textual counterparts.
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Chapter 4

Overview of Relevant Publications

In Chapter 1 we discussed how the application of machine learning for process information
extraction requires amounts of training data currently not available. At the start of this thesis
this fact was less obvious, and became only clear after working on the first machine learning
based process information extraction approach [3]. After this publication it became apparent
that investigating ways of mitigating this issue are needed, which motivated all subsequent
publications.

In this chapter we will provide an overview over the publications relevant for this thesis. We
will highlight key ideas, contributions, and limitations of these publications in chronological
order, to illustrate the systematic exploration of our initial, fundamental research question RQ-0.

RQ-0 How can deep learning be applied to process information extraction from natural
language process descriptions?

Motivated by the academic success of rule-based process information extractors, we looked for
reasons why these systems find little application in practice, with only one viable commercial
system available at the time4. One key contributing factor is the inflexibility of rule-based
systems during application in new domains, which also explains the success of machine learning
in other fields of research. Proper machine learning approaches could be transferred to new
domains by retraining them on suitable datasets.
RQ-0 represents our initial research motivation at the beginning of this thesis. Additional
questions arose while investigating it. Figure 4.1 visualizes the timeline of publications made for
this thesis, along with the research questions these publications raise and investigate.

We published an initial, direct approach towards process information extraction in “Data-
driven annotation of textual process descriptions based on formal meaning representations” [3]. At
the time, this work represented the first machine learning approach towards identifying mentions
of process information in complete sentences of textual process descriptions. Other work is not
able to distinguish between sentences that contain or do not contain process information [61].
During work on this approach, we found that training a traditional sequence-to-sequence model,
i.e., a sequence of tokens as input and a sequence of entity mentions as output, is not feasible due

4DCR solutions offer a commercial system for semi-automated extraction of declarative process models from
natural language text, see https://dcrsolutions.net/, last accessed Feb. 7th, 2025.

https://dcrsolutions.net/
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Figure 4.2: Comparing formal meaning representations to syntactic dependencies. We use
Penn Treebank part-of-speech tags [49], see https://www.ling.upenn.edu/courses/Fall_

2003/ling001/penn_treebank_pos.html.

to the lack of data, and complexity of the problem [3]. Instead, we made use of out-of-domain
knowledge in the form of formal meaning representations, which are graphs representing the
semantics of a sentence. Figure 4.2 shows the syntactic dependency graph below, and the formal
meaning representation above the sentences we used in this paper: (1) “The authors showered.”,
(2) “The authors took a shower.”, and (3) “The authors took a book.” [3]. Unlike syntactic
dependency graphs, formal meaning graphs are largely invariant to changes in the surface form,
i.e., what words or grammatical constructs we use to represent what we mean. Notice, how (1)
and (2) have the same meaning, but very different surface form, while (2) and (3) have very
different meaning, but very similar surface form. The formal meaning representation is able to
capture this fact, as in both cases there are nodes describing an actor (A) and a process (P),
i.e., something that happens over time — taking a shower, i.e., showering. In contrast, when
comparing sentences (2) and (3), we now see two actors, and a very different action — taking
something. Traditional syntactic dependency trees are not able to capture the meaning properly,
in fact, the dependency trees for sentences (2) and (3) are identical5. In both cases we identify
took as the verb (think action) that the subject authors perform on the object shower and book,
respectively. In a process context, this would lead to a model, where we expect the authors to
physically “take” the shower (like they would a book). At the same time, sentence (1) and (2)
result in very different dependency trees, even though they are the same semantically. A meaning
representation parser is a system that creates the formal meaning representation of a sentence
and is developed using texts from outside the business process domain. In this sense, the use of
such a parser and the resulting formal meaning representation shifts some of the complexity of
process information extraction — we do not need to learn to interpret the meaning of a sentence,
only which parts are relevant to a process.

To extract process information from a sentence, we first transform this sentence to its formal

5We used CoreNLP to parse the sentences, see https://corenlp.run/, last accessed Feb. 2, 2025.

https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://corenlp.run/
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meaning representation (graph) and enrich nodes corresponding to tokens of the sentence with
information about these tokens, e.g., part-of-speech tags or word vectors. The graph is then
processed using a graph neural network tasked to assign nodes semantic roles in the process
(e.g., actors, activities, data objects). Our approach outperforms a state-of-the-art data-driven
approach [61], and achieved competitive results compared to a rule-based system [62] when
using the dataset it was designed for, and out-performing it on new, unseen data, which we
collected. Working on this publication raised several new research questions following the original
question RQ-0. At this point it became clear that the direct application of deep learning is
prevented by a lack of useful training data, and as a result these new research questions already
reflect the three approaches towards mitigating the lack of data in process information extraction
we discussed in Chapter 1 and have shown in Figure 1.2. These are Efficient Annotation of
training data (Option 1, EA), higher Data Efficiency (Option 2, DE), and the use of Pretrained
Models (Option 3, PM). Based on these three options three corresponding research threads
arise.

RQ-EA-1 How can we collect more data for training process information extraction approaches
more efficiently and effectively?

In our initial publication, it took several weeks to collect and annotate 250 sentences, even for a
team of many experts in the field of business process management. Labels often contradict each
other, most notably the determiners of actors are not always part of the annotation, e.g., the
authors vs. just authors. Researching proper tool support for data collection would expedite it,
as well as potentially open data annotation to non-experts.

RQ-DE-1 Can classical machine learning be used to extract relations and resolve coreferences
between mentions of process information given a small dataset?

Previous work on machine learning in process information extraction, as well as our proposed
approach is not able to extract interactions, dependencies, and coreferences between entity
mentions from multi-sentence process descriptions, but only from fragments [61]. Machine
learning approaches towards relation extraction and coreference resolution would result in a fully
machine learning based pipeline for process information extraction.

RQ-PM-1 Which pretrained models for (general) information extraction are most promising
when applied in new domains?

A common remark of reviewers of our publication was to explore how existing approaches based
on pretrained language models perform on the process information extraction task. No empirical
study of such models for different datasets existed at the time, but would be an invaluable
resource for an informed decision when choosing a model for extracting process information.

These three research questions directly correspond to the three options of mitigating the lack
of data in process information extraction research. Contrary to what their order of mention
might suggest, we did not investigate them starting with RQ-EA-1, but instead with RQ-PM-1.
Learning from our initial publication, we realized that collecting large datasets, even if done
efficiently, is a significant undertaking. Instead, investigating the application of pretrained
models, or efficient use of existing data promises similar benefits with significantly lower resource
requirements.
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The paper “Bridging research fields: an empirical study on joint, neural relation extraction
techniques” [4] addressed the lack of an empirical study of existing, pretrained models for (general,
not only process) information extraction. As such it is directly needed to answer RQ-PM-1, which
entails an informed decision regarding promising pretrained models for information extraction.

We conducted a systematic literature review, following the PRISMA method [56], finding a
total of 1, 847 publications, which were manually filtered by reading title and abstract, applying
seven exclusion criteria. This resulted in 189 publications, where we read the full text and
applied the same seven exclusion criteria, yielding a total of 31 relevant approaches, of which
we were able to retrieve and properly set up seven. These approaches were then trained and
evaluated on four different datasets, using three variations of the F1 measure. We found four
promising approaches, including MARE [39] and SpERT [24], which are able to produce consistent,
high-quality predictions of entities and relations. Compared to other approaches, these two
approaches were much less affected by adverse data characteristics, such as, the number of
relations in a document, the distance between relations, or higher variation in surface forms of
entity mention [4]. The proper application of models identified in our work, can be phrased as
the following new research question.

RQ-PM-2 Can pretrained models achieve state-of-the-art performance in the process information
extraction task?

All the datasets we used in this publication were from information extraction tasks unrelated to
business process descriptions. It therefore remains to test the most promising model on a dataset
from process information extraction.

We continued work on both RQ-PM-2, as well as RQ-DE-1 in the paper “Beyond Rule-based
Named Entity Recognition and Relation Extraction for Process Model Generation from Natural
Language Text” [53]. Our main contribution in this publication was a fully machine-learning
based pipeline for extracting process information from natural language process descriptions.
These natural language process descriptions were published by Bellan et al. [8] in the PET dataset.
However, they were still missing information about coreferences between mentions of process actors
and business objects, which we manually annotated and made publicly accessible. We applied
the entity mention extraction technique based on conditional random fields by Bellan et al. [8]
without change, and proposed an entity resolution approach based on a pretrained coreference
resolution model, as well as a relation extraction approach based on gradient boosting [60]. This
pipeline was able to outperform the previously best rule-based approach, and since it was fully
based on machine learning, it constitutes a answer to RQ-DE-1. The machine learning methods
we used are “classical” approaches and not deep learning approaches, which is why this paper
can not be considered an answer to RQ-0.

Additionally, we compared our approach to JEREX [25], an improvement of SpERT, which
we identified as promising in our previous study. We could show that even though PET was the
currently largest available dataset for process information extraction, it was still too small to be
used for fine tuning pretrained models. Therefore, fine tuning pretrained models appeared not
feasible, leading us to answer RQ-PM-2 negatively at the time.

Instead, work on a machine learning pipeline lead us to a research question, which corresponds
to the second way of mitigating lack of training data in process information extraction from
Chapter 1.
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RQ-DE-2 How can limited amounts of training data be used more efficiently in training process
information extractors?

Even with the publication of the PET dataset, extracting process information from natural
language process descriptions remained a low data task. It has been shown that similar low data
tasks of other domains benefit from data augmentation. Testing data augmentation for process
information extraction would bring additional challenges, e.g., the reliance of process descriptions
on keywords (after, before) to describe the control flow of a process.

In our next publication “Leveraging Data Augmentation for Process Information Extrac-
tion” [54] we applied a total of 19 data augmentation techniques to the PET dataset and used
the resulting data to train our process information extraction pipeline from [53]. These data
augmentation techniques were selected from related work based on their suitability for improving
process information extraction data following four exclusion criteria. We excluded all techniques
that (1) are not applicable to the english language, (2) alters the spelling of words, (3) do not
work for supervised training data, and (4) use task-, and/or domain-specific databases. Since
many of the techniques can be configured in different ways, we searched for optimal configurations
using a hyperparameter optimization. Using data augmentation we were thus able to improve
the performance of our pipeline by up to 4.5 percentage points in the F1 measure. The scope of
this publication did not allow us to answer the following question.

RQ-DE-3 How does data augmentation affect the surface form and semantics of process de-
scriptions?

While many data augmentation techniques had a positive effect in our experiments, we treated
them as a black box transformations. This means we could not answer questions about how
specific data augmentation techniques actually change the surface form and semantics of a process
descriptions.

Instead of immediately answering RQ-DE-3, we continued our exploration of the application
of pretrained models to process information extraction (RQ-PM-2) in “A Universal Prompting
Strategy for Extracting Process Model Information from Natural Language Text using Large
Language Models” [52]. With the advent of large pretrained language models, researchers
showed that it is plausible to use them in business process management tasks [7, 32]. Still, a
comprehensive study on how to prompt these models to achieve state-of-the-art extraction results
was missing, as previous work only used parts of the available data for evaluation [52]. For
this reason we engineered prompts for the tasks entity mention detection, entity resolution, and
relation extraction, based on best practices from information extraction research. We then applied
these prompts to a total of three different datasets and eight different models, demonstrating
that our prompting strategy for process information extraction is universally applicable. Our
prompts improved the F1 score by as much as 5 percentage points for the mention detection
task on PET, and 17 percentage points compared to previous rule-based approaches to relation
extraction. In an ablation study we were able to identify an iterative approach to extracting
process information as the main contributing factor to these improvements. In this iterative
approach we sequentially extract types process information mentions, feeding already extracted
mentions back into the model as additional inputs. First we extract activities from the process
description, which are comparatively easy to identify, as they are often verbs. We then extract
actors and business objects, which are often in the immediate vicinity of activities. Finally, we
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extract the remaining types of information. This approach leads to improvements of 8 percentage
points in F1 measure for both the mention detection and relation extraction tasks.

The limitations of extraction approaches based on large language models, such as reliance on
cloud service providers, high computational costs, and privacy concerns, lead us to finally pursue
answering RQ-EA-1, i.e., how to make data collection for process information extraction datasets
more efficient and effective. In “Assisted Data Annotation for Business Process Information
Extraction from Textual Documents” [51] we measured the cognitive workload of 31 participants
during annotation of process relevant entity mentions and their coreferences and relations in
process descriptions. We found that assisting the same annotators with automatically generated
annotation recommendations resulted in significantly lower cognitive workloads, with reductions
as much as −51.0%. At the same time these recommendations improved the average quality of
annotations compared to the gold standard by up to +38.9% measured in F1 score, particularly
benefiting non-expert annotators with little business process management experience. Notably,
human review of the automatic recommendations improved the F1 measure by up to 0.151,
showing that the combination of a human supported with an AI-system is able to perform
better, than both of them in isolation. We implemented our findings in a tool for efficient data
augmentation, called TeaPie, and describe it in the publication “TeaPie — A Tool for Efficient
Annotation of Process Information Extraction Data” [55]. There we discuss user feedback
regarding the workflow using the tool, which was predominantly positive, with all users agreeing
that the workflow was well suited for the annotation task, and allowed for uninterrupted work
on it. A few select annotators (one each out of 31) had trouble always understanding what to do
in each of the annotation steps, and work on these steps with satisfactory speed. Most notably,
we found that many (12 out of 31) annotators did not find it useful to see a visualization of their
current annotation as BPMN model, which was surprising given the nature of the annotation
task. We plan to continue exploring why this is the case, and how to visualize annotations better
for these users.

Finally, we expanded our understanding of data augmentation for process information
extraction in “Repeat, Reorder, Rephrase - Data Augmentation for Process Information Extraction”
(cf. section 12), which is currently under review. In this publication we focused on exploring how
the data augmentations we found in [54], as well as seven additional ones, change the text of
process descriptions. First, we categorized all data augmentation techniques by their approach
into the classes Repeating (repeats part of the text or vocabulary), Reordering (reorders parts
of the text), Rephrasing (rewording parts of the text), and Adding Noise (random changes to
the text). Using a large language model we embed the text of original documents, sentences,
mentions, and relations into a high dimensional vector space. Each of the resulting embedding
vectors can be understood as a representation of the meaning of the original text [58]. We then
reduce these high-dimensional vectors to vectors with two dimensions, using the tSNE method [59]
and plot them to a scatter plot. Applying the same transformation to all embedding vectors
of augmented documents, we can visualize the changes each of the augmentation classes have
on process descriptions. We can then easily see, that repeating and reordering augmentations
have nearly no impact on the meaning of process descriptions, unless for relations, where control
flow relations between activities are often sensitive to their order of appearance in the text.
Rephrasing augmentations and those that add noise do change the meaning. Since the latter
often break the semantics of process descriptions, the resulting benefits are much lower for
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extraction approaches trained with augmented data obtained from these augmentations.
With this we can now give an answer to our initial research question RQ-0. Until large

datasets for training are available, pretrained models constitute the easiest way of applying
deep learning to the process information extraction task. This notion is also reinforced by
related work in the field, which uses pretrained large language models for extracting process
information, or generates process models from natural language text inputs [7, 32, 40, 52]. Yet,
such approaches have considerable requirements in terms of hardware resources, cost, or privacy
concerns, something we will discuss later in Chapter 13. For this reason, supervised deep learning
models, specialized on the process information extraction task should be the goal. To this
end, tools like TeaPie [55] help with efficient collection of training data, which can then be
supplemented with data augmentation techniques for more efficient usage.
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Chapter 5

Data-driven annotation of textual
process descriptions based on formal
meaning representations

Ackermann, L., Neuberger, J., Jablonski, S. (2021). Data-Driven Annotation of Textual Process
Descriptions Based on Formal Meaning Representations. In: La Rosa, M., Sadiq, S., Teniente,
E. (eds) Advanced Information Systems Engineering. CAiSE 2021. Lecture Notes in Computer
Science(), vol 12751. Springer, Cham. https://doi.org/10.1007/978-3-030-79382-1_5

Reproduced with permission from Springer Nature.
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Abstract. Business process management encompasses a variety of tasks
that can be solved system-aided but usually require formal process rep-
resentations, i.e. process models. However, it requires a signicant eort
to learn a formal process modeling language like, for instance, BPMN.
Among others, this is one reason why companies often still stick to infor-
mal textual process descriptions. However, in contrast to formal models,
information from natural language text usually cannot be automatically
processed by algorithms. Hence, recent research also focuses on anno-
tated textual process descriptions to make text machine processable.

While still human-readable, they additionally contain annotations fol-
lowing a formal scheme. Thus, they also enable automated processing by,
for instance, formal reasoning and simulation. State-of-the-art techniques
for automatically annotating textual process descriptions are either based
on hand-crafted rule sets or articial neural networks. Maintaining com-
plex rule sets requires a signicant manual eort and the approaches
using neural networks suer from rather low result quality. In this paper
we present an approach based on Semantic Parsing and Graph Convolu-
tional Networks that avoids manually dened rules and provides signi-
cantly better results than existing techniques based on neural networks.
A comprehensive evaluation using multiple data sets from both academia
and industry shows encouraging results and dierentiates between sev-
eral applied text features.

Keywords: Process modeling · Text annotation · Semantic parsing ·
Graph convolutional networks

1 Introduction

Business process models are a valuable means serving various purposes in Busi-
ness Process Management (BPM). Due to their formal foundation they can be
formally analyzed and used to congure workow systems for process execu-
tion. Though they are intended to serve as a means of communication between
domain experts and software specialists, too, they have to be specied in a pre-
dened Process Modeling Language the stakeholders might not be familiar with.
c Springer Nature Switzerland AG 2021
M. La Rosa et al. (Eds.): CAiSE 2021, LNCS 12751, pp. 75–90, 2021.
https://doi.org/10.1007/978-3-030-79382-1_5
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Thus, the formal and, therefore, unfamiliar foundation of process models hin-
ders their utilization, which among other reasons causes companies to rather rely
on textual process descriptions in natural language, which can be observed [1–
3,14,15,26,27], for instance, in terms of procedure instructions and process man-
uals. However, textual process descriptions impede the application of tools that
operate on process models. Since studies have shown that hand-crafting process
models consumes up to 60% of the overall time spent in business process man-
agement projects [15], research in the BPM discipline meanwhile considers tech-
niques for transforming textual process descriptions into formal or semi-formal
representations [1,2,15,26,27]. One representation type is annotated textual pro-
cess description [23,26,27,31], which is still natural-language text but enriched
with schematic information (annotations), which foster the derivation of formal
process models [1,2,15,26], validate existing models against their descriptions
in natural language [3] or against queries for formal reasoning [27,31] and also
assist unfamiliar users in the creation of event logs [4,27]. There are only few
approaches that automate this task [26,27], avoiding a labor-intensive manual
annotation and all of them have drawbacks (see Sect. 3).

In this paper, we propose a technique for automatically annotating textual
process descriptions based on semantic parsing [16], which formally describes the
semantics of a natural language text, and linguistic features like, for instance,
word embeddings [24,25]. Our approach utilizes established techniques but
combines them in a novel way to contribute a step towards automated text
annotation. We evaluate our approach on datasets from academia and indus-
try [2,15,26,27] as well as a newly created dataset. The evaluation includes
a comparison with results from two state-of-the-art approaches [26,27] and is
two-fold: (i) we calculate metrics widely used in BPM research and (ii) we sug-
gest metrics common in text annotation research [11,32] but that are not yet
established in the BPM community. Regarding the state-of-the-art solutions our
approach contributes to the research eld by achieving the following objectives:

O1 It applies to dierent annotation tasks on textual process descriptions,
O2 It abstracts from plain syntactic variations and, therefore, reduces the num-

ber of linguistic patterns that express the same meaning,
O3 It is data-driven, which avoids the eort of manual rule denition but with

similar result quality like a recent rule-based approach,
O4 It is less data-intensive than currently leading data-driven approaches,
O5 while showing a higher quality of the annotation results, and
O6 It is open for additional features it uses for solving the annotation tasks.

The achievement of the objectives is discussed in Sect. 6.

2 Preliminaries

2.1 Natural Language Processing

Subsequently, a selection of Natural language processing (NLP) techniques is
introduced that is used in the proposed approach or in related approaches.
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Sentence splitting and Tokenization. Splits a text into sequences of basic
units (e.g. words and punctuation marks), which are then grouped into sentences.

Part-of-Speech (POS) Tagging. Assigns each token a lexical item category
(e.g. VERB and NOUN) that indicates its syntactic properties and functions.

Dependency Parsing. Analyzes the syntactical structure of a sentence by
means of a specic syntax tree that describes dependencies between the words
of a sentence (dependency tree). They are, by nature, sensitive to plain syntactic
variations, which is discussed in detail in Sect. 2.2.

Formal Meaning Representation. In contrast to dependency trees a formal
meaning representation covers semantic relations between words (see Sect. 2.2).

Word embedding techniques. Map words (or their meanings) from a vocabu-
lary to vectors of real numbers. In our experiments (see Sect. 5), we vary between
pre-trained models for word embedding techniques Word2Vec [24] and Glove [25].

Text annotation. Means enriching sentences and tokens with schematic infor-
mation. For the current paper these are information relevant for process modeling.
The text annotation schemes relevant for this paper are explained in Sect. 2.4.

2.2 Semantic Parsing, Formal Meaning Representation and UCCA

Semantic parsing precisely transforms natural language utterances into formal
meaning representations [17]. In contrast to syntactic representations, formal
meaning representations describe the meaning of natural language texts [7]
instead of providing insights in the formal constructions used for expressing
this meaning [6]. This has three advantages:

1. Abstraction from plain syntactical variations in natural language utterances,
2. Reection of dierences in their meanings, at the same time, and,
3. Reduction of their complexity, and Disambiguation of their meanings.

Consequently, semantic parsing can be used as an intermediate step for eas-
ing language understanding tasks like the annotation task discussed in this
paper. The benet is illustrated in Fig. 1, which basically describes two situ-
ations by means of syntactic dependency trees: authors that took some book (a)
and authors that showered (b and c). The phrases “took a book” and “took a
shower” are described by exactly the same syntactic structure. Hence, approaches
that aim at extracting information like actors, actions and business objects from

Fig. 1. Limitations of syntactical dependency trees
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natural language text have to disambiguate whether “shower” and “book” are
objects that can be taken in terms of “grasping” them. In formal meaning rep-
resentations this disambiguation is already covered.

Because of the drawbacks of syntactic representations described above, our
approach is based on formal meaning representations. Though there are multiple
formal meaning representation schemes available, our approach is based on the
graph-based Unied Conceptual Cognitive Annotation (UCCA) for the following
reasons [6]: (i) It forms a cross-linguistically applicable scheme, (ii) it is able to
describe the semantics of whole paragraphs and not only sentences, and (iii) it is
based on cognitive categories that bear information, which is also relevant in the
domain of business processes. For this paper, we focus on the latter advantage,
which is depicted by the UCCA graphs shown in Fig. 2. The shown UCCA graphs
dierentiate between a procedure of doing something (a) and a procedure of
doing something with a particular object (b). In contrast to “shower”, “book” is
located in a dierent sub-graph with a dierent meaning, which directly solves
the issue shown in Fig. 1. The meaning of the dierent sub-graphs are dened by
their nodes, which are, in turn, related to each other with cognitive categories
dened in [6]. (P)rocess describes that something evolves over time (e.g. actions
or movements). (S)tate is the opposite since it marks something that does not
evolve over time and a P(A)rticipant is anything that participates in a process or
state (e.g. locations or entities). An in-depth discussion of all available cognitive
categories can be considered out-of-scope for this paper. We, therefore, refer
to [6] for further reading.

Fig. 2. Two UCCA graphs disambiguating a syntactically ambiguous utterance

2.3 Artificial Neural Networks for Graphs

Graph convolutional networks (GCN ) are neural networks able to process
graphs. Their core idea is based in graph signal processing [29] and recent
advances made them ecient in large scale use [20]. They continuously update
a hidden state h(l) for every node, based on its incoming edges. In this work we
use R-GCN [28], which is able to process graphs with labeled edges.

We dene the directed and labeled multi-graph G as a tuple (V, E, R), where
V is a set of nodes vi ∈ V ; E a set of labeled and directed edges (vi, r, vj) ∈ E
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and R a set of edge types, so that r ∈ R. The function for updating hidden state
h

(l)
i for node vi at iteration l, also called propagation rule is then
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Nr
i is the set of indices for nodes connected to node vi by an edge of type

r. W (l) is a matrix of learnable weights, σ is an element-wise activation func-
tion such as the rectied linear unit ReLU(x) = max(0, x) or softmax(xi) =

exp(xi)∑
j exp(xj)

. ci,r is a normalization constant, which is usually set to |Nr
i |. The

output of this propagation rule is then either used as input for the next graph
convolutional layer or as the net’s nal output, see Sect. 4.

2.4 Annotation Schemes and Tasks for Textual Process Descriptions

There are several formalisms how textual process descriptions can be anno-
tated with schematic information. In order to evaluate the applicability of our
approach, we discuss experiments that are based on two dierent annotation
schemes: (i) An important subset of the Annotated Textual Descriptions of Pro-
cesses (ATDP) [27] scheme that has proven to enable formal reasoning [31] and
(ii) the multi-grained text-classication (MGTC) scheme used in [26] to auto-
matically derive procedural business process models from annotated texts.

Fig. 3. Example of an annotated textual process description

The MGTC scheme denes three annotation tasks1 on two dierent levels
(clause and token level) and with dierent annotation types (see Fig. 3).

– Clause Classication (CC): Annotate a clause as an activity or a statement.
– Clause Semantics Recognition (CSR): Determines the semantics of a state-

ment clause, i.e. extracts the concrete control ow pattern.
– Semantic Role Labeling (SRL): Classies the tokens of each activity clause.

Activity clauses describe, which Roles perform which Actions on what
Objects, which determined by the SRL task. From statement clauses concrete
control-ow relations are extracted. These refer to the beginning of a block of

1 Literature refers to Clause Classication and Clause Semantics Recognition as Sen-
tence Classication and Sentence Semantics Recognition, which suggests processing
of whole sentences, though the discussed approach operates on clauses instead.
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actions (block begin), the ending of such a block (block ends), a relation orga-
nizing activities as a sequence (successive relation), a decision point (optional
relation) and a parallelization of the control ow (concurrency relation).

In contrast to MGTC, the ATDP scheme does not include annotation tasks
like CC or CSR (see Fig. 3). Instead, in an SRL task similar to that in MGTC,
it provides annotation types for distinguishing between activity fragments:

– Task represents the atomic units of work in business processes,
– Event is usually part of the process ow but are out-of-scope for the organi-

zation responsible for executing the process,
– Condition describes circumstances under which other information pertain.

Though the ATDP scheme is far more expressive, we limit the description to
the mentioned fragments for two reasons: (i) This paper focuses upon the SRL
tasks, which means that, for instance, relation extraction is out of scope and (ii)
several other ATDP classes are not evaluated in [27] making annotation results
incomparable. Besides that we consider the CC and CSR tasks according to the
MGTC scheme because they are rather similar to the SRL task, except that
whole clauses are annotated instead of tokens. Furthermore, the approach that
builds upon MGTC [26] and our approach are, in contrast to the approach that
uses ATDP [27], both data-driven and, consequently, more comparable.

In addition to the annotation types described above, we introduce a None
type for the SRL task. This is necessary since our approach treats this task as a
token classication problem and, thus, has to reect tokens that are irrelevant
for the SRL task (see Sect. 4). Since both MGTC and ATDP contain an SRL
task we refer to the particular tasks as SRL (MGTC) and SRL (ATDP).

3 Related Work

To clarify the focus of this paper, we concentrate on a discussion of related
approaches that explicitly involve or focus on annotating textual process descrip-
tions following a specied scheme and that are state of the art [15,26,27]. Here
we distinguish between rule-based and machine-learning-based techniques. While
the former rely on sets of hand-crafted rules to extract annotations, the latter
build upon machine-learning techniques like articial neural networks. We also
briey discuss experiences and similarities with approaches related to informa-
tion modeling tasks like object-oriented modeling and database modelling.

Rule-based Approaches. Friedrich et al. [15] build upon standard NLP tools
that, for instance, extract language features like syntax trees from sentences in
order to analyze them using an extensive set of rules. Some of the extracted
information are annotations, which are nally processed to generate a BPMN
model. Quishpi et al. [27] extract annotations that conform to the ATDP scheme
(see Sect. 2.4) and dene tree-based rules that analyze dependency trees in order
to generate candidates that t this scheme. Both approaches rely on rule sets
that are dened upon syntax trees, which are inherently sensitive to syntactical
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changes of the underlying natural language utterance. Consequently, this sig-
nicantly raises the number of required rules to cover all interesting syntactic
patterns. This means that experts for the particular approach have to be mind-
ful of for missing rules and, at the same time, have to avoid ambiguities due to
overlaps. Eventually, this usually lowers the portability of rule-based approaches
to unseen data (see Sect. 5.2). Furthermore, two natural language utterances
might have the same syntactic structure but can likewise have distinct meanings
(see Sect. 2.2), which lowers the information content of syntax trees. Another
drawback is the limitation to human-interpretable features, i.e. it is hard to
hand-craft rules on, for instance, high-dimensional word embedding vectors.

Machine-learning-based Approaches. The approach proposed by Qian et
al. [26] extracts annotations conforming to the MGTC scheme (see Sect. 2.4) and,
thus, builds upon a multi-grained analysis of textual process descriptions, which
consists of three annotation tasks (see Sect. 2.4). For each of the three tasks the
approach builds upon a separate articial-neural-network architecture. Since all
of these architectures rely on word embeddings of several hundreds of dimensions
(e.g. Word2Vec) the approach depends on the availability of rather huge amounts
of data (see Sect. 5.2). Another drawback of the approach discussed in [26] is
that it omits the issue of nding the correct span of tokens that forms a clause,
which can be classied. Instead it requires a manual pre-processing of all input
data, which segments natural language utterances. The approach described in
[22] extracts and classies candidate tasks for robotic process automation from
textual process descriptions. However, since it focuses on distinguishing between
activity types its comparability to our approach is rather low.

Distantly Related Approaches. In [12] 13 approaches are compared, which
are tailored to transform textual requirements specications into UML mod-
els and an included study emphasizes the need for automated transformation
tools. Several approaches involve text annotation as an intermediate step mak-
ing them comparable to our proposed approach (e.g. [21]). Other approaches aim
at extracting database models from requirements specications [9]. Most of the
approaches rely on syntactic features, hand-crafted rules and external knowledge
sources (e.g. ontologies). Hence, they suer from the same drawbacks discussed
above and that are in the focus of our research. However, most of them use token-
level features like POS tags to disambiguate word senses. Finally, another inter-
esting approach extracts process activities from email logs [18]. While it focuses
on issues caused by specic characteristics of emails, it uses word embeddings to
derive the semantics of words and sentences. We conclude from this observation
that widely used token-level features like POS tags and word embeddings can be
valuable for our approach (see Sect. 4), too. Though some approaches overlap
with our proposed approach, they cannot be applied directly since they do not
achieve the dened objectives: (i) According to objective O1 the approach has
to solve very dierent annotation tasks (see Sect. 2.4), (ii) according to objective
O3 it should be data-driven, and (iii) objective O6 requires feature extension
to be part of the concept. Finally, the annotation schemes are specic for the
process domain and, in contrast to standardized languages like UML in object-
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oriented modeling, they are highly variable and bear process-specic challenges
(see Sect. 2.4). Other approaches process alternative input types (e.g. controlled
natural language), which are easier to be interpreted automatically. But since
we focus on already existing textual process descriptions, they are out of scope.

4 Approach

Fig. 4. Approach overview (depiction of graph convolution based on [34])

The input for our approach is a textual process description, which is tokenized
and segmented into sentences. Each token is associated with its part of speech
(POS tagging). We denote this phase as PREPROCESSING (1).

Sequences of tokens prepared in this manner are passed on to the second
phase, FEATURE EXTRACTION (2). Here, a semantic parser generates a for-
mal meaning graph, which describes the semantic structure of a sentence. Graph
nodes corresponding to tokens are called terminal nodes. These contain features
obtained in the previous step, namely POS-tags and token text.

Every node in the graph is then transformed into a numerical representation.
Transformations include one of the following:

1. No Features: We evaluate the discriminative power of formal meaning rep-
resentations in isolation, by encoding each node’s index to a one-hot-vector.
This way subsequent steps have no detailed information about tokens.

Data-driven annotation of textual process descriptions 39



Data-Driven Annotation of Textual Process Descriptions 83

2. Word embedding: The numerical vector representation for each word from a
pre-trained embedding model. Since we use techniques that generate mean-
ingful vector representations, we call this whole step node enrichment. Non-
terminal nodes, not containing text information are assigned the zero-vector.

3. POS tag encoding: POS tags are one-hot-vector encoded. Non-terminal nodes,
not containing text information are assigned the zero-vector.

Eventually, terminal nodes are then transformed into class predictions during
the PREDICTION (3) phase. Here we extract adjacency matrices Ar from the
formal meaning graphs. We then generate a node feature matrix X by stacking
all node feature vectors obtained in (2). The choice of features inuences nal
accuracy signicantly, which is why we analyse dierent node features in detail
in Sect. 5.2. Terminal nodes in UCCA graphs can correspond to several tokens,
in which case their feature vectors must be combined, to form a single one. We
use averaging in case of word embeddings and addition in case of part-of-speech
tags.

Building the adjacency matrices Ar requires some additional steps to fulll
several assumptions made by [20] and [28]:

1. Graph convolutions as proposed by [20] rely on self loop edges to incorporate
a node’s current information h(l) into its next state h(l+1). Without self loops
a node’s new state solely relies on its neighbours’ information (see Sect. 2.3).
Therefore, we extend the set of edges with {(v, rs, v)|∀v ∈ V }, where rs is a
special self loop relation type added to R, so that rs ∈ R.

2. UCCA graphs are dened as directed acyclic and labeled graphs. To be able
to process UCCA graphs, we transform the graph into an undirected and
labeled one by extending the set of edges E with {(v, r, u)|∀(u, r, v) ∈ E}.

3. GCNs as proposed by [20] and [28] do not allow for classifying graphs globally,
something we need for the CC task. This can be implemented via Global
Pooling Layers, Attention Sum or a Global Readout Node [34]. We chose the
latter. Therefore, to classify graphs globally we add a new node vg and edges
{(v, rg, vg)|∀v ∈ V }, where rg is a special global relation type added to R.

Evaluating the propagation rule for given number of hidden layers l, adja-
cency and node feature matrices, we are left with nal node state vectors h

(l)
i ,

which represents our model’s output. Node classes can now be predicted by
masking non-terminal nodes and applying a softmax. Graph-level classes can be
predicted by the same process, but instead of masking all non-terminal nodes of
the original graph, all nodes except the global node are masked.

5 Evaluation

5.1 Dataset Description and Experimental Setup

The subsequent quantitative analysis of the proposed approach is based on the
datasets shown in Table 1. The datasets COR and MAM stem from [26] and con-
tain textual cooking recipes and maintenance manuals. Though, the two datasets
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are of considerable size, they vary comparably little regarding their vocabu-
lary and linguistic structures. We show in Table 2 that our approach achieves a
saliently high performance, which causes us to validate it on a dataset of smaller
size and higher linguistic variability. Hence, we also evaluate the approach on
the dataset stemming from [27] (QCD) and another dataset newly created by us
(VBP). Covered domains are, for instance, document management and quality
management. For the VBP dataset we intentionally omitted any data curation
since we also measure how the approach reacts to noisy data in terms of incon-
sistent labeling. We consider this, because a common issue in text annotation
are ambiguous gold standard labels [11,32] (e.g. including determiners or not).

Table 1. Statistics of the datasets used for evaluation

Domain COR MAM QCD VBP

Recipe Maintenance Mixed Mixed

# Labeled sentences 17,562 14,370 203 250

# Labeled tokens 34,439 28,174 3,581 6,600

# Sentence-level categories 8 8 - 5

# Word-level categories 4 4 5 6

We implemented our approach using Python 3.6.11 and it consists of R-
GC layers proposed by [28]. It is implemented in the Deep Graph Library [33] at
version 0.5.2, which allows for dierent backends, i.e. Tensorow [5], which we use
at version 2.3.1. We build our approach with 2 hidden graph convolutional layers,
each consisting of 64 hidden units and train it using the categorical cross-entropy
loss [35] and Adam [19] optimizer with learning rate set to 5e−5. For converting
text to UCCA graphs we rst tokenize and tag them using spaCy (https://spacy.
io/. Accessed 5 Dec 2020) and UDPipe [30]. The HIT-SCIR parser [10] creates
the graphs, which are then processed as described in Sect. 4.2

For each experiment we employ a 5-fold stratied cross validation. Using a
stratied cross validation we ensure the same distribution of target classes is
present in training and test sets. We remove samples with targets that do not
have at least 5 instances across all data sets to guarantee test splits with at least
one instance of every class. We report the mean over ve folds, with exception
of approach by [27], where values are obtained without cross validation, since
rule-based methods do not prot from splitting the data into train and test sets.

We intend to capture the ambiguity [32] during labeling with varying degrees
of fuzziness. As such, metrics reported are F1 score variants. The Exact F1-
score is a valid goal but fails to recognize the inherent uncertainty described
in Sect. 5.1. F1 is dened as harmonic mean F1 = 2PR/(P + R) of Precision
P = #ok/#pred and Recall R = #ok/#gold. #pred is the number of predicted
spans, #gold is the number of expected spans. Calculation of #ok follows [11,32].
2 Our code can be accessed at https://github.com/JulianNeuberger/UCCA4BPM.
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Exact. #ok is increased by 1, if the predicted annotations for a span and its
boundaries match those of the gold standard.

Partial. #ok is increased by 1, if requirements for Exact hold; if at least one
predicted token annotation matches the gold standard, #ok is increased by 0.5.

Fragment. works on token-level instead of span-level. All spans are fragmented
and then handled like in Exact while adjusting #pred and #gold.

5.2 Overall Results and Further Analysis

We compare our approach to a state-of-the-art machine learning approach that
outperforms several traditional methods [26]. To address the problems described
in Sect. 3, we additionally chose a recent rule-based approach with a much
smaller data set [27] as a second baseline. Our approach outperforms [26] on
their data sets COR and MAM as well as our smaller and noisier data set. When
comparing our approach to the rule-based approach by [27] we perform worse on
their data set, while outperforming them on ours, as shown in Table 2. For our
dataset MGTC seems to be unable to learn the SRL task and consistently pre-
dicts the None class, resulting in no exact span matches. Values reported under
Our approach are for the optimal conguration (see Sect. 5.1). Results marked
with “–” are not reported, since they correspond to tasks with a single readout
node (see Sect. 4). In the following, we discuss the main aspects impacting our
approach’s performance.

Table 2. Results on datasets by related work and ours.

Dataset Public code by [26] Our approach

F1 exact F1 partial F1 fragment F1 exact F1 partial F1 fragment

COR (CC) – – 66.11 – – 99.94

COR (CSR) – – 60.95 – – 96.77

COR (SRL) 43.45 59.90 64.97 97.03 97.86 98.26

MAM (CC) – – 67.57 – – 99.89

MAM (CSR) – – 60.50 – – 97.46

MAM (SRL) 41.78 59.09 63.86 96.08 97.20 97.78

Our data set (CC) – – 69.13 – – 87.89

Our data set (CSR) – – 69.24 – – 77.19

Our data set (SRL) 0.0 39.19 61.28 36.09 53.45 65.05

Public code by [27] Our approach

Dataset from [27] 54.61 68.22 91.59 45.21 63.52 88.15

Our dataset (SRL) 24.07 49.54 88.40 39.35 61.98 90.66

Node Features. Rich features allow the approach to distinguish in harder anno-
tation cases, where the UCCA graph alone is not enough. Highly dimensional
feature vectors introduce many new learnable parameters however, which in turn
can not be trained with small datasets [8]. The trend in Fig. 5 suggests using no
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node features, the UCCA graph itself contains enough information to reach per-
formance comparable to or better than other state-of-the-art approaches. The
usefulness of word embeddings depends on the corpus they were trained on.
Certain stop words (i.e. “if”, “before”), are useful in deciding whether a clause
contains Conditions or Tasks. If the word embedding model was trained without
those tokens the additional model complexity does not pay o. Fine POS tags
seem to strike a good balance between additional information, while condensing
it into a fairly small one-hot encoded vector of up to 17 elements3.

Fig. 5. Comparing node features for tasks CC, CSR, SRL(MGTC) and SRL(ATDP)

Learning Rate. A high learning rate will cause the optimizer to change weights
by a large delta, therefore, resulting in faster but more unstable training. On the
other hand a smaller learning rate will result in more stable training at the cost
of longer training times. We trained the network in its optimal conguration
only changing learning rate and determined a learning rate of 5e−5 as optimal.

Size of Hidden Node State. Larger hidden node states allow for more complex
aggregation of neighbouring node states so the model is able to represent more
variance in the data. This comes with the cost of having more parameters, which
need tting, though – unlike with e.g. the number of relations [28] – increasing
the number of hidden units in a given layer increases the number of weights
linearly [20]. Our experiments indicate an optimal number of hidden units of 64.

Number of Graph Convolutional Layers. Intuitively the number of hidden
graph convolutional layers aects the distance one node can collect neighbour-
hood information from. Initially we suspected a relatively high number of edges
need to be traversed to gain the information needed for the text annotation

3 see https://universaldependencies.org/u/pos/, accessed 2020/12/5.
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tasks. But, like Fig. 6 shows, proper node features and the incoming edge4 alone
is enough. We suspect that a model trained on a larger dataset for solving a
more complex task would make use of more neighbourhood information.

Fig. 6. Importance of choosing the right number of hidden layers in our model.

Assumptions. From a conceptual perspective our approach assumes plain text
(i.e. no markup language) as input or requires an additional pre-processing
step (see Fig. 4). The implementation has a modular structure and further
assumptions might arise when adding new or replacing existing features and
implementations, like the word-embedding model and the semantic parser. Our
implementation involves a semantic parser trained on a mixture of web reviews
and Wikipedia articles, while our word embedding models are either trained
on Google’s news aggregations (Word2Vec) or Twitter tweets (Glove). Hence,
the quality of our implementation is to some extent dependent on the dier-
ences regarding linguistic structures and vocabularies between the input and the
data used for pre-training. The current implementation is language-independent.
However, if using the pre-trained Glove model input documents in English are
required or one has to retrot Glove to the intended input language.

6 Conclusion and Future Work

In this paper, we propose an annotation approach for textual process descriptions
and qualitatively measure its contribution based on a set of objectives (see Sect.

4 Using token based node features, inner nodes use the zero vector as feature, since
they do not have a corresponding token. Therefore, two edges need to be traversed
before the incoming edge information is aggregated in a terminal node: The articial
inverse edge “up” the UCCA structure and only then the edge in question, see Sect. 4.
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1). It is data-driven, relies on articial neural networks (O3), and outperforms the
currently best-performing data-driven approach (see Sect. 5) (O5) in all dened
annotation tasks (see Sect. 2.4) (O1). At the same time we use lower-dimensional
word-embedding features, which makes the approach less data-intensive (O4).
Though, the state-of-the-art rule-based approach shows better results on one
dataset, we outperform it on another dataset with a similar quality showing
that our approach is more stable on unseen data. Since the approach proposed
in this paper is based on formal meaning representations it abstracts, by nature,
from syntactic variations (O2). Finally, we describe how dierent features can
be incorporated in the annotation task (O6).

Currently the approach is not able to model relations between tokens. This
drawback presents an exciting avenue of future work, especially since our tech-
nical backbone, GCN, is able to perform this task via a technique called Link
Prediction [28]. Similarly, we are limited to one annotation per token. This can
be solved by using a dierent activation function in the last graph convolu-
tional layer, but it stands to show that training on our small, inter-domain
dataset yields comparable results. Finally we would like to advance our exper-
iments with regards to dierent node features, including, but not limited to,
knowledge-graphs like WordNet [13], Universal Features5 and combinations of
dierent features, e.g. part-of-speech tags and word embeddings.
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Abstract. Information systems that have to deal with natural language
text are often equipped with application-specic techniques for solving
various Natural Language Processing (NLP) tasks. One of those tasks,
extracting entities and their relations from human-readable text, is rel-
evant for downstream tasks like automated model extraction (e.g. UML
diagrams, business process models) and question answering (e.g. in chat-
bots). In NLP the rapidly evolving research eld of Relation Extrac-
tion denotes a family of techniques for solving this task application-
independently. Thus, the question arises why scientic publications about
information systems often neglect those existing solutions. One supposed
reason is that for reliably selecting an appropriate technique, a compre-
hensive study of the available alternatives is required. However, existing
studies (i) cannot be considered complete due to irreproducible liter-
ature search methods and (ii) lack validity, since they compare rele-
vant approaches based on dierent datasets and dierent experimental
setups. This paper presents an empirical comparative study on domain-
independent, open-source deep learning techniques for extracting enti-
ties and their relations jointly from texts. Limitations of former studies
are overcome (i) by a rigorous and well-documented literature search
and (ii) by evaluating relevant techniques on equal datasets in a uni-
ed experimental setup. The results1 show that a group of approaches
form a reliable baseline for developing new techniques or for utilizing
them directly in the above mentioned application scenarios(1Our code
and data: https://github.com/JulianNeuberger/re-study-caise.).

Keywords: Named Entity Recognition · Relation Extraction ·
Natural Language Processing · Articial Intelligence

1 Introduction

Due to a dramatic increase in the amount and volume of textual information
sources, techniques for automatically extracting and formalizing information
from texts play a crucial role in information systems engineering [1,5,15,20,21].

Our work is supported by the Bavarian Research Foundation (grant no. AZ-1390-19).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Indulska et al. (Eds.): CAiSE 2023, LNCS 13901, pp. 471–486, 2023.
https://doi.org/10.1007/978-3-031-34560-9_28
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Relation extraction (RE) techniques contribute to solving this task, since they
aim at extracting entities and relations among them. Our research group has
come into contact with RE from the application perspective of process model
extraction from human-readable text sources (e.g. [2,8,21]) written in English
(e.g. for identifying resources, activities, data objects, and connections among
them) [2]. Further exemplary applications are the extraction of UML diagrams
(e.g. [7,25]) or entity-relationship diagrams (e.g. [4]). Each of those applications
contains a specific solution for extracting relations. This raises the question of
whether there is a promising baseline technique that could be used “out of the
box”1 to solve this task without the eort of developing application-specic solu-
tions, which is the standard approach these days?

Fig. 1. Publications relevant to RE since 2000.

Most existing techniques
are published in isolation
and with an evaluation on
few, mostly dierent data-
sets and with dierent exper-
imental setups like dier-
ent evaluation metrics and
dierent usage of training
and validation splits. Hence,
it is not possible to com-
pare approaches based on
their documented evaluation
results [27]. To overcome
this issue, Papers with Code2

allows for sharing papers
along with code and all
resources for reproducing experiment results. However, results can be published
by the authors themselves, which neither guarantees a uniform experimental
design nor obviates the need for reproducing results in order to ensure cor-
rectness. Literature surveys [13,14,16,17,29] do not abolish these issues, since
they base their discussions on evaluation results from the original publications,
a principle which suers from the same shortcomings. Empirical comparative
studies are intended to provide a unied evaluation but former studies [19,27]
are incomplete due to irreproducible literature search methods. Consequently,
it is not possible to identify the best-performing relation extraction approach
directly from existing literature.

Considering the observations above, the contributions of this paper are the
following: (C1) It comprises a rigorous, reproducible literature search based on
well-documented search queries, lter criteria and documented review decisions
that is based on PRISMA [18], an established method for literature reviews.
(C2) It provides a unied evaluation of the RE techniques selected in point
C1. (C3) As a basis for contribution C2 all raw predictions on the test sets

1 A denition for this term is given in Sect. 3.1.
2 https://paperswithcode.com/.
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are (re-)produced by the authors as an independent party. (C4) It identies
a group of relation extraction techniques that show promising results. (C5) It
uncovers the most likely drivers of performance degradation in neural Joint RE
techniques.

The impact of contribution C1 can be inferred from Fig. 1, which shows an
exponential increase in RE publications. Our study thus reveals the applicability
of the investigated approaches to a given dataset and allows for a well-founded
decision in favor of one of these approaches or, alternatively, the development
of a specic solution. Due to the reproducible search method, the study can be
extended by adding papers published in recent years through running a docu-
mented set of search queries3 and adding a time restriction. The result of the
literature search is a selection of RE techniques that fullls the specied lter
criteria (Sect. 2.2). This paper focuses on the subclass of Neural Joint RE tech-
niques. Joint means that a single model is trained for extracting both entities
and relations instead of training two separate models. The term Neural refers
to approaches that are based on deep learning. The rationale behind these and
other restrictions is discussed in Sect. 2.2.

The remainder of this paper is structured as follows: Section. 2 reies the
RE task and provides an overview of related surveys and comparative studies.
Furthermore, it describes the criteria used for selecting RE approaches that are
evaluated based on an experimental setup described in Sect. 3. This section also
presents the evaluation results along with a thorough analysis. Finally, Sect. 4
summarizes core insights of this study and provides impetus for future research.

2 Research Scope

Consistent with the idea of bridging research elds, the research scope is tailored
to two types of readers: (i) Contributors to research domains that require an
RE technique to solve a specic downstream task and (ii) contributors to the
research domain of RE who need to reect on the state of the art. For both
types of readers, this study answers the following leading research question for
the subset of RE techniques dened in Sects. 2.1 and 2.2:

Are there Joint RE approaches that stably achieve better results on diverse
datasets, and what data characteristics cause performance degradation?

RE is a broad term, therefore Sect. 2.1 denes how we use it in this paper.
Section 2.2 denes criteria for including a RE approach in experiments.

2.1 Task Description: Relation Extraction

RE in general means to identify entities and relations among them [14,17]. The
following describes the understanding of the RE task used in this paper.

3 See https://github.com/JulianNeuberger/re-study-caise#search-queries.
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Extraction Scope. RE distinguishes between mention-level and global [9,11]
techniques. Mention-level means relation classication for a given sentence and
given entities [11]. Global means the prediction of relational facts from plain
text [9]. This study focuses on global RE (abbreviated with RE in the remainder).

Input Scope. The input scope is either sentence-, document-, or corpus-level,
depending on whether the input is a single sentence, multiple sentences, or mul-
tiple documents containing multiple sentences [14]. In the latter two cases, rela-
tions usually cross sentence boundaries. Our experiment scope is sentence-level
(Sect. 3) for mainly two reasons: (i) It facilitates the relation extraction task and
thus better describes the overall potential for extracting relations in a generalist
setting and (ii) document- and corpus-level Joint RE are emerging elds. The
few documented approaches still produce rather poor results, making it hard to
apply them in the information-systems domain.

Output Scope. Some approaches can only extract exactly one relation per sam-
ple (corresponds to a sentence according to our input scope), but this study
also considers approaches that allow for multiple relations per sample. The arity
of each relation is two, which means that only binary relations are considered,
therefore all experiments described in Sect. 3 expect output relations to be triples
of the form E1, R, E2, with E1, E2 being two entities, and R being the rela-
tion among them. Furthermore, all experiments use datasets with directed rela-
tions [11], meaning the triple E1, R, E2 denotes a relation R with E1 as source
(aka head) and E2 as target (aka tail), and E2, R, E1 denotes the same relation
with opposite direction. Finally, in contrast to Open Relation Extraction [10],
all relation types are represented in both training and test data in experiments
conducted in this paper.

2.2 Literature Review

To ensure the reproducibility of this study, it is based on a rigorous literature
review procedure following the principles of PRISMA [18]. In the rst stage a
set of search queries4 serves as a coarse-grained lter for selecting neural relation
extraction approaches. In the second stage, the title and abstract of all results
found by running these queries are manually reviewed for relevance. Finally, the
remaining papers are reviewed for relevance using the full text.

Stage 1: Retrieval Stage. To search for relevant RE approaches, Google Scholar
and the Scopus database are used. Google Scholar oers the advantage of
accessing additional scientic databases (e.g. ScienceDirect, DBLP, ACM Digital
Library, ACL Anthology, Springer, IEEE, and arXiv). With duplicates removed,
the set of queries mentioned above retrieved 1845 publications potentially rele-
vant to the eld of Joint RE. For validation, we check whether the results include
all articles previously found by the authors in a manual search (41 articles). Two
additional articles are identied in this way, leading to 1847 results overall.
4 See https://github.com/JulianNeuberger/re-study-caise#search-queries.
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Stage 2: Filtering by title and abstract. In this stage, the articles found are
matched against several exclusion criteria5 by analyzing the title and abstract.
To be considered relevant, an article must not meet any of the following exclusion
criteria. The rst criterion (EXCL 1) excludes all articles not written in English,
while the second criterion (EXCL 2) excludes surveys, comparative studies, or
domain-specic applications of existing approaches. EXCL 3 lters out articles
proposing an approach that cannot handle English text, since they are not com-
patible with the application scenarios that led to this study (cf. Section 1). Crite-
rion EXCL 4 excludes all articles that do not propose a deep learning approach.
We restrict ourselves to RE approaches that use deep learning for entity and rela-
tion extraction, since articial neural networks usually outperform conventional
approaches and are known to have better generalization capabilities [14,31].
EXCL 5 requires that the source code of the techniques is publicly available to
enable a fair comparison, as re-implementations based on the descriptions in the
article would potentially be error-prone. Another requirement is that entity and
relation extraction is jointly trained, i.e. a single model is trained to solve both
subtasks [22,27,34] (EXCL 6). One reason is that learning to predict entities
and relations simultaneously has been shown to bring synergies to both tasks
and increases the extraction capabilities of a model [22]. In addition, it avoids
the problem of error propagation that occurs when misclassied entities are used
as input to a separate relation extraction component, potentially lowering the
prediction quality of that component even though it is not primarily respon-
sible for these consequential errors. EXCL 7 excludes approaches that rely on
domain-specic knowledge bases such as Freebase or Google Knowledge Graph,
since this external knowledge needs to be maintained (Freebase, for instance, is
oine) and implies a strong dependency on completeness, correctness and avail-
ability (e.g. [28]). Furthermore, it may limit transferability to other domains due
to application biases (e.g. Google’s Knowledge Graph is used to ll info boxes
to summarize search results regarding people, places, etc.). After this stage, 189
articles remain for detailed review by reading their full texts.

Stage 3: Filtering by reading the full text. In the nal phase, irrelevant articles
are excluded by reviewing the full text, reusing the criteria used in stage 2. This
step is necessary because in many cases the abstract is too vague to seriously
evaluate the exclusion criteria. Finally, we obtain 31 relevant approaches.

2.3 Related Work

Currently no existing study fully meets our research scope (Sects. 2.1 and 2.2)
but there are still several distantly related surveys and comparative studies.

Empirical Studies. [27] analyzes 20 approaches regarding aws frequently occur-
ring in articles related to RE, including a comparison of dierent RE approaches.
The study described in Sect. 3 avoids aforementioned aws by using a unied

5 Criteria list: https://github.com/JulianNeuberger/re-study-caise#ltering.

54 Bridging research fields



476 L. Ackermann et al.

Table 1. Detailed characteristics of the approaches considered. Column Params lists
the approximate total number of weights, trainable or not. Training durations are given
for the smallest dataset (ConLL 04) and largest one (NYT 10). Column Termination
lists the criterion used to stop training. Column Input features lists the inputs a model
takes. Here TOK means a sequence of tokens, POS their part-of-speech tags, CL char-
level input, and LM, WV pretrained language models and word vectors respectively.

Approach Params Training dur Machine Termination Input features

RSAN [34] ≈8M 1.5 h–6.0 h Titan RTX Epochs TOK,POS,CL

Two [30] ≈7M 1.5h–3.5 h Titan RTX Ep., Steps TOK,CL,LM/WV

CasRel [31] ≈100M 2.0 h–5.0 h RTX 2080 TI Epochs TOK,LM

JointER [33] ≈14M <1 h–4.5 h Titan RTX Epochs TOK

PFN [32] ≈111M 4.0 h–6.5 h Titan RTX Epochs TOK,LM

SpERT [6] ≈100M <1 h–10 h RTX 2080 TI Epochs TOK,LM

MARE [12] ≈350M 1.0 h–16 h RTX 2080 TI Patience TOK,LM

experimental setup. In [19], the inuence of two main information sources is dis-
cussed, namely textual context and entity mentions. Both [19,27] tailor their
experiments to answer research questions dierent from those in our study
(Sect. 2). Another study, [26], is exclusively focusing on the biomedical appli-
cation domain and does not perform a rigorous literature search. Furthermore,
the evaluation is limited to three basic neural network architectures and omits,
for instance, the established transformer models.

Literature Surveys. In contrast to the few empirical studies, there are various
literature surveys that compare RE techniques mainly on a conceptual level [3,
13,14,16,17,29,36]. All of those articles include a quantitative comparison based
on evaluation scores. However, due to the nature of a survey, the evaluation scores
are an excerpt from dierent external sources, such as the original publication of
an approach. Therefore, the experimental setups dier signicantly – in line with
the aws identied in [27] – lowering the validity of the quantitative analysis.
Moreover, none of the aforementioned surveys conducts a reproducible literature
search, which challenges the completeness of the literature considered.

3 Comparative Study

Addressing the research question posed in Sect. 2, this study evaluates
approaches that are able to solve the Joint RE task (Sect. 2.1) and that are
selected in the literature review phase (Sect. 2.2). To be able to inspect the per-
formance of approaches from dierent angles, three dierent variants of the mea-
sures F1 score, precision, and recall are computed. To also vary the application
scenario, the approaches are applied to four datasets with diverse characteristics.

3.1 Considered Approaches

As mentioned in Sect. 1, this study focuses on approaches that can be used
“out of the box”. An approach is considered usable “out of the box”, i (i)
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its executable source code is publicly available, (ii) the default hyperparameters
are known, (iii) hyperparameter optimization is not mandatory, and (iv) neither
language model re-training nor vocabulary adaptation is required.

To enable consistent evaluation and practical application, all approaches
must export their predictions in a structured format. All of these limiting criteria
are necessary for an approach to be widely applied without expert knowledge in
RE, which is consistent with the intuition of “out of the box”.

According to this denition, 31 approaches were classied as relevant. If
possible, authors of those approaches as well as authors of this study adapted
the code of approaches to the needs of our experiments (Sect. 3.2). However, even
with the help of the respective authors, the code of several approaches could not
be adapted for various reasons (e.g. incomplete code, lack of reproducibility,
missing hyperparameters). Hence, they are discarded. This results in the group
of approaches listed in Table 1. Although the above restrictions keep the focus
very narrow, approaches that satisfy them have a high practical applicability in
terms of availability and documentation for this very reason.

3.2 Experimental Setup

This section provides details on the datasets, their splits, and all the evaluation
steps performed.

Datasets. All approaches are evaluated on four prelabled datasets: SemEval 2010
(task 8) [11], NYT10 [23], FewRel [10], and Conll04 [24]. We have chosen these
datasets due to their diversity with respect to several characteristics, such as,
for instance, number of samples, distance of entities that have a relation or size
of the tagset (see Table 2). Datasets that require an external knowledge graph
are ruled out (see EXCL 7 Sect. 2.1). The train/dev/test splits are created as
follows: For SemEval 2010 (task 8) and NYT10 the original training data is
split into 80% training and 20% dev data by uniform sampling. For Conll04,
the corpus is divided into 70% training data, 20% dev data, and 10% test data
by uniform sampling. In the case of the FewRel dataset, the provided training
and test data (train wiki.json and valid wiki.json respectively) are rst merged
and a stratied split based on the relation type is made into 70% training data,
20% dev data, and 10% test data. Merging training and test data is necessary
because the selected RE approaches are not able to handle relations that are
not existent in the training data. However, in FewRel, training and test data are
disjoint with respect to the relation types they contain. Global dataset statistics
are listed in Table 2. The distribution of relation types is visualized in Fig. 2.

Experiment details. For a unied evaluation, the implementations of the
approaches are modied in two places6. First, each approach is modied so that
any dataset matching the required input format can be passed in. Second, parts

6 the modied implementations can be found at https://github.com/JulianNeuberger/
re-study-caise/#considered-approaches.
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Table 2. Detailed dataset statistics. # samples refers to the number of sentences, while
# instances refers to the number of relation examples. max dist and avg dist denote the
maximum and average number of tokens between relation arguments, measured from
the start token of an argument. Average distance is rounded to two decimal places.
The minimal distance is 1 for each dataset.

dataset # samples # instances # rel max dist avg dist vocab # tokens # entities # tags

NYT10 (train) 56271 70247 29 128 10.98 75721 2142436 116297 16

NYT10 (valid) 14068 17492 28 102 11.13 37338 536268 29008 15

NYT10 (test) 4006 5859 29 86 11.35 18001 154274 8331 13

Total 74345 93598 29 128 11.03 87014 2832978 153636 17

Semeval (train) 6400 5252 9 26 4.73 18735 123443 12800 15

Semeval (valid) 1600 1338 9 35 4.84 8052 30532 3200 9

Semeval (test) 2717 2263 9 20 4.86 11342 52500 5434 9

Total 10717 8853 9 35 4.78 25194 206475 21434 16

ConLL 04 (train) 3861 1383 5 68 7.77 15218 98390 9928 4

ConLL 04 (valid) 551 216 5 35 7.99 4602 14300 1403 4

ConLL 04 (test) 1104 449 5 82 8.29 7048 27490 2846 4

Total 5516 2048 5 82 7.91 18401 140180 14177 4

FewRel (train) 39120 39120 80 34 8.90 86020 975468 78240 19

FewRel (valid) 5600 5600 80 33 8.84 24427 139423 11200 18

FewRel (test) 11280 11280 80 33 8.88 38681 281523 22560 18

Total 56000 56000 80 34 8.89 107253 1396414 112000 19

Fig. 2. Distribution of relation types per dataset. Visualization of FewRel is abbrevi-
ated, as it contains the same number of examples for all relation types.

of the evaluation functionality are modied to output a unied results le that
contains all the information needed for scoring with a variety of metrics. Then,
this results le is analyzed using an evaluation component implemented by the
authors of this study. Moreover, we also corrected serious errors that prevent a
fair comparison (e.g. the use of test data for training).

All data is converted into the required format and approach-specic prepro-
cessing is performed if necessary. The model is then trained on the training set
and progress is monitored using the dev data. Training is terminated depending
on the criteria dened by the approach (Table 1). The study does not perform
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hyperparameter optimization, but uses the default parameters specied in the
respective approach. Finally, the model is evaluated on the test set. The pre-
diction of the model is stored and later analyzed by the evaluation component.
Some approaches limit the input sequence to a maximum size, which is met by
ltering out longer sentences. This is treated as an incorrect prediction.

3.3 Evaluation Metrics

Before calculating metrics, the predicted relations must be matched with the
ground truth relations. In this study, the exact match strategy [35] is used, i.e.
a predicted triple (h, r, t) is considered to be correct, i its relation (r) and the
boundaries of its head (h) and tail (t) entities are correct. Furthermore, since a
sentence might contain an arbitrary number of relations and a model can predict
any number of relations, the number of correct predictions (nok) for a sample
is determined as the cardinality of the intersection of predictions (npred) and
ground truth labels (ngold).

Following this, precision P and recall R are dened as P = nok/ngold and
R = npred/ngold. To capture dierent perspectives on the results of approaches,
we use three distinct ways of calculating nok, npred, ngold, as well as P and R:

1. micro metrics are calculated over the entire dataset. It shows how well an
approach predicts relations in general, without weighting results by the num-
ber of supporting instances of a given relation type. Therefore, its is unsuited
for imbalanced datasets, e.g. NYT10.

2. macrorel metrics are calculated for each relation type separately and averaged.
This allows insight into an approach’s ability to predict rare relation types
correctly, complementing the micro scores and their shortcomings.

3. macrodoc metrics are calculated for each document separately and averaged.
Both micro, as well as macrorel fail to score the ability of approaches to
correctly identify documents with no relation, as they score the entire dataset
at once, which macrodoc counter-acts.

3.4 Results

Table 3 shows the scores for each approach and dataset, which are addition-
ally visualized in Fig. 3. In general, approaches struggle with the large num-
ber of unique relation types present in FewRel which is evident by low F1
scores. MARE and SpERT score noticeably higher, reaching 47.21% and 40.36%
F1macrorel

respectively. Some approaches, like RSAN score best in regards to
recall (53.14%), identifying the presence of a relation, but fail to properly pre-
dict the relation type, resulting in a low precision (9.19%) and overall F1 score
(15.67%). Similarly, the long-tail phenomenon, i.e. a large number of relation
types with very few examples challenges all approaches, apparent by comparing
their high micro and low macrorel scores. CasRel performs best (F1 = 40.20%)
using macrorel and 71.71% using microrel. Two (F1macrorel

= 14.72%) and
RSAN (F1macrorel

= 23.29%) perform worst, most likely resulting from imbal-
anced data.
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Fig. 3. Overview of the test scores for each considered approach. F1 scores are grouped
by the averaging strategy used, cf. Section 3.3.

The macrodoc scores of approaches on the ConLL 04 dataset show that
all of them are able to model samples, where no relation is present. PFN
(F1 = 86.56%) is closely followed by MARE (85.83%) and SpERT (85.82%).
Comparing the macrodoc scores to micro scores reveals its usefulness, as sam-
ples containing no relation would otherwise not be scored, resulting in worse
perceived performance, e.g. for PFN scoring F1micro = 60.71%.

Semeval contains a large number of NER tags compared to its size, resulting
in high linguistic variability of relation instances. We discuss this characteristic
in more detail in Sect. 3.5. High variability presents a challenge to RSAN, which
only scores a F1micro score of 42.37%. All other approaches are able to cope,
with MARE performing best (70.47%).

3.5 Detailed Analysis

This section analyzes eects of data characteristics on model performance. We
selected those by tting a decision tree to rows of data, consisting of several char-
acteristics present in the dataset and the correctness of the model’s prediction
results. This allows to only select characteristics with the highest impact.

Distance between relation arguments. The number of tokens between a relation’s
arguments is a hurdle to most approaches, as they have to reason across longer
distances. This eect is visualized in Fig. 4. We binned samples of each dataset
separately into 15 bins according to the maximum distance of any relation it
contains. For each bin we calculated the F1 metrics discussed in Sect. 3.4 for the
results of each approach. With the exception of Two, which maintains a fairly
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Table 3. Detailed results of all experiments on the test sets of each dataset. Each
variant of F1 score, precision (P) and recall (R) is reported as dened in Sect. 3.3

macrodoc macrorel micro

dataset F1 P R F1 P R F1 P R

CasRel ConLL 04 77.29% 76.81% 77.78% 51.00% 43.09% 62.47% 51.07% 44.71% 59.55%

FewRel 35.46% 33.99% 37.06% 39.96% 43.35% 37.06% 41.59% 47.38% 37.06%

NYT10 74.23% 76.82% 71.80% 40.20% 34.60% 47.95% 71.71% 76.59% 67.42%

Semeval 56.48% 56.15% 56.83% 64.49% 71.15% 58.96% 60.90% 62.98% 58.95%

JointER ConLL 04 73.46% 73.36% 73.55% 50.60% 44.98% 57.84% 46.27% 40.30% 54.32%

FewRel 30.48% 30.18% 30.78% 34.69% 39.75% 30.78% 35.48% 41.87% 30.78%

NYT10 70.81% 74.03% 67.86% 37.66% 33.22% 43.45% 67.22% 75.19% 60.78%

Semeval 51.57% 50.99% 52.15% 60.67% 64.46% 57.31% 56.08% 54.73% 57.49%

MARE ConLL 04 85.83% 87.00% 84.69% 55.19% 58.25% 52.43% 58.23% 71.29% 49.22%

FewRel 45.05% 45.03% 45.07% 47.21% 49.33% 45.27% 47.43% 50.04% 45.07%

NYT10 72.67% 78.97% 67.31% 34.22% 35.67% 32.88% 65.74% 83.59% 54.17%

Semeval 67.78% 67.65% 67.91% 73.51% 78.60% 69.03% 70.47% 71.88% 69.11%

PFN ConLL 04 86.56% 86.22% 86.91% 52.51% 46.35% 60.55% 60.71% 64.34% 57.46%

FewRel 37.83% 36.94% 38.76% 42.58% 46.87% 39.00% 43.16% 48.69% 38.76%

NYT10 75.36% 77.13% 73.67% 39.31% 33.04% 48.53% 71.50% 74.44% 68.78%

Semeval 66.07% 65.75% 66.40% 71.37% 77.65% 66.03% 68.91% 71.66% 66.37%

RSAN ConLL 04 77.80% 77.70% 77.91% 38.78% 36.43% 41.46% 38.27% 38.86% 37.69%

FewRel 21.15% 13.20% 53.14% 15.67% 9.19% 53.14% 13.16% 7.51% 53.14%

NYT10 67.34% 58.40% 79.51% 23.29% 15.15% 50.39% 54.95% 43.27% 75.27%

Semeval 42.37% 39.63% 45.53% 44.71% 40.85% 49.38% 40.82% 34.58% 49.80%

SpERT ConLL 04 85.82% 85.59% 86.06% 52.71% 46.54% 60.75% 60.28% 63.39% 57.46%

FewRel 40.36% 38.36% 42.58% 39.88% 37.51% 42.58% 39.53% 36.90% 42.58%

NYT10 75.88% 76.90% 74.89% 37.41% 30.17% 49.22% 70.19% 70.21% 70.18%

Semeval 66.87% 65.94% 67.83% 69.86% 71.19% 68.57% 66.84% 64.94% 68.85%

Two ConLL 04 86.26% 85.73% 86.81% 48.58% 38.48% 65.87% 59.20% 56.34% 62.36%

FewRel 25.03% 24.54% 25.53% 31.87% 42.39% 25.53% 34.12% 51.42% 25.53%

NYT10 62.33% 65.61% 59.37% 14.72% 15.44% 14.07% 57.44% 74.12% 46.89%

Semeval 61.53% 61.24% 61.83% 67.68% 76.94% 60.41% 65.41% 70.84% 60.76%

consistent performance, all approaches yield signicantly lower performance on
relations exhibiting longer distance between arguments.

Sample length. Samples with more tokens usually are usually harder to model
for mainly two reasons: Firstly more tokens mean more (possible) entities that
have to be marked and can participate in relations, secondly longer samples
usually exhibit relations where arguments are further apart. For each dataset
samples are binned into 15 bins according to the number of tokens they contain.
We then calculate the metrics for each bin in the same way as for the distance
between relation arguments. For the NYT10 dataset a visualization of the eects
of this characteristic can be seen in Fig. 4. In general approaches struggle with
longer samples, with the exception of Two, which maintains a fairly consistent
performance. Results in general are very similar to the distance between relation
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arguments for the aforementioned dependency between a sample’s length and
the distance between relation arguments it contains.

Relations per sample. If a dataset contains samples with multiple relations it
can be harder to model. This eect is founded in the fact that additionally to
classifying relations correctly, the number of relations has to be predicted as
well. We binned samples of each dataset according to the number of relations it
contains. Datasets SemEval and FewRel contain only samples with exactly one
relation, so we exempt them from this analysis. We then calculate the metrics for
each bin in the same way as for the distance between relation arguments. In our
experiments the number of relations per sample is detrimental to performance,
though much less pronounced compared to eects discussed previously.

Fig. 4. Micro F1 scores of approaches on NYT10 data in relation to distance between
relation participants (left) and sample length (right) in tokens. Samples were sorted
into 15 bins, bins containing less than 25 samples are not drawn, as they suer from
the law of small numbers. Marginal log bar plot shows the number of samples in that
bin.

Variability of relation arguments. It is easy to see that classifying relations con-
taining arguments with little to no variation in constituent tokens is less of a
challenge than the other way around. To investigate the eect of this observa-
tion on the performance of approaches, we calculated the linguistic variability of
relation arguments (i.e. head and tail) by dividing the number of unique tokens
by the number of total tokens used in all relation arguments for a specic rela-
tion type. This will result in 1.0 at best and 1/#tokens at worst, which we
then scale to the range [0.0, 1.0]. Using linear regression we calculate the corre-
lation between this linguistic variability factor and F1micro. Our null hypothesis
is that there is no correlation between linguistic variability and performance,
which we reject if p is less than our signicance threshold of 5%. All approaches
exhibit a statistically signicant negative correlation between linguistic variabil-
ity and performance, with the exception of Two, which shows a statistically
non-signicant weak negative correlation, meaning it is not sure there is a corre-
lation at all. MARE has the weakest statistically signicant correlation, which
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leads us to believe it can handle linguistic variability in relation arguments best.
JointER has the strongest negative, statistically signicant correlation, imply-
ing it is worst suited for this specic data characteristic. A visual comparision
between the two can be found in Fig. 5. Analysis results for all approaches can
be found in Table 4.

Table 4. Pearson correlation coecient (r) and statistic signicance (p). While Two
exhibits the weakest negative correlation between linguistic variability and perfor-
mance, we have to reject the null hypothesis, meaning we have to assume there is
no correlation. All other approaches feature a clear correlation between linguistic vari-
ability and performance. MARE is able to cope best, while JointER struggles the most.
The correlation for those extremes is visualized in Fig. 5.

Approach CasRel JointER MARE PFN RSAN SpERT Two

r −0.5496 −0.6044 -0.3117 −0.4822 −0.5779 −0.5242 −0.1127

strength strong strong medium strong strong strong weak

p ∼ 0.00% ∼ 0.00% 0.05% ∼ 0.00% ∼ 0.00% ∼ 0.00% 22.03%

signicant yes yes yes yes yes yes no

Fig. 5. Micro F1 scores of approaches on all datasets in relation to the linguistic vari-
ability present in a sample for MARE (left) and JointER (right). 1.0 variability cor-
responds to a sample consisting of unique tokens only, while 0.0 is a sample with only
a single unique token. MARE is the approach best suited for coping with strongly
varying phrasing of relation arguments, while the performance of JointER suered the
most. Detailed results are listed in Table 4.
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4 Conclusion and Future Work

Irreproducible literature search and diering experimental setups invalidate the
quantitative comparison of RE approaches directly from literature. From an
application perspective, however, there is a strong need to identify approaches
that work for a wide range of dierent domains without making major adjust-
ments. In this paper a rigorous, reproducible literature search is conducted to
identify all relevant RE approaches and an empirical comparative study with
an unied experimental setup is performed to identify a group of jointly trained
neural RE approaches that outperform their competitors.

MARE is suitable for most studied datasets, performing best in 21 out of 36
categories and competitively in nearly all other. As such it seems to be applicable
to most situations, except datasets with a large number of under-represented
relations. Here CasRel, PFN, and SpERT are better choices. Two and RSAN
can be feasible, if the dataset is known to be well balanced. Finally, regarding the
research question given in Sect. 2, there are considerations to be made depending
on the dataset on hand. Nonetheless, MARE, CasRel, PFN, and SpERT form a
promising baseline for being ne-tuned to concrete applications.

Currently this study has a few limitations. First, it focuses on neural Joint
RE approaches only. Thus, the authors plan a similar unied evaluation of both
jointly and separately trained RE approaches. Which approaches are consid-
ered in this study largely depends on the selectivity of the search queries used.
This potentially causes the systematic literature review to rule out papers that
are actually relevant. However, the advantage is that the literature review can
be easily extended and thus, missed articles can be added manually. A lim-
itation to the experiments is that datasets without NER tags are articially
enriched using the Stanza Parser, which leads to coarsely labeled entities in
some datasets, e.g. SemEval with examples like “Flowers are carried into the
chapel.” and corresponding relation Entity-Destination. Thus, automated NER
tagging of datasets is potentially error-prone. Another open question is, whether
RE approaches could benet from data augmentation that is used to cope with
data quality and quantity issues. Finally, hyperparameters of models have been
selected as they were recommended by their authors. This allows us to consider
more approaches on multiple datasets, instead of optimizing only a few. Still,
this neglects the possibility of achieving a performance boost through a general
hyperparameter optimization framework. Due to the long runtime, the authors
preceded the hyperparameter optimization with the present study to achieve a
smaller preselection of promising approaches.
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21. Quishpi, L., Carmona, J., Padró, L.: Extracting annotations from textual descrip-

tions of processes. In: Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds.) BPM
2020. LNCS, vol. 12168, pp. 184–201. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-58666-9 11

22. Ren, F., et al.: A novel global feature-oriented relational triple extraction model
based on table lling. In: EMNLP. ACL (2021)

23. Riedel, S., Yao, L., McCallum, A.: Modeling relations and their mentions without
labeled text. In: Proceedings of ECML PKDD. Springer, Berlin Heidelberg (2010)

24. Roth, D., Yih, W.t.: A linear programming formulation for global inference in
natural language tasks. In: CoNLL. ACL (2004)

25. Salih Dawood, O., Sahraoui, A.E.K.: From requirements engineering to uml using
natural language processing - survey study. EJIE (2017)

26. Saranya, M., Geetha, T.V., Annie, R.A.X.: Comparative analysis of dierent deep
learning techniques for relation extraction from biomedıcal literature. In: Proceed-
ings of ICSADL. Springer Singapore (2022)

64 Bridging research fields



486 L. Ackermann et al.
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Abstract. Process-aware information systems oer extensive advan-
tages to companies, facilitating planning, operations, and optimization of
day-to-day business activities. However, the time-consuming but required
step of designing formal business process models often hampers the
potential of these systems. To overcome this challenge, automated gener-
ation of business process models from natural language text has emerged
as a promising approach to expedite this step. Generally two crucial
subtasks have to be solved: extracting process-relevant information from
natural language and creating the actual model. Approaches towards
the rst subtask are rule based methods, highly optimized for specic
domains, but hard to adapt to related applications. To solve this issue,
we present an extension to an existing pipeline, to make it entirely data
driven. We demonstrate the competitiveness of our improved pipeline,
which not only eliminates the substantial overhead associated with fea-
ture engineering and rule denition, but also enables adaptation to dier-
ent datasets, entity and relation types, and new domains. Additionally,
the largest available dataset (PET) for the rst subtask, contains no
information about linguistic references between mentions of entities in
the process description. Yet, the resolution of these mentions into a single
visual element is essential for high quality process models. We propose
an extension to the PET dataset that incorporates information about
linguistic references and a corresponding method for resolving them.
Finally, we provide a detailed analysis of the inherent challenges in the
dataset at hand.

Keywords: Process-aware Information Systems · Process Extraction ·
Named Entity Recognition · Relation Extraction · Co-Reference
Resolution

1 Introduction

Automated generation of formal business process models from natural language
process descriptions has become increasingly popular [1,2,7,10,19]. This is moti-
vated, for instance, with the comparatively high time expenditure for manually
c The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Sellami et al. (Eds.): CoopIS 2023, LNCS 14353, pp. 179–197, 2024.
https://doi.org/10.1007/978-3-031-46846-9_10
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Fig. 1. Example for dierences between information extraction phase with and with-
out resolving process element identities. Resolving process element identity from their
mentions (right) allows generation of correct data ow, without (left) data ow is
disjointed.

designing said process models. Up to 60% of the total duration in process man-
agement projects is spent on the design of process models [10]. Techniques for
automated process model generation from natural language text aim to reduce
this eort, but have to solve several sub-tasks for this, categorized into two dis-
tinct phases: (i) The information extraction phase and (ii) the process model
generation phase. During the information extraction phase, techniques recognize
process elements (e.g., activities, actors, data objects), extract relations (e.g.,
sequence-ow relations between activities), and resolve references (e.g., men-
tions of the same data object). Building on this information, the process model
generation phase creates a concrete process model [10,13,19]. The current state
of the art for the information extracting phase exhibits two core issues, which
we will briey discuss in the following.

Core Issue 1. Existing approaches are largely rule-based, i.e., approaches use
manually crafted rules rooted in domain knowledge [2,10,21]. Rule-based sys-
tems usually show remarkable precision and recall for the datasets they are
created for. However, they a) require signicant amounts of labor to capture lin-
guistic subtleties, b) require deep technical knowledge, as well as knowledge of the
target domain, and c) are hard to adapt to even minor changes in the under-
lying data, which leads to unacceptable expansion in the number of required
rules [26]. Using machine learning, these drawbacks can be resolved, especially
deep learning methods have been shown to greatly reduce the amount of eort
and domain knowledge required [15]. However, deep learning methods usually
need considerable amounts of data for stable training [14], something the eld
of business process modeling research currently can not provide [12]. Using less
expressive machine learning models constitute a middle ground to this dilemma,
as they can be trained stably with orders of magnitude less data.

Core Issue 2. Existing approaches are scoped too narrowly [18]. This includes
systems, that do not capture enough information for the generation of complete
process models, as well as systems that impose unrealistic assumptions con-
cerning the structure of input text. For high-quality process models, resolving
references between mentions of the same process element is crucial. Consider, for
instance, the example depicted in Fig. 1. For a human reader it is obvious, that
both “a claim” and “it” refer to the same instance of a claim. To automatically
extract a process model encoding this knowledge the system needs to resolve
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the two mentions “a claim” and “it” to a single entity. Without this step, at
least two problems manifest in the extracted process models: (i) Two distinct
data objects for claim would be created and, thus, the model is not able to cor-
rectly express that both the registration and the examination activities process
the same data, and (ii) one of the created data objects is labeled it, because
it is unknown that it is a reference to a claim. Though the claim example is
solely focusing on the data perspective, entity resolution is also necessary for
organizational process elements like, for instance, actors. Here, it is necessary
to be able to create process models that contain a single actor type for the two
mentions of the claim ocer, which is expressed as a single swimlane in BPMN,
for instance. This issue is rooted in a lack of data. Most notably, the currently
largest dataset for the information extraction phase (PET [7]) does not include
information about linguistic references between mentions of process elements. In
summary, it can be said that entity resolution is what makes it possible in the
rst place to correctly express relations to data and to actors. Following from
these two core issues we state three main research questions.

RQ1. Are deep learning methods able to extract process information with pre-
cision and recall comparable to rule-based methods given the same dataset?

RQ2. If deep learning methods prove inadequate for small datasets, such as
PET, can classical machine learning models (e.g., gradient boosting tech-
niques) compete with rule-based methods in terms of precision and recall?

RQ3. Can a pre-trained co-reference resolution approach outperform näıve word
matching, and can therefore be used as a baseline for resolving linguistic
references between process element mentions?

Our work proposes an improved pipeline which tackles both of these issues,
which we describe in detail in Sect. 4. We propose a relation extraction approach
based on established machine learning methods, while adopting the approach to
extracting process elements, as it is based on machine learning already. Future
work could investigate other methods and compare them, but this is out of scope
for this paper. Additionally, we extend PET with information about the identity
of process element mentions, and provide a baseline approach for resolving pro-
cess element identities from process element mentions. We compare our pipeline
to the current state of the art of information extraction on PET and show that
we outperform it in ve out of six relation types, with an absolute increase of
6% in F1 scores.

The remainder of this paper is structured as follows: In Sect. 2 we formal-
ize the task of process model extraction. In Sect. 3 we discuss dierences to
work related to this paper. Our thorough investigation of the PET dataset and
the extraction approaches in Sect. 6 is based on a rigorous experiment setup
introduced in Sect. 5. Short summaries of the answers to our research ques-
tions are provided in Sect. 7. Both the source code for our experiments and
the extended dataset are publicly available1, therefore laying the foundation for
further focused research.
1 see https://github.com/JulianNeuberger/pet-baselines.
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2 Task Description

Natural language processing (NLP) is a discipline that aims to exploit natu-
ral language input data and spans a wide variety of subelds. One of these
subelds is Information Extraction from human-readable texts. In the follow-
ing, we describe the extraction of process elements and of relations between
them as instances of three sub-problems of information extraction, which are
Named Entity Recognition (NER), Relation Extraction (RE), and Entity Reso-
lution (ER). We then detail the three subproblems with respect to the extended
PET dataset as described in Sect. 5.1. Each task assumes that the input text has
already been pre-processed, i.e., tokenized. Refer to Fig. 2 for visual examples of
input and output of the steps described below.

Named Entity Recognition (NER). NER is the task of extracting spans of
tokens corresponding to exactly one element from a set of entities [15]. While
NER traditionally only considered extraction of proper nouns, the denition now
depends on the domain [23]. For the process domain named entities are process
relevant facts, such as actors (e.g., the CEO vs. Max ) or activities (e.g., approve
vs. the approval). The PET dataset denes a set of seven process relevant facts,
providing a general schema for process model generation from natural language
text [6]. Formally the NER task is extracting a set of triples M from a given list
of tokens T , so that for each triple m = (is, ie, te) ∈ M , the indices is and ie
denote start and end tokens of the span in T respectively, and te refers to the
entity type. Throughout this paper, we will refer to the triple m a mention of
an entity. An extracted mention is considered correct, i its triple has an exact
match in the list of ground truth triples given by the dataset.

Entity Resolution (ER). During ER techniques extract a set of unique entities
from a given set of mentions M . This step can be seen as resolving references
between mentions of the same process element, which is crucial information
for generating useful business process models further down-stream, as shown in
Fig. 1. Formally the ER task is dened as nding a set of non-empty mention
clusters E, so that each mention m ∈ M is assigned to exactly one cluster e ∈ E.
These clusters are called entities. To disambiguate between the use of entity as in
NER, and entity as used in ER, we will call the result of NER mentions from now
on, and the result of ER entities. An entity prediction is considered correct, i the
set of contained mentions is exactly the same as the ground truth dened by the
dataset. Entity resolution itself is a super-set of the tasks Anaphora Resolution,
i.e., back-referencing pronouns, Coreference Resolution, i.e., use of synonyms,
and Cataphora Resolution, i.e., forward-referencing pronouns [24]. While there
are subtle dierences and overlap between these sub-elds, this work focuses
on coreference resolution. The addition of cataphora and anaphora resolution is
potentially useful, but is out of scope for our planned baseline. Thus, we refer to
coreference resolution, whenever we mention the ER task in later sections. The
PET dataset only contains two entity types, where entity identity is relevant:
Actors, describing a natural person, department, organization, or articial agent,
and Activity Data, which are objects or data used by an Activity [6]. Further
details can be found in Sect. 5.1.
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Relation Extraction (RE). RE is the task of identifying a set of semantic
relations R between pairs of entities. Current literature distinguishes between
global and mention level RE [16]. Global RE is the task of extracting a list of
entity pairs forming a certain relation from a text, without any additional infor-
mation. On the other hand, mention level RE methods are given a pair of entity
mentions and the sentence containing them, and have to predict the relation
between the two. The PET dataset contains relation information on mention
level, which allows our approach to learn on local level. There are six relation
types dened in the PET dataset, such as Flow, which captures the execution
order between behavioural elements [6]. Each relation is formally dened by a
triple r = (mh, mt, tr), where mh is the head entity mention or source of the rela-
tion, mt the tail entity mention or target, and tr the type of the semantic relation.
This denition implies relations are directed, that is (mh, mt, tr) = (mt, mh, tr)
for mh = mt. A predicted relation tuple r ∈ R is considered correct, i its triple
has an exact match in the list of ground truth triples given by the dataset.

3 Related Work

[7] presents the currently largest collection of natural language business processes
descriptions with annotations for process relevant facts. They also propose a
pipeline for extracting said process relevant facts. The paper at hand is founded
on their work and is therefore closely related, as we use, extend, and analyze both
data and pipeline. We adopt the approach to NER, and compare our proposed
RE approach to their method. They are missing a more in-depth description of
their data, especially regarding qualities important for prediction performance,
including but not limited to: correlation between a relation’s type and its argu-
ment types, or the amount of variation in language of their data. Furthermore,
the implementation of their pipeline is not publicly available, impeding further
research and development.

There are several approaches related to the baselines we present and analyze
in this work. An annotation approach based on rule-based pattern matching
across the dependency tree representation of a textual process description is
presented in [21], which is then used to generate an event log. This allows the
extraction of a formal process model via established process mining techniques.
While it achieves state-of-the-art results, it uses a tagging schema dierent from
the one used in PET, which makes it unfeasible for use in a direct comparison.
[10] presents a pipeline able to extract formal process models in Business Process
Model and Notation (BPMN), and therefore is locked into this process notation
language. The same limitation holds for the approach presented in [2], which
extracts process models utilizing the Declare language. PET follows a dierent
tagging scheme and, thus, a direct comparison is not possible. In [18] a neural
method for entity and relation classication is proposed, but assumes that rel-
evant text fragments are already extracted. This is a signicantly easier task,
since separating relevant process information from redundant, superuous, and
incidental information, appearing in natural language, is a hard task in itself. [3]
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presents an ecient deep learning method using formal meaning representations
as an intermediary feature. Since they only solve NER, we can not compare their
approach with our proposals.

Due to the strong relation between process extraction and the combined
NLP task of NER, ER, and RE, there are several approaches potentially able
to solve the process extraction task [8,9,11,22]. [4] studies several approaches
built for joint NER, ER, and RE on small documents. Applying them to the
BPM domain entails fragmenting the larger documents of PET properly, as well
as dealing with long distance relations, which is out of scope for this paper.
However, we chose Jerex [9], since [8] and [11] predict mentions as their textual
representation (surface forms) only, meaning the span of text containing them
might be ambiguous, and therefore token indices not resolvable. This violates our
denition of mentions (Sect. 2) and hampers the evaluation of the predictions.

Using pre-trained large language models seems promising for the task at
hand, as shown in [5], which uses in-context learning with GPT3 to extract
process relevant facts. These are limited to a small subset of the information
extracted in [7] and the paper at hand, though. Furthermore their evaluation
only uses a portion of the PET-dataset, i.e., 9 out of a total of 45 documents,
without repeated runs, e.g., k-fold cross validation. A direct comparison is there-
fore impossible.

4 Process Information Extraction Approach

In the following we present a short overview of the implementation for the three
pipeline steps for NER, ER, and RE. The entire pipeline as we propose it is
depicted in Fig. 2. We will refer to this pipeline implementation as Ours from now
on. We do not detail preprocessing steps, nor the actual generation of a business
process model, as both are out of scope for this paper. Our approach extracts
the text and location of mentions of process elements (NER), resolves those
mentions to unique sets of entities (ER), and extracts the (entity) arguments
and type of relations (RE). The types of extracted entities and relations are
identical with [7], refer to [6] for an in-depth description.

The NER step is identical to the implementation from [7]. The approach is
based on Conditional Random Fields (CRF ), a powerful technique for tagging a
sequence of observations, here tokens in a text [25]. Given a sequence of tokens
tagged in this way, we then resolve mentions, where each mention contains a set
of token indices and the predicted process element type. We did not change or
optimize this step, as the main focus of this paper is extracting process relevant
facts with machine learning methods, and CRF methods are known to be a
strong choice for tagging.

We implemented two modules for the ER step, namely a naive ER method,
and a method based on pre-trained end-to-end neural coreference resolution, as
described in [13] and implemented in spaCy2. The naive ER method, which

2 See https://explosion.ai/blog/coref for more details.
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Fig. 2. Outline of our proposed extended extraction pipeline.

we will call naive ER for short, iteratively selects the best matching mentions
with identical NER tags. The match of two mentions is calculated based on
the percentage of overlapping, i.e., the fraction of shared tokens over the total
number of tokens. Ranking mention pairs by this score, the naive ER method
merges mentions into clusters. If one of the selected mentions already is part
of a cluster, the other mention is added to that cluster as well. If both selected
mentions are part of a cluster, the clusters are merged. This is repeated until
there are only matches left, which overlap less than some threshold o. We ran an
optimization to select this overlap optimally and chose o = 0.5 The pre-trained
end-to-end neural coreference resolution module, which we will call neural ER
from now on, predicts co-referent spans of text, i.e., spans of text referring to each
other. It does so without any domain knowledge, i.e., knowledge about mentions
of process elements extracted in prior steps. We then align these predictions with
mentions. Here we discard predictions, if (1) the corresponding span of text is
not a mention at all, (2) the corresponding span of text does not overlap with
a mention’s text by a certain percentage αm, (3) the mention corresponding
with the predicted span of text was not tagged with the majority tag of other
mentions of this entity, or (4) not at least a certain portion αc of predicted text
spans was previously accepted. We optimize these parameters using a grid search
approach, choosing αc = 0.5 and αm = 0.5. A simple example of this process is
shown in Fig. 3

Finally the RE step extracts relations between mentions using CatBoost,
a gradient boosting technique for classication using numerical, as well as cate-
gorical data [17]. We call this module BoostRelEx for short in following sections.
For each combination of head and tail mention of a relation we build features
containing tags, distance in tokens and in sentences between them, and a number
c of neighboring mention tags as context. This feature set is then presented to
the model, which predicts a class for it. Classes are the set of relation tags and
an additional nothing tag to enable the model to predict that there is no relation
between two mentions. During training we present each of the mention combi-
nations containing a relation to the model exactly once per iteration, as well as
a given number of negative examples. These negative examples only consist of
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Fig. 3. Example for our ER method based on a pretrained end-to-end neural corefer-
ence resolver. Predicted coreferent text spans a claim and it are accepted and resolved
to an entity containing the mentions claim and it, since both text spans overlap at
least 50% with the mention’s texts.

mention combinations, where corresponding entities do not have a relation. This
concept, called negative sampling, is important, as there are many more mention
combinations without a relation between them (44,708), as there are ones with
one (1,916). Without negative sampling the precision of our relation extraction
module would be extremely low, visualized in Fig. 4. For each positive sample we
select rn randomly drawn negative ones. Increasing rn has a positive impact on
the accuracy with which the model predicts the existence of relations between
given pairs of mentions, which is called the precision P . Since the model learns
it has to reject some mention combinations, it also inevitably rejects correct
combinations. Following directly from this, the model misses more combinations
of mentions, where a relation actually would have existed, thus resulting in a
lower recall R. The harmonic mean between the two scores R and P gives us a
good idea of the model’s performance. We discuss this metric in more detail in
Sect. 5.3. We train the BoostRelEx module for i = 1000 iterations, which is the
most computationally intensive step in the whole pipeline, taking about 25 min
on an Intel i9-9900K CPU @ 3.60 GHz, using a negative sampling rate of rn = 40
and context size of c = 2. A sampling rate rn ≥ 40 improves the result quality
signicantly.

5 Experiment Setup

In the following we describe the extension of the original PET dataset accompa-
nied with dataset statistics (Sect. 5.1). To enable empirical evaluation Sect. 5.3
introduces performance measures that are most adequate for the task and the
concrete dataset.

5.1 Dataset

The PET dataset is presented in detail in [7], in the following we will only
discuss aspects of this dataset directly related to our extension and analysis.
PET contains a total of 45 documents, with seven entity types, and six relation
types. To facilitate the entity resolution task described in Sect. 2, we assign each
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Fig. 4. Values of metrics P , R, and F1 for dierent negative sampling rates rn.

mention of a process element to a cluster3. Thus, each cluster refers to exactly
one instance of a process element (e.g., a particular actor) that is mentioned
in several places in the text. In Fig. 1 the same claim is mentioned twice, i.e.,
the claim is registered and then it is examined. This resulted in a total of
163 clusters with two or more mentions, of which 75 are Activity Data mention
clusters, and 88 Actor mention clusters. All other entity types and the remaining
Activity Data and Actor mentions belong to clusters with only a single mention.

We dene the intra-entity distance as the maximum of each mention’s mini-
mal distance to each other mention in the entity. This gives us the largest span
an extraction method has to reason over to detect two mentions as part of the
same entity. Averaged over all entities this measure is 31.93 tokens for Activity
Data elements and 54.84 tokens for Actors. Distances between referent mentions
are signicantly longer for Actors, indicating that they possibly are harder to
extract. Our experiments seem to support this notion, as shown in Fig. 6c) and
d), but further analysis may be required to come to a conclusive rationale.

Intuitively, resolving references between mentions of an entity, is easier, when
the texts of those mentions are very similar. Consider, for example, two entities,
both made up of two mentions each. One entity has the mentions “a claim” and
“the claim”, while the other has the mentions “the claimant” and “a applicant”.
Resolving the rst entity should be much easier, since its mentions share common
text. Thus, calculating the lexical diversity of entities of a given type lets us
predict how hard it is to extract them without errors. The type-token ratio
(TTR) can be used to measure the lexical diversity of a given input text [20].
It is calculated as the ratio between unique tokens and total number of tokens.
High ratios imply very diverse phrases, while low ratios indicate very uniform
text. We select all entities, which contain at least two mentions, and calculate
the TTR for each of them. Take for example the entity consisting of the three
mentions “a claim”, “the claim”, and “it”. Its TTR would therefore result in
TTR = 4

5 = 0.8. We then calculate the mean of these TTR values, split by
entity type. On average, Activity Data mention clusters exhibit higher type-
token ratios compared to Actors, as visualized in Fig. 5b. This result is leading
us to assume Actors should be easier to resolve. Our experiments support this
notion, as can be seen in Fig. 6c).

3 All clusters are dened by two experts, with the help of a third for cases, where their
initial annotations diered.
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Fig. 5. Statistics of the original dataset. 5a shows the number of relations aggregated
by argument types denoted with head → tail. Only combinations where at least one
relation exists are shown. 5b shows the mean type-token ratio for mention clusters with
at least two mentions.

Figure 5a shows the distribution of relation types depending on the types of
their arguments. For relations of type Actor Performer, Actor Recipient, Same
Gateway, and Flows, knowing the types of their arguments is no discriminating
feature. For these cases, a data driven approach, such as the one we propose in
this paper, is very useful, as complex rules are inferred from data automatically,
saving a lot of manual eort. In contrast, there are also relation types, where
their type can directly be inferred from their argument’s types, e.g., all relations
that have an Activity as head argument, and an Activity Data element as tail,
are of type Uses. This is hardly surprising when factoring in domain knowledge,
as in PET Activity Data is only used with Activities. Predicting relations of
those types is therefore more a matter of detecting them (recall), rather than
correctly classifying them (precision).

5.2 Compared Approaches

We compare our proposed pipeline to the baseline presented in [7], extended
with our ER module. The pipeline looks very similar to ours visualized in Fig. 2,
but instead of the BoostRelEx module, it uses a rule-based relation extractor,
which we will denote RuleRelEx. These rules are dened in [7], but have no
public implementation, to our knowledge our code is the rst executable version
available to the community. There are a total of six rules, which are applied to
documents in order. This means that rule 1 takes precedence over, e.g., rule 3,
which relies on this fact, as it needs information about previously extracted Flow
relations. We will denote this pipeline with Bellan + ER from now on.

Answering RQ1 requires a deep learning approach, which is able to extract
mentions, entities, and relations. Jerex [9] is suitable for this task, as it is a
jointly trained end-to-end deep learning approach, and promises to reduce the
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eect of error propagation. Jerex takes raw, untokenized text as input, tokenizes
it, and produces predictions for mentions, entities, and relations between them.
It is state of the art for the DocRed dataset [27], which is a large benchmark
dataset for the extraction of mentions, entities, and relations from documents
– a task description very similar to the one we gave in Sect. 2. Furthermore,
Jerex is able to extract the exact location of mentions inside the input text,
unlike competing approaches, which only extract the text of mentions4. While
this drawback may not be as relevant in applications where only the text of a
process element is interesting, for the task of business process generation, i.e., the
task of generating human-readable, rich labels for activities in a BPMN process
model needs the text surrounding a predicted Activity [10].

5.3 Evaluation

For performance evaluations of existing baselines, as well as our contributions,
we adopted the evaluation strategy from [7]. This means we run a 5-fold cross
validation for the entire pipeline and average individual module scores, folds are
chosen randomly. This leads to 5 repeated runs, each with 80% of documents
used for training, and the remaining 20% for testing. Errors made by modules
during prediction are propagated further down the pipeline, potentially even
amplifying in severity, as down-stream modules produce errors themselves as a
result. To evaluate a given module’s performance in isolation, we inject ground-
truth data instead of predictions as inputs. This leads to a total of ve dierent
scenarios, for which results are discussed in detail in Sect. 6. These scenarios are
(S1) entity resolution using predictions from the Mention Extraction module,
and (S2) using ground-truth mentions. Furthermore, relation extraction (S3)
using entities predicted by the pipeline thus far, (S4) using entities predicted
during entity resolution using ground-truth mentions, and nally (S5) using
ground-truth entities.

In each case we use the F1 score as a metric, as it reects the task of nding
as many of the expected mentions, entities, and relations as possible (recall
R), without sacricing precision P in type or existence prediction. F1 is then
calculated as the harmonic mean of P and R, i.e., F1 = 2·P ·R

P+R . As there is more
than one class within each prediction task, F1, P , and R have to be aggregated.
Throughout Sect. 6 we use the micro averaging strategy, which calculates P and
R regardless of a given prediction’s class. This strategy favours classes with
many examples, as high scores in those may overshadow bad scores in classes
with few examples. Should this be of concern, the macro averaging strategy can
be used, where P , R, and F1 are calculated for each class separately and averaged
afterwards. We argue that it is most useful to nd as many process elements as
possible regardless of their type, i.e., it is better to nd 90% of all Activities and
only 10% of all AND Gateways, instead of 50% of all elements, as there are 501
Activities and only 8 AND Gateways in PET [7]. As such the micro F1 score
is better suited to the task. Following the task description in Sect. 2, we use

4 See for example the discussion https://github.com/Babelscape/rebel/issues/57.
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the following matching strategies. We count a mention as correctly predicted,
i it contains exactly the same tokens, as the corresponding ground-truth label,
and has the same tag. We count an entity as correctly predicted, i it contains
exactly the same mentions, as the ground-truth label. Finally, we count a relation
as correctly predicted, i both its arguments, and its tag match the ground-truth
label. Therefore, e.g., a single missing “the” in the mention “the claim” would
render this mention prediction incorrect, as well as all entities and relations that
refer to it. This eect is called error propagation and is the reason why we opted
for several scenarios that evaluate modules in isolation, or with some degree of
ground-truth input, such as in (S4). It may be, that users are ne with slightly
less precise predictions, especially if they only miss inconsequential tokens, such
as determiners. Surveying how users rank the importance of dierent levels of
precision is out of scope of this paper and part of future work.

6 Results

The following section reports results for the experiments dened in the previ-
ous Sect. 5. Based on these results, it answers the research questions posed in
Sect. 1. In Sect. 6.1 we provide results for the ER step and compare the naive
approach to the one based on pretrained end-to-end neural coreference resolu-
tion, both for the modules in isolation (scenario (1)) and based on predictions
of the NER module (scenario (2)). Section 6.2 presents the results for experi-
ments with the RE step in the end-to-end pipeline setting (scenario (3)), and in
isolation (scenario (5)). Finally, we discuss factors aecting the quality of RE
results in Sect. 6.3, such as error propagation (scenarios (4) to (6)).

6.1 Entity Resolution Performance

We calculate the F1 scores for all mention clusters with at least two mentions,
since resolving single mention clusters is trivial. Figure 6d) visualizes the dier-
ence between the two approaches. Overall, the naive version reaches F1 = 0.26,
while our proposed pretrained method outperforms it signicantly and reaches
F1 = 0.52. This stark dierence is rooted in the fact, that we use exact matching,
where a single missing or superuous mention in a cluster renders the entire pre-
diction incorrect. By design, the naive approach is unable to resolve anaphoras
and cataphoras, i.e., back-referencing and forward-referencing pronouns. This
means that every entity containing at least one anaphora, or cataphora, will be
predicted incorrectly. Using the results from the NER step reduces performance
greatly, similar as in the RE step. Based on the results from our experiments
we conclude that a naive ER method is not feasible, and signicant gains in
performance can be achieved by using neural methods. It would be interesting,
if ne-tuning the pretrained model would result in improved accuracy. Addi-
tionally, using information about mentions extracted in the NER step could
be integrated into ER, instead of using a task-agnostic model, as we do cur-
rently. These considerations are currently out of scope, as the work on ER in
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Table 1. a: Overall performance for Jerex, the PET baseline, and our proposed
enhanced pipeline. b: Performance of our proposed machine learnt and the rule-based
baseline relation extraction modules in isolation.

P R F1

Jerex[9] 0.20 0.27 0.22

Bellan[7] + ER 0.32 0.29 0.30

Ours 0.34 0.29 0.31

(a)

P R F1

Baseline[7] + ER 0.79 0.66 0.72

Ours 0.83 0.82 0.82

(b)

this paper is aimed at bridging the gap between the current state of the art in
machine-learning focused data for extracting business process models from natu-
ral language text (PET), and the needs of down stream methods. The discussion
in this section leads us to answering RQ3: The pretrained coreference resolution
approach we presented is able to outperform naive text matching signicantly,
and is a useful baseline for resolving entities from mentions in the setting of
business process model generation from natural language text.

6.2 Relation Extraction Performance

Our proposed BoostRelEx step clearly beats RuleRelEx from [7] by F1 = 0.10,
P = 0.04, and R = 0.16 in our experiments. This is visualized in Fig. 6 (Table 1b
lists exact numbers). BoostRelEx prots greatly from correct predictions during
the NER step, as is evidenced by greatly reduced performance when running
our proposed pipeline end to end, as well as Bellan + ER. While our pipeline
is still able to beat Bellan + ER in our experiments, the margin is narrowed
substantially, with a dierence of F1 = 0.01, R = 0.02, and equivalent recall.
One reason for this drastic performance loss, is the exact matching strategy we
employ. A missing, superuous, or misclassied mention will produce errors dur-
ing the RE step, as a relation is only considered correct, if all involved mentions
are correct (cf. Sect. 5.3). Considering the strong eect error propagation has on
BoostRelEx, using a jointly trained end-to-end model seems natural. In Sect. 5.2
we presented Jerex as a promising candidate. Yet, following from our experi-
ments, Jerex is not able to compete, and performs signicantly worse, with a
dierence of F1 = 0.11, P = 0.14, and R = 0.02, compared to our pipeline. We
suspect that this is rooted in PET’s small size, as well as the huge number of
trainable parameters of Jerex. We therefore have to answer RQ1 with No.

Figure 7 breaks down the F1 score by relation type. Following these results
we conclude that the dataset PET is not yet suitable to train deep learning
models in a supervised manner. The amount of data currently available makes
stable training impossible. To alleviate the issue of low data, further research into
the use of pretrained models, such as LLMs is warranted. These models make
use of large quantities of unlabeled data to learn the structure and makeup of
natural language. They are then either employed in a zero-shot setting (never
explicitly trained for the task), few-shot setting (ne-tuned on small quantities
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Fig. 6. a) shows the comparison between BoostRelEx and RuleRelEx. b) shows the
performance of end-to-end runs of our proposed pipeline Ours, and Bellan + ER. c)
compares the performance of the naive ER and neural ER using the result of the NER
step. d) shows the same comparison as c), but based on ground truth mentions.

of task specic data), or composited into new models (used for extracting useful
features from natural language text).

A signicant portion of the improvements we present in this work, come from
the better extraction of Actor Recipient and Actor Performer, as well as the
Uses relations. BoostRelEx is clearly outperformed by RuleRelEx when extract-
ing the Same Gateway relation type. A possible reason for this is how RuleRelEx
uses information about already extracted Flow relations (cf. Sect. 5.2), which is
impossible for our machine learnt approach, as it extracts all relations at once.
Dening an order of extraction for relation types would defeat the purpose of
using our method in the rst place: It would be tightly coupled to the dataset
and could not be applied easily to others. The overall performance is not aected
very much by this, as there are only a handful of examples for the Same Gateway
relation. Still, further research into useful features for extracting Same Gateways
is needed, as well as possible training techniques that allow learning more com-
plex rules. Promising features are, e.g., synonyms and hypernyms for key phrases
of mentions. Training the model in multiple passes could be useful in predicting
relations featuring mutual exclusivity, such as Same Gateways.

6.3 Performance Analysis

Gradually reducing the quality of inputs to the BoostRelEx and RuleRelEx steps
results in gradually worse performance, a clear indication of error propagation
(cf. Sect. 5.3). Using ground-truth mentions from the dataset, but entities pre-
dicted by the neural ER step, results in a drop in F1 scores of about 0.20 for
BoostRelEx and 0.12 for RuleRelEx. Introducing errors even further upstream,
by using the NER module, i.e., running the complete pipeline end-to-end results
in a drop in F1 of 0.51 for BoostRelEx and 0.42 for RuleRelEx. Figure 7 visualizes
this performance degradation for each relation type individually. Further studies
regarding less strict evaluation is warranted, as described in Sect. 5.3, to get a
less conservative assessment of prediction quality.
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Fig. 7. a) Results for relation extraction by relation type for scenario (4), the com-
plete pipeline, b) scenario (5), relation extraction using entities resolved from perfect
mentions, c) scenario (6), relation extraction from perfect entities.

Additionally, we found that the distance between a relation’s arguments is
also negatively correlated with correctness. Longer distance between the head
and tail entity of a relation increases the likelihood of misclassifying it, or not
detecting it at all. We calculate the distance of a relations arguments as the
minimal distance between the two entity’s mentions. Examples for this eect
are shown in Fig. 8. We created datasets from all predictions of each approach,
with tuples of the form (distance, o), where o = 1 denotes a correct prediction,
and o = 0 an incorrect prediction. We then tted a logistic regression model to
these datasets using the statsmodels5 python package. A logistic regression model
tries to predict an outcome (response variable) via some input variable (predictor
variable). It uses the logistic regression, which is given by y = 1

1+e−(β0+β1x)
, and

chooses β0 and β1 in such a way, that the model predicts the observed outcome
y = o given an input x as best as possible. We can then use the resulting curve
to discuss how well an approach is able to predict certain relation types.

The Flow relation can be solved very well for short distances by both Boost-
RelEx and RuleRelEx. A very narrow condence interval indicates a very good
t, leading us to believe, that relations with argument distances upwards of 33
tokens are misclassied by both methods with a signicant probability. If this
fact is detrimental to the quality of generated business process models is interest-
ing, but out of scope for this paper. The Same Gateway relation shows frequent
misclassication by the BoostRelEx method, something that was already evi-
dent in Fig. 7. BoostRelEx seems to be very sensitive to the distance between
arguments for this relation, more often misclassifying, or outright not recogniz-
ing examples, as soon as the distance in tokens exceeds 15 tokens. RuleRelEx
is signicantly more robust in this regard, and able to correctly identify Same
Gateway relations more often than not, until the distance between their argu-

5 See https://www.statsmodels.org/stable/generated/statsmodels.discrete.discrete m
odel.Logit.html.
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Fig. 8. Logistic regression ts for correlation between correctness of a prediction and
the distance in tokens between its arguments. Bars show the number of correct (top)
and incorrect (bottom) predictions. The main plot shows the tted logistic regression
and the 95% condence intervals as a transparent channel.

ments exceeds 32 tokens. The t produces very wide condence intervals for both
approaches, something that could be xed with more examples for this relation,
given a larger dataset. Relations of type Further Specication can be extracted
by BoostRelEx with very high precision and recall. This is already shown in
Fig. 7, where the F1 score for Further Specication is given as 0.93. The logistic
regression t estimates that there is no correlation between argument distance
and correctness. Yet, a very wide condence interval for distances upwards of 10
tokens leaves open the possibility that there is a correlation given more examples.
While RuleRelEx predicts more Further Specication relations erroneously than
BoostRelEx, it is able to classify the majority (distances 0 – 6 tokens) correctly.
This leads to similar performance overall, as shown in Fig. 7.

In summary, our machine learning based RE method outperforms the rule
based RE method, in the best case, and is equivalent in the worst case, we can
answer RQ2 with Yes. Our in-depth evaluation shows, that BoostRelEx robustly
extracts long relations, beaten only by RuleRelEx on the Same Gateway relation,
which matters not as much overall, given the small number of examples for this
relation.

7 Conclusion and Future Work

In this paper we extend the task of business process information extraction by
ER. We enrich PET with entity identity information and propose an extraction
approach based on pretrained end-to-end neural coreference resolution. Moti-
vated by benets regarding rapid adaption to new data, domains, or tag sets,
we propose a novel gradient boost based approach for the relation extraction
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task. We show that our proposed method is able to produce equivalent or better
results in the end-to-end setting, and signicantly outperform the baseline given
higher quality inputs. We show that PET is not yet extensive enough for train-
ing a state-of-the-art deep learning approach from the NLP domain, Jerex, even
though this approach achieves state-of-the-art results on other, bigger bench-
mark datasets of a related task. Finally, we discuss traits of the PET dataset
that are detrimental to prediction quality, e.g., high linguistic variance, and dis-
tance between relation arguments. Our experiments attest to the phenomenon
of error propagation, i.e., errors made in early steps are amplied in later ones.
Thus, we plan to incorporate joint models for extracting mentions, relations,
and for resolving process entities, since they are trained to solve these three
tasks simultaneously, and mitigate the error propagation eect. While Jerex did
not produce high quality predictions, it, and similar approaches, are predeter-
mined for application in the task of business process generation from natural
language text. Therefore, further research into applying deep learning in the
low data domain of BPM is needed. We plan to improve performance of the
entity resolution module, e.g., by incorporating mention information. Addition-
ally, ne-tuning the pretrained neural coreference resolver on in-domain data
is a potential way to improve performance further. Best practises recommend
the use of micro F1 scores for judging the quality of predictions in the business
process information extraction task. While certainly a useful metric, we suspect
it may not capture the needs of down stream tasks and users entirely. We plan
to investigate alternative metrics, and their correlation with human expecta-
tion. Finally, creating a business process model from the information extracted
with our pipeline was out of scope for this paper. More work regarding methods
towards solving activity label generation, layouting, and completeness checks is
needed.
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Abstract. Business Process Modeling projects often require formal pro-
cess models as a central component. High costs associated with the cre-
ation of such formal process models motivated many dierent elds of
research aimed at automated generation of process models from readily
available data. These include process mining on event logs and gener-
ating business process models from natural language texts. Research in
the latter eld is regularly faced with the problem of limited data avail-
ability, hindering both evaluation and development of new techniques,
especially learning-based ones.

To overcome this data scarcity issue, in this paper we investigate the
application of data augmentation for natural language text data. Data
augmentation methods are well established in machine learning for cre-
ating new, synthetic data without human assistance. We nd that many
of these methods are applicable to the task of business process informa-
tion extraction, improving the accuracy of extraction. Our study shows,
that data augmentation is an important component in enabling machine
learning methods for the task of business process model generation from
natural language text, where currently mostly rule-based systems are
still state of the art. Simple data augmentation techniques improved the
F1 score of mention extraction by 2.9% points, and the F1 of relation
extraction by 4.5. To better understand how data augmentation alters
human annotated texts, we analyze the resulting text, visualizing and
discussing the properties of augmented textual data.

We make all code and experiments results publicly available (Code
for our framework can be found at https://github.com/JulianNeuberger/
pet-data-augmentation, detailed results for our experiments as MySQL
dump can be downloaded from https://zenodo.org/doi/10.5281/zenodo.
10941423.).

Keywords: Business Process Extraction · Data Augmentation ·
Natural Language Processing

1 Introduction

It has been shown that a major share of time planned for Business Process Man-
agement (BPM) projects is spent on the acquisition of formal business process
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. van der Aa et al. (Eds.): BPMDS 2024/EMMSAD 2024, LNBIP 511, pp. 57–70, 2024.
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models [14]. This fact motivated a whole host of work done on automated gen-
eration of business process models from varying, readily available sources, such
as event logs, or natural language process descriptions. The latter area has seen
increasing attention in recent years [1,2,13,14,23,24]. Most of these approaches
can be formulated as a two-step process, where rst the business process relevant
information is extracted from text, and then a concrete model is generated from
this information.

Many approaches proposed for the task of business process information
extraction (BPIE) from texts are still rule-based. This means they extract the
information needed for building a formal business process model by applying
rules dened by human experts. These rules are usually optimized for a spe-
cic dataset, industry sector, or language. For this reason, such systems usually
achieve impressive results for their intended, very limited, application domain,
but are dicult to transfer to new ones. Alternative approaches like data driven
approaches, often called machine learning (ML) methods, infer rules directly
from data, making them a lot easier to be adapted to new datasets, domains,
or languages. Ideally, adapting an ML approach involves only training on new
data. However, this need for data, both for the initial development, as well as for
potential adaptations, is what typically impedes application of ML methods at
rst. Compared to other disciplines also using machine learning, datasets in BPM
are relatively small, especially for the task of generating business process models
from natural language text. Data sets for this task are expensive to generate,
as time-consuming manual annotation by experts is required, in which raw text
data is enriched with the desired results (e.g. process entities) in order to provide
the ML methods with a basis for learning. Previous work tried to solve this issue
by leveraging out-of-domain data, e.g., via pretrained word embeddings [2], or
less expressive models, which are easier to train [23] on small datasets. Other
elds of related research, such as computer vision, natural language processing
(NLP), or audio analysis, tackle the issue by synthesizing new data samples from
the existing dataset. This concept is called data augmentation (DA), injecting
controlled perturbations. These perturbations can be structural changes (e.g.,
rotations), as well as added noise.

Data augmentation has already been shown to be useful in a BPM context,
such as for the task of next activity prediction, where it is proposed as a solution
for the problem of rare process executions, as well as for extrapolating grad-
ual changes in the way processes are executed [18,19]. The authors show that

Fig. 1. Example for adding noise to an image (left) and to a sentence (right). The
image keeps its semantics, while the sentence looses it.
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simple data augmentation strategies like swapping, inserting, or deleting events
in the record of a process execution can result in signicant accuracy gains [18].
Encouraged by those results, we want to analyze how data augmentation can be
applied to improve existing methods for generating process models from text.
Due to the nature of natural language, introducing noise without changing the
semantics of a data sample is much harder, compared to, for example, computer
vision tasks. See Fig. 1 for an example, where introducing noise into an image
still keeps its semantics (image of a handwritten “5”) intact. Introducing noise in
the form of random words into a single sentence on the other hand, can change
its semantics signicantly, to a point, where it is hard to understand even for
humans. We will discuss this fact in more detail in Sect. 2 and give examples for
data augmentation techniques, which preserve semantics.

To further structure our understanding of applying data augmentation in the
context of generating business process models from natural language text, we
pose three research questions.

RQ1 Can simple data augmentation techniques, including swapping, deleting, or
randomly inserting words into sentences increase the performance of machine
learning methods for BPIE, measured as the harmonic mean of precision and
recall?

RQ2 Does the use of large language models in data augmentation, such as for
so called Back Translation techniques, provide a signicant advantage over
simpler, rule-based methods?

RQ3 What characteristics of the natural language text data are changed by
augmentations, and how do they aect dierent extraction tasks?

The rest of this paper is structured in the following way: Sect. 2 describes
the background of data augmentation in a NLP environment. In Sect. 3 we give
an overview of work related to our study. Section 4 denes the setup for our
experiments. We then present our results in Sect. 5. Finally, in Sect. 6 we discuss
limitations, describe future work, and draw a conclusion.

2 Background

Data augmentation describes a suite of techniques originally popularized in
computer vision [25], where simple operations, such as cropping, rotating, or
introducing noise into images greatly improved performance of machine learning
algorithms used for classication of images. These operations usually preserve
the semantics of input data, meaning that an image containing an object will
still depict the same object after its data have been augmented, for example,
they have been overlaid with noise. This property is called invariance [28], and
is harder to hold for NLP data [12]. An example for this fact is depicted in
Fig. 2. Changing random tokens (e.g., words) in a sentence may alter semantics
to a point, where relevant elements or relations between those elements are
no longer present after augmentation. Additionally, annotations may be lost, if
transformations are applied and afterwards these changes cannot be traced. This
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might happen, when, for example, an entire sentence is translated into another
language and then is back-translated typically leading to a rephrased version of
the original text. Since it is not clear, which parts of the new sample correspond
to the original one, annotations of process-relevant elements do not apply to
the new sample. For this reason, research on data augmentation techniques has
been conducted, which are specically designed for information extraction tasks
in the NLP domain[11,15,21]. These techniques use additional resources, such
as pretrained large language models, to augment training samples, while keeping
their semantics intact.

Fig. 2. Examples for four dierent data augmentation techniques. Random deletion,
random swap, random insertion (all written in red), are all not preserving the semantics
of a sample and its label. Rephrasing (green) is an example for a technique that does.
(Color gure online)

Process Relevant Information Extraction from natural language is a
research eld immediately relevant for information systems, as business pro-
cess models are often a central part for process aware information systems.
Discovering and creating these process models is an expensive task [14] and
a lot of work has been done on extracting them from natural language text
directly [1,2,5,13,14]. These texts describe a business process in natural language
as technical documentation, maintenance handbooks, or interview transcripts.
Sequences of words (spans) in these texts contain information that is relevant
to the business process, such as Actors (persons or departments involved in the
process), Activities (tasks that are executed), or Data Objects (physical or dig-
ital objects involved in the process). Extracting this information is therefore a
sequence tagging task, and can be framed as Mention Detection (MD). Men-
tions relate to each other, e.g., dening the order of execution for two Activities,
or which Actor executes the Activity. Predicting and classifying these relations
is called Relation Extraction (RE). Refer to Fig. 3 for an example of this pro-
cess. It shows a fragment of a larger description of a process from the insurance
domain, where insurance claims have to be registered in a system and subse-
quently examined by an employee. The spans claim and it are annotated as
Data Objects (the claim in question, in green). Activities executed by a process
participant are marked in orange. These four spans can now be transformed into
business process model elements for a target notation language (here BPMN1).
How these elements interact with each other can also be extracted from the text

1 See specication at https://www.bpmn.org/.
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fragment, e.g., the Flow of activity execution between the mentions registered
and examined, depicted as an orange arrow.

Fig. 3. Example for a fragment of a natural language business process description and
its corresponding business process model fragment in BPMN. (Color gure online)

Developing approaches towards automated extraction of process relevant
information requires data to test performance, and train models, if applicable.
The currently largest collection of human-annotated process descriptions is called
PET [6]. It contains 45 natural language process descriptions, and is annotated
with 7 types of process relevant entities (e.g., Actors, Activities, Data Objects),
as well as 6 types of relations between them (e.g., Flow between Activities). In
total the dataset contains less than 2,000 examples for both relations and entity
mentions. For comparison, typical datasets for related tasks, like Knowledge
Graph completion contain more than 200 times as many. For example, the pop-
ular FB15k dataset comprises more than 500,000 relation examples [8]. Datasets
for extraction of named entities and their relations have similar extents, e.g., the
DocRed dataset, which contains more than 1,500,000 relation examples [27].
This fact makes PET a prime candidate for data augmentation techniques, in
order to make the most out of the limited amount of training examples. We show
this in our experiments using PET for the tasks MD and RE in BPIE. To our
knowledge our work is the rst to attempt applying NLP data augmentation to
the BPIE task.

3 Related Work

Data augmentation techniques applied in this paper are largely based on the ones
available in the NL-Augmenter framework [10]. NL-Augmenter provides a list
of more than 100 data augmentation techniques, which are suitable for varying
tasks like text classication, sentiment analysis, and even tagging. We discuss
how we adapted these transformations to the PET data format in more detail
in Sect. 4. Not all transformations are relevant for this work, and we have to
exclude most of them, as they are not tting for BPIE. Details of our exclusion
criteria can be found in Sect. 4.

In [17] the authors evaluate nine simple data augmentation techniques (e.g.,
random deletion) on a total of seven event logs, using seven dierent models. Our
paper follows a similar line of thought for BPIE, instead of predictive process
monitoring. The transformations we employ dier signicantly from theirs in two
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core aspects. First, transformations used in this paper are more complex, owing
to the more complex character of natural language. While their work focused
on reordering events in a log of a process execution, our work uses transfor-
mations that are concerned with replacing, extending, or modifying sequences
of text, while preserving any annotations present in the data. Second, transfor-
mations used in our work often require external resources. These resources can
be explicit, i.e., databases like WordNet [22], which contains lexical information
such as synonyms, antonyms, or hypernyms of words. They can also be implicit,
such as large language models, which contain knowledge about natural language,
obtained by unsupervised training on huge amounts of textual data [9].

The techniques we present in our paper mainly benet work that already
exists in the eld of BPIE. Therefore, approaches towards BPIE based on
machine learning are related to this work. These approaches can be separated
into two main elds of research. (1) learning approaches, which use the data to
train a machine learning models, e.g., a neural network [2], conditional random
elds [6], or decision trees [23]. (2) prompting based approaches that use the
data for engineering input for large language models (e.g., GPT) [16,20], or use
the data for so called in context learning, by providing examples in the input
itself [5].

Automated extraction of information relevant to business processes from nat-
ural language text descriptions can be seen as a special case of automated knowl-
edge graph construction or completion [4]. We therefore consider techniques for
automated knowledge graph construction and completion as distantly related
work, which could still benet from the augmentation techniques we analyze in
this paper. Nonetheless, we focus on methods of BPIE in this paper, as potential
solution for this eld’s small datasets.

4 Experiment Setup

The NL Augmenter framework provides a total of 119 data augmentation tech-
niques, but not all of them are applicable to the task at hand. We therefore
dene four criteria for exclusion: (EC1) The technique does not apply to the
English language. (EC2) The technique alters the spelling of tokens. (EC3) The
data augmentation technique does not work for supervised data, e.g., it corrupts
target annotations. (EC4) The technique uses task-, and/or domain-specic
resources, such as dictionaries, or databases, which often do not exist for BPM
data, and are hard to create given the diversity of BPM application domains.
Applying these exclusion criteria results in 19 data augmentation techniques
relevant for the task of business process information extraction from natural
language text.

4.1 Data Augmentation Eects

The data augmentation techniques we selected synthesize samples with three
core characteristics.
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(1) Increased linguistic variability, i.e., augmented text uses a larger vocab-
ulary to describe the same, or at least, a similar business process2. The most
prominent examples for such techniques are the Back-Translation techniques.
These use a large language model, e.g., BERT [9] to translate the process
description to a dierent language and subsequently translate it back to the
original language – here English. Since data augmentation techniques must
not alter the annotations of entities, we only translated spans of text, not
the entire document at once. Take for example, the running example After a
claim is registered, it is examined. Here four spans are annotated as entities –
a claim, registered, examined, and it. Additionally there are three remaining
spans, that do not correspond to entities: After a, is, is. By back-translating
these seven spans separately, we obtain variation in their wording (surface
form), but are still able to preserve annotations. Samples synthesized in this
way are especially useful for making methods for the MD task generalize
better and more robust.
(2) Variations in span length. Many spans of a given entity type, e.g., Actors
are very uniform in length across examples. This is a result of several factors,
but most apparent actors are often identied by their job title, e.g., the clerk,
or the department, e.g., the secretary oce. These titles and departments are
very short phrases, and longer ones are abbreviated, reducing their length
to two or less tokens, e.g., the MPOO. Even though their expanded form
may not be known, expanding some of these spans to suitable phrases, e.g.,
Manager, Post Oce Operations, creates samples with longer surface forms.
This in turn, may improve the robustness of the MD extractors, as well as
the generalization capabilities of RE methods.
(3) Directionality of relations between mentions. The order of appearance
for mentions that form a relation, is very uniform in the current version of
PET. This is especially apparent, when looking at the base-line extraction
rules dened by the original authors of PET: Here the order of appearance
of Activities and Actors is exploited, to form the Actor Performer and Actor
Recipient relations [6]. These relations dene the Actor, that performs an
Activity, and the Actor, on which an Activity is performed. The Actor left of
an Activity is assigned the former, while the Actor right of that Activity is
assigned the latter. In this example order uniformity can lead to less robust
models, as they rely on this and subsequently make wrong predictions given
dierent linguistic constructs. Synthesizing samples with a dierent order
may encourage models to consider linguistic features (context) rather than
just the order of mentions in a sentence during prediction.

4.2 Finding Optimal Congurations

Each of the data augmentation techniques we selected can potentially be
adjusted by several parameters, which control how augmented samples are syn-
thesized. A typical example for such a parameter is the number of inserted
2 The augmentation technique might change information in the text, which changes

the process overall, e.g., by replacing original actors with new, articial ones.
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Fig. 4. Choosing optimal congurations for data augmentation techniques.

tokens. Increasing this number would result in a sample, which is more perturbed
compared to a sample where fewer tokens are inserted. We consider optimally
choosing such parameters for a given technique a hyper-parameter optimization
problem. Hyper-parameter optimization is dened as nding a conguration of
parameters so that a given objective (metric to optimize) is minimal or rather
maximal, depending on the case. Here, we want to maximize the performance
gain that the application of a data augmentation technique has. To that end
we run a 5-fold cross-validation of the extraction step (MD, RE) with the orig-
inal, unaugmented data. We then select a conguration for the given technique
and run the same 5-fold cross-validation, but augment the training data of each
fold with the data augmentation technique. We dene the dierence between
the scores of these two models on the (unaugmented) test dataset as the per-
formance gain and use it as maximization objective for our hyper-parameter
optimization. Each data augmentation technique is optimized in 25 runs (trials)
using Optuna [3] and a Tree-Structured Parzen Estimator for selecting parame-
ter values [7]. We depict this process in Fig. 4.

The most eective data augmentation techniques can then be used to sup-
plement the existing PET dataset, as well as any future datasets used for BPIE.
In the following Sect. 5 we present the results of the experiment described here
and discuss their implications.

5 Results

In this section we will discuss results for the experiments we dened in the pre-
vious section. Table 1 lists the dierences of all data augmentation techniques
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Fig. 5. Two examples for the eects of data augmentation techniques.

compared to a run on un-augmented data. All dierences are measured as the
micro-averaged F1 score. Concluding from our results, we nd that the RE
task can benet signicantly from most of the data augmentation techniques
we selected and tested. Transformations that reorder tokens, like Shue Within
Segments, Sentence Reordering, or English Mention Replacement seem to be less
useful, compared to other techniques. This is most likely rooted in the change in
directionality of relations (eect (3) from Sect. 4). Since these transformations
do not take any context into account, such changes may be breaking semantics
of relations in a sentence.

Transformations based on large language models, especially back transla-
tion techniques, like Multilingual Back Translation, which translate a sentence
fragment twice, are very time-intensive. Yet, improvements in relation extrac-
tion performance is not signicant, when comparing them to more lightweight
approaches, e.g., Synonym Substitution, which uses WordNet to rephrase text
sequences. In our experiments using these large language model based methods
is not worth the increase in computing power and time. While the MD task can
still benet from all data augmentation techniques, it does so to a lesser extent
when compared to the RE task. This indicates a model, that is already more
stable, and generalizes better. Transformations that alter the amount of tokens
in mentions, such as Random Word Deletion, Synonym Insertion, or Subsequence
Substitution for Sequence Tagging, result in lesser improvements, compared to
paraphrasing methods, such as AntonymsSubstitute, BackTranslation, or Syn-
onym Substitution (Fig. 5). Similar to the RE task, the MD task does not benet
signicantly more from resource and time intensive, large language model based
augmentation techniques for paraphrasing, compared to their simpler counter-
parts.

Based on our observations, we can answer research question RQ1, with “Yes”.
Simple data augmentation techniques like swapping tokens, deleting them, or
inserting random tokens do have a signicant benet. The RE task benets
more from them, than the MD task does. Since nearly all augmentations have
a net positive impact, we argue that the perturbations act as controlled noise,
very similar to techniques used for training deep neural networks. There, models
that are more robust and generalize better are created, simply by adding noise
to the training data [26].

The use of large language models in data augmentation techniques brings
with it a signicant increase in resources needed, both in terms of computing
time, hardware requirements, and power consumption. Based on our experi-
ments, this is not worthwhile for improving the business process information
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Table 1. Detailed results for all transformation steps, for both the MD and RE task.
Column Id refers to the identier dened in [10]. It links to the source code for this
technique. Top three results are set in bold face. All results are the averages of a 5-fold
cross validation on the entire dataset.

Technique Id Description MD RE

Unaugmented results for un-augmented data 0.695 0.759

Adjectives Antonyms Switch B.3 use antonyms of adjectives +0.024 +0.045

AntonymsSubstitute (Double
Negation)

B.5 substitute even number of
words with antonyms

+0.025 +0.042

Auxiliary Negation Removal B.6 remove negated auxiliaries +0.025 +0.039

BackTranslation B.8 translate to German, then back
to English

+0.025 +0.036

Concatenate Two Random
Sentences

B.24 remove punctuation between
sentences

+0.023 +0.042

Contextual Meaning
Perturbation

B.26 replace words with use of
pretrained language model

+0.004 +0.040

English Mention Replacement
for NER

B.39 replace mention with one of the
same type in document

+0.015 +0.036

Filler Word Augmentation B.40 introduce “uhm”, “I think”, +0.021 +0.043

Multilingual Back Translation B.62 see B.8, language is parameter +0.022 +0.041

Random Word Deletion B.79 delete random words +0.011 +0.034

Replace Abbreviations and
Acronyms

B.82 replace acronyms with full
length expression and v.v

+0.020 +0.042

Sentence Reordering B.88 reorder sentences +0.024 +0.034

Shue Within Segments B.90 shue tokens in mentions +0.021 +0.041

Synonym Insertion B.100 insert synonym before word +0.019 +0.043

Synonym Substitution B.101 substitute word with synonym +0.023 +0.040

Subsequence Substitution for
Sequence Tagging

B.103 replace sequence with another
sequence with same POS tags

+0.019 +0.033

Transformer Fill B.106 replace tokens using language
model

+0.022 +0.041

Random Insert insert random tokens +0.020 +0.043

Random Swap swap position of tokens +0.029 +0.033

extraction approaches we used. Back-translation techniques, such as B.8, B.62,
and especially B.26 do not provide benets in the MD and RE tasks, that would
warrant their additional needs in hardware (GPUs), and runtime, which was sev-
eral orders of magnitude higher, compared to simpler augmentation techniques.
We therefore have to answer RQ2 with “No”.

To answer research question RQ3, we dened three characteristics of tex-
tual data in Sect. 4 that are changed by the data augmentation techniques we
selected. These characteristics are visualized in Figs. 6a and 6b. Figure 6a shows
the “landscape” of data augmentation techniques evaluated in this paper. Three
groups of techniques emerge. The rst one is a group of techniques that only
marginally increase the number of tokens in mentions, and keep the size of the

Leveraging Data Augmentation 97



Leveraging Data Augmentation for Process Information Extraction 67

Fig. 6. (a): Eects on vocabulary size and the average length of mentions in tokens.
(b): Eects of techniques on relation direction.

vocabulary roughly the same. These techniques mainly change the context (i.e.,
the text that does not contain immediately process relevant information), or the
structure of the text (i.e., modify punctuation, or change the order of tokens).
Techniques in the second group do not modify the vocabulary, but have a signif-
icant impact on the number of tokens in a given mention. These augmentations
can theoretically be useful for the robustness of MD extraction models, but only
have a moderate impact in our experiments, using the PET dataset. We count
Random Insertion, Filler Word Augmentation, but also Random Word Dele-
tion towards this group, see Fig. 2 for an example taken from the augmented
data. The nal group of techniques increases the size of the vocabulary, while
keeping mention lengths roughly the same. These techniques are paraphrasing,
aimed at preserving semantics and the structure of textual data. Techniques
using WordNet to insert or substitute synonyms (B.100, B.101, as well as back
translation methods (B.62, B.26 ) fall in this group. Figure 2 shows a sentence
that is augmented with the back translation method B.26.

Figure 6b shows the changes in directionality certain data augmentation tech-
niques have. Most techniques preserve the direction of relation examples in the
data, with the exception of techniques B.88 (Sentence Reordering) and B.24
(Concatenate Random Sentences). Based on our experiments, this change seems
to be less useful than other augmentations. The improvement of B.88 is among
the worst ones of all techniques. In future work it could be interesting to investi-
gate, if selectively augmenting only certain types of relations can be helpful. Also,
having a more diverse test set, i.e., texts from dierent sources, like employee
notes, handbooks, and interview notes, might change the usefulness of direction-
ality changing data augmentation techniques.
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6 Conclusion and Future Work

In this paper we evaluated established data augmentation techniques for use in
the MD and RE steps of extracting process relevant information from natural
language texts for use in the automated generation of business process models.
To this end we selected a total of 19 distinct methods from related work, which
are suitable for the given data.

We discuss several characteristics these selected data augmentation tech-
niques change in the original data and how they relate to dierences in useful-
ness of certain techniques for either the MD or RE task. We found that many
of them are useful for improving the accuracy of the current state of the art
machine learning models on the PET dataset for automated business process
model generation from natural language text. For the RE model the F1 score
could be improved by up to 4.5% points, the MD model was improved by up to
2.9% points. Our ndings enable researchers in the eld of process model gener-
ation from natural language text to make more ecient use of the limited data
available to them, enabling more precise and robust machine learning methods
for extracting business process relevant information.

In future work, we want to analyze how targeted data augmentation can be
used to improve extraction of certain types of mentions or relations, tackling
the problem of data imbalance. Additionally we want to explore adaptive data
augmentation, where samples are selected for augmentation by their value for
model training, e.g., measured by the number of wrong predictions.
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17. Käppel, M., Jablonski, S.: Model-agnostic event log augmentation for predictive
process monitoring. In: Indulska, M., Reinhartz-Berger, I., Cetina, C., Pastor,
O. (eds.) CAiSE 2023. LNCS, vol. 13901, pp. 381–397. Springer, Cham (2023).
https://doi.org/10.1007/978-3-031-34560-9 23
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Abstract. Over the past decade, extensive research eorts have been
dedicated to the extraction of information from textual process descrip-
tions. Despite the remarkable progress witnessed in natural language
processing (NLP), information extraction within the Business Process
Management domain remains predominantly reliant on rule-based sys-
tems and machine learning methodologies. Data scarcity has so far pre-
vented the successful application of deep learning techniques. However,
the rapid progress in generative large language models (LLMs) makes
it possible to solve many NLP tasks with very high quality without
the need for extensive data. Therefore, we systematically investigate
the potential of LLMs for extracting information from textual process
descriptions, targeting the detection of process elements such as activi-
ties and actors, and relations between them. Based on a novel prompt-
ing strategy, we show that LLMs are able to outperform state-of-the-art
machine learning approaches with absolute performance improvements
of up to 8% F1 score across three dierent datasets. We evaluate our
prompting strategy on eight dierent LLMs, showing it is universally
applicable, while also analyzing the impact of certain prompt parts on
extraction quality. The number of example texts, the specicity of def-
initions, and the rigour of format instructions are identied as key for
improving the accuracy of extracted information. Our code, prompts,
and data are publicly available at https://github.com/JulianNeuberger/
llm-process-generation/tree/er2024.

Keywords: Process Information Extraction · Large Language
Models · AI-assisted Conceptual Modeling · Business Process Modeling

1 Introduction

In the eld of Business Process Management (BPM), process models are estab-
lished tools for designing, implementing, enacting, and analyzing enterprise pro-
c The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
W. Maass et al. (Eds.): ER 2024, LNCS 15238, pp. 38–55, 2025.
https://doi.org/10.1007/978-3-031-75872-0_3
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cesses [12]. However, the manual creation of these models is very time-consuming
and accounts for around 60% of the total time spent on process management [16].
In order to reduce this eort, the automatic creation of these models based on a
variety of information sources is a research focus in the eld of BPM [5,16]. In
this respect, the paper at hand contributes to the extraction of process-relevant
information from natural language information sources.

Information on organizational processes is frequently contained in a range
of textual documents, such as process descriptions, rules and regulations, and
work instructions [1,4]. Recognizing this, a variety of techniques has been devel-
oped that aim to automatically extract process information from texts in order
to subsequently turn it into process models [2,8,16]. This two-step procedure,
in which information is extracted rst and turned into a process model second,
comes with several advantages in comparison to a direct text-to-model trans-
formation approach: (1) The result quality can be evaluated with established
means from the information-extraction domain, (2) extracted information can
be transformed in more than one target process modeling language1, and (3)
it is possible to use extracted process information for other purposes such as,
for instance, compliance checking, formal reasoning [3,26], and process query-
ing [19].

The goal, scope, and challenges of information extraction depend on the
input document type and content, as well as the desired output, i.e., the infor-
mation to be extracted. Still, the extraction of process information from text
generally involves: (1) the identication of textual mentions of process entities,
such as activities, process participants, and business objects, and (2) relations
between these entities, such as sequential dependencies, exclusivity, and assign-
ments (e.g., who performs which step). As an illustration, Fig. 1 shows a fragment
of a textual description and two instantiations of the extraction task, focused on
the information necessary for a model in Business Process Model and Notation
(BPMN)2 model [9] (upper part) and for declarative process modeling [2] (lower
part). As shown, they involve dierent entities and relations, which each need
to be inferred from the unstructured textual input.

A key problem is that the extraction of process information is still largely
rule-based [23]. However, crafting useful rules is complicated, requires an exten-
sive understanding of the process itself, and the rules are hard to transfer across
organizations or text sources. To overcome this, recent work proposed the use of
machine learning techniques [23], though these are hampered by data scarcity.
Work that strives towards using pre-trained generative LLMs, e.g., GPT-3 [8]
aims to circumvent this concern. However, the work in [8] only presents a prelim-
inary study, with limitations in terms of analyzed datasets, extracted informa-
tion, and result discussion. Therefore, this paper aims to provide deeper insights
into the usability of LLMs for process information extraction and specically
includes the following core contributions: (I) It presents challenges that make the

1 This is inspired by the paradigm of interlingua-based machine translation [27], which
reduces the number of translation systems for n languages from n2 to 2n.

2 https://www.omg.org/bpmn/, accessed June 2, 2024.
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Fig. 1. Fragment of a larger text describing a business process of an insurance company.
Dierent methodologies may extract dierent process relevant information, depending
on the target modelling notation or use case.

extraction of process-relevant information in particular a dicult task (Sect. 2).
(II) As our main contribution, it proposes a novel, task-specic, and rigorously
empirically validated prompting strategy for solving the aforementioned infor-
mation extraction tasks (Sect. 4). (III) It provides the currently most compre-
hensive study of using LLMs for extracting business process relevant information
from natural language text (Sects. 5 and 6). To this end we rigorously compare
our prompting strategy on multiple datasets with state-of-the-art approaches
and achieve up to 7% higher absolute F1 scores compared to machine learn-
ing methods and up to 8% compared to rule-based methods. (IV) By testing
our prompting strategy with eight state-of-the-art LLMs, we empirically demon-
strate the generality of both our results and the applicability of our prompting
strategy. (V) An ablation study (Sect. 6.2) shows that common best practices
in prompt engineering are only of limited use for process information extraction.
Thus, we also dene guidelines for using LLMs for process information extraction
(Sect. 6.4).
The rest of this paper is structured as follows. Section 2 describes the information
extraction tasks and its challenges in detail. Section 3 summarizes the current
state of the art in dealing with these tasks. After that we, describe our prompting
strategy, the experiments, and corresponding results (Sects. 4, 5, 6). Section 7
describes limitations and future work.

2 Task Descriptions and Challenges

In this section, we describe the three main (sub)tasks of process information
extraction (Sect. 2.1), before highlighting a range of challenges associated with
such extraction and with the use of LLMs for it (Sects. 2.2, 2.3).
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2.1 Task Descriptions

Our work focuses on three established subtasks of (process) information extrac-
tion from text: Mention Detection (MD), Entity Resolution (ER), and Relation
Extraction (RE) [2,7,23,26].

Mention Detection (MD) is concerned with nding and extracting text frag-
ments that contain process relevant information, such as activities (or actions),
process-relevant objects or data (i.e., business objects), or involved persons and
departments (i.e., actors). For instance, in Fig. 1, the upper example shows men-
tions of data, actions, and actor, whereas the lower one focuses on activities.
This denition is similar to Named Entity Recognition (NER), though we also
extract spans not covered by the traditional denition of NER, e.g., activities.

Entity Resolution (ER) aims to recognize when dierent mentions refer to
the same process entity. For example, in Fig. 1, successful ER would identify
that the word it in “it is examined” corresponds to the claim mentioned in
the previous phrase. Another common example is using ER to recognize that
the same actor (across mentions) performs dierent steps. ER is a super-set of
co-reference resolution and anaphora resolution [29] and is a crucial step when
dealing with process-related texts, which frequently involve repeated mentions
across sentences or even paragraphs [23].

Relation Extraction (RE) is the task of detecting and classifying relations
between mentions. Relations are usually directed and have one (unary relation),
or two (binary relations) arguments. For instance, the upper example in Fig. 1
shows three kinds of relations: uses signals which data objects are used by an
activity, performer captures which actor performed an activity, and flow cap-
tures a sequential relation between two activities. RE is crucial when it comes
to information extraction in our context, given that processes inherently involve
process steps (i.e., activities) that are connected to each other through relations.
Note that we regard constraint extraction [2,26] (CE), which relates to declara-
tive process modeling, as an RE problem: constraints have one or two arguments,
are directed, and carry type information (e.g., Succession, Init).

2.2 Challenges of Process Information Extraction from Text

Information extraction, a common task in natural language processing (NLP),
faces general challenges, which are also well-known in BPM literature [1,15], and
often central elements of interest in the design of rule-based and learning-based
systems alike [2,23]. Simply using LLMs for process information extraction solves
some of these challenges and justies the investigation of their applicability.

In the context of process-related texts Linguistic Variance means that the
same behavior or process characteristics can be described in a variety of ways
such as, for instance, active and passive voice. Context Cues are a challenge in
that single words can fundamentally alter the meaning of a process description
(e.g., “first, a claim is created” and inverted semantics in “finally, a claim is cre-
ated”. Processes are typically described in sequential form, although they usually
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contain branches (e.g. XOR decision branches). This results in Long-distance
Relations that existing approaches struggle with [23] or cannot handle [2].
Implicit and Ambiguous Information such as the “examination target” in
“after registering the file in the database, it needs to be examined” needs to be
interpreted [3,15]. Research indicates a negative correlation between correctness
of extracted process information and Text Length [7]. Finally, the application of
deep learning is hindered by the fact that the largest available data set contains
only 45 human-annotated process descriptions [9] (Small Datasets).

LLMs are able to overcome the above challenges [32], which is why this
paper analyzes their suitability for process information extraction, as proposed
in previous work [6,8]. However, LLMs require great care in the formulation of
the input (prompts) [8,22,3133]. In [22] authors argue: “a good prompt can be
worth hundreds of labeled data points”. For this reason, the core of the present
work lies in the development (Sect. 4) and evaluation (Sects. 5 and 6.2) of suitable
prompts for process information extraction.

2.3 Challenges of Process Information Extraction Using LLMs

Using LLMs for process information extraction from texts helps with linguistic
challenges, but adds itself several additional challenges. We discuss these here
and reference them later in Sect. 6.4 to show how we can deal with them.

(C1) Limited Output Control. Input and output consist of plain text. Given
that the input for inference is raw text, it inherently suits LLMs for our tasks
(cf. Section 2.1). However, as the expected output should adhere to a specic
schema, it becomes necessary to instruct the LLM to conform to this schema.
Moreover, this principle necessitates a robust output parser, as LLMs tend to
exhibit variability in their output, which presently cannot be entirely eradicated.
Having only limited control over generated output is especially problematic for
the BPM domain, where denitions for relevant information often overlap, e.g.,
actions (just predicate) versus activities (predicate and object).

(C2) Input Presentation Dependencies. Although LLMs provide an inter-
face for natural language input, the quantity, form and level of detail must be
carefully matched to the task at hand. The LLM faces the challenge of determin-
ing the importance of the input components. Furthermore, while LLMs emulate
human reasoning, the interpretation of inputs may diverge signicantly from
that of human beings, thereby rendering prompt optimization a trial-and-error
process. This challenge is further aggravated by some elements of process models,
that are complex to explain concisely, e.g., parallel and exclusive workows.

(C3) Black-box. Deep learning methods generally suer from challenges con-
cerning explainability of predictions [34], which is also true for LLMs. Contrary
to classical learning methods, such as decision trees, LLMs oer no fail safe
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mechanism to validate extraction rules. This is problematic for business process
information extraction in particular, since recent work focuses on “human-in-the-
loop” systems [30], where the human must be able to follow system decisions.

(C4) Data Unawareness. In contrast to generative AI models trained on
task-specic data, an LLM is usually not aware of the particular dataset it is
tasked to process. Thus, using LLMs to process a particular dataset requires to
form instructions that precisely describe all relevant details of a dataset. The
generalizing capabilities of LLMs can be an additional hurdle in this context,
especially, when declarative process models are concerned, where a multitude
of constraint types exist. The LLM is likely to know of these through the pre-
training process, and therefore may extract irrelevant ones for a given dataset.

(C5) Costly Experiments. Applying LLMs usually requires usage of commer-
cial APIs (e.g., OpenAI), which come with downsides: (i) a token limit restricting
the maximum input and output size and (ii) fees based on the number of tokens
processed. In view of the many possible variations in the inuencing parame-
ters, conducting experiments can be cost-intensive. This is especially true for
the BPM domain, where the density of information in process descriptions is
very high, needing many output tokens to extract and encode it.

3 Related Work

Related approaches are divided into rule-based, machine learning (ML)-based,
deep learning-based, and LLM-based process information extraction. An app-
roach is considered related if it solves at least one of the tasks in Sect. 2.1.

Rule-Based Approaches. Rule-based approaches leverage linguistic features
to extract information from natural language process descriptions through
explicitly coded mapping rules. For instance, Friedrich et al.’s seminal work [16]
employs syntax features and word information from a lexical database to identify
patterns at both sentence and document levels for BPMN model creation. Other
approaches like those in [26,28] adopt similar techniques for automatic text anno-
tation, employing regular expressions for syntactic dependency trees, and part-
of-speech tags, showcasing superior performance on novel datasets. Additionally,
[2] presents a rule-based technique, currently leading in extracting declarative
process models from raw text using syntax parsing and word-level features. Sim-
ilar advancements are seen in [9,14], the latter integrating ML-based entity MD
with subsequent rule-based RE. Furthermore, [21] focuses on extracting Dynamic
Condition Response (DCR) graphs. Recent studies suggest that while rule-based
approaches can be tailored to specic tasks and data sets, they can hardly deal
with ambiguity and linguistic variance. [8,23].

Process Information Extraction using Large Language Models 109



44 J. Neuberger et al.

ML-Based Approaches. [23] presents a ML extraction pipeline based on [9]
and is used as a baseline for our comparative evaluation (Sect. 6). The deep-
learning approach presented in [25] classies text fragments analyzing the input
text on several levels of granularity. However, extracting these fragments is not
part of the approach, which simplies the task of MD to mention classication,
i.e., locating the information to extract is omitted. Though the work presented in
[6] overcomes this limitation and outperforms the approach, it does not support
RE. In general, techniques of this paradigm either struggle to deal with linguistic
variability and ambiguity, or they require vast amounts of training data, making
them particularly unfeasible for small datasets (see Sect. 2.2).

LLM-Based Approaches. Bellan et al. [8] utilize pre-trained LLMs to cope
with data scarcity, yet their approach exhibits three primary weaknesses: (i) It is
restricted to a subset of entity types, namely activities, participants, a performs
relation, and a direct-consequences relation, (ii) it lacks strict output format-
ting, hindering automated result processing, unlike our prompting strategy, and
(iii) its evaluation is limited to 7 of the 45 process descriptions from the PET
dataset, whereas we evaluate our modular prompt on the entire dataset, plus
two validation datasets. Thus, direct comparison between [8] and our work is
not feasible. Nonetheless, as in [8], our modular prompt also descriptive instruc-
tions with input examples accompanied by their expected outputs. Although
process models are generated using LLMs in [18], the work is not comparable
to ours, as [18] requires human involvement and only supports the extraction of
activities and their arrangement in a directed graph (e.g., actors and data are
missing).

4 LLM-Based Process Model Extraction from Text

Extracting process information with LLMs requires a prompt design that
addresses the challenges mentioned in Sect. 2.3. Thus, a prompt structure consist-
ing of the three modules Context, Task Description and Restrictions is described
below at the example of the Mention Detection task. However, the prompting
strategies for the remaining tasks (Sect. 2.1) are analogous.

High-Level Prompt Structure. LLMs take freely formulated text as input,
which is called the prompt. To this end we base our prompts on an ablation
study (Sect. 6.2), which is used to identify benecial and detrimental prompt
components. To do this, we rst need a modular prompt design so that we
can specically remove individual components in the study to examine their
benets and ultimately to only keep the advantageous components. Adhering
to the best practices outlined in [31], our initial prompt design is structured
into three modules (see Fig. 2): (A) a context description framing the process
information extraction task on a high level, (B) a detailed task description, and
(C) constraints that further restrict the context and the output format, and
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contains disambiguation hints. To design potentially relevant components for all
three modules we rely on general design patterns [11,22,31,33]. Therefore, in the
next subsection, the three modules are specied and discussed in terms of how
they address the LLM-specic challenges outlined in Sect. 2.3.

# TASK DESCRIPTION
## Mention types
- **Activity**: a task or action executed by an actor during the business process
- **Actor**: a person or organizational unit actively participating in the process 

## Relation types
- **actor performer**: holds if it is indicated that a specific activity (source 
mention) is carried out by a particular actor (target mention). 

## Extraction procedure
Let’s carry out the extraction in three steps.
1. Extract all mentions of activities and actors.
2. Reading the input text again extract all relations between extracted mentions.
3. Briefly justify your results. Also provide a list of 10 facts about the process.

# RESTRICTIONS
## Additional considerations
- If there is no action, there cannot be any actor in the sentence.
- Use the sentences’ context, but relations must not cross sentence boundaries.

## Disambiguation hints
- In the following there is only one activity (print claim), the rest are details: 

“The claims officer prints the claim by clicking [PRINT].”

## Format instructions
Please create the output exclusively in the following format:
<relation type> | <source mention> | <target mention>

## Example 1:
### Input:
1: After the customer submitted the claim, it is examined by a claims officer.

### Output: 
1: actor performer | submit claim | customer

actor performer | examine claim | claims officer

B

C

# CONTEXT
You are a business process modelling expert, tasked with extracting mentions of 
activities and actors from textual business process descriptions. Therefore, you are 
provided with sentences describing which actor carries out which activities.
Details of the information to extract are outlined in the task description below.

A
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ity Persona

Context 
Manager

Meta Language 
Creation

Chain of 
thought (CoT)

Reflection

Fact check list

Formalized 
output format

(+ format 
examples)

Disambiguation 
hints

Few-shot 
prompting

Fig. 2. Modular prompt structure (underlined = task-specic content, boxes = design

pattern, = useful, = non-useful, = use in prompt engineering).

Context and Task Description. In module (A) we use the persona design
pattern [33] to control the language style of generation results. We assign it the
role of a process modeling expert. This is followed by the context manager design
pattern [33], which includes a general description of the information extraction
task (i.e., objectives and a description of the input specics). This limits the
information basis the LLM may use, mitigating the risk of hallucination.

Module (B) is mainly concerned with dening the specics of the process
information extraction task. Its backbone is the creation of a meta language
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[33], which denes the types of elements to extract from the input text. Figure 2
provides an example that denes activities and actors as mention types and a
relation called actor performer that associates actions with their performers,
following our running example from Fig. 1. Another widespread best practice
is known as chain of thought (CoT) [31,32], whereby the actual task is broken
down into individual steps. Thus, our prompt divides the relation extraction
task into two steps that separate the extraction of mentions from the prediction
of their relations and a third step, which combines two more best practices, i.e.,
generating a list of facts about the process and reflection about the results [33].
These cause the LLM to elaborate both on the input and on its own output,
which allows experts to validate the extracted information and has also been
shown to have a positive impact on extraction performance [31,32].

Restrictions. The last prompt module (C) denes expectations towards the
LLM’s output. Additional considerations include rules for the extraction task,
such as that an actor can only be described as such if the action it performs
is also named (compare Fig. 2). Disambiguation hints are particularly useful for
information types that are hard to distinguish from other information types or
irrelevant information. In Fig. 2 it is intended to guide the LLM what makes up
an Activity, if the input gives additional, irrelevant specics. Prompts further
include a schematic denition of a formal output format [33], which for the
exemplary prompt is a tuple of a relation type, a source mention and a target
mention, each separated by a pipe symbol. The denition is complemented by an
(out-of-domain) example. Finally, few-shot prompting [22,31] dynamically adds
examples for input and corresponding output. For the current paper few-shot
samples are pairs of raw textual process descriptions and a task-dependent set of
process-relevant information (e.g., actor mentions). This design pattern and best
practice is known to alleviate the issue of data unawareness of LLMs [17,20].

5 Experiment Setup

In this section we dene the experiments we run to evaluate the usefulness of
LLMs for process information extraction3. It covers an overview of the datasets
we use, including the respective baselines, and a denition of metrics we apply.

We use three well-known datasets for evaluating our prompts. One of these
(PET) represents the current state of the art, both in terms of size, as well as
the process information techniques developed for it. The other datasets feature
dierent characteristics, making them relevant for validation experiments. This
lets us gain insights into the robustness of an LLM as a process information
extractor, as well as how it behaves when applied to other process modeling
languages. We call the best approaches for extracting the information from these
datasets baselines, and use them in Sect. 6 as comparisons with various LLMs.

3 Code at https://github.com/JulianNeuberger/llm-process-generation/tree/er2024 .
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PET [9]: This is the largest dataset currently available. It contains 45 docu-
ments with annotations for information especially useful for creating process
models in BPMN. These include 7 types of mentions such as activities, actors,
data objects, but also 6 relation types. These cover the behavioural process per-
spective (Flow), data perspective (uses, and organizational perspective (actor,
performer). Additionally, this dataset features relations that span multiple sen-
tences. It therefore tests the ability of approaches to reason across wider spans
of text. We use an extended version of this dataset, which includes data for
the ER task, as presented in [23]. The currently best approach for extracting
information is using conditional random elds for MD, a pre-trained neural co-
reference resolver for ER, and a decision tree ensemble for RE [23]. We use scores
as reported in [23], which have corresponding publicly available code and can be
reproduced with it.

DECON [2]: This collection of 17 textual process descriptions is annotated with
a set of 5 Declare [24] Constraint types between business process relevant activi-
ties. Additionally, constraints may be negated, as well as unary, i.e., constraining
a single action. Annotations are given on a sentence level, and only sentences
that describe at least one constraint are contained in the dataset. The expected
(ground-truth) activities are already transformed into Declare-conform phrases,
i.e., the activity description “The claim is registered” should be extracted as
“register claim”. It does not contain an approach for MD in isolation, and only
contains mentions of type action. The authors of [2] propose a rule-based app-
roach combining multiple NLP techniques, e.g., typed dependency relations.

ATDP [26]: This dataset uses 18 textual descriptions, that largely overlap with
the ones from [2], but also contains sentences, that describe no constraint. As
such, this dataset tests approaches for their ability to judge whether or not sen-
tences contain relevant information, before extracting constraints. Furthermore,
the set of constraints was expanded to eight types. Additionally, this dataset also
provides annotations of actions, conditions, entities, and events, which we used
in an MD setting. Quishpi et al. proposed a rule-based ensemble of patterns for
MD and CE on typed dependency structures [26].

We use the well established metrics Precision P and Recall R for our exper-
iments. P is a measure of how well an extraction approach is able to avoid false
positives, i.e., assigning the wrong type to mentions and relations, or extracting
them, where they are not expected. R on the other hand measures how much
of the expected information (true positives) is found. The two metrics are typ-
ically aggregated via their harmonic mean F1 = 2 P ·R

P+R . Following [26], we use
P = #correct

#pred and R = #correct
#gold , with #correct as the number of correct pre-

dictions, #pred the number of total predictions, and #gold as the number of
expected mentions or relations. For a fair assessment, we count predictions as
correct in exactly the way described by the work we compare the LLM to.
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6 Results

Table 1 shows the results we observed when running the experiments as described
in Sect. 5 with an optimized prompt, that follows the recommendations we found
in our study of best practices (Sect. 6.2). All results use GPT-4o, the latest
version of OpenAI’s GPT with temperature = 0. top p is unchanged, as per
OpenAI’s recommendation, when using temperature based sampling.4

For the reference dataset PET, our experiments show that GPT-4o is capable
of an absolute F1 score improvement of 5% for MD, 22% for ER, and 17% for
RE. Remarkably, for RE, GPT-4o is able to match and outperform the machine
learnt baseline, which was trained on 36 manually annotated documents [23],
without any labeled data (zero-shot). For MD it reaches similar scores, even when
not given any examples, compared to the machine learnt baseline, which was
trained using 36 manually annotated documents [9]. For real-world application
this means that LLMs can be used in business process information extraction
scenarios, even if the organization has not a single manually annotated training
example. This is an exciting nd, as it promises signicant speed-up of model
creating tasks of practitioners across business domains.

Table 1. Results for each dataset and the dierent extraction stages, compared to
baseline results using GPT-4o.

Dataset DECON ATDP PET

Metric P R F1 P R F1 P R F1

MentionDetection Baseline no baseline 0.62 0.82 0.71 0.73 0.64 0.69

Zero-shot 0.72 0.75 0.73 0.58 0.77 0.66 0.65 0.71 0.68

1-shot 0.87 0.80 0.83 0.63 0.77 0.69 0.72 0.75 0.73

3-shot 0.88 0.79 0.83 0.68 0.79 0.73 0.72 0.77 0.74

EntityResolution Baseline 0.55 0.51 0.52

Zero-shot 0.67 0.55 0.60

1-shot no data no data 0.76 0.70 0.73

3-shot 0.79 0.70 0.74

RelationExtraction Baseline 0.77 0.72 0.74 0.58 0.64 0.61 0.79 0.66 0.72

Zero-shot 0.66 0.75 0.70 0.49 0.66 0.57 0.88 0.85 0.86

1-shot 0.76 0.82 0.79 0.58 0.73 0.64 0.90 0.89 0.89

3-shot 0.79 0.85 0.82 0.58 0.72 0.64 0.90 0.89 0.89

When evaluating on the validation datasets (cf. Section 5), we found that
GPT-4o is able to match and out-perform the rule-based systems in all cases,
most notably improving F1 scores for RE on dataset DECON by an absolute
8%. Our result for MD on dataset DECON has no corresponding baseline, as the

4 see OpenAI’s source code, accessed June 3, 2024.
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authors of [2] did not report values for MD in isolation. Errors and ambiguities
are common in dataset ATDP hindering machine learning methods in learn-
ing valid extraction rules. This also adversely aects the extraction accuracy
of GPT-4, when extracting the same types of constraints in the ATDP dataset
compared to the DECON dataset. We discuss this further in Sect. 6.4. Since the
importance of ER only recently gained attention [23,26], the reference dataset
PET is currently the only dataset providing data for evaluation of this task.

6.1 Model Comparison

We originally developed our prompts for GPT-4 version GPT-4-0125-preview, to
assess how well our prompting strategy generalizes to other models we prompted
a total of eight models for the MD and RE tasks on PET. We selected models
following AlpacaEval5, which is designed for testing the instruction following
capabilities of LMMs [13]. At the time of writing model YI Large Preview was
not publicly accessible and could not be considered in our comparison, even
though it ranked third on AlpacaEval.

Results for the comparison can be found in Table 2. We set the temperature
for all models to 0. All GPT models perform on similar levels, with the exception
of GPT3.5, which is signicantly smaller compared to GPT-4 models. For the
zero-shot RE task GPT3.5 even failed to produce responses for most documents,
leading to very low recall. Claude3 Opus seems to be as capable as GPT-4, its
smaller variant Sonnet performs signicantly worse on zero-shot tasks, but is
able to produce comparable results given three examples. Llama 3 70B Instruct
is an open-weight model and could be run locally, i.e., it is useful for using our
prompting strategy in scenarios where sending data to an API is not possible.
Llama 3 70B Instruct seems to be nearly as capable as the closed-weights Claude
3 Sonnet and is therefore viable in a few-shot setting.

Table 2. Comparison of our prompts across dierent models. Best results per task and
metric are set bold.

Task PET MD (Zero-shot) PET MD (3-shot) PET RE (Zero-shot) PET RE (3-shot)

Model P R F1 P R F1 P R F1 P R F1

GPT-4o 0.58 0.69 0.63 0.68 0.77 0.72 0.88 0.85 0.86 0.90 0.89 0.89

GPT-4-2024-04-09 0.63 0.67 0.65 0.73 0.76 0.74 0.87 0.79 0.83 0.89 0.88 0.88

GPT-4-0125-preview 0.65 0.71 0.68 0.72 0.77 0.74 0.87 0.85 0.86 0.89 0.87 0.88

GPT-3.5-0125 0.35 0.50 0.42 0.51 0.70 0.59 0.51 0.06 0.11 0.74 0.64 0.69

Claude 3 Opus 0.55 0.72 0.63 0.66 0.80 0.73 0.86 0.85 0.86 0.92 0.91 0.91

Claude 3 Sonnet 0.46 0.65 0.54 0.63 0.78 0.70 0.78 0.67 0.72 0.91 0.87 0.89

Llama 3 70B Instruct 0.56 0.64 0.59 0.62 0.71 0.67 0.76 0.66 0.70 0.88 0.81 0.84

Qwen1.5 72B Chat 0.32 0.33 0.33 0.53 0.65 0.59 0.61 0.65 0.63 0.74 0.77 0.75

5 See https://tatsu-lab.github.io/alpaca eval/, last accessed May 30, 2024.
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6.2 Ablation Study

We conduct an ablation study to assess the usefulness of the best practices pre-
sented in Sect. 4 and to measure the impact of the prompt’s main components.
This study is run on the reference dataset (PET), as it is the largest one and
used by recent publications [8,9,23]. To obtain a baseline for the tasks of MD
and RE, we use a prompt that implements the best practices as shown in Fig. 2
and run it on the GPT-4-0125-preview model. We then purposefully remove
specic components from this prompt, namely the format examples, the con-
text manager, the persona, the denition of mention and relation types (meta
language), the instruction to think in several steps (chain of thought), any dis-
ambiguation hints, and the instruction to generate explanations (reflection) and
a fact check list about the process. Additionally, we also use a prompt with very
short descriptions of relations and types (balancing brevity and specificity). We
run each prompt in the zero-shot setting and record the observed F1 score, as
well as the parsing errors that occurred.

Table 3 provides detailed results. Removing examples has a signicant neg-
ative eect (−0.22 for MD and −0.07 for RE), mainly rooted in the number of
parsing errors that are made (919 for MD), as well as directionality of relations
for the RE task (confusing source and target mentions). Removing the context
manager and persona only has minor eects (±0.01 per task), suggesting lower
relevance for process information extraction compared to other NLP settings.

Table 3. Changes in F1 score of GPT-4, without specic prompt components given in
Fig. 2. Column relative F1 shows dierence to the baseline prompt, Useful shows a ,
if we recommend this component in prompts for process information extraction and 
for prompt engineering and data curating only.

Mention Detection (MD) Relation Extraction (RE)

Experiment Relative F1 Absolute F1 Parsing Errors Relative F1 Absolute F1 Parsing Errors Useful

Baseline – 0.59 0 – 0.77 0

No Format Examples −0.22 0.37 919 −0.07 0.70 1 
No Context Manager +0.01 0.60 0 −0.01 0.76 0

No Persona +0.01 0.59 1 +0.01 0.78 0

No Meta Language −0.09 0.49 2 −0.05 0.72 0 
No Chain of Thought −0.01 0.57 1 −0.02 0.75 0 
No Disambiguation −0.03 0.55 0 −0.01 0.76 1 
No Reection +0.04 0.63 0 +0.02 0.79 0 
No Fact Check List +0.03 0.62 1 −0.02 0.75 0 
Very Short Prompt −0.04 0.54 1 −0.03 0.74 0 

In addition to removing prompt components, we also tested using GPT in an
older, less capable, but much cheaper version, GPT-3.5. Running the baseline
prompt, results in a signicant drop in extraction quality, with F1 = 0.27 for
MD and F1 = 0.56 for RE. Splitting the baseline prompt into multiple prompts,
each focusing on only one mention type, lets us prompt GPT-4 repeatedly for
the same document. These highly specialized prompts are called “agents”, which
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pass information between each other. For example, we instruct the rst agent to
extract Actions, which are passed to other agents extracting Actors and Business
Objects respectively. This lets us exploit the inherent dependency between these
elements. If no Action is detected in a sentence, then there is likely no relevant
Actor or Business Object, even if there are nouns that would qualify from a
linguistic standpoint. This way of prompting leads to an absolute improvement
of +0.08 in F1 score for both the MD and RE tasks.

6.3 Stability of Results

LLMs are notorious for their non-deterministic output [10], which often puts
the validity and stability of results into question. To assess the severity of these
problems with our prompting strategy, we repeated the extraction of mentions
(MD) and relations (RE) on all documents of PET ve times. In each iteration
we used gpt-4o-2024-05-13 as a model in a 1-shot setting and recorded the micro
F1 score. We then calculated mean (0.70 for MD, 0.89 for RE), standard devi-
ation (0.003 for MD, 0.002 for RE), minimum (0.69 for MD, 0.89 for RE), and
maximum (0.70 for MD, 0.89 for RE). While there are uctuations in results,
they are so minor that they do not call the validity of our results into question.

6.4 Lessons Learned

Using LLMs for extracting process relevant information brings with it a category
of challenges, which we already discussed in Sect. 2.3. Solving these is paramount
for successful application of LLMs. In this section we discuss how we approached
these challenges and what lessons we learned.

(C1) Limited Output Control. The expected output format, as well as the
form of extracted information, can mainly be inuenced by the prompt compo-
nents Meta Language and Format Examples. Adding these results in signicantly
improved F1 scores, (+0.22 and +0.05 respectively for MD on PET). These
improvements are explained by less parsing errors (919 less for MD on PET),
and better recall and precision in detecting mentions. LLMs also run the risk
of being “stochastic parrots”, simply synthesizing linguistically correct phrases,
based on their training data [10]. In our experiments we observed changes in
F1 of maximally −0.02 for rephrased prompts. This indicates robustness of our
prompts and suitability of LLMs as an tool for business process information
extraction.

(C2) Black-Box. A valuable advantage of utilizing LLMs is their ability to
reect, thereby providing justication for their generated results. Figure 3 shows
three examples of justications for extraction results in the ATDP dataset (see
Sect. 2.1). Case I shows the ideal outcome where prediction and expected con-
straint are identical. Note, that the justication even refers to the meta-language
provided in the prompt (compare Sect. 4). In case II, the prediction and the gold
standard constraint do not match, because of an error in the gold standard data,
following [2], which denes completing a process as a meta action that can not
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be part of any constraint. The dataset creators are alerted of this issue by the
LLM, since it plausibly justies why send out report marks the end of a pro-
cess instance. Finally, in case III the extraction result is controversial, since the
sentence is ambiguous. If we consider the term immediately to encompass both
actions, they are constrained by an existence constraint. Alternatively, viewing
check quantity as a subtask of process part list suggests only one action needs
modeling. Using such reective explanations make LLMs useful for “human-in-
the-loop” systems, which are already applied in elds like process mining [30].

(C3) Input Presentation ependencies. Adding more text to prompts some-
times has an adverse eect, reducing extraction quality (Sect. 2.3). This makes
optimizing prompts dicult, since it is not clear, if adding additional disam-
biguation hints or longer denitions would improve the result. Using partial
extraction prompts helps with this issue, as the sections regarding Meta Lan-
guage Creation can be focused on a few types. Depending on the task, there may
even be inter-dependency between information, that can be eciently exploited
in this way.

PRECEDENCE(pay the invoice, confirm payment)

Finally, we have to pay the invoice before we can confirm payment.

This report is sent out to Service Management, then the process ends.

END(send out report)

RESPONSE(send out report, end process)

PRECEDENCE(pay the invoice, confirm payment)

The storehouse immediately processes the part list of the order and checks the required quanty of each part.?

P
G

P
G

PRECEDENCE(process part list, check quantity)

EXISTENCE(check quantity)
P
G

II

I

III

“It is explicitly stated that the process ends aer sending out the 
report.”

“The sentence suggests that checking the required quanty of each 
part can only occur aer processing the part list of the order.”

“The tail acon ‘confirm payment’ can only be executed if the head 
acon ‘pay the invoice’ was already executed before.”

R

R

R

Fig. 3. Reection example with Predicted and Gold standard constraints: (I) perfect
match, (II) gold standard error, (III) ambiguous case

(C4) Data Unawareness. This issue arises, when LLMs are used in a zero-shot
setting. There, the components Meta Language, and Format Examples are the
only ways to “teach” the model how to perform the task. Applying the pattern of
few-shot prompting, i.e., using labeled data in a few-shot setting was benecial.
This makes the use of an LLM more akin to training a machine learning model,
but with signicantly lower data requirements. In our experiments, three exam-
ples were sucient to achieve better extraction results than those of machine
learning models trained with more than ten times of the data.

(C5) Costly Experiments. This is a major drawback of LLM based process
information extraction. The most capable LLMs are hosted as cloud-based solu-
tions and are priced per token. We found that limiting the number of examples
to 1 resulted in the best cost-value ratio. Additionally, our experiments showed
that leaving out the prompt components Context Manager, Persona, and Dis-
ambiguation is a valid way to limit the number of tokens sent per request, albeit
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with potential minor decreases in extraction accuracy. Prompting LLMs without
the request for a Fact List, nor Explanations for extracted information greatly
reduces the amount of tokens as well, especially useful after prompt engineering
or data curating (during “inference”). Alternatively one can switch to cheaper
models, i.e., LLama 3 72B, if the drop in performance is acceptable.

7 Conclusion

Summary. This paper presents an extensive study on the usefulness of LLMs
for the extraction of process information from natural language text. We col-
lected linguistic challenges and discuss how LLMs are uniquely t for solving
them. We also discussed challenges that arise through the use of LLMs and
show how other communities propose to deal with these (or similar) concerns
through prompt engineering. We present experimental results on three process
information extraction datasets, which at least match the current state of the
art on these datasets and in most cases improve it by as much as 8% in the
F1 metric. This shows the suitability of LLMs as a method for extracting busi-
ness process relevant information from natural language process descriptions. To
esh out this notion, we analyze how well our prompting strategy can be applied
to dierent LLMs without changing them, showing their universal nature. We
expect LLMs to be a benchmark in the process information extraction domain
for the foreseeable future, as limitations in dataset quality and quantity, com-
bined with the need for complex reasoning make it very hard to train large
extraction approaches from scratch. We make all our code, prompts, and LLM
answers available, to support further research.

Limitations. A limitation of our work is that the list of prompt components
we present may not be exhaustive, and they may have interactions that our
ablation study does not capture. Additionally, some models suer from halluci-
nations, especially Qwen1.5 and Llama 3, which hallucinate non-existent entity
and relation types  20 and 37 instances in the worst cases respectively. However,
the severity of this problem diminishes in the few-shot setting (0 and 4 instances
respectively in the worst case). We plan on analyzing how our prompts could
be enhanced to improve instruction following for these models. Lastly, the cur-
rent pricing models prohibit large-scale application of the most capable model
to process information extraction. Alternatives (e.g., Llama) avoid this issue,
but require more labeled examples to reach comparable levels of performance.
This limitation may change in the near future, as more cost-ecient models
and specialized hardware reduce costs to acceptable levels. Alternatively, very
capableand therefore expensiveLLMs could be used to create and curate
training data for smaller local models, leveraging the reasoning capabilities of
LLMs indirectly.

Future Work. In future work we aim to use LLMs as tools to support labeling
of new data. Current datasets are limited in origin, i.e., they usually describe
processes from municipalities or small service providers. We plan to analyze the
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ability of LLMs to generalize beyond the domains with available labeled data
and highlight the promising exibility observed in our current experiments. Addi-
tionally, using GPT-4o’s image processing and generation capabilities could be
a promising line of research for direct text to model transformation. Finally, our
results show very limited improvement in extraction quality, when the prompt
includes a role the LLM is restricted to (persona). A slight variation of this idea
is to describe the target audience of extraction results in the prompt, to further
improve the quality of extracted process information.
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Abstract. Machine-learning based generation of process models from natural
language text process descriptions provides a solution for the time-intensive and
expensive process discovery phase. Many organizations have to carry out this
phase, before they can utilize business process management and its benefits. Yet,
research towards this is severely restrained by an apparent lack of large and high-
quality datasets. This lack of data can be attributed to, among other things, an
absence of proper tool assistance for business process information extraction
dataset creation, resulting in high workloads and inferior data quality. We explore
two assistance features to support dataset creation, a recommendation system for
identifying process information in the text and visualization of the current state
of already identified process information as a graphical business process model.
A controlled user study with 31 participants shows that assisting dataset creators
with recommendations lowers all aspects of workload, up to.−51.0%, and signif-
icantly improves annotation quality, up to.+38.9% in.F1 score. We make all data
and code available to encourage further research on additional novel assistance
strategies.

Keywords: Business process management · Process information extraction ·
Natural language processing · Human computer interaction

1 Introduction

Business process management (BPM) can provide organizations with many benefits
by improving their regular operating procedures. Organizations looking to utilize these
benefits first need to discover and model their business processes, which is a very time
consuming, and therefore expensive task [13]. To alleviate this, researchers in the BPM
community use the information contained in natural language process descriptions from
sources like quality management handbooks, documentation of standard operating pro-
cedures, or employee notes to automatically generate formal process models [4]. While
this area is actively researched [1,5,8,11,13,28], new and innovative approaches are
quite rare. One reason is the limited availability of data to develop, train, and assess
approaches in BPMN contexts [18]. Recent initiatives aim to mitigate this issue, provid-
ing a gold-standard dataset for the process information extraction task—PET [9]. With
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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this dataset, systems for extracting process information can be developed, e.g., machine
learning models for extraction are trained, and subsequently evaluated. Extracted infor-
mation is then the basis for automated model generation methods, allowing fully auto-
mated process model generation from process descriptions. Still, PET contains only 45
process descriptions, which is not enough to train deep neural networks [28], although
they have been shown to be well suited for similar tasks in other areas [6]. Even tech-
niques based on pretrained large language models are affected by the lack of data, as
rigorous evaluation on many different data sources is essential to assess their practical-
ity, especially in light of the large variation in terms of the structure, style, and contents
of textual documents that contain process information [2].

The lack of suitable data for process information extraction tasks can in part be
attributed to the effort required to establish gold standard annotations. Such annota-
tions are a critical requirement for both training and evaluation of information extrac-
tion approaches. However, manually annotating process information in textual process
descriptions involves elaborate guidelines [9] and considerable ambiguity [3,12], mak-
ing it time consuming and mentally taxing. Figure 1 shows two sentences of a process
description from the PET dataset, fully annotated with the gold-standard process infor-
mation. Note, that annotating these sentences requires identifying 14 process-relevant
elements, and 16 dependencies between them, in just these two sentences, where the
average description in PET has 9.27 sentences [9]. We discuss the task in detail in
Sect. 3.1 and how to circumvent this complexity in Sect. 3.2. Additionally, depending
on the annotation schema, some of these annotations are not intuitive, e.g., “decides”,
which would intuitively be annotated as an activity, underlining the need for annotation
guidelines mentioned above.

Fig. 1. The first two sentences of document doc-1.2 in the PET dataset, fully annotated with entity
mentions, entity references, and relations.
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Recognizing this issue, we explore how dataset creators (annotators) can be assisted
in their data annotation task, so that their workload is lightened, while simultaneously
improving the quality of their extractions. Therefore, in this paper, we propose and
evaluate the benefits of two assistance features that can support human annotators: (1)
AI-based recommendations, which allow annotators to quickly tackle trivial parts of the
annotation task—as well as receive suggestions for less trivial aspects—and (2) the use
of a visualizations of the currently annotated information through a graphical process
model, which allows annotators to observe the process that they have so far captured.
Note that, although the task of text annotation is generic, the assistance features are
tailored to the specifics of text annotations for process information extraction.

We implement both assistance features in a prototypical annotation tool that we use
as a basis for a rigorous user study with 31 participants, ranging from modeling novices
to experts, to assess the effectiveness and efficiency of the proposed features. Code1

and data2 are made publicly available to the research community, to allow others to
efficiently and effectively annotate their own datasets, but also encourages exploration
of additional assistance features. The main insights from this study are as follows.

1. Assisting annotators with suggestions made by artificial intelligence systems is
observed to make annotating process relevant information in textual process descrip-
tions significantly easier. This results in a significant reduction of key workload met-
rics by more than one half (.−51.0%). At the same time, assistance improves the
quality of extracted information measured in .F1 score by up to .+0.224 (.+38.9%).

2. The use of assistance features is recognized to considerably reduce the gap between
novice and experienced process modelers in annotation tasks. Specifically, complete
beginners can reach annotation quality comparable to expert annotators, speeding
up the training process for new data annotators considerably. This insight shows that
annotation features can help assembling larger data annotation teams, and speeds up
the creation of new datasets in the space of business process model extraction from
natural language text.

The rest of this paper is structured as follows. In Sect. 2, we discuss related work on pro-
cess information extraction, relevant user studies, and annotation tools. In Sect. 3, we
present our concept behind a tool built specially for annotating textual process descrip-
tions, its implementation in a research prototype, and the assistance features. In Sect. 4
we describe the design and execution of the user study. We present results for this study
in Sect. 5. We conclude the paper in Sect. 6, summarizing, discussing limitations, and
describing future work.

2 Related Work

Work related to this paper can be roughly categorized into three sections.

Business Process Information Extraction. The last decades have seen various
approaches to the task of extracting process relevant information from natural lan-
guage text, including systems based on expert-defined rules [1,8,11,30], data-driven

1 see https://github.com/JulianNeuberger/assisted-process-annotation.
2 see https://zenodo.org/doi/10.5281/zenodo.12770686.
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ones [5,9,28], and systems based on pretrained generative large language models
[8,21,27]. We use approaches from [28] and [9] in our work to implement annotation
recommendations. Many of the works mentioned also propose data annotation schemata
tailored towards specific modeling languages, such as [1,30] for declarative process
modeling, towards different task descriptions, such as [29] for information extraction
from process relevant sentence fragments, or towards other stages in the process life
cycle, e.g., process redesign [25].

We focus on PET, as it is heavily biased towards the current industry standard,
BPMN, and the to date largest available dataset. PET was extended with the notion of
entity identities [28], i.e., the task of resolving multiple mentions of the same process
element across the textual description to a single one. This is important for properly
modeling business objects and process participants, which would otherwise be dupli-
cated in the generated model. In this paper we use this extended version of PET.

User Studies. Schützenmeier et al. [32] present a user study on the cognitive effort of
understanding declarative process models, though they do not consider data annotation,
but process simulation and verification. Rosa et al. [31] develop and evaluate a tool
for business process modelling which assists users by identifying core BPMN 2.03 ele-
ments and highlighting them in the process description. Our work, in contrast, aims to
be a step towards alleviating the data scarcity problem in business process model gener-
ation from text, by making data annotation easier. In a study of similar size to ours, the
authors evaluate the usefulness of the BPMN Sketch Miner for process modelling based
on textual descriptions with visual representations of process elements [16]. While their
study mainly focuses on usability and subjective values, ours also considers objective
measures.

Annotation Tools. Both our concept and implementation for assisted process-relevant
information annotation are related to a number of annotation tools. These can usually
be used to annotate text for use in Named Entity Recognition (NER), Entity Matching
and Resolution (ER), or Relation Extraction (RE), tasks which are similar to business
process information extraction (compare definition in Sect. 3). Still, these tools are not
designed with characteristics of business process descriptions in mind, including but not
limited to, the high information density present in such descriptions, its inherent ambi-
guity (see Sect. 1), and the target down-stream task, i.e., generation of a formal and
graphical process model. Additionally, unlike in the NLP community, data annotators
for process information extraction are often times experts in BPM, but not in NLP, and
therefore can benefit from purposeful simplifications in the annotation tool. In the fol-
lowing we will describe several notable examples of multi-purpose Natural Language
Processing (NLP) data annotation tools, from which we drew inspiration and how our
proposed concept differs from them.

Doccano [26] provides features useful for collaborative data annotation, creating
datasets in multiple languages, and comparing annotations between annotators. Label
Studio [34] supports more machine learning domains, e.g., computer vision, and audio
processing. This makes the tool even more multi-purpose and less bespoke, compared
to our research prototype. The authors already have experience annotating textual busi-

3 https://www.omg.org/bpmn/, accessed July 4, 2024.
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ness process descriptions using Label Studio [5], which is integrated into our concept
for assisted annotation (Sect. 3). Finally, INCEpTION [20] uses recommenders to make
suggestions for new annotations, which would fit our requirement for AI-based anno-
tation recommendations, but to the best of the author’s knowledge can not be extended
to show the current state of annotation as a BPMN model. The authors of [20] did not
investigate the effectiveness of recommendations for text annotation, and while a posi-
tive effect seems plausible, we are interested in proving and quantifying this effect.

3 Concept for Assisted Annotation

This section outlines our concept for assisted data annotation. First, we define the task
of annotators in Sect. 3.1. Based on this we motivate the need for more efficient and
effective data annotation and derive assistance features in Sect. 3.3. Finally, we describe
our research prototype implementation in Sect. 3.4.

3.1 The Process Information Extraction Task

Ultimately, human annotators have to complete the process information extraction
task to annotate process descriptions with process-relevant information. Therefore, we
define this task in the following. Consider, for example, document doc-1.2 from the
PET dataset describing the process of a computer repair. Figure 1 shows this document
fully annotated with all process relevant information, which consists of three major cat-
egories. First, Mentions of process relevant entities in PET are continuous sequences of
text with a given type, for example, Actors (process participants, “a customer”), Activ-
ity Data (business objects, “a computer”), or XOR Gateways (decision points, often
indicated by “if”, “otherwise”). The last example illustrates, why we call detecting
and extracting such mentions Entity Mention Detection (MD) and not Named Entity
Recognition (NER). Named Entities are defined by either proper names (e.g., persons,
locations) or natural kind terms (e.g., enzymes, species) [22]. “If” or “otherwise” do
not fall into this definition, which is why we use the more relaxed definition of (non-
named) entities and the detection of their mentions within the text [35]. Mentions are
then resolved to Entities, i.e., clustered, allowing subsequent model generation steps to
only render a single process element, instead of multiple (one for each of its mentions).
This task is called Entity Resolution (ER) and is closely related with co-reference and
anaphora resolution [33]. Relations between mentions define how these elements inter-
act with each other. PET defines, for example, Flow (order of task execution), Uses
(association between a task and the business object it uses), or Actor Performer (assign-
ing a process participant as executor of a given task).

3.2 Annotation Workflow

As we discussed in Sect. 1, annotating the process relevant information contained in
textual process descriptions is a complex task and very demanding for the human per-
forming the annotation, as it requires attention to three sub-tasks, as outlined in the
previous Sect. 3.1. We therefore split the task into its sub-tasks MD, ER, and RE. While
this partially alleviates the issue of complexity, it will also allow us to assist annotators
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in these sub-tasks differently, and analyze how assistance features help during a specific
sub-task. Figure 2 depicts the resulting workflow. After the annotator submits a natural
language process description, they are then asked to select mentions (MD), resolve enti-
ties (ER), and define relations between mentions (RE), in three separate steps. Finally,
all information is shown again, so that the annotator may reconcile any errors.

While this workflow reduces the complexity of process information annotation by
splitting it up into smaller tasks, the overall complexity remains high. High density of
information makes annotating very confusing, especially for beginners. The example in
Fig. 1 contains a total of 40 words, of which only eight are not part of one of the 14
entity mentions (20%), while also containing 14 relations between them. From previ-
ous annotation experience in other tools (see Sect. 2), we know that this can be partially
mitigated by splitting the task into smaller sub-tasks, e.g., focusing on a subset of entity
and relation types, or by annotating the categories from above one after the other. Based
on this experience we defined a workflow, which we describe in Sect. 3.2. High informa-
tion density and the resulting complexity of displaying this information also motivates
us to find ways to visualize the information better, and help the user focus on infor-
mation they potentially would miss otherwise. This results in two assistance features,
visualization and recommendation, which we describe in Sect. 3.3.

3.3 Assistance Features

In one of our preliminary studies two assistance features were identified as promis-
ing candidates for improving the efficiency, quality, and user experience of annotation
documents for the process information extraction task.

AI-Based Annotation Recommendations. Building on the progress that has already
been made in the development of automated information extraction approaches for men-
tions, entities, and relations, we can present the user with recommendations for these
elements. Interviews with BPM experts during the preliminary study and our review of
related work (Sect. 2) suggested that recommendations can be a powerful tool for speed-
ing up annotation in trivial cases and provide useful ideas in non-trivial ones. We used
an approach based on conditional random fields for extracting mentions, as presented
by Bellan et al. [9], with code from [28], a pretrained neural co-reference resolver for
entities [28], and a relation extraction approach based on gradient boosting on deci-
sion trees [28]. All trainable approaches were trained with 80% of the available data
(36 documents) and the rest was held out for use during the user study. Recommenda-
tions are shown during the appropriate workflow steps and can be confirmed, discarded,
edited, or marked for later review. The extraction approaches we use are limited in their
understanding of business processes, and as such have no real world knowledge that
could help during extracting process information from unseen descriptions. This means
recommendations can be flawed, but are enough to effectively support data annotation
(Sect. 5).

Visual Result Representation. Second, the information that a human annotator marks in
a textual process description is always process relevant, i.e., a perfect annotation results
in a model that perfectly reflects the process description. This shows how a human anno-
tator may benefit from a graphical process model as a visualization of the currently anno-
tated information, as any missing information is reflected in the (therefore incomplete)
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graphical process model. Visualizing the current state of annotation involves three major
stages. First, in the Consolidation stage, we assign conditions to their respective paths
in the process, merge mentions of entities, and find the closest actor in the text left of
activities that are not explicitly assigned one. In the second stage, the Vertex stage, we
create process elements for all mentions, e.g., Tasks, Data Objects, Swimlanes, etc. The
final Linking stage connects related elements, e.g., successive tasks and gateways with
Sequence Flows, if they are located in the same Pool, or Message Flows between them.
We also create Data Associations between Data Objects and Tasks, adding the label of
the Data Object to the label of the Task, for labels like “send a mortgage offer”. In this
way the graphical process model is generated and layouted automatically, and as such
has limitations that might affect its usefulness, which we discuss in Sect. 6.

3.4 Implementation

We have implemented our concept in a usable research prototype. It consists of a user-
facing web application, implemented in JavaScript, using React4.

A backend server provides NLP pre-processing functionality, such as tokenization
and the information extraction approaches for the recommendation assistance feature. It
is implemented in Python 3.11, using spaCy5 for pre-processing. When the user inputs a
textual process description, it is first sent to this server to pre-process the text. The result
is then displayed in the web application. In each of the annotation sub-tasks defined in
Sect. 3.2 the relevant information is extracted by the backend server and presented to
the annotator as recommendations. The backend server is also responsible for storing
annotation results. A second backend server is used for visualizing the current annota-
tions by generating a formal process model in BPMN and its graphical representation.
We implement this using Java 17 and the Camunda Model API6. Both back-end servers
expose any functionality using REST interfaces, which the user-facing web application
can query. Figure 2 shows the workflow in the web application, as well as the commu-
nication between servers.

4 Study Design

We conducted a user study with 31 participants to assess the effectiveness of the two
assistance features, based on several measures in scenarios of varying assistance. Both
measures and scenarios are defined later in this section. We focus our efforts on answer-
ing the following three key research questions.

RQ1. Which annotation assistance features or combinations lower the workload of
annotating process information?

RQ2. Which annotation assistance features or combinations improve the quality of
annotations?

4 https://react.dev/, last accessed July 11, 2024.
5 https://spacy.io/, last accessed July 11, 2024.
6 https://docs.camunda.org/manual/7.21/user-guide/model-api/bpmn-model-api/, last accessed

July 11, 2024.
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Fig. 2. Visualization of the workflow and general architecture of our implementation.

RQ3. Which annotation assistance bridge the gap in annotation quality between
beginner annotators and those with BPMN experience?

The general setup of this study is as follows. All supplementary material, such as the
questionnaires and resulting data can be found online, see Sect. 1.

Study Procedure. Each participation within our user study, is structured into three
blocks. First, general demographic information is collected, and the task and annota-
tion tool are explained to the participant, which involved giving a brief tutorial and a
small guided annotation task, without any assistance features enabled. This task is only
done for training purposes and is not evaluated later. Next, the participant has to com-
plete four annotation scenarios, which we describe later in this section. After each sce-
nario a short questionnaire is conducted, aimed at collecting user opinion, sentiment,
and feedback concerning the scenario they just completed. The last block involves a
questionnaire to gather general feedback and data regarding overall user preferences.

Measures. We measure the effectiveness of assistance features using several metrics
aimed at objective and subjective values. For objective values we measure the time a
user takes to annotate a document and the quality of mention, entity, and relation anno-
tations, each measured with the.F1 score. Subjective values are derived from the NASA
Task Load Index (TLX), which is widely used for measuring the workload during or
right after performing a task [15]. The NASA-TLX can be used in many different con-
texts, and was also already used to evaluate information systems [7]. It defines a total
of six dimensions that measure different aspects of workload. We used the four relevant
to our study.

mental demand: How much the annotator has to focus on the task
uncertainty: How uncertain the annotator is of their annotations
effort: How much work is needed to complete the task
frustration: How frustrated the annotator is with the task

We excluded physical and temporal demands, to focus on the subjective metrics
most relevant to our research questions. While physical demand is not completely irrel-
evant (think of mouse movements), it is far less informative than the other measures.
Regarding temporal demands we refer to our objective measure of task completion
time. Note that compared to the original definition of the NASA-TLX, we rephrase

Assisted Process Information Annotation 131



194 J. Neuberger et al.

performance to measure the uncertainty of an annotator with their annotation results.
Additionally to the NASA-TLX, we also asked users to share their experiences with the
tool and assistance features in a questionnaire using 5-point Likert items [17].

Annotation Scenarios. We assess the efficiency and effectiveness of annotators in four
scenarios. Scenario (A) entails no assistance, besides the workflow defined in Sect. 3.2
and serves as a baseline. Scenario (B) visualizes the current state of annotation, and
(C) gives recommendations for annotations made by an artificial intelligence system.
Finally, scenario (D) combines both assistance features.

Documents in PET contain 168 words on average, which took experts in a prelim-
inary experiment as much as 25 min to annotate. We therefore decided to instead only
use fragments of documents, containing two sentences. These fragments were carefully
selected by measuring the number of mentions, relations, as well as their types. We
selected fragments from documents doc-1.2, doc-3.6, doc-8.3, and doc-9.2. Document
fragments are part of the supplementary material for this paper and available in the
repositories mentioned in Sect. 1.

To avoid carry-over effects, i.e., confounding variables such as familiarity with
the task after completing a scenario and therefore performing better in the next one,
we use the Balanced Latin Square method [19]. This method systematically produces
sequences of the scenarios described above, so that each scenario appears as the first
one in the sequence equally often, as well as two scenarios preceding or succeeding one
another equally often. Users are assigned a sequence of scenarios in a round-robin
fashion, compare Fig. 3a. This setup minimizes the number of scenarios each user has
to perform while addressing carry-over effects between scenarios, such as increasing
familiarization with the annotation task.

5 Results

In this section we will describe our observations during the experiments described in
Sect. 4, starting with an overview of study participants. We had respondents of vari-
ous age, education, and field of work. 39% have not obtained a university degree, or
did not pursue higher education, while 39% completed either Masters or PhD studies.
The majority (71%) of participants work in a technical field, i.e., computer science,
engineering, or mathematics. Figure 3b shows a detailed break-down of demographic
characteristics of participants.

5.1 Subjective Measures

As described in Sect. 4, we measure four subjective sub-metrics of the NASA-TLX—
mental demand, uncertainty, effort, and frustration—across four different assistance
scenarios. We then used a repeated measure ANOVA [10] to find if there are statistically
significant differences in the four assistance scenarios defined in Sect. 4. A repeated
measure ANOVA can be used to test if two ore more non-independent samples (mea-
surements) are from the same distribution, measured by .p ∈ [0, 1]. In our case, we
test for differences in workload between annotation assistance scenarios. We reject the
Null hypothesis (no difference) and accept the alternative one (difference exists) when

.p < 0.05.
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Fig. 3. Assigning annotators to a sequence of scenarios based on a balanced Latin square (left),
and demographic information about user study participants (right).

Repeated measures ANOVA assumes sphericity in data, i.e., the difference in met-
rics for all combinations of two scenarios have the same variance. This assumption
can be tested with Mauchly’s test for sphericity [24]. Data for three out of four met-
rics violated the assumption of sphericity (.p < 0.05). We use the Greenhouse-Geisser
correction [14] to account for this. Even then, our observations show that each one of
the four workload metrics are affected by changing how annotators are assisted by our
annotation tool and the differences are statistically significant with .p < 0.001.

Since the repeated measures ANOVA indicated a difference in the NASA-TLX met-
rics when using different assistance features, we ran six post-hoc tests, looking for the
differences between each combination of two features, e.g., measurements for non-
assisted annotation (scenario A in contrast to only recommendations (scenario C). We
corrected all .p values using Bonferroni’s method [23] for running multiple tests. Intu-
itively, running many tests increases the likelihood of finding statistically significant
differences in one of them, even though there is none. This correction multiplies the
P-value with the number of tests, to account for this increased likelihood. Table 4 in
Sect. A reports details.

In summary, no assistance feature at all (scenario A) is statistically significantly
worse than either only recommendations (scenario C) or both assistance features com-
bined D). Surprisingly, assisting annotators with a visualization of the information they
found in the text (i.e., the generated graphical process model, scenario B) was not found
to help with reducing the workload.

Compared to no assistance, assisting the annotator with recommendations reduced
mental demand by .24.7 (.−34.6%), effort by .22.4 (.−34.2%), and frustration by .20.5
(.−51.0%). Uncertainty is best lowered by combining recommendations with visualiza-
tions, which reduces it by .24.4 (.−44.8%), according to our observations. Note, that we
found no statistically significant effect on any sub-metric when comparing recommen-
dations (scenario C) to the combination of recommendations and visualizations (sce-
nario D). Similarly, we could not observe a difference between non-assisted annotation
(scenario A) and just visualization of annotated information (scenario B). This indi-
cates that only visualizing the currently annotated process-relevant information is not
enough to reduce the workload of the annotation task. Contrary, recommendations are
a way to reduce it by up to to nearly .50%. Some limitations apply to our findings con-
cerning the quality of the graphical process representation, which we discuss in Sect. 6.
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Fig. 4. Subjective measures for each of the four scenarios from Sect. 4.

Figure 4 aggregates our data for each sub-metric into plots, showing values for each
participant and scenario as strip plots, where the values of a given participant are con-
nected by lines. Additionally the data points are aggregated into box plots, showing
the data mean, .25th and .75th percentiles as box, and the rest of the distribution as
whiskers, excluding outliers. The plots mirror the general observations we drew from
Table 4, and shows that recommendations and the combination of both assistance fea-
tures help best with reducing the workload of data annotators. Overall, the ordering
of assistance features in terms of reducing the workload is obvious from the plots. No
assistance (scenario A) and visualizations only (scenario B) share the spot for least use-
ful, while recommendations and the combination of features seem to be equally useful
in lowering the workload of process information annotation, thus answering research
question RQ1.

5.2 Objective Measures

As discussed in Sect. 1, our goal with assisting data annotators is twofold. The previous
Sect. 5.1 discussed metrics that are subjective, i.e., are based on the experiences of a data
annotator. On the other hand, assisting annotators also affects the quality of annotations.
We measured a total of four objective metrics, which we presented in detail in Sect. 4.
These are the .F1 scores for annotated mentions, entities, and relations, as well as the
total time a given annotator needed to complete annotating a document fragment. An
aggregate of the data we obtained is shown in Fig. 5 as a plot, similar to the one we
showed and explained in Sect. 5.1. Detailed results are listed in Table 2 in Appendix A.

Again, using a repeated measure ANOVA we found significant effects on the anno-
tation quality measured in .F1 when using different assistance features during the anno-
tation of mentions (.p < 0.001) and relations (.p < 0.001). The annotation quality of
entities was not affected (.p = 0.450), which may be caused by the low number of enti-
ties7, as well as the fact that we count an entity only as correct, if contains all expected
mentions. This means errors by the annotator during MD propagate to the ER task.

7 On average, fragments used in the user study only contained one entity that needed resolution,
i.e., there are at least two entity mentions referring to the same entity.
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Fig. 5. Objective measures for each of the four scenarios from Sect. 4.

Furthermore, we did observe a statistically significant difference in the time an anno-
tator needs to annotate a document (.p = 0.011), but during post hoc tests we could
only explain this with a statistically significant difference between the assistance fea-
tures visualization (B) and recommendations (scenario C), where the latter speeds up
completion times by about 1.5 min (see Table 3 in the Appendix A).

Several participants remarked during the user study, that identifying relations and
classifying them correctly is a very challenging task. These participants were mostly
inexperienced with BPM and BPMN and thus greatly benefited from the recommen-
dation assistance feature. We can observe this across all participants, as the post hoc
tests for relation annotation quality show. Comparing scenario A (no assistance) against
scenario C (recommendations only), we see a statistically significant (.p = 0.001)
increase in .F1 of .0.224 (.+38.9%). Using the visualization does not seem to have a sig-
nificant effect compared to no assistance at all (.p = 1.000), but is significantly worse
than using recommendations (.−0.259, .p < 0.001) or using both assistance features
(.−0.204, .p < 0.001).

The same analysis can be made for the task of mention detection. Participants of our
user study seem to benefit most from recommendations, when compared to no assis-
tance at all (.p < 0.001), with an improvement of .0.141 (.+21.4%). Visualization has no
statistically significant effect (.p = 1.000) compared to no assistance at all. Using only
visualization has an adverse effect compared to just recommendations (.p < 0.001) with
a decrease in.F1 of.0.141. Similar to Sect. 5.1, this effect can be attributed to limitations
in our graphical process model, which we discuss in Sect. 6, or a user’s familiarity with
BPMN (Sect. 5.3).

This also answers research question RQ2., as recommendations seem to be the best
choice for improving the quality of annotations. Notably, for all three tasks the annota-
tion recommendations themselves are of lower quality than the average annotations by
a human annotator assisted by recommendations (scenario C). Human review improved
the .F1 score of annotations by .+0.100 for MD, .+0.181 for ER, and .+0.151% for RE,
showing how humans assisted by AI-based systems can perform better than each part
in isolation.
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Table 1. Independent Samples T-Test for the hypothesis that objective scores for annotations by
novices are lower than those by experts.

t df .pa

mentions no assistance .−1.950 20.691 0.032.
∗

recommendations 0.023 23.041 0.509

visualization .−1.166 23.984 0.128

combined .−1.463 24.491 0.078

relations no assistance .−1.800 25.072 0.042.
∗

recommendations 0.664 21.132 0.743

visualization .−1.182 28.000 0.124

combined .−0.590 20.711 0.281
.
∗, .

∗∗, .
∗∗∗ statistically significant results of increasing degrees.

.
aP-value following Welch’s test.

5.3 Effects of Annotator Experience

We asked participants for their experience with BPMN, measured in years. With this
information, we now investigate if a user’s experience with BPMN influences how much
they can benefit from assistance. To this end we split the data into two groups—experts,
which we define for the purposes of this analysis as participants with at least one year of
BPMN modeling experience, and novices, which are the remaining study participants.
This split results in 10 experts and 18 novices. We hypothesize that annotations by
novices are worse in terms of.F1 score compared to those by experts. Table 1 lists results
for an independent samples T-Test.

We can confirm our assumption that BPMN experience improves the quality of
mention (MD) and relation annotations (RE), for un-assisted annotation (scenario A).
In all assisted scenarios (B, C, D) we have to reject our hypothesis, i.e., novices no
longer produce worse annotations than experts, from which we infer that the two assis-
tance features can indeed bridge the gap in annotation quality caused by differences in
experience with BPMN. We therefore answer RQ3. with annotation recommendations,
visualizations, and combined assistance.

6 Conclusion

In this section we will reiterate the core contribution of this paper, the limitations of the
user study we conducted, and we describe our plans for future work.

Core Contributions. This paper presents an in-depth exploration on the usefulness of
two features for assisting data annotators in the domain of business process information
extraction. A user study with 31 participants shows that annotation recommendations
reduce certain workload aspects by up to .−51.0% (RQ1.). We find that recommen-
dations obtained by a system based on machine learning improve annotation quality
as much as .+38.9% (RQ2.). The same recommendations bridge the gap in annotation
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quality between beginner and expert annotators, promising easier assembly of anno-
tation teams by means of shorter training times (RQ3.). We make all data and code
publicly available.

Limitations. First, we focused our study on two assistance features, to ensure its fea-
sibility, while also guaranteeing methodological correctness. Investigating more assis-
tance features would either increase participation times, or limit each participation to
a subset of scenarios. Next, while we could not observe statistically significant effects
of any assistance features on the quality of entity resolution annotations, we cannot
eliminate the possibility that this caused by errors propagated from the MD task. Our
automated method used for generating and layouting a graphical process model from
the process information (annotations) used for the visualization assistance feature has
limitations in terms of structure, accuracy stemming from the employed heuristics, and
clarity of generated labels. This may affect its usefulness, as these limitations may make
the graphical model harder to understand, especially for untrained annotators. Finally,
we only present and analyze a sub-set of the data collected during the user study. For
example, we recorded all user interaction with the tool, such as when a recommended
annotation is discarded, or a new annotation is created. These logs constitute valu-
able data for improving the workflow for annotating process relevant data in textual
process descriptions.

Future Work. Our future work is mainly concerned with eliminating the limitations
we discussed in the previous Sect. 6. As such we plan to improve the implementation
of our annotation tool, e.g., improve the way relations are displayed. We also plan to
extend our analysis of the data we already obtained during this user study, e.g., by
evaluating the interaction logs. This data can be very valuable to learn how annotators
interact with the annotation tool, and give indications on how to improve the workflow,
or which parts of the interface are still unintuitive. Furthermore, we want to explore
better annotation recommendation methods, as this feature seems to have a consistently
positive effect. We plan to evaluate integrating incremental training, as soon as anno-
tators have submitted a document. Finally we would like to extend the user study to
new assistance features, in addition to comparing different workflows and user inter-
face options. The initial findings regarding how experts benefit in different ways from
assistance features, compared to novice users, motivate us to conduct a targeted study
to find ways to properly assist users of different experience levels.

Disclosure of Interests. The authors have no competing interests to declare that are relevant to
the content of this article.
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A Appendix

Table 2. Post hoc comparisons of assistance features on objective metrics. Largest statistically
significant absolute difference to unassisted annotation is set in bold. We abbreviate mean differ-
ence with MD and standard error with SE.

MD SE t .pbonf
a

mentions no assistance recommendations.−0.141 0.037.−3.774.0.002 .
∗∗

visualization .−0.000 0.037.−0.008.1.000

both .−0.132 0.037.−3.529.0.014 .
∗∗

recommendations visualization 0.141 0.037 3.766 .0.005 .
∗∗

both 0.009 0.037 0.244 .1.000

visualization both .−0.132 0.037.−3.522.0.004 .
∗∗

entities no assistance recommendations.−0.068 0.097.−0.706.1.000

visualization 0.080 0.097 0.825 .1.000

both .−0.038 0.097.−0.398.1.000

recommendations visualization 0.148 0.097 1.532 .0.775

both 0.030 0.097 0.309 .1.000

visualization both .−0.118 0.097.−1.223.1.000

relations no assistance recommendations.−0.224 0.049.−4.524.<.001 .
∗∗∗

visualization 0.025 0.049 0.842 .1.000

both .−0.179 0.049.−3.691.0.002 .
∗∗

recommendations visualization 0.259 0.049 5.367 .<.001 .
∗∗∗

both 0.055 0.049 0.834 .1.000

visualization both .−0.204 0.049.−4.533.<.001 .
∗∗∗

.
∗, .

∗∗, .
∗∗∗ statistically significant results of increasing degrees.

.
aP-value adjusted for comparing a family of six using Bonferroni correction.

Table 3. Post hoc comparisons of assistance features on completion time. We abbreviate mean
difference with MD and standard error with SE.

MD SE t .pbonf
a

time (s) no assistance recommendations 23.778 30.528 0.779 .1.000

visualization .−67.621 30.528.−2.215.0.176

both .−56.082 30.528.−1.837.0.418

recommendations visualization .−91.399 30.528.−2.994.0.022 .
∗

both .−79.860 30.528.−2.616.0.063

visualization both 11.539 30.528 0.378 .1.000

.
∗, .

∗∗, .
∗∗∗ statistically significant results of increasing degrees.

.
aP-value adjusted for comparing a family of six using Bonferroni correction.
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Table 4. Post hoc comparisons of assistance features on subjective metrics. Largest statistical
significant absolute difference to unassisted annotation for a given metric is set in bold. We
abbreviate mean difference with MD and standard error with SE.

MD SE t .pbonf
a

mentaldemand no assistance recommendations 24.677 3.521 7.009 .<.001 .
∗∗∗

visualization 4.194 3.521 1.191 .1.000

both 21.290 3.521 6.047 .<.001 .
∗∗∗

recommendations visualization .−20.484 3.521.−5.818.<.001 .
∗∗∗

both .−3.387 3.521.−0.962.1.000

visualization both 17.097 3.521 4.856 .<.001 .
∗∗∗

uncertainty no assistance recommendations 21.129 3.558 5.938 .<.001 .
∗∗∗

visualization 4.677 3.558 1.314 .1.000

both 24.355 3.558 6.844 .<.001 .
∗∗∗

recommendations visualization .−16.452 3.558.−4.623.<0.001 .
∗∗∗

both 3.226 3.558 0.907 .1.000

visualization both 19.677 3.558 5.530 .<.001 .
∗∗∗

effort no assistance recommendations 22.419 3.710 6.043 .<.001 .
∗∗∗

visualization 5.000 3.710 1.348 .1.000

both 21.129 3.710 5.695 .<.001 .
∗∗∗

recommendations visualization .−17.419 3.710.−4.695.<.001 .
∗∗∗

both .−1.290 3.710.−0.348.1.000

visualization both 16.129 3.710 4.347 .<.001 .
∗∗∗

frustration no assistance recommendations 20.484 3.655 5.604 .<.001 .
∗∗∗

visualization 3.548 3.655 0.971 .1.000

both 18.548 3.655 5.074 .<.001 .
∗∗∗

recommendations visualization .−16.935 3.655.−4.633.<.001 .
∗∗∗

both .−1.935 3.655.−0.530.1.000

visualization both 15.000 3.655 4.104 .<.001 .
∗∗∗

.
∗, .

∗∗, .
∗∗∗ statistically significant results of increasing degrees.

.
aP-value adjusted for comparing a family of six using Bonferroni correction.
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Abstract. Machine-learning based generation of process models from natural
language text process descriptions is severely restrained by a lack of datasets.
This lack of data can be attributed to, among other things, an absence of proper
tool assistance for dataset creation, resulting in high workloads and inferior data
quality. We address these shortcomings with a tool for annotating textual pro-
cess descriptions. Compared to other, existing data annotation tools, ours imple-
ments a multi-step workflow specifically designed for extracting process infor-
mation, including supporting features that have been shown to reduce workloads
and improve data quality.

Keywords: Process information extraction · Text annotation · Business process
management

1 Introduction

Organizations looking to utilize the benefits of Business Process Management (BPM)
initially have to model their internal business processes. These so-called as-is process
models are expensive to create, as it is a time consuming task, usually performed by
BPM experts together with process experts of the organization [3]. To accelerate this
initial step, approaches using Natural Language Processing (NLP) have been proposed.
These extract the process-relevant information contained in textual process descriptions
of various sources, such as quality management handbooks, standard operating proce-
dures, or employee notes [2]. In a subsequent step, this information is transformed into
formal models, e.g., in the BPMN modeling standard (see https://www.omg.org/bpmn/).

While approaches based on machine learning became more common in recent
years [5,13], Process Information Extraction (PIE) still has not adopted the state-of-
the-art machine learning techniques and architectures used in other fields of informa-
tion extraction, even though the tasks share many similarities [4]. These approaches
need vast amounts of annotated training data, which is not yet available in BPM in
general [9], and especially for PIE [13], where the currently largest available dataset
(PET [6]) contains just 45 process descriptions. Approaches based on Large Language
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025

M. Comuzzi et al. (Eds.): CoopIS 2024, LNCS 15506, pp. 405–410, 2025.
https://doi.org/10.1007/978-3-031-81375-7_28
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Fig. 1. Example for the high information density of PIE data. Of 40 tokens total, only six (15%)
are not directly relevant for the process. The text is a fragment of doc-1.2 of the PET dataset.

Models (LLM) circumvent this issue, as they are pretrained on out-of-domain data, and
only need marginal amounts of data for in-context learning [5]. However, they are hard
to optimize for this task, cause considerable costs, and have a poor ecological foot-
print, making them a suboptimal solution. Accordingly, approaches specifically trained
for PIE are preferable. To provide appropriate training data for this, it is necessary
to annotate large amounts of natural language text. Although annotating text is a com-
mon task in machine learning research and is supported by various tools to enhance
efficiency and productivity, most existing tools are not suited for annotating process
description text. This is primarily due to three reasons: First, process descriptions have
a very high density of information (cf. Fig. 1). As a result, identifying, annotating, and
displaying information quickly becomes confusing, which hampers completeness and
correctness. Second, annotation of process information is very susceptible to errors,
which invalidate the resulting process entirely. Such errors include, but are not limited
to accidentally reversing control-flow, disjointed process models, or missing decision
points in the process (XOR-Gates). We argue, supporting the user with proper visual-
izations while they annotate yields more complete and correct process models. Third,
annotation of process descriptions is often ambiguous. This means that there is more
than one arguably correct set of annotations, which makes annotating process descrip-
tions mentally demanding, as many possibilities have to be considered at any given
time. The validity of these issues is underlined by other work in the same context, such
as the tool Model Judge [8], which facilitates the training of novice modelers in the text-
to-model task. To this end, the user’s model is compared to a gold standard model and
discrepancies are highlighted. While the means of Model Judge are very similar, the
ends differ fundamentally—most notably, there is no gold standard during data annota-
tion to which an annotation could be compared to. To address these issues, we present
TeaPie, a tool for efficient process information annotation1.

2 System Overview

To facilitate the extraction of process information from textual descriptions, we devel-
oped a modular annotation tool comprising three main components: the front-end web
application, the annotation backend and the visualization server. Fig. 2 shows a high-
level overview of the architecture of TeaPie.

1 See https://github.com/JulianNeuberger/assisted-process-annotation for code, video, and live
demo. Credentials: coopis (user), processes2024 (password).
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Fig. 2. Overview of the modular architecture of TeaPie.

The front-end web application is implemented using TypeScript and React2. It
serves as the primary interface for annotators to interact with the system, guiding them
through the annotation workflow.

The annotation backend server is built with Python 3.11 and handles various NLP
tasks required for generating annotation suggestions. After a user submits a process
description, it is tokenized using the Stanza package3. The resulting tokens are then fed
into three prediction models, to generate annotation recommendations for the user. First
a Conditional Random Fields model from Bellan et al. [5] identifies and extracts men-
tions of process-relevant entities. Following this, the pre-trained neural co-reference res-
olution model presented in [13] clusters mentions referring to the same entity through-
out the process description. Finally, we use the CatBoost model presented in [13] to
extract relation. Models are trained on 80% of the PET dataset, while the remaining 9
documents were set aside for the user study.

The visualization server is developed in Java 17 and utilizes the Camunda Model
API4 to generate graphical models for the front-end. The graphical model updates
whenever annotations are modified.

3 Key Innovations

One of TeaPie’s three core innovation lies in its six-step workflow, which is specifi-
cally designed to reduce the complexity of PIE, both for expert, as well as for beginner
annotators. As such, for each piece of process information (mentions, entities, rela-
tions) annotations are first recommended by TeaPie, reviewed by the annotator, and sub-
sequently amended with missing annotations. During early prototyping iterations, we
found that annotators often would recognize additional mentions during annotation of

2 See https://www.typescriptlang.org/ and https://react.dev/ respectively.
3 See https://stanfordnlp.github.io/stanza/pipeline.html.
4 See https://docs.camunda.org/manual/7.21/user-guide/model-api/.
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entities and relations, which is why we added a final review step, where all informa-
tion is presented at once and annotations can be rectified before finalizing.

The second innovation that sets TeaPie apart from other annotation tools, is the
visualization of the current state of annotated process information. This visualization is
generated as soon as the first process relevant entity mention is annotated, and regen-
erated, whenever the annotations change. This gives users immediate feedback on the
information they annotated so far, which helps them understand the impact of certain
annotations on the over all process model. This was especially helpful for annotators
familiar with BPMN, who compared the graphical process model with their expecta-
tions.

The third innovation of TeaPie are machine learning based recommendations. While
other text annotation tools support recommendations of annotations, TeaPie generates
recommendations for all three types of PIE data end-to-end. These recommendations
have been shown to improve the quality of annotations beyond what either humans or
recommendation system in isolation could achieve, while at the same time making the
annotation process cognitively less taxing [11]. Furthermore, recommendations help to
bridge the experience gap between annotators, which makes it easier to assemble teams
[11].

4 Maturity

We evaluated TeaPie in a controlled user study where we asked 31 participants to anno-
tate fragments of textual process descriptions and recorded their feedback regarding
TeaPie’s practicality. Note that 19 of the 31 participants (61.3%) had no prior experi-
ence in BPMN. These users are potential data annotators, currently unable to contribute
to PIE annotation projects, due to their inherent complexity and ambiguity [1]. For this
reason their feedback is particularly valuable to us. In the following we present a brief
analysis focused on usability. A detailed analysis of metrics like annotation accuracy,
mental workload, or time per document can be found in the full paper of our user study
[11]

We found that the workflow we implemented was well suited to how most users
extract process relevant information from text. Fig. 4 shows the how much users agreed
with statements regarding certain aspects of the workflow implemented in TeaPie. Most
users felt the speed with which they were able to complete their tasks was satisfac-
tory (Fig. 4a), understood their task in each extraction step (Fig. 4b), and agreed with
the order of extraction steps (Fig. 4c). All users were satisfied with the way the work-
flow was implemented (Fig. 4d,e). This is especially encouraging, as first time BPMN
users agree with experts in this matter, leading us to believe the workflow provides good
guidelines for novice users, while not being overly restrictive for experienced ones.
Limitations. We currently see two main limitations with TeaPie. First, the process gen-
eration algorithm we use is a very rough prototype and sometimes results in confusing
or incomplete process models. This results in many users rating the visualization as
less useful, preferring annotation recommendations over the visualization of currently
extracted information (see Fig. 5c). We plan to use an improved visualization algo-
rithm to further improve the usefulness of the process model visualization. Second,
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Fig. 3. Years of experience with BPMN of user study participants (left), and a screenshot of
TeaPie (right).

Fig. 4. User feedback regarding the workflow implemented in TeaPie.

Fig. 5. User preferences regarding the supporting features of TeaPie.

TeaPie only supports the PET data annotation schema. We are actively working on the
dynamic definition of annotation schemas in a graphical user interface integrated into
TeaPie. This will make TeaPie useful in data annotation projects for various modelling
languages, e.g., DCR graphs [10], as well as different paradigms, e.g., Object-Centric
modelling.
Future Work. Besides the future work mentioned during our discussion of current limi-
tations, we plan to extend TeaPie with additional features for large-scale data annotation
projects. First, we want to integrate features to support the collaboration of multiple
annotators. These features include, among others, the automatic calculation of inter-
annotator agreement, i.e., how well the annotations of two or more annotators align.
Process descriptions where annotators disagree, will be assigned to a referee anno-
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tator. This concept proved useful for other text annotation projects [7] and results in
higher data quality. Next, TeaPie will provide annotation statistics, such as linguistic
variability of process elements, preliminary results of training extraction models, or the
percentage of process relevant text in documents. Such statistics are often included
in articles presenting new datasets (cf. PET [6]). Additionally, providing automatic
conversion of other modalities to text, such as image-to-text, or audio-to-text, could
enable new applications of TeaPie. Furthermore, we plan to experiment with differ-
ent approaches towards generating annotation recommendations. The current approach
uses very few learnt parameters, which makes it efficient, but less effective compared to
LLMs, which outperform shallow machine learning approaches [12]. Finally, we plan
to provide a publicly accessible instance of TeaPie for use in annotation projects of the
BPM research community.
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Abstract Automatic retrieval of formal business pro-
cess models from their natural language descriptions is
a well established way to facilitate the time and cost in-
tensive modeling procedure. Yet, a lack of data usable
for developing and training new retrieval methods is im-
peding progress in this field of research.

This issue can be overcome by either using methods
less reliant on high quality data, such as large language
models, or by creating bigger datasets. The latter is of-
ten preferable in the context of business process model-
ing, especially when internal workflows of organizations
have to be treated confidentially. It is the more data-
intensive solution, though, which is costly. Data aug-
mentation techniques aim to improve both quality and
quantity of existing datasets, by deliberate perturbations
resulting in new, synthetic data.

In this article we present a collection of simple data
augmentation techniques, which are specifically selected
for the task of improving data quality in the context
of process information extraction. We show why data
augmentation techniques from the wider field of natural
language processing are often not applicable to process
information extraction, and how the resulting data dif-
fers in terms of linguistic variety, structure, and feature
space coverage. In our experiments, data augmentation
results in an absolute improvement in the F1 measure of
5.7% for extracting process relevant entities from text,
and 4.5% for extracting relations between those entities.

We make all code available at https://github.com/
JulianNeuberger/pet-data-augmentation, and detailed
results for our experiments at https://zenodo.org/doi/
10.5281/zenodo.10941423.

1 Introduction

In recent years, many systems for extracting process rele-
vant information from natural language process descrip-
tions have been proposed to expedite process discovery,

i.e., the initial modeling of an as-is process [16,41,7,30,
29,37,2,33]. Interest in this research topic is founded in
the fact that discovering such an as-is process is known
to require up to 60% of time planned for new business
process management projects [17]. Generally, generat-
ing process models from natural language descriptions
is done in two phases. First, process relevant informa-
tion is extracted from the text, which is then used to
synthesize a formal business process model. Note, that
there are direct transformation approaches, as well as
conversational agents to generate process models from
text [25,13,27].

While there are unsupervised approaches to the first
phase [6,18,26,34], many recent approaches to business
process information extraction are still based on super-
vised machine learning, which requires tuples of input
(process descriptions) and expected output (e.g., process
relevant actors, activities, etc.). Such tuples are expen-
sive to create and require deep knowledge about pro-
cesses, as well as, natural language, which is why even
the largest collection of data for process information
extraction is still comparatively small, containing just
2,000 examples of process relevant entities [7], while datasets
for other information extraction tasks contain multiple
orders of magnitude more examples. Datasets for extrac-
tion of named entities and their relations, for example
the DocRed dataset, contain more than 1,500,000 exam-
ples of entities and relations between them [42].

Other domains of research use data augmentation
(DA) to improve both quality and quantity of training
data. This entails creating new data tuples, by apply-
ing targeted perturbations on the input, while preserv-
ing the underlying semantics, and therefore maintain-
ing the validity of the expected output, e.g., extracted
information. One of the earliest adopters of data aug-
mentation was the field of computer vision, i.e., image
classification. There images are perturbed by operations
including, but not limited to, rotation, translation, or
addition of noise. Fig. 1 shows these operations applied
to an image of a handwritten 9. Note how the intensity of
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Fig. 1: Motivating example for data augmentation in
computer vision.

operations dictates the usefulness of data augmentation
in this example. Rotating the image by a few degrees
keeps its semantics, i.e., it is still an image of the digit
9, but rotating it by 180 degrees yields an image of a 9.
Similarly, translating the image too much makes the im-
age ambiguous, and introducing too much noise makes
it hard to decipher, even for humans. Still, when config-
ured properly, data augmentation enables more efficient
use of valuable training data, creation of more robust
models, and better generalization capabilities of those
[39,40].

Despite its popularity and success in other fields of
research, data augmentation is used in very few areas
of business process management [1,23,22]. In this arti-
cle, we apply 26 data augmentation techniques, specifi-
cally designed for information extraction tasks, to pro-
cess data. We analyze how these data augmentation tech-
niques change the data on a linguistic level, how the re-
sulting dataset covers the feature space, and present con-
figurations of augmentations, which results in data that
allows us to train machine learning process information
extraction approaches with a total, absolute increase in
performance of up to 5.7%. We find that simple to use
and computationally cheap perturbations rival the use
of large language models in terms of extraction quality
improvement, for the current state of the art in process
information extraction approaches.

This article is an extension of our previous work
in [35], where we used a black-box evaluation to deter-
mine the feasibility of data augmentation in a process
information extraction context. This work expands on
this in two major ways. (1) We adjust all augmentation
techniques used in the experiment as well as the experi-
ment itself, to improve their applicability to the process
information extraction task, We describe these modifica-
tions in more detail in Sect. 4.4. Furthermore, we inves-
tigate five additional augmentation techniques and two

oversampling techniques. (2) Sect. 5 discusses the effects
of data augmentation on the data itself. This includes
changes in the process description text (Sect. 5.1), com-
mon errors introduced by data augmentation (Sect. 5.2),
and visualizations of changes in meaning through data
augmentation (Sect. 5.3).

The rest of this article is structured as follows. Sect. 2
defines important notions of data augmentation and the
process information extraction task. Sect. 3 covers work
related to this article. We then describe our experiment
setup in Sect. 4, starting with our leading research ques-
tions (Sect. 4.1), the selection of data augmentation tech-
niques (Sect. 4.2), a classification of these (Sect. 4.3),
how we adjusted some techniques for the use with pro-
cess information extraction data (Sect. 4.4), and finally
our strategy for finding optimal configurations for data
augmentation techniques (Sect. 4.5). Sect. 5 analyzes the
effects of data augmentation on the text of process de-
scriptions (Sect. 5.1), common errors introduced by data
augmentation (Sect. 5.2), visualizations of the changes in
meaning (Sect. 5.3), and vocabulary and relation direc-
tion (Sect. 5.4). Sect. 6 discusses the results of a black-
box evaluation using data augmented with the selected
techniques and answers our research questions. We con-
clude the article in Sect. 7.

2 Background

Data augmentation describes a suite of techniques
originally popularized in computer vision [40], where sim-
ple operations, such as cropping, rotating, or introducing
noise into images greatly improved performance of ma-
chine learning algorithms used for classification of im-
ages. These operations usually preserve the semantics of
input data, meaning that an image containing an ob-
ject will still depict the same object after its data have
been augmented, for example, they have been overlaid
with noise. This property is called invariance [43], and is
harder to hold for natural language data [15]. An exam-
ple for this fact is depicted in Figure 2. Changing random
tokens (e.g., words) in a sentence may alter semantics
to a point, where relevant elements or relations between
those elements are no longer present after augmentation.
Additionally, annotations may be lost, if techniques are
applied and afterwards these changes cannot be traced.
This might happen, when, for example, an entire sen-
tence is translated into another language and then is
back-translated typically leading to a rephrased version
of the original text. Since it is not clear, which parts of
the new sample correspond to the original one, annota-
tions of process-relevant elements do not apply to the
new sample. For this reason, research on data augmen-
tation techniques has been conducted, which are specif-
ically designed for information extraction tasks [20,28,
14]. These techniques use additional resources, such as
pretrained large language models, to augment training
samples, while keeping their semantics intact.
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"After a examined is claim, it is registered."

"After a claim is registered, it is examined." "After a claim is registered, after it is examined."

"After a claim is recorded, it is examined."random deletion

random swap

random insertion

rephrasing

original

activitydata objectrelation

"After a claim is registered, it is examined."

Fig. 2: Examples for four different data augmentation techniques. Random deletion, random swap, random insertion
(all written in red), are all not preserving the semantics of a sample and its label. Rephrasing (green) is an example
for a technique that does.

Process Relevant Information Extraction from
natural language is a research field immediately relevant
for information systems, as business process models are
often a central part for process aware information sys-
tems. Discovering and creating these process models is
an expensive task [17] and a lot of work has been done on
extracting them from natural language text directly [17,
41,16,2,6]. These texts describe a business process in
natural language as technical documentation, mainte-
nance handbooks, or interview transcripts. Sequences of
words (spans) in these texts contain information that is
relevant to the business process, such as Actors (persons
or departments involved in the process), Activities (tasks
that are executed), or Data Objects (physical or digital
objects involved in the process). Extracting this infor-
mation is therefore a sequence tagging task, and can be
framed as Mention Detection (MD). Mentions relate to
each other, e.g., defining the order of execution for two
Activities, or which Actor executes the Activity. Pre-
dicting and classifying these relations is called Relation
Extraction (RE). Refer to Figure 3 for an example of
this process. It shows a fragment of a larger description
of a process from the insurance domain, where insur-
ance claims have to be registered in a system and subse-
quently examined by an employee. The spans claim and
it are annotated as Data Objects (the claim in ques-
tion, in green). Activities executed by a process partic-
ipant are marked in orange. These four spans can now
be transformed into business process model elements for
a target notation language (here BPMN1). How these
elements interact with each other can also be extracted
from the text fragment, e.g., the Flow of activity exe-
cution between the mentions registered and examined,
depicted as an orange arrow.

Developing approaches towards automated extrac-
tion of process relevant information requires data to test
performance, and train models, if applicable. The cur-
rently largest collection of human-annotated process de-
scriptions is called PET [7]. It contains 45 natural lan-
guage process descriptions, and is annotated with 7 types
of process relevant entities (e.g., Actors, Activities, Data
Objects), as well as 6 types of relations between them

1 See specification at https://www.bpmn.org/.

Examine
Claim

Register
Claim

Claim

After a claim 

is registered, 

it is examined.

Business Process
Model Generation

Fig. 3: Example for a fragment of a natural language
business process description and its corresponding busi-
ness process model fragment in BPMN.

(e.g., Flow between Activities). In total the dataset con-
tains less than 2,000 examples for both relations and
entity mentions. For comparison, typical datasets for re-
lated tasks, like Knowledge Graph completion contain
more than 200 times as many. For example, the popu-
lar FB15k dataset comprises more than 500,000 relation
examples [10]. Datasets for extraction of named entities
and their relations have similar extents, e.g., the DocRed
dataset, which contains more than 1,500,000 relation ex-
amples [42]. This fact makes PET a prime candidate for
data augmentation techniques, in order to make the most
out of the limited amount of training examples. We show
this in our experiments using PET for the tasks MD and
RE in process information extraction. To our knowledge
our work is the first to attempt applying NLP data aug-
mentation to the process information extraction task.

3 Related Work

Data augmentation techniques applied in this paper are
largely based on the ones available in the NL-Augmenter
framework [12]. NL-Augmenter provides a list of more
than 100 data augmentation techniques, which are suit-
able for varying tasks like text classification, sentiment
analysis, and even tagging. We discuss how we adapted
these techniques to the PET data format in more de-
tail in Section 4. Not all techniques are relevant for this
work, and we have to exclude most of them, as they are
not fitting for process information extraction. Details of
our exclusion criteria can be found in Section 4.

In [22] the authors evaluate nine simple data aug-
mentation techniques (e.g., random deletion) on a total
of seven event logs, using seven different models. Our
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paper follows a similar line of thought for process infor-
mation extraction, instead of predictive process monitor-
ing. The techniques we employ differ significantly from
theirs in two core aspects. First, techniques used in this
paper are more complex, owing to the more complex
character of natural language. While their work focused
on reordering events in a log of a process execution, our
work uses techniques that are concerned with replacing,
extending, or modifying sequences of text, while preserv-
ing any annotations present in the data. Second, tech-
niques used in our work often require external resources.
These resources can be explicit, i.e., databases like Word-
Net [31], which contains lexical information such as syn-
onyms, antonyms, or hypernyms of words. They can also
be implicit, such as large language models, which contain
knowledge about natural language, obtained by unsuper-
vised training on huge amounts of textual data [11].

The techniques we present in our paper mainly ben-
efit work that already exists in the field of process infor-
mation extraction. Therefore, approaches based on ma-
chine learning are related to this work. These approaches
can be separated into two main fields of research. (1)
learning approaches, which use the data to train a ma-
chine learning models, e.g., a neural network [2], condi-
tional random fields [7], or decision trees [33]. (2) prompt-
ing based approaches that use the data for engineering
input for large language models (e.g., GPT) [21,24,34],
or use the data for so called in context learning, by pro-
viding examples in the input itself [6].

Automated extraction of information relevant to busi-
ness processes from natural language text descriptions
can be seen as a special case of automated knowledge
graph construction or completion [5]. We therefore con-
sider techniques for automated knowledge graph con-
struction and completion as distantly related work, which
could still benefit from the augmentation techniques we
analyze in this paper. Nonetheless, we focus on meth-
ods of process information extraction in this paper, as
potential solution for this field’s small datasets.

4 Experiment Setup

This article answers four leading research questions, which
we define in Sect. 4.1. To this end we use data augmen-
tation techniques from the domain of natural language
processing. The NL Augmenter framework [12] provides
a total of 119 of such data augmentation techniques, but
not all of them are applicable to the task at hand. We
therefore define four criteria for exclusion in Sect. 4.2.
We group the remaining, selected data augmentation
techniques into five classes in Sect. 4.3 and discuss how
we modify them to be better applicable to process de-
scriptions in Sect. 4.4. Finally, in Sect. 4.5 we discuss
our approach towards finding suitable configurations for
the parameters of data augmentation techniques.

4.1 Research Questions

Following the intuition from Sect. 1, our first two re-
search questions RQ1 and RQ2 are focused on answer-
ing how much knowledge about natural language and
process information extraction is needed to augment data
for the process information extraction task.

While simple data augmentation, i.e., randomly delet-
ing, swapping, or inserting words into a text, are easy to
implement and require no additional knowledge about
natural language or process information extraction, they
are also prone to breaking semantics of process descrip-
tions, and introducing unnatural noise. Still, related work
in business process management have been shown to
benefit from such simple data augmentation techniques,
e.g., predictive business process monitoring [22,23]. These
considerations lead us to raising research question RQ1.

On the other hand, using large scale language model-
ing, e.g., through the use of pretrained language models,
such as BERT [11], or GPT [38], is highly demanding in
terms of resources (hardware), and time. We therefore
are interested in how useful these methods are compared
to smaller, rule-based methods, i.e., if the investment
of hardware and time is worth it through significantly
higher data quality, measured by the performance gain
of models trained with it. We therefore pose research
question RQ2.

One popular technique to improve classification of
rare classes in a classification task is called oversam-
pling [32]. Here, samples containing rare classes are shown
multiple times during training. Preliminary experiments
showed that the RE method presented in [33] can already
benefit from this technique. Transformations that yield
improvements lower than oversampling could even be
considered detrimental to model performance. For this
reason, a third question,RQ3, is focused on finding data
augmentation techniques, that are better than simply re-
peating data.

The fourth and final one question, RQ4, is aimed at
the apparent effects of data augmentation on the text
of process descriptions. This question is aimed at under-
standing how process descriptions change as a result of
applying data augmentation. Since this is a highly quali-
tative question, we aim to answer it by exploring process
descriptions altered by data augmentation, finding com-
mon errors, and visualizing changes in characteristics.

In summary, our research questions are as follows.

RQ1 Can simple data augmentation techniques, in-
cluding swapping, deleting, or randomly inserting words
into sentences increase the performance of machine
learning methods for process information extraction,
measured as the harmonic mean of precision and re-
call?

RQ2 Does the use of deep learning models, especially
(large) neural language models, in data augmenta-
tion, provide a significant advantage over simpler,
rule-based methods?
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RQ3 Does data augmentation outperform oversam-
pling of documents during training?

RQ4 What characteristics of the natural language text
data are changed by augmentations?

4.2 Selection of Techniques

The NL Augmenter framework provides a total of 119
data augmentation techniques, but not all of them are
applicable to the task at hand. We therefore define four
criteria for exclusion.

EC1 Language: The technique does not apply to the
English language, i.e., we exclude techniques targeted
at all other languages. The dataset we use for our
experiments, PET, is in English, techniques targeting
other languages are therefore not relevant for this
paper.

EC2 Spelling: The data augmentation technique al-
ters the spelling of tokens, i.e., misspelling pertur-
bations, which allows for evaluating robustness to
spelling mistakes. This issue is not present in the
PET dataset, but may be relevant for future work,
if less perfect data sources (e.g., notes taken by em-
ployees) are analyzed.

EC3 Supervised Training Data: The data augmenta-
tion technique does not work for supervised data,
i.e., perturbations would corrupt labels present in the
PET dataset and we can not adjust it to preserve la-
bels.

EC4 External Resources: The technique uses task-,
and/or domain-specific resources, such as dictionar-
ies, or databases, which do not exist for processes
represented in PET and prevent the technique to be
task-agnostic.

Applying these criteria results in 20 data augmentation
techniques relevant for the task of generating business
process models from natural language text. We have
listed the exact number of data augmentation techniques
excluded by each criterion in Figure 4. Two of the 20 rel-
evant techniques had errors in their original code, which
we fixed. Note that one of the 20 selected techniques had
two modes of operation, which we split into two separate
techniques, resulting in a total of 21 data augmentation
techniques at this stage. We then we added five more
data augmentation techniques, specifically designed to
help us answering our four research questions, which are
as follows.

Random Swap. Randomly selects two tokens in the
document and swaps them.Random Insert. Uniformly

samples tokens from the dataset vocabulary and inserts
them at random positions in the document. Together
with augmentation technique B.79 (Random Deletion)
from the NL Augmenter framework, Random Swap, and
Random Insert are the three techniques are the sim-
ple data augmentation techniques referenced in research
question RQ1.

119 possible
techniques

EC1
Language

EC2
Spelling

EC3
Supervised Training

Data

EC4
External Resources

13 excluded

18 excluded

12 excluded

51 excluded

21 feasible
techniques 5 included

26 investigated
techniques

Fig. 4: Application of exclusion criteria, and inclusion
of five additional techniques, leading to 26 investigated
data augmentation and oversampling techniques.

Inverse Type Frequency Oversampling. Oversam-
ple, i.e., repeat documents in the dataset according to
the rarity of their contained entity and relation types.
Uniform Oversampling. Randomly oversample doc-

uments from the dataset. These two oversampling tech-
niques serve as a baseline of improvement, to answer
research question RQ3.

Large Language Model Rephrasing. Rephrase text
segments via a Large Language Model (LLM). We utilize
a local Llama 3.1 model with 70B parameters for this
augmentation technique and use the results to supple-
ment those of other, existing techniques in answering
research question RQ2. This augmentation technique
is the most time-intensive one by far (see Sect. 2), but
should help us get a good idea of the usefulness of gen-
erative artificial intelligence for data augmentation.
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4.3 Classifying Data Augmentation Techniques

Many data augmentation techniques are similar in their
inner workings, i.e., they use similar approaches towards
perturbing documents. In this section we present the five
major categories of data augmentations we identified.

C1 Rephrasing. This class of data augmentation tech-
niques targets spans of one or more tokens and re-
places them with synonymous wording. Techniques
in this class are not guaranteed to keep syntactic and
semantic integrity, but do so more often than tech-
niques in other classes.
C2 Reordering. Techniques that change the order of
tokens, without introducing new tokens fall into this
class. The scope of such techniques varies, and ranges
from reordering the tokens of a single mention, re-
ordering sentences (without reordering tokens inside
these sentences), or randomly swapping tokens in a
document. Techniques in this class regularly break
linguistic syntax.
C3 Repeating. When techniques use existing data,
we categorize them as repetition techniques. These
include data augmentation that concatenate docu-
ments, repeat whole documents (oversampling), or
randomly insert token spans sampled from the dataset.
C4 Adding Noise. Data augmentation techniques in
this class randomly insert, delete, or replace tokens in
the data. Inserted and replaced tokens are not part
of the original dataset and include speaker phrases
(“uhm”, “er”) or inserting (not substituting) syn-
onyms of words.

4.4 Adjustment for Process Information Extraction

We have to adjust some of the augmentation techniques
slightly, to make them applicable to the process infor-
mation extraction task. Our adjustments fall into the
following categories.

Label Preservation. This adjustment applies mainly
to augmentations that replace spans of tokens, such as
rephrasing techniques. If the technique would rephrase
an entire sentence, such as “After a claim is registered,
it is examined.”, it could result in “Following registration
of a claim, a review follows.”. Even though the rephrased
sentence has the same number of tokens, naively assum-
ing the positions of labels have not changed would result
in registration of as an extraction target for training
extraction models, impacting the performance of models
trained with such data. Instead, we segment the text into
sequences with the same corresponding entity type, i.e.,
After, a claim, ,, is registered, it, is examined, and .. We
then rephrase the segments in isolation and replace the
entire original sequence with the resulting rephrased se-
quence. This way, we can preserve labels, but may break
the semantics of the sample (see Sect. 5.2).

Runtime Optimizations. Some augmentation tech-
niques had easy to fix bottlenecks adversely affecting
runtime, such as loading language models multiple times
throughout their lifetime. We fixed these cases, to make
running augmentations many times feasible, which be-
comes important for Sect. 4.5.

Forcing Variety. When we augment a single document
with an augmentation factor larger than 1, an augmenta-
tion technique potentially has to produce more than one
augmented document, e.g., two augmented documents
for the augmentation factor 2. Naively implementing this
by re-running the augmentation may lead to identical
augmented documents, especially for deterministic tech-
niques. Were possible, we changed existing techniques in
such a way, that they return a list of augmented docu-
ments that are different from each other.

4.5 Finding Optimal Configurations

Each of the data augmentation techniques we selected
can potentially be adjusted by several parameters, which
control how augmented samples are synthesized. A typ-
ical example for such a parameter is the number of in-
serted tokens. Increasing this number would result in a
sample, which is more perturbed compared to a sample
where fewer tokens are inserted. We consider optimally
choosing such parameters for a given technique a hyper-
parameter optimization problem. Hyper-parameter opti-
mization is defined as finding a configuration of param-
eters so that a given objective (metric to optimize) is
minimal or rather maximal, depending on the case. Here,
we want to maximize the performance gain that the ap-
plication of a data augmentation technique has. To that
end we run a 5-fold cross-validation of the extraction step
(MD, RE) with the original, unaugmented data. We then
select a configuration for the given technique and run the
same 5-fold cross-validation, but augment the training
data of each fold with the data augmentation technique.
We define the difference between the scores of these two
models on the (unaugmented) test dataset as the per-
formance gain and use it as maximization objective for
our hyper-parameter optimization. Each data augmen-
tation technique is optimized in 25 runs (trials) using
Optuna [4] and a Tree-Structured Parzen Estimator for
selecting parameter values [9]. We depict this process in
Figure 5.

We use the best parameter configurations of a given
data augmentation technique as its default configuration
in later sections and experiments. You can find values
for the parameters in each augmentation technique in
Appendix A.

5 Data Augmentation Effects

In this section we will describe the classes of data aug-
mentations. Tab. 1 shows a compact overview of all data
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Fig. 5: Choosing optimal configurations for data augmentation techniques.

augmentation techniques. It also summarizes the infor-
mation found in this section, which is structured as fol-
lows. First, we start by analyzing the process descrip-
tions themselves, i.e., how the surface form text is changed
by select data augmentation techniques in Sect. 5.1. We
derive common classes of errors from this analysis and
discuss how these errors impact the quality of synthe-
sized data in Sect. 5.2. Next, to generalize the analysis
of how augmentation changes the text, and more impor-
tantly, meaning of process descriptions, we visualize the
text of whole process descriptions, sentences, and pro-
cess entity mentions as scatter plots in Sect. 5.3. Finally,
we discuss three more characteristics of textual process
descriptions, linguistic variability, vocabulary size, and
relation direction, in Sect. 5.4.

5.1 Surface Form Changes

In this section, we will discuss how data augmentation
changes the wording (surface form) of process descrip-
tions. We will also discuss how these changes affect the
annotations (labels) of data, such as mentions and re-
lations. Throughout this section, we will show examples
of augmented process descriptions base on the running
example shown in Fig. 6. To improve clarity, we omitted
all relations with the exception of the Flow relations,
which we will use in some augmented examples.

Rephrasing Augmentations. Consider, for example,
the technique Synonym Substitution (B.101) as repre-
sentative for augmentations that rephrase text segments
in process descriptions, with results as shown in Fig. 7.

Synonym Substitution changes the form of verbs heav-
ily. While it properly selects synonyms, it fails to inflect

flow

flow

After a claim is registered, it is examined by a claims

officer. The claims officer then writes a settlement

recommendation. This recommendation is then

checked by a senior claims officer who may mark the

claim as OK or Not OK. If the claim is marked as

Not OK, it is sent back to the claims officer and the

recommendation is repeated. If the claim is OK, the

claim handling process proceeds.

flow

flow

flow

flow
flow

flow

flow

flow

Activity Activity Data Actor Further Spec.

Condition Spec.XOR Gate

Fig. 6: Original surface form of document doc-3.3 of the
PET dataset.

them according to the original verb. Synonym substi-
tution also fails to take context into account, and as
such uses synonyms that are contextually wrong, e.g.,
replacing settlement with colony in a settlement recom-
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Technique Id Description Category Errors

Adjectives Antonyms Switch B.3 use antonyms of adjectives Noise SEM
AntonymsSubstitute (Double
Negation)

B.5 substitute even number of words with
antonyms

Rephrasing SEM

Auxiliary Negation Removal B.6 remove negated auxiliaries Noise SEM
BackTranslation B.8 translate to German, then back to

English
Rephrasing SEM, SYN,

PUN
Concatenate Two Random Sentences B.24 remove PUN between sentences Repeating PUN
Contextual Meaning Perturbation B.26 replace words with use of pretrained

language model
Rephrasing SYN, SEM,

GL
Contractions and Expansions
Perturbation

B.27 Contract phrases where common
contractions exist, e.g., “I am” to
“I’m” and vice versa

Rephrasing —

English Mention Replacement for
NER

B.39 replace mention with one of the same
type in document

Repeating SYN, SEM

Filler Word Augmentation B.40 introduce “uhm”, “I think”, ... Noise GL
Lost in Translation B.58 repeatedly translate text segment into

other languages and finally translate
it back

Rephrasing SYN, SEM,
PUN, GL

Multilingual Back Translation B.62 see B.8, language is parameter Rephrasing SEM, SYN,
PUN

Random Word Deletion B.79 delete random words Noise AN, SYN,
SEM

Replace Abbreviations and Acronyms B.82 replace acronyms with full length
expression and v.v.

Rephrasing SEM

Hypernym Replacement B.86 replace token with its hypernym
(super term), e.g., Mountain Bike
with vehicle

Rephrasing SEM

Hyponym Replacement B.86 replace token with its hyponym
(super term), e.g., Mountain Bike
with Bicycle

Rephrasing SEM

Sentence Reordering B.88 reorder sentences Reordering SEM
Shuffle Within Segments B.90 shuffle tokens in mentions Reordering SYN, SEM,

PUN
Synonym Insertion B.100 insert synonym before word Noise SYN, SEM
Synonym Substitution B.101 substitute word with synonym Rephrasing SEM
Subsequence Substitution for
Sequence Tagging

B.103 replace sequence with another
sequence with same POS tags

Repeating SEM

Transformer Fill B.106 replace tokens using language model Rephrasing SYN, SEM
Random Insert insert random tokens Noise SYN, SEM,

GL, PUN
Random Swap swap position of tokens Reordering SYN, SEM,

GL, PUN
Large Language Model Rephrasing use an LLM to rephrase text

segments, while considering the entire
surrounding process description as
context

Rephrasing SYN

Inverse Type Frequency Oversampling oversample documents containing
rare mention / relation types

Repeating —

Uniform Oversampling uniformly oversample documents Repeating —

Table 1: Overview of augmentation techniques considered in this article. Column Id refers to identifier used in [12],
column category is one of the categories defined in Sect. 4.3, while column Errors references one of the common error
classes defined in Sect. 5.2, i.e., Semantics (SEM), Syntax (SYN), Punctuation (PUN), violations of Annotation
Guidelines (GL), and deleted Annotations (AN).

Data Augmentation for Process Information Extraction 159



Repeat, Reorder, Rephrase — Data Augmentation for Process Information Extraction 9

After a title be registered, it is examined by a claims
officer. The claims policeman then writes a settlement
recommendation. This recommendation be then
checked by a senior claims officer who may mark the
claim as all right or Not OK. If the claim embody
marked as Not OK, it is sent back to the title officer
and the recommendation embody repeated. If the
title is OK, the title handling process proceed.

Fig. 7: Effects of synonym substitution on surface form.
Relations are unchanged by this augmentation tech-
nique.

mendation, when settlement is used in a financial con-
text. These problems can be subsumed as breaking both
syntax, as well as semantics to some degree. Rephrasing
augmentations, that only replace a single token at a time
did not break annotations in our experiments, i.e., they
did not invalidate training targets of the dataset.

Reordering Augmentations. For reordering augmen-
tations we use the Sentence Reordering (B.88) technique
as an example, shown in Fig. 8.

flow

flow

flow

flowflow

This recommendation is then checked by a senior

claims officer who may mark the claim as OK or Not

OK. The claims officer then writes a settlement

recommendation. After a claim is registered, it is

examined by a claims officer. If the claim is marked

as Not OK, it is sent back to the claims officer and

the recommendation is repeated. If the claim is OK,

the claim handling process proceeds.

flow

flow

flow

flow

flow

Fig. 8: Effects of reordering sentences on the direction
of relations. Note that many relations are now wrong, as
the text actually describes the order of execution differ-
ently.

This augmentation does not change the surface form
of mentions, but is one of the few augmentations, that
changes the direction of relations. Depending on the role
of a relation, this augmentation is problematic for pro-

cess information data. Take, for example, the flow be-
tween mark and writes in the original data shown in
Fig. 6 and the augmented one in Fig. 8. Reordering sen-
tences leads to a different flow when following the de-
scription in the text, but the flow relation is not updated
to reflect that.

Other augmentations in this class change the sur-
face form more dramatically, such as the Shuffle Within
Segements augmentation, which splits the process de-
scriptions into segments based on mention types (or lack
thereof), and shuffles the tokens of randomly sampled
segments. Fig. 9 shows this, where for example the phrase
a recommendation settlement becomes recommendation
a settlement.

After claim a is registered, it is examined by officer a
claims. The claims officer then writes
recommendation a settlement. recommendation This
is then checked by a claims officer senior who may
mark the claim as OK or OK Not. If the claim is
marked OK Not as, it is sent back to the claims
officer and the recommendation repeated is. If the
claim is OK, the claim handling process proceeds.

Fig. 9: Effects of shuffling tokens within segments. This
augmentation does not affect the direction of relations.

Note, that this class of augmentation breaks syntax
regularly and may even border on breaking semantics,
e.g., when a phrase like as OK or Not OK becomes as
OK or OK Not, like in Fig. 9. Since the punctuation is
also subject to shuffling, this augmentation techniques
in this class sometimes produce invalid punctuation.

Repeating Augmentations. Augmentations that re-
peat entire documents, such as the oversampling strate-
gies Inverse Mention Frequency Sampler, or Uniform
Repeat, do not change the surface form of documents.
Similarly, the Merge Documents augmentation strategy
merges two random documents to produce a new one,
which technically changes the surface form, but not in
any conceptually interesting way.

For this reason, we will focus on augmentations that
insert and replace parts of a document with repeated
phrases from other documents, such as “English Men-
tion Replacement for NER”. Fig. 10 shows an example
for this augmentation technique. Since the replacements
are sampled randomly, this technique and others like it
tend to break both syntax and semantics of process de-
scriptions. Still, since it respects the type of the replaced
entity mention, it is potentially useful for the mention
detection and relation extraction tasks, as we show in
our experiments in Sect. 6.
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After a claim is registered, it is registered by a claims
officer. The claims officer then writes a settlement
recommendation. This recommendation is then
checked by a senior claims officer who may reviews
the claim to begin preparing the food. If the claim is
marked as Not OK, it is sent back to the claims
officer and the recommendation is repeated. If the
claim is OK, the claim handling process proceeds.

Fig. 10: Effects of replacing entity mentions in the pro-
cess description with those of the same type, e.g., exam-
ined (activity) with registered (activity) from the same
document, or as OK or Not OK (further specification)
with to begin preparing the food (further specification),
from a different document. This augmentation does not
affect the direction of relations.

Augmentations Adding Noise. Augmentations that
add random tokens into the text, can help to make mod-
els more robust [12]. These augmentation techniques are
very likely to break both semantics and syntax of textual
data. Still, they can be useful to simulate noisy input,
which becomes increasingly useful, e.g., in the environ-
ment of chat bots, especially when the input is a tran-
script of human speech.

Figure 11 shows the effects of inserting so called speaker
phrases into the process description. Speaker phrases are
utterances of uncertainty, filler phrases, or other excla-
mations that do not contain any information, such as
“err”, or “uhm”.

After I guess a claim is registered, it is I feel
examined by a claims officer. The I think claims
officer then writes a settlement recommendation. This
recommendation is then checked by a senior claims
officer who may mark that is the claim I feel as OK
or Not OK. If the claim is marked as Not OK, it is
sent I feel back to the claims officer and the
recommendation is repeated. If the claim is OK, the
claim handling process proceeds.

Fig. 11: Effects of inserting filler words, simulating un-
certainty in a speaker.

5.2 Common Errors

We identified five types of errors, reoccurring in many
of the data augmentation techniques. In this section we
present these errors and discuss their implications.

Violating Annotation Guidelines. When inserting
tokens into the process description, e.g., filler words (Fig. 11),
or tokens sampled from the remaining dataset (Fig. 10),
the boundaries of mentions may be expanded. This is
the case, when a token is inserted in the middle or di-
rectly after the span of tokens making up a mention. For
example, inserting “I think” into the second sentence in
Fig. 11 expands the mention “The claims officer”. A
better way of annotation would be using non-continuous
spans of text (only The and claims officer), but the an-
notation guidelines of PET are not designed for this, and
instead would ask annotators to only annotate “claims
officer”. When we automatically augment data, we can
not decide which parts of a mention to keep, and which
to discard, should an inserted token bisect a mention.

Removing Annotations. Randomly deleting tokens
may remove mentions completely, if its only token is
deleted. This has a cascading effect, as we also have to
delete relations that use that mention as an argument.
Compare, for example, the text that results after we ran
the Random Deletion augmentation technique, shown in
Fig. 12, with the original shown in Fig. 6. Many activity
mentions are now missing, and as a result the corre-
sponding flow relations as well.

After a claim, is examined by a claims officer. The
claims officer then a settlement recommendation. This
is then checked by a claims officer who may mark the
claim as OK or Not OK If the claim is marked as Not
, it is sent the officer and the recommendation is If
the claim is OK, the claim handling process proceeds.

Fig. 12: Random deletion augmentation deleting many
tokens, mentions and relations.

Breaking Syntax. It can be argued that breaking syn-
tax to some degree can be useful for improving the ro-
bustness of information extraction approaches. This be-
comes clear, when a human reads the sentence “After
a claim registered is, [...]”. The intention can still be
transported, even though there are grammatical inac-
curacies. Yet, this intuition can also show, how syntax
can be broken beyond a point, where compensation is
possible. Randomly ordering the tokens from the previ-
ous example leads to “Is after claim a registered, [...]”,
which becomes hard to understand, or even ambiguous
(is the claim registered after something, or is something
happening after a claim is registered). Reordering is not
the only operation that broke syntax in our experiments,
we also observed this when replacing or inserting tokens.

Breaking Semantics. Unlike syntax, linguistic seman-
tics are harder for extraction approaches to exploit, as it
requires modeling language [8]. In recent years, large pre-
trained language models have made this easier, but the
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amount of data available for developing process informa-
tion extraction approaches is impeding their use [33]. In
turn, this means while breaking semantics appears egre-
gious for humans, it is less important for the shallow
learning approaches we use in our experiments. As a re-
sult, approaches that use large amounts of compute, to
preserve semantics, are only marginally (if at all) better
in our black box evaluation. Nonetheless, we argue that
avoiding semantic-breaking errors will become more and
more important, when larger models are used for process
information extraction. Fig. 7 preserves syntax properly,
but changes the semantics of “The claim officer” so much
that it is even hard for human readers to recognize its
other mentions (claims policeman and title officer).

Invalid Punctuation. When augmentations remove or
insert tokens, they may remove or insert punctuation.
The latter is especially the case for all back-translating
augmentations, as they translate only small, incomplete
fragments of text and often end the translated fragment
with punctuation. Invalid punctuation is generally not
an issue for state-of-the-art extraction methods, but can
be a problem for the relation extraction method used in
this article, as it uses the sentence index as a feature for
predicting relations between arguments [33].

5.3 Variations in Meaning

The aim of this section is to give a high level overview
of the changes in meaning introduced by augmentation.
To this end we embedded both the original and aug-
mented documents, sentences, mentions, and relations
using the Jina Embedding model [19]. This embedding
model is based on a BERT architecture [11], i.e., a trans-
former model that can embed sequences of up to 8192
input tokens and is therefore very well suited to embed
even long texts, such as process descriptions. Since rela-
tions are not pure text, and can not directly be embed-
ded using a text embedding model, we formatted them
as “text of head mention –> text of tail mention” and
embedded the resulting string. The resulting embedding
vectors have 768 dimensions, which can not be visualized
directly. Instead, we use openTSNE [36], a dimension re-
ducing transformation based on TSNE, which allows us
to learn this transformation on the vectors of the origi-
nal documents, and then apply the same transformation
on the vectors of the augmented documents.

Plotting the result as a scatter plot lets us visualize
how a given class of augmentation changes the mean-
ing of entire process descriptions (documents), sentences,
mentions, or relations. Fig. 17 in Appendix B shows
such as scatter plot for the entire text of documents in
the PET dataset. Augmentations that do not change
the semantics, such as reordering, or adding noise, are
hardly visible in these scatter plots, as their embeddings
barely change. Repeating augmentations on the other
hand change them enough, so that they cover previously

empty space in the visualization. Similarly, rephrasing
augmentations introduce small variations in the text,
which are minute, but visible in our visualizations.

Visualizing how the content of sentences changes (Fig.
18 in Appendix B) results in similar patterns, Reorder-
ing and Adding Noise barely changes the vectors of sen-
tences, i.e., their overall content and meaning. Repeat-
ing and Rephrasing augmentations produce more varied
text. Visualizations of sentences already show a prop-
erty that is intensified, when we visualize mention texts
in Fig. 13 — since sentences are smaller, text variations
have a larger effect on their overall embedding. This
leads to reordering and noise augmentations being vis-
ible in the visualization, compared to visualizations on
document level, where they are invisible.

Mentions are usually quite short, and only comprised
of a few tokens. Similarly to sentences, even small alter-
ations of their text have effects on the resulting embed-
ding vectors and their position in the scatter plot. Still,
rephrasing has the most pronounced effect on the text
(see Fig. 13).

Embedding and visualizing relations shows similar
results as sentences and mentions. Rephrasing shows the
most pronounced effect on embeddings. Surprisingly, the
relation embeddings of augmented documents are quite
close to their originals, as shown in Fig. 14. We suspect
this might be a limitation with our approach of embed-
ding relations, and less so with the augmentations them-
selves. In future work one could try to embed relations
differently, e.g., by including their type, or building nat-
ural language sentences from them, such as “registered
uses a claim” from the uses relation registered (Activity)
→ a claim (Activity Data).

5.4 Linguistic Variability, Mention Length, and
Relation Direction

To supplement the visualizations from Sect. 5.3, we de-
fine three additional characteristics of textual process
descriptions that are changed by the data augmenta-
tion techniques we selected. These characteristics are (1)
linguistic variability, i.e., the number of unique tokens
(words) used in a process description, (2) the length of
entity mentions, i.e., how many tokens make up a sin-
gle entity mention on average, and (3) the direction of
relations.

(1) Increased linguistic variability, i.e., augmented
text uses a larger vocabulary to describe the same, or at
least, a similar business process2. The most prominent
examples for such techniques are the Back-Translation
techniques. These use a large language model, e.g., BERT
[11] to translate the process description to a different lan-
guage and subsequently translate it back to the original

2 The augmentation technique might change information in
the text, which changes the process overall, e.g., by replacing
original actors with new, artificial ones.
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Fig. 13: Mentions

language – here English. Since data augmentation tech-
niques must not alter the annotations of entities, we only
translated spans of text, not the entire document at once.
Take for example, the running example After a claim is
registered, it is examined. Here four spans are annotated
as entities – a claim, registered, examined, and it. Ad-
ditionally there are three remaining spans, that do not
correspond to entities: After a, is, is. By back-translating
these seven spans separately, we obtain variation in their
wording (surface form), but are still able to preserve an-
notations. Samples synthesized in this way are especially
useful for making methods for the MD task generalize
better and more robust.

(2) Variations in span length. Many spans of a given
entity type, e.g., Actors are very uniform in length across
examples. This is a result of several factors, but most
apparent actors are often identified by their job title,
e.g., the clerk, or the department, e.g., the secretary of-
fice. These titles and departments are very short phrases,
and longer ones are abbreviated, reducing their length
to two or less tokens, e.g., the MPOO. Even though
their expanded form may not be known, expanding some

of these spans to suitable phrases, e.g., Manager, Post
Office Operations, creates samples with longer surface
forms. This, in turn, may improve the robustness of the
MD extractors, as well as the generalization capabilities
of RE methods.

(3) Direction of relations between mentions. The or-
der of appearance for mentions that form a relation, is
very uniform in the current version of PET. This is es-
pecially apparent, when looking at the base-line extrac-
tion rules defined by the original authors of PET: Here
the order of appearance of Activities and Actors is ex-
ploited, to form the Actor Performer and Actor Recip-
ient relations [7]. These relations define the Actor, that
performs an Activity, and the Actor, on which an Ac-
tivity is performed. The Actor left of an Activity is as-
signed the former, while the Actor right of that Activity
is assigned the latter. In this example order uniformity
can lead to less robust models, as they rely on this and
subsequently make wrong predictions given different lin-
guistic constructs. Synthesizing samples with a different
order may encourage models to consider linguistic fea-
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Fig. 14: Relations

tures (context) rather than just the order of mentions in
a sentence during prediction.

These characteristics are visualized in Figures 16 and
15. Figure 16 shows the “landscape” of data augmenta-
tion techniques evaluated in this paper. Three groups of
techniques emerge. The first one is a group of techniques
that only marginally increase the number of tokens in
mentions, and keep the size of the vocabulary roughly
the same. These techniques mainly change the context
(i.e., the text that does not contain immediately pro-
cess relevant information), or the structure of the text
(i.e., modify punctuation, or change the order of tokens).
Techniques in the second group do not modify the vo-
cabulary, but have a significant impact on the number of
tokens in a given mention. These augmentations can the-
oretically be useful for the robustness of MD extraction
models, but only have a moderate impact in our experi-
ments, using the PET dataset. We count Random Inser-
tion, Filler Word Augmentation, but also Random Word
Deletion towards this group, see Figure 2 for an example
taken from the augmented data. The final group of tech-
niques increases the size of the vocabulary, while keep-

ing mention lengths roughly the same. These techniques
are paraphrasing, aimed at preserving semantics and the
structure of textual data. Techniques using WordNet to
insert or substitute synonyms (B.100, B.101, as well as
back translation methods (B.62, B.26 ) fall in this group.

6 Results

In this section we will discuss results for our experiments
and answer the research questions from Sect. 4.1. Ta-
ble 3 lists the differences of all data augmentation tech-
niques compared to a run on un-augmented data. All
differences are measured as the micro-averaged F1 score.
Concluding from our results, we find that both the MD
and RE tasks significantly benefit from some of the data
augmentation techniques we selected and tested. Data
augmentation results in improvements of up to +5.7%
(absolute percentage points) in mention detection per-
formance, and up to +4.5% (absolute percentage points)
in relation extraction performance.
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Fig. 15: Effects of techniques on relation direction. Over-
sampling techniques are omitted, as they can not change
direction of relations.

RQ1 — Simple data augmentation.. With the ex-
ception of Random Word Deletion, simple data augmen-
tation techniques, i.e., Random Insert, and Random Swap,
are not useful for improving mention detection results,
meaning they are worse than or equal to oversampling
documents. We expand on the notion of usefulness later
in this section, when answering research question RQ3.
This observation is even clearer for the relation extrac-
tion task, where none of the simple data augmentation
techniques are able to outperform oversampling. We there-
fore answer our leading research question RQ1 with
No. While it seems that simple data augmentation tech-
niques improve the performance of both the MD and
RE tasks, we attribute that improvement to the implicit
oversampling instead of higher data quality.

RQ2 — Complex data augmentation. Looking at
the remaining, more complex data augmentation tech-
niques, only some of them outperform oversampling in
both mention detection and relation extraction. For men-
tion detection, we find that especially Rephrasing (e.g.,
Antonyms Substitute (Double Negation)) and Repeating
(e.g., Subsequence Substitution for Sequence Tagging)
techniques are most useful. Notably, techniques focused
on acronyms, i.e., Replace Abbreviations and Acronyms
and Contractions and Expansions Perturbation are worse
than oversampling. This can be explained by their re-
liance on lists of possible acronyms, which are from many
different domains, and not always applicable to the do-
main of a process description. For example, document
doc-10.6 of the pet dataset contains sentences like “The
MSPN sents a dismissal to the MSPO.”. These acronyms
are undefined in the lists of the acronym-focused data
augmentation techniques. In these cases they operate
like Uniform Oversampling, explaining their poor per-
formance. Many of the based on large language mod-
els, especially back translation techniques, like Multilin-

Technique Time

Adjectives Antonyms Switch 0.008s
Antonyms Substitute (Double Negation) 1.374s
Auxiliary Negation Removal 0.096s
BackTranslation 13.93s
Concatenate Two Random Sentences 0.009s
Contextual Meaning Perturbation 6.040s
Contractions and Expansions Perturbation 0.011s
English Mention Replacement for NER 0.031s
Filler Word Augmentation 0.078s
Hypernym Replacement 2.514s
Hyponym Replacement 3.406s
Inverse Type Frequency Oversampling 0.011s
Large Language Model Rephrasing 214.2s
Lost in Translation 63.28s
Multilingual Back Translation 62.53s
Random Insert 0.012s
Random Swap 0.002s
Random Word Deletion 0.016s
Replace Abbreviations and Acronyms 0.018s
Sentence Reordering 0.004s
Shuffle Withing Segments 0.046s
Synonym Insertion 0.055s
Synonym Substitution 0.057s
Subsequence Substitution for Sequence Tagging 0.385s
Transformer Fill 1.958s
Uniform Oversampling 0.002s

Table 2: Time it takes each augmentation technique to
augment a single document ten times.

gual Back Translation, which translate a sentence frag-
ment twice, and rephrasing techniques based on LLMs,
are very time-intensive, as Tab. 2 shows. Yet, improve-
ments in relation extraction performance is not signif-
icant, when comparing them to more lightweight ap-
proaches, e.g., Synonym Substitution, which uses Word-
Net to rephrase text sequences, and runs several or-
ders of magnitude faster. Juding from the observations
made during our experiments, using these large language
model based methods is not worth the increase in com-
puting power and time. While the MD task can still ben-
efit from all data augmentation techniques, it does so
to a lesser extent when compared to the RE task. This
indicates a model, that is already more stable, and gen-
eralizes better. Transformations that alter the amount
of tokens in mentions, such as Random Word Deletion,
Synonym Insertion, or Subsequence Substitution for Se-
quence Tagging, result in lesser improvements, compared
to paraphrasing methods, such as AntonymsSubstitute,
BackTranslation, or Synonym Substitution. Similar to
the RE task, the MD task does not benefit significantly
more from resource and time intensive, large language
model based augmentation techniques for paraphrasing,
compared to their simpler counterparts, answering our
second research question RQ2. Based on our observa-
tions we do not recommend using complex data augmen-
tation techniques with classical supervised approaches
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Fig. 16: Effects on vocabulary size and the average length of mentions in tokens. Oversampling techniques are omitted,
as they neither change the vocabulary size, nor the length of mentions.

to process information extraction. If they are useful for
more complex extraction models (e.g., deep learning),
needs further research in future work.

RQ3 — Oversampling. Many of the data augmenta-
tion techniques we selected outperform the two oversam-
pling strategies we investigated. For mention detection
most of these techniques fall into the Rephrasing cat-
egory, while Adding Noise does not seem to be useful.
For the relation extraction task, a lot less data augmen-
tation techniques are better than oversampling. We sus-
pect this is due to a relation extraction model with sub-
optimal hyper-parameter configuration. Since we kept
this configuration fixed throughout our experiments and
followed previous work [7,33], oversampling may be com-
pensating for a learning rate that is set too low. The
experiment described in Sect. 4.5 could be expanded in
future work, to consider the hyper-parameters of men-
tion detection and relation extraction models, but was
out of scope for this article.

RQ4 — Characteristics. Based on Sect. 5, which presents
a deep dive into the effects of data augmentation tech-
niques on the text of process descriptions, we see three
major areas affected by different data augmentation tech-
niques. (1) The embedding of entity mentions and rela-
tions between them is affected by Rephrasing and Re-
ordering data augmentation techniques the most. This
implies that the meaning of the corresponding process

elements changes the most, if techniques from these cat-
egories are used. These changes sometimes also break the
syntax and semantics of process descriptions, which does
not appear to be a problem for the models used in our ex-
periments, as the improvements are still outperforming
oversampling strategies. (2) Reordering techniques are
the only category of data augmentation that change the
directions of relations. Fig. 15 visualizes this fact, with
technique B.88 (Sentence Reordering) clearly standing
out. While reordering sentences often breaks the seman-
tics of the descriptions of the order of activity execution
(“Register claim. Then examine it” vs. “Then examine
it. Register claim.”), this does not seem to be an issue,
as this data augmentation technique is one of the best
ones for improving the performance of relation extrac-
tion. (3) The last characteristic changed by our selection
of data augmentation techniques, is the linguistic vari-
ability, i.e., the number of unique tokens (words) used
to describe process elements. We observed an increase of
up to 25% (Fig. 16). We can not directly conclude from
our experiments, if this is a beneficial effect or not, since
the data augmentation techniques that increase the lin-
guistic variability the most, are the ones based on large
language models, which do not have clear advantages
compared to other techniques. Quantifying the effects of
increased vocabulary in process descriptions would re-
quire further research, especially using larger deep learn-
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Technique MD RE

Unaugmented 69.5% 75.9%

Adjectives Antonyms Switch +1.8% +3.3%
AntonymsSubstitute (Double Negation) +5.7% +2.4%
Auxiliary Negation Removal +2.2% +3.5%
BackTranslation +2.9% +3.6%
Concatenate Two Random Sentences +2.3% +4.5%
Contextual Meaning Perturbation +2.5% +4.1%
Contractions and Expansions Perturbation +0.6% +1.9%
English Mention Replacement for NER +2.0% +3.8%
Filler Word Augmentation +1.6% +3.3%
Hypernym Replacement +3.0% +3.8%
Hyponym Replacement +2.2% +4.0%
Inverse Type Frequency Oversampling +1.4% +3.3%
Large Language Model Rephrasing +3.4% +3.1%
Lost in Translation +1.0% +1.3%
Multilingual Back Translation +1.7% +4.1%
Random Insert +1.3% +3.3%
Random Swap +2.2% +2.6%
Random Word Deletion +3.0% +2.7%
Replace Abbreviations and Acronyms +1.4% +2.9%
Sentence Reordering +2.4% +4.0%
Shuffle Within Segments +2.1% +4.1%
Synonym Insertion +1.6% +4.4%
Synonym Substitution +3.3% +3.2%
Subsequence Substitution for Sequence Tagging +5.3% +3.6%
Transformer Fill +2.1% +3.3%
Uniform Oversampling +2.2% +3.5%

Table 3: Detailed results for all augmentation techniques, for both the mention detection (MD) and relation extraction
(RE) task. All results are the averages of a 5-fold cross validation on the entire PET dataset, reported as the absolute
increase in F1 measure compared to a run on unaugmented training data.

ing models, and not just classical machine learning meth-
ods.

7 Conclusion and Future Work

This section will conclude this article by summarizing
its key insights (Sect. 7.1), discuss limitations (Sect.7.2),
and provide directions for future work (Sect.7.3).

7.1 Summary

In this article we evaluated established data augmen-
tation techniques for use in the mention detection and
relation extraction steps of extracting process relevant
information from natural language texts for use in the
automated generation of business process models. To
this end we selected a total of 21 suitable methods from
the NLAugmenter framework [12]. We complemented
this selection with two oversampling techniques and two
simple augmentation techniques, to answer how much
data augmentation can improve the quality of mentions
and relations extracted from textual business process de-
scriptions. We find that while not all data augmentation
techniques are useful, i.e., improve performance more

than repeating unaltered data (oversampling), many are
and can improve the performance of detecting process
relevant entity mentions by up to +5.7% (absolute per-
centage points), and up to +4.5% (absolute percentage
points) in relation extraction performance.

Additionally, we discuss several characteristics of the
data that are changed by the investigated data augmen-
tation techniques, including the change in vocabulary
size of process descriptions, the direction of relations be-
tween process elements, and the change of meaning in
the descriptions of processes. We complement this anal-
ysis with an extensive exploration of the surface form
changes in process description texts and derive four com-
mon error classes, which are introduced by data augmen-
tation techniques.

7.2 Limitations

We judged the usefulness of data augmentation tech-
niques using only one extraction pipeline based on clas-
sical (shallow) machine learning models. This mainly
originates from the lack of supervised machine learning
methods for the process information extraction methods.
While there is previous work using deep learning models
for extracting process information, the authors only in-
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vestigated entity mention detection, not relation extrac-
tion [2]. It would also be interesting to investigate, if data
augmentation can solve the problem of small datasets
preventing the training of general purpose information
extraction methods from natural language process [3].
Though, for this article this investigation was considered
out of scope.

Furthermore, our exploration of the changes in sur-
face form of process descriptions is highly qualitative
and focused on finding noteworthy occurrences of errors
in the augmented data. Deeper analysis on a linguistic
level could lead to more insights where data augmen-
tation techniques introduce unwanted and unexpected
perturbations, potentially detrimental to the process in-
formation extraction task.

Finally, we did not investigate the effects of data
augmentation on models trained with augmented data.
While we did do a black-box evaluation to judge how
much certain techniques improve the extraction quality,
this is merely descriptive, and does not explain these im-
provements. In future work we plan to analyze models
trained with augmented data in terms of their robust-
ness, resilience against adversarial examples, and gener-
alization capabilities, compared to models trained with
unaugmented data only.

7.3 Future Work

In this section we describe several avenues of further re-
search. First, some future work is already described in
our discussion of limitations (Sect. 7.2), including test-
ing augmented data for training deep learning models,
analyzing augmented data on a linguistic level, and in-
vestigating why augmented data changes an extraction
model’s capabilities.

Additionally, we want to analyze how targeted data
augmentation can be used to improve extraction of cer-
tain types of mentions or relations, tackling the problem
of data imbalance. We also want to explore adaptive data
augmentation, where samples are selected for augmen-
tation by their value for model training, e.g., measured
by the number of wrong predictions the cause during
evaluation.
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B. Algorithms for hyper-parameter optimization. Ad-
vances in neural information processing systems 24
(2011).

10. Bordes, A., Usunier, N., Garcia-Duran, A., We-
ston, J., and Yakhnenko, O. Translating embeddings
for modeling multi-relational data. Advances in neural
information processing systems 26 (2013).

11. Devlin, J., Chang, M.-W., Lee, K., and Toutanova,
K. Bert: Pre-training of deep bidirectional trans-
formers for language understanding. arXiv preprint
arXiv:1810.04805 (2018).

12. Dhole, K. D., Gangal, V., Gehrmann, S., Gupta,
A., Li, Z., Mahamood, S., Mahendiran, A., Mille,
S., Shrivastava, A., Tan, S., et al. Nl-augmenter: A
framework for task-sensitive natural language augmen-
tation. arXiv preprint arXiv:2112.02721 (2021).

13. Eldin, A. N., Assy, N., Anesini, O., Dalmas, B.,
and Gaaloul, W. A decomposed hybrid approach to
business process modeling with llms.

14. Erdengasileng, A., Han, Q., Zhao, T., Tian, S.,
Sui, X., Li, K., Wang, W., Wang, J., Hu, T., Pan,
F., et al. Pre-trained models, data augmentation,
and ensemble learning for biomedical information extrac-
tion and document classification. Database 2022 (2022),
baac066.

15. Feng, S. Y., Gangal, V., Wei, J., Chandar, S.,
Vosoughi, S., Mitamura, T., and Hovy, E. A survey
of data augmentation approaches for NLP.

16. Ferreira., R. C. B., Thom., L. H., and Fantinato.,
M. A semi-automatic approach to identify business pro-
cess elements in natural language texts. In ICEIS (2017).

17. Friedrich, F., Mendling, J., and Puhlmann, F. Pro-
cess model generation from natural language text. In
CAiSE (2011).

18. Grohs, M., Abb, L., Elsayed, N., and Rehse, J.-R.
Large language models can accomplish business process
management tasks. In International Conference on Busi-
ness Process Management (2023), Springer, pp. 453–465.

168 Data Augmentation for Process Information Extraction



18 Julian Neuberger et al.

19. Günther, M., Ong, J., Mohr, I., Abdessalem, A.,
Abel, T., Akram, M. K., Guzman, S., Mastrapas,
G., Sturua, S., Wang, B., Werk, M., Wang, N., and
Xiao, H. Jina embeddings 2: 8192-token general-purpose
text embeddings for long documents, 2023.

20. Jiang, Z., Han, J., Sisman, B., and Dong, X. L.
Cori: Collective relation integration with data augmen-
tation for open information extraction. arXiv preprint
arXiv:2106.00793 (2021).

21. Kampik, T., Warmuth, C., Rebmann, A., Agam, R.,
Egger, L. N., Gerber, A., Hoffart, J., Kolk, J.,
Herzig, P., Decker, G., et al. Large process models:
Business process management in the age of generative ai.
arXiv preprint arXiv:2309.00900 (2023).
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Appendix A Parameters of Data
Augmentation Techniques

Name Description MD RE

augmentation
rate

Number of
augmented process
descriptions created
per one original

4.70 3.60

replace
probability

Probability to replace
an adjective with its
antonym

93.1% 89.8%

Table 4: Parameters for augmentation technique Adjec-
tive Antonyms Switch (B.3 ). ColumnsMD and RE refer
to the parameter value for the mention detection (MD)
and relation extraction task (RE).

Name Description MD RE

augmentation
rate

Number of augmented
process descriptions
created per one original

0.98 1.52

Table 5: Parameters for augmentation technique
Antonyms Substitute (Double Negation) (B.5 ). Columns
MD and RE refer to the parameter value for the mention
detection (MD) and relation extraction task (RE).

Name Description MD RE

augmentation
rate

Number of augmented
process descriptions
created per one original

1.56 4.77

Table 6: Parameters for augmentation technique Aux-
iliary Negation Removal (B.6 ). Columns MD and RE
refer to the parameter value for the mention detection
(MD) and relation extraction task (RE).

Name Description MD RE

augmentation
rate

Number of
augmented process
descriptions created
per one original

3.13 5.63

replace
probability

Probability to replace
a text segment with
its back-translation

98.5% 63.2%

segment
length

Minimum length of
segment to be
considered for
translation

3 3

Table 7: Parameters for augmentation technique Back
Translation (B.8 ). Columns MD and RE refer to the
parameter value for the mention detection (MD) and
relation extraction task (RE).

Name Description MD RE

augmentation
rate

Number of augmented
process descriptions
created per one original

6.52 9.80

Table 8: Parameters for augmentation technique Con-
catenate Two Random Sentences (B.24 ). Columns MD
and RE refer to the parameter value for the mention
detection (MD) and relation extraction task (RE).

Name Description MD RE

augmentation
rate

Number of
augmented process
descriptions created
per one original

6.52 7.94

replace
probability

Probability to
replace a text
segment with its
back-translation

31.4% 3.4%

part of
speech tag
groups

Groups of part of
speech tags to
consider for
back-translation,
e.g., nouns, verbs,
adjectives, ...

Nouns
Adj.
Adv.

Nouns
Adj.
Adv.

Table 9: Parameters for augmentation technique Con-
textual Meaning Perturbation (B.26 ). Columns MD and
RE refer to the parameter value for the mention detec-
tion (MD) and relation extraction task (RE).
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Name Description MD RE

augmentation
rate

Number of
augmented process
descriptions created
per one original

0.47 2.24

replace
probability

Probability to replace
an abbreviation with
its long form and vice
versa

97.3% 91.9%

Table 10: Parameters for augmentation technique Con-
tractions and Expansions Perturbation (B.27 ). Columns
MD and RE refer to the parameter value for the mention
detection (MD) and relation extraction task (RE).

Name Description MD RE

augmentation
rate

Number of
augmented process
descriptions created
per one original

8.81 6.51

replace
probability

Probability to replace
an entity mention
with one from
another process
description

10.7% 73.9%

Table 11: Parameters for augmentation technique En-
glish Mention Replacement for NER (B.39 ). Columns
MD and RE refer to the parameter value for the men-
tion detection (MD) and relation extraction task (RE).

Name Description MD RE

augmentation
rate

Number of augmented
process descriptions
created per one original

5.13 7.63

insert
probability

Probability to insert
any of the filler phrases

6.3% 9.1%

insert
filler phrases

Should phrases like err,
uhm, ahh be inserted?

No Yes

insert
speaker
phrases

Should phrases like I
think, I mean, I would
say be inserted?

Yes Yes

insert
uncertainty
phrases

Should phrases like
maybe, probably,
possibly be inserted?

No No

Table 12: Parameters for augmentation technique Filler
Word Augmentation (B.40 ). Columns MD and RE refer
to the parameter value for the mention detection (MD)
and relation extraction task (RE).

Name Description MD RE

augmentation
rate

Number of
augmented process
descriptions created
per one original

3.47 4.24

replace
probability

Probability to replace
an entity mention
with its
back-translation

22.3% 18.9%

pivot
language

Language to translate
the segment to and
back

lo ja

Table 13: Parameters for augmentation technique Multi-
lingual Back Translation (B.62 ). Columns MD and RE
refer to the parameter value for the mention detection
(MD) and relation extraction task (RE).

Name Description MD RE

augmentation
rate

Number of augmented
process descriptions
created per one
original

3.58 6.72

delete
probability

Probability to delete a
token

12.2% 0.3%

Table 14: Parameters for augmentation technique Ran-
dom Word Deletion (B.79 ). Columns MD and RE refer
to the parameter value for the mention detection (MD)
and relation extraction task (RE).

Name Description MD RE

augmentation
rate

Number of
augmented process
descriptions created
per one original

1.41 0.09

replace
probability

Probability to replace
an abbreviation with
its long form and vice
versa

88.6% 99.6%

Table 15: Parameters for augmentation technique Re-
place Abbreviations and Acronyms (B.82 ). Columns MD
and RE refer to the parameter value for the mention de-
tection (MD) and relation extraction task (RE).

Name Description MD RE

augmentation
rate

Number of
augmented process
descriptions created
per one original

4.30 6.01

replace
probability

Probability to replace
a word with its
hypernym

38.7% 98.0%

Table 16: Parameters for augmentation technique Hyper-
nym Replacement (B.86 ). Columns MD and RE refer to
the parameter value for the mention detection (MD) and
relation extraction task (RE).
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Name Description MD RE

augmentation
rate

Number of
augmented process
descriptions created
per one original

3.20 6.87

replace
probability

Probability to replace
a word with its
hyponym

47.4% 91.7%

Table 17: Parameters for augmentation technique Hy-
ponym Replacement (B.86 ). Columns MD and RE refer
to the parameter value for the mention detection (MD)
and relation extraction task (RE).

Name Description MD RE

augmentation
rate

Number of augmented
process descriptions
created per one original

2.67 4.18

Table 18: Parameters for augmentation technique Sen-
tence Reordering (B.88 ). Columns MD and RE refer to
the parameter value for the mention detection (MD) and
relation extraction task (RE).

Name Description MD RE

augmentation
rate

Number of augmented
process descriptions
created per one
original

7.90 4.23

replace
probability

Probability to replace
a segment with its
shuffled version

46.2% 7.2%

Table 19: Parameters for augmentation technique Shuffle
Within Segments (B.90 ). Columns MD and RE refer to
the parameter value for the mention detection (MD) and
relation extraction task (RE).

Name Description MD RE

augmentation
rate

Number of
augmented process
descriptions created
per one original

7.90 6.23

insert
probability

Probability to insert
the synonym of a
word before that
word

14.7% 25.7%

Table 20: Parameters for augmentation technique Syn-
onym Insertion (B.100 ). Columns MD and RE refer to
the parameter value for the mention detection (MD) and
relation extraction task (RE).

Name Description MD RE

augmentation
rate

Number of
augmented process
descriptions created
per one original

2.14 4.54

replace
probability

Probability to replace
a word with its
synonym

30.2% 10.6%

Table 21: Parameters for augmentation technique Syn-
onym Substitution (B.101 ). Columns MD and RE refer
to the parameter value for the mention detection (MD)
and relation extraction task (RE).

Name Description MD RE

augmentation
rate

Number of
augmented process
descriptions created
per one original

5.04 6.67

replace
probability

Probability to replace
a segment with a
segment with
identical
part-of-speech tags
from a different
document

30.2% 40.7%

min
length

Minimum length of
segment to replace

1 4

max
length

Maximum length of
segment to replace

5 8

Table 22: Parameters for augmentation technique Sub-
sequence Substitution for Sequence Tagging (B.103 ).
Columns MD and RE refer to the parameter value for
the mention detection (MD) and relation extraction task
(RE).

Name Description MD RE

augmentation
rate

Number of
augmented process
descriptions created
per one original

3.37 5.56

replace
probability

Probability to mask
a word and fill it
using a transformer
model (BERT)

30.4% 38.4%

part of
speech tags

Groups of
part-of-speech tags
that are considered
for masking and
filling

Nouns Nouns,
Adj.

Table 23: Parameters for augmentation technique Trans-
former Fill (B.101 ). Columns MD and RE refer to the
parameter value for the mention detection (MD) and re-
lation extraction task (RE).
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Name Description MD RE

augmentation
rate

Number of augmented
process descriptions
created per one original

6.04 20.3

insert
probability

Probability to insert a
random token from a
different document at
each original token

2.4% 0.6%

Table 24: Parameters for augmentation technique Ran-
dom Insert. ColumnsMD and RE refer to the parameter
value for the mention detection (MD) and relation ex-
traction task (RE).

Name Description MD RE

augmentation
rate

Number of augmented
process descriptions
created per one original

2.81 2.03

swap
probability

Probability to swap any
two tokens in the
process description

0.7% 1.5%

Table 25: Parameters for augmentation technique Ran-
dom Swap. Columns MD and RE refer to the parameter
value for the mention detection (MD) and relation ex-
traction task (RE).

Name Description MD RE

augmentation
rate

Number of
augmented process
descriptions created
per one original

4.51 6.19

replace
probability

Probability to replace
a text segment with a
rephrased version

27.7% 30.6%

Table 26: Parameters for augmentation technique Large
Language Model Rephrasing. Columns MD and RE refer
to the parameter value for the mention detection (MD)
and relation extraction task (RE).

Name Description MD RE

oversampling
rate

Number of uniform
randomly sampled
original documents

1.46 5.08

Table 27: Parameters for augmentation technique Uni-
form Oversampling. Columns MD and RE refer to the
parameter value for the mention detection (MD) and re-
lation extraction task (RE).

Name Description MD RE

oversampling
rate

Number of randomly
sampled original
documents, weighed by
the rarity of contained
types

4.09 5.05

Table 28: Parameters for augmentation technique In-
verse Type Oversampling. Columns MD and RE refer
to the parameter value for the mention detection (MD)
and relation extraction task (RE).

Data Augmentation for Process Information Extraction 173



Repeat, Reorder, Rephrase — Data Augmentation for Process Information Extraction 23

Appendix B Additional Figures for Changes in
Meaning
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Fig. 17: Scatter plot of the embedding vectors for the texts of original and augmented documents.
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Fig. 18: Scatter plot of the embedding vectors for the sentences of original and augmented documents.
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Chapter 13

Discussion and Future Work

In this thesis we presented three approaches to applying machine learning to the task of extracting
process information from natural language process descriptions. We found that directly applying
existing models from the wider field of information extraction is not feasible due to a lack
of training data. Using pretrained language models, especially large, generative decoder-only
transformer architectures and in-context learning seems to be possible, but comes with downsides
that must be considered. These include, foremost, concerns about privacy when using external
providers in the cloud, or major hardware requirements, when using large language models
locally [52].

Instead, smaller machine learning models might be used right now, but could require retraining,
if the application domain differs to much from the data contained in academic datasets, such
as PET [53]. To alleviate this, data augmentation seems to be useful, allowing users to utilize
existing data more efficiently. Annotating new data is made easier through our work on assisted
data annotation for process information extraction data and the corresponding annotation tool
TeaPie.

In summary, academics or practitioners interested in extracting process information and
generating formal process models from it, should start with applying our work on large language
model based process information extraction, due to its low barrier of entry [52]. These early
experiments should start with non-critical processes, and could potentially be run on cloud
providers of large language models. Alternatively, local models could be used, if the drop in
predictive performance is acceptable. To proceed towards a solution for use beyond these early
experiments, a custom dataset should be created to supplement the PET dataset, preferably with
proper tool support, such as TeaPie [51, 55]. This dataset can then be used to train machine
learning models small enough to run on local hardware [3, 53].

In the following sections we will discuss some points of consideration when it comes to applying
the findings presented in this thesis. The remainder of this chapter will therefore serve as a
summary of existing limitations and future work resulting from these limitations. Section 13.1
highlights some limitations in the flexibility of machine learning methods for process information
extraction, when the target process modeling language is changed. Section 13.2 details several
challenges in the synthesis of formal models from extracted process information. Section 13.3
discusses limitations and future work related to detecting and dealing with incomplete process
descriptions. Finally, we conclude this thesis in Section 13.4.
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13.1 Switching Modeling Languages

One of the major advantages of using machine learning for process information extraction is
the flexibility it offers, when applying the same method to texts of different domains, e.g., legal
texts, manufacturing, or public service, or applying them to different natural languages, e.g.,
German or English. These texts may use very different vocabulary and grammar, but they still
describe the same type of information, i.e., the styles of description remain similar. This is less
the case when switching modeling languages, especially when switching from imperative modeling
languages like BPMN to declarative ones like DCR. While we showed that methods are able
to adapt to different description styles either during training [3] or during inference [52], the
discussion how humans describe workflow constraints in natural language remains part of future
work. Related work indicates text describing law and medical procedures can be transformed
particularly well to declarative process models [1, 46, 45]. Yet, it is still unclear if there is
a fundamental difference between texts describing imperative processes and those describing
declarative ones, and if humans prefer thinking in one way or the other. If there is a fundamental
difference, reliably detecting the most suitable process modeling language would be a task that
warrants further research.

13.2 From Process Information to Formal Models

Since there is often a trivial mapping between business process elements and the information
extracted, we used process information extraction and model generation synonymously throughout
this thesis. For PET mappings are, for example, entity of type Activity → action in BPMN task
label, and entity of type Actor → label of BPMN pool / lane. Still, there are several challenges
and issues left, when transforming extracted process information to formal process models. In
this section we will discuss a selection of them to illustrate the importance of this transformation
step, without claiming exhaustiveness.

Label Generation. This is the task of creating an easy to understand, concise, and correct
phrase, that describes process elements, such as tasks, gateway paths, or lanes. There are
guidelines for generating labels that satisfy these criteria [50], which a model generation approach
should follow. Most importantly, these guidelines recommend avoiding noun-actions, e.g., Order
shipping, and labels that do not contain any explicit action, e.g., Order procedure, in favor of
explicit verb-object labels, e.g., Ship the order. Therefore, generating useful activity (task) labels
involves transforming actions from their surface form as extracted from the natural language
process description to a useful label [75, 1]. Many of the modern approaches do not consider this
step [9, 3, 62].

Layouting. While creating elements in a formal business process model, arranging them is often
disregarded in current approaches, or solved using simple heuristics. This can be problematic,
since the ordering of tasks in an imperative process model (e.g., in BPMN), implies temporal
ordering of process elements, especially the control flow of tasks. This ordering is commonly
recommended as left-to-right [27], but other directions only have a small and statistically
insignificant effect on the overall process comprehension of study participants [28]. Recent
research instead highlights the importance of consistent use of workflow patterns [19], i.e., the
ordering on a smaller scale [26]. Lübke et al. [47] found that most (87.92%) of publicly available
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BPMN models on GitHub follow a strictly linear layout, i.e., either vertical or horizontal without
any “bends”. This is still a challenging field of research, which becomes clear, when considering
that placing elements and routing edges between them becomes more complex, the more elements
there are in a model. Even in moderately sized models placing, e.g., a data object element and
routing the data association to all tasks that use said data object, without overlapping existing
elements, becomes complex. Dedicated approaches for layouting process models implement ideas
from graph layouting [37], but this limitation holds even for those.

Inappropriate Granularity. Extracting entities that are to coarse-grained can prohibit proper
use of model elements. For example, most current annotation schemes do not consider the relation
between different actors (e.g., is part of, or is supervisor) [9, 3, 62, 61, 1], which prevents proper
use of swimlanes and pools, and in extension, modeling the hierarchical relationship between
actors. Similarly, only the dataset by Quishpi et al. [62] differentiates verbs into actions and
events. Increasing the granularity would allow model generation approaches to select appropriate
elements, e.g., system or user tasks in BPMN. Extraction approaches should consider multi-
grained entity types, like in Few-NERD [22], which contains 8 coarse-grained (e.g., Person) and
66 fine-grained entity types (e.g., Actor, Artist, Athlete).

Relation Directionality. The PET dataset used for evaluation of methods in this thesis does
not fully exploit the semantics the direction of a relation provides, i.e., additional information
valuable for generating a process model. Consider relations, which connect data objects to the
activity in which they are used. In PET this relation is always originating in an activity and
ending in the data object [9]. Thus, distinguishing an activity that produces a data object from
one consuming it is impossible. Considering the directionality of relations in both the annotation
schema and extracted information would solve this issue, but was out of scope for this thesis,
and thus, is part of future work.

Non-Continuous Entity Mentions. If process relevant information is interrupted by tokens,
that do not belong to a certain entity (process element), the methods of this thesis will only
extract the information partially. This issue arises very often with prepositional verbs, e.g.,
notify of, agree about, or send to, if verb and preposition are separated by the sentence’s object.
Consider the sentence “The INQ notifies the IP of the change” from document doc-10.12 of
PET. Here, the complete action should be notify of, so that the activity label notify of the
change can be generated. However, since most state-of-the-art data annotation schemes used
for business process information extraction require continuous spans [9, 62, 3], only notifies is
extracted. This would usually lead to a task with the label notify the change, which is misleading.
Datasets and methods may resolve this issue by allowing non-continuous spans, or by including
the transformation to an action in the extraction task, i.e., relaxing the alignment of extracted
information with the original text [1].

13.3 Description Completeness

All of the methods we developed for this thesis assume completeness in the descriptions of
business processes. This includes explicit statements of all relevant process elements, such as
tasks, actors, or data objects, and also explicitness in statements of decisions. Humans tend to
convey much information implicitly, e.g., the sentence “If the bike passes quality assurance, it is
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sent to the customer.” implies that the bike may not pass quality assurance and needs rework. A
human reader easily understands this fact and might even include it in the corresponding process
model, while a machine might not.

Description completeness also refers to issues with the precision of natural language, or the
lack thereof. Natural language statements such as “The customer fills out the form and submits
it to the agency, who registers and reviews it. In parallel to these steps, [...]” leave room for
interpretation, as to which steps the text refers to.

Checking natural language process descriptions for completeness was out of scope for this
thesis, but is a stream of research that becomes more and more popular, especially with the
advent of process modeling chatbots [40]. These chatbots can ask for additional information, if
an incomplete description is detected.

13.4 Future Work and Conclusion

In this thesis we developed three approaches for applying deep learning in the task of process in-
formation extraction from natural language process descriptions. In the earlier Sections 13.1, 13.2,
and 13.3, we discussed several limitations. These limitations represent promising avenues of
future work beyond the scope of this thesis.

Additionally, we plan to create a cloud-based platform for synthesizing process models from
natural language process descriptions, based on the work presented in this thesis. We plan to
achieve this by implementing the pipeline from Figure 1.2 in a web application, and integrating
the options 1– 3 for mitigating a lack of training data. This means, the platform should have
an improved version of our efficient annotation tool TeaPie (Chapters 10 and 11), which allows
users to create their own training data. This data will then be automatically augmented with
the perturbation techniques we identified as useful in the corresponding publications (Chapters 8
and 12). Finally, we will let users use a variety of pretrained models, that are either fine-tuned
with their training data (Chapters 5, 6, and 7), or use in-context learning (Chapter 9). An
implementation of a research prototype for this platform is already in active development, and a
extensive study on its feasibility with representatives from industry and academia is planned in
the future.

In conclusion, the application of deep learning in process information extraction has the
potential of facilitating the creation of formal process models, and support academics and
practitioners in domains, where no rule-based text-to-model methods exist. The methods we
developed in this thesis enable the application of deep learning, even if no (or not enough)
training data exists, which is crucial for small and medium sized organizations interested in
the automatic generation of process models from their internal data. With this, we make a
contribution towards lowering the barrier of entry for applied business process management.
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