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Abstract

Let J be the Jacobian variety of a “nice” curve C/k. In this thesis we compute the
Cassels-Tate pairing for Selmer groups of various isogenies on Jacobians of various
types of curves. The main aim of the thesis is to use the Albanese-Albanese definition
of the pairing to obtain an algorithm.

We start with computing the Cassels-Tate pairing on S(2)(E/k)×S(2)(E/k), where
E/k is an elliptic curve. Furthermore, this provides an alternative proof that the pair-
ing defined by Cassels is the same as the Cassels-Tate pairing.

Next, we generalize our method for computing the Cassels-Tate pairing to S(2)(J/k),
where J is the Jacobian variety of an odd-degree hyperelliptic curve. Furthermore,
we give a conditional algorithm (conditioned on if a set of ternary quadratic forms
have a global solution) inspired by the elliptic curve case. We use our conditional al-
gorithm to compute the Cassels-Tate pairing in various cases including genus 3 and 4.

Apart from the above, we compute the Cassels-Tate pairing on (1 − ζl)-Selmer
groups corresponding to the curves of the form y2 = xl +A and use it compute some
examples.

At last we discuss the computation of the Cassels-Tate pairing on Selmer groups
of Richelot isogenies and (3, 3)-isogenies (when the kernel is isomorphic to (Z/3Z)2 as
a Galois module) on genus 2 Jacobians. We end this thesis with some discussion on
computation of the pairing for the case of “True descents”, and some future problems.
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Or should it acknowledge the farmers little daughter who wanted a mango tree in their farm?
Or rather her friend who introduced her to mangoes? Or should it thank everything and
everyone responsible for the farmer and his familys health and well-being making sure that
they successfully managed to care for it? Or the monkey who, after eating a mango, threw
the seed in their garden which the farmer finally planted? Or should it be grateful to the
numerous plants and animals who shed their wastes contributing to the richness of the soil?
Or should it thank the weather cycles and the responsible planetary forces causing plants to
shed leaves? Or the animals biological system and the responsible life forces making them
shed their wastes regularly? Or should it thank all the birds feeding on the worms that were
eating it when it was still a sapling, or the ecological system leading the birds to do so? Or
should it acknowledge the sun, or its source? Or should it thank the passerby who ended
up urinating around its roots when the little mango plant was about to die because of lack
of water? Or should it thank the storm which blew away the unnoticed weeds that had been
growing around it and had been taking up all its nutrients?

Overwhelmed by all this, it could not help but feel grateful towards every single atom and
every single living being that have ever existed, and all the forces causing and sustaining
them. It kept quiet and simply lived on, continuing to bear new flowers every spring and to
bear new fruits every summer. ” – [Pan21, Acknowledgement].
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िनकला वह उन्मुक्त नशे से, ज्ञात हुआ मादकता का।

मिदरालय कोई अंत नहीं था, पथ ही थी वह मधुशाला।



Contents

Abstract 2

Acknowledgements 4

Introduction 9

1 Background and Preliminaries 15
1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2 Geometric Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2.1 Picard variety . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.2.2 Albanese variety . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.2.3 Correspondences . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.2.4 Jacobians of curves . . . . . . . . . . . . . . . . . . . . . . . . 23
1.2.5 Mumford representation on odd-degree hyperelliptic Jacobians 24

1.3 Group Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.3.1 Tate cohomology . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.3.2 Dimension shifting . . . . . . . . . . . . . . . . . . . . . . . . 32
1.3.3 Galois Cohomology . . . . . . . . . . . . . . . . . . . . . . . . 36
1.3.4 Brauer Groups . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.3.5 From cocycle to algebra . . . . . . . . . . . . . . . . . . . . . 40
1.3.6 Facts on Brauer groups and class field theory . . . . . . . . . 40
1.3.7 Twisted powers of Galois modules and Poitou-Tate duality . . 43

1.4 Covering spaces and descent . . . . . . . . . . . . . . . . . . . . . . . 44
1.5 Selmer groups and rank bounds . . . . . . . . . . . . . . . . . . . . . 46

2 Cassels-Tate Pairing 51
2.1 Some pairings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.1.1 The Albanese-Picard definition of the Weil pairing . . . . . . . 53
2.1.2 Pairings in case of Jacobians . . . . . . . . . . . . . . . . . . . 54
2.1.3 Extension of the pairings 〈·, ·〉1 and 〈·, ·〉2 for Jacobians . . . . 55
2.1.4 e2 for hyperelliptic Jacobians . . . . . . . . . . . . . . . . . . 56

2.2 The homogeneous space definition . . . . . . . . . . . . . . . . . . . . 57

7



8 CONTENTS

2.3 The Weil pairing definition . . . . . . . . . . . . . . . . . . . . . . . . 58
2.4 The Albanese-Albanese definition . . . . . . . . . . . . . . . . . . . . 59
2.5 Equivalence of definitions . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.5.1 Equivalence with the Weil-pairing definition . . . . . . . . . . 62
2.5.2 Equivalence with the homogeneous space definition . . . . . . 63

2.6 Previous computation of the CTP . . . . . . . . . . . . . . . . . . . . 63

3 The CTP for elliptic curves 67
3.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.1.1 Cassels’ pairing . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.1.2 Some useful formulas . . . . . . . . . . . . . . . . . . . . . . . 69

3.2 Computing the CTP on S2(E/k)× H1(Gk, 〈T1〉) . . . . . . . . . . . . 70
3.2.1 Global computation . . . . . . . . . . . . . . . . . . . . . . . . 70
3.2.2 Local computation . . . . . . . . . . . . . . . . . . . . . . . . 74

3.3 Computing the CTP on S(2)(E/k)× S(2)(E/k) . . . . . . . . . . . . . 77
3.3.1 Corestriction method . . . . . . . . . . . . . . . . . . . . . . . 77
3.3.2 Exact formula for the CTP . . . . . . . . . . . . . . . . . . . . 81

3.4 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4 The CTP for odd degree hyperelliptic Jacobians 85
4.1 Corestriction method . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.2 Modified definition of the CTP for S(2)(J/k) . . . . . . . . . . . . . . 88
4.3 The CTP on S(2)(J/k)× H1(Gk, 〈[(T1)− (T0)]〉) . . . . . . . . . . . . 90

4.3.1 Global computation . . . . . . . . . . . . . . . . . . . . . . . . 90
4.3.2 Removing Assumption 4.3.3 . . . . . . . . . . . . . . . . . . . 97
4.3.3 Local computation . . . . . . . . . . . . . . . . . . . . . . . . 99
4.3.4 An explicit η1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.3.5 Prime bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.3.6 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.4 A conditional but simpler algorithm . . . . . . . . . . . . . . . . . . . 107
4.4.1 Assumption 4.4.3 is not very strict . . . . . . . . . . . . . . . 111

4.5 Algorithm, implementation and examples . . . . . . . . . . . . . . . . 112
4.5.1 Algorithm for good elements . . . . . . . . . . . . . . . . . . . 113
4.5.2 Example of genus 2 (when f splits completely) . . . . . . . . . 114
4.5.3 Example of genus 3 . . . . . . . . . . . . . . . . . . . . . . . . 115
4.5.4 Examples of genus 4 . . . . . . . . . . . . . . . . . . . . . . . 117

5 The CTP for the Jacobian of y2 = xl + A 119
5.1 Global computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.2 Local computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.3 The prime bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130



CONTENTS 9

5.4 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.5 A special case of computation . . . . . . . . . . . . . . . . . . . . . . 132
5.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.6.1 C23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.6.2 C62 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6 Descent using some isogenies and the CTP 139
6.1 Richelot isogeny . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.1.1 Computation of the pairing . . . . . . . . . . . . . . . . . . . 142
6.2 (3, 3)-isogeny . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.2.1 Computation of the pairing . . . . . . . . . . . . . . . . . . . 146

7 Conclusion 151
7.1 What’s new . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.1.1 The CTP on 2-Selmer groups . . . . . . . . . . . . . . . . . . 151
7.1.2 The CTP for other isogenies . . . . . . . . . . . . . . . . . . . 154

7.2 Zukunftsmusik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
7.2.1 True descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
7.2.2 Algorithmic questions . . . . . . . . . . . . . . . . . . . . . . 156
7.2.3 Arithmetic statistics with the CTP . . . . . . . . . . . . . . . 157

Bibliography 158



10 CONTENTS



Introduction

Given a “nice” curve C over a number field k, computing the set of k-rational points
C(k) is one of the fundamental problems in Arithmetic Geometry. If C is not a
rational curve, then this problem usually turns out to be hard. Mordell’s conjecture
(now a theorem due to Faltings) implies that C(k) is finite, if the genus g of C is
larger than 1. One of the ways to compute C(k) is to compute k-rational points on
the Jacobian variety JC ' Pic 0(C), which is a principally polarized abelian variety.
The Mordell–Weil theorem for an abelian variety A/k implies that

A(k) ' A(k)tors ⊕ ZrA ,

where rA is the algebraic rank associated to A/k and A(k)tors is a finite abelian group.
Therefore, computing k-rational points on JC/k naturally requires the knowledge of
rJC .

On the other hand, methods exist to bound the size of C(k) just by knowing rJC
over k and the number of points over a prime of good reduction. One such method
is using Chabauty–Coleman which says that when rJC < g, p is a prime of k above a
rational prime p > 2g and additionally if p is a prime of good reduction for C, then

#C(k) < #C̄(kp) + 2g − 2,

where C̄ is the reduction of C mod p and k̄p is the residue field of the completion kp.
There are many variants of Chabauty’s method available (for details see [Cor]) and all
require knowledge of rJC or at least that the Selmer-rank is sufficiently small (as in the
case of [Sto17b]) . Moreover, one obtains better bounds if rJC ≤ g − 2 (see [Sto06]),
and uniform bounds only in terms of the degree d := [k : Q] and g if rJC ≤ g− 3 (see
[Sto19] when C is hyperelliptic and [KRZB15] for general C). Dimitrov, Gao and
Habegger [DGH21] have been able to uniformly bound the number of the points on
C/k in terms of g, rJC and d, providing a uniform bound on #C(k). However, these
bounds are astronomical and given a concrete curve will be inefficient. Nonetheless,
we observe that rJC plays a crucial role in computing C(k).

Jacobians naturally are the next class of abelian varieties after elliptic curves
(abelian varieties of dimension 1) to be considered. Furthermore, Matsusaka’s theo-
rem implies that every abelian variety over k is a quotient of the Jacobian of some

11
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curve. Hence, computing the algebraic rank of a Jacobian is of independent impor-
tance to the verification of the BSD (Birch and Swinnerton-Dyer) conjecture (both
weak and strong versions) in higher dimensional cases. If the weak BSD conjecture
holds for a Jacobian variety J , then rJ can be obtained by computing the order
of vanishing of the L-function L(J/k, s) at s = 1. In order to verify the strong
BSD conjecture (that connects the leading term of the L-function with the geomet-
ric and arithmetic invariants) it is important to have an idea about the size of the
Tate-Shafarevich group and the Cassels-Tate pairing can be used to capture visible
elements in the Tate-Shafarevich group, thus giving us information on its size. Here
visible elements are the elements of the Tate-Shafarevich group that pair non-trivially
under the Cassels-Tate pairing.

The focus of this PhD thesis is mainly to obtain better bounds on rJC using descent
methods. Let J be a Jacobian and φ : J → A be an isogeny (surjective and finite
homomorphism). Let Gk be the absolute Galois group of k and J [φ] be the kernel of
φ. Taking Galois cohomology (both locally and globally) on the exact sequence

0→ J [φ]→ J → A→ 0,

one obtains
0→ A(k)/φJ(k)→ S(ϕ)(J/k)→X(J/k)[φ]→ 0,

where S(ϕ)(J/k) := ker(H1(Gk, J [φ]) →
∏
v

H1(Gkv , J)) is the φ-Selmer group and

X(J/k) := ker
(

H1(Gk, J)→
∏
v

H1(Gkv , J)

)
is the Tate-Shafarevich group of J/k.

Both Selmer and Tate-Shafarevich groups compute deviations from certain local-
global principles and characterize geometric objects. The Selmer group is provably
finite; hence, one may obtain an upper bound on rJ (also on rA) by using #S(ϕ), for
example, in the case when φ is the multiplication by n isogeny. There are various
algorithms known to compute the Selmer groups in various cases and we will discuss
a few of them in this thesis.

Cassels and Tate (Cassels for elliptic curves and Tate for abelian varieties) defined
a pairing, called the Cassels-Tate pairing (CTP)

〈·, ·〉CT : X(J/k)×X(J/k)→ Q/Z,

such that nX(J/k) is the exact annihilator of X(J/k)[n]. The pairing is in general
anti-symmetric and non-degenerate on the maximal non-divisible quotient of X(J/k).
In particular, if X(J/k) is finite (as is conjectured), then 〈·, ·〉CT is a perfect pairing.
One can pull back 〈·, ·〉CT to define a pairing (that we again call Cassels-Tate pairing)

〈·, ·〉CT : S(n)(J/k)× S(n)(J/k)→ Q/Z,

such that 〈a, b〉CT = 0 for all b ∈ S(n)(J/k) ⇐⇒ a ∈ Im(S(n2)(J/k)) ⊂ S(n)(J/k).
From the following commutative diagram one concludes that rJ can be bounded in
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terms of ker(〈·, ·〉CT).
J(k)/n2J(k) S(n2)(J/k)

J(k)/nJ(k) S(n)(J/k).

There are various definitions of the CTP known for principally polarized abelian
varieties and algorithms for computing the CTP have been given in various cases. We
mention a few cases in §2.6. Attempts to compute the CTP have been mainly via the
Weil-pairing definition and the homogeneous space definition of the CTP. Using the
Weil-pairing requires one to work with fields of n2 torsion points k(J [n2]). On the
other hand, using the homogeneous space definition requires one to work with explicit
equations for homogeneous spaces represented by the n-Selmer elements. The com-
plication is clear in both cases. In the case of the Weil-pairing definition, [k(J [n2]) : k]

is generally very large compared to the field of definition of 1-cocycles representing
n-Selmer elements. Similarly for the homogeneous space definition, the explicit equa-
tions representing homogeneous spaces can be very complicated and cumbersome to
work with.

This work is the first attempt to obtain an algorithm to compute the CTP using
the Albanese-Albanese definition that requires one to work with the group of divisors
on C, i.e., the group of formal sums of points on C, therefore, avoiding to work
with complicated equations of homogeneous spaces. Another advantage can be not
to expand the fields over which one needs to perform the arithmetic beyond the
field of definition of our starting 1-cocycles representing the Selmer elements being
paired, therefore, avoiding the expansion to k(J [n2]). We make this definition effective
in various cases, avoiding both the hurdles coming from the Weil-pairing and the
homogeneous space definitions of the pairing. The major challenge is trying to obtain
a 2-cochain ε with values in Gm such that ∂ε = η, where η is a 3-cocycle constructed
in the definition of the CTP, and ∂ is the coboundary operator. Apart from bounding
the rank, computing the Cassels-Tate pairing is of independent interest, i.e., one can
use the CTP to “visualize” elements in X(J/k) (two Selmer elements which pair
non-trivially necessarily represent non-trivial elements in X(J/k)).

The organization of this thesis is as follows: In Chapter 1 we discuss the prelimi-
naries and the background relevant to the thesis.

We introduce the Cassels-Tate pairing in Chapter 2 via three different definitions
for Jacobian varieties and discuss the previous work on its computation. We then
extend the two Galois–equivariant pairings (between principal divisors and degree
zero divisors) used in the Albanese-Albanese definition so that they are defined ev-
erywhere, rather than only on divisors with disjoint support. This helps us avoid
some complications which arise from the assumption used in the original definition,
which demands that the lifts of certain elements of Pic 0(Ck) to Div0(Ck) have disjoint
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support.
In Chapter 3 we use the Albanese-Albanese definition to obtain the CTP (previ-

ously obtained due to Cassels [Cas98]) on S(2)(E/k) for an elliptic curve E/k. This
is the first attempt to compute the pairing using Albanese-Albanese definition.

In Chapter 4 we generalize the techniques used to compute the CTP in the case
of elliptic curves to S(2)(J/k) for the Jacobian J of an odd-degree hyperelliptic curve
of any genus. Furthermore, we discuss a conditional algorithm inspired by the elliptic
curve case and show that the condition (empirically) is a mild one for genus 2 and
becomes stronger as the genus increases. We also discuss some examples.

In Chapter 5 we discuss the computation of the CTP for (1− ζl)-isogeny Selmer
groups on the Jacobians of curves of the form y2 = xl + A for A ∈ Z and l-odd.
Furthermore, in §5.5 we consider a conditional case where we can avoid inverting
a local point under the (1 − ζl)-isogeny. We also provide some examples for the
computations.

We conclude this thesis by discussing the computation of the CTP on (2, 2)-
isogeny and (3, 3)-isogeny Selmer groups in Chapter 6. For (3, 3)-isogenies we provide
a method for computing the global part of the pairing only.

The Magma programs checking the examples in the thesis and implementations of
some of the algorithms can be found at https://github.com/highshukla/thesis_codes.

https://github.com/highshukla/thesis_codes


Chapter 1

Background and Preliminaries

1.1 Notation

Throughout this thesis, for the sake of simplicity, we assume that our base fields
are of characteristic 0 unless stated otherwise even though most of the results can
be extended to positive characteristic fields with suitable assumptions. Furthermore,
if at some point we are working with positive characteristic fields, then we assume
that they are perfect unless stated otherwise. In this section, we will list some of the
notations which will be common throughout.

We denote by Z+ the set of positive integers. For a perfect field k, let k denote
a fixed algebraic closure of k, Gk := Gal(k/k), and Gm := k

×. For a number field k

and a place v of k, we denote its completion at v by kv, and for each completion we
fix an embedding k ↪→ kv. This induces an embedding Gkv ↪→ Gk. Let knr

v denote
the maximal unramified extension of kv, and let kv denote the residue field associated
to kv. We have the natural identification Gal(knr

v /kv) ' Gal(kv/kv). If k is a number
field, then let Cl(k) denote the class group of k.

For an algebra A over k and for each n ≥ 1, we denote by µn(A) := {ζ : ζn =

1} ⊂ A×, the nth roots of unity contained in A and Ā := A⊗k k, i.e., the extension
of scalars to k.

Let G be a group and M a G-module, i.e., an abelian group with a G-action
compatible with the group operation. Then, by MG, we denote the submodule fixed
by G. For a G-set (a set with an action of group G on it) ∆ and a G-module M , let
M∆ denote the set

{m : m : ∆→M is a continuous map}.

Here, the continuity of maps is considered with respect to the topology on ∆ and M ,
which in many cases will be discrete. M∆ is clearly an abelian group and becomes
a G-module under the natural action g ·m : P 7→ gm(g−1P ). If M is a Gk-module
and K is an algebraic field extension of k, then M(K) := MGK . If φ : M → M ′

is a homomorphism between abelian groups M and M ′, then we denote ker(φ) with

15



16 CHAPTER 1. BACKGROUND AND PRELIMINARIES

M [φ]. For a Gk-module M , let k(M) := (k)ker(Gk→Aut (M)). Note that k(M) is a Galois
extension of k with Gk(M) = ker(Gk → Aut (M)). When k is a global field and v a
place of k, we define Mv to be the module M viewed as Gkv -module.

Let ∂, Cn(G,M), Zn(G,M), Bn(G,M) and Hn(G,M) denote the coboundary
map, the group of continuous n-cochains, n-cocycles, n-coboundaries and n-cohomology
classes, respectively, with respect to the bar resolution (for definitions and details
see §1.3). For a cochain x ∈ Ci(Gk,−) we will denote its restriction to Ci(Gkv ,−)
by xv using the fixed embedding Gkv ↪→ Gk. To simplify notation, we will denote
Ci(Gk,Gm) by Ci(k), and similarly for the groups of cocycles and cohomology classes.
If L/k is a finite Galois extension, then we denote C i(Gal(L/k), L×) by Ci(L/k) and
similarly for the groups of cocycles and cohomology classes. Let Br(k) ' H2(k) denote
the Brauer group, and Br(L/k) ' H2(L/k) denote the relative Brauer group.

We will write the group structure on the cochains/cohomology classes additively,
even when they take values in a multiplicative group. However, after the evaluation of
cochains at certain arguments, we will use the group operation of the corresponding
G-module. For example, if x, y ∈ C1(k), then we use + to denote their addition
z := x+ y as cochains, but for σ ∈ Gk, z(σ) ∈ Gm will be written as x(σ)y(σ), using
the group operation of Gm.

We call a variety V over k “nice” if V is a projective, geometrically irreducible, and
smooth variety defined over k. Unless stated otherwise we assume throughout that V
is a nice variety. Let L/k be a field extension; then, we denote the base change of V /k

to L by VL. Let k(Vk) be the field of rational functions on Vk and k(V ) :=
(
k(Vk)

)Gk

(see Remark 1.2.1 for why k(V ), i.e., the field of rational functions with coefficients
in k is exactly the Gk invariant subfield of k(Vk)). A curve X/k will be a “nice
variety” of dimension 1 defined over k. Let Div(Xk), Div0(Xk), Princ(Xk), Pic (Xk)

and Pic 0(Xk) denote the standard objects, i.e., the group of divisors, the group of
degree 0-divisors, principal divisors on Xk (i.e. supported on closed points of Xk),
the Picard group, and the degree zero component of the Picard scheme associated
to Xk, respectively. Similarly, Div(X), Div0(X), Princ(X), Pic (X), and Pic 0(X)

denote the above mentioned objects supported on closed points of X/k. In partic-
ular, Pic (X) = Div(X)/Princ(X) and Pic 0(X) = Div0(X)/Princ(X). Note that
Div(X) = Div(Xk)

Gk and Princ(X) = Princ(Xk)
Gk . However, in general Pic (X) 6=

Pic (Xk)
Gk and the deviation from equality is characterized by the period-index ob-

struction (see [PS97, §3] for details). Furthermore, the elements of the group Pic (Xk)

denote the k-rational points of the Picard scheme and the action of Gk on both is
compatible. Since we will be mostly working with the points on the Picard scheme,
we deviate from the standard notation and use the same notation for both. In the
next section, we talk about the above mentioned objects more precisely for general
“nice” varieties V /k.
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1.2 Geometric Preliminaries

In this section, we assume that k is algebraically closed unless stated otherwise. Let
V /k be a nice variety. Let W ⊂ V be an irreducible codimension 1 subvariety of V .
Then W formally defines a prime divisor on V . The group generated by all (W ), i.e.,
the group of the formal sums of the form∑

Wprime divisors on V

nW (W ),

where nW ∈ Z, and nW = 0 for all but finitely many prime divisors W , is called
the group of Weil divisors on V denoted by Div(V ). If V /k, W/k are nice varieties
and D ∈ Div(V ×W ), then we define the transpose divisor tD of D to be divisor
on W × V that is the image of D under the identification V ×W '→ W × V . There
is a well defined homomorphism deg : Div(V ) → Z, given by

∑
W

nW (W ) 7→
∑
W

nW

when V is a curve. Let Div0(V ) = ker(deg). In general, Div0(V ) is the group of
divisors algebraically equivalent to 0 [Lan83, III §1]. Let f ∈ k(V )×. Then one can
define a divisor associated to f denoted by div(f) as

∑
W

ordW (f)(W ), where ordW (f)

is defined as valuation of f in the field of fractions of the discrete valuation ring OV,W
where OV is the structure sheaf of V [Har77, II §6]. A divisor D ∈ Div(V ) is called
a principal divisor on V , if D = div(f) for some f ∈ k(V ). The set of principal
divisors forms a subgroup of Div0(V ) [Lan83, III §1] denoted by Princ(V ). One has
the following exact sequence

0→ k× → k(V )× → Princ(V )→ 0. (1.2.1)

For non-algebraically closed base fields k we have the following remark:

Remark 1.2.1. Using Hilbert’s Theorem 90 and that H1(Gk, k
+
) = 0 for any number

field k, one can show that the exact sequence (1.2.1) holds for any nice variety defined
over k ([Sil09, Exercise 1.12]). One uses the fact that the ideal of an affine patch of
the variety I(V ) ⊂ k[X1, . . . , Xn], is isomorphic to a direct sum of k+ as a Gk-module.

We now state the following useful lemma called the moving lemma.

Lemma 1.2.2. [Lan83, VI, §4, Lemma 3] Let k be a not necessarily algebraically
closed field, and V be a “nice” variety over k. Let D be a k-rational divisor and S be
a finite set of smooth points of V . Then there exists a function f ∈ k(V ) such that
no point in S lies in the support of D + div(f).

We now give the definition of an abelian variety and in the following two sub-
sections discuss two very important examples of abelian varieties, i.e., Picard and
Albanese varieties associated to a “nice” variety V .
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Definition 1.2.3. A projective, geometrically irreducible and smooth variety A/k

with continuous surjective morphism

+ : A× A→ A and an isomorphism ι : A→ A

along with a specified point O is called an abelian variety denoted by the 4-tuple
(A,+, ι, O), if +(_, O) = +(O,_) = id on A and +(P, ι(P )) = +(ι(P ), P ) = O,
for each point P ∈ A. We will drop +, ι, and O from the notation in order to ease
it. One can show using the theorem of the cube [Lan83, III §2 Theorem 1, 2] and
the completeness of A that under these conditions (A,+, ι, O) forms a commutative
group variety.

We will from now on write the evaluation of the map the + on an abelian variety A
as P+Q instead of +(P,Q) for points P,Q ∈ A and ι(P ) as −P for simplicity. A finite
surjective morphism of abelian varieties which is also a group homomorphism is called
an isogeny. Examples of isogenies include the multiplication by n maps. If φ : A→ B

is an isogeny, then recall from §1.1 that A[φ] denotes the kernel of φ considered as a
map on A(k). When k is not algebraically closed, then A[φ] = ker(φ : A(k)→ B(k)).
This is a finite abelian group, therefore by the structure theorem of finite abelian
groups, there exists a unique sequence of integers n1, . . . , nr with ni|ni+1, ni > 1 such
that A[φ] '

⊕
i

Z/niZ. Hence, φ is called an (n1, n2, . . . , nr)-isogeny.

1.2.1 Picard variety

We have another exact sequence

0→ Princ(V )→ Div(V )→ Pic (V )→ 0, (1.2.2)

where the quotient Pic (V ) is the Picard group associated to V . Since Princ(V ) ⊂
Div0(V ), one can safely define the quotient Pic 0(V ) := Div0(V )/Princ(V ), which is
the algebraically equivalent to zero part of the Picard group. It is possible to give a
variety structure on Pic 0(V ) if V is nice, and so it is called Picard variety associated
to V . As remarked before we will abuse the notation and denote both the Picard
variety, and the algebraically equivalent to zero part of the Picard group by Pic 0(V )

because we will be mostly working with points on the Picard variety. The Picard
variety is an abelian variety with the group structure induced by the natural group
structure on Pic 0(V ). Furthermore, if k is not algebraically closed, then the Picard
variety is defined over k, and its k-rational points are given by elements of Pic 0(Vk).

1.2.2 Albanese variety

One can associate another abelian variety to V , called the Albanese variety, denoted
by the pair (Alb(V ), φV,P0), where φV,P0 : V → Alb(V ) is a morphism such that
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φV,P0 = 0, and is called the Albanese morphism. The Albanese morphism depends on
the choice of a base point P0 ∈ V (k). The Albanese variety is universal in the sense
that for any rational map g : V → B, where B is an abelian variety, there is a unique
homomorphism g∗ : Alb(V )→ B, and P ∈ B such that g = g∗◦φV,P0+P . For a proof
that Alb(V ) always exists see [Lan83, Theorem 11, II §3]. Furthermore, there exists
an n ∈ Z+ such that Alb(V ) is the image of the natural map φV,P0(V )n → Alb(V )

given by (P1, P2, . . . , Pn) 7→
∑

i Pi. In view of the above, we obtain the following
exact sequence

0→ Y(V )→ Z0(V )→ Alb(V )→ 0, (1.2.3)

where Z(V ) is the group of 0-dimensional algebraic cycles on V (roughly one can
think of it as a free abelian group supported on the points of V ), Z0(V ) is the
subgroup of degree zero 0-dimensional cycles, and Y(V ) denotes the kernel of the map
Z0(V )→ Alb(V ) defined by

∑
P

nP (P ) 7→
∑
P

nPφV,P0(P ). We will usually denote the

Albanese variety by Alb(V ) instead of a pair. The universal property of the Albanese
variety implies that Alb(A) ' A, when A is an abelian variety, via P 7→ [(P )− (O)],
for P ∈ A.

Remark 1.2.4. Both Alb(V ) and the Picard variety are defined over k even if k
is not algebraically closed. Note that the field of definition of the morphism φV,P0

depends on the choice of P0; hence, if V (k) 6= ∅, then the morphism V → Alb(V ) can
be defined over k.

Remark 1.2.5. Let k be a number field and V /k, and W/k be two “nice” varieties.
Let φ : V → W be a rational map defined over k. Then we have natural maps
φ∗ : Alb(V ) → Alb(W ) and φ∗ : Pic 0(Wk) → Pic 0(Vk) induced from the natural
maps on Z0(Vk) and Div0(Vk) such that φ∗ and φ∗ are defined over k. Furthermore,
Pic 0(Alb(V )k) ' Pic 0(Vk). The Picard variety Pic 0(Ak) of an abelian variety A is
also called the dual abelian variety and is denoted by Â.

Furthermore, for the case of a “nice” curve X, the Picard and the Albanese vari-
eties are canonically isomorphic because both Z0(X) and Div0(X) are supported
on points of X and the universal property of the Albanese variety implies that
Y(X) = Princ(X). The Albanese variety associated to a curve is called its Jaco-
bian variety and is denoted by JX or Jac (X). We will drop the dependence of JX or
Jac (X) on X when it is clear from the context. We will identify JX with Pic 0(X).
The Jacobian varieties are self-dual and under sufficiently nice conditions one can get
an embedding X ↪→ JX defined even over the non-algebraically closed base field k,
for example, if Div1(X) := {D ∈ Div(X) | deg(D) = 1} 6= ∅. We will discuss this in
slightly more detail in §1.2.4.
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1.2.3 Correspondences

Definition 1.2.6. Let V and W be “nice” varieties. Then a correspondence of V
and W (for us) is a divisor on V ×W . In general, one can give the definition for a
d-dimensional algebraic cycle.

Example 1.2.7.

• Let X be a codimension 1 subvariety of V . Then X×W is a correspondence on
V ×W . Similarly, V ×X is a correspondence if X is a codimension 1 subvariety
of W .

• IfD is a correspondence on V ×W , then tD, called the transpose correspondence,
is a correspondence on W × V .

• Let p1 and p2 be the projection morphism from V ×W to V and W , respectively.
Then p∗i (Di) is a correspondence on V ×W , where D1, D2 are divisors on V

and W , respectively. One can identify the group generated by divisors D on V
under the map p∗1 with Div(V ) and similarly for W . Hence, we can identify the
group generated by p∗i with Div(V )×Div(W ). Such correspondences are called
fibral correspondence in case when V and W are curves, and the group of fibral
correspondences is denoted by Fib(V ×W ) ' Div(V )×Div(W ).

• A correspondence D is prime, effective or principal, respectively, if D is a prime,
effective or principal as a divisor on V ×W .

Let V and W be nice varieties, let v ∈ V (k) be a point on V , and let D ∈
Div(V ×W ) be a correspondence such that {v}×W is not contained in D. Then i∗v(D)

is a divisor on W , where i∗v is the pull-back homomorphism induced by the morphism
iv : W → V ×W defined by w 7→ (v, w). Concretely, this is basically restricting the
divisor D to the first coordinate v whenever we can. We denote this by D(v). One
can extend this linearly to define a partial map D : Z(V ) → Div(W ) whenever this
makes sense. By the definition of algebraic equivalence, we have D(v) ∈ Div0(W ),
for v ∈ Z0(V ).

Applying the above construction with V andW replaced by abelian varietiesA and
B, respectively, we have by [Lan83, III,§3, Corollary 2] that D(v) ∈ Princ(B) for every
v ∈ Y(A); hence, by the moving lemma 1.2.2, the partial map λD : Z0(A)→ Div0(B)

given by v 7→ D(v) induces a homomorphism λD : A → Pic 0(B). Recall that
the universal property of the Albanese variety implies that Alb(A) ' A via P 7→
[(P )− (O)], so for D ∈ Div(A×B), one obtains homomorphisms λD : A→ Pic 0(B)

and λtD : B → Pic 0(A).
Now we recall the definition of the dual of an abelian variety.
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Definition 1.2.8. An abelian variety B is called the dual abelian variety of A denoted
by Â, if there exists a divisor P ∈ Div(A × B) with the property that the maps
λtP : B → Pic 0(A) and λP : A → Pic 0(B) given by b 7→ [tP(b) − tP(O)] and
a 7→ [P(a) − P(O)], respectively, are isomorphisms. The divisor P is called the
Poincaré divisor or the Poincaré correspondence. Theorem 1.2.10 implies that the
isomorphisms λtP and λP depend only on the correspondence class in Pic (A×B)

Pic (A)×Pic (B)
.

Proposition 1.2.9. [Lan83, IV, §4, Theorem 10] For every abelian variety A, a dual
abelian variety Â (unique up to isomorphism) exists along with the Poincaré class P.

An ample divisor D on A defines an isogeny λD : A→ Â given by a 7→ t∗a(D)−D,
where ta : A→ A is the translation by a map defined as P 7→ P +a. Such an isogeny
λD is called a polarization. If k is not algebraically closed, then D is allowed to be in
Div(Ak) but λD must be defined over k. If the polarization is an isomorphism, then
it is called a principal polarization. Note that we have abused the notation by using
λD for polarization arising from an ample divisor and for the homomorphism induced
by a correspondence D on V ×W , for some nice varieties V and W . However, given
D ∈ Div(A) one obtains a divisor +∗(D) ∈ Div(A × A), where + : A × A → A is
the addition operation on A. In this sense, λ+∗(D) defines the same homomorphism
as the polarization λD; hence, the abuse of notation is justified.

Let AV and AW be the Albanese varieties of V and W , respectively, with mor-
phisms φV : V → AV and φW : W → AW , and Picard varieties identified with ÂV and
ÂW . Here we have dropped the dependence on the choice of basepoints in the defini-
tions of φV and φW in order to simplify the notation. We now discuss the connection
between Div(V ×W ) and Hom(AV , ÂW ). Let D′ := (φV × φW )∗(D) ∈ Div(V ×W );
hence, D′ defines a well-defined homomorphism AV → ÂW via the following diagram:

Div(AV × AW ) Hom(AV , ÂW )

Div(V ×W ) Hom(AV , ÂW ).

D 7→λD

(ϕV ×ϕW )∗(D)

D′ 7→λD′

The following theorem discusses some properties of the maps in the above diagram.

Theorem 1.2.10. [Lan83, VI, §2, Theorem 2] Call correspondences D,D′ ∈ Div(V ×
W ) for nice varieties V and W equivalent, if D and D′ differ by a divisor of the form
V × Y + X × W + div(f), for some divisor X on V , some divisor Y on W , and
f ∈ k(V ×W )×. The group of correspondence classes can be identified with

Pic (V ×W )

Pic (V )× Pic (W )
,

and we have the following isomorphism of groups:
Pic (V ×W )

Pic (V )× Pic (W )

'−→ Hom(AV , ÂW ).
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Moreover, if V and W are replaced with their Albanese varieties AV and AW , then
we have the following commutative diagram.

Pic (V×W )
Pic (V )×Pic (W )

Hom(AV , ÂW )

Pic (AV ×AW )
Pic (AV )×Pic (AW )

Hom(AV , ÂW ).

D′ 7→λ′D

=

D 7→λD

(ϕV ×ϕW )−1(D′)

Since we are going to be mainly dealing with curves, we recall some properties of
correspondences when V and W are “nice” curves. Recall that Div(X) ' Z(X) for
a curve X. For a prime correspondence C on V ×W we have

Div(V )
(pC1 )∗

−→ Div(C) (pC2 )∗−→ Div(W ),

where pi is the projection map on ith component as before.

Proposition 1.2.11. [Smi05, Theorem 3.3.12]

Let V and W be nice curves. Then the following hold:

• There is a well-defined map

φ : Div(V ×W )→ Hom(JV , JW ),
∑
i

niCi 7→
∑
i

ni(p
Ci
2 )∗ ◦ (pCi

1 )∗,

which induces a well defined surjective homomorphism

φ : Pic (V ×W )→ Hom(JV , JW )

with kernel as the image of Fib(V ×W ) inside Pic (V ×W ). Identifying the
image of Fib(V ×W ) with Pic (V )× Pic (W )

Hom(JV , JW ) ' Pic (V ×W )

Pic (V )× Pic (W )
,

i.e., Hom(JV , JW ) measures how far Pic (V ×W ) is from Pic (V )× Pic (W ).

• There is a composition law on correspondences which in case when V = W

translates to the composition on endomorphisms. In other words, under the
above mentioned composition law on correspondences we have the following ring
isomorphism

Pic (V × V )/Fib(V × V ) ∼= End(JV ).

• In particular, the diagonal correspondence ∆V := {(v, v) : v ∈ V } induces the
identity map on JV .
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1.2.4 Jacobians of curves

Let C/k be a “nice” curve of genus g > 0. Then JC is an abelian variety of dimension
g (this is also true for g = 0 in which case JC = 0). Recall that JC is identified with
Pic 0(C). Therefore, we would like to get hold of points on JC in terms of the points
of C. If k is not algebraically closed and C is defined over k, then JC is also defined
over k. Furthermore, if D is a k-rational divisor on C of degree 1, then the map
αD : Ck → Pic 0(Ck) defined by P 7→ [(P )− (D)] is an embedding of C in JC defined
over k.

Proposition 1.2.12. [Sto, Corollary 4.14] Identify JC with Pic 0(C), and let Q be a
point in JC(k). Then there is an effective divisor DQ with deg(DQ) ≤ g such that
[DQ−deg(DQ)D] = Q. Furthermore, if k is not algebraically closed, D is k-rational,
and deg(DQ) is minimal possible, then DQ is k-rational.

One can extend αD to a map of sets C(r) → JC , which also turns out to be
a morphism of varieties, where C(r) is the r-symmetric product of C, obtained by
quotienting out the natural action of the symmetric group on r-points, Sr on Cr.
The map αD : C(r) → JC is given by (P1, . . . Pr) 7→

r∑
i=1

αD(Pi). Let Θ be the image

of C(g−1) inside J . We have the following proposition:

Proposition 1.2.13. [HS00, Theorem A.8.1.1]

• If r ≤ g, then the image of C(r) is a dimension r subvariety of JC.

• Θ is an ample divisor on JC.

For a more complete construction of the Jacobian variety and why it is defined
over the base field see [Lan83, III, §2, Lemma 5, Theorem 8, 9, and 10]. Since Θ is
an ample divisor, recall from §1.2.3 that one can define a polarization λΘ : JC → ĴC
via P 7→ [t∗P (Θ) − Θ] = [Θ−P − Θ], where Θ−P is the translate of Θ under the t−P
map. The following proposition tells us more about λΘ.

Proposition 1.2.14. [Lan83, VI, §3, Theorem 3] The polarization λΘ is principal
and a Poincaré divisor on JC × JC, by identifying JC with ĴC using λΘ, is given by

+∗(Θ) = +−1(Θ).

Moreover, if k is not algebraically closed and Q ∈ Pic 0(Jk) is rational over an ex-
tension K of k, then the point P such that Q is represented by Θ−P − Θ is also
K-rational, provided Θ is K-rational.

Recall from theorem 1.2.10 the isomorphism between correspondence classes and
homomorphism groups of Albanese varieties. For a curve C the following proposition
states concretely the homomorphism λP induced by P as in the above proposition.
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Proposition 1.2.15. Let P ∈ Div(JC×JC) be the Poincaré divisor as in Proposition

1.2.14. Then the homomorphism λP : JC → ĴC
λ−1
Θ→ JC induced by P is the identity

map. In particular, the homomorphism id induced by the correspondence class of
∆ ∈ Div(C × C), where ∆ as before is the diagonal correspondence, is the same as
λP .

Proof. Let P ∈ Div(JC × JC) be the Poincaré divisor as above. For P ∈ JC , we have
[P(P ) − P(O)] = [Θ−P − Θ] ∈ Pic 0(JC). However, the map λ−1Θ : ĴC

'→ JC maps
the class of divisor Θ−P − Θ to P . Hence, the correspondence class of P maps to
id ∈ Hom(JC , JC), which is the image of the class of ∆ correspondence on C×C.

1.2.5 Mumford representation on odd-degree hyperelliptic Jacobians

In this section we assume that the base field k is not necessarily algebraically closed.
Let C : y2 = f(x) be an odd-degree hyperelliptic curve, i.e., deg(f) = 2g + 1, of
genus g, and view C as a curve in the weighted projective space P2(1, g+1, 1). Then
there is a unique point at infinity denoted by ∞ on C and given by (1 : 0 : 0) in the
weighted projective space P2

(1,g+1,1). By Proposition 1.2.13 one can uniquely represent
every point in JC(k) by an effective divisor of degree at most g.

Definition 1.2.16. A divisor D on Ck is said to be a divisor in general position if
D is effective, ∞ /∈ Supp(D) and D 6≥ P + ι(P ), for any point P ∈ C(k), where
ι : C → C is the hyperelliptic involution given by (x, y) 7→ (x,−y), and the order ≥
is defined pointwise.

We now define the Mumford representation of points on an odd–degree hyperel-
liptic Jacobian.

Definition 1.2.17. [Sto, Lemma 4.16]

Let D be a divisor in general position on the odd–degree hyperelliptic curve. Then
there are unique polynomials a, b such that

• a is monic with deg(a) = deg(D),

• deg(b) < deg(a),

• f ≡ b2 mod a,

• Let P = (x, y) ∈ C(k). Then

P ∈ Supp(D) ⇐⇒ a(x) = 0 and b(x) = y.

Furthermore, vP (D) is the multiplicity of x as a root of a.
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The pair (a, b) is called the Mumford representation associated to a divisor D in
general position.

Now if we can represent every point on J as a divisor in general position of degree
at most g, then every point on J can be presented using the Mumford representation.
The following theorem states this precisely.

Proposition 1.2.18. [Sto, 4.17] Let C/k be an odd-degree hyperelliptic curve with
Jacobian J and P ∈ J(k) be a point. Then there is a unique divisor in general position
D with deg(D) ≤ g such that P = [D − deg(D)∞]. Additionally, the uniqueness of
D implies that D is k-rational. In particular, there exists a Mumford representation
(a, b) for P with a, b defined over k[T ].

For working with odd-degree hyperelliptic curves we will be mainly using the
Mumford representation of points.

1.3 Group Cohomology

In this section we recall some relevant definitions and results related to group coho-
mology and in particular Galois cohomology. Let G be a topological group, i.e., a
group with a topology defined such that the group operations: − : G→ G (given by
g 7→ −g), and + : G×G→ G (given by g1, g2 7→ g1 + g2) are continuous maps.

Example 1.3.1.

1. Groups with discrete topology.

2. Let I be a partially ordered index set and Gi be a sequence of finite groups with
morphisms fij : Gj → Gi, if j ≥ i. Moreover, if m,n, o, p are such that p ≥ n,
p ≥ o, n ≥ m, and o ≥ m, then the composition fmo ◦ fop = fmn ◦ fnp. Then
the inverse limit GI :=

∏
←
I

Gi ⊂
∏
i∈I
Gi is called a profinite group. Examples

are absolute Galois groups of number fields and Zp. Profinite groups have a
topology coming from the subspace topology of the product space

∏
i∈I
Gi, with

a basis of open sets as left or right cosets of finite index subgroups of GI .

3. The groups GLn(R), SLn(R) under their usual topology.

For a topological group G and a G-module M with discrete topology we define

Definition 1.3.2. For each n ≥ 1, define the set Cn(G,M) of n-cochains to be the
group of continuous maps m : Gn →M . In particular, C0(G,M) =M .
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For each n ≥ 0, we define the maps ∂n : Cn(G,A)→ Cn+1(G,A) by

∂m(g1, . . . , gn+1) := g1m(g2, . . . , gn+1)

+
n∑
i=1

(−1)im(g1, . . . , gi−1, gigi+1, gi+2, . . . , gn+1) +m(g1, . . . , gn)

One can directly check that ∂n ◦ ∂n+1 = 0. Therefore, we obtain a chain complex

0→M
∂0→ C1(G,M)

∂1→ C2(G,M)
∂2→ · · · . (1.3.1)

Given a complex computing the deviation from exactness is a natural thing to do.
This motivates following definitions

Definition 1.3.3.

1. The group Zn(G,M) of n-cocycles is defined as ker(∂n).

2. A cocycle x is called a normalized cocycle if x(id , . . . , id ) = 0.

3. The group Bn(G,M) of n-coboundaries is defined as Im(∂n−1).

4. The group Hn(G,M) := Zn(G,M)/Bn(G,M) of n-cohomology classes computes
the deviation of the chain complex (1.3.1) from exactness.

Definition 1.3.4. We will say that a definition (property) which is stated (holds
true) for cohomology classes holds at the level of cochains or cocycles, if the definition
(property) can be made (remains true) when the cohomology groups are replaced by
the corresponding group of cochains/cocycles. We will use the acronym ATLOC for
this.

Remark 1.3.5. Throughout this section we will keep track of which definitions /
propositions work at the level of cochains / cocycles, and will give the definition
explicitly in terms of cochains / cocycles whenever / wherever possible.

Example 1.3.6.

1. One can easily check that Z0(G,M) = MG. Furthermore, if G has a trivial
action on M , then H1(G,M) = Hom(G,M).

2. Every cohomology class can be represented by a normalized cocycle. This fol-
lows from the definition of cocycles in odd dimension, and for even dimensions
shift the given cocycle x ∈ Z2n(G,M) by the coboundary ∂y, where

y(ḡ) := x(id , . . . , id︸ ︷︷ ︸
2n times

),

for all (2n− 1)-tuples ḡ ∈ G2n−1.
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3. If f : M → M ′ is a map of G-modules, then we obtain a push-forward
of f , f∗ : Cn(G,M) → Cn(G,M ′), for each n ≥ 0, defined canonically by
f∗(x)(g1, . . . , gn) 7→ f(x(g1, . . . , gn)). It is immediate from the definitions that
f∗ commutes with ∂n, and therefore induces a map f∗ : Hn(G,M)→ Hn(G,M ′).

For a subgroup H of G, and for each n ≥ 0, we have a natural map called the
restriction homomorphism resHG : Cn(G,M) → Cn(H,M), via m 7→ m

∣∣
Hn . If H

is a normal subgroup of G, then we obtain the inflation homomorphism infGG/H :

Cn(G/H,MG)→ Cn(G,M) explicitly given by

(inf(m))(g1, . . . , gn) = m(g1H, . . . , gnH).

One can directly verify that both res and inf take cocycles to cocycles and cobound-
aries to coboundaries. We denote the induced maps at the level of cohomology classes
also by res and inf, and for n > 0 and H a normal subgroup of G, inf and res fit in a
complex called inflation-restriction sequence as follows

Hn(G/H,MG)
inf→ Hn(G,M)

res→ Hn(H,M). (1.3.2)

One can define an action of G on the group of Cn(G,_) via a map called conju-
gation homomorphism turning it into a G-module. Let H be a subgroup of G, let N
be a H-submodule of M , and let g ∈ G. Then we have a map

g∗ : Cn(H,N)→ C(gHg−1, gN), g∗(m)(gg1g
−1, . . . , ggng

−1) = gm(g1, . . . , gn).

It is a direct computation to show that conjugation commutes with the ∂ operator,
and therefore induces an action on the cohomology classes which we will again denote
by g∗, for g ∈ G. Let g ∈ G, and let M be a G-module. Then g∗ is the identity map on
Hn(G,M). This is easy to see for dimension 0, and for higher dimensions, it follows by
dimension shifting (see §1.3.2 for details). In particular, for a normal subgroup H of
G, H acts trivially on Hn(H,M), and we obtain a valid action of G/H on Hn(H,M).
In view of the above definition and for n > 0, one can refine the complex (1.3.2) to
obtain the following, which we again call the inflation-restriction sequence

Hn(G/H,MG)
inf→ Hn(G,M)

res→ Hn(H,M)G/H . (1.3.3)

The following proposition gives a condition when the above sequence is exact.

Proposition 1.3.7. [NSW08, Proposition 1.6.6, 1.6.7]

1. The complex (1.3.3) is always exact in dimension 1. The exactness holds also
at the level of 1-cocycles.

2. If Hi(H,M) = 0, for all 0 ≤ i ≤ n − 1, then the complex (1.3.3) is exact.
Moreover, this does not hold at the level of cocycles. Assuming that for 0 ≤ i ≤
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n−1, Hi(H,M) = 0, one can extend (1.3.3) to a five term exact sequence given
by

0→ Hn(G/H,MG)
inf→ Hn(G,M)

res→ Hn(H,M)G/H tg→ Hn+1(G/H,MG)
inf→ Hn+1(G,M),

where the map tg : Hn(H,M)G/H → Hn+1(G/H,MG) is called the transgression
map.

3. In particular, we always have the five term exact sequence in dimension 1. The
injectivity of the map inf : H1(G/H,MH) → H1(G,M) follows from AG '
(AH)G/H .

4. The transgression map in dimension 1 is concretely given as follows. Let s :

G/H → G be a continuous section of the quotient G→ G/H such that s(id ) =

id . Note that s can be chosen to be continuous because the quotient map is
an open map. Let x be a 1-cocycle representing a class in H1(H,M)(G/H) and
define y ∈ C1(G/H,M) by

s(g)∗(x)(h)− x(h) = h(y(g))− y(g),

for ḡ ∈ G/H and h ∈ H. Extend y to define a cochain y : G→M , by defining
y(s(g)h) = y(g)+s(g)x(h), for g ∈ G/H and h ∈ H. Then ∂y ∈ Z2(G/H,MH)

and tg([x]) is given by [∂y].

If H is a finite index subgroup of G and M a G-module, then one can define a
norm map MH → MG given by m 7→

∑
ḡ∈G/H

gm. Such a map can be defined for all

dimensions. Since res is induced by the inclusion H ↪→ G, the map induced on the
cochains in the opposite direction is called corestriction. Let R be a system of right
coset representatives of G/H, and r : G → R be the map that maps an element
g to the corresponding right coset representative in R and c : G → H be defined
by g 7→ gr(g)−1. Now using the definition of the corestriction map in the standard
resolution in [NSW08, §I.5.4] we get the following definition of the corestriction map
in the bar resolution (which is what we are working with).

Definition 1.3.8. Let H be a subgroup of finite index inside G. Then corestriction
is a homomorphism corGH : Cn(H,M)→ Cn(G,M) explicitly given by

corGH(x)(g1, . . . , gn) :=
∑
g∈R

g−1x(c(gg1), . . . , c(gg1 . . . gi−1)
−1c(gg1 . . . gi),

. . . , c(gg1 . . . gn−1)
−1c(gg1 . . . gn)).

Remark 1.3.9. The above explicit definition of the corestriction morphism at the
level of cochains depends on the choice of coset representatives. The definition be-
comes independent for 0-cocycles and only for cohomology classes in higher dimen-
sions.
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Definition 1.3.10. Let M and M ′ be G-modules. Then M ⊗M ′ is also a G-module
with the natural action g · (x⊗ y) := g · x⊗ g · y. Then cup product ∪ : Cp(G,M)×
Cq(G,M ′)→ Cp+q(G,M ⊗M ′) is defined by

x ∪ y(g1, . . . , gp, g′1, . . . , g′q) := x(g1, . . . , gp)⊗ g1 . . . gpy(g′1, . . . , g′q).

One can check that ∪ respects the ∂p and ∂q operators; hence, induces the cup
product at the level of cohomology classes which we will again denote by ∪. Let
B :M ×M ′ → N be a bilinear map of G-modules. Then by the universal property of
the tensor products one defines a pairing map ∪B : Cp(G,M)×Cq(G.M ′)→ Cp+q(N)

induced by the cup product and B. We will represent the induced map on the
corresponding cohomology classes also by ∪B. The following proposition states the
interplay between all the above defined maps.

Proposition 1.3.11. [NSW08, Proposition 1.5.2–1.5.7]

The following hold ATLOC unless specified otherwise:

1. ∂ ◦ res = res ◦ ∂.

2. ∂ ◦ cor = cor ◦ ∂.

3. ∂ ◦ g∗ = g∗ ◦ ∂.

4. For x ∈ Cp(G,M) and y ∈ Cq(G,M ′), ∂(x ∪ y) = ∂x ∪ y + (−1)px ∪ ∂y.

5. For H a finite index subgroup of G, cor ◦ res = [G : H].

6. For H and U closed subgroups of G with H being finite index in G we have

resUGcorGH(z) =
∑
g∈R

corUU∩gHg−1resU∩gHg
−1

gHg−1 g∗(z), (1.3.4)

where R is a system of double coset representatives of G =
⊔
g∈R

UgH, and z ∈

Ci(H,A) (t denotes the disjoint union). This is known as the double-coset
formula .

7. For any g ∈ G, and a subgroup H of G, g∗ ◦ resHG = resgHg
−1

G ◦ g∗, and if H is
finite index in G, then g∗ ◦ corGH = corGgHg−1 ◦ g∗.

8. For x ∈ Cp(G,M) and y ∈ Cq(G,M), we have res(x) ∪ res(y) = res(x ∪ y).

9. For a finite index subgroup H of G, x ∈ Hp(G,M), and y ∈ Hq(H,M), x ∪
cor(y) = cor(res(x) ∪ y).

10. Let f : M → M ′ be a homomorphism of G-modules. Then the maps res, cor,
inf, ∂ and g∗ commute with f∗.
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11. Let f : M → M ′ and g : N → N ′ be maps of G-modules. Then we have
f∗(x)∪ g∗(y) = (f ⊗ g)∗(x∪ y), where f ⊗ g :M ⊗N →M ′⊗N ′ is the natural
map defined by m⊗ n 7→ f(m)⊗ g(n).

12. We have

(a) Hq(G,
⊕
i∈I
Mi) '

⊕
i∈I

Hq(G,Mi).

(b) Hq(G,
∏
i∈I
Mi) '

∏
i∈I

Hq(G,Mi).

Furthermore, these isomorphisms are explicit ATLOC.

13. Let K ⊂ H ⊂ G be a sequence of subgroups of G. Then corGH ◦ corHK = corGK and
resKH ◦resHG = resKG . If H and K are normal in G, then infGG/K ◦ infG/K

G/H = infGG/H .

The following proposition states a condition when part 9 of the above proposition
holds at the level of cochains.

Proposition 1.3.12. Let H be a subgroup of G and R a system of right coset repre-
sentatives of H in G. Recall the maps r : G→ R and c : G→ H from the Definition
1.3.8. Let x ∈ Cp(G,M) be such that for all g ∈ R and σ1, . . . , σp ∈ G

g−1(x(c(gσ1), . . . , c(gσ1 · · · σp−1)−1c(gσ1 · · · σp)) = x(σ1, . . . , σp).

Then for y ∈ Cq(H,M) we have cor(res(x) ∪ y) = x ∪ cor(y).

Proof. The quantity cor(res(x) ∪ y)(σ1, . . . , σp, τ1, . . . , τq) is given by∑
g∈R

g−1(res(x) ∪ y)(c(gσ1), . . . , c(gσ1 · · · τq−1)−1c(gσ1 · · · τq))

=
∑
g∈R

g−1(x(c(gσ1), . . . , c(gσ1 · · · σp−1)−1c(gσ1 · · · σp))⊗

c(gσ1 · · · σp)y(c(gσ1 · · · σp)−1c(gσ1 · · · τ1), . . . , c(gσ1 · · · τq−1)−1c(gσ1 · · · τq))
= x(σ1, . . . , σp)⊗ σ1 · · · σp
(
∑
g∈R

r(gσ1 · · · σp)−1y(c(gσ1 · · · σp)−1c(gσ1 · · · τ1), . . . , c(gσ1 · · · τq−1)−1c(gσ1 · · · τq))).

The last equality follows from our assumption on the cochain x. Note that r(g1g2) =
r(r(g1)g2). Let g′ := r(gσ1 · · · σp). Then

y(c(gσ1 · · · σp)−1c(gσ1 · · · τ1), . . . , c(gσ1 · · · τq−1)−1c(gσ1 · · · τq))
= y(r(gσ1 · · · σp)τ1r(gσ1 · · · τ1)−1, . . . , r(gσ1 · · · τq−1)τqr(gσ1 · · · τq)−1)
= y(g′τ1r(g

′τ1)
−1, . . . , r(g′τ1 · · · τq−1)τqr(g′τ1 · · · τq)−1)

= y(c(g′τ1), . . . , c(g
′τ1 · · · τq−1)−1c(g′τ1 · · · τq)).
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Therefore,

cor(res(x) ∪ y)(σ1, . . . , σp, τ1, . . . , τq)

= x(σ1, . . . , σp)⊗ σ1 · · · σp

(∑
g′∈R

g′−1y(c(g′τ1), . . . , c(g
′τ1 · · · τq−1)−1c(g′τ1 · · · τq))

)
= (x ∪ cor(y))(σ1, . . . , σp, τ1, . . . , τq).

1.3.1 Tate cohomology

Many interesting things happen when G is a finite group. In this case one can define
cohomology groups for any dimension n ∈ Z. This is done by extending the cochain
complex (1.3.1) in the negative dimension. The extension below becomes more natural
if we interpret the negative cohomology groups as homology groups with respect to
the G-module M . The non-triviality is that the construction of group cohomology and
group homology can be combined together in a nice way when G is finite. However,
we stick to the essential and useful/direct definitions without motivating them too
much.

For n ∈ Z<0, let Cn(G,M) := { continuous maps f : G−n+1 → M}, and define
∂n : Cn(G,M)→ Cn+1(G,M) as

• ∂−1(x) :=
∑
g∈G

g · x.

• ∂−2(x) :=
∑
g∈G

(g−1x(g)− x(g)).

• For n ≤ −3

∂n(x)(g1, . . . , g−2−n) :=
∑
g∈G

[g−1x(g, g1, . . . , g−n−2)

+
−2−n∑
i=1

(−1)ix(g1, . . . , gi−1, g, g−1, gi+1, . . . , g−n−2)

+ (−1)−n−1x(g1, . . . , g−n−2, g)]

One can verify explicitly that this extends the chain complex (1.3.1) for all n ∈ Z;
hence, we obtain the groups of cocycles, coboundaries, and cohomology classes for
this new chain complex and denote them by Ẑn(G,M), B̂n(G,M) and Ĥn(G,M) for
n ∈ Z. The cohomology groups thus obtained are known as Tate cohomology groups.
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Example 1.3.13.

1. We have Ĥn(G,M) = Hn(G,M) when n ≥ 1.

2. Ĥ0(G,M) = MG/NG(M), where NG : M → M is the norm map sending
m 7→

∑
g∈G

g ·m.

3. Ĥ−1(G,M) = MNG
/IG(M), where MNG

:= {m ∈ M : NG(m) = 0} and IG ⊂
Z[G] is the augmentation ideal defined by {

∑
g∈G

ngg |
∑
g∈G

ng = 0}.

4. Ĥ−1(G,Z) = 0, and Ĥ0(G,Z) = Z/|G|Z, with trivial G action.

In particular, if G is a cyclic group, then one can show the following useful result.

Proposition 1.3.14. Let G be a cyclic group, and let M be a G-module. Then for
n ∈ Z we have

Ĥn(G,M) ' Ĥn+2(G,M).

The isomorphism above can be given explicitly between Ĥ−1(G,M) ' Ĥ1(G,M)

ATLOC via m 7→ xm(g) = m, where m ∈MNG
and g is a generator of G. The general

case follows by a technique known as dimension shifting (see section 1.3.2); hence, in
order to give an isomorphism ATLOC explicitly, one will need an explicit version of
dimension shifting, which we will see later.

1.3.2 Dimension shifting

Dimension shifting is an important technique in cohomology using which one can
transfer/define maps for higher dimensional cohomology groups intrinsically using the
definitions in the lower dimensions but for larger modules. This uses cohomological
triviality of certain modules known as induced modules in every dimension, and the
long exact sequence of cohomology groups obtained from a short exact sequence.

Lemma 1.3.15. Let 0 → M ′ → M → M ′′ → 0 be a short exact sequence of G-
modules. This gives a long exact sequence of cohomology groups as follows

0 M ′G MG M ′′G

H1(G,M ′) · · · Hn(G,M ′′) Hn+1(G,M ′) · · · ,
δ0

δn

where for each n ≥ 0, δn, called the connecting morphism, is defined ATLOC by
δn(x) = ∂(x̃), where x̃ ∈ Cn(G,M) is a lift of the cocycle x ∈ Zn(G,M ′′). Since δn
takes coboundaries to coboundaries, and different lifts of x will change δn(x) by an
n+ 1 coboundary, one concludes that δn is well defined on cohomological classes.
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Remark 1.3.16. [Ser79, Appendix to VII] One can define dimension 0 and 1 co-
homology sets in a similar way when M is not necessarily an abelian G-module. In
this case the cohomology sets are not groups for dimension greater than 0 but just
pointed sets, i.e., a set with a distinguished element, which in this case is the class of
the trivial cocycle.

If 0 → M ′ → M → M ′′ → 0 is an exact sequence of non-abelian topological
G-modules, then we get a long exact sequence of pointed sets

0→ H0(G,M ′)→ H0(G,M)→ H0(G,M ′′)
δ→ · · · → H1(G,M ′′),

where H0(G,_) are still groups. Furthermore, if the image of M ′ in M is contained
in the center, then the above exact sequence extends to dimension 2 as follows

0→ H0(G,M ′)→ · · · → H1(G,M ′′)
δ1→ H2(G,M ′).

Note that M ′ is abelian here, therefore, H2(G,M ′) is also a group.

For simplicity of notation we will drop the subscript in the connecting morphism
whenever clear from the context.

Definition 1.3.17. Let M be a G-module. Then we define the induced module
IndG(M) of M with respect to G as {m | m : G→ M is continuous}. The action of
G on IndG(M) is naturally given by (g′.f)(g) = g′f(g′−1g). Moreover, if G is finite,
then IndG(M) 'M ⊗ Z[G] via x 7→

∑
σ∈G

x(σ)⊗ σ.

One immediately gets the following exact sequence

0→M → IndG(M)→ JG(M)→ 0,

where JG(M) is the cokernel of the inclusion M → IndG(M). Applying lemma
1.3.15, for n ≥ 0 one connects Hn(G,M) with Hn−1(G, JG(M)) using the following
proposition

Proposition 1.3.18. Hn(G, IndG(M)) = 0 for all n > 0, and IndG(M)G ' M .
Moreover, if G is finite, then Ĥn(G, IndG(M)) = 0 for all n ∈ Z.

We give an explicit proof of the above proposition here, i.e., we explicitly construct
an n − 1 cochain for every given n-cocycle for n ≥ 1. This is obtained by diagram
chasing between the standard and the bar resolutions via explicit isomorphisms and
inverses. However, one can give a more conceptual proof of the above proposition (see
[NSW08, Proposition 1.3.6, 1.3.7]), and combined with a conceptual treatment of Tate
cohomology using the standard resolution (see [Ser79, VIII, §1]) this immediately
yields the proposition for all n ∈ Z.
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Proof. Let n > 0, and f ∈ Zn(G, IndG(M)). Then we have (∂f)(g) = 0 for g ∈ G.
Let b(g1, · · · , gn−1)(g) = gf(g−1, g1, · · · , gn−1)(id ). Then b ∈ Cn−1(G, IndG(M)). We
now explicitly check that ∂b = f ,

∂b(g1, . . . gn) = g1 · b(g2, . . . , gn) +
n−1∑
k=1

(−1)kb(g1, . . . , gkgk+1, . . . , gn)

+ (−1)ib(g1, . . . , gn−1)
(∂b(g1, . . . gn))(g) = g1b(g2, . . . , gn)(g

−1
1 g)

+
n−1∑
k=1

(−1)kb(g1, . . . , gkgk+1, . . . , gn)(g) + (−1)nb(g1, . . . , gn−1)(g)

= g1g
−1
1 gf(g−1g1, g2, . . . , gn)(id )

+
n−1∑
k=1

(−1)kgf(g−1, g1, . . . , gkgk+1, . . . , gn)(id )

+ (−1)ngf(g−1, g1, . . . , gn−1)(id )

= gf(g−1g1, g2, . . . , gn)(id )

+
n−1∑
k=1

(−1)kgf(g−1, g1, . . . , gkgk+1, . . . , gn)(id )

+
(
(−1)ngf(g−1, g1, . . . , gn−1)

)
(id )

= −g(∂f)(g−1, g1, . . . , gn)(id ) + g(g−1 · (f(g1, . . . , gn)))(id )

= f(g1, . . . , gn)(g).

If f ∈ IndG(M)G, then f(gh) = gf(h) for all h, g ∈ G; hence, the map IndG(M)G →
M sending f 7→ f(id ) is an isomorphism.

As a corollary we obtain the following.

Corollary 1.3.19. If n > 0, then Hn−1(G, JG(M))
δ' Hn(G,M), and δ : M '

IndG(M)G → H1(G,M) is surjective. If G is finite, then Ĥn−1(G, JG(M))
δ' Ĥn(G,M)

for all n ∈ Z. Moreover since JG(M) ' JG[Z] ⊗ M , one obtains isomorphisms
δn : Hq−n(G, JG(Z)⊗n ⊗M)

∼→ Hq(G,M) for q > n > 0.

The next proposition discusses the interplay between various maps defined above.

Proposition 1.3.20. [NSW08, Proposition 1.5.2,3,4,5]

The maps cor, res, inf, g∗ and push forwards are functorial and commute with the
dimension shifting morphism δ.

Remark 1.3.21. The above proposition implies that all these maps arise from di-
mension 0 and their properties can be directly checked from dimension 0.
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Proposition 1.3.22. Let G be a finite group of order N . Then NĤn(G,M) = 0.

Proof. Consider the sequence M i→ IndG(M)
π→M , where i sends m 7→ (g 7→ m) and

π is given by f 7→
∑
g∈G

f(g). One easily checks that the maps i and π are G-module

homomorphisms and π ◦ i = N . Taking cohomology one gets π∗ ◦ i∗ = N∗, however
Ĥn(G, IndG(M)) = 0.

We now discuss one of the crucial results in group cohomology called Shapiro’s
Lemma. Let H be a finite index subgroup of G, let R be a system of coset rep-
resentatives of G/H, and let M be an H-module. Then we define the induced G-
module of M with respect to H as IndHG (M) :=

⊕
g∈R

M(g). Interpreting IndHG (M)

as the set of maps R → M , one can represent an element m of IndHG (M) by a for-
mal sum of the form as m :=

∑
g∈R

mg(g). Now the action of g′ ∈ G is given by

g′ ·m :=
∑
g∈G

gg′r(gg′)−1 ·mg(r(gg
′)), where r : G → R is the map taking g ∈ G to

its right coset representative as in the definition of the corestriction morphism. If M
is a G-module, then there is a canonical isomorphism between IndHG (M) and the set
of continuous maps x : G/H → M considered as a G-module with its natural action
(g′ ·x)(gH) = g′x(g′−1gH). This is given by m 7→ x, where x(g−1H) = r(g)mr(g). We
now state Shapiro’s Lemma.

Lemma 1.3.23 (Shapiro’s Lemma). For all n ≥ 0, we have a canonical isomorphism

sh : Hn(G, IndHG (M))
π∗◦res−→ Hn(H,M),

where π : IndHG (M) → M is the natural projection map onto the component corre-
sponding to H in R.

Remark 1.3.24. The module IndHG (M) can be defined generically without the as-
sumption that H is a finite index subgroup as IndHG (M) := IndG(M)H which also
justifies the use of similar notation. However, when H is of finite index in G one can
show that the two definitions match.

Proposition 1.3.25. Let R be a set of representatives for cosets of H in G, let
M be an H-module, and let A := IndHG (M). Then by Shapiro’s Lemma we have
sh : Hi(G,A)

∼→ Hi(H,M), where the isomorphism is given by the composition π∗◦res.
The inverse of sh is given by the composition cor ◦ ι∗, where ι∗ is the map induced by
the natural inclusion of H-modules ι :M ↪→ A.

Proof. We prove this for dimension 0 and then the proof follows from dimension
shifting, since ι∗, π∗, cor, res and sh are compatible with dimension shifting. In
dimension 0, for a ∈ AG, sh : a 7→ aM , where aM is the component of a corresponding
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to M in the decomposition A '
⊕
σ∈R

M(σ), whereas cor ◦ ι∗ : d 7→
∑
g∈R

d(g), for

d ∈ MH . In case when M is a G-module considered as an H-module, we identify
IndHG (M) with the G-module of continuous maps x : G/H →M as before. Then the
maps cor ◦ ι∗(d) =

∑
g∈G/H

gd and π∗ ◦ res will correspond to x 7→ x(H). One can easily

check that cor ◦ ι∗ ◦ sh and sh ◦ cor ◦ ι∗ are identity on AG and MH . respectively.

We prove a version of the above for Galois cohomology in the next section.

1.3.3 Galois Cohomology

In this section we recall some useful facts about Galois cohomology. Recall that we
have already restricted ourselves to perfect fields. Recall from the previous section
that profinite groups are topological groups. The absolute Galois group of a perfect
field k can be viewed as a profinite group via

Gal(k/k) ∼→ lim←−
K/k

Gal(K/k),

where the inverse limit is taken over all finite normal extensions K/k. We have the
following criteria for a group to be a profinite group

Proposition 1.3.26. Let G be a Hausdorff group. Then the following are equivalent:

1. G is the inverse limit of finite discrete groups.

2. G is compact and the identity element has a basis of neighbourhoods consisting
of subsets which are both open and closed.

3. G is compact and totally disconnected.

The following proposition shows that for a profinite group G, cohomology groups
can be viewed as direct limits of cohomology groups of finite groups.

Proposition 1.3.27. Let G be a profinite group and M be a G-module. Then

Hn(G,M) ' lim−→
U⊴G

[G:U ]<∞

Hn(G/U,MU),

where the direct limit is taken with respect to the inflation maps.

Using the above, if x ∈ Cn(G,M), then we say x factors through a normal sub-
group U of G if x = inf(y) for some y ∈ Cn(G/U,MU). Moreover, if G is Gk, then we
say x factors through a finite normal extension K/k, if x factors through GK .

Proposition 1.3.28. Let K/k be a finite Galois extension. Then
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1. Hn(Gal(K/k), K+) = 0 for all n ≥ 1; hence, Hn(Gk, k
+
) = 0.

2. H1(Gal(K/k), K×) = 0 for all Galois extensions K/k. Therefore, H1(Gk,Gm) =

0.

3. We have the inflation-restriction exact sequence in dimension 2 for K/k Galois.

0→ H2(Gal(K/k), K×)
inf→ H2(Gk,Gm)

res→ H2(GK ,Gm)
Gal(K/k).

4. H1(Gal(K/k),GLn(K)) = 0 for n ∈ Z+, where the action of Gal(K/k) on
GLn(K) is point-wise.

Proof. Let Γ := Gal(K/k).

1. Using the normal basis theorem, there is a basis of K/k such that IndΓ(k
+) '

K+; hence, the result follows from Proposition 1.3.18 and 1.3.27.

2. In this case the proof is explicit i.e. given a 1-cocycle x we construct an
explicit 0-cochain y ∈ K× such that ∂y = x. Consider the endomorphism
b :=

∑
g∈Γ

x(g)(g) of K/k. Linear independence of automorphisms implies that

there exists t ∈ K such that b(t) 6= 0 (in fact at least one the basis elements of
K/k will work as t). The 1-cocycle relation implies that b(t)/σ(b(t)) = x(σ) for
σ ∈ Γ. Choose y = 1/b(t).

3. This follows from 1.3.7 since H1(GK ,Gm) = 0.

4. [Ser79, X §1, Proposition 3].

Using the fact that res, cor, ι∗, π∗ are well behaved under inflation maps ([NSW08,
Proposition 1.5.5]), we can show that the following holds.

Corollary 1.3.29. Let K be a finite extension of k, let D be a GK-module, and let
A be a finite Gk/GK induced Gk-module with respect to D. Then

Hi(Gk, A) ' Hi(GK , D).

Proof. Since A is finite, the kernel of the natural map Gk → Aut (A) (U say) is a
normal subgroup of Gk of finite index. This corresponds to a normal extension L of
k. Clearly K ⊂ L. Consider the inverse system of finite degree normal extensions of
k containing L, IL := {L′ : L ⊂ L′}. Noting that GL′ acts trivially on A, we have the
commutative diagram (inf, sh commute with dimension shifting):

Hi(Gal(L′/k), A) Hi(Gal(L′/K), D)

Hi(Gal(L′′/k), A) Hi(Gal(L′′/K), D).

sh

inf inf

sh
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Taking the direct limits with respect to inflation maps on both sides we get

Hi(Gk, A) ' lim→
Gal(L′/k),
L′∈IL

Hi(Gal(L′/k), A) ' lim→
Gal(L′/k),
L′∈IL

Hi(Gal(L′/K), D) ' Hi(GK , D).

If k is a global field, then for each place v of k we have an inclusion map k ↪→ kv.
Once we fix such an inclusion, then this induces an inclusion Gkv ↪→ Gk. Therefore, if
M is a Gk-module, then the restriction map to the image of Gkv in Gk induces a map,
called the localization map , at a place v of k, Hn(Gk,M)→ Hn(Gkv ,M) which we will
denote by resv. Under the embedding Gkv ↪→ Gk, Gkv can be considered as a closed
subgroup of Gk (Gk is Hausdorff and Gkv is compact). Let L be a finite extension of k,
and w1, . . . , wm be all the distinct places of L above v with w1 being the one induced
by the fixed embedding k ↪→ kv. There is a gi ∈ Gk corresponding to each wi such
that wi is induced by the composite embedding gi : k → k ↪→ kv. If L = k(θ1), then
gi correspond to those embeddings of L ↪→ k which map θ1 to one of its Gk conjugates
that is not a Gkv -conjugate. This implies that {g1, . . . , gm} is a system of double coset
representatives of Gk with respect to Gkv and GL, i.e., Gk =

m⊔
i=1

GkvgiGL. Further,

note that GLwi
⊂ Gkv fixes the extension giL, and therefore GLwi

= Gkv ∩ giGLg
−1
i .

Using the double coset formula (1.3.4) and part 7 of Proposition 1.3.11 we have the
following remark.

Remark 1.3.30. Let k, L, wi, gi be as above. Then

(corGk
GL

(z))v = resGkv
Gk
◦ corGk

GL
(z) =

m∑
i=1

corGkv
GLwi

◦ resGLwi
GgiL

◦ (gi)∗(z). (1.3.5)

1.3.4 Brauer Groups

Definition 1.3.31. A central simple algebra A over k is a simple (no non-trivial
two-sided ideals) associative algebra (possibly non commutative) with unity over k
such that its center is isomorphic to k. Consider the category of all finite dimensional
central simple algebras over k and denote it CSAk.

There are various equivalent definitions for a finite dimensional algebra over k to
be a central simple algebra. The following proposition states a few of them.

Proposition 1.3.32. [Poo17, Proposition 1.5.2] Let A be a finite dimensional possibly
non-commutative algebra over k. Then the following statements are equivalent.

1. There exists an n ∈ Z+ such that A⊗ k 'Mn(k) as a k-algebra.
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2. There exists a finite field extension L/k such that A ⊗ L ' Mn(L), for some
n ∈ Z+.

3. A is a finite dimensional central simple algebra over k.

4. There is a k-algebra isomorphism A ' Mr(D), for some r ∈ Z+ and a finite
dimensional central division algebra D over k. Moreover, r, D are unique for
every algebra A.

Let A and B be central simple algebras. Then we say that A ∼ B, if there are
positive integers m and n such that Mm(A) ' Mn(B) as k-algebras. Equivalently,
A ∼ B, if there exists a division algebra D and positive integers m and n such that
A ' Mm(D) and B ' Mn(D) as k-algebras. Furthermore, we say that a central
simple algebra A/k is split over a field extension K/k, if A ⊗ K ' Mn(K) over K.
We now consider the set CSAk/∼. Let A be a central simple algebra over k. Then
one can define Aopp by redefining multiplication in A by a · b = ba. It can be checked
that the map A → Aopp respects extension of scalars and ∼. Furthermore, if A and
B are central simple algebras then A⊗B is also a central simple algebra. This leads
to the following definition.

Definition 1.3.33. The set CSAk/∼ can be given a group structure with the class
of split central simple algebras over k as the identity element, opp as the inverse and
⊗ as the group operation. This group is called the Brauer group over k. We denote
it by Br(k).

It can be shown using the Skolem–Noether theorem that, for each r ≥ 1,

central simple algebras of dimension r2

∼
↪→ H1(Gk,PGLr(k)),

as pointed sets. In fact this map of pointed sets is a bijection. Now using non-abelian
Galois cohomology (remark 1.3.16) on the exact sequence

1→ Gm → GLr(k)→ PGLr(k)→ 1,

and Proposition 1.3.28 we have the injection of pointed sets H1(Gk,PGLr(k)) ↪→
H2(k); i.e., for each central simple algebra A over k of dimension r2, one gets a 2-
cocycle γA with values in Gm. It can be shown that every 2-cocycle gives rise to a
central simple algebra over k, and this leads to an isomorphism Br(k) ' H2(k) as
abelian groups [Ser79, X §5]. The following proposition states a few properties of this
isomorphism.

Proposition 1.3.34. [Poo17, Proposition 1.5.13]
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1. The isomorphism Br(k) ' H2(k) is functorial, i.e., for L/k a field extension of
k, the following diagram

Br(k) H2(k)

Br(L) H2(L)

∼

[A] 7→[A⊗L] res

∼

commutes.

2. If char(k) - n, then Br(k)[n] ' H2(Gk, µn).

3. The inflation-restriction exact sequence in dimension 2 implies that H2(L/k) '
ker(Br(k) res→ Br(L)).

1.3.5 From cocycle to algebra

Since we will be mostly working with cocycles throughout this thesis, it makes sense
to get an explicit inverse for the isomorphism Br(k) → H2(k) ATLOC. Let L/k be
a finite extension of fields and γ ∈ Z2(L/k) be a 2-cocycle. Let A '

⊕
σ∈G

Luσ be

an L-algebra defined by the relation uσuτ = γ(σ, τ)uστ . Then we have the following
theorem.

Theorem 1.3.35. [Jac96, Theorem 2.6.8] Assume that γ is a normalized 2-cocycle.
Then ∂γ(σ, id , id ) = 1 implies that γ(σ, id ) = γ(id , σ) = 1. Let A be the algebra
defined above. Then A is a central simple algebra whose associated 2-cocycle is γ.

Remark 1.3.36. Theorem 2.3.17 in [Jac96] mentions explicitly how to obtain the
central simple algebra as a subalgebra of Mn(L) associated with a Brauer factor set
that is same as the 2-cocycle γ in the previous theorem considered in the standard
resolution.

1.3.6 Facts on Brauer groups and class field theory

In this section we recall some important results on Brauer groups of some fields, class
field theory and arithmetic duality theory.

Proposition 1.3.37. [Poo17, Proposition 1.5.34, 1.5.36]

1. Let k be the function field of a curve over an algebraically closed field. Then
Br(k) = 0.

2. If k is a finite field, then Br(k) = 0.

3. If k is a local field, i.e., K is a finite extension of R,Qp, or Fq((t)), then
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(a) There is an injection, inv : Br(k)→ Q/Z, called the invariant map whose
image is 

1
2
Z/Z, if k = R,

0 if k = C,
Q/Z, if k is nonarchimedean.

(b) If L is a finite extension of k, then the diagram

Br(k) Q/Z

Br(L) Q/Z

inv

res [L:k]

inv

commutes.

4. If L/k is a finite extension of a local field k and γ ∈ H2(k), then inv ◦ cor(γ) =
inv(γ), where inv on left and the right sides are the local invariant maps on
Br(k) and Br(L), respectively.

5. Let k be a global field, and for each place v of k, let invv be the local invariant
map Br(kv)

invv→ Q/Z as above. Then the following sequence, called the Albert-
Brauer-Hasse-Noether sequence, is exact

0→ Br(k)→
⊕
v

Br(kv)
∑
v

invv

→ Q/Z→ 0. (1.3.6)

Furthermore, if L is a finite extension of k, then the following diagram

0 Br(k)
⊕
v

Br(kv) Q/Z 0

0 Br(L)
⊕
v

⊕
w|v

Br(Lw) Q/Z 0

res

∑
v

invv

⊕
v

⊕
w|v

resw [L:k]∑
w

invw

commutes.

From the above proposition, it is clear that for a local field k, and an extension
L/k of degree n, H2(L/k) ' Z/nZ. We recall some maps from local/global class field
theory.

Proposition 1.3.38. [Neu99, V, Theorem 1.4] Let k be a local field and L be a finite
abelian extension of k. Then there is an isomorphism (−, L/k) : k×/NL/k(L

×) '
Gal(L/K), called the local Artin reciprocity map, and the following statements hold.



42 CHAPTER 1. BACKGROUND AND PRELIMINARIES

1. If L is an unramified extension, then the class of any uniformizing element πk
of k is mapped to the Frobenius element in Gal(L/k).

2. The finite index open subgroups N of k× are in an inclusion-reversing one-one
correspondence with the finite abelian extensions of k.

3. Let L and L′ be two finite abelian extensions of k. Then NLL′/k(LL
′) = NL/K(L)∩

NL′/k(L
′) and NL∩L′/k(L ∩ L′) = NL/k(L)NL′/k(L

′).

Assume µn ⊂ k× and fix a primitive nth root of unity ζn. Then we have a finite
extension L of k such that NL/k(L) = kn (we can choose L = k(k1/n); this is a finite
extension because there are finitely many classes mod nth powers in a local field).
This implies that k×/(k×)n ' Gal(L/k). At the same time Kummer theory implies
that H1(Gk, µn) ' k×/(k×)n. Therefore, we get a pairing(

−,−
p

)
:
k×

(k×)n
× k×

(k×)n
→ µn, (a, b) 7→

(
a, b

p

)
:= (a, k(b1/n)/k)(b1/n)/b1/n,

where p is the maximal ideal of the local field k. Furthermore, one can construct
a pairing using the cup product and the bilinear pairing µn × µn → µn given by
(ζan, ζ

b
n)→ ζabn on cohomology groups as follows

H1(Gk, µn)× H1(Gk, µn)→ H2(Gk, µn ⊗ µn) ' H2(Gk, µn) ' Br(k)[n].

We obtain the following commutative diagram [Neu99, V,§3]:

k×

(k×)n
× k×

(k×)n
µn

H1(Gk, µn) × H1(Gk, µn) Br(k)[n] µn.

∼ ∼

(−,−
p )

=

∪ ζinv
n

(1.3.7)

In the above diagram, for g ∈ Br(k), the map ζ inv
n is given by ζ inv

n (g) = ζ
inv(g)
n .

Therefore, for a 2-cocycle γ ∈ Z2(Gk, µn) which can be written as a cup-product
of two 1-cocycles χa and χb in Z1(Gk, µn) corresponding to elements a, b ∈ k×,
ζ

inv([γ])
n =

(
a,b
n

)
. Here [γ] is the class of γ in H2(k). As a consequence of the sequence

(1.3.6), one can extend the definition of the Hilbert symbol to a global field when
the characteristic of the global field does not divide n. Therefore, the dependence of
the symbol on p the maximal ideal of the localization is emphasized in the notation.
However, sometimes we will use (a, b)k or (a, b)p to denote the Hilbert symbol. Given
any 2-cocycle it is not always easy to compute the invariant map on the class it
represents because the invariant map is defined on the cohomology class not on the
cocycles. We will later see a way to be able to compute the invariant map given a
cocycle. Note that this can be done in principle due to the existence of the inflation-
restriction exact sequence in dimension 2. We state some useful properties of the
Hilbert symbol in the following proposition.
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Proposition 1.3.39. [Neu99, Proposition 3.2]

•
(
aa′,b
p

)
=
(
a,b
p

)(
a′,b
p

)
.

•
(
a,bb′

p

)
=
(
a,b
p

)(
a,b′

p

)
.

•
(
a,b
p

)
= 1 ⇐⇒ a is a norm from the extension k( n

√
b).

•
(
a,b
p

)
=
(
b,a
p

)−1
.

•
(
a,1−a

p

)
=
(
a,−a
p

)
= 1.

• If
(
a,b
p

)
= 1 for all b ∈ k×, then a ∈ (k×)n.

We have the following useful proposition for computing the invariant map and the
Hilbert symbol of certain cocycles.

Proposition 1.3.40. If d1, d2 ∈ k×v , then the 2-cocycle z given by (σ, τ) 7→ 1 if
σ(
√
d2) =

√
d2 or τ(

√
d2) =

√
d2, and (σ, τ) 7→ d1, if σ(

√
d2) = τ(

√
d2) = −

√
d2

represents the class of the quaternion algebra (d1, d2) in Br(kv).

Proof. [Ser79, §XIV.2, Proposition 5] implies that the cocycle

x(σ, τ) :=

{
1, if σ(

√
d1) =

√
d1 or τ(

√
d2) =

√
d2,

−1, otherwise.

represents the class of quaternion algebra (d1, d2). Now it can be checked that z =

x− ∂y where

y(σ) :=

{
1, if σ(

√
d2) =

√
d2,

1√
d1
, if σ(

√
d2) = −

√
d2.

1.3.7 Twisted powers of Galois modules and Poitou-Tate duality

Definition 1.3.41. Let ∆ be a finite Gk-set (i.e. there is a group homomorphism
Gk → Perm (X), where Perm (∆) is the group of permutations of ∆), and M be a
Gk-module. Then we can define

M∆ := {maps | m : ∆→M},

called the twisted power of M w.r.t. ∆.

The elements of M∆ can be represented as formal sums of the form
∑
s∈∆

as(s) with

as ∈ M . Under the natural action of Gk given by (σ ·m)(P ) = σm(σ−1P ), M∆ is a
Gk-module. One can show the following properties.
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Proposition 1.3.42.

1. (M∆)∨ ' (M∨)∆, where X∨ is the Cartier dual of the Gk-module X.

2. (G∆
m)

Gk '
∏

orbits
(G∆i

m )Gk '
∏

orbits
L×i , where ∆i is a Gk-orbit of ∆ and Li is the

finite extension corresponding to the orbit ∆i. To see how one associates a
finite field extension with each orbit ∆i note that each orbit is finite and has a
transitive action of Gk, so we have a finite extension Li of k corresponding to
∆i such that GLi

stabilizes an element of ∆i.

3. The following generalization of Hilbert’s Theorem 90 holds. We have H1(Gk,G∆
m) =

0.

In the view of the above one can consider ∆ as a finite étale scheme with L :=

k[x]/〈f(x)〉 as the ring of global sections of the structure sheaf, where f =
∏

orbits
fi and

fi is a defining polynomial of the extension Li. Moreover H1(Gk, µn(L̄)) ' L×/(L×)n.
We have the following important result known as the Poitou-Tate duality.

Theorem 1.3.43. [NSW08, Theorem 8.6.7] Let k be a number field, and let A be
a finitely generated (as a Z-module) Gk-module, and A∨ := Hom(A,Gm). For any
Gk-module M , let

Xi(M) := ker(Hi(Gk,M)
loci(M)−→

∏
v

Hi(Gkv ,M)).

Then there is a perfect pairing

pt : X1(A∨)×X2(A)→ Q/Z.

Theorem 1.3.44. Let k be a number field. Then H3(k) = 0.

Proof. This is a direct consequence of Galois cohomology applied on the exact se-
quence

1→ k
× → I → C → 1,

where I is the idèle group of k and C is the idèle class group of k, along with [NSW08,
Proposition 8.1.7, 8.1.20].

1.4 Covering spaces and descent

One of the fundamental problems in arithmetic geometry is to determine the set X(k)

of k-rational points on a variety X/k given by some explicit equations. Another,
important and equally (presumably) fundamental problem is to answer the following
question.
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Question 1.4.1. Let X/k be a “nice” (projective, smooth, geometrically irreducible)
variety. Is the set X(k) empty?

Obviously, when k is a number field, and X(kv) = ∅ for at least one place v of k,
then one concludes that X(k) = ∅. A Problem arises when X(kv) 6= ∅ for all places v
of k. Note that for each place v of k, the problem if X(kv) = ∅ is decidable. This is
true even if all the places are considered together. We say that X/k satisfies the Hasse
principle, if X(kv) 6= ∅ for all places v of k implies X(k) 6= ∅. The varieties defined by
non-degenerate quadratic-forms are famous examples of varieties satisfying the Hasse
principle. For cubics and beyond many counterexamples to the Hasse principle are
known.

However, one can also use a different technique known as descent. Let π : C → X

be a finite étale, geometrically Galois covering of X defined over k i.e. C and π

both are defined over k. Geometrically Galois means that the extension k(C)/k(X)

is Galois. The Galois group G := Gal(k(C)/k(X)) which is isomorphic to the group
of deck transformations of C over X is a group scheme with a well defined action of
Gk.

Definition 1.4.2. A twist of π is defined to be a covering π′ : C ′ → X defined over k
such that there is an isomorphism φ : C → C ′ defined over k such that the following
diagram commutes.

C X

C ′

π

ϕ
π′

Two twists π′ and π′′ of π are called equivalent if there is an isomorphism φ :

C ′ → C ′′ defined over k such that the corresponding natural diagram commutes. Let
Twists(π) be the pointed set of all the equivalence classes of twists of π with the class
of π being the distinguished element. If σ ∈ Gk, then given a twist π′ : C ′ → X with
an isomorphism φ : C → C ′, we get an automorphism of C which is a deck transfor-
mation of C/X as (σφ)−1 ◦ φ, i.e., we get a map ξ : Gk → Deck(π). One can show
that ξ is a 1-cocycle. Therefore, we get a map {all twists of π} → Z1(Gk,Deck(π)),
and it can be shown that the induced map Twists(π)→ H1(Gk,Deck(π)) is well de-
fined. Furthermore, note that H1(Gk,Deck(π)) is a pointed set because there is no
guarantee that Deck(π) is abelian group. We have the following useful theorem in
regards to the Twists(π).

Theorem 1.4.3. [Sto17a]

1. The map of pointed sets Twists(π)→ H1(Gk,Deck(π)) is an isomorphism.

2. Let P ∈ X(k). Then there is a unique twist π′ : C ′ → X of π such that



46 CHAPTER 1. BACKGROUND AND PRELIMINARIES

P ∈ π′(C(k)). In particular,

X(k) =
⊔

π′∈Twists(π)

π′(C ′(k)),

where the t denotes the disjoint union. If π is ramified, then the existence part
still holds but the uniqueness part fails.

The use of the above theorem is immediate, i.e., if none of the twists of π have
k rational points, then X(k) = ∅. However, we just saw that one of the necessary
conditions for a variety to have a k-rational point in case of a global field k is that
it has kv rational point for every place v of k. So we are interested in the classes
in Twists(π) which have points everywhere locally or which are everywhere locally
soluble, also abbreviated as ELS in literature.

Definition 1.4.4. We define the Selmer set of π (denoted by S(π)) as the subset of
Twists(π) which are ELS.

Immediately, we conclude that X(k) = ∅, if S(π) = ∅. Selmer sets are useful
mainly because of the following result.

Proposition 1.4.5. S(π) is finite and in principle computable.

Proof. Let S be the set of places of bad reduction of X, C and π. Clearly, S is
finite. Since π remains unramified for a place of good reduction v, the fiber over
any point in X(kv) lies in C(knr

v ). Clearly, if the twist is ELS, then the restriction
of ξv (restriction of ξ ∈ H1(Gk,Deck(π)) to H1(Gkv ,Deck(π))) to Gknr

v
is trivial, this

is because if π′ : C ′ → X is a twist of π, then π′ has a good reduction at v, and
therefore every fiber over X(kv) lies in C ′(knr

v ). Hence, the isomorphism over kv is
actually defined over knr

v . Therefore,

Sπ ⊂ H1(Gk,Deck(π);S) := {ξ ∈ H1(Gk,Deck(π)) | (resv)nr(ξ) = 0 ∀ v /∈ S},

where (resv)nr : H1(Gk,Deck(π)) → H1(Gknr
v
,Deck(π)) is the usual restriction map.

It is a well known fact that H1(Gk, A;S) is finite for a finite module A because there
are only finitely many extensions of bounded degree unramified outside a finite set of
primes.

1.5 Selmer groups and rank bounds

In this section, we assume that the base field k is a number field. Let A, B be abelian
varieties over k and φ : A → B be an isogeny defined over k. Then φ is a finite,
étale and geometrically Galois covering of B with the set of deck transformations
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isomorphic to the abelian group A[φ] the kernel of φ. Using the above theory we have
S(ϕ) ⊂ H1(Gk, A[φ]). We have the following analogue of the Kummer sequence

0→ A[φ]→ A
ϕ→ B → 0.

Taking Galois cohomology both locally and globally we get the following diagram

0 B(k)
ϕ(A(k))

H1(Gk, A[φ]) H1(Gk, A)[φ] 0

0
∏
v

B(kv)
ϕ(B(kv))

∏
v

H1(Gkv , A[φ])
∏
v

H1(Gkv , A)[φ] 0

δ

∏
v

resv α
∏
v

resv∏
v
δv

In view of the previous section we have S(ϕ) = ker(α). One has the following exact
sequence for every isogeny φ called the φ-descent sequence

0→ B(k)

φ(A(k))
→ S(ϕ)(A/k)→X(A/k)[φ]→ 0,

where X(A/k) := ker(H1(Gk, A) →
∏
v

H1(Gkv , A)) is called the Shafarevich-Tate

group associated to A/k.
One of the most interesting isogenies (that are always available) is the multipli-

cation by n map, [n], for n ≥ 2. It is enough to understand the S(n)(A/k), since
for any isogeny φ, there is an n such that A[φ] ⊂ A[n] and one has the natural
map S(ϕ)(A/k) → S(n)(A/k) induced by the above inclusion A[φ] ↪→ A[n]. The
kernel of the map S(ϕ)(A/k) → S(n)(A/k) could be determined by studying the cok-
ernel of the map A(k)[n] → (A[n]/A[φ])Gk . Furthermore, for m,n coprime we have
S(mn)(A/k) ' S(m)(A/k) × S(n)(A/k). This implies that it is enough to consider iso-
genies whose kernel is contained in A[pn] for some prime p and n ∈ Z+. One can
make this n unique by looking at the maximum order of an element in the kernel of
the isogeny. Therefore, we look at the descent sequence for pn, and we obtain

#A[pn](k) · pnrA ≤ #S(pn)(A/k).

When n = 1, then we have the following interesting result:

Proposition 1.5.1. [Sto17a] Let A be an abelian variety over a number field k and
p be a prime number.

1. Let v be a finite place of k. Then

dimFp

(
A(kv)

pA(kv)

)
= dimFp(A(kv)[p]) +

{
[kv : Qv]dim(A) if v | p
0 else.
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If v is an infinite place of k, then A(kv)/pA(kv) = 0, if either v is complex or
p is odd. If v is real and p = 2, then

dimF2

(
A(kv)

2A(kv)

)
= dimF2(A(kv)[2])− dim(A).

2. If v is a finite place of k such that v - p and v is a place of good reduction of A,
then the image of A(kv) is exactly

inf(H1(Gal(knr
v /kv), A[p])) = ker(res : H1(Gkv , A[p])→ H1(Gknr

v
, A[p])).

3. Let S be the set of places of bad reduction of A, the infinite places and the places
above p. Then we have

S(p)(A/k) = {ξ ∈ H1(Gk, A[p];S) | ∀ v ∈ S : resv(ξ) ∈ Im(δv)},

where δv is the connecting morphism in Galois cohomology at the place v.

Proof sketch. The proof of the above proposition follows from the fact that for a
finite place v of k, the group A(kv) contains a subgroup of finite index isomorphic to
Z[kv :Qq ]dim(A)
q . Here q is the characteristic of the residue field of kv. Using the snake

lemma on the diagram

0 Z[kv :Qq ]dim(A)
q A(kv) T 0

0 Z[kv :Qq ]dim(A)
q A(kv) T 0,

.p .p .p

and the fact that dimFp(T [p]) = dimFpT/pT for a finite abelian group T , one can
deduce the result. When p = 2 and v is a real place, we use the fact that A(R) has a
finite index subgroup isomorphic to (R/Z)dim(A).

There has been a lot of work on the computation of Selmer groups for various
isogenies on Jacobians of curves. The idea usually is to get a good description of
H1(Gk, J [φ]) where J is the Jacobian variety associated to a nice curve. It is usually
done by connecting H1(Gk, J [φ]) to the group H1(Gk, µn(L ⊗ k)) or H1(Gk, µ(L ⊗
k)/µn(k)) for some étale algebra L related to φ and some suitable n. In the latter
case we call the image of Sϕ(J/k) inside H1(Gk, µ(L ⊗ k)/µn(k)) the fake-Selmer
group and in the former case we call it the true-Selmer group. The case of p-descent
for a prime p on elliptic curves is always a true descent. The case of 2-descent on
odd-degree hyperelliptic Jacobians is a case of true descent. The following theorem
explicitly describes the group H1(Gk, J [2]), where J is an odd-degree hyperelliptic
Jacobian.
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Proposition 1.5.2. [Sto, §5, Lemma 5.2, 5.6] Let C : y2 = f(x) be an odd-degree
hyperelliptic curve over k, J be its Jacobian variety, and A := k[T ]/〈f(T )〉. Then

H1(Gk, J [2]) ' ker
(
N : A×/(A×)2 → k×/(k×)2

)
,

where N is the map induced by the norm map A× → k×.
Let θ be the image of T in A, i.e., a root of f in A. Let P = (a, b) be a point

on J given by the Mumford representation, with d = gcd(a, f). Then, the connecting
morphism δ : J(k)/nJ(k)→ H1(Gk, J [2]) is explicitly given by

(a, b) 7→ (−1)deg(a/d)(a/d)(θ)
(
(−1)deg(d)d(θ) + (−1)deg(f/d)(f/d)(θ)

)
.

Note that we have the identification Ā ' k
deg(f) and A ↪→ Ā. So any element of

H1(Gk, J [2]) can be represented by a deg(f)-tuple by (a(ei))i with a ∈ A× and ei are
all roots of f in k.

There has been significant progress on the computation and implementation of
various Selmer groups in the last three decades. We quickly mention here a few
of them. Poonen and Schaefer [PS97] compute the λ-Selmer groups, where λ :=

1 − ζl is the isogeny on the Jacobians JC of degree l-cyclic cover, C of P1. If a
model of C is given by yl = f(x), then they give a homomorphism x − T which is
the composition JC/λJC ↪→ S(λ)(JC/k) → A×/k×(A×)l, where A := k[T ]/〈f(T )〉.
Furthermore, they provide necessary and sufficient conditions for x−T to be injective.
Stoll and van Luijk [SvL13] gave an embedding of the λ-Selmer group inside another
group which is easy to handle. Schaefer [Sch96], studied the connections between the
Selmer groups and class groups. Stoll in [Sto01] gave an efficient implementation of
computing 2-Selmer groups for Jacobians of hyperelliptic curves. Schaefer and Stoll
[SS04] gave a way of computing the p-Selmer group of an elliptic curve for a prime
p. In [BPS16], the authors give a way of performing n-descent on an isogeny with
exponent n on an abelian variety. However, all these methods are constrained by the
class groups computations and therefore, become impractical for not so large values
of the exponent of the isogeny.
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Chapter 2

Cassels-Tate Pairing

The Cassels-Tate pairing (CTP for short) was defined by Cassels for the case of elliptic
curves, and generalized by Tate to the case of abelian varieties. Let A/k be an abelian
variety with dual Â. Then the CTP is a pairing

〈·, ·〉CT : X(A/k)×X(Â/k)→ Q/Z,

which is non-degenerate on the maximal non-divisible quotients of the groups X(A/k)

and X(Â/k). If λ : A → Â is a polarization, then we define a pull-back pairing on
X(A/k)×X(A/k), that we again denote by 〈·, ·〉CT, via 〈a, a′〉CT := 〈a, λ(a)〉CT. It
was shown by Tate that if the polarization λ is induced by a k-rational divisor, then
the induced pairing on X(A/k) ×X(A/k) is alternating. For general principally
polarized abelian varieties A/k, Flach [Fla90] showed that the pulled back pairing,
〈·, ·〉CT on X(A/k) ×X(A/k) is anti-symmetric. If X(A/k) is finite (as is conjec-
tured), and A is principally polarized, then #X(A/k) is a square, when 〈·, ·〉CT is
alternating. Poonen and Stoll [PS99] later showed that the deviation of CTP from
being alternating for a principally polarized abelian variety A/k can be characterized
by whether λ is induced by a k-rational divisor or only by a k-rational divisor class.
However, the criterion for deciding whether #X(A/k) is a square or not is more
complicated; see [PS99, §6].

In what follows, we assume that k is a number field and A/k is principally polar-
ized, i.e., there exists a k-rational polarization λ : A→ Â. In [PS99] the authors gave
various examples where the pairing fails to be alternating. They also provide various
definitions in the same paper. In this chapter, we review three different definitions
of the Cassels-Tate pairing. The authors mention in [PS99, §3] another definition
called the Albanese-Picard definition, however, for the case of curves the Albanese
and the Picard varieties are identified. Furthermore, we will focus on one of the
definitions, the Albanese-Albanese definition, more than the others, as we will use
this definition to make the Cassels-Tate pairing effective in various cases in the later
chapters. Furthermore, we will review these definitions in the cases when A/k is a
Jacobian variety of a nice curve C/k of genus g. Recall from section §1.2.4 that JC
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is a principally polarized abelian variety with principal polarization defined using the
Θ divisor, which is the image of C(g−1)

k
inside Pic 0(Ck), that we have identified with

JCk
. Note that all these objects are defined over the base field k.
Before moving further, we need definition of some pairings that will be useful

later.

2.1 Some pairings

Let V /k be a nice variety. Then the moving lemma (Lemma 1.2.2) implies that one
can always find a representative of the class of D ∈ Div(Vk) in Pic (Vk) avoiding a
given finite set of points. Let V /k and W/k be nice varieties and D ∈ Div(Vk ×Wk)

be a divisor. Recall from §1.2.3 and Theorem 1.2.10 that there is a homomorphism
λD : Alb(V ) → Âlb(W ) induced from the homomorphism λD : Z0(Vk) → Pic 0(Wk)

with Y(Vk) ⊂ ker(λD). Let v ∈ Y(Vk), and w ∈ Z0(Wk). Then D(v) = div(f) for
some f ∈ k(W ). Define D(v,w) by linearly extending the evaluation of f on points
w ∈ W (k), outside poles and zeros of f , i.e., if w =

∑
P∈W (k)

vP (P ) such that vP = 0

for all but finitely many P and when f(P ) = 0 or ∞, then

D(v,w) :=
∏

P∈W (k)

f(P )vP .

Recall the definition of tD from §1.2.3. Similarly using tD one can define tD(w, v),
where w ∈ Y(Wk) and v ∈ Z0(Vk). This gives partially defined pairings:

〈·, ·〉1 :
(
Y(Vk)×Z0(Wk)

)⊥ → Gm and 〈·, ·〉2 :
(
Z0(Vk)× Y(Wk)

)⊥ → Gm, (2.1.1)

defined as 〈v,w〉1 := D(v,w) and 〈v,w〉2 := tD(w, v), where the superscript ⊥ rep-
resents that the v and w are chosen in a compatible way, i.e., a function with divisor
D(v) does not have a zero or a pole at the points in Supp(w) while defining 〈·, ·〉1 and
vice versa for 〈·, ·〉2. One can always do this using the moving lemma, i.e., Lemma
1.2.2. One checks that the above defined pairings are Galois equivariant.

In the case when v represents a point in Alb(V )(k)[n], then nv ∈ Y(V ). Let
v and w represent points in Alb(V )(k)[n] and Alb(W )(k)[n], respectively. Using
D ∈ Div(V ×W ) one defines the following map.

Definition 2.1.1.

eD,n : Alb(V )(k)[n]× Alb(W )(k)[n]→ µn(k),

given by
eD,n(v, w) :=

D(nv,w)
tD(v, nw)

=
〈nv,w〉1
〈v, nw〉2

,

where v and w are some lifts of v and w to 0-cycles such that everything makes sense.
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It is shown in [Lan83][VI, VII] using Lang reciprocity that the above map is well-
defined, bilinear and Galois-equivariant and depends only on the correspondence class
of D.

Definition 2.1.2. In the case when V = A and W = Â, the pairing defined above
using the Poincaré divisor is non-degenerate and is called the Weil pairing associated
to an abelian variety. It is denoted by en.

However, we know that Pic 0(V ) ' Pic 0(A) ' Â, where A := Alb(V ). Therefore,
we would like to define the pairing using divisors and 0-cycles on Vk. This gives rise
to what is called as Albanese-Picard definition of the Weil pairing. Identify Â with
Pic 0(V ).

2.1.1 The Albanese-Picard definition of the Weil pairing

Let V,A and Â be as above and P be a Poincaré divisor on A × Â. Fixing a base
point P0 ∈ V (k), one has the map φV,P0 : V (k)→ Alb(V )(k). We have the morphism
Vk × Âk

ϕV,P0
×id

=⇒ Ak × Âk. Pulling back the divisor P we obtain a divisor P0 ∈
Div(Vk×Âk). Let D ∈ Div0(Vk). Then the divisor D represents a point on Â(k). Now
choose a 0-cycle z ∈ Z0(Âk) summing up to the class ofD in Âk. Since [D]−z ∈ Y(Âk)
and the Albanese variety of an abelian variety is itself, tP0([D] − z) ∈ Princ(V ). In
fact, as we have identified Pic 0(Ak) with Pic 0(Vk), by [Lan83] [IV, §4] we have that
D − tP0(z) = div(fD,z) ∈ Princ(Vk). Furthermore, if v ∈ Y(Vk), then one defines a
pairing

[·, ·] :
(
Y(Vk)×Div0(Vk)

)⊥ → Gm via (v, D) 7→ fD,z(v)P0(v, z), (2.1.2)

where z and v have been adjusted so that everything is defined. In [PS99, §3.2], the
authors show that [·, ·] is a well-defined pairing, i.e., independent of the choices made.
One has the natural pairing on (Z0(Vk)× Princ(Vk))

⊥ given by (v, div(f)) 7→ f(v).
To define [v, div(f)], one can choose z = 0, which implies that

[v, div(f)] = f(v).

For a divisor D ∈ Div0(Vk) such that [D] ∈ Pic 0(Vk)[n], let fnD ∈ k(V )× be such
that div(fnD) = nD. In view of the above, one can define the Weil-pairing as follows:

Definition 2.1.3.

eV,n : A(k)[n]× Â(k)[n]→ µn,

(v, D) 7→ fnD(v)

[nv, D]
.

The following proposition shows that the above pairing is independent of the
choices made.
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Proposition 2.1.4. The map eV,n is a well-defined pairing, i.e., independent of the
choices made.

Proof. If we shift v with a y ∈ Y(Vk), then the discrepancy is given by

eV,n(y, D) =
fnD(y)

[ny, D]
=
fnD(y)

[y, nD]
=
fnD(y)

fnD(y)
= 1,

since definition 2.1.3 is clearly bilinear and nD ∈ Princ(Vk). Next, if we shift D by
div(f), then again the discrepancy is given by

eV,n(v, div(f)) = f(v)n

[nv, div f ] =
f(v)n

n[v, div f ] =
f(v)n

f(v)n
= 1.

Proposition 2.1.5. [BPS16, §4.3, 4.4]

The following hold.

1. If φ : V → V ′ is a morphism of nice k-varieties, x ∈ Y(Vk), and D′ ∈ Div0(V ′
k
),

then [φ∗(v), D
′] = [v, φ∗(D′)].

2. Let A = Alb(V ). Then under the identification of Â(k) with Pic 0(Vk) the
pairings eV,n, eA,n, en defined in definitions 2.1.3 and 2.1.2 are equal.

2.1.2 Pairings in case of Jacobians

Recall from §1.2.4 that when V is a nice curve C, the Albanese and the Picard varieties
JC are canonically identified, and JC(k)

λΘ' Pic 0((JC)k). Therefore, using Proposition
2.1.5 we compute the Weil pairing using the Albanese-Albanese definition. Recall
that ∆ ∈ Div(Ck × Ck) induces the same homomorphism as P ∈ Div((JC × JC)k),
i.e., id ∈ Homk(JC × JC). Hence, the pairing e∆,n : JC(k)[n] × JC(k)[n] → µn is
the same as the one defined by eP,n : JC(k)[n] × JC(k)[n] → µn. If p and q are two
elements of Div0(Ck) representing elements of JC [n] with disjoint supports, then the
Weil-pairing is given as follows.

Definition 2.1.6. Let p, q be as above, and fnp, fnq be functions such that div(fnp) =
np and div(fnq) = nq. Then the pairing eJC ,n is given by

eJC ,n([p], [q]) =
∆(np, q)
t∆(nq, p)

=
fnp(q)

fnq(p)
,

where all the quantities are well defined.

We will drop the abelian variety from the notation of the Weil pairing whenever
it is clear from the context.
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2.1.3 Extension of the pairings 〈·, ·〉1 and 〈·, ·〉2 for Jacobians

In this section we extend the two pairings 〈·, ·〉i in Equation (2.1.1) to be defined
entirely on Princ(Ck) × Div0(Ck) and Div0(Ck) × Princ(Ck) using the ∆ divisor on
Ck × Ck, such that they are Galois equivariant. Such an extension will simplify the
computation of the CTP in later chapters.

Choose uniformizers tP for P ∈ C(k) for the local rings OP such that the map
P 7→ tP is Galois-equivariant, and consider the Galois-equivariant pairings

〈·, ·〉1 :
(
Princ(Ck)×Div0(Ck)

)
→ Gm (2.1.3)

〈·, ·〉2 :
(
Div0(Ck)× Princ(Ck)

)
→ Gm (2.1.4)

defined as follows.
〈div(f), D〉1 :=

∏
P

(ft
−vP (f)
P )(P )vP (D),

and
〈D, div(f)〉2 :=

∏
P

(−1)vP (f)vP (D)(ft
−vP (f)
P )(P )vP (D).

The above pairings are well-defined and extend the partially defined pairings in Equa-
tion (2.1.1). Next we show that the two pairings defined above agree on the diagonal
Princ(Ck)× Princ(Ck).

Proposition 2.1.7. Let 〈·, ·〉1 and 〈·, ·〉2 be as above. Then 〈·, ·〉1 = 〈·, ·〉2 on Princ(Ck)×
Princ(Ck).

Proof. Define the tame symbol at P for two nonzero functions f and g as follows:

[f, g]P := (−1)vP (f)vP (g)f
vP (g)

gvP (f)
(P ).

We have

〈div(f), div(g)〉1
〈div(f), div(g)〉2

=
∏
P

(−1)vP (f)vP (g)

(
ft

vP (f)
P

)
(P )vP (g)(

gt
vP (g)
P

)
(P )vP (f)

=
∏
P

(−1)vP (f)vP (g)

(
f vP (g)

gvP (f)

)
(P ) =

∏
P

[f, g]P = 1.

The last equality is a consequence of strong Weil reciprocity [Wei38].

The following corollary shows that the Weil pairing can be defined using the above
modified definitions of 〈·, ·〉1 and 〈·, ·〉2.

Corollary 2.1.8. Let P,Q ∈ JC(k)[n] be represented by degree 0 divisors p and q,
respectively. Then

eJC ,n(P,Q) =
〈np, q〉1
〈p, nq〉2

.
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Proof. Let P,Q ∈ JC(k)[n] be represented by degree 0 divisors p and q, respectively.
Using the moving lemma 1.2.2, we can choose functions fP and fQ such that the
divisors p+ div(fP ) and q+ div(fQ) have disjoint support. We have

eJC ,n(P,Q) =
〈np+ n div(fP ), q+ div(fQ)〉1
〈p+ div(fP ), nq+ n div(fQ)〉2

(Definition 2.1.6)

=
〈np, q〉1
〈p, nq〉2

(Proposition 2.1.7)

Using Proposition 2.1.7 one can show that the Weil pairing (Definition 2.1.6) can
be defined using the modified definition of 〈·, ·〉1 and 〈·, ·〉2.

2.1.4 e2 for hyperelliptic Jacobians

In this section, we give an explicit definition of the 2-Weil pairing for hyperelliptic

Jacobians. Let C : y2 = f(x) :=
d∑
i=1

fix
i be a hyperelliptic curve over k of genus

g = [(d − 1)/2] with Weierstrass points Ti := (ei, 0), where ei ∈ k are the roots of
f . When d is even, then we denote by D∞ the divisor (O+) + (O−), where O∗ =

(1, ∗
√
f2g+2, 0). When d is odd, then we denote by D∞ the divisor (O). Any point P

is represented by a divisor of the form DP − nD∞, where DP =
2n∑
i=1

(Pi) in case d is

even, and DP =
n∑
i=1

(Pi) when d is odd, for some Pi ∈ C(k). If P is a 2-torsion point,

then Pi in the support of DP are taken from the Weierstrass points. The following
proposition gives a formula for the 2-Weil pairing in the case of hyperelliptic curves.

Proposition 2.1.9. Let P and Q be two points of J(k)[2] represented by DP − nD∞
and DQ −mD∞, where DP =

2n∑
i=1

(Pi) and DQ =
2m∑
i=1

(Qi) and d is even. If d is odd

and for some n ∈ Z, deg(DP ) = 2n − 1, then set D̃P := DP +D∞ (similarly define
D̃Q). Otherwise, set D̃∗ := D∗. Therefore, P = [D̃P − 2nD∞] (similarly for Q), and

e2(P,Q) = (−1)#(Supp(D̃P )∩Supp(D̃Q)).

Proof. We start by assuming n,m = 1. We prove the proposition in this case and
then extend the result using the bilinearity of the Weil pairing to prove the above. We
have 2DP − 2D∞ = div(x−x(P1)(x−x(P2))) when deg(DP ) = 2, and 2DP − 2D∞ =

div(x− x(P1)), when deg(DP ) = 1 (similarly for Q). Choose uniformizers (x− ei)/y
at a Weierstrass point (ei, 0) and xg/y at O+, O− and O depending on if d is odd
or even. For every other point R, we choose x − x(R) as a uniformizer. It is clear
that if DP = DQ, then e2(P,Q) = 1 and the proposition holds. So we assume that
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DP 6= DQ. The evaluation of (x − x0)(x − x′0) at D∞ yields the same value for all
x0, x

′
0 ∈ k, and cancels out while computing the pairing because vD∞(x− x0)(x− x′0)

is even. Furthermore, vR(x− ei) is even for all R ∈ Supp(D∞). Hence, 〈DP , 2DQ〉2 =
〈2DQ, DP 〉1. Using the definitions of 〈·, ·〉1 in §2.1.3

〈2DP , DQ〉1 =



∏
i,j∈{1,2}

(x(Qi)− x(Pj)), if P1, P2 /∈ {Q1, Q2} = ∅,

f
x−x(P1)

(x(P1))(x(P1)− x(P2)) ·
∏

i∈{1,2}
(x(Q2)− x(P2)),

if Q1 = P1.

This implies that

e2(P,Q) =

{
1, if Supp(DP ) ∩ Supp(DQ) = ∅,
−1, if P1 = Q1,

when d is even or d is odd and deg(P ) and deg(Q) are even. Doing a similar compu-
tation as above shows the following. If d is odd, then (x− x0) has an order 2 pole at
∞ for all x0 ∈ k. If deg(DP ) = 1 = deg(DQ), then

e2(P,Q) = (−1)#Supp(D̃P )∩Supp(D̃Q).

If deg(DP ) = 1 and deg(DQ) = 2, then using bilinearity of the Weil pairing, we have
e2(P,Q) = −1 ⇐⇒ Supp(DP ) ⊂ Supp(DQ) as DQ = D̃Q, or equivalently

e2(P,Q) = (−1)#Supp(D̃P )∩Supp(D̃Q).

In the general case one can write D̃∗ as a sum of divisors of degree 2 with disjoint
supports. Let D̃P :=

n∑
i=1

D̃i − nD̃∞ with D̃∞ = D∞ if d is even and 2D∞ if d is odd,

and D̃i of degree 2 for each i and possibly at most one for one i, Di 6= D̃i. Similarly,
we write D̃Q :=

m∑
i=1

D̃′i −mD̃∞. The pairing is then the product of (−1) taken

∑
i,j

#(Supp(D̃i) ∩ Supp(D̃′j)) = #
(⊔

i,j

D̃i ∩ D̃j

)
= #

(
Supp(D̃i) ∩ Supp(D̃′j)

)
many times.

2.2 The homogeneous space definition

We identify J(k) with Pic 0(Ck), and J with Pic 0(Jk) using λΘ. Let a, a′ ∈X(J/k),
and X be a locally everywhere soluble homogeneous space of J over k representing
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a. Now Pic 0(Xk) is canonically isomorphic to Pic 0(Jk) ' J(k) as a Gk-module.
Applying Galois cohomology to the exact sequence

0→ Princ(Xk)→ Div0(Xk)→ Pic 0(Xk)→ 0,

we have that a′ corresponds to an element of H1(Gk,Pic 0(Xk)), and therefore gives
rise to an element b′ of H2(Gk,Princ(Xk)). Using Galois cohomology on the following
exact sequence

0→ k
× → k(X)× → Princ(Xk)→ 0,

one can lift b′ to an element f ′ of H2(Gk, k(X)×) since H3(k) = 0 (Theorem 1.3.44).
Let v be a place of k. Since, a′ is locally trivial, f ′v is in the kernel of the map
H2(Gkv , kv(X)×) → H2(Gkv ,Princ(Xkv

)). Hence, it corresponds to the image of an
element cv ∈ H2(kv). cv can be computed by evaluating f ′v on any local point Qv ∈
X(kv) that avoids the poles and zeros of f ′v.

Definition 2.2.1. Recall the local invariant map on local Brauer groups from Propo-
sition 1.3.37. In view of the above, the homogeneous space definition of the CTP is
given by

〈a, a′〉CT,HS :=
∑
v

invv(cv).

2.3 The Weil pairing definition

Let t, t′ ∈ X(J/k)[n]. Let a, a′ ∈ S(n)(J/k) be lifts of t, t′, respectively, to the n-
Selmer group interpreted as elements in H1(Gk, J [n]). Let α, α′ ∈ Z1(Gk, J [n]) be
lifts of a, a′, respectively. Let β ∈ C1(Gk, J [n

2]) be a lift of α. Using the connecting
morphism, δ : H1(Gk, J [n])→ H2(Gk, J [n]) in the long exact cohomology sequence of
the following exact sequence:

0→ J(k)[n]→ J(k)[n2]→ J(k)[n]→ 0,

we obtain η := δ(α) ∨ α′ = ∂β ∨ α′ ∈ Z3(k), where ∨ is the cup-product induced
by the Weil-pairing en : J [n] × J [n] → µn. Since H3(k) = 0 (Theorem 1.3.44), let
ε ∈ C2(k) be such that ∂ε = η.

This is the global part of the pairing. We now use the local triviality of a. For
every place v of k, recall that xv represents the localization of a cochain x. There
is a point Qv ∈ J(kv) such that ∂Qv = αv = nβv. Let Pv ∈ J(kv) be such that
nPv = Qv. This implies that βv − ∂Pv ∈ C1(Gkv , J [n]). We obtain a 2-cocycle
γv = (βv − ∂Pv) ∨ α′v − εv ∈ Z2(kv).

Definition 2.3.1. Let γv be as above and cv be the class represented by γv in Br(kv),
then the Weil pairing definition of the Cassels-Tate pairing is given by

〈t, t′〉CT,WP :=
∑
v

invv(cv), (2.3.1)
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where recall that invv is the local-invariant map on the Br(kv).

2.4 The Albanese-Albanese definition

We now explain the Albanese-Albanese definition of the Cassels-Tate pairing on
X(JC/k) with respect to the diagonal correspondence ∆ ∈ Div(Ck×Ck) using stan-
dard notations for Galois cochains, cocycles, as defined in §1.1 and §1.3.3. We will
write the group structure on these objects additively also when they take values in
a multiplicative group. Let a, a′ ∈X(J/k), represented by 1-cocycles α, α′, respec-
tively, with values in J(k). Lift α, α′ to cochains a, a′, respectively, with values
in the group Div0(Ck). The Galois equivariant pairings 〈·, ·〉1 and 〈·, ·〉2 induce the
cup-products ∪1 and ∪2 at the level of cochains. Using the long-exact cohomology
sequence associated to the exact sequence

0→ Princ(Ck)→ Div0(Ck)→ Pic 0(Ck) ' J → 0,

we obtain 1-cocycles ∂a and ∂a′ in Z2(Gk,Princ(Ck)). Let η := ∂a ∪1 a′ − a ∪2 ∂a′ ∈
C3(k). Note that the cup products in η make sense. It is easy to see that η is in fact
a 3-cocycle:

∂η = ∂2a ∪1 a′ + ∂a ∪1 ∂a′ − ∂a ∪2 ∂a′ + a ∪2 ∂2a′ = 0, (2.4.1)

since ∂2 = 0 and the pairings are compatible on Princ(Ck)×Princ(Ck) by Proposition
2.1.7. By Theorem 1.3.44, H3(k) = 0 for any number field k. Hence, there exists a
2-cochain ε ∈ C2(k) such that η = ∂ε.

Formally, η looks like ∂(a∪i a′), but a∪a′ does not make sense, since we cannot in
general pair the values of a and a′, so we can understand ε as a substitute for a ∪i a′
with i ∈ {1, 2}.

We now make use of the fact that a is everywhere locally trivial. Let v be a place
of k. Then αv = ∂βv for some βv ∈ J(kv). We lift βv to an element bv of Div0(Ckv).
Then av − ∂bv takes values in the group of principal divisors, and the same is true of
∂a′v, so we can define

γv := (av − ∂bv) ∪1 a′v − bv ∪2 ∂a′v − εv.

Interpreting ε as a ∪i a′, γv looks formally like −∂(bv ∪i a′v), but again, bv ∪i a′v
does not make sense. We have that γv is a 2-cocycle with values in kv

×:

∂γv = ∂av ∪1 a′v − (av − ∂bv) ∪1 ∂a′v − ∂bv ∪2 ∂a′v + bv ∪2 ∂2a′v − ∂av ∪1 a′v + av ∪2 ∂a′v
= −(av − ∂bv) ∪1 ∂a′v + (av − ∂bv) ∪2 ∂a′v = 0.

Here we again need to use that the two pairings are compatible. So γv represents
some cv ∈ H2(kv) ∼= Br(kv). Recall the local invariant map invv : Br(Kv) → Q/Z.
In view of the above, the Albanese-Albanese definition of the CTP on X(JC/k) ×
X(JC/k) is given as follows:
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Definition 2.4.1. For a, a′ ∈X(JC), we have:

〈a, a′〉CT,AA :=
∑
v

invv(cv).

We now show that the above definition is independent on the choices made in
defining it.

Proposition 2.4.2. The pairing defined in Definition 2.4.1 is well-defined.

Proof. We enumerate through all the choices made to establish the proposition.

1. Changing ε by a cocycle ζ ∈ Z2(k). This changes γv by subtracting ζv where ζ
represents z ∈ Br(k), so the value of the pairing changes by −

∑
v

invv(zv) = 0

(by part 4 of Proposition 1.3.37).

2. Changing a by a cochain f with values in principal divisors. Replacing a by
a+ f, η changes by adding ∂f ∪1 a′ − f ∪2 ∂a′ = ∂(f ∪1 a′). The equality follows
from the compatibility of the pairings 〈·, ·〉1 and 〈·, ·〉2 on Princ(Ck)×Princ(Ck).
Therefore, ε changes by addition of f ∪2 a′, but γv remains unchanged.

3. Changing a′ by a cochain f with values in principal divisors. Replacing a′ by
a+ f, η changes by adding ∂a∪1 f− a∪2 ∂f = ∂a∪2 f− a∪2 ∂f = ∂(a∪2 f) (using
the compatibility of the pairings). Hence, ε changes by addition of a ∪2 f, and
therefore γv changes by

(av − ∂bv) ∪1 fv − bv ∪2 ∂fv − av ∪2 fv = (av − ∂bv) ∪2 fv − bv ∪2 ∂fv − av ∪2 fv
= −∂(bv ∪2 fv),

so cv is unchanged.

4. Changing α by a coboundary ∂κ, with κ ∈ J(k). Lift ∂κ to a cochain ∂k, with
k ∈ Div0(Ck) representing κ. This changes a by adding ∂k and η by adding
−∂k∪2 ∂a′ = −∂(k∪2 ∂a′). So we can subtract k∪∂a′ from ε to correct for that.
Then γv changes by nothing.

5. Changing α′ by a coboundary ∂κ, κ ∈ J(k). Now lift ∂k to a cochain ∂k, with
k ∈ Div0(Ck) representing κ. This changes a′ by adding ∂k and η by adding
∂a ∪1 ∂k = ∂(∂a ∪1 k). So we can add ∂a ∪1 k to ε to correct for that. Then γv
changes by

(av − ∂bv)∪1 ∂kv − ∂av ∪2 k = (av − ∂bv)∪1 ∂kv − ∂av ∪1 k = ∂((av − ∂bv)∪1 k),

cv is unchanged.
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6. Changing bv by a principal divisor fv changes γv by

−∂fv ∪1 a′ − fv ∪2 ∂a′ = ∂(fv ∪2 a′v),

which implies that cv remains unchanged.

7. Consider changing βv by adding a point κv ∈ J(kv). Lifting κv to kv ∈
Div0(Ckv), and changing bv by adding kv, changes γv by

−∂kv ∪1 a′v − kv ∪2 ∂a′v.

Note that ∂kv takes values in principal divisors, as κv ∈ J(kv). Further, we have
α′v = ∂β′v, for some β′v ∈ J(kv) by the local triviality of α′. Lifting β′v to b′v, we
have f′v := a′v − ∂b′v takes values in principal divisors and ∂a′v = ∂f′v, therefore

−∂kv ∪1 a′v − kv ∪2 ∂a′ = −∂kv ∪1 f′v − ∂kv ∪1 ∂b′v − kv ∪2 ∂f′v
= −∂kv ∪2 f′v − ∂kv ∪1 ∂b′v − kv ∪2 ∂f′v
= ∂(∂kv ∪1 b′v)− ∂(kv ∪2 f′v),

which implies that cv remains unchanged. It is worth noting here that this is
the only place where the local triviality of a′ is used.

One can extend the above definition of the CTP to define a not well-defined pairing
on X(J/k) × H1(Gk, J) which is the same as the CTP when the second argument
is from X(J/k). We denote this map also by 〈·, ·〉CT for obvious reasons. In this
regard, we have the following remark.

Remark 2.4.3. The analogous map 〈·, ·〉CT : X(J/k) × H1(Gk, J(k)) → Q/Z is
well-defined up to the choice of βv, i.e., changing βv to βv + κv for some κv ∈ JC(kv)
changes the value of the pairing. Let kv ∈ Div0(Ckv) be a lift of κv. Then by part 7
of the previous proposition, the change in the value of the pairing at the place v is
given by −invv([∂kv ∪1 a′v + kv ∪2 ∂a′v]).

2.5 Equivalence of definitions

We show the equivalence of the Albanese-Albanese definition with the Weil pairing
definition first.
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2.5.1 Equivalence with the Weil-pairing definition

Proposition 2.5.1 ([PS99, Proposition 34]). Let a, a′, α, α′, β, a′ be as in the Weil
pairing and Albanese-Albanese definitions of the CTP. Let s be a lift of β to degree-0
divisors. Then ns is a lift of α to degree-0 divisors. If we take another lift a of α
to degree-0 divisors, then f := a − ns takes values in principal divisors. Define ηw,
ηa, η̂a to be the 3-cocycles obtained in the Weil pairing definition, Albanese-Albanese
definition using a as a lift, Albanese-Albanese definition using ns as a lift of α, re-
spectively. If εw, εa, and ε̂a are the 2-cochains trivializing ηw, ηa, and η̂a, respectively,
then one can choose εw, εa such that:

εw − εa = −s ∪2 na′ − f ∪1 a′.

Proof. We have:

ηw − η̂a := ∂β ∨ α′ − ∂ns ∪1 a′ + ns ∪2 ∂a′

= n∂s ∪1 a′ − ∂s ∪2 na′ − ∂ns ∪1 a′ + ns ∪2 ∂a′

= −∂s ∪2 na′ + s ∪2 ∂na′

= −∂(s ∪2 na′)

Hence, we can choose ε̂a such that εw − ε̂a = −s ∪2 na′. Since a = ns + f, we can
choose εa such that εa = ε̂a+ f∪1 a′. Combining with relation between εw, ε̂a we have:

εw − εa = −s ∪2 na′ − f ∪1 a′.

To see that the Weil-pairing and the Albanese-Albanese definitions are equivalent,
we now consider the local part. Keeping the notation as in the previous proposition,
let v be a place of k and γv,w and γ̂v,a be the local 2-cocycles obtained during the
local parts of the Weil pairing, and the Albanese-Albanese definition with ns as a
lift of α, respectively. Let Pv, Qv ∈ JC(kv) be such that ∂Qv = αv and nPv = Qv,
pv ∈ Div0(Ckv) be a lift of Pv, and qv = npv be a lift of Qv. Then

γv,w − γ̂v,a = (βv − ∂Pv) ∨ α′v − (nsv − ∂qv) ∪1 a′v + qv ∪2 ∂a′v + sv ∪2 na′v
= (nsv − ∂npv) ∪1 a

′
v − (sv − ∂pv) ∪2 na′v − (nsv − ∂qv) ∪1 a′v

+ qv ∪2 ∂a′v + sv ∪2 na′v
= ∂pv ∪2 na′v + qv ∪2 ∂a′v = ∂pv ∪2 na′v + pv ∪2 n∂a′v = ∂(pv ∪2 na′v).

Therefore, [γv,w] = [γ̂v,a] ∈ Br(kv), and 〈a, a′〉CT,WP = 〈a, a′〉CT,AA.
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2.5.2 Equivalence with the homogeneous space definition

Showing equivalence with the homogeneous space definition requires a bit more work.
We will briefly introduce the Albanese-Picard definition for a nice variety V /k with
Albanese variety A/k and Picard variety A′/k. The procedure is very close to the
one for the Albanese-Albanese definition, but the cup product ∪1 is induced by the
pairing (2.1.2), and ∪2 is induced by the natural pairing (Z0(Vk) × Princ(Vk))⊥ →
Gm. We denote this by 〈·, ·〉CT,AP : X(A/k) ×X(A′/k) → Q/Z. Similarly to part
1 of Proposition 2.1.5, we have the following functoriality for the Albanese-Picard
definition of the CTP.

Proposition 2.5.2. [PS99, Proposition 31] Let V /k be a nice variety and A :=

Alb(V ). Fix a point P0 ∈ V (k). Then the Albanese morphism φVk : Vk → Ak induces
k-rational isomorphisms φ∗ : A→ Alb(A) and φ∗ := Pic 0(Ak)→ Pic 0(Vk). Here we
have dropped the dependence on V in φ∗ and φ∗ in order to simplify the notation. Let
a ∈X(A/k), and a′ ∈X(Pic 0(A/k)). Then

〈a, φ∗(a′)〉CT,AP = 〈φ∗(a), a′〉CT,AP ,

where the CTP on the LHS is with respect to V and on the RHS is with respect to A.

Let J be a Jacobian variety, let a and a′ ∈ X(J/k), and let X be a principal
homogeneous space of J corresponding to a. Then Alb(X) ' J . By Proposition 2.5.2,
it suffices to show that 〈a, a′〉CT,AP = 〈a, a′〉CT,HS, where the LHS is with respect to
X. We may take a, the lift of a to C1(Gk,Z0(Xk)), to be ∂P , for some P ∈ X(k) (here
a is interpreted as an element in H1(Gk,Alb(X)(k)). Choose a′ ∈ C1(Gk,Div0(Xk))

representing a′. Then ∂a′ = f ′ ∈ Z2(Gk,Princ(Xk)). The element cv ∈ Br(kv) is
obtained by evaluating f ′v at the kv-rational point Qv of X. In the Albanese-Picard
definition, we may choose bv = Pv −Qv ∈ Z0(Xkv

). Therefore,

η = ∂a ∪ a′ − a ∪ ∂a′ = −∂P ∪ f ′ = ∂(−P ∪ f ′).

Hence, we may take ε = −P ∪ f ′, and γv can be shown to be Qv ∪ f ′v which is exactly
the class of cv from the homogeneous space definition.

Hence, from now on we will drop the subscripts WP , AA, and HS from the
notation of the CTP and use 〈·, ·〉CT only.

2.6 Previous computation of the CTP

In the realm of elliptic curves, the CTP on S(2)(E/k) was computed by Cassels [Cas98]
using explicit models for 2-coverings representing elements of the 2-Selmer group and
a combination of the Weil-pairing definition and the homogeneous space definitions.
In [Bea00], Beaver computed the CTP on φ-Selmer groups on elliptic curves, where
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φ is an isogeny of degree 5. Later Cassels’s approach was generalized by Swinnerton-
Dyer [SD13], Fisher and Newton [FN14], and Fisher and van Beek [FvB18] to compute
the CTP on S(2)(E/k)× S(2m)(E/k), S(p)(E/k)× S(p)(E/k), and for Selmer groups of
isogenies of odd prime degrees, respectively. Using an approach of Donnelly based on
the homogeneous space definition of the CTP, Fisher [Fis22] has given another way
of computing the CTP on S(2)(E/K)×S(2)(E/K). Fisher also has an approach based
on the homogeneous space definition for S(3)(E/K) × S(3)(E/K) (unpublished). In
the next chapter we will use the Albanese-Albanese definition of the CTP to compute
it, following the manuscript [SS23].

The story is rather far from complete for the Jacobians of higher genus curves.
Jiali Yan, in her PhD thesis [Yan21b], [FY23], [Yan21a] gave algorithms to compute
the Cassels-Tate pairing on [2] and (2, 2)-isogeny Selmer groups, assuming all the
Weierstrass points of the genus 2 hyperelliptic are defined over k [Yan21a], and on
S(2)(J/k), assuming that the twisted Kummer surface has a k-rational point [FY23].
In all the above cases, the authors used one or both of the Weil-pairing definition and
the homogeneous space definition of the CTP to obtain an algorithm. The algorithm
obtained in [FY23] (though conditional) seems to be very efficient in practice. In
Chapter 4 we give an algorithm to compute the CTP on the 2-Selmer groups of odd-
degree hyperelliptic Jacobians. In Chapter 5 and 6 we obtain algorithms to compute
the CTP on various isogenies on the Jacobians of certain types of curves.

The major obstacle in obtaining an algorithm using the Albanese-Albanese defi-
nition is to compute ε ∈ C2(k) trivializing η ∈ Z3(k). We overcome this by showing
that computing ε is equivalent to computing some 1-cochains e ∈ C1(k) for some
2-cocycles E ∈ Z2(k) such that ∂e = E, where each E is obtained using η. The
advantages of our methods are

1. Computing the pairing involves only computations in the Galois cohomology of
number fields, with minimal reference to the geometry of the Jacobian variety.

2. Computing the pairing does not involve dealing with any explicit equations for
principal homogeneous spaces of J .

3. We do not need to extend to any larger field extension (for example to the field
of definition of n2-torsion points as required in the Weil pairing definition) than
already required for the definition of the Selmer elements when represented as
1-cocycles.

4. One can even compute the pairing in the case of certain isogenies for Jacobians
of higher genus curves.

The disadvantage of our current method is that trivializing 2-cocycles representing
the trivial class in the Brauer group of a number field is known to be a computation-
ally hard problem, and not using any information on the geometry of the Jacobian
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variety and its principal homogeneous space implies that the algorithms become in-
efficient very quickly as the degree of the field of definition of kernel of the isogeny
in question grows. One can certainly hope to get more efficient algorithms if one
combines the cohomological computations with the information on the geometry of
principal homogeneous spaces.
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Chapter 3

The CTP for elliptic curves

In this chapter we compute the CTP on 2-Selmer groups of elliptic curves using the
Albanese-Albanese definition of the pairing. This chapter is based on the manuscript
[SS23] (joint work with Michael Stoll). The CTP on 2-Selmer groups of elliptic curves
has been computed before by Cassels himself using explicit descriptions of elements of
the 2-Selmer group [Cas98]. However, it was not clear to Cassels whether the pairing
computed by his method is indeed the CTP. It was proven later in [FSS10] using
abstract methods that the pairing which Cassels computed is indeed the CTP. By
computing the CTP using the Albanese-Albanese definition we give a more explicit
proof of this result. On the other hand, to the best of our knowledge this is the first
attempt to make the Albanese-Albanese definition of the CTP explicit.

We set some notations useful for this chapter beforehand.

3.1 Notation

Throughout this chapter E will be an elliptic curve over a number field k given by
the equation

Y 2 = f(X) = X3 + cX + d,

where c, d ∈ k, and E[2] will denote the Gk–module E(k)[2]. Let e1, e2, e3 ∈ k be the
roots of f , let Ti := (ei, 0) for i ∈ {1, 2, 3}, and let T0 := ∞ be the unique point at
infinity. Recall the definition of M∆ from Definition 1.3.41 for a finite Gk–set ∆ and
a Gk–module M . For ∆ := {T1, T2, T3} we have

µ∆
2
∼= E[2]⊕ 〈(−1)(T1) + (−1)(T2) + (−1)(T3)〉;

the inclusion E[2] ↪→ µ∆
2 is induced by the Weil pairing (§2.1.4), P 7→

∑
T∈∆ e2(P, T )(T ).

Let L := k[X]/〈f(X)〉 be the étale algebra associated to ∆. Then

H1(GK , E[2]) ∼= ker
(
N : L×/(L×)2 −→ k×/(k×)2

)
, (3.1.1)

where N denotes the map induced by the norm map from L to k.

67
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The elements of L×/(L×)2 can be represented by elements of L×, which can be
written in the form β = l0+ l1θ+ l2θ

2, where l0, l1, l2 ∈ k and θ is the image of x in L.
We set βi = l0 + l1ei + l2e

2
i ∈ k(ei)×. Under the identification L ↪→ L̄ ∼= k

3, β is then
mapped to (β1, β2, β3).

If β represents an element a of H1(Gk, E[2]) via (3.1.1), then β1β2β3 ∈ (k×)2. Fix

square-roots
√
βi of βi, for 1 ≤ i ≤ 3, and consider the formal sum

3∑
i=1

√
βi(Ti) ∈

L̄× = G∆
m. This element is a square root

√
β of β ∈ L× considered as an element of

G∆
m. The 1-coboundary σ 7→ σ

√
β/
√
β then takes values in µ∆

2 because β is fixed by
Gk and represents

χa(σ) :=

σ ·
(

3∑
i=1

√
βi(Ti)

)
(

3∑
i=1

√
βi(Ti)

) . (3.1.2)

The cocycle χa is associated to a 1-cocycle representing a via (Z/2Z)∆ → E[2] sending
3∑
i=1

ai(Ti) 7→
3∑
i=1

aiTi and the identification µ2
∼= Z/2Z as Gk-modules.

Note that µ∆
2 '

⊕
orbits

µ∆i
2 , where ∆i are the Gk orbits of ∆. This induces an

isomorphism Z1(Gk, µ
∆
2 ) '

⊕
orbits

Z1(Gk, µ
∆i
2 ), so χa(σ) factors through the orbits of

∆, i.e., χa(σ) =
∑

orbits
χa,i(σ), where χa,i corresponds to a χa when the support ∆

is replaced by a Gk–orbit ∆i of ∆. We associate with
3∑
i=1

ai(Ti) ∈ µ∆
2 the triple

(a1, a2, a3) ∈ µ3
2, and henceforth we will use this representation for the elements of

µ∆
2 . Write 0̂ for the triple (1, 1, 1) and î for the triple with 1 in the ith position, and
−1 elsewhere. The action of Gk on the triples in µ3

2 is induced from the action on µ∆
2 .

If (x1, x2, x3) is a triple representing an element of (µ∆
2 )

Gk , then define the product
�∏
i

xi to be the product taken over one representative i of each Gk–orbit on ∆ (note

that xi = xj when i and j are in the same orbit).
In the general case, Gal(k(

√
β1,
√
β2)) ' S3 o C2

2 , where S3 acts via permutation
on the set {e1, e2, e3}, and the two copies of the cyclic group of order 2, i.e., C2 act
by flipping the sign of

√
β1 and

√
β2, respectively. Throughout this chapter we work

under the assumption that we are in a fairly generic setting, i.e., we assume that
Gal(k(

√
β1,
√
β2)) ' H o N ⊂ S3 o C2

2 , with H ⊂ S3 and N ⊂ C2
2 , and the above

holds for every 2-Selmer element we will consider.
In the following subsection we recall another definition of the CTP, which we call

Cassels’ pairing, that was given by Cassels in [Cas98].
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3.1.1 Cassels’ pairing

Let a, a′ ∈ S(2)(E/k) be represented by β = (β1, β2, β3) and β′ = (β′1, β
′
2, β

′
3) as

discussed above, and for pairwise distinct 1 ≤ i, j, k ≤ 3, define quadratic forms in
variables (U1, U2, U3, T ) by

Hi(U1, U2, U3, T ) := (βjΓ
2
j − βkΓ2

k)/(ej − ek) + T 2, (3.1.3)

where Γi := U1 + U2ei + U3e
2
i . Note that (U1, U2, U3) 7→ (Γ1,Γ2,Γ3) is just a linear

change of coordinates, and Hi is defined over k(ei). Any two of these quadratic forms
define the same projective curve Da in P3 with coordinates U1, U2, U3, T . Choosing

j, k ∈ {1, 2, 3} cyclically for a given i ∈ {1, 2, 3} we get
3∑
i=1

(ej − ek)Hi = 0. Hence,

any two of the Hi define the same genus 1 curve Da over k. The curve Da has points
for every completion kv of k and is a 2-covering of E representing a. For details, see
[Cas98, §2]. Since Da has a point on the affine patch T 6= 0 locally everywhere, each
Hi has a non-trivial solution over kv(ei) for every place v of k, and therefore each
Hi has a solution over every completion of k(ei). This implies that there is a point
qi := (ui1 : ui2 : ui3 : 1) or (Γ∗ij : Γ∗ik : 1) defined over k(ei) satisfying: Hi = 0 for
each i, which is a consequence of the local-global principle for quadratic forms. Let
Li(U1, U2, U3, T ) over k(ei) for 1 ≤ i ≤ 3 be a linear form such that Li = 0 is the
tangent to Hi at qi.

If qv is a point defined on Da over kv, then the Cassels’ pairing [Cas98, Lemma
7.4] is defined as follows:

〈α, α′〉Cas :=
∏
v

�∏
i

(Li(qv), β
′
i)kv(ei). (3.1.4)

In [Cas98], Cassels showed that the above definition gives a well-defined pairing and
is independent of the choices made.

3.1.2 Some useful formulas

We now recall some equations which will be useful later. Let P = (x, y) on E/k.
Then

P + Ti =

(
eix+ ejek − ei(ej + ek)

(x− ei)
,
−(ej − ei)(ek − ei)y

(x− ei)2

)
, (3.1.5)

where {i, j, k} = {1, 2, 3}. Using the fact that the line through P and Ti passes
through −P − Ti and Equation (3.1.5), we deduce that

x(±P + Ti)− ei
x(±P )− ei

=
(ej − ei)(ek − ei)

(x− ei)2
= −y(±P + Ti)

y(±P )
(3.1.6)
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We also deduce from (3.1.5) that

x(±P + Tj)− ei =
(x− ek)(ej − ei)

(x− ej)
, (3.1.7)

which, along with the fact that the line passing through P +Ti and Tk passes through
−P + Tj, gives

y(±P + Ti)(x(±P )− ek)
y(±P )(x(±P + Ti)− ek)

=
(3d+ 2cei)(x− ek)

ei(x− ei)(x− ej)(ei − ek)
=

(x− ek)2(ej − ei)
y2

.

(3.1.8)

3.2 Computing the CTP on S2(E/k)× H1(Gk, 〈T1〉)

In this section we compute the CTP on S2(E/k) × H1(Gk, 〈T1〉) (in the sense of
§2.4), assuming that e1 ∈ k, i.e., [k(E[2]) : k] ≤ 2. Remark 2.4.3 implies that
the value of the CTP thus obtained depends on the choices made during the local
part of the computation. Therefore, it is one of the possible values of the CTP on
S(2)(E/k) × H1(Gk, 〈T1〉). Henceforth, we will always assume 1 ≤ i, j, k ≤ 3, and if
any subset of i, j, k appear together in an expression, they will be pairwise distinct.
We use the notation from §3.1 during the process.

We begin with an explicit description of a ∈ S(2)(E/k) and a′ ∈ H1(Gk, 〈T1〉) '
k×/(k×)2, represented by the triple (β1, β2, β3) and β′ ∈ k×, respectively. Let the
1-cocycles α and α′ representing a and a′, respectively, be as follows:

α(σ) =

T0, if χ(σ) = 0̂,

Ti, if χ(σ) = î,
and α′(σ) =

T0, if χ′(σ) = 1,

T1, if χ′(σ) = −1.

Here χ = χα (as defined in Equation (3.1.2)), but we have dropped the subscript for
simplicity of notations. Further, χ′(σ) := σ(

√
β′)/
√
β′, for a fixed square root

√
β′ of

β′.
The next two subsections are dedicated to the computation of the CTP when a, a′

are as above.

3.2.1 Global computation

Lift α, α′ to 1-cochains a, a′ with values in Div0(Ek) as follows:

a(σ) =

0, if χ(σ) = 0̂,

(Ti)− (T0), if χ(σ) = î,
and a′(σ) =

0, if χ′(σ) = 1,

(T1)− (T0), if χ′(σ) = −1.
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We have:

∂a(σ, τ) =


0 = div(1), if χ(σ) = 0̂ or χ(τ) = 0̂,

2(Ti)− 2(T0) = div(x− ei), if χ(σ) = î, σ · χ(τ) = î,

(Ti) + (Tj)− (Tk)− (T0) = div( y
x−ek

), if χ(σ) = î, σ · χ(τ) = ĵ.

(3.2.1)
Similarly, for a′ we have:

∂a′(σ, τ) =

0 = div(1), if χ′(σ) = 1 or χ′(τ) = 1,

2(T1)− 2(T0) = div(x− e1), if χ′(σ) = χ′(τ) = −1. (3.2.2)

Let tP denote a unifomizer at a point P ∈ E(k). We assume tT0 = x/y, tTi =

−(x − ei)/y and tP = x − x(P ) at all other points P /∈ E[2]. The map defined by
P 7→ tp, is Galois-equivariant. It is not hard to check that 〈div(f), D〉1 = 〈D, div(f)〉2,
where div(f) and D appear in the values taken by ∂a, ∂a′, a, and a′. In what follows,
we write 〈f,D〉1 for 〈div(f), D〉1 in order to simplify the notation. Therefore,

〈(x− ei), (Ti)− (T0)〉1 =
y2/(x− ei)(Ti)

(x− ei)x2/y2(T0)
= (ei − ej)(ei − ek),

〈(x− ei), (Tj)− (T0)〉1 =
(x− ei)(Tj)

(x− ei)x2/y2(T0)
= (ej − ei),

〈y/(x− ek), (Ti)− (T0)〉1 =
−y2/(x− ek)(x− ei)(Ti)

x/(x− ek)(O)
= (ej − ei),

〈y/(x− ek), (Tk)− (T0)〉1 =
−y(x− ek)/y(x− ek)(Tk)

x/(x− ek)(O)
= −1.

For i 6= j, we set sij := ei − ej, and si := sijsik. For σ, τ, ρ ∈ Gk, the cup product,
(∂a ∪1 a′)(σ, τ, ρ) (resp. (a ∪2 ∂a′)(σ, τ, ρ)) via the pairing 〈·, ·〉1 (resp. 〈., .〉2) is
〈∂a(σ, τ), στ (a′1(ρ))〉1 (resp. 〈a(σ), σ(∂a′1(τ, ρ))〉2) using Definition 1.3.10. Therefore,
for pairwise distinct 1, j, k,

(∂a ∪1 a)′(σ, τ, ρ) =



1, if χ(σ) = 0̂ or χ(τ) = 0̂ or χ′(ρ) = 1,

s1, if χ(σ) = 1̂, σ · χ(τ) = 1̂, χ′(ρ) = −1,

s1j, if χ(σ) = ĵ, σ · χ(τ) = ĵ, χ′(ρ) = −1,

sj1, if (χ(σ),σ·χ(τ))=(1̂,̂j), or
(χ(σ),σ·χ(τ))=(ĵ,1̂)

, χ′(ρ) = −1,

−1, if (χ(σ), σ · χ(τ)) = (k̂, ĵ), χ′(ρ) = −1,

(3.2.3)
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and

(a ∪2 ∂a)′(σ, τ, ρ) =


1, if χ(σ) = 0̂ or χ′(τ) = 1 or χ′(ρ) = 1,

s1, if χ(σ) = 1̂, χ′(τ) = χ′(ρ) = −1,

sj1, if χ(σ) = ĵ, χ′(τ) = χ′(ρ) = −1.
(3.2.4)

We want to find a 2-cochain ε such that ∂ε = η := ∂a ∪1 a′ − a ∪2 ∂a′ which (as
we will later see) will require us to express certain elements as norms. Since Da is
locally everywhere soluble, using the discussion in §3.1.1 we have a global solution
qi = (Γ∗ij : Γ∗ik : 1) to Hi(Γij : Γik : 1) = 0 over k(ej, ek), for 1 ≤ i ≤ 3, where Hi

are as in Equation (3.1.3) and we assume Γ∗ij and Γ∗ik to be conjugates over k(ei) if
ej and ek are. We would like to express sij as norm from k(

√
β1,
√
β2) to an index 2

subfield of k(
√
β1,
√
β2). Therefore, we define the quantities

pjk :=
√
βjΓ

∗
ij +

√
βkΓ

∗
ik, and pi := pijpik. (3.2.5)

Remark 3.2.1. Let qi be as above, and σ ∈ Gk be such that σ(ei) = ek, then we
can assume that the solution of the conic Hk = 0 is qk := σ(qi). Writing σ ∈ Gk(ei)

as σsσp, where σs ∈ Gk(E[2]) is such that χ(σ) = χ(σs), and χ(σp) = 0̂, we have

σ(pij) = σs(pσ·iσ·j) and σ(pi) = σs

(∏
l 6=i

pσ·iσ·l

)
= σs(pσ·i),

where for indices j, k, σ · j = k if σ(ej) = ek.

If x is an n-cochain that only depends on the value of χ and χ′ on its arguments,
then we will interchangeably use x(σ1, . . . , σn) with x(χ(σ1), χ′(σ1), . . . , χ(σn), χ′(σn))
and drop the dependence on χ(σi) or χ′(σi), if x is independent of χ(σi) or χ′(σi),
respectively, for some i.

We now resume the computation of ε ∈ C2(k) such that ∂ε = η. If ε ∈ C2(k)

is only dependent on χ(τ), χ′(τ) and χ′(ρ), then we use ε(τ, ρ) interchangeably with
ε(χ(τ), χ′(τ), χ′(ρ)). We have

(∂ε)(σ, τ, ρ) =
σ(ε(χ(τ), χ′(τ), χ′(ρ))) ε(χ(σ), χ′(σ), χ′(τρ))

ε(χ(στ), χ′(στ), χ′(ρ)) ε(χ(σ), χ′(σ), χ′(τ))
,

is dependent on χ(σ), χ(τ), χ′(σ), χ′(τ), χ′(ρ), and action of σ on the image of ε.
The following proposition gives one ε such that ∂ε = η.
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Proposition 3.2.2. Let ε ∈ C2(k) be as follows:

ε(τ, ρ) =



1, if
χ(τ)=0̂, χ′(τ)χ′(ρ)=−1

or χ(τ)=1̂, χ′(τ)χ′(ρ)=1
or χ′(ρ)=1

,

p1, if χ(τ) = 1̂, χ′(τ) = 1, χ′(ρ) = −1,

1/p1, if χ(τ) = 0̂, χ′(τ) = −1, χ′(ρ) = −1,

p1j, if χ(τ) = ĵ, χ′(τ) = 1, χ′(ρ) = −1,

1/p1j, if χ(τ) = k̂, χ′(τ) = −1, χ′(ρ) = −1,

(3.2.6)

where pij, pi are as defined in Equation (3.2.5) and 1, j, k are pairwise distinct, then
∂ε = η.

Proof. If χ′(ρ) = 1, then

∂ε(σ, τ, ρ) =
σε(χ(τ), χ′(τ), 1) ε(χ(σ), χ′(σ), χ′(τ))

ε(χ(στ), χ′(στ), 1) ε(χ(σ), χ′(σ), χ′(τ))
= 1 = η(σ, τ, ρ).

Therefore, we assume that χ′(ρ) = −1 and observe that

p1 =
1

ε(0̂,−1,−1)
=

ε(χ(τ), 1,−1)
ε(χ(τ),−1,−1)

, (3.2.7)

for all values of χ(τ). Using this for χ′(ρ) = −1 and χ′(σ) = 1 we have:

∂ε
∣∣
χ′(τ)=−1(σ, τ, ρ) =

σε(χ(τ),−1,−1) ε(χ(σ), 1, 1)
ε(χ(στ),−1,−1) ε(χ(σ), 1,−1)

= (∂a ∪1 a
′)(σ, τ, ρ)Γ(σ),

where
Γ(σ) :=

p1
σ(p1) ε(χ(σ), 1,−1)2

.

Remark 3.2.1 implies that σ(p1) = σs(p1) and therefore, Γ(σ) depends only on χ(σ).
Therefore, it is enough to show that Γ(σ) = 1/a ∪ ∂a′(χ(σ),−1,−1), for σ ∈ Gk(E[2])

(see Appendix (table 3.1) for explicit verification).
Now we show that ∂ε

∣∣
χ′(σ)=1

= ∂ε
∣∣
χ′(σ)=−1. If χ′(σ) = −1 and χ′(τ) = 1, then we

have:

∂ε(σ, τ, ρ) =
σε(χ(τ), 1,−1) ε(χ(σ),−1,−1)
ε(χ(στ),−1,−1) ε(χ(σ),−1, 1)

=
σε(χ(τ), 1,−1) ε(χ(σ), 1,−1)
ε(χ(στ), 1,−1) ε(χ(σ),−1, 1)

= ∂ε
∣∣
χ′(σ)=1,χ′(τ)=1

(σ, τ, ρ).

(using (3.2.7))
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If χ′(τ) = χ′(σ) = −1, then we have

∂ε(σ, τ, ρ) =
σε(χ(τ),−1,−1)

ε(χ(στ), 1,−1) ε(χ(σ),−1,−1)
=

σε(χ(τ),−1,−1)
ε(χ(στ),−1,−1) ε(χ(σ), 1,−1)

= ∂ε
∣∣
χ′(σ)=1,χ′(τ)=−1(σ, τ, ρ).

(using (3.2.7))

What is left now to show is that if χ′(σ) = 1, then

∂ε
∣∣
χ′(τ)=1

(σ, τ, ρ) = η
∣∣
χ′(τ)=1

(σ, τ, ρ) = ∂a ∪ a′(χ(σ), χ(τ),−1). (3.2.8)

We observe that

σ(ε(χ(τ), χ′(τ), χ′(ρ))) = σsε(σ · χ(τ), χ′(τ), χ′(ρ)), (3.2.9)

Remark 3.2.1 implies (3.2.9) as the values of ε are multiplicative combinations of p1j
and σ(p1j) = σs(p1σ·j). This implies (assuming χ′(σ) = 1):

∂ε(σ, τ, ρ)
∣∣
χ′(τ)=1,χ′(ρ)=−1 =

σε(χ(τ), 1,−1)ε(χ(σ), 1,−1)
ε(χ(στ), 1,−1)

=
σsε(σ · χ(τ), 1,−1)ε(χ(σ), 1,−1)

ε(χ(σ)σ · χ(τ), 1,−1)
.

Therefore, for σ, τ ∈ Gk such that χ(σ) = î and χ(τ) = σ−1 · ĵ, respectively,
∂ε
∣∣
χ′(τ)=1,χ′(ρ)=−1(σ, τ, ρ) takes the same value, which is similar to ∂a ∪ a′. Hence,

it is enough to verify Equation (3.2.8) assuming σ, τ ∈ Gk(E[2]) along with χ′(σ) =

1 = χ′(τ) = 1 and χ′(ρ) = −1 (see Appendix (table 3.2) for explicit verification).

The next subsection is dedicated to the local part of the computation of the CTP
using ε obtained from the global part.

3.2.2 Local computation

We recall the assumption that T1 (therefore, β′) is defined over kv. Using the local
triviality of α, for each place v of k there exists a Pv := (xv, yv) ∈ E(kv) such that
∂Pv(σ) = (σ − 1)Pv = αv(σ). This implies that for σ ∈ Gkv , σ(Pv) = Pv, if χ(σ) = 0̂,
and σ(Pv) = Pv+Ti, if χ(σ) = î. Hence, Pv is defined over a subfield of kv(

√
β1,
√
β2).

If Pv ∈ E[2], then 2Pv = O, βv ∈ (L⊗ kv)× is a square and av is trivial, and therefore
Pv can be chosen to be O ∈ E. In this case, choosing the lift bv of Pv = O as
0 ∈ Div0(Ek) we obtain γv = −εv. Hence, in what follows we assume Pv /∈ E[2].
Lifting Pv to a degree zero divisor bv = (Pv)− (T0), we have

(av − ∂bv)(σ) =


0 = div(1), if χ(σ) = 0̂

(Ti)− (Pv + Ti) + (Pv)− (T0) = div
(

y− yv(x−ei)

xv−ei

x−x(Pv+Ti)

)
, if χ(σ) = î.

(3.2.10)
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For 1 ≤ i ≤ 3, let xv,i, θv,i and ωv,i denote the quantities xv − ei, yv
xv−ei and −θv,i/pjk,

respectively. This gives:

(av − ∂bv) ∪1 a′v(τ, ρ) =


1, if χ(τ)=0̂ or χ′(ρ)=1,

zv,11, if χ(τ)=1̂, χ′(ρ)=−1,

zv,1j, if χ(τ)=ĵ, χ′(ρ)=−1,

(3.2.11)

where using equations (3.1.6) and (3.1.8) we have

zv,11 =


(
y − yv(x−e1)

xv−e1

)
(− y

x−e1 )

(x− x(Pv + T1))

 (T1)×

 (x− x(Pv + T1))(
y − yv(x−e1)

xv−e1

)
(x/y)

 (T0) = xv,1

and

zv,1j =


(
y − yv(x−ej)

xv−ej

)
(x− x(Pv + Tj))

 (T1)×

 (x− x(Pv + Tj))(
y − yv(x−ej)

xv−ej

)
(x/y)

 (T0) = −θv,k

Further,

bv ∪2 ∂a′v(τ, ρ) =

1, if χ′(τ) = 1 or χ′(ρ) = 1,

xv,1, if χ′(τ) = χ′(ρ) = −1, (3.2.12)

and γv := (av − ∂bv) ∪ a′v − bv ∪ ∂a′v − εv is given by:

γv :=



1, if
χ(τ)=0̂, χ′(τ)χ′(ρ)=−1

or χ(τ)=1̂, χ′(τ)χ′(ρ)=1
or χ′(ρ)=1

,

xv,1/p1, if χ(τ) = 1̂, χ′(τ) = 1, χ′(ρ) = −1,

p1/xv,1, if χ(τ) = 0̂, χ′(τ) = −1, χ′(ρ) = −1,

ωv,k, if χ(τ) = ĵ, χ′(τ) = 1, χ′(ρ) = −1,

1/ωv,k, if χ(τ) = k̂, χ′(τ) = −1, χ′(ρ) = −1,

(3.2.13)

where j, k 6= 1 are distinct.
We discuss some properties of ωv,i in order to determine the class cv in Br(kv)

represented by γv. Here we digress from the assumption that e1 ∈ kv. Note that ωv,i
can be defined independently of this assumption. For σ ∈ Gkv , satisfying χ(σ) = î

and σ
∣∣
kv(
√
βi)

= id , and using Equation (3.1.6) we have

σ(ωv,i) = σ

(
−yv
xv,ipjk

)
=

y(Pv + Ti)

pjk(x(Pv + Ti)− ei)
=
−yv
xv,ipjk

= ωv,i.

(σ(pjk) = −σspσ·j,σ·k = −pjk.)
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This implies that ωv,i ∈ kv(
√
βi). Further, if σ ∈ Gkv , with χ(σ) = ĵ and σ

∣∣
kv(E[2])

=

id (i.e., σ
∣∣
kv(
√
βi)

is the non-trivial element of Gal(kv(
√
βi)/kv(βi))), then using Equa-

tion (3.1.7)

σ(ωv,i) = σ

(
−yv
xv,ipjk

)
=

−y(Pv + Tj)

σ(pjk)(x(Pv + Tj)− ei)
=
−xv,ipjk
yv

=
1

ωv,i
.

(σ(pjk)pjk = skj)
Assuming βi is not a square in kv(ei), we have Normkv(

√
βi)/kv(ei)(ωv,i) = 1. Also, if

σ ∈ Gkv is such that χ(σ) = 0̂ then we have: σ(ωv,i) = ωv,j if σ(ei) = ej. Using
Hilbert’s Theorem 90, we have a hv,i ∈ kv(E[2],

√
βi), such that ωv,i = hv,i/hv,i, where

x 7→ x, represents the non-trivial automorphism of kv(
√
βi) over kv(ei). We choose

hv,i to be 1 + ωv,i ∈ kv(
√
βi), and define:

δv,i := hv,ihv,i = (2 + ωv,i + ωv,i) ∈ kv(ei)×. (3.2.14)

In view of the above we have the following remark:

Remark 3.2.3. Let δv,i ∈ kv(ei)× be as above. Then σ(δv,i) = δv,j if σ(ei) = ej for

σ ∈ Gk. Therefore, we get:
3∏
i=1

δv,i ∈ k×v and δ′v,i := δv,jδv,k ∈ kv(ei)×.

Returning to our discussion in the case when e1 ∈ kv, we have: δ′v,1 ∈ k×v . We
shift γv by the coboundary ∂ξv where:

ξv(τ) =

1, if χ′(τ) = 1,

hv,2hv,3, if χ′(τ) = −1. (3.2.15)

If γ′v := γv − ∂ξv, then we have:

γ′v(τ, ρ) =

1, if χ′(τ) = 1 or χ′(ρ) = 1,
1
δ′v,1
∈ k×v , if χ′(τ) = χ′(ρ) = −1, (3.2.16)

and that γ′v also represents the class cv ∈ Br(kv). The Proposition 1.3.40 implies
that cv is the class of the quaternion algebra (δ′v,1, β

′) and therefore (−1)2invkv (cv) =

(δ′v,1, β
′)kv .

We now express δv,i in terms of x(Qv), and y(Qv), where Qv := 2Pv ∈ E(kv).

x(Qv)− ei =
(
3x2v + c

2yv

)2

− (xv − ej)− (xv − ek)

=
1

4

(
3∑
i=1

θv,i

)2

− θv,iθv,k − θv,iθv,j =
1

4
(θv,j + θv,k − θv,i)2 .
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There exists wv,i ∈ kv(ei)×, such that (x(Qv)− ei) = βiw
2
v,i; hence, θv,i = wv,j

√
βj +

wv,k
√
βk and

ωv,i = −
θv,i
pjk

= −
wv,j

√
βj + wv,k

√
βk

Γ∗j
√
βj + Γ∗k

√
βk

.

Here wv,i are chosen to be conjugates over kv if ei are. Therefore,

δv,i = 2

(
1−

βjwv,jΓ
∗
j − βkwv,kΓ∗k

βj(Γ∗j)
2 − βk(Γ∗k)2

)
= 2

(
1 +

βkwv,kΓ
∗
k − βjwv,jΓ∗j
skj

)
. (3.2.17)

A value of 〈a, a′〉CT (depending on the choices made above) is then given by the
following theorem.

Theorem 3.2.4. In view of the above discussion and the choice of the point Pv made
above, one of the values of CTP on (a, a′) ∈ S2(E)× H1(Gk, 〈T1〉) is equal to:

〈a, a′〉CT =
∏
v

(δ′v,1, β
′)kv .

3.3 Computing the CTP on S(2)(E/k)× S(2)(E/k)

Our main aim in this section is to prove the sufficiency of the computation done in
the previous section.

3.3.1 Corestriction method

Let a′ ∈ S(2)(E/k) be represented by the 1-cocycle α′ which corresponds to the triple
(β′1, β

′
2, β

′
3) as in section 3.1, and we drop the subscript in χα′ and call it χ′. Note

that this χ′ is not the same as the one in the previous section. We choose a lift of α′
to C1(Gk,Div0(Ek)) as:

a′(σ) =

0, if χ′(σ) = 0̂,

(Tj) + (Tk)− 2(T0), if χ′(σ) = î.

The following lemma implies that a′ can be written as a sum of corestrictions of
certain cochains.

Lemma 3.3.1. Let a′ be as above, and let ∆1, . . . ,∆n be different orbits of ∆ with
representatives T1, . . . , Tn for n ≤ 3. Then

a′ =
n∑
i=1

cor(ti),
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where each ti ∈ C1(Gk(ei),Div0(Ek)) is given by:

ti(σ) :=

{
0, if σ(

√
β′i) =

√
β′i,

(Ti)− (T0), if σ(
√
β′i) = −

√
β′i,

and the corestriction of ti is taken with respect to the groups Gk(ei) and Gk.

Proof. Let Ti = Pi,1, . . . Pi,ki be the points in the orbit of Ti and let β′i = bi,1, . . . , bi,ki
be the Gk-conjugates of β′i in {β′1, β′2, β′3}. Let {id = τi,1, τi,2, . . . , τi,ki} be represen-
tatives of the right cosets of Gk(ei) with τi,j(Pi,j) = Ti for 1 ≤ j ≤ ki, and τi,j ·(

ki∑
l=1

√
bi,l(Pi,l)

)
=

ki∑
l=1

√
bi,l(Pi,l). To see that such a choice of coset-representatives is

possible we note that any σ ∈ Gk such that σ(P ) = Ti for some P ∈ ∆i has the form
σsσp (as in Remark 3.2.1), and so σp has the required property. Let c, r be the maps
as in the definition of the corestriction map (Definition 1.3.8). Then c(τi,jσ) ∈ Gk(ei),
therefore, r(τi,jσ)−1(

√
β′i) =

√
bi,σ−1·j, where (i, σ−1 · j) = (i, l) if σ−1(Pi,j) = Pi,l. By

Definition 1.3.8 and the definition of ti,

n∑
i=1

corGk
Gk(ei)

(ti)(σ) =
n∑
i=1

ki∑
j=1

τ−1i,j ti(c(τi,jσ))

=
n∑
i=1

ki∑
j=1

g

(
σ(
√
bi,σ−1·j)√
bi,j

)
((Pi,j)− (T0)) ,

where g : µ2 → Z is such that g(1) = 0 and g(−1) = 1. Now using the definition of

χ′ (Equation (3.1.2)) we have χ′(σ) =
n∑
i=1

ki∑
j=1

χ′i,j(σ)(Pi,j), where χ′i,j(σ) :=
σ(
√
bi,σ−1·j)√
bi,j

denotes the value of χ′(σ) at Pi,j. Therefore,
n∑
i=1

corGk
Gk(ei)

(ti) = a′.

We show that our choice of lift a of α, and our choice of right-coset representatives
as in the proof of the Lemma 3.3.1, satisfy Proposition 1.3.12.

Proposition 3.3.2. Let k be a number field or its localization at a prime, a be
as before, choose the set of right-coset representatives R of Gk(e1) in Gk such that
χ(g) = 0̂, for all g ∈ R, as in the Lemma 3.3.1. Then

g−1∂(a)(c(gσ), c(gσ)−1c(gστ )) = ∂a(σ, τ),

and
g−1a(c(gσ)) = a(σ),

for g ∈ R, and σ and τ in Gk.
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Proof. Recall the definition of r : G → R, and that c : G → H is given by c(σ) =

σr(σ)−1. We first show the second equality in the above proposition. We have

g−1a(c(gσ)) = g−1a(gσr(gσ)−1) = a(g−1 · χ(gσr(gσ)−1))
= a(g−1 · (χ(gσ)(gσ) · χ(r(gσ)−1)) = a(χ(σ)) = a(σ).

Now we prove for the part of the proposition involving ∂a. Let σ and τ be in Gk, and
g ∈ R. Let g′ := r(gσ). Then

g−1∂(a)(c(gσ), c(gσ)−1c(gστ )) = g−1
(
a(c(gσ)) + c(gσ)a(c(gσ)−1c(gστ ))− a(c(gστ ))

)
= g−1

(
ga(σ)− ga(στ) + gσg′−1a(c(g′τ))

)
= a(σ) + σa(τ)− a(στ) = ∂(a)(σ, τ).

Lemma 3.3.1 along with the Proposition 1.3.11 immediately gives us the following
corollary.

Corollary 3.3.3. Let a, a′ ∈ S(2)(E/k) and α, α′, a and a′ be as in the definition of
CTP. Assume the notations of Lemma 3.3.1 and that a′ is chosen as in Lemma 3.3.1.
Then η := ∂a ∪1 a′ − a ∪2 ∂a′ =

n∑
i=1

corGk
Gk(ei)

ηi, where

ηi := ∂resGk(ei)

Gk
(a) ∪1 ti − resGk(ei)

Gk
(a) ∪2 ∂ti ∈ Z3(k(ei)).

In particular, if εi ∈ C2(k(ei)) are such that ∂εi = ηi, then ε ∈ C2(k) such that ∂ε = η

can be chosen to be
n∑
i=1

corGk
Gk(ei)

(εi).

Thus we reduce the case of computing the ε for a, a′ ∈ S(2)(E/k), to the case of
computing εi which we have already done in Proposition 3.2.2 by setting k as k(ei)
and T1 as Ti.

Considering the local part of the computation we have: γv =
n∑
i=1

γ′i,v where

γ′i,v := (av − ∂bv) ∪1
(

corGk
Gk(ei)

(ti)
)
v
− bv ∪2 ∂

(
corGk

Gk(ei)
(ti)
)
v
−
(

corGk
Gk(ei)

(εi)
)
v
.

By the double coset formula (Equation (1.3.5)),(
corGk

Gk(ei)
(ti)
)
v
=
∑
w|v

corGkv
Gk(ei)w

ti,w,

where ti,w := resGk(e1)w

Gk(ei,w)
((gi,w)∗ti) ∈ C1(Gk(ei)w , 〈(Ti,w) − (T0)〉), gi,w ∈ Gk corresponds

to the valuation w of k(ei) above v, and ei,w, Ti,w are gi,w conjugates of ei, Ti, respec-
tively. Concretely,

ti,w(σ) :=

{
0, if σ(

√
β′i,w) =

√
β′i,w,

(Ti,w)− (T0), if σ(
√
β′i,w) = −

√
β′i,w,
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where β′i,w := gi,w(β
′
i).

Similarly, applying the double coset formula for εi we get:(
corGk

Gk(ei)
εi

)
v
=
∑
w|v

corGkv
Gk(ei)w

εi,w.

One can choose bv such that σbv = bv, for all σ ∈ Gkv such that χ(σ) = 0̂. Hence,
γ′i,v =

∑
w|v

corGkv
Gk(ei)w

γi,w, where

γi,w :=
(

resGk(ei)w

Gk
(a)− resGk(ei)w

Gkv
(∂bv)

)
∪1 ti,w − resGk(ei)w

Gkv
(bv) ∪2 ∂ti,w − εi,w. (3.3.1)

The following proposition shows that γi,w is a 2-cocycle.

Proposition 3.3.4. γi,w ∈ Z2(k(ei)w).

Proof. Using ∂εi = ηi we have

∂γi,w = resGk(ei)w

Gk
∂a ∪1 t′i,w − resGk(ei)w

Gk
a ∪2 ∂t′i,w

− resGk(ei)w

Gk(gw(ei))
(gi,w)∗

(
∂resGk(ei)

Gk
a ∪1 t′1 − resGk(ei)

Gk
a ∪2 ∂t′i

)
= resGk(ei)w

Gk
(∂(a− (gi,w)∗a)) ∪1 t′1,w − resGk(e1)w

Gk
(a− (gi,w)∗a) ∪2 ∂t

′
1,w.

((gi,w)∗ commutes with res, ∪ and ∂)

So, if (gi,w)∗(a) = a, then ∂γi,w = 0. Note that a(τ) only depends on χ(τ), therefore
we can equivalently write a(χ(τ)) instead of a(τ). We have σa(χ(τ)) = a(σ · χ(τ)).
To see this, recall the definition of χ(τ); hence, if χ(τ) = ĵ, then σχ(τ) = σ̂ · j.

Now for σ ∈ Gk,

((gi,w)∗(a)) (σ) = gi,wa(g
−1
i,wσgi,w) (by definition)

= gi,wa(χ(g
−1
i,wσgi,w)) = a(gi,wχ(g

−1
i,wσgi,w))

= a(χ(σgi,w)χ(gi,w)
−1) = a(χ(σ)σχ(gi,w)χ(gi,w)

−1)

(χ is a 1-cocycle)

Recall from the proof of Lemma 3.3.1 or from Remark 3.2.1 that gi,w can be chosen
such that χ(gi,w) = 0̂ via the decomposition σ = σsσp for σ ∈ Gk. Making such a
choice for gi,w, we have

((gi,w)∗(a)) (σ) = a(χ(σ)σχ(gi,w)χ(gi,w)
−1) = a(χ(σ)) = a(σ).

The above proposition together with part 4 of Proposition 1.3.37 implies that

invkv([γv]) =
n∑
i=1

invkv([γ′i,v]) =
n∑
i=1

∑
w|v

invkv(ei,w)([γi,w]),
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where [z] represents the cohomology class of the cocycle z, i.e., the contribution from
a place v of k in the CTP is the sum of contributions from Gkv–orbits of ∆. If for a
place v of k, and m ≤ 3, ∆1, . . . ,∆m are the Gkv–orbits of ∆ with ∆i represented by
Ti, then from the above computation and §3.2.2 we get δ′i,v ∈ kv(ei)× such that the

local contribution at v in the CTP is
m∏
i=1

(δ′i,v, β
′
i)kv(ei). Therefore, we have the following

theorem.

Theorem 3.3.5. We have

(−1)2〈a,a′〉CT =
∏
v

∏
i

(δ′i,v, β
′
i)kv(ei),

where i runs through the Gkv–orbits of ∆.

The following corollary says that we only need to consider contribution to the
CTP from finitely many places.

Corollary 3.3.6. Let Sa,a′ be the set of finite places v of k such that either of αv,
α′v (the localizations at v of cocycles representing a, a′ (resp.)) do not factor through
an unramified extension, together with the places such that ε takes at least one value
with non-trivial valuation. Then

(−1)2〈a,a′〉CT =
∏

v∈Sa,a′

m∏
i=1

(δ′i,v, β
′
i)kv(ei),

where i runs through Gkv–orbits of ∆.

Proof. This is a special case of Lemma 4.3.19, where it is proven more generally.

3.3.2 Exact formula for the CTP

In order to compute a exact formula for the CTP, we express the formula for the CTP
obtained in Theorem 3.3.5 in terms of the Hilbert symbols (δv,i, β′i)kv(ei) instead of δ′v,i.

Remark 3.2.3 implies that there is a dv :=
∏
i

δ′v,i ∈ k×v such that
3∏
i=1

dvδv,i ∈ (k×v )
2.

Previously, we expressed the CTP in terms of the Hilbert symbols (δ′v,i, β′i)kv(ei). Recall

the definition of
�∏

from section 3.1. By Theorem 3.3.5, if cv denotes the class of γv
in Br(kv), then

(−1)2invkv (cv) =
�∏
i

(δ′v,i, β
′
i)kv(ei) =

�∏
i

(d2v, β
′
i)kv(ei)(δ

′
v,i, β

′
i)kv(ei)

=
�∏
i

(d2vδ
′
v,i, β

′
i)kv(ei) =

�∏
i

(dvδv,i, β
′
i)kv(ei)

=
�∏
i

(dv, β
′
i)kv(ei)

�∏
i

(δv,i, β
′
i)kv(ei).
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Here δ′v,i := δv,jδv,k is as in Remark 3.2.3. We now show that
�∏
i

(dv, β
′
i)kv(ei) = 1.

Here we use the fact that if L is a finite extension of kv and z ∈ k×v , z′ ∈ L×, then
(z, z′)L = (z,NormL/kv(z

′))kv . Using this we get:

�∏
i

(dv, β
′
i)kv(ei) =

�∏
i

(dv,Normkv(ei)/kv(βi)
′)kv = (dv, β

′
1β
′
2β
′
3)kv = 1.

Therefore,

(−1)2〈a,a′〉CT =
∏
v

�∏
i

(δv,i, β
′
i)k(ei). (3.3.2)

One verifies that the above equation looks similar to the expression in Equation (3.1.4)
for the Cassels’ pairing. The following theorem shows that the pairing 〈·, ·〉Cas is the
same as 〈·, ·〉CT, using the expression for δv,i (Equation (3.2.17)).

Theorem 3.3.7. For a, a′ ∈ S(2)(E/k), we have

〈a, a′〉Cas = 〈a, a′〉CT.

Proof. Recall qi := (Γ∗ij : Γ
∗
ik : 1) is a global point on Hi(Γj,Γk, T ) (as in Equation

(3.2.5)). Then

Li :=
3∑
l=1

Ul
∂Hi

∂Ul
(qi) + T

∂Hi

∂T
(qi)

=
∂Hi

∂Γj
(qi)

(
3∑
l=1

Ul
∂Γj
∂Ul

(qi)

)
+
∂Hi

∂Γk
(qi)

(
3∑
l=1

Ul
∂Γk
∂Ul

(qi)

)
+ T

∂Hi

∂T
(qi)

((Γ1,Γ2,Γ3) is linear change of coordinates from (U1, U2, U3))

= Γj
∂Hi

∂Γj
(qi) + Γk

∂Hi

∂Γk
(qi) + T

∂Hi

∂T
(qi),

defines the tangent line at qi. Let qv = (wv,1 : wv,2 : wv,3 : 1) be the point on Da (in
(Γ1 : Γ2 : Γ3 : T ) coordinates) corresponding to Qv (as in the previous section). Then

Li(qv) = 2 + 2
(βkΓ

∗
kwv,k − βjΓ∗jwv,j)

skj
.

Using the expression for δv,i in Equation (3.2.17), and pkj =
√
βkΓ

∗
k+
√
βjΓ

∗
j , we have

δv,i = Li(qv), so the pairing 〈·, ·〉Cas defined in Equation (3.1.4) is the same as the
Cassels-Tate pairing.
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3.4 Appendix

Let σ, τ , ρ ∈ Gk be such that χ′(τ) = χ′(ρ) = −1, then we have:

χ(σ) 1/Γ(σ) a ∪ ∂a′(σ,−1,−1)
0̂ p1(1)2

p1
= 1 1

1̂
σ(p1)p21
p1

= s1 s1

ĵ
σ(p1)p21j

p1
= sj1 sj1

Table 3.1: 1/Γ(σ) = a ∪ ∂a′(σ,−1,−1).

Let σ, τ , ρ ∈ Gk be such that χ′(ρ) = −1, χ′(τ) = 1 and χ′(σ) = 1. If χ(σ) = 0̂,
then

∂ε(σ, τ, ρ) =
σsε(σ · χ(τ), 1,−1)
ε(σ · χ(τ), 1,−1)

= 1 = ∂a ∪ a′(σ, τ),

and if χ(τ) = 0̂, then

∂ε(σ, τ, ρ) =
ε(χ(σ), 1,−1)
ε(χ(σ), 1,−1)

= 1 = ∂a ∪ a′(σ, τ).

The following table symbolically verifies all the other possible cases:

χ(σ) σ · χ(τ) ∂ε(χ(σ), σ · χ(τ),−1)
∣∣
χ′
1(σ)=χ

′
1(τ)=1

1̂ 1̂ σs(p1)p1 = s1
ĵ ĵ σs(p1j)p1j = s1j

ĵ k̂
σs(p1k)p1j

p1
= −1

1̂ k̂ σs(p1k)p1
p1j

= sk1

k̂ 1̂ σs(p1)p1k
p1j

= sk1

Table 3.2: ∂ε
∣∣
χ′(τ)=1,χ′(ρ)=−1(σ, τ, ρ) = ∂a ∪ a′(σ, τ, ρ).
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Chapter 4

The CTP for odd degree
hyperelliptic Jacobians

In this chapter we discuss how to compute the CTP for the multiplication-by-2
isogeny on Jacobians of odd-degree hyperelliptic curves. Furthermore, we discuss
a conditional algorithm to compute the pairing, taking motivation from the case of
S(2)(E/k) where E/k is an elliptic curve discussed in the previous chapter. We will
see some empirical evidence that the condition on which our conditional algorithm
depends seems to be very weak for genus 2 odd-degree hyperelliptic curves and seems
to become stronger as the genus increases.

Let k be a number field, and let C : y2 = f(x) be an odd-degree hyperelliptic
curve, with Jacobian variety denoted by J ' Pic 0(C). Let θ1, . . . , θl ∈ k be all the
roots of the polynomial f . Without loss of generality one can assume that f is monic
and f(x) ∈ Ok[x]. Let Ti := (θi, 0) denote the Weierstrass points in C(k), and let
T0 be the point at infinity. In what follows, we will denote J(k)[2] by J [2] in order
to simplify the notation. Recall from §1.2.4 that one can embed C ↪→ J using the
k-rational point T0 via P 7→ [(P )− (T0)].

In the next section we discuss one of the crucial steps used in the computation
of the CTP for the case S(2)(J/k) using the Albanese-Albanese definition. This is
mainly an abstraction of arguments from Lemma 3.3.1 and §3.3.1.

Acknowledgements

I thank Michael Stoll, Timo Keller, Jiali Yan, Tom Fisher, Claus Fieker and Peter
Schneider for various helpful discussions relevant to this chapter.

4.1 Corestriction method

Our aim in this section is to express the elements of H1(Gk, J [2]) as a sum of core-
strictions of some special elements. Recall the definition of the G-module IndHG (M)

85
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from Lemma 1.3.23 for an H-module M and H ⊂ G of finite index. Let p be a prime
such that µp ⊂ k×, and ∆ :=

⊔
orbits

∆i be a finite Gk-set where ∆i are the Gk-orbits in

∆. Choose a representative Pi for each orbit ∆i. Then µ∆
p '

⊕
orbits

µ∆i
p and

µ∆i
p = IndGk(Pi)

Gk
(µ{Pi}

p ).

Let ι : µ{Pi}
p → µ∆i

p be the natural inclusion map of Gk(Pi)-modules. By Proposi-
tion 1.3.25 and Corollary 1.3.29,⊕

orbits
Hj(Gk(Pi), µ

{Pi}
p ) '

⊕
orbits

Hj(Gk, µ
∆i
p ) ' Hj(Gk, µ

∆
p ),

where the isomorphism on the left is given by cor◦ ι∗ in each component of the direct
sum at the level of cohomology classes, and on the right is given by the sum map.
In particular, we can choose the representative elements of H1(Gk, µ

∆
p ) as elements in∏

orbits
k(Pi)

×/ (k(Pi)
×)

p.

From this point onwards, we fix ∆ := {T1, . . . , Tl}, with orbits ∆i represented by
Ti. If A denotes the étale algebra associated to ∆, then A = k[T ]/〈f(T )〉 '

⊕
orbits

k(θi).

Therefore, by Proposition 1.5.2, an element a ∈ H1(Gk, J [2]) is represented by a tuple

(d1, . . . , dl) ∈ Gl
m, such that di ∈ k(θi)×,

l∏
i=1

di ∈ (k×)2, and if θi, θj are conjugates,

then di, dj are chosen to be conjugates as di is the value of an element of A× considered
as a polynomial at θi. In view of the above, we have the following proposition.

Proposition 4.1.1. Identify µ2 with Z/2Z. The map w : J [2] → µ∆
2 given by

w(P ) := e2(P,_) : ∆→ µ2, where e2 is the Weil pairing on J [2], is injective, and can
be viewed as lift of elements of J [2] to Div0(Ck) by lifting 0, 1 ∈ Z/2Z as 0, 1 ∈ Z,
respectively; i.e., the composition J [2]

w→ µ∆
2

π→ J [2] is the identity, where π : µ∆
2 →

J [2] is the sum map. In other words, µ∆
2 ' J [2] ⊕ ker(π), and so, H1(Gk, µ

∆
2 ) '

H1(Gk, J [2])⊕H1(Gk, ker(π)), i.e., the induced morphisms on cohomology classes w∗
and π∗ are injective and surjective, respectively.

Proof. The elements of ∆ span J [2] as a Z/2Z module; i.e., π : (Z/2Z)∆ → J [2] is
surjective with kernel of order 2 generated by the constant 1 map (P 7→ 1 ∈ Z/2Z
for all P ∈ ∆). We have the exact sequence

0→ 〈1〉 → µ∆
2

π→ J [2]→ 0. (4.1.1)

The non-degeneracy of the Weil pairing implies that w is an injection. We can extend
w to w̄ : µ∆

2 → µ∆
2 , via π. If P := (P1) + (P2) + . . . + (Pm) ∈ (Z/2Z)∆, for

Pi ∈ ∆, then e2(P, Tn) = 1 if m is odd and Tn ∈ {P1, P2, . . . , Pm} or m is even and
Tn /∈ {P1, P2, . . . , Pm}, and e2(P, Tn) = −1 otherwise. This is because e2(Ti, Tj) = 1,
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if i = j, and e2(Ti, Tj) = −1 otherwise (Proposition 2.1.9). Further, ker(w̄) = 〈1〉.
Adding 1 to P , if necessary, we may as well assume that m is odd. Therefore,

w̄(P ) =
l∑

Tj∈Supp(P )

1(Tj) +
∑

Tj /∈Supp(P )

(−1)(Tj) =
∑

Tj /∈Supp(P )

(Tj) ∈ (µ2)
∆.

Therefore, π(w̄(P )) = π(P ), so π(w(π(P ))) = π(P ).

We obtain a commutative diagram:

⊕
orbits

H1(Gk(θi), µ
{Ti}
2 )

⊕
orbits

H1(Gk(θi), µ
∆i
2 ) H1(Gk, µ

∆
2 )

⊕
orbits

H1(Gk(θi), 〈[(Ti)− (T0)]〉)
⊕

orbits
H1(Gk(θi), J [2]) H1(Gk, J [2]),

π∗

∑
orbits

cor

π∗
π∗

cor

(4.1.2)
where the left π∗ map is induced by the isomorphism given by (Ti) 7→ [(Ti) − (T0)].
In view of the diagram above, we have the following corollary.

Corollary 4.1.2. If a ∈ H1(Gk, J [2]), then there exist βi ∈ Z1(Gk(θi), µ
{Ti}
2 ), such

that

a =

[∑
orbits

cor(π∗(βi))
]
.

Proof. We have π∗ ◦w∗ is identity map on the cohomology classes and H1(Gk, µ
∆i
2 )

sh→
H1(Gk, µ

{Ti}
2 ) is an isomorphism.

Since the CTP only depends on the cohomology class, we will choose a 1-cocycle
representing an element a ∈ H1(Gk, J [2]) as

∑
orbits

cor ◦ π∗(βi), where βi are as in the

above corollary. Moreover, if Ti and T ′i are Gk-conjugates, then H1(Gk(θi), µ
{Ti}
2 ) '

H1(Gk, µ
∆i
2 ) ' H1(Gk(θ′i)

, µ
{T ′

i}
2 ) in the sense that the following diagram commutes:

H1(Gk(θi), µ
{Ti}
2 ) H1(Gk, µ

∆i
2 )

H1(Gk(θ′i)
, µ
{T ′

i}
2 )

cor

σ∗ cor , (4.1.3)

where σ ∈ Gk is such that σ(Ti) = T ′i . Concretely, we have the following remark:
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Remark 4.1.3. If di ∈ k(θi)× corresponds to a 1-cocycle zi in Z1(Gk(θi), µ
Ti
2 ), then

σdi ∈ k(σθi)
× will correspond to the 1-cocycle z′i := σ∗(zi). If we choose a lift

zi ∈ C1(GK(θi),Div0(Ck)) of zi as follows:

zi(τ) :=

{
0, if τ(

√
di) =

√
di

(Ti)− (T0), if τ(
√
di) = −

√
di,

and similarly z′i for z′i, then σ∗(zi) = z′i and cor((σi)∗zi) = cor(zi). The proof of the
last part is the same as the proof of Lemma 3.3.1.

4.2 Modified definition of the CTP for S(2)(J/k)

By Corollary 4.1.2, we can choose a lift a ∈ C1(Gk,Div0(Ck)) of an element α ∈
Z2(Gk, J [2]) as

∑
orbits

cor(ti), where ti is a 1-cochain corresponding to di ∈ k(θi)× given

by ti(σ) = (Ti)− (T0) if σ(
√
di) = −

√
di, and 0 otherwise.

We now split the CTP as sum of local invariants of certain explicit Brauer group
elements over local orbits of ∆. This is done by mainly repeating the procedure
in §3.3.1 from Corollary 3.3.3 till Proposition 3.3.1. We choose by Corollary 4.1.2
a lift a′ =

∑
orbits

cor(t′i) of a′. Then part 10 of Proposition 1.3.11 implies that the

Corollary 3.3.3 from the elliptic curve case also holds here and we obtain, for each
Gk-orbit ∆i of ∆, εi, ηi in C2(k(θi)) and Z3(k(θi)), respectively, such that ηi :=

∂resGk(θi)

Gk
(a) ∪1 t′i − resGk(θi)

Gk
(a) ∪2 ∂t′i and ∂εi = ηi. Let v be a place of k, let w be a

place of k(θi) above v, and let gi,w ∈ Gk be a double coset representative with respect
to the subgroups Gk(θi) and Gkv of Gk corresponding to w chosen similarly to §3.3.1.
For each place w of k(θi) above a place v of k, we obtain the quantities γ′i,v, γi,w as
before given by γ′i,v :=

∑
w|v

corGkv
Gk(θi)w

γi,w, where

γi,w :=
(

resGk(θi)w

Gk
(a)− resGk(θi)w

Gkv
(∂bv)

)
∪1 t′i,w − resGk(θi)w

Gkv
(bv) ∪2 ∂t′i,w − εi,w (4.2.1)

and εi,w are restrictions of εi to a place w|v of k(θi). Recall from the double coset
formula that (

corGk
Gk(θi)

εi

)
v
=
∑
w|v

corGkv
Gk(θi)w

εi,w.

Once again, the aim is to show that γi,w is a 2-cocycle.

∂γi,w = resGk(θi)w

Gk
∂a ∪1 t′i,w − resGk(θi)w

Gk
a ∪2 ∂t′i,w

− resGk(θi)w

Gk(gw(θi))
(gi,w)∗

(
∂resGk(θi)

Gk
∂a ∪1 t′i − resGk(θi)

Gk
a ∪2 ∂t′i

)
= resGk(θi)w

Gk
(∂(a− (gi,w)∗a)) ∪1 t′i,w − resGk(θi)w

Gk
(a− (gi,w)∗a) ∪2 ∂t′i,w.

((gi,w)∗ commutes with res, ∪ and ∂)
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Recall the definition of ∪i induced by the pairings 〈·, ·〉i from §2.4. We now show that
for our specific choice of lift a of α, the following equality holds

a = (gi,w)∗(a).

Recall that a =
∑

orbits
cor(ti). We have

(gi,w)∗(a) =
∑
orbits

corGk
Ggi,wk(θj)

((gi,w)∗(tj)) =
∑
orbits

corGk

k(θj)
(tj) = a.

The last equality above uses Remark 4.1.3. With the above choice of a, γi,w ∈
Z2(k(θi)w). Recall from part 2 of the proof of Proposition 2.4.2 that choosing another
lift of a will not change γi,v.

In view of the above, γi,w denotes a class ci,w ∈ Br(k(θi)w). Therefore, the class
ci,v represented by γi,v in Br(kv) is

ci,v =
∑
w|v

corw(ci,w).

Proposition 1.3.37 implies that invv(ci,v) =
∑
w|v

invk(θi)w(ci,w), and

〈a, a′〉CT =
∑
v

∑
orbits

∑
w|v

invkv(θi)w(ci,w),

where the orbits on the right hand side are taken with respect to Gk. The two inner
sums can be viewed as a single sum over the Gkv -orbits of ∆. We summarize the
above discussion in the following theorem.

Theorem 4.2.1. If a, a′ ∈ S(2)(J), then

〈a, a′〉CT =
∑
v

∑
orbits

invkv(θi)(ci,v)

for ci,v ∈ H2(kv(θi)) as above. The inner sum is taken over Gkv-orbits of ∆.

The above theorem implies that one can perform the global computation restrict-
ing to the extension k(θi) corresponding to each Gk-orbit ∆i of ∆, and then perform
the local computation for each ∆i restricting to the extensions corresponding to each
Gkv -orbit of ∆i. One would expect this computation to be simpler because t′i has
a simple form and its values are defined over the base field k(θi). Therefore, from
now on we assume that θ1 ∈ k. In the following section we describe an algorithm
to compute the CTP for a ∈ S(2)(J) and a′1 ∈ H1(Gk, 〈[(T1) − (T0)]〉) in the sense of
Remark 2.4.3.
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4.3 The CTP on S(2)(J/k)× H1(Gk, 〈[(T1)− (T0)]〉)

Assume θ1 ∈ k, and let a ∈ S(2)(J) and a′1 ∈ H1(Gk, 〈[(T1) − (T0)]〉). In this section
we give an algorithm to compute the CTP in this situation. In view of §2.4 there are
two computational bottlenecks in computing the CTP, namely:

1. Global step: Computing ε ∈ C2(k) such that ∂ε = η.

2. Local step: Computing the local invariant map invv on the class cv represented
by γv.

Recall from §3.2.1 that ε was computed using solutions to quadratic forms arising in
the description of the twisted curve. A description of the twist Ja of J corresponding
to a tends to be very complex even for genus 2, and the complexity increases with
the genus exponentially.

One of the possible advantages of using the Albanese-Albanese definition of the
CTP is to be able to avoid explicit equations representing the twist Ja completely.
One can solve the local step generically using [Fie09], [Pre13]. In §4.3.3 we explicitly
determine the value of the invariant map in terms of Hilbert symbols without using
the above generic algorithms. The hurdle in the global step is to compute a splitting
field for the cohomological class of η, and then to compute the corresponding ε. For
obvious reasons, we would like the splitting field to be of as small degree as possible.
In the following section we explicitly solve for ε in the case of odd-degree hyperelliptic
curves by showing that [η] splits in the field of definition of η, where η is obtained
using some specific choices for lifts a and a′ of α and α′, respectively.

4.3.1 Global computation

Since α is a 1-cocycle that takes values in J [2], α always factors through a finite
extension. Therefore, one can choose a lift a of α such that a also factors through a
finite extension. Let a be such a lift of α factoring through a finite extension K/k.
Assume a′1 to be as follows:

a′1(σ) =

{
0, if χ′1(σ) = 1,

(T1)− (T0), if χ′1(σ) = −1,

where χ′1(σ) := σ(
√
d′)/
√
d′ for some d′ ∈ k×, and let K ′ = k(

√
d′). Here we have

fixed a square root
√
d′ of d′. We have ∂a′1(σ, τ) = 0, if χ′1(σ) = 1 or χ′1(τ) = 1. Let

F := KK ′ and let χ(σ) denote the restriction σ
∣∣
K

of σ ∈ Gk.

Remark 4.3.1. For σ, τ, ρ ∈ Gk, (∂a ∪1 a′1)(σ, τ, ρ) = 〈∂a(σ, τ), στa′(ρ)〉1, and (a ∪2
∂a′)(σ, τ, ρ) = 〈a(σ), σ∂a′1(τ, ρ)〉2, where 〈·, ·〉1, 〈·, ·〉2 are the bilinear pairings which
induce the cup products. Note that η1 := ∂a ∪1 a′1 − a ∪2 ∂a′1 is independent of σ

∣∣
K′
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as the values of a′1, ∂a
′
1 are defined over k. Therefore, η1(σ, τ, ρ) depends only on

χ(σ), χ(τ), χ′1(τ), and χ′1(ρ) (using Gal(F/k) ⊂ Gal(K/k) × Gal(K ′/k)), and takes
values in K×; hence, η1 can be viewed as image of an element in Z3(F/k) under the
inflation map. Therefore, we will interchangeably use η1(χ(σ), χ(τ), χ′1(τ), χ′1(ρ)) and
η1(σ, τ, ρ). If we choose α to be a normalized 1-cocycle, then we can assume that a is
also a normalized 1-cochain. Hence, ∂a(σ, τ) = 0, if χ(σ) or χ(τ) is the identity on
K.

In what follows, the aim is to show that F is a splitting field for [η1] and find a
2-cochain ε1 such that ∂ε1 = η1. In order to solve for ε1, we will first extract two
2-cocycles E1 and E1,g representing the trivial class in Br(K ′), where {id , g} is a
set of right coset representatives of GK′ in Gk. Then we use 1-cochains e1 and e1,g
satisfying ∂e1 = E1 and ∂e1,g = E1,g, respectively, to obtain a 3-cocycle η′1 that is
cohomologically equivalent to η1 but has many nice properties. At last, we trivialize
η′1 using a variant of Hilbert’s Theorem 90 (see Proposition 4.3.8).

Consider the following 2-cochain

E1(σ, τ) := η1
∣∣
σ,τ∈GK′ ,χ′

1(ρ)=−1
∈ C2(K ′).

Note that E1 is the inflation of an element in C2(F/K ′). The following proposition
shows that E1 ∈ Z2(K ′).

Proposition 4.3.2. The 2-cochain E1 is a 2-cocycle with values in K×.

Proof. Since η1 is a 3-cocycle

ση1(τ, ρ, θ)η1(σ, τρ, θ)η1(σ, τ, ρ)

η1(στ, ρ, θ)η1(σ, τ, ρθ)
= 1. (4.3.1)

Specializing to the case when χ′1(θ) = −1, and σ, τ, ρ ∈ GK′ , we have η1(σ, τ, ρ) = 1,
and χ′1(ρθ) = −1. This gives

σE1(τ, ρ)E1(σ, τρ)

E1(στ, ρ)E1(σ, τ)
= 1,

and therefore, E1 ∈ Z2(K ′).

The 2-cocycle E1 is constructed from η1, and if ε′1 ∈ C2(k) is such that η1 = ∂ε′1,
then for σ, τ ∈ GK′ and ρ such that χ′1(ρ) = −1,

E1(σ, τ) =
σε′1(τ, ρ)ε

′
1(σ, τρ)

ε′1(στ, ρ)ε
′
1(σ, τ)

. (4.3.2)

We now make the following assumption.
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Assumption 4.3.3. Assume that, in the second argument ρ, ε′1(τ, ρ) only depends
on the value of χ′1(ρ) for a fixed τ , and ε′1(τ, ρ) = 1, if χ′1(ρ) = 1. It can be shown
that this indeed is the case for odd-degree hyperelliptic curves. For details, see section
4.3.2 below.

In view of the above assumption, E1 is trivialized by the 1-cochain

e′1 := ε′1
∣∣
τ∈GK′ ,χ′

1(ρ)=−1
.

This is because, if σ, τ ∈ GK′ and χ′1(ρ) = −1, then χ′1(τρ) = −1 and χ′1(τ) = 1, and
using assumption 4.3.3, Equation (4.3.2) becomes

E1(σ, τ) =
σε′1(τ, ρ)ε

′
1(σ, τρ)

ε′1(στ, ρ)
=
σe′1(τ)e

′
1(σ)

e′1(στ)
= ∂e′1(σ, τ).

Hilbert’s Theorem 90 implies the existence of the inflation-restriction exact se-
quence for Brauer groups. Hence, one can view E1 as inflation of an element of
H2(F/K ′). Therefore, we have an e1 ∈ C1(K ′) such that ∂e1 = E1, and e1 can be
viewed as inflation of a 1-cochain in C1(F/K ′). Note that e1 only depends on σ

∣∣
F

.
Let {id , g} be the right coset representatives of GK′ in Gk. Denote by {id , ḡ} the

right coset representatives of Gal(F/K ′) in Gal(F/k) corresponding to {id , g}. For
σ ∈ GK′ define

f1,g(σ) := η1(σ, g,−1).

Then f1,g ∈ C1(K ′), and it can be viewed as inflation of an element in C1(F/K ′).
Define

E1,g(σ, τ) := η(σ, τg,−1)/η(σ, g,−1),

for σ, τ ∈ GK′ . We show that E1,g is a 2-coboundary and therefore is a 2-cocycle.

Proposition 4.3.4. Let ε′1 be as in assumption 4.3.3. Then

e′1,g(τ) := ε′1(τg,−1)/ε′1(g,−1)

satisfies ∂e′1,g = E1,g.

Proof.

∂e′1,g(σ, τ) =
σe′1,g(τ)e

′
1,g(σ)

e′1,g(στ)

=
σε′1(τg,−1)ε′1(σg,−1)ε′1(g,−1)
σε′1(g,−1)ε′1(g,−1)ε′1(στg,−1)

=
σε′1(τg,−1)

ε′1(σ,−1)ε′1(στg,−1)
ε′1(σg,−1)ε′1(σ,−1)

σε′1(g,−1)
= η1(σ, τg,−1)/η1(σ, g,−1) = E1,g(σ, τ).
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Once again (similar to E1), one can view E1,g as inflation of an element of
Z2(F/K ′). We can choose e1,g ∈ C1(K ′) such that ∂e1,g = E1,g to be inflation of
an element in ∈ C1(F/K ′). Hence, e1,g takes values in F× (more precisely K×), and
factors through Gal(F/K ′). Define φ1,g ∈ C1(GK′) by

φ1,g(σ) := (f1,g + e1,g + e1)(σ).

The following proposition shows that φ1,g is a 1-cocycle.

Proposition 4.3.5. The 1-cochain φ1,g is a 1-cocycle, and factors through Gal(F/K ′),
and has values in F×.

Proof. Since e1, e1,g, f1,g are inflations of elements in C1(F/K ′), so is φ1,g. Now using
that η1 is a 3-cocycle, for σ, τ ∈ GK′ ,

1 = ∂η1(σ, τ, g, g) =
ση1(τ, g, g)η1(σ, τg, g)η1(σ, τ, g)

η1(στ, g, g)η1(σ, τ, g2)

=
σf1,g(τ)f1,g(σ)

f1,g(στ)
E1,g(σ, τ)E1(σ, τ) (definition of f1,g, E1,g)

= ∂(f1,g)(σ, τ)∂(e1,g)(σ, τ)∂(e1)(σ, τ) = ∂(φ1,g)(σ, τ).

By Hilbert’s Theorem 90, there is a t1,g ∈ F× such that ∂t1,g = φ1,g. For σ ∈ GK′

let σg = gσg−1 ∈ GK′ . We have gσ = σgg.
Define a 2-cochain ε1 as follows:

ε1(τ, ρ) :=


1, if χ′1(ρ) = 1,

e1(τ), if χ′1(τ) = 1, χ′1(ρ) = −1,
t1,ge1,g(τ

′), if χ′1(τ) = −1, χ′1(ρ) = −1,
(4.3.3)

where τ ′ is such that τ = τ ′g. Define η′1 := η1 − ∂ε1. Note that for fixed σ, τ ∈ Gk,
η′1(σ, τ, ρ) depends only on χ′1(ρ). In regards to η′1 we have the following proposition.

Proposition 4.3.6. η′1(σ, τ, ρ) = 1 on GK′ ×Gk ×Gk ∪Gk ×Gk ×GK′.

Proof. If σ, τ ∈ Gk and χ′1(ρ) = 1, then

∂ε1(σ, τ, ρ) =
σε1(τ, 1)ε1(σ, χ

′
1(τ))

ε1(στ, 1)ε1(σ, χ′1(τ))
= 1 = η1(σ, τ, ρ).

If σ, τ ∈ GK′ and χ′1(ρ) = −1, then

∂ε1(σ, τ, ρ) =
σε1(τ,−1)ε1(σ,−1)
ε1(στ,−1)ε1(σ, 1)

=
σe1(τ)e1(σ)

e1(στ)
= E1(σ, τ) = η1(σ, τ,−1).
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If σ, τ ∈ GK′ and χ′1(ρ) = −1, then

∂ε1(σ, τg, ρ) =
σε1(τg,−1)ε1(σ, 1)
ε1(στg,−1)ε1(σ,−1)

=
σt1,gσe1,g(τ)

t1,ge1,g(στ)e1(σ)
= f1,g(σ)e1,g(σ)e1(σ)

σe1,g(τ)

e1,g(στ)e1(σ)

= η1(g, σ,−1)E1,g(σ, τ) = η1(σ, g,−1)
η1(σ, τg, ρ)

η1(σ, g,−1)
= η1(σ, τg, ρ).

From now on, we assume σ, τ, ρ ∈ Gk satisfy σ, τ ∈ GK′ and χ′1(ρ) = −1. The
following corollary is a consequence of the above proposition.

Corollary 4.3.7. If σ, τ ∈ GK′ and ρ ∈ Gk is such that χ′1(ρ) = −1, then

η′1(σg, τ, ρ) = ση′1(g, τ, ρ) and η′1(σg, τg, ρ) = ση′1(g, τg, ρ).

Proof. Let σ, τ , ρ be as above. Using that η′1 is a 3-cocycle we have

ση′1(g, τ, ρ)η
′
1(σ, gτ, ρ)η

′
1(σ, g, τ )

η′1(σg, τ, ρ)η
′
1(σ, g, τρ)

= 1,

which by Proposition 4.3.6 gives ση′1(g, τ, ρ)

η′1(σg, τ, ρ)
= 1.

Similarly,

ση′1(g, τg, ρ)η
′
1(σ, gτg, ρ)η

′
1(σ, g, τg)

η′1(σg, τg, ρ)η
′
1(σ, g, τgρ)

= 1,

which by Proposition 4.3.6 gives ση′1(g, τg, ρ)

η′1(σg, τg, ρ)
= 1.

The above corollary implies that the values η′1(g, τ,−1) and η′1(g, τg,−1) deter-
mine η′1 completely. Note that the above proof uses only that η′1 satisfies Proposition
4.3.6 and that it is a 3-cocycle. We will need the following variant of Hilbert’s Theo-
rem 90 in order to trivialize η′1.

Proposition 4.3.8. Recall that the set {id , ḡ} is the set of chosen right coset rep-
resentatives of Gal(F/K ′) in Gal(F/k). If x ∈ C1(F/k) is such that for σ, τ ∈
Gal(F/K ′),

1. x(στ) = σḡx(τ)x(σ),
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2. x(στ ḡ)x(σ) = σḡx(τ ḡ),

3. ḡ(x(σ))x(ḡσ) = x(ḡ),

4. ḡ(x(σḡ))x(ḡ)x(ḡσḡ) = 1,

then there is a c ∈ F× satisfying

1. x(σ) = c
σḡ(c)

,

2. x(σḡ) = ḡσ(c)
c

.

Proof. Let H := Gal(F/K ′) and consider the endomorphism φ of F given by

φ :=
∑
τ∈H

x(τ)τḡ +
∑
τ∈H

τḡḡ

x(τ ḡ)
.

Since x takes values in F×, division by x(τ ḡ) is justified in the above expression. By
linear independence of automorphisms, there exists a b ∈ F (one of the basis elements
of F over K ′ could be chosen as b; see Remark 4.3.12), such that φ(b) 6= 0. Therefore,

σḡφ(b) =
∑
τ∈H

σḡx(τ)σḡτḡ(b) +
∑
τ∈H

σḡτḡḡ(b)

σḡx(τ ḡ)
(by properties 1 and 2 of x)

=
1

x(σ)


∑
τ∈H

x(στ)(στ)ḡ(b) +
∑
τ∈H

(στ)ḡḡ(b)

x(στ ḡ)︸ ︷︷ ︸
ϕ(b)

 .

This gives x(σ) = ϕ(b)
σḡ(ϕ(b))

. Similarly,

ḡφ(b) =
∑
τ∈H

ḡx(τ)ḡτḡ(b) +
∑
τ∈H

ḡτḡḡ(b)

ḡx(τ ḡ)
(by properties 3 and 4 of x)

= x(ḡ)

(∑
τ∈H

ḡτḡ(b)

x(ḡτ)
+
∑
τ∈H

x(ḡτ ḡ)ḡτḡḡ(b)

)
(by ḡτḡḡ = (τḡḡ

2)ḡ and ḡτḡ = (τḡ)ḡḡ)

= x(ḡ)


∑
τ∈H

(τḡ)ḡḡ(b)

x(τḡḡ)
+
∑
τ∈H

x(τḡḡ
2)(τḡḡ

2)ḡ(b)︸ ︷︷ ︸
ϕ(b)

 .

This gives x(ḡ) = ḡϕ(b)
ϕ(b)

. By property 4, for σ ∈ GK′ ,

ḡx(σḡ) =
φ(b)(ḡσḡ)ḡ(φ(b))

φ(b)ḡφ(b)
=
ḡσḡḡ(φ(b))

ḡφ(b)
= ḡ

(
σḡḡ(φ(b))

φ(b)

)
.
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This implies that x(σḡ) = ḡσ(φ(b))/φ(b). Now choose the c in the proposition to be
φ(b).

Define f ′1,g ∈ C1(k) by
f ′1,g(σ) := η′1(g, σ,−1).

First note that f ′1,g can be viewed as inflation of an element in C1(F/k). We have the
following proposition regarding f ′1,g.

Proposition 4.3.9. The 1-cochain f ′1,g satisfies the hypothesis of Proposition 4.3.8.

Proof. Assume that ρ ∈ Gk is such that χ′1(ρ) = −1. If σ, τ ∈ GK′ , then

gη′1(σ, τ, ρ)η
′
1(g, στ, ρ)η

′
1(g, σ, τ )

η′1(gσ, τ, ρ)η
′
1(g, σ, τρ)

= 1, so
f ′1,g(στ)

σgf ′1,g(τ)f
′
1,g(σ)

= 1.

Similarly, the properties η′1(g, σ, τg) = η′1(g, σ, ρ) and

gη′1(σ, τg, ρ)η
′
1(g, στg, ρ)η

′
1(g, σ, τg)

η′1(gσ, τg, ρ)η
′
1(g, σ, τgρ)

= 1

give f ′1,g(στg)f
′
1,g(σ)

σgf ′1,g(τg)
= 1. Furthermore,

gη′1(g, τg, ρ)η
′
1(g, gτg, ρ)η

′
1(g, g, τg)

η′1(g
2, τg, ρ)η′1(g, g, τgρ)

= 1, so gf ′1,g(τg)f ′1,g(g)f ′1,g(gτg) = 1.

Similarly,

gη′1(g, τ, ρ)η
′
1(g, gτ, ρ)η

′
1(g, g, τ )

η′1(g
2, τg, ρ)η′1(g, g, τρ)

= 1, so
gf ′1,g(τ)f

′
1,g(gτ)

f ′1,g(g)
= 1.

The above computation implies that there exists a c1,g ∈ F× such that f ′1,g(σ) =
c1,g/σg(c1,g) and f ′1,g(σg) = gσ(c1,g)/c1,g, for σ ∈ GK′ . Define

ε′′1(τ, ρ) :=

{
1, if χ′1(τ) = 1 or χ′1(ρ) = 1,

τ ′(c1,g), if χ′1(τ) = χ′1(ρ) = −1,

where τ ′ ∈ GK′ is such that τ = τ ′g.

Proposition 4.3.10. We have ∂ε′′1 = η′1.

Proof. One can check that η′1 matches ∂ε′′1 on GK′ × GK′ × Gk and Gk × Gk × GK′ .
In what follows we assume ρ ∈ Gk is such that χ′1(ρ) = −1. For σ, τ ∈ GK′ we have

∂ε′′1(σ, τg, ρ) =
σε′′1(τg,−1)ε′′1(σ, 1)
ε′′1(στg,−1)ε′′1(σ,−1)

=
στ(c1,g)

στ(c1,g)
= 1 = η′1(σ, τg, ρ).
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Similarly,

∂ε′′1(σg, τ, ρ) = σ(∂ε′′1(g, τ, ρ)) (∵ ∂ε′′1 is 3-cocycle satisfying Proposition 4.3.6)

= σ

(
gε′′1(τ,−1)ε′′1(g,−1)
ε′′1(gτ,−1)ε′′1(g, 1)

)
= σ

(
c1,g

τg(c1,g)

)
= σ

(
f ′1,g(τ)

)
= σ(η′1(g, τ, ρ)) = η′1(σg, τ, ρ). (definition of c1,g)

Computing ∂ε′′1(σg, τg, ρ) we have

∂ε′′1(σg, τg, ρ) = σ(∂ε′′1(g, τg, ρ)) (∵ ∂ε′′1 is 3-cocycle satisfying Proposition 4.3.6)

= σ

(
gε′′1(τg,−1)ε′′1(g, 1)
ε′′1(gτg,−1)ε′′1(g,−1)

)
= σ

(
gτ(c1,g)

c1,g

)
= σf ′1,g(τg)

(definition of c1,g)
= σ(η′1(g, τg, ρ)) = η′1(σg, τg, ρ).

As a consequence of the above, we get the following corollary.

Corollary 4.3.11. ∂(ε1 + ε′′1) = η1.

Therefore, computationally the global part boils down to trivializing E1, E1,g and
finding t1,g, c1,g. One can use following remark in order to find t1,g, c1,g:

Remark 4.3.12. Let L be a finite Galois extension of k, α ∈ C1(L/k), and {b1, . . . , bn}
be a set of basis elements of L as a vector space over k. The map

Tα :=
∑

g∈Gal(L/k)

α(g)g

is a k-linear map, and if for all i, Tα(bi) = 0, then Tα(
n∑
i=1

aibi) =
n∑
i=1

aiTα(bi) = 0.

Hence, at least one of
∑

g∈Gal(L/k)
α(g)g(bi) 6= 0.

Finding e1 such that ∂e1 = E1 and e1,g such that ∂e1,g = E1,g are the bottleneck
steps of this algorithm in terms of time complexity. There are algorithms which can
be used for this purpose for example [Fie09] for local fields and [Pre13] in general, if
an effective version of Hilbert’s Theorem 90 exists.

4.3.2 Removing Assumption 4.3.3

We now will show that Assumption 4.3.3 is always satisfied for odd-degree hyperel-
liptic curves. We have the following commutative diagram of Gk-modules

0 J [2] J [4] J [2] 0

0 J [2] J J 0.

[2]

[2]

(4.3.4)
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Taking Galois cohomology we have

· · · H1(Gk, J [4]) H1(Gk, J [2]) H2(Gk, J [2]) · · ·

· · · H1(Gk, J) H1(Gk, J) H2(Gk, J [2]) · · ·

· · ·
∏
v

H1(Gkv , J)
∏
v

H1(Gkv , J)
∏
v

H2(Gkv , J [2]) · · ·

[2]∗ δ

[2]∗ δ

loc2(J [2])
[2]∗ δ

(4.3.5)
If X2(J [2]) = 0, then loc2(J [2]) is injective, and for an element a ∈ S(2)(J/k) we

have δ(a) = 0. Hence, there is a b ∈ H1(Gk, J [4]) such that [2]∗(b) = a. In particular,
using the construction of the map δ, given a 1-cocycle α representing a, one can
choose a 1-cocycle β ∈ Z1(Gk, J [4]), such that [2]∗β = α. The following proposition
shows that loc2(J [2]) is injective. The case when all the 2-torsion points are defined
over k is present in [Yan21b, Lemma 1.8.6].

Proposition 4.3.13. Let C, J, f and ∆ be as before. Then the map

loc2(J [2]) : H2(Gk, J [2])→
∏
v

H2(Gkv , J [2]),

is injective.

Proof. By Proposition 4.1.1, J [2] ⊕ µ2 ' µ∆
2 as Gk-modules, where ∆ is the Gk-set

of roots of f . Therefore, X2(J [2]) = 0 ⇐⇒ X2(µ∆
2 ) = 0 (∵ X2(µ2) = 0). Note

that (µ∆
2 )
∨ = (µ∨2 )

∆ ' µ∆
2 as Gk modules. Finiteness of µ∆

2 implies that Xi(µ∆
2 ) is

finite for all i. By Poitou-Tate duality (Theorem 1.3.43), there is a non-degenerate
and perfect pairing

pt : X1(µ∆
2 )×X2(µ∆

2 )→ Q/Z,

which implies that X1(µ∆
2 ) ' X2(µ∆

2 )
′. We have X1(µ∆

2 ) = 0 ⇐⇒ X2(µ∆
2 )
′ =

0 ⇐⇒ X2(µ∆
2 ) = 0. By [BPS16, Lemma 8.2], X1(µ∆

2 ) = 0. Therefore, loc2(J [2]) is
injective.

One can also prove the above proposition using Proposition 1.3.25 and Corollary
1.3.29 and the Albert-Brauer-Hasse-Noether sequence, but the above proof is neat and
possibly easy to generalize to other cases. The following corollary removes Assumption
4.3.3:

Corollary 4.3.14. There exists an ε′1 ∈ C2(k) such that ∂ε′1 = η1 and such that for
a fixed σ, ε′1(σ, τ) depends only on χ′1(τ), and ε′1(σ, τ) = 1, if χ′1(τ) = 1. Concretely,
one such ε′1 is given by s ∪ 2a′1 + f ∪ a′1, where s, f are as in Proposition 2.5.1.
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Proof. By Proposition 4.3.13, one can choose the lift β of α to C1(Gk, J [4]) to be in
Z1(Gk, J [4]). Hence, εw can be chosen to be the trivial 2-cochain (constant map to
1). By Proposition 2.5.1, ε′1 = s ∪ 2a′1 + f ∪ a′1 which clearly satisfies ε′1(σ, τ) = 1, if
χ′1(τ) = 1, and for a fixed σ, ε′1(σ, τ) only depends on χ′1(τ).

4.3.3 Local computation

Let v be a place of k. Following the proof of Theorem 4.2.1, we can restrict the base
field to the field over which one of the representative points of a local orbit of ∆ is
defined. Therefore, without loss of generality, we assume that θ1 ∈ kv. Let w be the
place of F above v under the fixed embedding k ↪→ kv. Let Fw be the completion of
F with respect to w, and kv, Kw and K ′w be the completions of the images of k, K,
and K ′ inside Fw, respectively. Let Pv ∈ J(kv) and bv be as in the definition of the
CTP. We want to find the class associated to γ1,v in Br(kv).

γ1,v := (av − ∂bv) ∪ a′1,v − bv ∪ ∂a′1,v − ε1,v.

In order to avoid dealing with the cases K ′w ⊂ Kw and K ′w 6⊂ Kw separately, we
abuse notation slightly and let χ(σ) denote the restriction of σ ∈ Gkv to Fw (instead
of σ

∣∣
Kw

) and χ′1(τ) := τ
(√

d′1,w
)
/
√
d′1,w, where d′1,w is the image of

√
d1
′ in K ′w.

Note that γ1,v takes values in K×w and factors through Gal(Fw/kv). For a fixed
σ ∈ Gkv , γ1,v(σ, τ) depends only on χ′1(τ); hence, we once again interchangeably use
γ1,v(χ(σ), χ

′
1(τ)) and γ1,v(σ, τ). The following proposition implies that γ1,v encodes a

1-cocycle in Z1(GK′
w
, kv
×
).

Proposition 4.3.15. One can view γ1,v as image of an element of Z2(Fw/kv) under
inflation. Define Γ1,v(h) := γ1,v(h,−1), for h ∈ GK′

w
. Γ1,v defined above is a 1-cocycle

in Z1(K ′w), and can be viewed as inflation of an element in Z1(Fw/K
′
w).

Proof. Since γ1,v is a 2-cocycle,

g1γ1,v(g2, g3)γ1,v(g1, g2g3) = γ1,v(g1g2, g3)γ1,v(g1, g2).

Assuming that g1, g2 ∈ GK′
w
, and g3 /∈ GK′

w
, we have

g1γ1,v(χ(g2),−1)γ1,v(χ(g1),−1) = γ1,v(χ(g1g2),−1), so ∂Γ1,v(σ, τ) = 1.

Hilbert’s Theorem 90 implies the existence of a ω1,v ∈ L× such that Γ1,v(h) =

h(ω1,v)/ω1,v. In fact, by Proposition 4.3.12, one can explicitly compute ω1,v, given
γ1,v. Choose representatives {id , g} of left cosets of GK′

w
in Gkv . For h ∈ GK′

w
and

g′ /∈ GK′
w
, the equation

gγ1,v(h, g
′)γ1,v(g, hg

′) = γ1,v(gh, g
′)γ1,v(g, h)
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combined with χ′(h) = 1 gives

γ1,v(gh,−1) = gγ1,v(h,−1)γ1,v(g,−1)

=
ghω1,v

gω1,v

γ1,v(g,−1). (4.3.6)

By Proposition 4.3.12, one can assume that the ω1,v, which trivializes Γ1,v, is
in Kw ⊆ Fw, because γ1,v (and therefore, Γ1,v) takes values in K×w . Therefore, the
action of GK′

w
on ω1,v can be described in terms of σ

∣∣
K×

w
(this is true whether or not

Kw ∩K ′w = kv). Now consider the 1-cochain ξ1,v ∈ C1(Gkv , F
×
w ) given by

ξ1,v(τ) :=

{
1, if χ′1(τ) = 1,

ω1,v, if χ′1(τ) = −1.

We have

∂ξ1,v(τ, ρ) :=


1, if χ′1(ρ) = 1,

τω1,v/ω1,v = Γ1,v(τ), if χ′1(τ) = 1, χ′1(ρ) = −1,
τω1,v · ω1,v, if χ′1(τ) = −1, χ′1(ρ) = −1.

Let γ′1,v := γ1,v − ∂ξ1,v. Then for τ ∈ GK′
w
, ρ ∈ Gkv we have γ′1,v(τ, ρ) = 1, and if

τ /∈ GK′
w
, then τ = gτ ′, for some τ ′ ∈ GK′

w
. Using Equation (4.3.6)

γ′1,v(τ, ρ) =
γ1,v(gτ

′, ρ)

gτ ′(ω1,v)ω1,v

=
gτ ′ω1,v

gω1,v

γ1,v(g,−1)
gτ ′(ω1,v)ω1,v

=
γ1,v(g,−1)
g(ω1,v)ω1,v

.

Note that γ′1,v(τ, ρ) is independent of χ(τ) and depends only on χ′1(τ) and χ′1(ρ), and

δ1,v :=
γ1,v(g,−1)
g(ω1,v)ω1,v

(4.3.7)

depends only on the choice of coset representative g and ω1,v. Hence, by the condition
that γ′1,v is a 2-cocycle we have δ1,v ∈ k×v . To see this, let g1, g2, g3 /∈ GK′

w
. Then

g1(γ
′
1,v(g2, g3))γ

′
1,v(g1, g2g3) = γ′1,v(g1g2, g3)γ

′
1,v(g1, g2), so g1δ1,v = δ1,v.

On the other hand, assuming g1 ∈ GK′
w

and g2, g3 /∈ GK′
w

gives

g1(γ
′
1,v(g2, g3))γ

′
1,v(g1, g2g3) = γ′1,v(g1g2, g3)γ

′
1,v(g1, g2), so g1δ1,v = δ1,v,

therefore, δ1,v ∈ k×v . Now the class c1,v represented by γ′1,v (therefore, by γ1,v) in Br(kv)
is the class of quaternion algebra (δ1,v, d

′
1). We have (−1)2invv(c1,v) = (δ1,v, d

′
1)v, where

(·, ·)v denotes the Hilbert symbol over kv.
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4.3.4 An explicit η1

We assume θ1 ∈ k. We continue to use the notation from the previous section except
for χ. We fix an order of the roots θ1, . . . , θl of f , and correspondingly of T1, . . . , Tl
in ∆. A lot of this section is a natural generalization of the definitions made in §3.1
and §3.2.1.

If a ∈ S(2)(J/k), then a maps to an element of H1(Gk, µ
∆
2 ) via w∗ (defined in

section 4.1). Therefore, we choose the cocycle α representing w∗(a) as follows. Using
the identification H1(Gk, µ

∆
2 ) ' A×/(A×)2, where recall that A is the étale algebra

associated to the defining polynomial f , we choose a 1-cocycle χa ∈ Z1(Gk, µ
∆
2 ),

χa(σ) := σ(
l∑

i=1

√
di(Ti))/(

l∑
i=1

√
di(Ti)) and di ∈ k(θi)

× are as in Proposition 1.5.2

with the property that
l∏

i=1

di ∈ (k×)2. Since π∗ ◦ w∗ is the identity morphism on

cohomology classes, we will represent a by π∗(χa). As in §3.1, for each element
m of µ∆

2 , we associate an element in µl2 with ith entry being m(Ti). Under this
association, the values of χa will map to the l-tuples having exactly an odd number
of 1’s. Denote the tuple with 1 at i1, . . . , it and −1 at other places by ̂i1, . . . , it,
and by 0̂ the tuple with 1 everywhere. There is a natural action of Gk on these
l-tuples, coming from the action on ∆. Under π the element of µ∆

2 represented by
̂i1, . . . , it will map to

t∑
n=1

[(Tin)− (T0)]. However, from the proof of Proposition 4.1.1,

the element represented by ̂i1, . . . , it is in the image of the point P ∈ J [2] represented

by the divisor
∑

n/∈{i1,...,it}
((Tin)− (T0)) which is the same as the point

t∑
n=1

[(Tin)− (T0)].

Therefore, we can choose α ∈ Z1(Gk, J [2]) representing a to be

α(σ) =
t∑

n=1

[(Tin)− (T0)], if χa(σ) = ̂i1, . . . , it,

and the lift a of α as

a(σ) =
t∑

n=1

((Tin)− (T0)), if χa(σ) = ̂i1, . . . , it 6= 0̂.

We define a(σ) = 0, for χa(σ) = 0̂. Recall the definition of a′1 from §4.3.1. We note
that a factors through the field K = k(

√
d1, . . . ,

√
dl) with Gal(K/k) ⊂ C l−1

2 o Sl−1,
where Sl−1 is the symmetric group acting on the set {T2 . . . Tl}, and C2 is the cyclic
group of order 2. Here for 1 ≤ i ≤ l−1, the ith copy of C2 acts by

√
di+1 7→ −

√
di+1.

Since we are going to compute symbolically, we assume that Gal(K/k) ' C l−1
2 oSl−1.

If σ ∈ Gal(K/k), then σ = σsσp, where σp ∈ Sl−1 and σs ∈ C l−1
2 ; hence, χa(σp) = 0̂.

Since χa is a 1-cocycle, χa(σs) = χa(σ). For simplicity of notation we set χ = χa.
The subscripts s and p denote the sign part and the permutation part of an element
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σ ∈ Gal(K/k) considered as an element in C l−1
2 oSl−1. Recall the action of Gk on µl2-

tuples. For σ, τ ∈ Gal(F/k), σ · χ(τ) = σp · χ(τ), and σa(τ) = σpa(τ) = a(σ · χ(τ)) =
a(σp · χ(τ)). We have

∂a(σ, τ) = σa(τ) + a(σ)− a(στ)

= σa(χ(τ)) + a(χ(σ))− a(χ(σ)σp · χ(τ))
= a(σp · χ(τ)) + a(χ(σ))− a(χ(σ)σp · χ(τ)).

Clearly ∂a(σ, τ) depends only on χ(σ) and σp · χ(τ). Let {χ(σ)} be the set associ-
ated to the tuple χ(σ) and with 0̂ associate the set {1, . . . , l}. Then {χ(σ)χ(τ)} =
({χ(σ)} ∩ {χ(τ)}) ∪ ({χ(σ)} ∪ {χ(τ)})c, where ∗c is the complement of a subset ∗ of
{1, . . . , l}. Noting that a(χ(σ)) =

∑
i∈{χ(σ)}

((Ti) − (T0)) when χ(σ) 6= 0̂, we treat the

cases of χ(σ) = 0̂ or χ(τ) = 0̂ or χ(σ) = σp · χ(τ) separately. If χ(σ) or χ(τ) is 0̂,
then ∂a(σ, τ) = 0 and if χ(σ) = σp ·χ(τ), then ∂a(σ, τ) = div(

∏
i∈{χ(σ)}

(x− θi)). In case

χ(σ) 6= σp · χ(τ) and χ(σ) 6= 0̂ 6= σpχ(τ),

∂a(χ(σ), σp·χ(τ)) =
l∑

i=1

((Ti)−(T0))−2
∑

i/∈{χ(σ)}
i/∈{σ·χ(τ)}

((Ti)−(T0)) = div

 y∏
i/∈{χ(σ)}
i/∈{σ·χ(τ)}

(x− θi)

 .

Summarizing the above, we obtain

∂a(σ, τ) =



div(1), if χ(σ) = 0̂ or χ(τ) = 0̂,

div
( ∏
i∈{χ(σ)}

(x− θi)

)
, if χ(σ) = σ · χ(τ) 6= 0̂,

div

 y∏
i/∈{χ(σ)}
i/∈{σ·χ(τ)}

(x−θi)

 , if 0̂ 6= χ(σ) 6= σ · χ(τ) 6= 0̂.

Similar to the elliptic curve case,

∂a′1(τ, ρ) =

0 = div(1), if χ′1(τ) = 1 or χ′1(ρ) = 1,

2(T1)− 2(T0) = div(x− θi), if χ′1(ρ) = χ′1(τ) = −1.

Choose the uniformizers tP at a non-Weierstrass point P on C as x−x(P ), as (x−
θi)/y at a Weierstrass point Ti with i 6= 0, and xg/y at T0. Then, (∂a∪1a′1)(σ, τ, ρ) = 1
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if χ′(ρ) = 1. If χ′(ρ) = −1, then

∂a ∪ a′1(σ, τ, ρ) =



1, if χ(σ) = 0̂ or χ(τ) = 0̂,∏
i∈{χ(σ)}

s1i, if χ(σ) = σ · χ(τ), 1 /∈ {χ(σ)},

s1
∏
i 6=1

i∈{χ(σ)}

s1i, if χ(σ) = σ · χ(τ), 1 ∈ {χ(σ)},

1∏
i/∈{χ(σ)}
i/∈{σ·χ(τ)}

i 6=1

s1i
, if χ(σ) 6= σ · χ(τ), 1 /∈ {χ(σ)} ∪ {σ · χ(τ)},

s1∏
i/∈{χ(σ)}
i/∈{σ·χ(τ)}

s1i
, if χ(σ) 6= σ · χ(τ), 1 ∈ {χ(σ)} ∪ {σ · χ(τ)},

where sij := θi − θj, and si :=
∏
j 6=i

sij. In the above expression for ∂a ∪1 a′(σ, τ, ρ), we

assume that χ(σ) and χ(τ) are not 0̂ except for the first case. Similarly,

a∪ ∂a′1(σ, τ, ρ) =



1, if χ(σ) = 0̂ or χ′1(τ) = 1 or χ′1(ρ) = 1,∏
i/∈{χ(σ)}

si1, if 1 /∈ {χ(σ)}, χ(σ) 6= 0̂, χ′1(τ) = χ′1(ρ) = −1,

s1
∏

i∈{χ(σ)}
i 6=1

si1, if 1 ∈ {χ(σ)}, χ(σ) 6= 0̂, χ′1(τ) = χ′1(ρ) = −1.

We have the following useful lemma for finding a 1-cochain that trivializes a 2-
cocycle representing the trivial class in the Brauer group of a number field, given that
it factors through a nice extension.

Lemma 4.3.16. Let L/k be a finite extension of fields with G := Gal(L/k). Let
H, N be subgroups of G with N normal in G. Assume that G ' N o H, and write
g = nh for each element g ∈ G with n ∈ N and h ∈ H. Let E ∈ Z2(L) represent
the trivial class in Br(L/k) with the property that resHG (E) = 0, E(g, g′) = E(n, n′h),
where n′h = hn′h−1, and E restricted to G × H ∪ H × G is trivial. Then there is
e ∈ C1(L) such that

1. e(g) = e(n), for g = nh ∈ G,

2. he(n′) = e(n′h) for each n′ ∈ N and h ∈ H,

and ∂e = E.



104CHAPTER 4. THE CTP FOR ODD DEGREE HYPERELLIPTIC JACOBIANS

Proof. If there is an e ∈ C1(N,L×) satisfying only the second property above, and
∂e = resNG (E), then we extend e to define a 1-cochain (also called e) in C1(G,L×) by
e(nh) = e(n). Now

∂e(nh, n′h′) =
nhe(n′)e(n)

e(nn′h)
=
ne(n′h)e

′(n)

e′(nn′h)
= ∂e(n, n′h) = E(n, n′h) = E(g, g′).

Therefore, the rest of the proof is trying to prove the existence of such an e.
Let e : G → L× be a 1-cochain such that ∂e = E. Then E(h, n′) = 1 is

equivalent to e(hn′) = he(n)e(h), and E(h, h′) = 1 is equivalent to saying that
e(hh′) = he(h′)e(h′). Then resHG (e) is a 1-cocycle. Hence, by Hilbert’s Theorem
90, there is a b ∈ L× such that e(h) = h(b)/b.

Using E(nh, n′) = E(n, n′h),

n

(
he(n′)

e(n′h)

)
=
e(nhn′)e(n)

e(nn′h)e(nh)
=

e(nhn′)

e(nn′h)ne(h)
=
nn′he(h)

ne(h)
.

This implies that

he(n′)

e(n′h)
=
n′he(h)

e(h)
=

hn′(b)b

n′h(b)h(b)
=⇒ h

(
e(n′)

n′(b)/b

)
=

e(n′h)

n′h(b)/b
.

Now e′(n) := e(n)b/n(b) is an element of C1(N,L×) such that ∂e′ = resNG (E) and
e′ satisfies the second property in the statement of the proposition. Hence, by the
first part of the proof, e′ can be extended to give a 1-cochain e′′ ∈ C1(L×) such
that ∂e′′ = E. We can choose our e in the proposition to be e′′ which proves the
proposition.

Remark 4.3.17. In the general setup E1 and E1,g defined in §4.3.1 satisfy the above
property as Gal(F/K ′) ' C l−1

2 o Sl−1. Hence, one can reduce the case of computing
e1 and e1,g such that ∂e1 = E1 and ∂e1,g = E1,g, to only computing e1 and e1,g

such that ∂e∗ = resGk(J[2])

Gk
E∗. This can be done by symbolically defining the algebras

corresponding to the general symbolically defined cocycles E1 and E1,g and then
specializing them.

Recall the conjugation homomorphism on n-cochains from §1.3.3. The following
remark is regarding σ∗ on the 2-cochain ∂a ∪ a′1(∗, ∗,−1).

Remark 4.3.18. Let E := ∂a∪a′1(∗, ∗,−1) and σ ∈ Gal(F/k) be such that χ(σ) = 0̂.
Then E is invariant under σ∗. This is because σ∗(E) = σ∗(∂a∪a′1)∪σ∗((T1)− (T0)) =

∂σ∗(a)∪((T1)−(T0)). Now, σ∗(a)(τ) = σa(σ−1τσ) = σa(σ−1 ·χ(τ)) = a(χ(τ)) = a(τ).
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4.3.5 Prime bounds

Let a, a′ ∈ S(2)(J/k) be represented by d, d′ ∈ A× as before, and let ε be the corre-
sponding ε. Let

Sa,a′ :={v | v is a place of k of bad reduction of C or ordv(ε(σ, τ)) 6= 0 for some σ, τ}
∪ {places above 2 and ∞}.

In this regard, we have the following lemma.

Lemma 4.3.19. Let v /∈ Sa,a′ be a place of k. Then (δi,v, di)v = 1 for each Gkv-orbit
of ∆.

Proof. We prove that (δ1,v, d
′
1)v = 1, assuming θ1 ∈ k. If d′1 is a square, then there is

nothing to prove. Hence, we assume that d′1 is not a square in kv. Recall the definition
of δ1,v = γ1,v(g,−1)

g(ω1,v)·ω1,v
from Equation (4.3.7). We show that γ1,v factors through knr

v for
v /∈ Sa,a′ and ordv(γ1,v(g,−1)) is even. Hence, ω1,v ∈ (knr

v )× and ordv(δ1,v) ≡ 0 mod 2

for v /∈ Sa,a′ . Recall that S(2)(J/k) ⊂ H1(Gk, J [2];S), where S is the set of primes of
bad reduction of C (Proposition 1.4.5). If d = (d1, . . . , dl), then ordw(di) ≡ 0 mod 2

for the place w above kv(θi) for each i. Furthermore, the set primes of bad reduction
of C contains the set of ramified primes of the component fields of the étale algebra
A; hence, F/k is unramfied at v. In particular, if we choose bv to be defined over Fv,
then γ1,v factors through Gal(knr

v /kv).
If v /∈ Sa,a′ , then the values taken by ε1 have a trivial valuation at v, i.e., are units

in OLv (recall from §4.3.1 that ε1 factors through F×). Let

z := (av − ∂bv) ∪1 ((T1)− (T0)) ∈ C1(kv).

We show that z(g) and bv ∪2 div(x − θi) have even valuations at v and therefore,
γ1,v(g,−1) has even valuation. We have

∂z = ∂av ∪1 ((T1)− (T0))

which is the localization of the global 2-cocycle ∂a∪1((T1)−(T0)) at v (we will consider
such 2-cocycles later again in Chapter 6 to give easier proofs of global computations).
Recall from the previous section that one can choose a such that the values taken
by ∂av ∪1 ((T1) − (T0)) are multiplicative expressions in s1j. Hence, the values of
∂av ∪1 ((T1)− (T0)) are units. In particular, for g ∈ Gkv ,

(∂av ∪1 ((T1)− (T0)))(g, g) = (∂z)(g, g) = g(z(g))z(g).

Hence, z(g) is a unit.

Without loss of generality, one can choose bv :=
(l−1)/2∑
i=1

((Pi,v) − (T0)). Consider

the field Fv(Pi,v) (this may be a ramified extension), and let w be the unique place
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of Fv(Pi,v) above v with uniformizer πw. Let Pi,v := (xi, yi). If ordw(yi) = ki, then
ordw(f(xi)) = 2ki. If ki = 0, then ordw(xi−θ1) = 0 and so is the case with conjugates
of xi, and the contribution from the orbit of the divisor (Pi,v)−(T0) in bv∪2div(x−θ1)
is a unit. Therefore, we assume that ki 6= 0. If ki < 0, then ordw(xi − θ1) = . . . =

ordw(xi− θl) and 2|ordw(xi− θ1). A similar argument for conjugates of xi shows that
the contribution from the orbit of the divisor (Pi,v)− (T0) in bv∪2 div((x−θ1)) has an
even valuation. Lastly, if ki > 0 and πw|xi−θ1, then πw - xi−θj for j 6= 1. Otherwise,
πw|s1j but v is a prime of good reduction of f . Hence, ordw(xi − θ1) = 2ki and so
is the case with the conjugates of (Pi,v)− (T0). Therefore, ordv(bv ∪2 div(xi − θ1)) is
even.

In view of the §4.3.4 and the above lemma, we have the following corollary.

Corollary 4.3.20. Let a, a′ ∈ S(2)(J/k) and Sa,a′ be as above. Then

(−1)〈a,a′〉CT =
∏

v∈Sa,a′

∏
orbits

(δi,v, di)kv(θi).

4.3.6 Algorithm

The following is pseudocode that states the key steps of an algorithm to compute the
CTP, based on the above computations. Here we have identified S(2)(J/k), where J is
the Jacobian of an odd-degree hyperelliptic curve C : y2 = f(x), with a subgroup of
A×/(A×)2, where A is the étale algebra A = k[x]/〈f〉. The input elements d, d′ ∈ A×
represent the 2-Selmer elements a, a′, respectively.

Algorithm 1 Compute the CTP between a, a′ ∈ S(2)(J/k) represented by d, d′ ∈
A×.
Require: d, d′ ∈ A×.
Ensure: Value of (−1)〈a,a′〉CT in variable CT.

1: CT← 1 . Value of CT.
2: LocalPoints← [ ]. . List storing Pv indexed by Sa,a′ .
3: for v ∈ Sa,a′ do
4: Find Qv ∈ J(kv) such that δ(Qv) = αv. . α ∈ C1(Gk, J [2]) is as in §4.3.4.
5: Kv ← kv(

√
dv) and Pv ← 1

2
Qv ∈ J(Kv). . Computed using Stoll’s algorithm.

6: for T ∈ J [2] and T /∈ J(kv)[2] do . Adjust Pv.
7: if ∂(Pv + T ) = αv then
8: Pv ← Pv + T, and exit the inner loop.
9: end if

10: end for
11: LocalPoints[v]← Pv.
12: end for
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13: K ← k(
√
d). . Adjoining

√
d means adjoining

√
d1, . . . ,

√
dl, where (d1, . . . , dl)

is as in §4.3.4.
14: for θ ∈ {Factors of f} do
15: kθ ← k[x]/〈θ〉 and θ1 ← a root of θ.
16: d′1 ← d′(θ1) and K ′ ← kθ(

√
d′1).

17: Compute 2-cocycles E1, E1,g ∈ Z2(KK ′/K ′), using §4.3.4.
18: Solve for e1, e1,g ∈ C1(KK ′/K ′) such that ∂e1 = E1 and ∂e1,g = E1,g. . One

can use generic algorithms available in Magma to obtain e1 and e1,g. Lemma
4.3.16 can be used to obtain e1 and e1,g with nicer properties.

19: Compute 1-cocycle φ1,g and solve for a Hilbert’s Theorem 90 element t1,g.
20: Compute 1-cochain f ′1,g and solve for c1,g, using Remark 4.3.12.
21: for v ∈ Sa,a′ do
22: for w ∈ {Places of k(θ) above v} do
23: θ1,w ← Image of θ1 under the embedding kθ ↪→ (kθ)w and d′1,w ←

d′(θ1,w).
24: Compute ε1,w and γ1,w. . By Equation (4.2.1).
25: Compute Γ1,w, ω1,w, and δ1,w. . By Proposition 4.3.15 and Equation

(4.3.7).
26: CT← CT · (δ1,w, d1,w)(kθ)w)

27: end for
28: end for
29: end for
30: return CT.

4.4 A conditional but simpler algorithm

In this section we give a simpler algorithm to compute the CTP for odd-degree hy-
perelliptic curves, conditioned on the existence of global solutions to certain ternary
quadratic forms. Since checking if a ternary quadratic form has a global solution is
equivalent to computing a finite number of local Hilbert symbols, it is not an expen-
sive check. The simplicity of the algorithm lies in reducing the time complexity for
the global step and being able to explicitly write down ε1 such that ∂ε1 = η1 (as
defined in the previous section) using the solutions to these quadratic forms. The
motivation for doing so clearly comes from the case of elliptic curves in the previ-
ous chapter. However, unlike the case of elliptic curves, where the twisted curve is
given by the vanishing of a pencil of ternary quadratic forms (§3.1.1), the equations
describing a twist (corresponding to a 2-Selmer element) of the Jacobian of a genus
g ≥ 2 hyperelliptic curve are not necessarily ternary quadratic forms. Before moving
ahead, we prove the following important lemma.

Lemma 4.4.1. Let L/k be a finite extension with G := Gal(L/k) ' Cn
2 with gen-

erators g1, · · · , gn. Let E ∈ Z2(L/k) be a 2-cocycle representing the trivial class in
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Br(L/k) such that E takes values in k× and E(g, h) = E(h, g) for all g, h ∈ G. Let
bi ∈ L× be such that E(gi, gi) = gi(bi)bi and gj(bi) = −bi for j 6= i. Then the 1-cochain
e : G→ L× given by

e(gi1 · · · git) := (−1)
t(t−1)

2

t∏
m=1

bim

t−1∏
m=1

E(gim , gim+1 · · · git)
,

satisfies ∂e = E.

Proof. First we check that the definition of e makes sense i.e. if g =
∏
i∈S

gi for some

S ⊂ {1, · · ·n}, then e(g) does not depend on the ordering of elements in S. We
first show that e is well defined up to swaping of two consecutive elements in a given
expression of g. Let g = gi1 · · · git and say we swap gim and gim+1 . From the expression
of e(g), we get that

e(gi1 · · · git)
e(gi1 · · · gim+1gim · · · git)

=
E(gim , gim+1 · · · git)E(gim+1 , gim+2 · · · git)

E(gim+1 , gimgim+2 · · · git)E(gim , gim+2 · · · git)
(E is a 2-cocycle)

=
E(gimgim+1 , gim+2 · · · git)E(gim , gim+1)

E(gim+1gim , gim+2 · · · git)E(gim+1 , gim)
= 1.

Hence, e is independent of the order. Let σ = σ1 · · · σt and τ = σ1 · · · σmτm+1 · · · τs
be two elements of G with σi, τi ∈ {g1, . . . , gn} and {τm+1, . . . , τs} ∩ {σ1, . . . , σt} = ∅.
We have

∂e(σ, τ) =
σe(τ)e(σ)

e(σm+1 · · · σtτm+1 · · · τs)
= (−1)zΓ

m∏
i=1

e(σi)σi(e(σi)),

where z = t(t−1)
2

+ s(s−1)
2

+m(t−1)+(s−m)t− (s+t−2m)(s+t−2m−1)
2

= 2(m(s+ t)−m2)

and

Γ =
E(σm+1, σm+2 · · · σtτm+1 · · · τs) · · ·E(σt, τm+1 · · · τs)

E(σ1, σ2 · · · σt) · · ·E(σt−1, σt)E(σ1, σ2 · · · τs) · · ·E(σm, τm+1 · · · τs)
(∂E(g, g, h) = 1)

=
E(σm+1, σm+2 · · · σtτm+1 · · · τs) · · ·E(σt, τm+1 · · · τs)

E(σ1, σ2 · · · σt) · · ·E(σt−1, σt)
E(σ1, σ1σ2 · · · τs) · · ·E(σm, σmτm+1 · · · τs)

E(σ1, σ1) · · ·E(σm, σm)
.

Applying repeatedly ∂E(h, g, ghh′) = 1,

∂e(σ, τ) =
E(σm+1, σm+2 · · · σtτm+1 · · · τs) · · ·E(σt, τm+1 · · · τs)

E(σm, σm+1 · · · σt) · · ·E(σt−1, σt)
E(σ1 · · · σm, τ)E(σ2, σ1) · · ·E(σm, σ1 · · · σm−1)

E(σ1, σ2 · · · σt) · · ·E(σm−1, σm · · · σt)
.
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The expression e(σ1 · · · σm) = e(σmσm−1 · · · σ1) implies that

E(σ2, σ1) · · ·E(σm, σ1 · · · σm−1) = E(σ1, σ2 · · · σm) · · ·E(σm−1, σm).

Combining this with ∂E(σi, σi+1 · · · σm, σm+1 · · · σt) = 1, we obtain

∂e(σ, τ) =
E(σm+1, σm+2 · · · σtτm+1 · · · τs) · · ·E(σt, τm+1 · · · τs)E(σ1 · · · σm, τ)

E(σm, σm+1 · · · σt) · · ·E(σt−1, σt)
E(σ2 · · · σm, σm+1 · · · σt)
E(σ1 · · · σm, σm1 · · · σt)

· · · E(σm, σm+1 · · · σt)
E(σm−1σm, σm+1 · · · σt)

(canceling out the cascading product)

=
E(σm+1, σm+2 · · · σtτm+1 · · · τs) · · ·E(σt, τm+1 · · · τs)E(σ1 · · · σm, τ)

E(σm+1, σm+2 · · · σt) · · ·E(σt−1, σt)E(σ1 · · · σm, σm+1 · · · σt)
(∵ ∂E(σm+1 · · · σt, σ1 · · · σm, τ) = 1)

=
E(σm+1, σm+2 · · · σtτm+1 · · · τs) · · ·E(σt, τm+1 · · · τs)

E(σm+1, σm+2 · · · σt) · · ·E(σt−1, σt)E(σm+1 · · · σt, τm+1 · · · τs)
E(σ, τ)

( ∵ ∂E(σi, σi+1 · · · σt, τm+1 · · · τs) = 1 for i > m)
= E(σ, τ).

We begin with the assumption that K∩K ′ = k and Gal(F/k) ' (C l−1
2 oSl−1)×C2,

and compute symbolically and explicitly. The general case will just be restriction of
the generic output of the following computations to a subgroup of (C l−1

2 oSl−1)×C2.
Further, for σ ∈ Gal(F/K ′) we have σ = σsσp with σs ∈ Cl−1

2 and σp ∈ Sl−1,
considering Sl−1 and C l−1

2 as subgroups of Gal(F/K ′) ' C l−1
2 o Sl−1. In this case

note that χ(σ) = χ(σs) and χ(σ) = 0̂ if σ ∈ Sl−1.
Define the affine plane curve

C1j : dju
2
j − d1v2j + θj − θ1 = 0,

where uj and vj are coordinates, for 2 ≤ j ≤ l. Note that ∆ \ {T1} forms a Gk-set.
Fix representatives of orbits of ∆ \ {T1}. If C1j has a k(θj)-rational point (uj, vj),
and Tk 6= Tj is in the orbit of Tj, then for all σ ∈ Gk such that σ(Tj) = Tk the point
(σ(u2), σ(v2)) is a point satisfying the conic C1k (note that (σ(uj), σ(vj)) ∈ k(θk) is
the same point for all σ ∈ Gk such that σ(Tj) = Tk). Hence, for each Tk in the orbit
of Tj, let (uk, vk) := (σ(uj), σ(vj)) for some σ ∈ Gk with σ(T2) = Tk. In this way we
define uj, vj ∈ k(θj) for all j 6= 1 (assuming that each C1j has a solution over k(θj)).
Define

p1j =
√
d1uj +

√
djvj,

for all j 6= 1, and p1 :=
∏
j 6=1

p1j.

In view of the above discussion, we have the following useful observation.
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Remark 4.4.2. Let σ ∈ Gk be such that σ(Tj) = Tk. Then σ(p1j) = σs(p1k), and

σ(p1) = σs

(∏
l 6=1

p1σ·l

)
= σs(p1).

Assumption 4.4.3. We assume that for all j 6= 1, the curves C1j have solutions
(uj, vj) with the property that if σθj = θk, then (uk, vk) = (σuj, σvj).

Let gj 6= id be the element of 〈g2, . . . , gl〉 = Gal(K/k(J [2])) ' C l−1
2 such that

gj(
√
dj) =

√
dj and gj(

√
dk) = −

√
dk for k 6= j, in other words χ(gj) = ĵ. Note

that η1(σ, τ, ρ) = ∂a ∪1 a′1(σ, τ, ρ) when χ′1(σ) = χ′1(τ) = −χ1(ρ) = 1. Therefore, for
σ, τ, θ ∈ GK′ , ∂(∂a ∪1 a′1(−1))(σ, τ, θ) = 1, i.e., ∂a ∪1 a

′
1(−1) is a 2-cocycle factoring

through Gal(K/k) ' C l−1
2 oSl−1. One can check that this is E1 from §4.3.1, and that

E1 = E1,g, with g such that g
∣∣
K

= id and χ′1(g) = −1. Lemma 4.3.16 implies that
there is a 1-cochain e1 ∈ C1(Gal(K/k(J [2])), K×) such that ∂e1 = resGal(K/k(J [2]))

Gal(K/k) E1,
e1(σsσp) = e(σs) and σpe1(τs) = e1(σp · τs). We have E1(gj, gj) = s1j = gj(p1j)p1j for
each j 6= 1. Furthermore, gk(p1j) = −p1j for j 6= k and E1 takes values in k(J [2])×

and E1(σ, τ) = E1(τ, σ) for σ, τ ∈ Gal(K, k(J [2])). Lemma 4.4.1 implies that there
exists e1 ∈ C1(K/k(J [2])) such that e1(gi) = p1i, and

e1(gi1 . . . git) = (−1)
t(t−1)

2

t∏
m=1

p1im

t∏
m=1

E(gim , gim+1 . . . git)

.

Since g2, . . . , gl generate a subgroup Gal(K/k(J [2])) and χ(gi) = î for 2 ≤ i ≤ l,
for any σ there is a subset Sσ ⊂ {2, . . . , l} such that χ(σ) =

∏
i∈Sσ

î. The following

proposition gives an ε1 such that ∂ε1 = η1.

Proposition 4.4.4. Let ε1 be as follows:

ε1(τ, ρ) =



1 if
χ(τ)=0̂, χ′

1(τ)χ
′
1(ρ)=−1

or χ(τ)=1̂, χ′
1(τ)χ

′
1(ρ)=1

or χ′
1(ρ)=1

,

e(gi1 · · · git) if χ(τ) =
t∏

m=1

îm, χ
′
1(τ) = 1, χ′1(ρ) = −1,

e(gi1 · · · git)/p1 if χ(τ) =
t∏

m=1

îm, χ
′
1(τ) = −1, χ′1(ρ) = −1.

(4.4.1)

Then we have ∂ε1 = η1.

Proof. The proof will proceed similar to the proof of Proposition 3.2.2. Note that
ε1(τ, ρ) only depends on χ(τ), χ′1(τ) and χ′1(ρ); hence, we will interchangeably use
ε1(χ(τ), χ

′
1(τ), χ

′
1(ρ)) for ε1(τ, ρ). We first check that the 1-cochain ∂ε1(∗, 1,−1) =
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E1. All we need to check is that e1(∗) = ε1(∗, 1,−1) satisfies σp · e1(τ) = e1(σp ·χ(τ)).
This follows form the fact that σpE1(τ, ρ) = E1(σp · χ(τ), σpτpρs) (Remark 4.3.18),
and that e1(gi1 . . . git) is independent of the ordering of gi1 , . . . , git . Hence, ∂e1 =

E1 = ∂a ∪1 ((T1) − (T0)) (Lemma 4.3.16). Noting that ε1(σ,−1,−1)/ε1(σ, 1,−1) =
ε1(0̂,−1,−1) = 1/p1, the proof of Proposition 3.2.2 implies that it is enough to prove
(∂ε1 − η1)(σ, τ, ρ) = 1 assuming χ′1(σ) = 1. Let σ, τ, ρ be such that χ′1(σ) = 1 and
χ′1(τ) = χ′1(ρ) = −1 (the case when χ′1(τ) = 1 is equivalent to ∂e1 = E1). Then

∂ε1(σ, τ, ρ) =
σ(ε1(χ(τ),−1,−1))ε1(χ(σ), 1, 1)

ε1(χ(σ)σp · χ(τ),−1,−1)ε1(χ(σ), 1,−1)

=
p1σε1(χ(τ), 1,−1)ε1(χ(σ), 1,−1)

σs(p1)ε1(χ(σ)σp · χ(τ), 1,−1)ε1(χ(σ), 1,−1)2

= E1(χ(σ), σs · χ(τ))
p1

σs(p1)e1(χ(σ), 1,−1)2
.

If χ(σ) = ĝi1 · · · ĝit , then σs = gi1 · · · git and

p1
σsp1e1(gi1 . . . git)

2
= (−1)lt−2t

(
t∏

m=1

E1(gim , gim+1 . . . git)

)2

p1i1 . . . p1itgi1(p1i1) . . . git(p1it)
.

Note that whether 1 ∈ {χ(σ)} or not depends on whether t is even or odd, respectively.
Assume that t is odd. Then the expression of ∂a ∪ a′1 implies

E1(gi1 , gi2 · · · git)E1(gi2 , gi3 · · · git) =
s1

t∏
m=2

s1im

1∏
j /∈{i2,...,it}

s1j
= 1.

Therefore,
p1

σs(p1)e1(gi1 · · · git)2
=

1

si11 · · · sit1
=

1

a ∪ ∂a′1(χ(σ),−1,−1)
.

When t is even,
p1

σs(p1)e1(gi1 · · · git)2
=

1∏
j /∈{i1,...,it}

s21j

1

si11 · · · sit1
=

1

a ∪ ∂a′1(χ(σ),−1,−1)
.

Therefore, ∂ε1(σ, τ, ρ) = ∂a∪a1(σ,τ,ρ)
a∪∂a′1(σ,τ,ρ)

= η1(σ, τ, ρ).

4.4.1 Assumption 4.4.3 is not very strict

In this section, we discuss empirical evidence for the fact that assumption 4.4.3 is
good enough to compute the kernel of the CTP on X[2] ×X[2] in most cases. For
this purpose, we say that a ∈ S(2)(J/k) is good, if the tuple (d1, . . . , dl) corresponding
to a satisfies Assumption 4.4.3.
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Definition 4.4.5. An odd-degree hyperelliptic curve C is said to be a good curve if the
subgroup of S(2)(J/k) generated by the good elements and the image of J(k)/2J(k)
is of index at most 2.

In [PS99] the authors show that 〈·, ·〉CT is an alternating pairing if C has a k-
rational point. In our case C always has a k-rational point T0. Therefore, it is
enough to compute the CTP on H × S(2)(J), for an index 2 subgroup H of S(2)(J).
LMFDB [LMF24] mentions 1207 genus 2 curves with analytic rank 0 that admit an
odd degree model, with at least 2 extra 2-Selmer group generators. All these curves
are good. Furthermore, there are only the following 2 curves

y2 = 8x5 − 72x4 + 64x3 + 17x2 − 16x− 4,

y2 = 8x5 + 72x4 + 140x3 − 103x2 − 4x,

where the subgroup generated by good elements is of index 2, and for every other
curve the extra part of the 2-Selmer group is generated by good elements.

Furthermore, in the family of curves y2 = x5 + A (which will be the focus in the
next chapter), every curve is a good curve for |A| ≤ 2000. The following theorem
proves that every curve is good in a certain family.

Theorem 4.4.6. Let p be a prime, let Cp := y2 = x(x2 − p2)(x2 − 4p2), let Jp be its
Jacobian variety, and let Tp be the image of Jp[2] inside S(2)(Jp/Q). Then S(2)(Jp)/Tp
is generated by good elements.

This theorem will be discussed in a work (joint with Tim Evink), where we com-
pute the CTP explicitly for this family, and show that the rank bounds are equivalent
to the ones obtained via visualization. We will not discuss this here in this thesis.

Naturally, every element of the 2-Selmer group of an elliptic curve is good, and
therefore every 2-Selmer element of a curve in the family of elliptic curves, Ep : y2 =
x(x2 − p2), for p an odd prime, is good. Note that this is a subfamily of the famous
congruent number family. Let p be a prime number, and let g ≥ 2. Define the
hyperelliptic curve Cp,g : y2 = x

g∏
i=1

(x2 − i2p2). Then in view of the previous theorem

and the case of elliptic curves, it is a natural question to ask whether, for a fixed
g ≥ 3 and varying primes p, the curves Cp,g are good? Unfortunately, experiments
show that as the genus increases, the good curves in this family seem to become scarce
very fast. For example, if p < 2000, then for g = 3 there are around 74% good curves.
For g = 4, there are around 30% good curves, and for g = 5, we could not find any
good curve. Genus 2 seems to be the sweet spot in this regard.

4.5 Algorithm, implementation and examples

All the computations in the following section and later were performed using the
Magma computer algebra system. For computing half of a point, we used the algo-
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rithm in [Sto17b, §5]. I thank Michael Stoll for providing me with an implementation
of this algorithm over global fields, that was later modified to incorporate the com-
putation over local fields. I also thank him for providing me with a more efficient
program for checking whether a given odd-degree hyperelliptic curves is good. This
was used in the previous section to get the empirical data.

Remark 4.5.1. The current implementation works over any number field under
the assumption that at least one of the elements being paired is good. Apart from
the global bottle-neck of solving norm equations, the current implementation uses a
non-sophisticated mechanism for finding local points corresponding to the 2-Selmer
elements. Hence, sometimes it is a bit slow and may fail in finding them. One idea
will be to extract the image of J(kv)/2J(kv) from the 2-Selmer group computation,
which we anyway have to perform, and feed it inside the algorithm directly.

4.5.1 Algorithm for good elements

Here we provide pseudocode for an algorithm assuming that a ∈ S(2)(J/k) is a good
element. The code mimics Algorithm 1 for most parts.

Algorithm 2 Compute the CTP between a, a′ ∈ S(2)(J/k) represented by d, d′ ∈
A×.
Require: d, d′ ∈ A× such that d represents a good 2-Selmer element.
Ensure: Value of (−1)〈a,a′〉CT in variable CT.

1: M ← 2-dimensional list of size l × l indexed by roots of f with entries as (0, 0).
2: . M [θ1, θ2] will store solutions to the conic (d(θ1)u

2 − d(θ2)v2)/(θ1 − θ2) + 1 = 0.
3: for θ ∈ {Factors of f} do
4: kθ ← k[x]/〈θ〉 and θ1 ← a root of θ in kθ.
5: for θ′ ∈ {Factors of f over kθ} and θ′(θ1) 6= 0 do
6: kθ′ ← kθ[x]/〈θ′〉 and θ2 ← a root of θ′ in kθ′ .
7: if M [θ1, θ2] 6= (0, 0) then
8: Compute (u, v) such that d(θ1)u2 − d(θ2)v2 = θ2 − θ1 and uv 6= 0.
9: M [θ1, θ2]← (u, v).

10: Assign to M at Galois conjugates of the pairs (θ1, θ2), the corre-
sponding Galois conjugate of (u, v).

11: end if
12: end for
13: end for
14: CT← 1 . Value of CT.
15: LocalPoints← [ ]. . List storing Pv indexed by Sa,a′ .
16: for v ∈ Sa,a′ do
17: Find Qv ∈ J(kv), such that δ(Qv) = αv. . α ∈ C1(Gk, J [2]) is as in §4.3.4.
18: Kv ← kv(

√
dv), Pv ← 1

2
Qv ∈ J(Kv). . Computed using Stoll’s algorithm.
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19: for T ∈ J [2] and T /∈ J(kv)[2] do . Adjust Pv.
20: if ∂(Pv + T ) = αv then
21: Pv ← Pv + T, and exit the inner loop.
22: end if
23: end for
24: LocalPoints[v]← Pv.
25: end for
26: for θ ∈ {Factors of f} do
27: kθ ← k[x]/〈θ〉 and θ1 ← a root of θ, d′1 ← d′(θ1).
28: for v ∈ Sa,a′ do
29: for w ∈ {Places of k(θ) above v} do
30: θ1,w ← Image of θ1 under the embedding kθ ↪→ (kθ)w and d′1,w ←

d′(θ1,w).
31: Compute ε1,w and γ1,w as in Equation (4.2.1) using the row in M cor-

responding to θ1,w.
32: Compute Γ1,w, ω1,w, and δ1,w. . By Proposition 4.3.15 and Equation

(4.3.7).
33: CT← CT · (δ1,w, d1,w)(kθ)w .
34: end for
35: end for
36: end for
37: return CT.

4.5.2 Example of genus 2 (when f splits completely)

It is not hard to check that the curves Cp arise as quadratic twists of C : y2 =

x(x2−1)(x2−4) by ±p. We show that rkF2 (ker(〈·, ·〉CT)) is same as rkF2

(
S(2)(J/kp)

)
,

where J is the Jacobian of C and kp := Q(
√
±p), depending on the class of p mod 24.

Hence, it makes more sense to compute the CTP for J over kp.

Example 4.5.2. Let p := 1777 and kp := Q(
√
p). Then the group S(2)(J/kp)/Tp is

generated by

{(1/2(−√p+ 25), 1/2(−√p+ 89), 1/2(−√p+ 39), 1/2(−√p− 7), 1/2(−√p+ 39)),

(1, 1/2(
√
p+ 61), 1/2(

√
p+ 43), 1/2(

√
p− 89), 1/2(

√
p− 43)),

(1/2(−√p+ 39), 1, 1/2(−√p+ 41), 1/2(−√p+ 25), 1/2(−√p− 7)),

(1, 1/2(−√p+ 43), 1, 1/2(
√
p− 39), 1/2(

√
p+ 25))},

and all these elements are good. The elements above are represented by tuples
(d1, . . . , d5) corresponding to the elements in the étale algebra k[T ]/〈f(T )〉. Com-
puting pij, we obtain that one needs to compute the CTP at primes of kp above

{2, 3, 5, 7, 11, 17, 31, 37, 43, 97, 271, 2579, 22541, 132371} ∪ {∞}.
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The primes apart from {2, 3, 1777,∞} appear because of the values of pij for different
values of 2-Selmer elements. We need to compute the CTP at the places above the
primes of bad reduction. If we denote the above generating set for the extra 2-Selmer
group by αi, for i ∈ {1 . . . 4}, we obtain the following matrix

MCT =


0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0

 ,

where the (i, j)-entry of MCT is 〈αi, αj〉CT. We obtain rkF2(MCT) = 2, so rk(Jp/Q) ≤
2.

Example 4.5.3. Let p := 409 and kp := Q(
√
p). Then the group S(2)(J/kp)/Tp is

generated by

{(1/2(−√p− 3), 1, 1/2(−√p+ 5), 1/2(−√p− 11), 1/2(−√p− 19)),

(1, 1/2(−√p+ 29), 1/2(−√p+ 21), 1/2(−√p+ 5), 1/2(−√p− 3))},

The primes that may give a non-trivial contribution to CTP are above

{2, 3, 53, 167, 359, 409} ∪ {∞},

and

MCT =

(
0 1

1 0

)
has F2-rank 2, so rk(Jp/Q) = 0. This one cannot get simply by using a visualization
argument.

Recall that Cp,g is the curve given by y2 = x
g∏
i=1

(x2 − i2p2). In the next two

sections, we consider curves of genus g higher than 2.

4.5.3 Example of genus 3

Example 4.5.4. Consider the curve C71,3. The group S(2)(J71,3/Q)/T71,3 is generated
by

{(71, 2130, 1, 2, 3, 1, 5), (142, 71, 3, 1, 2, 3, 1),
(71, 213, 142, 71, 3, 1, 2), (142, 71, 71, 142, 2, 2, 1)},

where T71,3 := J71,3[2].
The non-trivial contribution to the pairing may come from the primes

{2, 3, 5, 7, 11, 17, 19, 23, 41, 47, 67, 149, 167, 269, 4933} ∪ {∞},
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depending on which two elements are being paired. We obtain that

MCT =


0 0 1 1

0 0 0 1

1 0 0 0

1 1 0 0


has F2-rank 4, so rk(J71,3/Q) = 0.

Next we give an example of computing the CTP for a hyperelliptic genus 3 curve
where the defining polynomial f is not completely split.

Example 4.5.5. Consider the curve C : y2 = (x−p)(x4−p2)(x2−2p), with p = 179.
The group S(2)(JC/Q)/JC(Q)[2] is generated by{
(358, 7

√
358 + 179,−7

√
358 + 179,−9

√
179 + 179, 9

√
179 + 179, 2

√
−179,−2

√
−179),

(1,
√
358 + 19,−

√
358 + 19,−2,−2, (−

√
−179 + 11)/2, (

√
−179 + 11)/2)

}
.

One can check computationally that the first element is a good 2-Selmer element. The
non-trivial contribution to the pairing may come from the primes

{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 59, 79, 89, 101, 179, 751, 839, 977, 5227} ∪ {∞},

depending on which elements corresponding to the local factors are being paired. We
obtain that

MCT =

(
0 1

1 0

)
has F2-rank 2, so rk(JC/Q) = 0 and JC(Q) = JC(Q)[2].

Example 4.5.6. Consider C : y2 = x(x3 − p)(x3 − 2p), with p = 97. The group
S(2)(JC/Q)/JC(Q)[2] is generated by{

(1,−1,−1,−1,−1,−1,−1),
(97,

3
√
97, ζ3

3
√
97, ζ23

3
√
97, 1, 1, 1),

(1,− 3
√
97− 18,−ζ3 3

√
97− 18,−ζ23

3
√
97− 18,−1,−1,−1)

}
.

One can check computationally that all the three elements ares good 2-Selmer ele-
ments. The non-trivial contribution to the pairing may come from the primes

{2, 3, 5, 11, 13, 17, 29, 31, 37, 41, 43, 97, 131,
179, 757, 997, 1579, 2069, 2099, 3433, 5407, 8839, 9461, 13619, 78167,

254027, 310229, 5347301, 7540909, 2319939481, 91230796032263161} ∪ {∞},
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depending on which elements corresponding to the local factors are being paired. We
obtain that

MCT =

0 1 1

1 0 1

1 1 0


has F2-rank 2; hence, rk(JC/Q) = 1 and JC(Q) ' JC(Q)[2]× Z.

4.5.4 Examples of genus 4

Example 4.5.7. Consider the curve C73,4. One can show that C73,4 is a good curve
with S(2)(J73,4/Q)/T73,4 generated by

{(73, 1, 73, 1, 1, 73, 1, 73, 1),
(1, 73, 1, 73, 1, 1, 73, 1, 73)},

where T73,4 := J73,4(Q)[2].
The non-trivial contribution to the pairing may come from the primes

{2, 3, 5, 7, 73, 97} ∪ {∞},

depending on which two elements are being paired. We obtain that

MCT =

(
0 1

1 0

)
has F2-rank 2, so rk(J73,4/Q) = 0.

Here we give an example of computing the CTP for a hyperelliptic genus 4 curve
where the defining polynomial f is not completely split.

Example 4.5.8. Consider the curve C : y2 = (x−p)(x4−p2)(x4−4p2), with p = 137.
The group S(2)(JC/Q)/JC(Q)[2] generated by{

(1, 1, 1, 1, 1, 1, 1,−2,−2),
(−1955,−2

√
274− 31,+2

√
274− 31, 3

√
137− 411,−3

√
137− 411,

3
√
−137− 411,−3

√
−137− 411, 3, 3)

}
.

One can check computationally that the first element is a good 2-Selmer element.
The non-trivial contribution to the pairing may come from the primes

{2, 3, 5, 7, 17, 23, 137, 139, 193, 389, 2447} ∪ {∞},

depending on which elements corresponding to the local factors are being paired. We
obtain that

MCT =

(
0 1

1 0

)
has F2-rank 2; hence, rk(JC/Q) = 0 and JC(Q) = JC(Q)[2].



118CHAPTER 4. THE CTP FOR ODD DEGREE HYPERELLIPTIC JACOBIANS



Chapter 5

The CTP for the Jacobian of
y2 = xl + A

In this chapter we look into a special class of hyperelliptic curves of the form CA :

y2 = xl + A, for A ∈ Z and l an odd prime. There is a distinguished point at
infinity (denoted by T0, as in the previous chapter) defined over Q, which we use
to embed CA(k) into its Jacobian JA(k) via P 7→ [(P ) − (T0)]. Fix an lth root of
unity ζl. Then there is a natural automorphism of CA defined by (x, y) 7→ (ζlx, y).
This induces an automorphism of JA, also denoted by ζl. This choice of notation is
justified since the automorphism 1 + ζl + . . . + ζ l−1l is trivial on JA. This is because
if D := (P1) + (P2) + . . . + (Pi) is a divisor not involving T0, with i ≤ (l − 1)/2,

representing a point on JA (recall Definition 1.2.16), then
l−1∑
j=0

ζjl (D) = div
i∏

j=1

(y − yj),

where yj is the y-coordinate of Pj. Therefore, Z[ζl] ⊂ End(JA). Then λ := 1 − ζl
is an endomorphism on JA defined over k := Q(ζl). Fix a square root

√
A of A in

k, and let L := k(
√
A). We will denote the group JA(k)[λ] by JA[λ]. Further, the

prime ideal (1 − ζl) is the only prime ideal above l in the maximal order Z[ζl] of
Q(ζl) and (l) = (λ)l−1. Hence, #JA[λ] = l and is generated by the image of the
point P := (

√
A, 0) in JA. The group JA[λ] is defined over Q, but its elements need

not be rational points. Let S(λ)(JA/k) be the Selmer group of λ. Note that CA
can be viewed as a cyclic l-cover of P1 via the map (x, y) 7→ y on the affine patch.
From the works of Schaefer [Sch96] and Poonen-Schaefer [PS97], we have a handle on
S(1−ζn)(JC/k), where C is a n-cyclic cover of P1. Stoll in [Sto98], using this explicit
representation of λ-Selmer group for the curves of the form CA, obtained explicit
values of rkFl

(S(λ)(JA/k)) in terms of Fl ranks of ker(N : Cl(L)[l] → Cl(k)[l]), where
Cl(∗) represents the class group of a number field ∗, under the following assumptions
on A.

Assumption 5.0.1. [Sto98, Assumption 1.2, 1.3]

119
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We say that A ∈ Z lies in the l-Stoll set if A satisfies the following two assumptions:

1. l - A, and A is not a square in F×l .

2. For every prime p | 2A and a prime p of Z[ζl] above p, A is not a square in kp.

These assumptions force the local restriction maps H1(Gk, JA[λ])→ H1(Gkv , JA[λ])

to be trivial at all places v of k outside {λ}. The analysis proceeds by getting ex-
plicit elements in the image of JA(kλ)/λJA(kλ) inside H1(Gkλ , JA[λ]), and explicitly
computing the kernel of the localization map H1(Gk, JA[λ]; {λ}) → H1(Gkλ , JA[λ]),
where H1(Gk, JA[λ];S) for a subset S of places of k is the subgroup of elements that
is represented by cocycles which factor through knr

v for all places v of k outside S.
We know that S(λ)(JA/k) ⊂ H1(Gk, JA[λ]). Since the order of Gal(L/k) and JA[λ]

are coprime to each other, we have Ĥi(Gal(L/k), JA[λ]) = 0 (Proposition 1.3.22).
Therefore, using the inflation-restriction-transgression (part 2 of Proposition 1.3.7)
exact sequence we have:

H1(Gk, JA[λ])
res→ H1(GL, JA[λ])

Gk/GL ' ker
(
N : L×/(L×)l → k×/(k×)l

)
,

where N is induced from the norm map: L× → k×. We work with the image of
H1(GK , JA[λ]) inside H1(GL, JA[λ]), which is enough since taking restriction multiplies
the value of the pairing by 2, which acts invertibly on 1

l
Z/Z. For d ∈ L× and σ ∈ GL,

define χd(σ) := σ( l
√
d)/ l
√
d. Note that χd takes values in µl. Identifying µl with Z

lZ via
ζl 7→ 1, we may assume that χd takes values in Z

lZ .

5.1 Global computation

Let a, a′ ∈ S(λ)(JA/k) represented by d, d′ ∈ L×, respectively. Then a 1-cocycle α,
representing a, can be chosen as

α(σ) := i[(P )− (T0)], if χd(σ) = i, 0 ≤ i ≤ l − 1.

Similarly, we can define α′ depending on χd′ representing the class a′. For simplicity
of notation, we drop the subscripts in χd and χd′ , and denote them by χ and χ′,
respectively. Since the CTP is an alternating pairing on X(JA/L)[l], we can assume
that L( l

√
d) ∩ L( l

√
d′) = L; i.e., d 6≡ d′z mod ((L×)l), for all z ∈ Z. We take the

following lift of α to C1(GL,Div0((CA)k))

a(σ) := i(P )− i(T0), if χ(σ) = i, 0 ≤ i ≤ l − 1.

Taking the coboundary gives

∂a(σ, τ) = div((y −
√
A)n), if χ(σ) = i, χ(τ) = j, and n := [(i+ j)/l],
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where [·] denotes the greatest integer function. Similarly, we choose a lift a′ ∈
C1(GL,Div0((CA)k)) of α′ as above; then

∂a′(σ, τ) = div((y −
√
A)n

′
), if χ′(σ) = i, χ′(τ) = j, and n′ := [(i+ j)/l].

We choose the uniformizer as x(l−1)/2/y at T0. If Q is a Weierstrass point, then
we choose y as a uniformizer at Q. Choose x − x(Q) as a uniformizer at all other
Q ∈ CA. The map Q 7→ tQ, where tQ is the chosen uniformizer at Q ∈ CA(k) as
above, is Galois equivariant. In what follows, we will use the letter k also as an index.
However, this will be clear from the context, if it represents a field or index. Further,
for f := (y −

√
A)n and D := k(P )− k(T0),

〈div(f), D〉1 =

((
y−
√
A

xl

)n
(P )
)k

((
(y−
√
A)xl(l−1)/2

yl

)n
(T0)

)k =

(
1

2
√
A

)nk
= 〈D, div(f)〉2,

where 〈·, ·〉1 and 〈·, ·〉2 are the modified pairings defined on Princ((CA)k)×Div0((CA)k)

and Div0((CA)k)× Princ((CA)k), respectively, as in §2.1.3. We obtain

∂a ∪ a′(σ, τ, ρ) = (2
√
A)−nk, if χ(σ) = i, χ(τ) = j, χ′(ρ) = k, n = [(i+ j)/l]

and

a ∪ ∂a′(σ, τ, ρ) = (2
√
A)−n

′k, if χ(σ) = i, χ′(τ) = j, χ′(ρ) = k, n′ = [k + j)/l].

From now on we will assume, for σ, τ, ρ ∈ GL and 0 ≤ i, j, j ′, k ≤ l − 1, χ(σ) = i,
χ(τ) = j, χ′(τ) = j′, χ′(ρ) = k, n = [(i + j)/l], and n′ := [(j′ + k)/l]. Then
η := ∂a ∪1 a

′ − a ∪2 ∂a′ ∈ Z3(L) is given by

η(σ, τ, ρ) = (2
√
A)n

′i−nk.

Let K := L( l
√
d), K ′ := L( l

√
d′), and F := L( l

√
d, l
√
d′). Let σ0, σ′0 be the generators

of Gal(K/L), Gal(K ′/L), respectively, such that χ(σ0) = χ′(σ′0) = 1. Note that η can
be viewed as inflation of an element in Z3(F/L). Furthermore, η(σ, τ, ρ) = η(σ′, τ, ρ′)

if χ(σ) = χ(σ′) and χ′(ρ) = χ′(ρ′). Hence if χ(σ) = i, χ(τ) = j, χ′(τ) = j′ and
χ′(ρ) = k, then we will interchangeably use η(σ, τ, ρ) and η(i, j, j ′, k). Here we have
identified τ

∣∣
F

with its image in Gal(F/L) ' (Z/lZ)2.

Remark 5.1.1. In view of the above, we have

η(σ, τ, ρ) = η(i, (j, 0), k)η(i, (0, j ′), k).

The rest of this section is dedicated to solving for ε ∈ C2(L) such that ∂ε = η.
Computation of ε is done in two steps. First, we show that there is ε′ ∈ C2(L) such
that ∂ε′ = η and that ε′ has some special properties. Next, we use these properties
of ε′ to compute ε explicitly.
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Proposition 5.1.2. For a ∈ S(λ)(JA/k), there is a g ∈ H1(Gk, JA[λ
2]) such that

λ∗g = a, where λ∗ is the map induced by λ.

Proof. Using the Galois cohomology and localization on the lower row of the following
diagram

0 JA[λ] JA[λ
2] JA[λ] 0

0 JA[λ] JA JA 0

λ

λ

, (5.1.1)

we have

H1(GL, JA[λ
2]) H1(GL, JA[λ]) H2(GL, JA[λ])

H1(GL, JA) H1(GL, JA) H2(GL, JA[λ])

∏
v

H1(GLv , JA)
∏
v

H1(GLv , JA)
∏
v

H2(GLv , JA[λ]).

λ∗ δ

λ∗ δ

λ∗ δ

(5.1.2)

Since JA[λ] ' Z/lZ as GL-module and µl ⊂ L, the Albert-Brauer-Hasse-Noether
exact sequence implies that the map loc2(JA[λ]) : H2(GL, JA[λ])→

∏
v

H2(GLv , JA[λ])

is injective. Hence, if a ∈ S(λ)(JA/k), then δ(a) = 0 and there is a g ∈ H1(GL, JA[λ
2])

such that λ∗g = a.

We now look at the interaction of λ with the Galois equivariant pairings 〈·, ·〉1, and
〈·, ·〉2. Let f ∈ k(CA)× andD ∈ Div0((CA)k) be such that Supp(div(f))∩Supp(D) = ∅
and Supp(ζl∗ div(f))∩Supp(D) = ∅. Then λ div(f) = div(f)−ζl∗(div(f)) = div(f)−
div(ζl∗f) = div(f)− div(f ◦ ζ−1l ). We have

〈D, div(f ◦ ζ−1l )〉2 = 〈div(f ◦ ζ−1l ), D〉1 = 〈div(f), ζ−1l∗ D〉1,

as ∏
P∈Supp(D)

f(ζ−1l P )vP (D) =
∏

P∈Supp(ζ−1
l∗ D)

f(P )vP (ζ−1
l∗ D).

This implies that 〈λ div(f), D〉1 = 〈div(f), λ̂D〉1, where λ̂ := 1 − ζ−1l∗ . Similarly,
〈D,λ div(f)〉2 = 〈λ̂D, div(f),〉 2. Note that λ̂ is defined over k.

Lemma 5.1.3. Let η be as before. Then there is a 2-cochain ε′ such that ∂ε′ = η with
the property that ε′(∗, σ) = 1, if χ′(σ) = 0, and ε′(σ, τ) = ε′(σ, τ ′), if χ′(τ) = χ′(τ ′).

Proof. Proposition 5.1.2 implies that there is a γ ∈ Z1(Gk, JA[λ
2]) and a z ∈ JA[λ]

such that λ∗(γ) = α + ∂z. Let z̃ ∈ JA[λ
2] be such that λz̃ = z. Then λ∗(γ) =
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α + ∂λ∗(z̃) = α + λ∗∂z̃. Therefore, possibly after shifting γ by a coboundary, we
assume that λ∗γ = α. Let g ∈ C1(Div0((CA)k)) be a lift of γ such that g and ζl∗(g)

take values with support disjoint from the support of the values taken by a′. This
is always possible by the moving lemma (Lemma 1.2.2). Note that λ∗g is a lift of α
to a 1-cochain with values in Div0((CA)k), and the values taken by λ∗g have disjoint
support to the ones taken by a′. Now with the choice of lifts as above

η′ := ∂λ∗g ∪1 a
′ − λ∗g ∪2 ∂a′ = λ∗∂g ∪1 a

′ − g ∪2 ∂λ̂∗a′

= ∂g ∪2 λ̂∗a′ − g ∪2 ∂λ̂∗a′ = ∂(g ∪2 λ̂∗a′).

The second to last equality above is because λ̂∗(a′) takes values in principal divisors.
Note that g ∪2 λ̂∗a′ has the property that g ∪2 λ̂∗a′(σ, τ) = g ∪2 λ̂∗a′(σ, τ ′), if χ′(τ) =
χ′(τ ′), and g ∪2 λ̂∗a

′(σ, τ) = 1, if χ′(τ) = 0. If a is any other lift of α, then we have
a = λ∗g + f, where f is a 1-cochain with values in Princ((CA)k). This changes η′ by
∂(f ∪1 a′) and hence we choose ε′ to be g ∪2 λ̂∗a′ + f ∪1 a′. Note that ε′ satisfies the
conclusion of the lemma.

Similarly to η, we will interchangeably use ε′(σ, τ) and ε′(σ, k) for σ, τ ∈ GL and
χ′(τ) = k. Now using ε′ we will construct a “nice” ε explicitly such that ∂ε = η. The
process is very similar to the one in §4.3.1. If σ, τ ∈ GK′ and χ′(ρ) = k, then define
Ek ∈ C2(K ′) by

Ek(σ, τ) := η(σ, τ, k).

Proposition 5.1.4. We have Ek ∈ Z2(K ′), for each 0 ≤ k ≤ l− 1. Furthermore, Ek
represents the trivial class in Br(K ′).

Proof. Let σ, τ, ρ ∈ GK′ and χ′(θ) = k. Then

1 = ∂η(σ, τ, ρ, θ) =
ση(τ, ρ, θ)η(σ, τρ, θ)η(σ, τ, ρ)

η(στ, ρ, θ)η(σ, τ, ρθ)

=
σEk(τ, ρ)Ek(σ, τρ)

Ek(στ, ρ)Ek(σ, τ)
= ∂Ek(σ, τ, ρ).

(η(σ, τ, ρ) = 1 and χ′(ρθ) = k)

Therefore, Ek ∈ Z2(K ′). Let e′k ∈ C2(K ′) be defined as e′k(σ) := ε′(σ, k). For
σ, τ ∈ GK′ ,

Ek(σ, τ) = η(σ, τ, k) =
σε′(τ, k)ε′(σ, k)

ε′(στ, k)ε′(σ, 0)
=
σe′k(τ, k)e

′
k(σ, k)

e′k(στ, k)
= ∂e′k(σ, τ).

Therefore, Ek represents the trivial class in Br(K ′).

Note that Ek can be viewed as inflation of an element in Br(F/K ′). Therefore,
there is ek ∈ C1(F/K ′) such that ∂ek = Ek. Explicitly, Ek is given by

Ek(σ, τ) := (2
√
A)−kn, χ(σ) = i, χ(τ) = j, n = [(i+ j)/l].
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Since Ek = kE1, we can assume ek = ke1. Let σ0 ∈ Gal(F/K ′) be the generator of
Gal(F/K ′) such that χ(σ0) = 1. The triviality of E1 implies that there is c ∈ K×

such that 2
√
A = NK/L(c). Hence, we choose e1 to be given by

e1(σ) :=


1, if χ(σ) = 0,
i−1∏
m=0

σm0 (1/c), if χ(σ) = i, i ≥ 1.

Identifying Gal(F/L) with Gal(K/L)×Gal(K ′/L), for each 0 ≤ m, k ≤ l− 1, we
can define fm,k ∈ C1(K ′) as fm,k(σ) := η(σ, 0,m, k) and

Fm,k := fm,k + ek + em − e(m+k) mod l.

If σ, τ ∈ GK′ and ρ, θ ∈ GL are such that χ(ρ) = 0, χ′(ρ) = m, and χ′(θ) = k, then

1 = ∂η(σ, τ, ρ, θ) =
ση(τ, ρ, θ)η(σ, τρ, θ)η(σ, τ, ρ)

η(στ, ρ, θ)η(σ, τ, ρθ)

=
ση(τ, 0,m, k)η(σ, τ,m, k)η(σ, τ, 0,m)

η(στ, 0,m, k)η(σ, τ, 0, (m+ k) mod l)

=
ση(τ, 0,m, k)η(σ, τ, 0, k)η(σ, 0,m, k)η(σ, τ, 0,m)

η(στ, 0,m, k)η(σ, τ, 0, (m+ k) mod l)

(by Remark 5.1.1)

=
σfm,k(τ)fm,k(σ)Ek(σ, τ)Em(σ, τ)

fm,k(στ)E(m+k) mod l(σ, τ)
= ∂Fm,k(σ, τ).

This implies that Fm,k ∈ Z1(K ′). Since Fm,k takes values in K× and factors through
Gal(F/K ′) ' Gal(K/L), we can view Fm,k as image of an element in Z1(K/L)

under the inflation map. By Hilbert’s Theorem 90 there is a tm,k ∈ K× such that
∂tm,k = Fm,k. We choose tm,k to be 1 whenever Fm,k is the trivial cocycle. By our
choice of ek, and the fact that fm,k(σ) = (2

√
A)[(m+k)/l]χ(σ),

Fm,k(σ) = fm,k(σ)e1(σ)
[(m+k)/l] =

(
(2
√
A)χ(σ)el1(σ)

)[(m+k)/l]

.

If m + k ≥ l, then Fm,k(σ) = (2
√
A)χ(σ)el1(σ) and otherwise Fm,k(σ) = 1. We choose

tm,k = t if m + k ≥ l, where t is such that ∂t(σ) = (2
√
A)χ(σ)el1(σ). In other words,

tm,k can be chosen to be t[(m+k)/l], for 0 ≤ m, k ≤ l−1. Using the following proposition
one can explicitly write t.

Proposition 5.1.5. Let 0 ≤ m, k ≤ l − 1 be such that m + k ≥ l, and σ0 be the
generator of Gal(K/L) such that χ(σ0) = 1. Then Fm,k(σ) = (2

√
A)χ(σ)el1(σ), and

we can choose t such that ∂t = Fm,k as t :=
l−2∏
i=0

σi0(c
l−1−i).



5.1. GLOBAL COMPUTATION 125

Proof.

σ0(t) =
l−1∏
i=1

σi0(c
l−i) = N(c)t/cl

=
2
√
A

cl
t = 2

√
Ael1(σ0)t.

In view of the above, define

ε(τ, ρ) := tm,kek(τ) = t[(m+k)/l]ek1(τ), χ′(τ) = m, χ′(ρ) = k, 0 ≤ m, k ≤ l − 1.

(5.1.3)
Then ε(τ, ρ) depends on χ(τ), χ′(τ) and χ′(ρ) and therefore, we will interchangeably
use ε(χ(τ), χ′(τ), χ′(ρ)) with ε(τ, ρ). The following proposition shows that ∂ε = η.

Proposition 5.1.6. We have ∂ε = η.

Proof. Note that ∂ε(σ, τ, ρ) depends only on χ(σ), χ′(σ), χ(τ), χ′(τ), χ′(ρ). Assume
that χ′(σ) = n, χ′(τ) = m and χ′(ρ) = k with 0 ≤ n,m, k ≤ l − 1. For simplicity of
notations let m+ k := (m+ k) mod l. Then

∂ε(σ, τ, ρ) =
σε(χ(τ),m, k)ε(χ(σ), n,m+ k)

ε(χ(στ),m+ n, k)ε(χ(σ), n,m)
=
σ(tm,kek(τ))em+k(σ)tn,m+k

tm+n,kek(στ)em(σ)tn,m

=
σ(tm,kek(τ))e

m+k
1 (σ)t[(n+m+k/l)]

t[(m+n+k)/l]ek1(στ)e
m
1 (σ)t

[(n+m)/l]
=
σ(tm,kek(τ))e

m+k
1 (σ)

ek1(στ)e
m
1 (σ)t

[(m+k)/l]

= Fm,k(σ)
σek(τ)em+k(σ)

ek(στ)em(σ)
=

(
fm,kekem
em+k

)
(σ)

σek(τ)em+k(σ)

ek(στ)em(σ)

(by the definition of Fm,k)
= fm,k(σ)Ek(σ, τ) (Ek = ∂ek)
= η(χ(σ), 0,m, k)η(χ(σ), χ(τ), 0, k) = η(χ(σ), χ(τ),m, k) = η(σ, τ, ρ).

The second to last equality follows from Remark 5.1.1.

Remark 5.1.7. One can generalize the above computation to the Selmer group of
any isogeny on a Jacobian with cyclic kernel. Note that we will need to generalize
the argument from Proposition 5.1.2 and Lemma 5.1.3. This can be done by using
an argument similar to Proposition 6.1.3.

Remark 5.1.8. The methods used in this section along with the ones from §4.3.1
can be generalized to compute the global step of the CTP for the case of λ-Selmer
group on Jacobian of any degree l-cyclic cover C of P1 such that the covering map
π : C → P1 is ramified at ∞. See §7.1.1 for more.
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5.2 Local computation

Let v be a place of L, and fix an embedding L ↪→ Lv. Let Kv be the completion of
the image of K inside Lv under the above embedding. Since α is locally everywhere
trivial, there exists a βv ∈ JA(Lv) such that ∂βv = αv. In particular, for all σ ∈ GLv

such that χ(σ) = 0, σβv−βv = αv(σ) = 0. Therefore, βv ∈ JA(Kv). Since CA(k) 6= ∅,
by Proposition 1.2.13, there is a divisor Dβv of minimal degree such that Dβv is defined
over Kv and [Dβv − deg(Dβv)(T0)] = βv. One can augment Dβv by adding a multiple
of (T0) to ensure that deg(Dβv) = (l − 1)/2, which we assume from now on.

Let Dβv :=
(l−1)/2∑
i=1

(Piv), where Piv := (xiv, yiv) ∈ CA(Lv), for 1 ≤ i ≤ (l − 1)/2.

Choose bv := Dβv − l−1
2
(T0) as a lift of βv to Div0((CA)k). We have av − ∂bv ∈

C1(GLv ,Princ((CA)k)) given by

(av − ∂bv)(σ) =


0 = div(1), if χ(σ) = 0,

i(P ) +
l∑

n=1

((Pnv)− (σPnv))− i(T0) = div(fi), if χ(σ) = i.

(5.2.1)
where fi ∈ L̄(CA). We have

((av − ∂bv) ∪1 a′v)(σ, τ) =

{
1 if χ(σ) = 0 or χ′(τ) = 0,

〈fi, (P )− (T0)〉j1 if χ(σ) = i and χ′(τ) = j.

Note that for σ ∈ GLv , σP = P . Therefore, if Gal(Kv/Lv) is generated by σ0, then

σ0 div(fi) = i(P ) +
(l−1)/2∑
n=1

((σ0Pnv) − (σn+1
0 Pnv)) − i(T0), and div(fi+1) − div(σ0fi) =

div(f1). Therefore, we can choose fi to be
i−1∏
n=0

σn0 f1. Recall that 〈·, ·〉1 is well defined

up to the scaling of fi by a constant. Similarly,

(bv ∪2 ∂a
′
v)(σ, τ) =

(l−1)/2∏
i=1

(yiv −
√
A)

n′

,

where χ′(σ) = i, χ′(τ) = j, and n′ = [(i + j)/l]. Therefore, γv := ((av − ∂bv) ∪1
a′v − bv ∪2 ∂a′v − εv)(σ, τ) depends only on χ(σ), χ′(σ) and χ′(τ). Hence, we will use
γv(χ(σ), χ

′(σ), χ′(τ)) interchangeably with γv(σ, τ).
If for all z, d 6≡ d′z mod (L×v )

l, then define for each 0 ≤ k ≤ l − 1 a 1-cochain
Gk ∈ C1(K ′v) by Gk(σ) := γv(χ(σ), 0, k). Noting that εv(χ(σ), 0, k) = ek1(χ(σ)) we
have Gk = kG1. The abuse of notation (Gk as a 1-cocycle and Gk as the absolute
Galois group of k) must be noted here. However, the use will be clear from the
context. The following proposition shows that G1 is a 1-cocycle and so is Gk.
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Proposition 5.2.1. Let G1, γv be as above. Then G1 ∈ Z1(K ′v) and there is a g ∈ K×v
such that ∂g = G1.

Proof. Note that γv takes values in K×v and can be viewed as the inflation of an
element in Z2(Fv/Lv). Using the isomorphism Gal(Fv/K ′v) ' Gal(Kv/Lv) we can
view G1 as inflation of an element in C1(Kv/Lv). If G1 is a 1-cocycle, then Hilbert’s
Theorem 90 implies the existence of g.

Now we show that G1 ∈ Z1(K ′v). Using that γv is a 2-cocycle, for σ, τ ∈ GK′
v
,

1 = ∂γv(σ, τ, 1) =
σγv(τ, 1)γv(σ, 1)

γv(στ, 1)γv(σ, τ)
= ∂G1(σ, τ).

Therefore, for 0 ≤ k ≤ l − 1, Gk(σ) = 〈fi, (P )− (T0)〉k1/ek(σ), where χ(σ) = i. It
is easy to check that γv(σ, τ) = Gk(σ) when χ′(τ) = k and χ′(σ) + χ′(τ) < l. Now
consider the 1-cochain ξ defined by ξ(σ) = gk, if χ′(σ) = k. It is easy to see that
∂ξ(τ, ρ) only depends on χ(τ), χ′(τ) and χ′(ρ); hence, we will interchangeably use
∂ξ(χ(τ), χ′(τ), χ′(ρ)) with ∂ξ(τ, ρ). Let σ, τ ∈ GLv be such that χ(σ) = i, χ′(σ) = j,
and χ′(τ) = k. Then

∂ξ(σ, τ) =
σξ(χ′(τ))ξ(χ′(σ))

ξ(χ′(στ))
=
σξ(j)ξ(k)

ξ(j + k)
=
σ(g)kgj

gj+k
= Gk

1(σ)
gj+k

gj+k

If j + k < l, then (γv − ∂ξ)(i, j, k) = 1. Otherwise, (γv − ∂ξ)(i, j, k) = δv, with

δv :=
1

clt
(l−1)/2∏
n=1

(y(Pnv)−
√
A)

=

l−1∏
i=0

G1(σ
i
0)

N(g)t
(l−1)/2∏
n=1

(y(Pnv)−
√
A)

=

l−1∏
i=1

i−1∏
m=0

σm0 (F1c)

N(g)t
(l−1)/2∏
n=1

(y(Pnv)−
√
A)

,

where F1 := 〈f1, (P )− (T0)〉1 and N : K×v → L×v is the norm map. Since γv − ∂ξ is a
2-cocycle, one can easily check that δv ∈ L×v by evaluating ∂(γv − ∂ξ) at (1, l − 1, 1).

Therefore, ζ linvv([γv ])
l = (δv, d

′)v, where (·, ·)v represents the generalized Hilbert
symbol of order l defined using the pairing in Diagram 1.3.7.

On the other hand, if Kv = K ′v, then one can view γv as the inflation of an element
in Z2(K ′v/Lv); hence, we will interchangeably use γv(σ, τ) with γv(χ

′(σ), χ′(τ)). The
following proposition computes invv([γv]) for this case.
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Proposition 5.2.2. Let γv be as above, and let ξ ∈ C1(K ′/k) be defined by

ξ(τ) :=


1, if χ′(τ) = 0,
i−1∏
n=0

γv(n, 1), if χ′(τ) = i, 1 ≤ i ≤ l − 1.

Then ∂ξ(τ, ρ) only depends on χ′(τ) and χ′(ρ), and

(γv − ∂ξ)(τ, ρ) =


1, if χ′(τ) = i, χ′(ρ) = j, i+ j < l,

δv :=
l−1∏
n=0

γv(n, 1) ∈ L×v , otherwise,

where 0 ≤ i, j ≤ l−1. Hence, ζ linvv([γv ])
l = (δv, d

′)v, where (·, ·)v denotes the generalized
Hilbert symbol of order l and [γv] is the class of γv in Br(Lv).

Proof. Let τ, ρ ∈ GLv be such that χ′(τ) = i and χ′(ρ) = j. One can check that the
proposition holds if i or j is 0. If 0 < i+ j < l, then

γv(τ, ρ)ξ(i+ j)

σξ(j)ξ(i)
=

γv(i, j)
j−1∏
n=0

σγv(n, 1)
i−1∏
n=0

γv(n, 1)

i+j−1∏
n=0

γv(n, 1)

= γv(i, j)

j−1∏
n=0

γv(n+ i, 1)γv(i, n)

γv(i, n+ 1)

1
j+i−1∏
n=i

γv(n, 1)

= 1.

(γv is a 2-cocycle)

If i+ j ≥ l, then

γv(τ, ρ)ξ(i+ j)

σξ(j)ξ(i)
=

γv(i, j)
j−1∏
n=0

σγv(n, 1)
i−1∏
n=0

γv(n, 1)

i+j−l−1∏
n=0

γv(n, 1)

= γv(i, j)

j−1∏
n=0

γv(n+ i, 1)γv(i, n)

γv(i, n+ 1)

i−1∏
n=0

γv(n, 1)

j+i−l−1∏
n=0

γv(n, 1)

=

i−1∏
n=0

γv(n, 1)
j+i−1∏
n=i

γv(n, 1)

j+i−l−1∏
n=0

γv(n, 1)

=
l−1∏
n=0

γv(n, 1).

This finishes the proof.



5.2. LOCAL COMPUTATION 129

We have
γ(σ, 1) =

〈fi, (P )− (T0)〉1

e1(i)

(
t
(l−1)/2∏
j=1

(y(Pjv −
√
A))

)[(n+1)/l]
,

where χ(σ) = i and χ′(σ) = n. Therefore,

l−1∏
n=0

γv(n, 1) =

l−1∏
i=1

i−1∏
m=0

σ0(F1c)

t
(l−1)/2∏
j=1

(y(Pjv)−
√
A)

,

If we choose g = 1 (because G1 = 0) in the case when Kv = K ′v, then in both the
cases, i.e., whether or not Kv = K ′v, the expression for δv is same. Furthermore,
δv = ∆vδglob whenever Kv, K

′
v 6= Lv, where

δglob :=

l−1∏
i=1

i−1∏
m=0

σm0 (c)

t
and ∆v :=

l−1∏
i=1

i−1∏
m=0

σm0 (F1)

NKv/Lv(g)
(l−1)/2∏
j=1

(yjv −
√
A)

. (5.2.2)

In view of the above, we have the following proposition.

Proposition 5.2.3. The quantity δglob is in L×. Therefore, ∆v ∈ L×v .

Proof. We have

σ0(δglob) =

l−1∏
i=1

i∏
m=1

σm0 (c)

σ0(t)
=

cl
l−1∏
i=1

i∏
m=1

σ0(c)

2
√
At

= δglob,

where the last equality follows from NK/L(c) = 2
√
A.

Remark 5.2.4. If we choose t to be as in the Proposition 5.1.5, then δglob = 1 and
the above proposition trivially follows. Furthermore, we will in practice choose t to
be like this because this way we avoid local computation at any new places other than
those having a non-trivial valuation at c or above primes dividing 2lA. In the case
when Kv = Lv we can choose βv as 0 on JA, and we obtain δv = 1/t. If K ′v = Lv,
then (δv, d

′)Lv = 1.

We now obtain an expression for F1. Let C1 := y −
g∑
i=0

mix
i be such that

(P )− (l)(T0) +

g∑
i=1

(Piv) +

g∑
i=1

(ι(Piv)) = div(C1).
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Since (0,
√
A) ∈ Supp(div(C1)), m0 =

√
A. Therefore, f1 can be chosen to be

C1/
g∏
i=1

(x−xiv). We have F1 =
(−1)g+1m1
g∏

i=1
σ0(xiv)

. Now using that 0 and σ0(xiv), xiv for 1 ≤ i ≤

g are the solutions to the equation (
g∑
i=0

mix
i)2 = xl+A,

g∏
i=1

σ0(xiv) = −2
√
Am1/

g∏
i=1

xiv.

Therefore, F1 = (−1)g
g∏

i=1
xiv

2
√
A

.

5.3 The prime bound

Recall that S(λ)(JA/k) ⊂ H1(GL, JA[λ];S), where S is the set of primes in L above
primes dividing 2lA. Therefore, for d ∈ S(λ)(JA/k) and any place v /∈ S, vv(d) ≡ 0

mod l and Lv(
l
√
d) is the unramified extension of degree 1 or l. Hence, we have the

following proposition.

Proposition 5.3.1. Let d ∈ S(λ)(JA/k) and v /∈ S be a place of L, such that Kv 6= Lv.
Then we have Lv( l

√
∆v) is unramified.

Proof. All we need to show is l|vv(∆v). Note that x ∈ O×Kv
⇐⇒ NKv/Lv(x) ∈ O×Lv

.
We have

NKv/Lv(F1) = 〈
l−1∑
i=0

divσi0(f1), (P )− (T0)〉1 = 〈div(y −
√
A), (P )− (T0)〉1 =

1

2
√
A
.

Therefore, F1 ∈ O×Kv
. In what follows, we assume that the points (xiv, yiv) are defined

over Kv for each i. One can use arguments similar to the ones in the proof of Lemma
4.3.19 to reduce to this case by analyzing the orbits of the set {P1v, . . . , P(l−1)/2v}. Let
ordv(xiv) = ki. Then ordv(yiv −

√
A) = ordv(yiv +

√
A) = kil/2, if ki < 0 and either

ordv(yiv −
√
A) or ordv(yiv +

√
A) is kil, if ki ≥ 0. In either case, ordv(yiv −

√
A) ≡ 0

mod l. Since Kv is unramified above Lv, we can choose the uniformizers for Kv and
Lv to be the same and therefore, Lv( l

√
∆v) is unramified.

As a consequence of the above, we obtain the following corollary.

Corollary 5.3.2. Let a, a′ ∈ S(λ)(JA/k) be represented by d, d′ ∈ L× and S be the set
of places of L above 2lA. Then

ζ
l〈a,a′〉CT
l =

∏
v∈S

(δv, d
′)Lv

∏
v/∈S

(πordv(t)
v , d′−1)Lv .

Moreover, if A lies in the l-Stoll set, then

ζ
l〈a,a′〉CT
l = (δλ, d

′)Lλ

∏
v 6=λ

(πordv(t)
v , d′−1)Lv .
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Proof. The only places we need to care about are v /∈ S. If v is split in K, then
Kv = Lv and Remark 5.2.4 implies that (δv, d

′)Lv = (1/t, d′)Lv . If v is inert in
K, then Proposition 5.3.1 implies that (δv, d

′)Lv = (δglob, d
′)Lv and ordv(δglob) =

ordv(1/t) + l(l − 1)ordv(c)/2 ≡ ordv(1/t) mod l.

Remark 5.3.3. In particular, if we choose t to be as in Proposition 5.1.5, then
δglob = 1, for a place v /∈ S of L that remains inert in K. The above corollary can be
refined as

ζ
l〈a,a′〉CT
l =

∏
v∈S

(δv, d
′)Lv

∏
v/∈S

v splits in K

(πordv(t)
v , d′−1)Lv .

In order to compute ∆v, we require to compute the local point βv ∈ JA(Kv).
Vishal Arul in [Aru20] has given an algorithm to divide a point in the image of CA in
JA by (1− ζl). If Qv :=

n∑
i=1

Qiv, for n ≤ g, is a divisor representing the local point on

JA(kv) such that Qv maps to the λ-Selmer element a under the connecting morphism,
then on can use Arul’s algorithm to compute P ′iv ∈ JA(Lv) such that (1−ζl)P ′iv = Qiv

and use this to obtain the value for ∆v. However, if A lies in the l-Stoll set, then in
[Sto98, §6] it has been explicitly shown that the curve spans the local image at λ;
hence, using the corresponding elements of the λ-Selmer group one can compute the
inverse image under λ-isogeny using Arul’s algorithm.

5.4 Algorithm

In this section we give pseudocode of an algorithm for computing the CTP between
two elements a, a′ ∈ S(λ)(JA/k) represented by d, d′ ∈ L×, respectively. Let

Sa,a′ := S ∪ {v | v is a place of L below a place w of K with ordw(c) 6= 0}.

Algorithm 3 Compute the CTP between a, a′ ∈ S(λ)(JA/k) represented by d, d′ ∈
L×.
Require: d, d′ ∈ L×.
Ensure: Value of (ζl)〈a,a

′〉CT in variable CT.
1: CT← 1. . Value of CT.
2: LocalPoints← [ ]. . List storing Pv indexed by places of L above primes

dividing 2lA.
3: for v ∈ {places of L above primes dividing 2lA} do
4: Find Qv ∈ J(kv), such that δ(Qv) = αv.
5: Kv ← Lv(

l
√
dv), Pv ← 1

λ
Qv. . Computed using Arul’s algorithm.
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6: Adjust Pv via Pv 7→ Pv + T for some T ∈ J [λ] such that ∂Pv = αv.
7: LocalPoints[v]← Pv.
8: end for
9: Compute c such that N

L(
l√
d)/L

(c) = 2
√
A and t using Proposition 5.1.5.

10: for v ∈ Sa,a′ do
11: if v ∈ {places above primes dividing 2lA} then
12: Compute G1, g and ∆v. . Using Proposition 5.2.1 and Equation (5.2.2).
13: CT = CT · (δv, d′)Lv .
14: else
15: CT = CT · (πordv(t)

v , d′−1)Lv . . Using Corollary 5.3.2.
16: end if
17: end for
18: return CT.

In the following section we show that one can avoid the local computation under
certain conditions entirely and use that to compute an example.

5.5 A special case of computation

In this section we will discuss a case where one does not need to compute the local
point Pλ ∈ J(Kλ), such that ∂Pλ = αλ, i.e.,the global computation is enough to
compute the local values. We will need the following explicit version of trivializing a 3-
cocycle in Z3(G,M), for a cyclic group G and a G-module M , given that H1(G,M) =

0.

Proposition 5.5.1. Let 〈g〉 = G be a cyclic group of order N and γ ∈ Z3(G,M).
Recall that every odd-dimensional cocycle is normalized by definition. Assume that
H1(G,M) = 0. Then the theory of Tate cohomology for cyclic groups implies that
H3(G,M) = 0 (Proposition 1.3.14), and there is a θ ∈ C2(G,M) such that ∂θ = γ.

One such θ can be obtained as follows. Let cg ∈ M be such that ∂cg =
N−1∑
j=0

γ(g, gj, g)

and

θ(gi, gj) := ncg +

j−1∑
k=0

γ(gi, gk, g),

where 0 ≤ i, j ≤ N − 1 and n :=
[
i+j
N

]
∈ {0, 1}. Then ∂θ = γ.

Proof. We first show that a cg satisfying the hypothesis of the proposition exists.

Consider the 1-cochain fg : 〈g〉 → M defined by fg(g
i) :=

N−1∑
j=0

γ(gi, gj, g). Now we
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have

gk(fg(g
i)) =

N−1∑
j=0

gkγ(gi, gj, g)

=
N−1∑
j=0

(
γ(gi+k, gj, g) + γ(gk, gi, gj+1)− γ(gk, gi+j, g)− γ(gk, gi, gj)

)
= fg(g

i+k)− fg(gk) +
N−1∑
j=0

(
γ(gk, gi, gj+1)− γ(gk, gi, gj)

)
= fg(g

i+k)− fg(gk)

This implies that fg is a 1-cocycle and there is a cg ∈M such that fg(gi) = gicg − cg.
Note that

∂θ(gi, gj, gk) = gi(θ(gj, gk)) + θ(gi, gj+k)− θ(gi+j, gk)− θ(gi, gj).

We divide the proof into 4 cases depending on the possible values of [(j + k)/N ] and
[(i+ j)/N ].

Case 1: j + k < N and i+ j < N .

∂θ(gi, gj, gk) =

[
i+ j + k

N

]
cg +

(
k−1∑
n=0

giγ(gj, gn, g)

)
+

(
j+k−1∑
n=0

γ(gi, gn, g)

)

−
[
i+ j + k

N

]
cg −

(
k−1∑
n=0

γ(gi+j, gn, g)

)
−

(
j−1∑
n=0

γ(gi, gn, g)

)

=
k−1∑
n=0

(
γ(gi+j, gn, g) + γ(gi, gj, gn+1)− γ(gi, gj+n, g)− γ(gi, gj, gn)

)
+

j+k−1∑
n=0

γ(gi, gn, g)−

(
k−1∑
n=0

γ(gi+j, gn, g)

)
−

(
j−1∑
n=0

γ(gi, gn, g)

)
(γ is a 3-cocycle)

= γ(gi, gj, gk) +

j+k−1∑
n=0

γ(gi, gn, g)−

(
k−1∑
n=0

γ(gi, gj+n, g)

)

−

(
j−1∑
n=0

γ(gi, gn, g)

)
= γ(gi, gj, gk).

Case 2: j + k < N and i+ j ≥ N .
In this case we have gi+j = gi+j−N and i + j − N + k < N as j + k < N and
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i+ j + k ≥ N . Therefore,

∂θ(gi, gj, gk) = cg +
k−1∑
n=0

giγ(gj, gn, g) +

j+k−1∑
n=0

γ(gi, gn, g)

− cg −

(
k−1∑
n=0

γ(gi+j, gn, g)

)
−

(
j−1∑
n=0

γ(gi, gn, g)

)
,

which is the same as the computation in the previous case.
Case 3 : j + k ≥ N and i+ j < N .

Once again we have i+ j + k ≥ N and i+ j + k −N < N . Therefore,

∂θ(gi, gj, gk) = (gicg − cg) +
k−1∑
n=0

giγ(gj, gn, g) +

j+k−N−1∑
n=0

γ(gi, gn, g)

−

(
k−1∑
n=0

γ(gi+j, gn, g)

)
−

(
j−1∑
n=0

γ(gi, gn, g)

)

=
N−1∑
n=0

γ(gi, gn, g) +
k−1∑
n=0

(γ(gi+j, gn, g) + γ(gi, gj, gn+1)− γ(gi, gj+n, g)

− γ(gi, gj, gn)) +
j+k−N−1∑

n=0

γ(gi, gn, g)−

(
k−1∑
n=0

γ(gi+j, gn, g)

)

−

(
j−1∑
n=0

γ(gi, gn, g)

)
(fg(gi) = gicg − cg)

= γ(gi, gj, gk) +
N−1∑
n=j

γ(gi, gn, g) +

j+k−N−1∑
n=0

γ(gi, gn, g)−
k−1∑
n=0

γ(gi, gj+n, g)

= γ(gi, gj, gk) +
N−1∑
n=j

γ(gi, gn, g) +

j+k−1∑
n=N

γ(gi, gn, g)−
k−1∑
n=0

γ(gi, gj+n, g)

= γ(gi, gj, gk).

Case 4: j + k ≥ N and i+ j ≥ N .
In this case we get

∂θ(gi, gj, gk) = (gicg − cg) +
k−1∑
n=0

giγ(gj, gn, g) +

j+k−N−1∑
n=0

γ(gi, gn, g)

−

(
k−1∑
n=0

γ(gi+j, gn, g)

)
−

(
j−1∑
n=0

γ(gi, gn, g)

)
.

Hence, the computation in this case is the same as in the previous case.

We make the following assumption.
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Assumption 5.5.2. Let d, d′ representing Selmer group elements a and a′, respec-
tively, be such that dλ = d′λu

l
λ, for some uλ ∈ L×λ ; i.e., d/d′ ∈ U := ker(S(λ)(J/k) →

L×λ /(L
×
λ )

l)).

In this regard, we have the following proposition.

Proposition 5.5.3. Assume that d and d′ satisfy Assumption 5.5.2, and A lies in
the l-Stoll set. Then (δλ, d

′)Lλ
= (δglob, d

′)Lλ
.

Proof. Since the pairing is alternating on the l-part of X(JA/k), we have ζ l〈d,d〉CT
l =∏

v

(δv, d)Lv = 0. Since A lies in the l-Stoll set, Corollary 5.3.2 implies that the only

place we need to compute the local point βv is λ. If d′ = d, then one finds that η
factors through Gal(K/L) = 〈σ0〉, which is cyclic. Hence, applying Proposition 5.5.1
to compute ε on η gives us fg = 1. This is because fg takes values that are powers
of 2
√
A ∈ OL which is not a unit. However, values taken by fg must have norm 1, so

fg = 1. This implies that cg = 1 and ε such that ∂ε = η takes values which are powers
of 2
√
A. Therefore, the valuation of values taken by ε is trivial everywhere other than

places above primes of bad reduction. Hence, ζ l〈d,d〉CT
l = (δλ, d

′)Lλ
= (δλ, d)Lλ

= 1.
Note that ε(gi, g) = η(gi, id , g) = 1. Hence, δλ = ∆λ. This implies that (∆λ, d

′)Lλ
=

1.
Note that the contribution to the value of the CTP at λ when d, d′ satisfy the

Assumption 5.5.2 is exactly (δglob, d
′)Lλ

, since ∆v in this case is the same as the ∆v

in the case when d = d′.

We summarize the computation of the CTP in the following corollary.

Corollary 5.5.4. Let A be an element of the l-Stoll set, let d, d′ ∈ S(λ)(J/k) satisfy
Assumption 5.5.2, and let

Sd,d′ := {places p of L | p 6= λ, ordq(c) 6= 0, for some prime q of K above p}.

Then
ζ l〈d,d

′〉CT =
∏

p∈Sd,d′

(δglobt, d
′)−1Lp

.

Proof. From Proposition 5.5.3 and Corollary 5.3.2, we have

ζ l〈d,d
′〉CT =

∏
p 6=λ

(δglob, d
′)−1Lp

∏
p 6=λ

(t, d′)−1Lp
=

∏
p 6=λ

p is split in K/L

(δglobt, d
′)−1Lp

=
∏

p∈Sd,d′

(δglobt, d
′)−1Lp

.
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The above computation implies that if Assumption 5.5.2 is satisfied and A is
an element of the l-Stoll set, then one can completely avoid computing at λ. This
is helpful because computing Hilbert symbol of order l at λ can be complicated.
However, sometimes solving for N

L(
l√
d)/L

= 2
√
A is easier if d ∈ U . In this case, one

would like to rather compute the Hilbert symbol (1/t, d′)Lλ
and use Remark 5.3.3 as

t is not an element of L.

Remark 5.5.5. If A lies in the 3-Stoll set, then we have rkF3(EA(kλ)/λEA(kλ)) = 1,
and therefore Assumption 5.5.2 is always satisfied. Furthermore, [Sto98, Lemma 5.4]
implies that rkFl

(U) = rkFl
(ker(N : Cl(L)[l]→ Cl(k)[l])).

5.6 Examples

We use the theory from the previous section to compute the CTP for in two cases,
firstly where 2-Selmer group computation is enough to obtain the rank, and secondly
where it is not.

5.6.1 C23

Let C23 be the curve give by the equation

y2 = x5 + 23.

A Selmer group computation shows that S(λ)(J23/k) '
( Z
5Z

)2 and is generated by
d := (−5ζ35−5ζ25 )

√
23−10ζ35−10ζ25+21 and d′ := (5ζ35+5ζ25+5)

√
23−10ζ35−10ζ25−31

in L×. One checks that in Lλ, dλ = (d′λ)
4 mod (L×λ )

5. We have

505c := ((113794ζ35 − 81381ζ25 + 120615ζ5 − 11033)
√
23+

(546016ζ35 − 390192ζ25 + 578641ζ5 − 52880))(
5
√
d)4+

((−29334ζ35 − 14881ζ25 − 8961ζ5 − 33059)
√
23+

(−141252ζ35 − 71412ζ25 − 43010ζ5 − 158646))(
5
√
d)3+

((−833ζ35 + 5072ζ25 − 3565ζ5 + 4536)
√
23+

(−3405ζ35 + 24368ζ25 − 17216ζ5 + 22388))(
5
√
d)2+

((1347ζ35 + 63ζ25 + 768ζ5 + 897)
√
23+

(5762ζ35 − 772ζ25 + 4248ζ5 + 3052))
5
√
d+

((−224ζ35 − 623ζ25 − 87ζ5 − 521)
√
23+

(−936ζ35 − 457ζ25 − 1103ζ5 − 644)),

where c ∈ K := L(d1/5) is such that NK/L(c) = 2
√
23. The primes in OK in the

support of the fractional ideal (c) are some primes above 2, 23, 101. Computing t we
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get, the prime ideals of OK in the support of the fractional ideal (t) are primes above
2, 5, 23, 101, 10040981, 64739112698544079629106251382620961. There is exactly one
prime ideal p of OL above 101 such that (c) and (t) have non-trivial valuation at some
of the primes above p of OK . In this case p splits and if pK is a prime above p of OK ,
then the valuation of (t) at pK is a multiple of 5. Note that the ideals (10040981)

and (64739112698544079629106251382620961) are coprime to (c). Therefore, if q is
a prime ideal of OK above them, then vq(δglobt) = 0, where 1030301δglob is

(−19841321740ζ35 + 13107227660ζ25 − 51815029910ζ5 + 33935425165)
√
23

+ (−144881960000ζ35 + 118898270530ζ25 − 311590100680ζ5 + 142162447835).

Hence, the only prime we need to compute is the prime p above 101. Therefore, t
contributes nothing and we get ζ5〈d,d

′〉CT
5 = (δglob, d

′)−1Lp
= (π, d′)3Lp

= ζ−15 . Hence,
rk(J23/Q) = rk(J23/k) = 0. This result can also be obtained via a 2-Selmer group
computation. We give another example where computing S(2)(J/k) or S(λ)(J/k) do
not provide better bounds.

5.6.2 C62

Let C62 be the curve given by the equation

y2 = x5 + 62.

One checks that 62 lies in the 5-Stoll set. We have S(λ)(J/k) ' 〈d1, d2〉 ' (Z/5Z)2,
where d1 := −4

√
62− 32 and d2 := (−74ζ35 − 74ζ25 − 38)

√
62− 7ζ35 − 7ζ25 − 655. One

checks that d1 is a 5th power in Lλ. Hence, we do not need to compute the local
points. We obtain

c := (1/20(ζ35 + 8ζ25 + ζ5)
√
62 + 1/20(8ζ35 − 55ζ25 − 4ζ5 + 14)) 5

√
d1

4

+ (1/20(−7ζ35 − 6ζ25 − 6ζ5 − 9)
√
62 + 1/10(11ζ35 + 30ζ25 + 15ζ5 + 31))

5
√
d1

3

+ (1/10(−ζ35 − 3ζ25 + ζ5 − 1)
√
62 + 1/10(−13ζ35 − 9ζ25 − 7ζ5 − 22)) 5

√
d1

2

+ (1/10(7ζ35 + 3ζ25 + 3ζ5 + 6)
√
62 + 1/5(28ζ35 − 9ζ25 + 7ζ5 + 9)) 5

√
d1

+ 1/5(−2ζ35 + 5ζ25 − 3ζ5 + 1)
√
62 + 1/5(−13ζ35 + 35ζ25 − 14ζ5 + 23);

c is an algebraic integer with norm 2
√
62, so only the prime ideals above 620 can

have a non-trivial valuation. Computing t gives us one prime in L above each
of the 461, 102386941 and 81650544064891053102449482498259234648801 appearing
with valuation −1 in the fractional ideal (t) (all the ideals above the above primes in
L are inert in K). Computing at each of them we get a contribution of 3/5, 4/5 and
4/5, respectively. At λ, since the contribution is (1/t, d2)Lλ

, we check that t is a norm
from Lλ(

5
√
d2) and therefore, the contribution is trivial. Therefore, ζ5〈d1,d2〉CT

5 = ζ5.



138 CHAPTER 5. THE CTP FOR THE JACOBIAN OF y2 = xl + A

By a 2-Selmer group computation over Q, and by checking that the 2-Selmer group
over Q is not killed on base change to k, one obtains that 4 divides #X(J/k)Gal(k/Q).

Furthermore, d1 is invariant under the Galois action of L/Q. This implies that
(Z/2Z)2 × (Z/5Z)2 ⊂X(J62/Q). To see this, one uses the fact that

S(5)(J62/k)
Gal(k/Q) ' S(5)(J62/Q),

which follows from the fact that [L : Q] = 8 is coprime to 5; see [Pat24, §1.1] for
details. Since J62(k) = J62(Q) = 0, (X(J62/k)[5])

Gal(k/Q) = X(J62/Q)[5]. Since the
CTP is alternating on the 5-part of X,

(Z/2Z× Z/5Z)2 ⊂X(J62/Q).

Remark 5.6.1. Computing the CTP on X(J62/Q)[2], takes a very long time as we
are trying to solve norm equation over a degree 40 extension. However, one computes
the CTP on the λ-Selmer group faster to compute the rank of J62.



Chapter 6

Descent using some isogenies and
the CTP

In this chapter we consider some isogenies on genus 2 Jacobians with kernel a maximal
isotropic subgroup with respect to the Weil-pairing. Throughout this chapter, let
C : y2 = f(x) be a genus 2 curve over k and let J be its Jacobian variety, where

f :=
6∑
i=0

aix
i. Recall the definition of D∞ = (O+) + (O−) from §2.1.4. Specifically,

we look at maximal isotropic subgroups of J [2] and J [3] with respect to e2 and e3 as
Gk-modules. Since the Weil pairing is alternating, we naturally have that 〈P 〉 ⊂ J [p]

is an isotropic subspace, for every P ∈ J [p]. Recall that rkFpJ [p] = 4. Hence, if
M ⊂ J [p] is a Gk-submodule of Fp-rank 2 such that ep(P,Q) = 1, for all P,Q ∈ M ,
then M is maximal isotropic in J [p], so [Moo, Proposition 11.25] (choose λ = 2λΘ
and f : J → J/M the quotient map) implies that J/M is a principally polarized
abelian variety, and we have the following exact sequence of Galois modules

0→M → J [p]→M∨ → 0,

with rkFp(M) = rkFp(M
∨). Using M ' (Z/pZ)2 as an abelian group, we call the

corresponding isogeny φM : J → J/M a (p, p)-isogeny. A (2, 2)-isogeny is also known
as Richelot isogeny. Since J/M is a principally-polarized abelian surface, J/M is
isomorphic to the Jacobian of a genus 2 curve or to a product of elliptic curves. In
[CF96, §9], the authors characterize all the genus 2 curves such that their Jacobians
admit a (2, 2)-isogeny, and in [Fly94], the author has developed explicit descent via
the Richelot isogeny. For p = 3, the results have been more limited. In [BFT14]
the authors characterize the genus 2 curves whose Jacobians admit a (3, 3)-isogeny
corresponding to a maximal-isotropic subgroup M ' (Z/3Z)2 as a Gk-module, and
in [BFS23], the authors extend this to the case when M ' Z/3Z× µ3 as Gk-module.

The organization of this chapter is as follows: We first review the explicit char-
acterization of curves corresponding to (2, 2)- and (3, 3)-isogenies and then look into
explicit descent procedure using which we compute the CTP for these two isogenies.
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6.1 Richelot isogeny

Let M ' 〈Q1, Q2〉 ⊂ J [2], where Qi := (Ti) + (T ′i ) − D∞ and Ti, T
′
i are Weierstrass

points given by (θi, 0) and (θ′i, 0), respectively. Since e2(Q1, Q2) = 1, using Proposition
2.1.9 we obtain {T1, T ′1} ∩ {T2, T ′2} = ∅. This implies that f factors as a product of
quadratic polynomials (not necessary monic) Q1Q2Q3 over k(M), where we abuse the
notation slightly and denote the point Qi and the polynomial corresponding to the
x-coordinates of points Ti and T ′i by Qi. In this regard the polynomial Q3 represents
the point Q1 + Q2. The interpretation of Qi will be clear from the context. Recall
that Aut ((Z/2Z)2) ' S3, so generically Gal(k(M)/k) ' S3.

We saw in the previous section that J/M is isomorphic to the Jacobian Ĵ of a
genus 2 curve Ĉ (say) or to a product of elliptic curves. We assume that J/M is
isomorphic to the Jacobian of a genus 2 curve. Recall from §1.2.3, Proposition 1.2.11
that the map φ : J → Ĵ arises from a correspondence of curves, i.e., an element
in Pic (Ck × Ĉk). Let M̂ be the kernel of φ̂. Then the φ-Weil pairing shows that
M̂ ' Hom(M,µ2) ' Hom(M,Z/2Z). Hence, k(M) = k(M̂). Another way to see the
above is the following. The Weil pairing implies that J [2]/M ' Ĵ [φ̂] as a Gk-module.
Since the points Ti + Tj, for i 6= j generate J [2]/M , an explicit computation shows
that for all σ ∈ Gk(M), σ(Ti + Tj) − (Ti + Tj) ∈ M , and that for σ ∈ Gk such that
σ
∣∣
k(M)

6= id , σ(Ti+Tj)−(Ti+Tj) /∈M . Hence, k(M̂) = k(M). We work over k(M) as
our base field to write the expressions for Ĉ which will turn out to be Gal(k(M)/k)-
equivariant. Let Qi := fiX

2 + giX + hi, bij := Res(Qi, Qj), bi := bijbik, δi := disc(Qi)

and ∆ := det(F), where Res(_,_) is the resultant of two polynomials, and the ith
row of F is (fi, gi, hi). Similarly, define Q̂1 := Q2Q

′
3 − Q3Q

′
2 and cyclically Q̂2 and

Q̂3, b̂ij := Res(Q̂i, Q̂j), b̂i and δ̂i. The following proposition summarizes some facts
about curves whose Jacobians admit a Richelot isogeny.

Proposition 6.1.1. [CF96] Let φ, φ̂, C, Ĉ, J, Ĵ , Qi, bij, bi, δi, Q̂i, b̂ij, b̂i, δ̂i,∆ be as

above and ∆ 6= 0. Then Ĉ is given by the equation ∆y2 =
3∏
i=1

Q̂i, and the corre-

spondence class giving rise to the Richelot isogeny can be represented by the vanishing
locus D of the polynomials Q1(x)Q̂1(x̂) + Q2(x)Q̂2(x̂), yŷ − Q1(x)Q̂1(x̂), where x̂, ŷ

are the coordinates corresponding to Ĉ. Since C and Ĉ have the same form and
Q1 = Q̂2Q̂

′
3 − Q̂3Q̂

′
2 (up to scaling such that product of the scaling factors for Q1,

Q2, and Q3 is a square) and similarly, for Q2 and Q3, one gets a correspondence
associated to the isogeny φ̂ which is given by Dt.

Furthermore, there is an explicit embedding J → P15 given by P 7→ (v0 : . . . : v15)

such that the translations by points Q1, Q2 and Q3 are given by the 16×16 matrices
M1 := b1Diag(I4, I4,−I4,−I4), M2 := b2Diag(I4,−I4, I4,−I4), M3 := 1

b212
M1M2, re-

spectively, where I4 is the 4 × 4 identity matrix. Then the map τ : P15 → P15 given
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by

(v0 : . . . : v15) 7→ (v20 : . . . : v0v3 : v
2
4 : . . . : v4v7 : v

2
8 : . . . : v8v11 : v

2
12 : . . . : v12v15),

satisfies the property that τ(Mi(v)) = τ(v), for all v in P15. Moreover, there exist
explicit 16× 16 matrices N , N̂ and U such that φ = Nτ and φ̂ = UN̂τ .

Let W be the set of Weierstrass points of C and W ′ := {{Ti + T ′i} | 1 ≤ i ≤ 3}.
Similarly, define Ŵ , Ŵ ′ w.r.t Ĉ. Recall the definition of twisted powers (1.3.41).
Let 1W and 1W ′ be the constant −1 maps in µW2 and µW

′
2 , respectively, let NW :

µW2 → µ2 be the natural map m 7→
∏
m(P ), and let

(
µW2
)
0
:= ker(NW ). Then

J [2] '
(
µW2
)
0
/1W . Let ψ : (µW2 )0 → µW

′
2 be the map m 7→ m′, where m′({Ti, T ′i}) :=

m(Ti) +m(T ′i ). Then ψ is a homomorphism with ker(ψ) = µW
′

2 . We have

Im(ψ) '
(
µW2
)
0
/µW

′

2 '
((
µW2
)
0
/1W

)
/
(
µW

′

2 /1W ′

)
' J [2]/J [φ] ' Ĵ [φ̂].

Concretely, Im(ψ) ' 〈mij〉, where mij({Tk, T ′k}) = 1 if k /∈ {i, j} and −1 otherwise.
There is a natural action of S3 on W ′ and one checks that the transposition (i, j) has
no action on mij, therefore under the identification of Im(ψ) with Jφ̂, mij must map
to T̂k for pairwise distinct i, j, k.

The following theorem gives us information about the group H1(Gk, J [2]).

Theorem 6.1.2. [SvL13] Let J be as above, and let A := k[x]/〈f(x)〉. Then

H1(Gk, J [2]) ' H1(Gk,
(
µW2
)
0
/1W ) ' Γ/π(A×)ι(k×),

where Γ := {(a, t) ∈ A× × k× | NA/k(a) = t2} and π : A× → Γ and ι : k× → Γ are
the maps θ 7→ (θ2,NA/k(θ)) and θ 7→ (θ, θ3). Furthermore, the connecting morphism
J(k)/2J(k) → Γ/π(A×)ι(k×) is given by P1 + P2 − D∞ 7→ ((x(P1) − T )(x(P2) −
T )), a6y(P1)y(P2)), where T is a root of f in A.

Combining the above theorem with previous discussion, we have the commutative
diagram

J(k)/2J(k) H1(Gk, J [2]) Γ/π(A×)ι(k×)

J(k)/φ̂(Ĵ(k)) H1(Gk, Ĵ [φ̂]) K×/(K×)2

∼

ψ NA/K ,

where K ⊂ k[T ]/〈f(T )〉 is the degree 3 étale subalgebra fixed by the transposi-
tion swapping T1, T ′1, and the vertical rightmost NA/K is the norm map with respect
to this transposition. This implies that the connecting morphism J(k)/φ̂(Ĵ(k)) →
H1(Gk, Ĵ(φ̂)) is given by

[P1 + P2 −D∞] 7→ NA/K(x(P1)− T1)(x(P2)− T1)
= (x(P1)− T1)(x(P2)− T1)(x(P1)− T ′1)(x(P2)− T ′1)
= Q1(x(P1))Q1(x(P2))/f

2
1 ,
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where recall that for 1 ≤ i ≤ 3, fi is the leading coefficient of the polynomial Qi. Since
we are only looking at the image modulo squares, we can safely define the connecting
morphism by [P1+P2−D∞] 7→ (Qi(P1)Qi(P2))

3
i=1. Note that, in the above discussion

one can interchange C and Ĉ due to their symmetry and we will arrive at similar
expressions.

The map J [φ] → µW
′

2 composed with the map µW
′

2 → J [φ] given by m 7→
3∑
i=1

m({Ti, T ′i})Qi is the identity on J [φ], so J [φ]⊕ 1W ′ ' µW
′

2 . Note that µW ′
2 ' µŴ

′
2

via mi 7→ mjk, where mi is a map with −1 at {Ti, T ′i}, and 1 otherwise, and m̂jk

is as defined above. We have J [φ] ' Im(ψ̂), and µŴ
′

2 ' Im(ψ̂) ⊕ 1Ŵ ′ . Therefore,
J [φ] ↪→ µŴ

′
2 , and H1(Gk, J [φ]) ↪→ H1(Gk, µ

Ŵ ′
2 ).

We are in the situation of the corestriction method from §4.1.

6.1.1 Computation of the pairing

Let a, a′ denote elements of S(ϕ)(J/k) denoted by the triples (d1, d2, d3), (d′1, d′2, d′3), re-
spectively, where di and dj are conjugates if Qi and Qj are, and similarly for d′1, d′2, d′3.
Recall the definition of χ and χ′ from the case of elliptic curves. Using the corestric-
tion method as in the case of elliptic curves, we assume that Q1 is defined over k. Let
χ′1 := σ(d1)/d1 ∈ µ2 for σ ∈ Gk. We choose a lift a of a as follows

a(σ) =

0, if χ(σ) = 0̂,

(Ti) + (T ′i )−D∞, if χ(σ) = î,

and

a′1(σ) =

0, if χ′1(σ) = 1,

(T1) + (T ′1)−D∞, if χ′1(σ) = −1.

Using the corestriction method for the global step, we only need a method to compute
ε1, such that ∂ε1 = η1 := ∂a ∪ a′1 − a ∪ ∂a′1. We have

∂a(σ, τ) =



0 = div(1), if χ(σ) = 0̂ or χ(τ) = 0̂,

2(Ti) + 2(T ′i )− 2D∞ = div(Qi(x)),

if χ(σ) = î, σ · χ(τ) = î,

(Ti) + (T ′i ) + (Tj)

+(T ′j)− (Tk)− (T ′k)−D∞ = div( y
Qk(x)

),

if χ(σ) = î, σ · χ(τ) = ĵ.
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Similarly, for a′1,

∂a′1(σ, τ) =

0 = div(1), if χ′(σ) = 1 or χ′(τ) = 1,

2(T1) + 2(T ′1)− 2D∞ = div(Q1), if χ′(σ) = χ′(τ) = −1.

Choose the uniformizers tP at the points P ∈ C(k̄) as tTi := (θi − θ′i)(x − θi)/y,
t∞+ = t∞− := x2/y, and tp := x− x(P ) otherwise. Once again we have 〈·, ·〉1 = 〈·, ·〉2
for the functions appearing in the expressions for ∂a and ∂a′1. Using the above, we
obtain

〈(Q1, (T1) + (T ′1)−D∞〉1 = b1f
2
2 f

2
3 , 〈(Qi, (Tj) + (T ′j)−D∞〉1 = bijf

2
k ,

〈y/Qk, (T1) + (T ′1)−D∞〉1 = b1jf
2
k , 〈y/Q1, (T1) + (T ′1)−D∞〉1 = 1.

The expressions for ∂a ∪ a′1 and a ∪ ∂a′1 are given by

(∂a ∪1 a′1)(σ, τ, ρ) =



1, if χ(σ) = 0̂ or χ(τ) = 0̂ or χ′1(ρ) = 1,

b1f
2
2 f

2
3 , if χ(σ) = î, σ · χ(τ) = 1̂, χ′(ρ) = −1,

b1jf
2
k , if χ(σ) = ĵ, σ · χ(τ) = ĵ, χ′(ρ) = −1,

b1jf
2
k , if (χ(σ),σ·χ(τ))=(1̂,̂j), or

(χ(σ),σ·χ(τ))=(ĵ,1̂)
, χ′(ρ) = −1,

1, if (χ(σ), σ · χ(τ)) = (k̂, ĵ), χ′(ρ) = −1,

(6.1.1)

and

(a ∪2 ∂a′1)(σ, τ, ρ) =


1, if χ(σ) = 0̂ or χ′(τ) = 1 or χ′(ρ) = 1,

b1f
2
2 f

2
3 , if χ(σ) = 1̂, χ′(τ) = χ′(ρ) = −1,

bijf
2
k , if χ(σ) = ĵ, χ′(τ) = χ′(ρ) = −1.

(6.1.2)

In order to solve for ε1, we would like to apply the method developed in §4.3.1.
However, for the method to be applied we want a version of Assumption 4.3.3 for
the Richelot isogeny. Note that we required Assumption 4.3.3 only to show that
the two cocycles E1 and E1,g are cohomologically trivial. Recall the definition of
fields K and K ′ associated with the a and a′1. In what follows, we show that the 2-
cocycles E1 and E1,g extracted from η1 are indeed cohomologically trivial in a simpler
way. Recall that E1 and E1,g ∈ Z2(K ′) are defined by E1(σ, τ) := η1(σ, τ,−1) and
E1,g(σ, τ) := η1(σ, τg,−1)/η1(σ, g,−1), where g ∈ Gk is chosen such that χ′1(g) = −1.

Proposition 6.1.3. The 1-cocycles E1 and E1,g represent the trivial class in H1(K ′).
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Proof. E1(σ, τ) = 〈∂a(σ, τ), a′1(−1)〉1 = 〈∂a(σ, τ), (T1) + (T ′1) − D∞〉1. Hence E1 =

∂a ∪ ((T1) + (T ′1) − D∞). Similarly, E1,g = ∂ã ∪ ((T1) + (T ′1) − D∞), where ã(σ) :=

a(σg)− a(g). Since H2(K ′) satisfies the local-global principle, for each place v of K ′,
E1v := ∂av∪((T1)+(T ′1)−D∞) represents the trivial class in Br(K ′v), and similarly for
E1,g. Since a is locally trivial, there is a point Pv ∈ J(kv) represented by a degree–0
divisor bv, such that Pv witnesses the local triviality of the 1-cocycle representing av.
The 1-cochain av − ∂bv takes values in principal divisors. Let e1v := (av − ∂bv) ∪1
((T1)+(T ′1)−D∞), and ẽ1v(σ) := 〈(av−∂bv)(σg)−(av−∂bv)(g), ((T1)+(T ′1)−D∞)〉1.
Then ∂e1v = ∂a ∪ ((T1) + (T ′1)−D∞) = E1v and

∂ẽ1v(σ, τ) = 〈(av − ∂bv)(σg)− (av − ∂bv)(g)+
σ((av − ∂bv)(τg))− σ((av − ∂bv)(g))
− (av − ∂bv)(στg) + (av − ∂bv)(g), ((T1) + (T ′1)−D∞)〉1

= (∂ã ∪1 ((T1) + (T ′1)−D∞))(σ, τ) = (E1,g)v(σ, τ).

Therefore, E1 and E1,g are cohomologically locally everywhere trivial.

Hence, one can compute ε1 such that ∂ε1 = η1 using the method developed in
§4.3.1.

Remark 6.1.4. One can prove results similar to the ones in section §4.3.2 for the
case of Richelot isogeny using the diagram

0 Ĵ [φ̂] Ĵ [2] J [φ] 0

0 Ĵ [φ̂] Ĵ J 0

ϕ̂

ϕ̂

.

We now look into the local computation. Let v be a place of k and let Pv ∈ J(kv)
be such that ∂Pv = αv, where α is the 1-cocycle representing a whose lift is a.
Computing φ(Pv) ∈ Ĵ(kv) can be achieved by computing Ĵ(kv)/2Ĵ(kv), which has
been implemented in many computer algebra systems for fake 2-descent. For the
computation of Pv from φ(Pv), we use Proposition 6.1.1. Recall the embeddings of
J and Ĵ in P15 via the coordinates vi and v̂i, the τ map, and the matrix N from
Proposition 6.1.1. We have φ(Pv) = Nτ(Pv) (here Pv and φ(Pv) are represented as
points in P15), so N−1(φ(Pv)) = τ(Pv). Using the definition of the τ map, one sees
that if we fix v0, v4, v8, v12, then we fix all the other vi for a given φ(Pv), and there
are at most 8 choices available since ∂Pv = −∂Pv. Hence, one can easily invert an
element in the image of φ and φ̂ locally.

Combining all this, and using the theory of §4.3.3, we have the following theorem

Theorem 6.1.5. Let d and d′ representing a and a′ be as before, and for each place
v of k, let kvi be the extension of kv corresponding to the Gkv-orbit i of W ′. Then
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for each place v of k, and each Gkv-orbit i of W ′, there is an algorithm to compute
δvi ∈ k×vi such that

(−1)2〈a,a′〉CT =
∏
v

∏
i

(δvi, di)kvi .

Remark 6.1.6. The pseudocode for the algorithm mentioned in above theorem is
almost same as the one from Algorithm 1, so we do not repeat it here.

6.2 (3, 3)-isogeny

In this section we look into the (3, 3)-isogeny. First we recall some known theory about
curves whose Jacobians admit (3, 3)-isogeny. Recall from the previous discussion that
if J admits a (3, 3)-isogeny φ with kernel M , then the abelian variety Ĵ := J/M is
the Jacobian of a genus 2 curve (say Ĉ) or a product of two elliptic curves. In this
section, we assume that Ĵ is the Jacobian of a genus 2 curve, and that M ' (Z/3Z)2

as a Gk-module.

Proposition 6.2.1. [BFT14, Lemma 1, 3] Let C be a genus 2 curve given by y2 =

cf(x), where deg(f) = 6 and c ∈ k×, D1 and D2 be effective divisors of degree 2
and D∞ be as before such that D1 − D∞ and D2 − D∞ represent distinct points T1
and T2 (resp.) of order 3 on J . Then we can assume that D1, D2 and D∞ have
pairwise disjoint supports. Furthermore, under the above assumption, there exist
cubic polynomials G1 and G2 over k, λ1, λ2 ∈ k× and monic quadratic polynomials
H1 and H2 with gcd(H1, H2) = 1 over k such that

cf(x) = G2
1 + λ1H

3
1 = G2

2 + λ2H
3
2 ,

and Di can be taken as (xi1, Gi(xi1)) + (xi2, Gi(xi2)), where xij are roots of Hi for
i, j ∈ {1, 2}.

We denote by gi the leading coefficient of Gi above and by λ a fixed cube root
of λ1/λ2. Since disc(f) 6= 0, gcd(Hi, Gi) = 1. We have (G1 − G2)(G1 + G2) =

λ2(H2−λH1)(H2−λζ3H1)(H2−λζ23H1), so G1−G2 does not vanish on xij. We have
3Di − 3D∞ = div(y −Gi(x)) and

〈y −Gi(x), Dj −D∞〉1 = 〈Dj −D∞, y −Gi〉2 = c3res(Gi −Gj, Hj)/λi.

This gives
e3(T1, T2) =

λ2res(G2 −G1, H2)

λ1res(G1 −G2, H1)
.

The following proposition gives the condition when M := 〈T1, T2〉 is maximal isotropic
with respect to the Weil pairing.

Proposition 6.2.2. [BFT14, Lemma 5] We have e3(T1, T2) is trivial if and only if
none of the polynomials H1 − λζ i3H2 divide G2 −G1.
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From now on we assume that µ3 ⊂ k×. This implies that M̂ ' M∨ ' (Z/3Z)2,
where M̂ is the kernel of the dual isogeny φ̂ : Ĵ → J . The moduli space of principally
polarized abelian surfaces with a maximal isotropic subgroup isomorphic to (Z/3Z)2

as Gk-module is of dimension 3. The following theorem allows us to generically
and explicitly construct curves whose Jacobians have a maximal isotropic subgroup
isomorphic to (Z/3Z)2.

Theorem 6.2.3. [BFT14, Theorem 6, 13] Let J be the Jacobian of a genus 2 curve C
admitting a (3, 3)-isogeny φ with J [φ] ' (Z/3Z)2. Then generically C can be obtained
as a specialization of curve Crst := G2

i (r, s, t)+λi(r, s, t)Hi(r, s, t)
3, for i ∈ {1, 2, 3, 4}

over k(r, s, t), where Gi, Hi, and λi are rational functions in k(r, s, t)×. Furthermore,
Ĵ is also the Jacobian of a suitable explicit specialization of a curve Ĉrst over k(r, s, t)
given by Ĉrst := Ĝ2

i (r, s, t) + λ̂i(r, s, t)Ĥ
3
i (r, s, t) for i ∈ {1, 2, 3, 4}.

We now describe the connecting homomorphism, i.e.,

J(k)/φ̂(Ĵ(k))→ H1(Gk, Ĵ [φ̂]) ' H1(Gk, (Z/3Z)2) '
(

k×

(k×)3

)2

.

Lemma 6.2.4. [BFT14, Lemma 18] Let J be the Jacobian of a curve such that J
admits a (3, 3)-isogeny φ with a trivial Galois action on J [φ]. Then the map

J(k)/φ̂(Ĵ(k))→
(

k×

(k×)3

)2

is induced by the partial map

(x, y) ∈ C 7→ (y −G1(x), y −G2(x)).

Let a ∈ S(ϕ)(J/k), be represented by (d1, d2) ∈ k× × k×. Fix a cube root d1/3i of
di. We fix a third root of unity ζ3, and identify µ3 with Z/3Z via ζ3 7→ 1. Define
χi(σ) := σ(d

1/3
i )/d

1/3
i , for σ ∈ Gk, and assume that χi takes values in Z/3Z via

the above identification. We choose a 1-cocycle α representing a as α1 + α2, where
αi(σ) := jTi if χi(σ) = j. If a′ is another element in the φ-Selmer group represented
by (d′1, d

′
2), then similarly define χ′i, α′i, and α′.

6.2.1 Computation of the pairing

In this section we only discuss the global part of the pairing and describe a method
for obtaining ε such that ∂ε = η (ε and η are same as in the definition of the pairing
in §2.4). Choose the lift a of α as a1 + a2, where ai(σ) := j(Di −D∞), if χi(σ) = j,
and similarly define a′i and a′ for α′. We have η := ∂a ∪ a′ − a ∪ ∂a′ =

∑
i,j

ηij, where

ηij := ∂ai ∪ a′j − ai ∪ ∂a′j. Define ηi := η1i + η2i. We have

∂ai(σ, τ) = div((y −Gi)
n),
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where n = [(χi(σ) + χi(τ))/3] and [.] is the greatest integer function. Similarly,

∂a′i(σ, τ) = div((y −Gi)
n′
),

where n′[(χ′i(σ) + χ′i(τ))/3].
Let tP be a uniformizer at P ∈ C(k̄). Choose tP as (x − θ)/y when P is a

Weierstrass point (θ, 0), as x2/y when P is in the support of D∞, as (x−x(P ))(xi1−
xi2) if P = (xi1, Gi(xi1)), where xi1, xi2 are roots of Hi as before, and x − x(P )

otherwise. Recall that

〈y −Gi, Dj −D∞〉1 = 〈Dj −D∞, y −Gi〉2 = c3res(Gi −Gj, Hj)/λi,

and
〈y −Gi, Di −D∞〉1 = 〈Di −D∞, y −Gi〉2 =

λ2i
4res(Gi, Hi)

.

We obtain

ηii(σ, τ, ρ) =

(
λ22

4res(Gi, Hi)

)nk−n′j

,

where χi(σ) = j, χ′i(ρ) = k, n := [(χi(σ) + χi(τ))/3] and n′ := [(χ′i(τ) + χ′i(ρ))/3],
and

ηij(σ, τ, ρ) =
res(Gi −Gj, Hj)

nkλn
′l
j

res(Gj −Gi, Hi)n
′lλnki

c3(nk−n
′l),

where χi(σ) = l, χ′j(ρ) = k, n := [(χi(σ) + χi(τ))/3] and n′ := [(χ′j(τ) + χ′j(ρ))/3].
Now we will look into a method very similar to the one in §4.3.1 to compute

εi such that ∂εi = ηi. Let K := k(d
1/3
1 , d

1/3
2 ), and K ′i := k(d

′1/3
i ). Then ηi factors

through the extension Fi := KK ′i and ηi(σ, τ, ρ) = ηi(σ
′, τ ′, ρ′) if σ

∣∣
K

= σ′
∣∣
K

, τ
∣∣
K

=

τ ′
∣∣
Fi

and ρ
∣∣
K′

i
= ρ′

∣∣
K′

i
. Since ηi only depends on χ′i in its last coordinate, we will

interchangeably write ηi(σ, τ, χ′i(ρ)) and ηi(σ, τ, ρ). Choose the representative gj of
cosets of Gal(F/K ′i) in Gal(F/k) such that χ′i(gj) = j. Define the 2-cochains in
C2(K ′i)

Ei,j(σ, τ) := ηi(σ, τ, gj) and Ei,j,k(σ, τ) := ηi(σ, τgj, gk)/ηi(σ, gj, gk).

In what follows we do not give exact proofs as they are very close to the ones done
before.

Proposition 6.2.5. The 2-cochains Ei,j and Ei,j,k are 2-cocycles in Z2(K ′i) and rep-
resent the trivial class in H2(K ′i).

Proof. We prove it only for Ei,j,k because Ei,j is obtained by replacing gj by id and
gk by gj. Define ã(σ) := a(σgj)− a(gj). Then Ei,j,k = ∂ã∪ (k(Di−D∞)), so we have
∂Ei,j,k = 0. The proof of the cohomological triviality of Ei,j,k and Ei, j is similar to
the proof of the Proposition 6.1.3.
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Hence, there are 1-cochains ei,j and ei,j,k factoring through Gal(F/K ′i). Here the
indices are considered modulo 3.

Now construct 1-cochains fi,j,k and ψi,j,k in C1(K ′i) given by fi,j,k(σ) := ηi(σ, gj, gk)

and
ψi,j,k(σ) := fi,j,k + ei,j,k − ei,j − ei,j+k.

The following proposition shows that ψi,j,k is a 1-cocycle.

Proposition 6.2.6. Let ψi,j,k be as above. Then ψi,j,k is a 1-cocycle, and there exists
ti,j,k ∈ F× such that ψi,j,k(σ) = σ(ti,j,k)/ti,j,k.

Proof. Similar to the proof of Proposition 4.3.5.

One can choose ti,j,k = 1 when k = 0 or j = 0 as ψi,j,k = 0 in both the cases.
Similarly to Equation (4.3.3), define a 1-cochain ε′i ∈ C2(k) as

ε′i(τ, ρ) := ti,j,kei,j,k(τ
′),

where χ′i(τ) = gj, χ′i(ρ) = gk, and τ ′ ∈ GK′
i

is such that τ = τ ′gj.

Proposition 6.2.7. Let η′i := ηi− ∂ε′i. Then η′i(σ, τ, ρ) = 1, if (σ, τ, ρ) ∈ GK′
i
×Gk×

Gk ∪ Gk × Gk × GK′
i
, and if σ, τ ∈ GK′

i
and ρ ∈ Gk be such that χ′i(ρ) = k, then

η′i(σgj, τ, ρ) = ση′i(gj, τ, gk) and η′i(σgj, τgl, gk) = ση′i(gj, τgl, gk).

Proof. The proof is similar to the proof of Proposition 4.3.6 and Corollary 4.3.7.

Let σgk := gkσg
−1
k for σ ∈ Gal(F/K ′i). We will need the following variant of

Hilbert’s Theorem 90 which is similar to Proposition 4.3.8.

Proposition 6.2.8. Let gk be as before and let f ∈ C1(K/K ′i) be such that, for
σ, τ ∈ Gal(K/K ′i),

f(στ) = f(σ)σgkf(τ).

Then there is a c ∈ K× such that f(σ) = c/σgk(c).

Proof. The proof is similar to the standard proof of Hilbert’s Theorem 90. Let Hi :=

Gal(K/K ′i) and consider the endomorphism

φ :=
∑
τ∈Hi

f(τ)τg.

By linear independence of automorphisms, there exists an element b in K such that
φ(b) 6= 0 and σgkφ(b) = φ(b)/f(σ). Choose c in the proposition to be φ(b).



6.2. (3, 3)-ISOGENY 149

Define f ′i,j,k ∈ C1(K/K ′i) as

f ′i,j,k(σ) := η′i(gj, σ, gk),

for σ ∈ GK′ . One can check that f ′i,j,k satisfies the hypothesis of Proposition 6.2.8, so
there exists ci,j,k ∈ K× such that, for σ ∈ GK′ , one has f ′i,j,k(σ) = ci,j,k/σgj(ci,j,k). Let

ε′′i (τ, ρ) :=

{
1, if χ′1(τ) = id or χ′1(ρ) = id ,
τ ′(ci,j,k), if χ′i(τ) = j and χ′i(ρ) = k,

where τ ′ ∈ GK′
i

is such that τ = τ ′gj.

Proposition 6.2.9. Let η′′i := η′i − ∂ε′′i . Then for (σ, τ, ρ) ∈ GK′
i
×Gk ×Gk ∪ Gk ×

GK′
i
×Gk ∪ Gk ×Gk ×GK′

i
, η′′i (σ, τ, ρ) = 1. Furthermore, η′′i ∈ Im(inf : Z3(K ′i/k)→

Z3(k)).

Proof. The proof is similar to the one of Proposition 6.2.7.

Since K ′i/k is cyclic of degree 3, one finds ε′′i using Proposition 5.5.1. The local
part of the computation also follows a similar approach as in §4.3.3. Currently, the
only bottleneck we are left to tackle in explicitly computing the pairing is to compute
for each place v the point Pv ∈ Ĵ(Kv) such that ∂Pv = αv. Since φ̂(Pv) ∈ J(kv),
this reduces to obtaining an algorithm for computing a point in the preimage of the
isogeny φ̂. We summarize the above discussion in the following theorem.

Theorem 6.2.10. Let a, a′ ∈ S(ϕ̂)(J/k) be represented by (d1, d2), (d′1, d
′
2), respec-

tively. Assume that there is an oracle that for each place v computes a point in the
preimage of a point under φ̂. Then for each place v of k, there is an algorithm to
compute δv,i for i ∈ {1, 2} such that

ζ
3〈a,a′〉CT
3 =

∏
v

(δv,1, d
′
1)kv(δv,2, d

′
2)kv ,

where (x, y)kv represents the cubic Hilbert symbol of x, y ∈ k×v .

Let Sa,a′ be the union of the set of places v of k above 3, of the set of places of k
where C or Ĉ has bad reduction, and the set of places of k where at least one value
taken by ε has a non-trivial valuation. One can prove a version of Lemma 4.3.19 for
the case of (3, 3)-isogeny and show that for v /∈ Sa,a′ , the value of 〈a, a′〉CT = 0. The
following is pseudocode for the algorithm mentioned in the above theorem.
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Algorithm 4 Compute the CTP between a, a′ ∈ S(ϕ̂)(Ĵ/k) represented by (d1, d2),
(d′1, d

′
2) ∈ (k×)2.

Require: (d1, d2), (d
′
1, d
′
2) ∈ (k×)2.

Ensure: Value of (ζ3)〈a,a
′〉CT in variable CT.

1: CT← 1. . Value of CT.
2: LocalPoints← [ ]. . List storing Pv indexed by v ∈ Sa,a′ .
3: for v ∈ Sa,a′ do
4: Find Qv ∈ J(kv), such that δ(Qv) = αv. . α ∈ Z1(Gk, Ĵ [φ̂]) represents a.
5: Kv ← kv(

3
√
d1,

3
√
d2) and Pv ∈ φ̂−1(Qv) such that ∂Pv = αv. . Computed

using the oracle.
6: LocalPoints[v]← Pv.
7: end for
8: K ← k( 3

√
d1,

3
√
d2).

9: Compute Ei,1, Ei,j,1, ei,1 and ei,j,1 for i ∈ {1, 2} and j ∈ {1, 2, 3} as in Proposi-
tion 6.2.5. . Ei,k = kEi,1 and Ei,j,k = kEi,j,1. Hence, one can choose ei,k = kei,1
and ei,j,k = kei,j,1.

10: Compute ti,j,k and ci,j,k as in Proposition 6.2.6 and 6.2.8.
11: for v ∈ Sa,a′ do
12: Compute 1-cocycles Γi,k(σ) := γv,i(σ, gk) for i ∈ {1, 2} and k ∈ {1, 2, 3},

where γv,i(σ, gk) := ((av − ∂bv) ∪1 a′i,v − bv ∪2 ∂ai,v − εi,v)(σ, gk).
13: Compute θv,i,1 such that ∂θv,i,1 = Γi,1.
14: Choose θv,i,k := θkv,i,1 and compute δv,i ∈ k×v as in the Theorem 6.2.10 using a

computation similar to the one in §5.2. . Note that ∂θv,i,k = Γv,i,k.

15: CT← CT ·
2∏
i=1

(δv,i, d
′
i)kv .

16: end for
17: return CT.
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Conclusion

It was remarked in [PS99] that the Albanese-Albanese definition of the CTP can
lead to simpler computation of the pairing for Jacobian varieties, as we need to work
only with the divisors on the curve. This thesis can been viewed as an attempt to
do so. One of the main motivations of this thesis was to see what can be done if
we completely avoid any reference to an explicit description of homogeneous spaces
while computing the pairing. The 2-cocycles representing the trivial class in the
Brauer group, that appeared while computing ε in various cases are in fact related
to the principal homogeneous spaces represented by corresponding Selmer elements.
Hence, it is definitely possible to obtain more efficient algorithms if we work with
explicit equations of homogeneous spaces. In the next section we summarize what
has been achieved during the course of this thesis and some generalizations that were
obtained later and are not a part of this thesis. Thereafter, we see a few natural
questions both of theoretical and computational nature arising from this work.

7.1 What’s new

7.1.1 The CTP on 2-Selmer groups

The first problem we answer is the following.

Problem 7.1.1. Use the Albanese-Albanese definition to compute the CTP on
S(2)(E/k) for an elliptic curve E/k.

Though this is not a new result in itself, computing the pairing does provide us
with insights that become useful in the higher genus cases. Using our computations
along with explicit equations of curves representing the twist, we are able to obtain
the same formulas as Cassels in [Cas98].

Next, we answer the following generalization to the previous problem.

Problem 7.1.2. Use the Albanese-Albanese definition to compute the CTP on
S(2)(J/k) of an odd-degree hyperelliptic Jacobian J/k.

151
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We answer this question in Chapter 4. In essence, we show that the computation
of the CTP is computationally not harder than trivializing matrix algebras, i.e.,
the problem of finding an explicit isomorphism φ : A → Mn(k), given a central
simple algebra A/k. This is done by showing that the 3-cocycle η1 ∈ H3(F/k) (recall
the definition of F for §4.3.1) represents the trivial class, and the trivializer ε1 is
constructed via trivializing some 2-cocycles that represent the trivial class in the
relative Brauer group Br(F/K ′). Abstractly, one can view this as showing that
η1 = infGal(L/k)

Gal(K′/k)(e), for some e ∈ H3(K ′/k), and e is obtained via tg ◦ res on a
2-cocycle representing the trivial class in the relative Brauer group Br(L/k), where
recall that tg is the transgression homomorphism in dimension 2. Furthermore, taking
inspiration from the case of elliptic curves, in §4.4 we show that the 2-cocycles can be
explicitly written as 2-coboundaries using solutions to a set of quadratic forms, and
empirically show that for genus 2 curves the condition is not very strict. We use our
conditional algorithm to compute the pairing in various examples.

One can view Theorem 4.2.1 and Corollary 4.3.20 as a generalization of [Cas98,
Lemma 7.4]. It is important to note that we have avoided any reference to the ex-
plicit equations of homogeneous spaces represented by the 2-Selmer elements to be
paired, while doing the above computations. However, using explicit descriptions of
homogeneous spaces, might improve the efficiency of the algorithm significantly. In
fact, in [FY23] the authors do achieve this along with using other efficient techniques,
in the case of 2-Selmer groups associated to genus 2 Jacobians. However, the tech-
niques that make their algorithm efficient are not so easily generalizable to higher
genus Jacobians. To the best of my knowledge, this is the first attempt to compute
the CTP on 2-Selmer groups of higher genus hyperelliptic curves.

In the following two subsections we comment on two generalizations and state
some results that could be obtained but are not a part of this thesis.

The case of superelliptic curves

Let l be a prime and f ∈ k[x] be a squarefree polynomial of degree d coprime to l.
Assume that µl ⊂ k×, and let ∆ be the set of roots of f and C := yl = f(x). Then
the genus of C is (l− 1)(d− 1)/2 and as in the case of Chapter 5, the automorphism
ζl : (x, y) 7→ (x, ζly) induces an isogeny λ := 1 − ζl on JC defined over k. Let
N : µ∆

l → µl be the norm map given by m 7→
∏
P∈∆

mp. Then the following is a split

exact sequence
0→ JC [λ] −→ µ∆

l
N−→ µl → 1,

similar to §4.1. One can generalize §4.1 and §4.3.1 to show the following theorem for
superelliptic curves of the above form.

Theorem 7.1.3. Let C/k be a superelliptic curve as above, and let A := k[x]/〈f(x)〉
be the étale algebra corresponding to f . Let λ be the 1− ζl endomorphism as before,
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and denote the λ-Selmer elements a, a′ by elements z, z′ ∈ A×/(Al)×, respectively. If
we write z = (z1, . . . , zd) and similarly for z′, then for each place v of k and each
Gkv-orbit ∆i of ∆, there is an explicitly computable δi,v ∈ kv(Pi)

×, where Pi is a
representative of ∆i, such that

ζ
l〈a,a′〉CT
l =

∏
v

∏
orbits

(δi,v, z
′
i)v,

where (·, ·)v is the generalized Hilbert symbol.

Remark 7.1.4. The only hurdle in computing δv is computing a local point Pv ∈
JC(kv) such that ∂Pv = αv, where αv is a 1-cocycle representing a. This is something
that we will discuss in §7.2. As far as the global part of the pairing is concerned, we
have an algorithm to compute ε.

When the twisted Kummer surface has a rational point

Let a, a′ ∈ X(JC/k)[2], where JC is the Jacobian of a curve of genus 2 (here we
assume that the defining polynomial of the curve C is of even degree). Assume that
the twisted Kummer surface Ka′ of the twist Ja′ corresponding to a′ of J has a k-
rational point Q. Then there is a k-rational point Q (abusing the notation slightly) on
the Kummer surface KC of JC corresponding to Q. The authors in [FY23] work under
this assumption and show empirically that one can expect to find twisted Kummer
surfaces with a k-rational point that generate the 2-Selmer group. What we claim
here is that this case can also be handled by our methods in §4.3.1.

Let Q̃ be a lift of Q on JC . If Q̃ is defined over k. Then there is nothing
to do. Therefore, we assume that Q̃ is defined over a quadratic extension K ′ :=

k(
√
m) of k. Let P ∈ JC(k̄) such that ∂P = resGK′

Gk
(α′), where α′ is a 1-cocycle

with values in JC [2] representing P . Note that 2P = Q̃. Let Gal(K ′/k) = 〈g〉.
The inflation-restriction sequence at the level of 1-cocycles in dimension 1 implies
that α′ − ∂P ∈ Im(infGk

Gal(K′/k)). In particular, if σ ∈ Gk such that σ
∣∣
K′ = g, then

α′(σ) − σ(P ) + P = Q′, with Q′ ∈ JC(K
′). Hence, one can represent a′ with the

following 1-cocycle

α′′(σ) =

{
0, if σ(

√
m) =

√
m,

Q′, if σ(
√
m) = −

√
m.

α′′ is a 1-cocycle implies that g(Q′) = −Q′. At the same time, g(Q̃) = −Q̃, since it
is a lift of a k-rational point on KC . Let σ ∈ Gk restrict to g over K ′. Then

2(Q′ − Q̃) = 2α′(σ)− 2σ(P ) + 2P = 0⇒ Q′ − Q̃ ∈ JC(K ′)[2].

In fact,
g(Q′ − Q̃) = −(Q′ − Q̃) = Q′ − Q̃⇒ Q′ − Q̃ ∈ JC(k)[2].
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One can view the above as mapping a point Q ∈ KC(k) to a point Q′ ∈ Q+JC(k)[2].
If JC(k)[2] = ∅ (which is the generic case), then Q̃ = Q′. Otherwise, we need check
which of the Q′ ∈ JC [2](k) gives us a 1-cocycle α′′ that is locally everywhere trivial.
This is an easy check, as we only need to do it above 2, the primes of bad reduction of
C, and the infinite primes. For each such place we only need to compute R ∈ JC(K ′v)
such that g(R) − R − Q′ ∈ 2JC(K

′
v). This is because if g(R) − R − Q′ = 2Q′′, then

writing 2Q′′ = Q′′ − g(Q′′), g(R + Q′′) − (R + Q′′) = Q′. In particular, R can be
chosen from the class JC(K ′v)/2JC(K ′v). There are fast algorithms to compute the
local group JC(K

′
v)/2JC(K

′
v) due to efficient 2-Selmer group implementations (see

[Sto01]).
In particular, representing a′ by α′′ we find ourselves in the case §4.3.1 and §4.3.3.

One bypasses §4.3.2 using an analogue of Proposition 6.1.3. Up to the hurdle of
computing Pv ∈ JC(kv) such that ∂Pv = αv, we have the following theorem.

Theorem 7.1.5. Let a, a′ ∈ S(2)(JC/k) and m ∈ k× be as above. Assume that there
is an algorithm that for each place v of k can compute half of a point Qv ∈ 2J(kv).
Then, for each place v of k, there is an algorithm to compute δv ∈ k×v such that

(−1)〈a,a′〉CT =
∏
v

(δv,m)v.

One can view the above as a rather inefficient generalization of [FY23] to higher
genus hyperelliptic Jacobians.

7.1.2 The CTP for other isogenies

The next two chapters 5 and 6 were an attempt to compute the pairing for various
isogenies including two isogenies of odd degree. To the best of our knowledge this was
the first attempt to compute the CTP for any odd degree isogeny on higher genus
Jacobians.

The following problem can be viewed as a special case of §7.1.1.

Problem 7.1.6. Compute the CTP on λ-Selmer group of Jacobians of the curves of
the form y2 = xl + A, with A ∈ Z.

We answer this question in generality. In fact, the method used to compute ε can
be used to compute ε for any cyclic isogeny on a Jacobian. We show in Corollary 5.3.2
that we only need to compute the local trivializer, Pv ∈ JA(kv) such that ∂Pv = αv,
at the place λ for the l-Stoll set. In order to avoid the computation of the local
trivializer Pv and compute some examples, we use an assumption that the λ-Selmer
element is trivial. For l = 5, this is the case when the class group of L := Q(ζ5,

√
A)

has 5-torsion. In, particular, for genus 2, we are able to compute the CTP whenever
there are elements coming from non-trivial 5 torsion in Cl(L). The implementation is
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done in Magma. We also implement the λ-Selmer group computation when A is an
element of the l-Stoll set. This is because the in-built function PhiSelmerGroup(),
is extremely inefficient due to its generic nature. Using the explicit local points at
λ computed in [Sto98], one can significantly speed up the computation. In fact, for
J62, we use this to compute the algebraic rank, whereas our algorithm to compute
the CTP on 2-Selmer groups in Chapter 4 seems to be inefficient.

In Chapter 6 we compute the global part of the pairing, i.e., compute ε for the
Richelot and (3, 3)-isogeny on genus 2 Jacobians. For the Richelot isogeny, we also
outline an algorithm to compute the local point Pv ∈ J(kv) such that ∂Pv = αv.

7.2 Zukunftsmusik

In this section we state a few questions that arise naturally from the thesis.

7.2.1 True descent

Let k be a number field, and let C/k be a curve with Jacobian variety J/k. We recall
the definition of true descent setup as defined in [BPS16].

Definition 7.2.1. A true descent setup is the data (n,∆, D), where ∆ is a finite
étale k-scheme, i.e., ∆ := Spec (L) for some étale algebra L and D ∈ Div(C × ∆)

such that nD = div(f) ∈ Princ(C ×∆).

Hilbert’s Theorem 90 implies that f can be chosen in a way that specializing f
at any P ∈ ∆ one obtains fP ∈ k(C)× in a Gk-equivariant way. As a consequence of
the conditions on D and ∆ one obtains a map

φ : H1(Gk, J [n])→ H1(Gk, µ
∆
n ) ' L×/(L×)n.

We assume that the map φ above is an injection. There are non-trivial examples
of the above available, e.g., p-descent on elliptic curves, 2-descent on odd-degree
hyperelliptic curves, (1− ζl)-descent on degree l-cyclic covers of P1 ramified at ∞.

One can ask the following question regarding computation of the CTP in a true
descent setup.

Question 7.2.2. How can one compute the CTP using the Albanese-Albanese defini-
tion on the Selmer group corresponding to a true descent setup (n,∆, D) of a curve
C?

If a, a′ are the two elements of the Selmer group being paired, then using the
methods developed in §4.3.1 and Chapter 6, one obtains a 3-cocycle η′ from the 3-
cocycle η, that factors through the field of definition K ′ of 1-cocycle α′ representing
a′. However, our contention is that if the Selmer group is coming from a true descent
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set up, then it should be possible to make choices of Hilbert’s Theorem 90 elements
that are required during the reduction such that η′ is trivial cocycle.

For the local part of the pairing, one can ask the following question (whose answer
is probably yes).

Question 7.2.3. Let ψ : A → JC be an isogeny of degree n. Then [BPS16, Lemma
7.1] implies that if v is a prime of k such that the Tamagawa numbers cv(A) and
cv(JC) are coprime to n, and residue characteristic of kv does not divide n, then
δv(JC(kv)) = H1(Gal(knr

v /kv), A[ψ]). Can we show an analogue of Lemma 4.3.19 for
v satisfying the above condition, and also show that the values taken by ε have trivial
valuation at v?

7.2.2 Algorithmic questions

We state some natural algorithmic questions that arise from this thesis.

Problem 7.2.4. Give an algorithm to compute the CTP for 2-Selmer groups of
even-degree hyperelliptic curves unconditionally.

Problem 7.2.5. Recall from §7.1.1 that one can extend the method of computing
CTP in §4.3.1 to the case of p-cyclic covers of P1 with ramification at ∞ over k
containing µp. However, a hurdle to obtaining an algorithm is that in the local step
where one needs to find a point Pv ∈ J(kv) for a place v of k which witnesses the
triviality of the 1-cocycle representing the (1−ζp)-Selmer element, that algorithmically
amounts to solving the following problem: Given a point Q in the image of 1 − ζp,
find the point P such that (1− ζp)(P ) = Q. In p = 2 case, Stoll in [Sto17b] gives an
algorithm to compute half of a point, given that one exists. Vishal Arul in [Aru20]
solves the above problem when Q is in the image of the Abel-Jacobi map.

A probably simpler problem would be to invert an element in the image of (1−ζp)
isogeny over local fields, where the theory of formal groups is available.

The following problem is a generalization of the above.

Problem 7.2.6. Let ψ : A → B be an isogeny of abelian varieties A and B over k.
Let v be a place of k and P ∈ B(kv). Then compute Q ∈ A(kv) such that ψ(Q) = P .

The following problem asks if we can avoid solving the above two problems while
computing the CTP.

Problem 7.2.7. Write an expression for the class cv ∈ Br(kv) obtained during the
local part of the CTP just using the local point Qv on the abelian variety. In essence,
we want something in the direction of the case of 2-Selmer groups of elliptic curves.
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7.2.3 Arithmetic statistics with the CTP

It would be interesting to study if one can determine the average size of ker(〈·, ·〉CT)

on S(2)(E/Q). One of the toy examples to attack is the family of elliptic curves given
by the equation of the form y2 = x(x2 + ax + b) with a, b ∈ Z. This family exhibits
an isogeny φ of degree 2, and explicit formulas for the CTP on S(ϕ)(E/Q) are known.
The idea would be to estimate the average size of the kernel of the CTP in this case
first.
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