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Abstract
Recent work in explainable artificial intelligence (XAI) attempts to render opaque 
AI systems understandable through a divide-and-conquer strategy. However, this 
fails to illuminate how trained AI systems work as a whole. Precisely this kind of 
functional understanding is needed, though, to satisfy important societal desiderata 
such as safety. To remedy this situation, we argue, AI researchers should seek mech-
anistic interpretability, viz. apply coordinated discovery strategies familiar from the 
life sciences to uncover the functional organisation of complex AI systems. Addi-
tionally, theorists should accommodate for the unique costs and benefits of such 
strategies in their portrayals of XAI research.

Keywords  AI · ANN · Deep learning · Discovery · Explanation · Mechanistic 
interpretability · XAI

1  Introduction

Over the past decade, the term “AI” has increasingly become a synonym for deep 
artificial neural networks (ANNs) trained with machine learning (ML) algorithms. 
These ANNs are often complex and opaque, approximating target functions through 
the mutual contribution of millions or even billions of parameters with values 
learned during an automated training process (Baraniuk et al., 2020; Chollet, 2021; 
Russell & Norvig, 2020). On the one hand, this setup allows ANNs to exhibit flex-
ible and expressive behaviour, developing sophisticated ways of representing and 
processing information. On the other hand, these systems can be surprisingly brittle 
and prone to unpredictable and catastrophic failure (Fawzi et al., 2018; Raghu et al., 
2017). Since the functional organisation of ANNs is both complex and machine-
learned, how their internal structure implements the mapping from inputs to outputs 
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often remains unknown. Despite this, AI systems based on ANNs are increasingly 
used to support or take over human tasks – from making music recommendations 
to medical decisions (Huang et al., 2020; Jugovac & Jannach, 2017). Especially in 
high-stakes1 circumstances, regulators, philosophers and AI researchers increasingly 
call for making AI systems explainable (Burrell, 2016; Zednik, 2021).

To address this need, a research field has developed under the heading of explain-
able AI (XAI). But far from being unified, research under this umbrella tackles a 
range of distinct, though interrelated issues: Computer scientists take on the tech-
nical challenge of developing computational methods to produce explanations of 
AI systems (Guidotti et al., 2018; Ribeiro et al., 2016; Wachter et al., 2017). Phi-
losophers attempt to characterise relevant societal desiderata such as safety, trust-
worthiness, reliability, and fairness (Durán & Jongsma, 2021; Langer et al., 2021a, 
2021b; Páez, 2019). And psychologists grapple with the problem of quantifying 
epistemic outcomes like understanding (Langer et  al., 2021a, 2021b; Sloman & 
Rabb, 2016). In the face of this complexity, scholars have tried to coordinate these 
different strands of research, highlight how they might be mutually advantageous, 
and assess the extent to which (and at what costs) XAI can achieve its goals. To 
this end, XAI researchers have developed taxonomies of explainability methods 
(Nunes & Jannach, 2017; Speith, 2022), offered conceptual models of the so-called 
explainability problem (Langer et al., 2021a, 2021b; Zednik, 2021), and proposed 
simplifying unifications (Fleisher, 2022; Nyrup & Robinson, 2022). We applaud 
these contributions, and agree that AI explainability is a multifaceted issue which 
resists any one-size-fits-all solution (cf., Langer et al., 2021a, 2021b; Zednik, 2021). 
However, the picture of XAI research that is typically presented is one in which 
computational methods deliver explanations for specific stakeholders in particular 
contexts. We think this is crucially incomplete: we must also consider the potential 
of coordinated research strategies aiming to uncover the functional organisation of 
trained AI systems.

While research to this end is currently gaining momentum among researchers 
working in industry (e.g., Cammarata et al., 2020; Olah et al., 2018), attention to it is 
still limited within the academic sphere (but see, e.g., Bau et al., 2017; Geiger et al., 
2022, 2023). Contemporary XAI effectively pursues a divide-and-conquer strategy 
by focusing on how individual methods might deliver explainability in specific con-
texts. While this strategy can successfully highlight which features were influential 
for a given outcome, or how input features would need to be changed to obtain a 
different decision, this is only a small part of the story if we are seeking to explain 
and understand how AI systems work. Indeed, what we should aim for to ensure that 
AI systems fulfil desiderata commonly demanded of AI systems by society – such 
as safety – goes far beyond specific contexts: We need generalisable insights about 
how the systems in question work as a whole; for only such insights about the func-
tional organisation that elicits behavioural patterns and dispositions will allow us to 

1  We refrain from committing to any particular definition of ‘high-stakes’. See the European Commis-
sion’s Artificial Intelligence Act (Artificial Intelligence Act, 2024) for extended discussion of what con-
stitutes a ‘high-risk’ application of AI.
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anticipate how systems might respond to novel inputs and how they might behave 
when exposed to yet unexplored contexts. Importantly, what is of interest here is not 
the architecture that an AI system’s programmers have specified prior to training.2 
Rather, we are interested in the learned structure that emerges through the auto-
mated training procedures a system undergoes after its initial specification; hence it 
is also referred to as emergent structure (Manning et al., 2020). Crucially, we argue, 
these insights cannot usually be extrapolated from applying individual XAI methods 
tailored to specific contexts – we would simply be missing the forest for the trees.

We propose that to remedy this situation, XAI researchers should take a mecha-
nistic interpretability (MI) approach for complex AI systems. In fact, research in 
line with the approach we suggest is already being pursued by a small commu-
nity of researchers (Section 3.2). It starts from the premise that, once AI systems 
become sufficiently complex, they are best investigated and explained through the 
same lens as biological organisms (rather than being treated as technical artefacts). 
Thus, practitioners should seek to characterise AI systems in terms of their func-
tional organisation (the organised activities of their functionally relevant compo-
nents).3 This requires the application of coordinated discovery strategies familiar 
from life sciences, such as pattern recognition, functional decomposition, localisa-
tion, and systematic experimental manipulations. As such, MI research may be sig-
nificantly more resource-intensive (both in terms of time and in terms of labour) 
than the divide-and-conquer strategy. In return for this investment, we gain a deeper 
and more holistic understanding of how trained AI systems work. We argue that the 
outcome of effective MI research affords greater predictivity and, by enabling surgi-
cal interventions, greater control of system behaviour. Thus, we claim, MI enables 
us to meet important societal desiderata including safety. Given these distinctive 
costs and benefits, and the fact that the MI approach has been successfully employed 
by a small community of researchers, we think it is crucial for XAI theorists (as 
well as philosophers of science more generally) to accommodate this research strat-
egy in their analyses of the field. For only by having the full range of strategies 
for explaining complex AI systems in view can we make appropriate choices about 
which research to pursue, and thereby ensure that crucial desiderata will actually be 
satisfied when employing opaque AI systems in society.

We shall proceed as follows: In Section 2, we briefly discuss achievements and 
limitations of contemporary XAI research. In Section 3, we propose that rather than 
adopting a divide-and-conquer strategy, XAI researchers should seek explainability 
through mechanistic interpretability. We illustrate this approach by examining the 
case of Distill. In Section 4, we discuss possible objections to our proposal. In Sec-
tion 5, we conclude.

2  For ANNs, the number of layers, number of units (neurons) per layer, activation functions of units, 
connectivity of units, loss function, and learning algorithm (including hyperparameters like batch size 
and learning rate) are all typically pre-programmed.
3  Functionally relevant components can be any unit or structure that serves to achieve a specific function 
within a system; this is explicitly not limited to pre-specified entities like neurons but may include com-
plex structures such as, e.g., circuits (see Section 3.1) or distributed representations.
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2 � Contemporary XAI: The divide‑and‑conquer strategy

For current purposes we focus on ML-based AI systems (with ANNs being a para-
digm case) that are opaque due to the scale and complexity of their learned structure 
(Burrell, 2016). Following Humphreys (2009), we characterise opacity as a lack of 
knowledge about a system’s epistemically relevant elements (EREs) (see also Zed-
nik, 2021).4 The term ERE is deliberately non-specific. It captures any robust pat-
terns which underlie or maintain a system’s behaviour and are relevant to the epis-
temic goals of an agent. Thus, a system’s opacity is relative both to an agent’s (e.g., 
a company, AI user, or developer) interests and their knowledge about the system 
at a given time. Against this backdrop, we assume that any information eliminating 
opacity (by uncovering EREs) can function as an explanation (cf., Nyrup & Robin-
son, 2022; Zednik, 2021). We take making AI systems explainable by reducing their 
opacity to be the goal of XAI.5

Contemporary XAI research tries to achieve this goal through technical means. 
Specifically, it aims to develop algorithmic procedures – XAI methods – that gen-
erate explanatory information about AI systems. Hence, XAI is very much “in the 
business of developing analytic techniques with which to render opaque computing 
systems transparent” (Zednik, 2021, p. 285; see Mittelstadt et al., 2019; Rudin, 2019 
for similar claims). Since the kind of explanatory information needed to eliminate 
opacity depends on numerous factors (Kirsch, 2017; Langer et al., 2021a, 2021b), 
XAI researchers have developed a range of methods with different properties (e.g., 
scope, detail, format) (Guidotti et  al., 2018; Molnar, 2022; Speith, 2022). Further 
work has addressed which methods are best suited for concrete scenarios in which 
stakeholders interact with AI systems (Barredo Arrieta et al., 2020; Belle & Papan-
tonis, 2021). This approach assumes that rendering AI systems explainable requires 
i) developing a range of XAI methods, ii) identifying specific explainability con-
texts, and iii) mapping XAI methods to these contexts. The result is a divide-and-
conquer strategy: XAI research seeks, in any given case, to provide “the most appro-
priate explanation for a specific ML solution in a given context on a given task” 
(Zhou et al., 2021, p. 2; see also Fleisher, 2022, p. 12).

The divide-and-conquer strategy has its merits. It naturally accommodates the 
insight that there cannot be a one-size-fits all XAI approach, and that different stake-
holders, contexts and AI systems pose different constraints on feasible XAI methods. 
Further, the divide-and-conquer strategy has been and continues to be productive, 
both in terms of novel methods and conceptual analysis (e.g., Barredo Arrieta et al., 
2020; Belle & Papantonis, 2021; Köhl et  al., 2019; Langer et  al., 2021a, 2021b; 
Ribeiro et al., 2016; Sokol & Flach, 2020; Zhou et al., 2021). Indeed, contemporary 

4  Notice that while we adopt Humphreys’ framing in terms of knowledge of EREs, this can be adapted 
to an account centred on understanding by defining opacity as the lack of a grasp of EREs. Grasping 
an ERE involves making use of it to perform inferences, take decisions, or complete downstream tasks 
(Keil, 2019; Strevens, 2013).
5  Achieving this outcome does not require comprehensive explanation of all AI systems. For systems 
that operate in low-stakes environments, fewer elements of the system may be deemed epistemically rel-
evant.
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XAI research successfully produces tools enabling stakeholders to understand 
narrow aspects of AI systems (Belle & Papantonis, 2021; Guidotti et  al., 2018; 
Lapuschkin et  al., 2019; Molnar, 2022; Ribeiro et  al., 2016, 2018; Wachter et  al., 
2017). One prominent example is Local Interpretable Model-Agnostic Explanations 
(LIME) (Ribeiro et  al., 2016). This technique, applicable to any AI classification 
system, produces linear surrogate models which highlight the importance of particu-
lar features for a given classification. LIME has been shown to improve stakehold-
ers’ ability to assess the quality of rival classifiers and, as such, may prove an ade-
quate solution in specific contexts where such skills are required. Another success 
story for the divide-and-conquer strategy is research on counterfactual explanations 
and algorithmic recourse (Karimi et al., 2022; Wachter et al., 2017). This family of 
XAI methods can inform subjects of algorithmic decisions about which alterations 
to the input data would have resulted in a desired outcome. Such methods are crucial 
to enabling agency in an increasingly algorithmic world (Vredenburgh, 2022).

Despite these successes, however, the divide-and-conquer strategy is also limited. 
Neither LIME nor counterfactual explanations can provide a comprehensive under-
standing of how the systems under investigation work as a whole. They do not tell 
us how exactly the internal structure of the model maps inputs to outputs, neither 
do they allow us to predict how a system will behave in novel contexts. Indeed, in 
an influential paper, Rudin criticises the enterprise of XAI for this reason, assert-
ing that XAI methods “do not provide enough detail to understand what the black 
box is doing” (2019, p. 208). Similarly, Freiesleben (2024) evaluates two specific 
XAI methods (feature visualisation and network dissection) and concludes that 
neither are sufficient to support inferences about the functional role of subparts of 
model structure. Importantly, this information cannot be inferred even by independ-
ent application of various XAI method outputs. What is needed instead is system-
atic investigation that yields generalisable insights about systems’ overall functional 
organisation.

The need for such insights is expressed vividly in current debates about AI regu-
lation in politics and society. Take the European Commission’s proposed regulatory 
framework for AI systems (Artificial Intelligence Act, 2024). Article 14 states that 
adequate human oversight in high-risk scenarios demands that an overseer should 
“properly understand the relevant capacities and limitations of the high-risk AI sys-
tem and be able to duly monitor its operation, also in view of detecting and address-
ing anomalies, dysfunctions and unexpected performance” and be able “to intervene 
on the operation of the high-risk AI system” (Artificial Intelligence Act, 2024, art. 
14). With regards to both requirements, a detailed (and generalisable) understand-
ing of a trained system’s overall functional organisation is crucial. For illustration, 
consider the phenomenon of typographic adversarial examples in the image model 
CLIP (Goh et al., 2021). CLIP was trained to predict which text was paired with a 
given image on the internet. However, researchers found that CLIP was easily fooled 
by simply sticking a written label (e.g., “phone”) on an object (e.g., an apple), caus-
ing the image to be classified according to the written label rather than the object 
(e.g., as phone rather than apple). This behaviour was not foreseeable from ordinary 
reliability testing. Neither does highlighting the paper label as relevant to the clas-
sification output explain why CLIP relied on the labels rather than the objects in the 
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images for classification. However, through systematic investigation into the model, 
researchers revealed high-level neurons in CLIP which are sensitive to both images 
and text (Goh et  al., 2021). Understanding this feature of the model’s functional 
organisation made it easy to explain and predict CLIP’s behaviour when faced with 
written labels in images.

Luckily, CLIP is not in use in high-stakes domains. However, consider the dan-
gers of deploying a system with similar vulnerabilities to, e.g., scan for weapons 
at an airport. Here, as in many other cases where AI is deployed in the real world, 
safety is among the chief desiderata. It is listed among the first objectives in the 
EU AI Act (Artificial Intelligence Act, 2024, art. 1).6 One way to ensure safety and 
prevent harm is to subject AI systems to rigorous testing before deploying them in 
high-stakes situations (Durán & Jongsma, 2021). However, doing this exhaustively 
will often be infeasible due to the dimensionality of the input space (Hacker et al., 
2023; Keogh & Mueen, 2017). This makes it difficult to rule out the possibility of 
unpredictable failure when systems encounter novel inputs (Amodei et  al., 2016; 
Hendrycks et al., 2018, 2023; Wei et al., 2023). A necessary complementary strat-
egy, we think, is to characterise how the systems in question function in terms of 
how relevant components work together to elicit the behaviour we observe, i.e., MI. 
Based on such characterisations, we can anticipate and interpret system behaviour 
even for novel situations, helping us to ensure system reliability and safety (Meyes 
et al., 2019). The case of CLIP goes to show that insights into a system’s functional 
organisation can help us understand a system’s capabilities and limitations and avoid 
unforeseen failures.

Another benefit of MI is enabling more precise and informed scientific com-
munication about the nature and properties of opaque AI systems. The high-pro-
file release of strikingly performant models such as ChatGPT has led to a surge of 
debate about these systems (M. Mitchell & Krakauer, 2023; Pavlick, 2023). How-
ever, whether or not it is reasonable to describe large language models (LLMs) such 
as ChatGPT as possessing knowledge (Lam, 2022), implementing symbolic reason-
ing (Pavlick, 2023), or representing the world (Li et  al., 2023) arguably depends 
upon empirical questions about the internal structure that implements the model’s 
behaviour (Millière & Buckner, 2024). In other words, an accurate and scientifically 
defensible description of AI systems is contingent on the characterisation of EREs 
that may only be achieved through MI. We discuss the advantages of MI further in 
Section 3.3.

Importantly, the issue we are getting at here is a principled one, not a criticism of 
any particular XAI method. We acknowledge that certain methods are sufficient for 
explaining particular instances of system behaviour. But when deploying AI systems 
in the real world, fulfilling important societal desiderata requires a kind of holistic 

6  While there is no domain-general definition of what it means for an AI system to be safe, safety is typi-
cally associated with the avoidance of both physical and psychological harm to human beings (Steimers 
& Schneider, 2022).
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explainability that provides generalisable insights into how a system’s functional 
organisation elicits its behaviours or outputs.7

For clarity, we stress that the holistic explanations MI aims for are not synony-
mous with global explanations. In the XAI literature, global is an adjective ascribed 
to XAI methods which produce explanatory information about whole models (Mol-
nar, 2022; Speith, 2022); it is contrasted with local methods which produce explana-
tory information about individual model inferences (e.g., one prediction or classi-
fication). Holistic, in contrast to both of these terms, is an adjective we use to refer 
to explanations (such explanations typically involve diagrams and accompanying 
text) which capture the entire functional structure of trained models (as MI aims to 
do). In principle, an idealised global XAI method could produce a holistic explana-
tion. However, in practice, no extant method comes close to doing this. For example, 
Molnar (2022) categorises partial dependence plots as global methods, but plotting 
the marginal effect of particular features on model outputs is clearly a far cry from 
providing a holistic explanation of a trained model’s functional structure.

Ultimately, we claim that the project of developing holistic explanations of suf-
ficiently complex AI systems will never be adequately achieved through employing 
specific XAI methods in particular contexts. Instead, we propose, it can be achieved 
by mechanistic interpretability (MI). That is, by developing (human-interpretable) 
mechanistic explanations of systems’ functional organisation. So far, this kind of 
project has been underappreciated by both philosophers and computer scientists.

3 � Augmenting contemporary XAI through mechanistic 
interpretability

We suggest taking a mechanistic interpretability (MI) approach to complex AI sys-
tems that starts from the following premise: once AI systems become sufficiently 
complex, they are best investigated and explained through the same lens as bio-
logical organisms rather than being treated merely as technical artefacts (cf., Eden, 
2007). Taking inspiration from successful scientific inquiry in the life sciences, we 
propose that XAI practitioners should apply coordinated discovery strategies (such 
as pattern recognition, functional decomposition, localisation, and systematic exper-
imental manipulations) to characterise AI systems in terms of their functional organ-
isation, i.e., the organised activities of their functionally relevant components. At 
the same time, theorists should accommodate the unique costs and benefits of this 
research strategy in their portrayals of XAI research. With the full range of strate-
gies for explaining AI systems in view, we can make appropriate choices about how 
to ensure that crucial desiderata will be satisfied when deploying trained AI systems 
in society.

7  We use the term ‘holistic’ to signal a focus on how AI systems’ functional organisation implements 
their behaviour. As we will show, this need not be opposed to reductionist methodologies (see also Burn-
ston, 2021).
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3.1 � Mechanistic interpretability

If we want to explain how AI systems work as a whole, we are essentially interested 
in their functional organisation or structure. That is, we seek to understand what sys-
tem properties support their behaviour and how system functions are implemented 
by the orchestrated interactions of relevant component parts. This kind of project is 
neither new nor unique to XAI research.8 And it is highly familiar from recent dis-
cussions on how to explain biological systems mechanistically (see Bechtel, 2009; 
Bechtel & Richardson, 1993; Craver, 2001; Craver & Darden, 2013). When mecha-
nistic inquiry delivers explanations of sufficiently high quality, it affords improved 
prediction and control of target systems (Baetu, 2011; Craver, 2007; Howick et al., 
2010; Winning & Bechtel, 2018; Woodward, 2017; Zou et al., 2023). Therefore, we 
suggest adopting strategies familiar from mechanistic inquiry in the life sciences to 
develop mechanistic explanations of the capabilities, limitations, and behaviours of 
opaque AI systems.

Recall that ANNs acquire their functional organisation through automated train-
ing procedures. After training, components within the system (the EREs of mech-
anistic explanations) will adopt specialised roles that programmers do not usually 
anticipate. These components will be organised in ways allowing them to work 
together to elicit the behaviours we observe (Manning et al., 2020; Richards et al., 
2019). The task for researchers seeking MI will be to uncover the relevant compo-
nents along with their organisation. This task may not be simple, and it may seem 
impossible to map functions onto discrete parts of an ANN at first sight (see Sec-
tion 4 for further discussion). In fact, identifying relevant components will often go 
beyond investigating the functional roles of pre-individuated ANN structures like 
neurons and layers (Bau et al., 2017). Frequently, it may involve characterising more 
exotic and distributed structures like circuits (see Section 3.2), high-level representa-
tions (Zou et al., 2023), and representational subspaces (see Elhage et al., 2021).

To achieve such characterisations of functional components (EREs) in AI sys-
tems, researchers must detect and describe the robust patterns that underlie or main-
tain the system’s behaviour (Wimsatt, 1994). In other words, they must engage in 
a pattern recognition practice (Haugeland, 1998; Kästner & Haueis, 2021), where 
patterns are any non-random arrangements within systems (Dennett, 1991) which 
(in virtue of their orderly character) serve as candidates for recognition. As such, 
patterns constitute potential EREs when seeking MI for AI systems.

Pattern recognition practices in science are collective endeavours involving 
the coordinated application of shared skills, tools, and concepts (Brigandt, 2011; 
Kästner & Haueis, 2021). They consist in a set of epistemic activities which con-
form to epistemic norms shared and continuously refined by the research com-
munity throughout scientific inquiry. Epistemic activities include such things as 
decomposition and localisation (cf. Bechtel & Richardson, 1993; Brigandt, 2011; 

8  The idea that certain aspects of computer science should be treated as empirical inquiry (as opposed 
to a branch of mathematics) goes back at least as far as Newell and Simon (1976), see Eden (2007) for 
discussion.
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Kästner & Haueis, 2021) or recomposition (cf. Bechtel & Abrahamsen, 2005). 
Decomposition involves breaking a phenomenon down into a set of constitutive 
sub-functions and is often applied recursively to produce multi-level functional 
characterisations (Craver, 2007). Localisation is the assignment of a sub-function 
to a particular part of the system which is hypothesised to implement it. Recom-
position involves building a system back up in a functionally informed manner. To 
carry out an epistemic activity, researchers will typically engage in a variety of 
epistemic operations. These are the atomic units of scientific inquiry; they consist 
of concrete actions that track, measure, or manipulate the components of the target 
system, or generate, transform, and visualise data. In practice, epistemic activi-
ties are typically applied in an iterative manner to create a growing store of col-
lective knowledge and fine-tune hypotheses about which system components are 
functionally relevant, how they are organised, and how they interact to produce 
characteristic phenomena.

As such, we argue, pattern recognition practices are ideally suited to produce 
interpretable, functional characterisations of how AI systems work as a whole. 
They deliver mechanistic explanations (Bechtel & Abrahamsen, 2005; Craver, 
2001; Kästner & Haueis, 2021) of how the functionally relevant components of a 
system interact to produce a phenomenon of interest. In the best case, these expla-
nations are comprehensive, providing a detailed, multi-level account of how a sys-
tem works (see Fig. 1). This holds for artificial systems just as for biological ones.

Fig. 1   The application of 
coordinated discovery strate-
gies uncovers the functional 
organisation of trained AI 
systems. The system’s overall 
behaviour (black circle at the 
top) is elicited by the relevant 
components (smaller circles) 
working together. Components 
can be further analysed into sub-
components to reveal a nested 
hierarchy (see also Craver, 
2007)
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3.2 � The case of distill

Before turning to a case study, we note that MI has gained significant traction 
recently, with much work focused on transformer-based LLMs (Bricken et  al., 
2023; Li et  al., 2023; Manning et  al., 2020; Meng et  al., 2023). One notable 
approach here is dictionary learning, in which sparse autoencoders are used to 
discover features which are represented across numerous neurons (Bricken et al., 
2023; Rajamanoharan et al., 2024). Another particularly promising approach (not 
specific to transformers) involves causal abstractions, which enable hypotheses 
about the functional role of subgraphs of neural networks to be evaluated rigor-
ously through systematic manipulations (Geiger et  al., 2022, 2023). Yet another 
strategy, explicitly inspired by cognitive science, is representation engineering, 
which attempts to locate high-level concepts and processes within trained mod-
els (Zou et al., 2023).9 Further avenues of active investigation within MI include 
studying the global representational properties of ANNs (Elhage et al., 2022), how 
mechanistic structure evolves throughout the learning trajectory (Nanda et  al., 
2023), and the potential automation of numerous aspects of the MI research pro-
cess (Conmy et al., 2023; Hernandez et al., 2022; Marks et al., 2024). For useful 
surveys and discussion of the strengths and weaknesses of some of these methods 
see Räz (2023) and Räuker and colleagues (2023).10 At this point, we wish to reit-
erate that while certain methods are particularly well-suited for MI, what distin-
guishes MI from traditional XAI is not the methods it uses, but the way it applies 
methods in coordination with scientific reasoning in pattern recognition practices 
that are systematic, coordinated, and iterative. As such, for brevity and clarity of 
exposition of this central point, we limit our philosophical analysis in this paper to 
the case of Distill.

In their work on the image classification ANN InceptionV1 (Cammarata et  al., 
2020; Olah et al., 2018), Chris Olah and colleagues explicitly endorse applying life 
science research strategies to ANNs, suggesting that “neural networks are an object 
of empirical investigation” (Olah et  al., 2020a). Hence, they set out to character-
ise the functional structure of InceptionV1 using coordinated discovery strategies as 
described above.

For reasons of space, we cannot describe the InceptionV1 architecture in 
detail here; but a brief introduction to the structure of convolutional ANNs 
(CNNs) will aid understanding of what follows. As this family of models was 
designed to process image data, their architecture reflects an attempt to match 
the compositional and hierarchical properties of natural images (Chollet, 2021). 
The convolutional layers that give CNNs their name consist of filters which 

9  Note that Zou and colleagues frame their approach as an alternative to MI, which they construe nar-
rowly as the decomposition of ANNs into circuits. However, on our broader construal of MI as a pattern 
recognition practice, their approach clearly fits within it.
10  The discussion of robust concept detection in Räz (2023, p. 5) is particularly pertinent to our discus-
sion. However, we do not think the functional structure of trained AI systems necessarily needs to be 
explained in terms of concepts (see Boge, 2023 for discussion of whether ANNs learn concepts).
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cover a small portion of the input image (represented as an array of raw pixel 
values). These filters slide over the image, computing activations (dot products 
of input and filter plus bias) at each spatial position. By analogy with biological 
neural networks (and mathematical equivalence with other ANN architectures), 
filters can be thought of as the receptive fields of neurons, with one neuron cor-
responding to each spatial position the filter covers.11 As filters consist of train-
able parameters, neurons can learn to respond to different features in the image, 
producing maps reflecting the presence or absence of features (e.g., edges) to 
feed to downstream layers. Through composition of simple features, neurons 
in these downstream layers can thus become sensitive to complex features like 
shapes, objects, and people. Thus, the very structure of CNNs (their depth, con-
nectivity, and layer design) are adapted to the hierarchical compositionality that 
characterises images.

Olah and colleagues (Cammarata et  al., 2021; Olah et  al., 2020a) discover and 
analyse a curve detector circuit within InceptionV1. Circuits are sub-graphs of neu-
ral networks which, crucially, are not specified as distinct parts of the ANN’s archi-
tecture. Instead, circuits are part of the model’s learned structure. They are func-
tional units which neurons self-organise into during the training process. As such, 
the curve detector circuit, consisting of a group of neurons spanning five early lay-
ers and encompassing around 50 thousand parameters, is a compelling example of 
an ERE that can only be rendered accessible through a pattern recognition process 
seeking MI. To uncover this circuit, Olah and colleagues utilise various epistemic 
activities including decomposition and localisation. They begin by using feature 
visualisation, a technique in which an image is synthesised to maximise the activa-
tion of a given ANN component (Olah et al., 2017).12 The Distill team uses the term 
features to mean human interpretable concepts that components in ANNs become 
functionally specialised for.13 They taxonomise the neurons in the first 5 convolu-
tional layers of InceptionV1 into layer-wise families (i.e., functional groups) based 
on which features they are sensitive to (e.g., Gabor filters, colour contrasts, lines, 
curves). Using feature visualisations to represent neurons and families in diagrams 
of the ANN makes reasoning about their functional relationship significantly more 
tractable. Notice that this epistemic activity is composed of iterating multiple epis-
temic operations: producing visualisations for each neuron, applying labels to them, 
and grouping the neurons into families.

11  In biological brains, each neuron’s weights have to be learned separately, even if they are learning to 
detect the same visual feature (e.g., edges). In ANNs, exploiting the assumption that features may appear 
anywhere in any image, weights can be shared among neurons for computational efficiency.
12  For reasons of space and to retain focus on the pattern recognition practice, we will not go into formal 
details but instead paint the general picture in relatively broad strokes. For technical details see the refer-
enced work.
13  The authors conceive of features as corresponding to directions in neuronal activation space. In the-
ory, these directions can be defined across the vector space determined by the activity of arbitrary groups 
of neurons.
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Taxonomising neurons serves as a useful starting point, but a mechanistic expla-
nation of InceptionV1 also requires characterising the interactions between neu-
rons. To achieve this, having documented the presence of curve detector neurons 
in InceptionV1’s third layer, the investigators followed their connections to see how 
upstream neurons (those closer to the input layer) were contributing to their capa-
bilities. This required the application of additional tools, such as methods to visual-
ise the connection weights between neurons (Voss et al., 2021). Iterating this strat-
egy all the way back to the input layer allowed the researchers to develop a holistic 
view of the circuit. In so doing, Olah and colleagues uncovered further meso-scale 
EREs such as circuit motifs, which are recurring patterns across multiple neurons. 
For example, many neurons are “rotationally equivariant”, detecting features (e.g., 
curves) which are identical apart from their spatial orientation (Olah et al., 2020b). 
Ultimately, the Distill team concisely describes the mechanistic structure of the 
curve circuit as follows: “Gabor filters turn into proto-lines which build lines and 
early curves. Finally, lines and early curves are composed into curves” (Cammarata 
et al., 2021). Through coordinated and systematic application of epistemic activities, 
the full curve circuit becomes recognisable as an ERE distinct from the rest of the 
network within which it is embedded.

To ensure that discovered patterns are robust, pattern recognition must adhere 
to epistemic norms such as integrating multiple sources of evidence and ruling 
out alternative explanations.14 Otherwise, overreliance on visualisation techniques 
which involve researcher degrees of freedom risks falling foul of common scien-
tific blunders like confirmation bias (Freiesleben, 2024; Gelman & Loken, 2019; Pu 
& Kay, 2018). In line with this, the Distill researchers used multiple techniques to 
verify their hypotheses. For example, they observed the responses of curve detector 
neurons to natural images to confirm they played their hypothesised roles with real 
stimuli. However, this raises the possibility of a rival hypothesis; could the curve 
detectors actually specialise in detecting a finite set of specific curved objects, rather 
than the more general sub-function of curve detection? To exclude this rival hypoth-
esis, Olah and colleagues systematically tested the neurons with synthetic stimuli, 
determining that the curve detection neurons in layer 3b of InceptionV1 are invari-
ant to both fill and colour (i.e., they really are curve detectors).

In addition to applying decomposition and localisation to the trained network, 
Olah and colleagues carried out a (computational) recomposition of the curve detec-
tion circuits they had investigated (Cammarata et al., 2021). To do this, one of the 
authors, leveraging the insights gleaned from the discovery process, designed a 
curve detection algorithm with the same structure as InceptionV1’s by hand. That 
is to say, they manually set the values of the weights between the neurons. Having 
done so, the behaviour of the hand-designed network could be compared to that of 
InceptionV1 by exposing them to identical stimuli and observing their responses. 
A highly similar response profile was demonstrated, suggesting that Olah and col-
leagues really had recomposed the curve detection circuit. Indeed, we think this 

14  For more on robustness see, e.g., Wimsatt (1981).
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recomposition constitutes a sufficiently severe test to be confident in Olah and col-
leagues’ hypothesis of the functional organisation of the curve circuit (see Lam, 
2022 for a similar claim).15

The Distill investigation into InceptionV1 exemplifies all of the properties of a 
pattern recognition practice, viz., the coordinated application of epistemic opera-
tions consisting of a shared set of concepts, tools, and skills.16 Olah and colleagues 
organised their investigation around core concepts: features and circuits.17 When it 
comes to tools, various visualisation techniques, synthetic stimuli, and explainability 
interfaces were developed and employed throughout the discovery process. Finally, 
implementing a pattern recognition practice on ANNs demands multiple skills. 
Unlike in a wet lab, manipulation of physical instruments is not required. Rather, 
a firm grasp of the mathematics underlying ANNs is critical. What is shared with 
discovery processes in the life sciences are the reasoning skills required, i.e., choos-
ing which system properties to track and visualise, abductive reasoning to generate 
hypotheses, and design of experimental procedures to test those hypotheses.

3.3 � Benefits of the MI approach

Unlike the divide-and-conquer strategy, the pattern recognition practice applied 
by Olah and his colleagues followed a coherent, systematic research agenda. The 
scientists’ goal was to uncover functional components within the classifier and to 
illuminate how they work together in the system’s overall functional architecture. 
To this end, they (i) systematically searched for functional units (i.e., EREs) that 
had not been explicitly coded, (ii) coordinated different epistemic activities to help 
reveal the relationships between different measurements, and (iii) iteratively refined 
hypotheses concerning various EREs, their activities, and their interactions. Eventu-
ally, they stitched together a mechanistic explanation rendering intelligible how the 
first five layers of InceptionV1 work. With respect to curve detection specifically, the 
authors note that “although curve detection involves more than 50,000 parameters, 

15  A severe test of a hypothesis H, as characterised by Deborah Mayo, is such that “H agrees with the 
data (H passes the test), [and] also […] with high probability, H would not have passed the test so well, 
were H false” (Mayo, 2018, p. 92). We think that the potential for MI to provide severe tests of hypoth-
eses about the internal structure of trained models distinguishes it from the divide-and-conquer strategy 
(see Geiger et al., 2023 for another approach to MI that arguably implements severe testing).
16  Note that in some cases the computational methods described above have direct analogues in biol-
ogy and neuroscience. However, the similarity we wish to evoke holds at the level of research strategies 
not at the level of individual methods. For discussion of specific methodological similarities see Ivanova 
et al. (2021) on how probing methods in MI were derived from multivariate pattern analysis in neurosci-
ence and see, e.g., Bashivan et al. (2019) for use of synthetic visualisations in a neuroscience context. On 
how interventionist theories of causality can be applied to test causal hypotheses in ANNs see Geiger 
et al. (2021).
17  The investigation of circuits as a relevant unit of analysis has been adopted by further researchers 
(Marks et al., 2024; Wang et al., 2022), highlighting the cumulative nature of MI research.
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those parameters actually implement a simple algorithm that can be read off the 
weights and described in just a few English sentences” (Cammarata et al., 2021).

The case of Distill highlights that MI research has two distinct advantages. First, 
it can shed light on EREs (e.g., the curve detection circuit) of opaque AI systems 
that are inaccessible through individual XAI methods. There are two reasons for 
this. The first is that, like measurement tools in the life sciences, individual XAI 
methods are tuned to picking up specific kinds of information. While tools special-
ised for answering specific questions are clearly useful, they are also crucially lim-
ited. For instance, EEG measures electrical potentials, but it cannot tell us about 
brain structure. The second reason is that while a lot of information may be gath-
ered from applying different XAI methods, that information will often stand uncon-
nected. By contrast, successful pattern recognition (yielding ERE identification) 
crucially depends on the coordinated application of many relevant instruments and 
the integration of multiple sources of evidence in conjunction with careful scien-
tific reasoning (cf., Kästner, 2018), potentially involving severe testing to rule out 
alternative hypotheses (see fn 15). By identifying previously unknown EREs, and 
confirming they have been characterised accurately (e.g., through recomposition), 
researchers pursuing MI research will often be rewarded with deeper explanations 
revealing a wider set of EREs and uncovering the functional architecture of AI sys-
tems (see Fig. 1). We think this is precisely what is needed to render AI systems 
holistically explainable.

This leads us to the second advantage of MI research. Characterising a system’s 
functional structure in terms of how relevant components work together enables 
domain experts to control (e.g., through targeted interventions) and predict system 
behaviour even for novel situations (Geiger et al., 2023; Meng et al., 2023; Zou et al., 
2023). As such, it helps prevent unexpected failures and thus contributes to satisfy-
ing important societal desiderata. We already briefly outlined how MI contributes to 
system reliability and safety in high-stakes domains (in Section 2). While image rec-
ognition may not be such a domain per se, the case of Distill serves as proof-of-prin-
ciple that a fine-grained characterisation of the functional organisation of complex 
ML-based systems is possible. Besides, ML-based image recognition is likely to be 
utilised by AI systems employed in high-stakes domains such as traffic control, law, 
and surveillance. In addition to ensuring safety, the kind of understanding MI elicits 
is also crucial to support trust. While the relationship between interpretability, trust, 
and trustworthiness is complicated (Markus et al., 2021), it is widely agreed that if 
AI systems are going to be employed to make socially and morally consequential 
decisions, they need to be trustworthy (Kästner et al., 2021). The trust that laypeo-
ple have in technological systems is often founded upon their belief that someone, 
somewhere understands the system deeply (Sloman & Rabb, 2016). For sufficiently 
complex AI systems, we believe, such deep understanding depends upon uncovering 
EREs that are not attainable through the divide-and-conquer strategy. By contrast, 
MI has the potential to produce the kind of expert understanding that supports trust.

Another desideratum for which MI is likely to be important is scientific under-
standing. ANNs have already had a large impact on many scientific fields (Boge, 
2022; Bouatta et  al., 2021; Cichy & Kaiser, 2019). They achieved unrivalled pre-
dictive success for complex phenomena as diverse as neural activity, protein 
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folding, and particle physics. However, philosophers have expressed concern that 
ANN models, while undoubtedly impressive, do not confer scientific understanding 
(Chirimuuta, 2021). This limitation is usually traced to the inscrutable learned struc-
ture of these models. However, this structure is precisely what MI seeks to charac-
terise – and once it is captured successfully, formerly opaque ML-based systems 
may be re-engineered as transparent or interpretable ones. Therefore, we expect MI 
to play an increasingly important role for scientific research in the coming years (see 
also, Crook & Kästner, Forthcoming).

Though our discussion in this section has focused on the potential of MI, we want 
to be clear that we are not calling to eliminate traditional XAI. Rather, we take both 
approaches to be complementary. MI research requires extensive technical knowl-
edge, scientific skill, financial resources, and time. Just as in life science research, 
it may take several iterations before a relatively stable mechanistic explanation for 
a phenomenon is uncovered (cf. Craver & Darden, 2013; Kästner & Haueis, 2021). 
Thus, seeking MI for AI systems will usually incur much greater investment (both 
financial and labour) than developing XAI methods and applying them in well-
defined contexts. These higher costs might only be worth paying in high-stakes 
scenarios. Likewise, understanding the overall functional organisation of a system 
might simply not be relevant in some cases (Durán & Jongsma, 2021). Besides, 
we think that both MI research and applying traditional XAI methods in a divide-
and-conquer fashion will often be mutually supportive. Researchers seeking MI can 
employ specific XAI methods as tools to support some of their coordinated epis-
temic activities. Likewise, MI research may help refine specific XAI methods, e.g. 
by revealing new EREs, or improve the mapping between different XAI methods 
and contexts for the divide-and-conquer strategy. Thus, to what extent MI research 
and traditional XAI research will be required or useful will depend on the ques-
tions at hand, the stakeholders involved, and the specific desiderata at play. Still, it 
is important that MI research and its unique potential is not overlooked – neither by 
practitioners nor theorists of XAI.

4 � Six worries … and responses

Before closing, we shall briefly outline and respond to some possible objections to 
the MI approach. Though the list below is not exhaustive, we take it to capture the 
most common worries our proposal will face. We intentionally keep this brief, as a 
full discussion would require a distinct project.

First, some critics might worry that the chances of successful MI research are too 
low. For instance, because (#1) the complexity of large models (due to their num-
ber of parameters and non-linearities) makes explaining them mechanistically hope-
less (e.g., Cearns et al., 2019). Consider GPT3, which contains 175 billion param-
eters (Brown et al., 2020). Clearly, manually investigating every parameter of such 
large models one-by-one is infeasible. However, this is not required for MI. Instead, 
researchers are seeking patterns within the complex system to characterise its func-
tion. Crucially, these patterns may involve many parameters, and they can also recur 
multiple times within the system, dramatically reducing effective complexity (recall 
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the neuron families and circuit motifs discussed in Section 3.2). There is also the 
potential for some aspects of MI research to be automated, further ameliorating the 
problem (Conmy et al., 2023; Hernandez et al., 2022). Besides, models need not be 
explained exhaustively “all the way down” to parameter-level to accrue important 
benefits. The diversity of societal desiderata for which mechanistic insights may be 
relevant precludes specifying general criteria for sufficient mechanistic understand-
ing. However, in some cases, relatively abstract descriptions may be sufficient (e.g., 
Tenney et al., 2019; see also Lindsay & Bau, 2023 on evaluating understanding of 
neural systems; and Craver & Kaplan, 2020 on sufficiency conditions for mechanis-
tic explanation more generally). This is well in line with the demands formulated 
in the EU AI Act (see Section 2) as well as considerations about explainability and 
understanding being relative to different stakeholder needs (Langer et  al., 2021a, 
2021b).

Others may worry that (#2) we might be lacking the right concepts to accurately 
characterise an AI system’s functional organisation, either in terms of the complex 
features it exploits (Boge, 2022)18 or in terms of how it represents and processes 
those features. We think that even if this is true for now, it is not an argument against 
seeking MI in principle. It can make implementing a pattern recognition practice 
harder, but forming new concepts is part of the ordinary business of scientific dis-
covery (cf. Craver & Darden, 2013, chapter 5). Besides, the entire history of the life 
sciences speaks to humans’ ability to characterise unfamiliar and complex domains 
in various useful ways (Bechtel & Richardson, 1993; S. D. Mitchell, 2002). Indeed, 
Olah and colleagues borrow and fruitfully apply the concept of network motifs from 
systems biology during their curve circuits investigation (Alon, 2006; Olah et  al., 
2020b). Thus, we see little reason (theoretical or empirical) to think that trained AI 
models contain structure so alien that human beings are fundamentally unable to 
grasp it.19 Where concepts are lacking, they can be invented (see Schubert et  al., 
2021 for an example of this in Distill’s work). Science frequently operates by mak-
ing domains interpretable through visualisation, simplification, idealisation, and 
abstraction (Fleisher, 2022; Levy & Bechtel, 2013). To be sure, the conceptual chal-
lenge here should not be taken lightly, but we think the state of evidence suggests 
that MI is at least worth attempting.

Besides, a critic might protest that (#3) the analogy to life sciences research 
is flawed because we do not actually understand how living systems work either. 
Indeed, many neuroscientists admit that we do not yet have a comprehensive mech-
anistic understanding of how the brain works despite decades of effort (Buzsáki, 
2020; Pessoa, 2023). Yet, we see reasons to be more optimistic about understanding 
AI systems through MI than explaining the brain: (i) since AI systems are designed 

18  Boge’s concern here is with w-opacity, that is, opacity with respect to whatever information hidden in 
the data the trained system has learned to exploit. W-opacity is thus narrower than the functional char-
acterisation targeted by MI, which also involves specifying how the subparts of a system encode and 
process that learned information to generate behaviour. In other words: w-opacity is part of the problem 
MI aims to overcome.
19  We acknowledge that this is a complicated issue and much turns on how one construes “grasp” in this 
sense. However, discussing this in detail would make for another paper. For discussions on the concept of 
grasping see, e.g., Baumberger et al. (2016) and Janvid (2018).
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and trained by us, we have exhaustive knowledge about their architectures, learn-
ing algorithms, objective functions, training data, and learned connection weights, 
(ii) we can perform any conceivable experiment with arbitrary precision and com-
plete access to the causal consequences of our interventions, and (iii) we can choose 
to develop AI systems which are tailored to be amenable to scientific investigation 
(e.g., by enforcing linearity wherever it does not significantly hurt model perfor-
mance). While none of these advantages makes applying MI to complex AI systems 
easy, we think that in combination they warrant cautious optimism.

Similarly, critics may worry that (#4) the analogy to life science research is 
flawed because ANNs defy decomposition into components with different functional 
roles. We grant that, given the distributed nature of ANNs, one should not assume 
subfunctions will map neatly onto pre-individuated structures within an ANN (neu-
rons, layers, etc.). However, as discussed in Section 3.1, this is not a pre-requisite for 
MI to prove valuable. Identifying components relevant for a specific function may 
involve characterising more exotic and distributed structures (Bricken et al., 2023). 
This may not be straightforward, but that is another worry (akin to #1 and #2). The 
exact criteria a system must satisfy to afford effective mechanistic discovery pro-
cesses is a complex topic we cannot address in this paper (for classic and recent 
discussions see Simon, 2008; Woodward, 2013; Zednik, 2015). Broadly speaking 
though, we think extant evidence (including the Distill case study) strongly suggests 
that ANNs and other modern AI systems tend to be decomposable enough for MI to 
provide value. Further, as Zednik (2015) points out, the ongoing production of more 
powerful methods and strategies for conducting mechanistic discovery processes 
continually expands the range of systems that are usefully decomposable. Overall, 
we consider decomposability a matter of degree (cf. Bechtel & Richardson, 1993). 
And precisely how (and how easily) decomposable specific ANNs turn out to be is 
an empirical question (that only seriously attempting MI can possibly answer).

Even if MI research is successful, some might worry that the benefits we high-
lighted above (see Sections 2 and 3.3) will not be worth the trouble. For instance, 
those sympathetic to our approach in principle may argue that (#5) it will be impos-
sible for researchers to seek MI for large AI systems as quickly as they are devel-
oped. It would just be too resource intensive. While we acknowledge MI research 
requires significant resources (see Section 3.3), we think there are good reasons to 
pursue it anyway. First, it might simply be worth the investment if otherwise we 
cannot safely deploy AI in high-stakes scenarios (see Section 2). Second, because 
mechanistic insights may be transferable from one system to another, the invest-
ment might pay off more quickly than we think. For instance, insights about the 
functional organisation of one language model may well transfer to other language 
models (mutatis mutandis for other domains). Theoretical reasons for this optimism 
are provided by Cao and Yamins’ (2021) contravariance principle, which implies 
that functional convergence should be expected in systems that can perform com-
plex tasks efficiently (see also Bansal et al., 2021; Schrimpf et al., 2020). Besides, 
researchers are increasingly converging on architectural choices for AI systems 
(Bommasani et al., 2022). Since model architecture constrains both the kind of func-
tional structure that can emerge and the kind of epistemic operations researchers 
can apply, this is positive news for MI. Moreover, the resource intensive nature of 
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pattern recognition practices can be viewed as a feature, rather than a bug. There 
is still understandable resistance to large AI systems being deployed in high-stakes 
scenarios (Rudin, 2019). In light of these concerns, it may be reasonable to propose 
some degree of mechanistic explainability as a pre-requisite for adopting techno-
logical innovations that could prove consequential and difficult to reverse (Stirling, 
2007). A time-consuming requirement could give slow political processes time 
to react and inject democratic influence into decisions that impact all of society 
(Bender et al., 2021; Floridi et al., 2018).

Other critics may worry that (#6) MI will not yield accurate predictions of AI 
systems’ behaviours in social contexts – though this is what really matters when we 
think about deploying AI in modern society (Bender et al., 2021). We acknowledge 
MI will not be sufficient to precisely predict all effects of deploying models in spe-
cific real-world contexts with idiosyncratic data distributions (Quiñonero-Candela, 
2009; such prediction is generally intractable, see Shalizi, 2006). However, given MI 
research seeks to reveal how AI systems work as a whole, it yields deeper and more 
generalisable insights into how a system may behave in novel (social) contexts than 
applying the divide-and-conquer strategy. Further, the ability to intervene on trained 
systems, which MI purports to deliver, may prove important for controlling AI sys-
tems after they are deployed. Thus, even if MI is costly and the benefits are not all-
encompassing, it may still be superior to its alternatives.

Before concluding, we wish to stress that our aim in this paper is to characterise 
MI as a distinctive approach to XAI, not to present it as a panacea. As such, though 
we reject the notion that any of these objections is fatal to the MI research program, 
we acknowledge that they are legitimate considerations which must be factored into 
a comprehensive assessment of its pursuit worthiness in specific cases. In a nutshell, 
MI research can offer answers to research questions which are in principle unavail-
able to those pursuing a divide-and-conquer strategy (see Section 2). As such, it is 
important for practitioners to pursue MI to gain explainability where other strategies 
are unproductive. And it is also crucial for theorists to accommodate MI in their 
portrayals of the XAI research landscape (see Section 3.3). For only by having the 
full range of strategies for explaining AI systems in view can we make appropriate 
choices about which research to pursue to ensure societal desiderata are satisfied.

5 � Conclusion

Contemporary XAI research is seeking explainability for opaque AI systems in a 
divide-and-conquer fashion, viz. by employing specific XAI methods in various 
contexts. While this strategy has its merits, it fails to illuminate how trained AI sys-
tems work as a whole. Yet precisely this kind of holistic understanding is needed 
to satisfy important desiderata placed on AI systems by society. We argued that 
mechanistic interpretability research, though it is resource intensive, can serve as 
a remedy: by uncovering a wider range of EREs than any individual XAI method, 
MI contributes to a deeper and more holistic understanding of complex AI systems’ 
functioning. It aims to uncover the functional organisation of trained AI systems, 
including both the complex features they exploit and how they represent and process 
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those features. These insights can be utilised to predict and control system behaviour 
beyond pre-defined contexts, which is crucial to satisfy societal desiderata. Appre-
ciating these unique benefits of MI research will help scholars to make adequate 
choices about what research to pursue to ensure we can safely and reliably deploy 
ML-based systems in modern society.
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