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Novel method for impedance feature selection based on utility index.
Temperature determination for different cells and states, even during operation.
143 established and novel features extracted from each impedance spectrum.
Comprehensive literature review of impedance-based temperature estimation methods.
Method can also be used for state of charge and state of health estimation.
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A B S T R A C T

Electrochemical impedance spectroscopy is applied to lithium-ion batteries during operation with the general
purpose of an operando characterization and specifically for battery state estimation. For the first time, 143
features of the measured impedance spectra are extracted and form the data basis that contains information
on the cell states and their complex dependencies. Spectra are collected in stationary and transient conditions
at varying temperatures, states of charge and states of health. A novel method is presented that enables an
evaluation of features under these multidimensional dependencies. By a rigorous classification, interpretation
and discussion an enhanced understanding of state dependencies and sensitivities towards operating conditions
is reached. Ultimately, the selected impedance features are utilized for an operando state estimation and
especially the determination of the cell internal temperature. A detailed literature review of impedance-based
temperature estimation is provided. Results are presented for a Molicel INR-21700-P42A and a Samsung
INR-21700-50E with an accuracy of 2 K for a wide range of operating conditions and even with increased
aging.
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Nomenclature

Abbreviations

BMS Battery management system
CC Constant current
CH Charge
CCCV Constant current, constant voltage
CPE Constant phase element
DC Direct current
DCH Discharge
DEIS Dynamic electrochemical impedance spec-

troscopy
ECM Equivalent circuit model
EIS Electrochemical impedance spectroscopy
LCO Lithium cobalt oxide
NCA Nickel cobalt aluminum oxide
SEIS Stationary electrochemical impedance spec-

troscopy
SEI Solid electrolyte interphase
SiOx Silicon oxide
SoC State of charge
SoH State of health
SoHC State of health with respect to capacity fade
SVR Support vector regression
UI Utility index

Indices

𝐺 Superset identification variable
imag Imaginary part of impedance
𝑖𝐾 𝑖th element of group 𝐾
IR Intersection Resistance
𝐾 Subset identification variable
𝐾− Previous value in group 𝐾
𝐾+ Subsequent value in group 𝐾
locMin Local minimum of the locus
locMax Local maximum of the locus
mag Magnitude of impedance
pha Phase of impedance
real Real part of impedance

Parameters and Variables

𝐴 Pre-exponential factor of Arrhenius equa-
tion

𝐵 Offset factor of Arrhenius equation
𝑑 Pairwise distance
𝑑 Mean of pairwise distances
𝑑 Median of pairwise distances
𝑑Min Minimum of pairwise distances
𝑑Max Maximum of pairwise distances
𝑑Ratio Ratio between minimum 𝑑𝑚𝑖𝑛 and maximum

𝑑𝑚𝑎𝑥
𝐸a Activation energy

1. Introduction

Monitoring lithium-ion batteries is crucial for their operation, per-
formance, lifespan, and safety in automotive applications. The bat-
tery management system (BMS) is responsible for ensuring that the
2

𝑓 Frequency
𝑓min Lowest measured frequency
𝑓max Highest measured frequency
𝑖UI Utility index
𝑖UI,1𝜎 Utility index based on 1 𝜎 sensitivity range
𝑖UI,2𝜎 Utility index based on 2 𝜎 sensitivity range
𝑙arc Length of the locus curve
𝐿 Inductance
𝑛 Exponent of CPE element
𝑛𝐾 Number of data included in group 𝐾
𝑛𝐺 Number of data included in group 𝐺
𝑄CPE Capacity of CPE element
𝑅 Resistance
𝑅0 Effective resistance
𝑅c Universal gas constant
𝑅d Range of pairwise distances
𝑇res Temperature resolution
𝛥𝑇 Temperature step size
𝑥 Feature data
𝛥𝑥̄ Change in mean value
𝑥̃0.25 25 % quartile of measurement points
𝑥̃0.75 75 % quartile of measurement points
𝑥̃IQR Interquartile range of measurement points
𝑍 Impedance
𝑍R0 Impedance of resistance 𝑅0
𝑍L0 Impedance of inductance
𝑍RL Impedance of RL element
𝑍RQ Impedance of ZARC element
𝛼 Angle that encloses a straight line from

𝑍(𝑓min) to 𝑍(𝑓max) with the real axis
𝛽1 Angle that encloses a straight line from 𝑍IR

to 𝑍(𝑓min) with the real axis
𝛽2 Angle that encloses a straight line from 𝑍IR

to the local minimum (𝑍locmin) with the real
axis

𝛽3 Angle that encloses a straight line from 𝑍IR
to the local maximum (𝑍locmax) with the
real axis

𝜎 Standard deviation
𝛥𝜎𝐾 Change in standard deviation of group 𝐾
𝜎2d Variance of pairwise distances
𝜔 Angular velocity

operating limits of the cells are maintained. The BMS relies on acquir-
ing measurement data and utilizing simulation models to predict the
condition of cells. This is necessary as certain operating states, such
as state of charge (SoC) or state of health (SoH), cannot be measured
directly [1].

Research in cell analysis emphasizes a new technological approach
— electrochemical impedance spectroscopy (EIS). Laboratory tests have
demonstrated that this technology has great potential. Due to the
good correlation between the change in temperature [2–4], SoC [5,6],
SoH [7–9] and the measured impedance, as well as the fact that it
enables these parameters to be determined simultaneously, the online
capability of this method is increasingly being investigated, cf. [10].
However, to achieve a valid and reproducible state estimation using
this technology, it is necessary to understand and compensate for the
influences on the impedance or take them into account during the
measurement [11]. Such measures are especially important if the EIS

needs to be conducted during operation.
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Raijmakers et al. uses the EIS to measure the internal cell temper-
ature [2]. The point of intersection with the real axis in the Nyquist
diagram is used as a feature, which is called the characteristic fre-
quency 𝑓0 [2]. It is independent of the state of charge, but is strongly
dependent on the temperature [2]. The associated ohmic resistance
is also independent of the SoC [12]. With increasing temperature,
this value decreases mainly due to the electrolyte’s conductivity [12].
Spinner et al. found that the assumption of SoC independence in the
high frequency range is only valid if a stable solid electrolyte interface
(SEI) is present [13]. The authors note that this changes significantly
with an increase in temperature (65 ◦C < 𝑇 < 100 ◦C). However,
he described SoC independence in the high frequency range can also
e influenced by inductances, which are affected by the cables of the
easuring device, the cell geometry and the windings [14–16]. As these
arameters do not change with varying cell states, the inductance is
redicted to be independent of temperature and SoC [2].

The above explanations suggest that the interpretation of impedance
pectrum results can be influenced by a number of factors that depend
n the measurement setup as well as cell chemistry and cell states.
hese complex interactions explain why different research groups have
elied on various features for temperature estimation, as shown in
able A.1 in the appendix. The literature mainly uses features from the
aw data, such as magnitude and phase or real and imaginary parts at
iscrete frequencies. In addition to this widespread approach, some re-
earch groups extract features based on a model. They approximate the
mpedance spectrum with an equivalent electrical circuit and analyze
he values of individual elements via temperature change [3,17,18].
dditionally, there are publications that base temperature estimation
n several features, rather than just individual characteristics. Beelen
t al. optimized the weighting of the real and imaginary parts to
mprove temperature estimation [19,20]. Recently, more data-based
ethods have been employed. Ströbel et al. used artificial neural
etworks to ensure precise temperature estimation even under vary-
ng conditions [21,22]. Ouyang et al. also used machine learning
lgorithms, but focused on support vector regression (SVR) [6]. They
rained the algorithm using a reduced number of features. The suitabil-
ty of a feature is typically evaluated using a regression analysis with an
𝑡ℎ-order polynomial [13,23–26] or the Arrhenius equation [2,13,27–
0]. Individual features for machine learning algorithms are selected
sing the Pearson correlation [6].

This article presents a novel method for evaluating features from the
mpedance spectrum to determine temperature, even when cell states
uch as SoH or SoC change. The multidimensional dependencies are
haracterized by a figure of merit — the so-called utility index (UI). It is
sed to give a recommendation for the selection of features. Due to the
nderlying calculation method, it is possible to predict achievable ac-
uracies. For the first time, 143 features of the impedance spectrum are
xtracted for further analysis. Already known features from literature
re also compared with new approaches. To demonstrate this method,
attery states such as SoH, SoC, temperature, and C-rate are varied. The
ethodology is presented with a focus on temperature determination.
ue to its general approach, it can also be used for SoC and SoH
stimation.

. Methodology

The methodology is based on the basic principles of applied ma-
hine learning [31], which is why the following sections can be subdi-
ided into Feature Extraction and Feature Selection.

.1. Impedance feature extraction

Features are extracted from the measured impedance spectra, which
an be evaluated with regard to their sensitivity for temperature deter-
ination. For this purpose, a total of 143 features are generated from

ach impedance spectrum using four different approaches: raw data,
eometry, equivalent circuit model (ECM) and statistics.
3

t

.1.1. Features from raw data
Temperature estimation is most commonly achieved through the

se of features extracted from raw data, see Table A.1. In literature,
uthors typically utilize only the Cartesian coordinates (real and imag-
nary parts) or the polar coordinates (magnitude and phase) of the
mpedance, with few exceptions. These values can be measured and cal-
ulated for each frequency point, resulting in a variety of characteristics
ublished in the literature. This variation can also be attributed to the
nfluence of different cell states and external conditions. To analyze the
ntire impedance spectrum without increasing the number of features
nnecessarily, 15 frequencies are distributed logarithmically across a
requency range between 𝑓min and 𝑓max. This approach provides a
omprehensive representation of the entire spectrum. Discretization
s permissible because influences always affect an impedance range
nd not individual frequencies, provided there is no influence from
nterference or other inductive effects. It is important to consider this
implification when interpreting the results.

.1.2. Geometry
The geometry category comprises impedance features that are not

ssociated with a specific frequency but are derived from the locus
f the impedance spectrum by considering multiple frequency support
oints. The features are listed in the following Table 1.

Table 1
List of features from geometry.

Name Description

𝑍IR Impedance at intersection with real axis
𝑓IR Intersection frequency
𝛼 Angle that encloses a straight line from 𝑍(𝑓min) to 𝑍(𝑓max) with

the real axis
𝛽1 Angle that encloses a straight line from 𝑍IR to 𝑍(𝑓min) with the

real axis
𝛽2 Angle that encloses a straight line from 𝑍IR to the local

minimum (𝑍locmin) with the real axis
𝛽3 Angle that encloses a straight line from 𝑍IR to the local

maximum (𝑍locmax) with the real axis
𝑙arc Length of the locus curve
𝑍locMin Local minimum of the locus, cf. Fig. 1
𝑍locMax Local maximum of the locus, cf. Fig. 1
𝑑IR, locMin Distance between 𝑍IR and 𝑍locmin
𝑑IR, locMax Distance between 𝑍IR and 𝑍locmax

The intersection of the impedance spectrum with the real axis in
the Nyquist plot is a useful indicator for estimating temperature, see
Table A.1. To obtain the most accurate zero crossing 𝑍IR, a linear
nterpolation is performed due to the discrete frequency support points.
he corresponding intersection frequency 𝑓IR is then approximated
ased on this value. Additional angular relationships (𝛼, 𝛽1−3) were
dded to analyze changes in the entire locus curve. The selection is
ased on an exploratory data analysis, which revealed a correlation
ith changes in temperature. The same correlation was observed for the

ength of the locus curve 𝑙arc, as well as for the local maxima 𝑍locMax
nd minima 𝑍locMin. For the latter two, the real and imaginary parts
ere evaluated separately.

.1.3. ECM
Cell impedance spectra can be approximated using an equivalent

ircuit model. As the use of an ECM is very common in literature, the
mplementation is only described roughly, but can be found in more
etail in [32–34]. The following Fig. 1 illustrates the ECM network
sed and presents a result based on the Samsung SDI INR-21700-50E
SDI50E) measurement series as an example, cf. Table 3.

Effective resistance 𝑅0 is used to describe the electrical and ionic
onductivity. It can be interpreted as the sum of ohmic resistances
electrolyte, active material, current collector, . . . ) [10,35,36], where
he electrolyte conductivity is the determining factor [37]. It does not
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Fig. 1. Illustration of an impedance spectrum from the SDI50E measurement series at:
oH = 100 %, SoC = 10 %, 𝑇 = 25 ◦C, 𝐷𝐶 = 0 A. In addition, the approximated
pectrum and the equivalent electrical circuit configuration used are shown.

ead to any change in the phase relationship and is therefore frequency
ndependent and purely real:

R0(𝑗𝜔) = 𝑅0. (1)

s mentioned in the introduction, cabling and cell winding can affect
he impedance. The series inductance

L0(𝑗𝜔) = 𝑗𝜔𝐿0 (2)

nd the parallel connection of resistance and inductance

RL(𝑗𝜔) =
𝑗𝜔𝐿

1 + 𝑗𝜔𝐿
𝑅

(3)

ere used for this purpose. However, most of the impedance spectrum
s dominated by resistive–capacitive processes. Since the battery cell
onsists of two electrodes and thus has at least two dominant time
onstants, two ZARC elements were also used for this purpose, see
ig. 1. Such an element can be formed by connecting a resistor and
constant phase element (CPE) in parallel. Its mathematical definition

s given by

RQ(𝑗𝜔) =
𝑅

𝑅 ⋅𝑄CPE ⋅ (𝑗𝜔)𝑛 + 1
, 0 ≤ 𝑛 ≤ 1. (4)

In addition, another ZARC element is used to describe the low fre-
quency behavior. It allows a simplified representation of the diffusion
path. The total impedance

𝑍(𝑗𝜔) = 𝑅0 + 𝐿0 +𝑍RL(𝑗𝜔) +𝑍RQ1(𝑗𝜔) +𝑍RQ2(𝑗𝜔) +𝑍RQ3(𝑗𝜔) (5)

results from the series connection of the individual elements. Taking
the above Eqs. (1)–(5) into account, the total impedance consists of 13
variables, which are summarized in Table D.1. To solve equation (5)
approximately, the non-linear least squares method is used. The Matlab
solver ’’lsqnonlin’’ attempts to minimize the resulting residuals with
respect to the target values over the entire impedance spectrum.

2.1.4. Statistics
Statistical methods are intended to provide information on the

distribution, variation and tendency of the measured values. Table 2
presents the selected statistical features. Real and imaginary parts as
well as magnitude and phase are evaluated individually.

Some of the features require the calculation of the pairwise distance.
4

The Euclidean distance is chosen for this, as it can be used to describe
Table 2
List of features from Statistics.

Name Description

𝑑Min Minimum of pairwise distances
𝑑Max Maximum of pairwise distances
𝑑Ratio Ratio between minimum 𝑑𝑚𝑖𝑛 and maximum 𝑑𝑚𝑎𝑥
𝑑 Mean of pairwise distances
𝑑 Median of pairwise distances
𝜎2

d Variance of pairwise distances
𝑅d Range of pairwise distances
𝑥̃0.25 25 % quartile of measurement points
𝑥̃0.75 75 % quartile of measurement points
𝑥̃IQR Interquartile range of measurement points

the relationship between two points in two-dimensional space [38,
p.15]. If this calculation is performed for all frequencies, the distance
between each measurement point and all others can be determined.
The application to the real and imaginary parts is permissible, as they
have a common reference system and the same unit. This does not
apply to magnitude and phase, so the pairwise distance is calculated
individually. In the following, the distance matrix can be used to apply
statistical methods. The minimum value 𝑑min, maximum value 𝑑max or
the ratio of both to each other 𝑑ratio is formed. This allows a statement
to be made regarding the range as well as outliers and inconsistencies.
The mean 𝑑 and median 𝑑 can be used to illustrate the overall trend.
However, the latter is less sensitive to outliers [39, p. 77]. The first and
third quartile (𝑥̃0.25, 𝑥̃0.75) represent the value below which 25 % and
75 % of the data are located. Together with the range 𝑅d, interquartile
range 𝑥̃IQR and the variance 𝜎2d, they serve as an indicator for the
dispersion of the data [39].

2.2. Impedance feature selection — utility index

The pre-processed data from Section 2.1 is used for classification
based on common cell states. The correct allocation to the individual
groups is of great importance for the further calculation. It can be
useful to work with fixed threshold values in order to be able to better
control the classification, especially with small amounts of data. Within
a group 𝐾 the cell states are constant, only the values of the associated
feature 𝑥𝑖𝐾 differ. As already mentioned, a sufficient amount of data,
but at least 3 values per group, is required to achieve a useful statistical
distribution. The mean value

̄𝐾 = 1
𝑛𝐾

⋅
𝑛𝐾
∑

𝑖=1
𝑥𝑖𝐾 (6)

and the associated standard deviation

𝜎𝐾 =

√

√

√

√

1
𝑛𝐾

⋅
𝑛𝐾
∑

𝑖=1
(𝑥𝑖𝐾 − 𝑥̄𝐾 )2 (7)

are calculated individually for each group 𝐾, where 𝑛𝐾 is the number of
data contained. The data obtained in this way can be summarized over
the various temperatures to form a superset 𝐺, so that 𝐾 ⊆ 𝐺 applies.
It leads to a classification of the same cell states over temperature. An
example of this can be seen in Fig. 2(a). The group assignment can
be recognized by the color scaling, where a subdivision takes place
exclusively based on the SoC. For better readability, each 𝑥̄𝐾 of the
subset 𝐾 is labeled with the corresponding temperature.

The classification allows the calculation of the group-specific utility
index 𝑖UI,𝐾 , which is explained in more detail below. It is introduced
to obtain a global measure for analyzing the usefulness of a feature.
To ensure comparability across all units of measurement, the UI is a
dimensionless quantity. The calculation is based on the ratio of the
standard deviation 𝜎𝐾 to the change in the mean value 𝛥𝑥̄𝐾 , normalized

to 1. This is a modification of the coefficient of variation, which uses
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Fig. 2. Illustration of the utility index calculation methodology. Both diagrams refer to the stationary EIS data of the MoliP42 A measurement series. The magnitude at 1 Hz
|𝑍(1 Hz)|) was used as an example. (a) shows the calculation based on the sensitivities of the respective temperature reference. (b) illustrates the interpolation approach for
alculating the UI based on a given temperature difference.
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he change in the mean value over temperature for calculation. For
quidistant temperatures it is defined as:

UI(𝜎, 𝛥𝑥̄) = 1 − 𝜎
|𝛥𝑥̄|

. (8)

The utility index is calculated individually for each group 𝐾, but results
from the mean value of two UIs. They arise due to different values
for 𝛥𝑥̄𝐾 . For the calculation, the change in the mean value to the next
higher 𝛥𝑥̄𝐾+ and lower temperature 𝛥𝑥̄𝐾− is evaluated. An example of
this can be seen in Fig. 2(a). The index 𝑖UI,𝐾 can therefore be calculated
using

𝑖UI,𝐾 =
𝑖UI(𝜎𝐾 , 𝛥𝑥̄𝐾+) + 𝑖UI(𝜎𝐾 , 𝛥𝑥̄𝐾−)

2
(9)

or each group 𝐾. Eq. (8) is restricted to equidistant temperatures,
herefore it is extended through linear interpolation (see blue shaded
rea in Fig. 2(b)). This ensures a common calculation basis within
roup 𝐺, and prevents different weightings. Additionally, it allows for
ensitivity adjustments. For this purpose, the variable 𝑇res is introduced,
hich specifies the desired temperature resolution. Interpolation is
erformed between mean values and standard deviations. This results
n

UI,𝐾 (𝜎𝐾 , 𝛥𝑥̄𝐾 , 𝛥𝜎𝐾 , 𝛥𝑇𝐾 ) = 1 −
𝜎𝐾 − (𝛥𝜎𝐾 − 𝛥𝜎𝐾

𝛥𝑇𝐾
⋅ 𝑇res)

|

𝛥𝑥̄𝐾
𝛥𝑇𝐾

⋅ 𝑇res|
. (10)

he two-sided approach 𝜎𝐾+, 𝜎𝐾− applies to both the change in the
ean value and the change in the standard deviation. Eq. (9) takes

his into account. Based on Eq. (8), the following limit consideration
esults for the utility index:

lim𝜎→0 𝑖UI(𝜎, 𝛥𝑥̄) = 1 lim𝛥𝑥̄→0+ 𝑖UI(𝜎, 𝛥𝑥̄) = −∞
lim𝜎→+∞ 𝑖UI(𝜎, 𝛥𝑥̄) = −∞ lim𝛥𝑥̄→0− 𝑖UI(𝜎, 𝛥𝑥̄) = −∞

lim𝛥𝑥̄→−∞ 𝑖UI(𝜎, 𝛥𝑥̄) = 1
lim𝛥𝑥̄→+∞ 𝑖UI(𝜎, 𝛥𝑥̄) = 1

It should be noted that 𝜎 ∈ R+ and 𝛥𝑥̄ ∈ R∗. The following
lso applies to the domain DUI of the utility index: DUI = {𝑖UI | 𝑖UI ∈

R+
0 , 0 ≤ 𝑖UI ≤ 1}, whereby negative values are set to 0. The explanations
bove can be interpreted as follows: If the standard deviation is greater
han or equal to the change in the mean value, the UI converges to 0.
onversely, it approaches 1 when the distance between the two values
ecomes maximum.

By introducing the utility index and using Eqs. (9) and (10), an
ssociated 𝑖UI,𝐾 is obtained for each feature 𝑥 of a group 𝐾. The

arithmetic mean is then used to calculate a single value

𝑖UI,𝐺 = 1
⋅
𝑛𝐺
∑

𝑖UI,𝑖𝐾 (11)
5

𝑛𝐺 𝑖=1
hat represents the usefulness of a feature within the superset 𝐺 from
number 𝑛𝐺 of corresponding indices.

The analysis of 𝑖UI,𝐺 enables the selection of one or more appropriate
eatures. The highest potential for reproducible and precise estimation
f the target variable, temperature in this case, is assigned to the
aximum across all index values. A detailed analysis based on different

emperature ranges is also possible, depending on the definition of
roup 𝐺, see Section 4.3. Additionally, the utility index can be calcu-
ated by combining the groups 𝐺 into a common superset, for example,
cross all states of charge and states of health. The calculation is similar
o Eq. (11).

. Experiments

.1. Measurement setup

To analyze the various cell states and their resulting influences
sing the developed methodology, a comprehensive cell measurement
s required. For this purpose, two independent measurement series were
onducted on two different cells: the MoliP42 A and the SDI50E. The
pecifications for each individual cell can be found in Table 3.

Table 3
Cell specification. The Molicel INR-21700-P42A data is obtained from an internal
teardown report. Unless otherwise stated, the data for the SDI INR-21700-50E is taken
from [40].

Molicel Samsung SDI
INR-21700-P42A INR-21700-50E

format: 21 700 21 700
nominal capacity: 4.20 Ah 4.90 Ah
nominal voltage: 3.6 V 3.63 V
operating range: 2,5 – 4,2 V 2,5 – 4,2 V [41]
chemistry: NCA | C + SiOx NCA | C + Si

The cells are evaluated using different equipment on separate test
benches. Each setup ensures good contact and minimal external mag-
netic field interference, achieved through the use of spring contact pins,
Kelvin contacting, and twisted sense lines. Galvanostatic excitation is
chosen for the EIS measurement, utilizing a Gamry galvanostat and the
EIS option of the SL1132 A test bench. The systems and measurement
setup are listed in Table 4.

The excitation amplitude is selected so that linearity is maintained
and a high signal to noise ratio is achieved.
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Table 4
Measurement setup.

Molicel Samsung SDI
INR-21700-P42A INR-21700-50E

Battery cell tester: Scienlab Scienlab
SL1132A SL6/30/0.18BTS20C

Cell contacting: spring probe pins, spring probe pins,
kelvin-connection kelvin-connection

Temperature sensor: PT1000 PT100

EIS – specification
Equipment: cell tester Gamry Interface 5000
Frequency range: 5 kHz–50 mHz, 10 kHz–100 mHz,

51 points 51 points
Amplitude: 300 mA 250 mA

3.2. Measurement procedure

Due to the objectives of both measurement series, the test proce-
dures differ, see Table 5. The SDI50E measurement series focuses on
a comprehensive variation of important cell states. To achieve this,
a cyclic ageing campaign is initiated. For each SoH, see Table 5,
three cells undergo a 0.5 C constant current, constant voltage (CCCV)
charge cycle, followed by a 1 C discharge profile at 30 ◦C. After four
standard cycles, two additional fast charge profiles with a maximum
C-rate of 2.25 C are inserted. Upon reaching the specified remaining
capacity, the cells are subjected to the EIS characterization process,
which is illustrated in the flow chart in Fig. B.1b. The measurement pro-
cess begins by setting the climate chamber temperature and allowing
sufficient time for temperature distribution to become homogeneous
inside the cells. Subsequently, the cells are charged with the CCCV
profile up to the cut-off voltage. Once the termination condition is
met, the batteries are discharged to the desired state of charge using
constant current and Coulomb counting. In order to prevent accelerated
aging and interruption caused by the superimposed constant currents,
the edge areas of the operating range are not measured. A half-hour
relaxation period follows to reduce overpotentials and enable a mostly
reproducible impedance measurement. The results indicate that an
increase in relaxation time enhances reproducibility. Consequently, the
relaxation period for the MoliP42 A is extended to three hours. When
collecting the data with direct current superimposition (DC offset), it
is ensured that the charge throughput does not change by more than
1 % of the nominal capacity during the measurement of one impedance
spectrum. This approach minimizes the impact of non-stationarity, as
otherwise the assumption of a linear and time-invariant measurement
cannot be upheld.

Table 5
Scope of measurement.

Molicel Samsung SDI
INR-21700-P42A INR-21700-50E

SoH: 100 % 100, 80 %
SoC: 10–90 % (20% steps) 10–80 % (10 % steps)
Temp.: 0–55 ◦C (5 ◦C steps) −10, 0, 15, 25, 35, 45 ◦C
DC-offset: Charge: 0.1, 0.3 C

Discharge: 0.1, 0.3 C

The MoliP42 A measurement series is utilized to represent cell
ariations more accurately, using five cells. Additionally, it analyzes
emperatures up to 55 ◦C with an increased number of measurement
oints (refer to Table 5). The test procedure is illustrated in Fig. B.1a
n the appendix. Each state of charge is established through constant
urrent charging and Coulomb counting. This process is performed in
he discharge direction after reaching the last SoC (90 %).
6

4. Results and discussion

4.1. Sensitivity analysis

To examine the behavior of the utility index, a sensitivity analysis
is conducted using a first-order polynomial with normally distributed
data points as the basis. Fig. 3(a) shows the probability distribution
function of two sample points around their mean value. In addition,
twice the standard deviation is highlighted in each case.

To investigate the influence of the standard deviation at a constant
distance between the means 𝛥𝑥̄𝐾 = |𝑥̄𝐾+ − 𝑥̄𝐾 |, the variance is changed.
Due to the calculation method described in Section 2.2, this results in
different values for the utility index. In Fig. 3(a), the variance is chosen
so that twice the standard deviation corresponds to half the change in
the mean (0.5 ⋅ (𝑥̄𝐾+ − 𝑥̄𝐾 ) ≈ 2𝜎). It can be concluded that 95.4 % of
the data can be clearly assigned to the respective mean. The resulting
𝑖UI,2𝜎 value can also be used to estimate the possible accuracy. Fig. 3(b)
shows a value of 0.5 for the aforementioned case. A threshold of 2𝜎 was
used to evaluate the index. It can be changed to adjust the sensitivity
of the utility index (𝑖UI,1𝜎 , 𝑖UI,2𝜎 , ...). If the analysis is based on the 1𝜎
range, the resulting index is 0.75. If the standard deviation exceeds the
mean change, the UI is 0, as described in Section 2.2.

The UI can be compared using the Pearson correlation coefficient, as
shown in Fig. 3. This method is often used to select features for machine
learning algorithms. However, it only evaluates the linear correlation
of a data set, whereas the UI takes the sensitivity into account. For non-
linear behavior, the sensitivity of the Pearson coefficient decreases with
increasing slope. This is why alternative algorithms, such as Spearman’s
rank correlation, are partly being used. Ouyang et al. apply the Pearson
correlation coefficient to perform a feature selection on EIS data [6].
The results in Fig. 3(b) indicate that the algorithm is not very sensitive
to linear correlation and different data distributions.

The Pearson coefficient varies between 0.94 and 0.98, as shown
by the comparison with the UI1𝜎 and UI2𝜎 values at 𝑈𝐼 = 0.5. The
calculation of the utility index is therefore better suited for selecting
individual features because it relates the distribution of a data set to its
sensitivity.

4.2. Comparison of features from different cells

The utility index is applied to the measurement series described
in Section 3.2 to evaluate the sensitivity of the individual features to
temperature changes. To enhance interpretability, Appendix C includes
illustrations of the raw data in the Nyquist and Bode diagrams. First,
the two measurement series are compared on the basis of an identical
temperature window. The classification is based on the respective
SoC and temperature, as described in Section 2.2. Other states that
enable further classification such as SoH and DC offset are not taken
into account initially. The 2𝜎 criterion and a temperature resolution
of 𝛥𝑇 = 2 K are used to calculate the index. Fig. 4 illustrates the
results of the analysis. For this purpose, the raw data features of both
measurement series, see Section 2.1.1, are compared at a reduced
number of frequencies.

Fig. 4 illustrates areas with varying index values, which also differ
in terms of their respective features. A strong similarity can be observed
between the real part (Re-UI) and the magnitude (Mag-UI), as well as
between the imaginary part (Im-UI) and the phase (Ph-UI). In the low to
medium frequency range (10−1 − 101 Hz), both series of measurements
show a high index for the magnitude and real part, with values well
above 0.6 and a maximum value of 0.75 for the MoliP42 A. Due to the
selected sensitivity criterion of 2𝜎, a clear assignment in the 2 K range
can be achieved for 95.4 % of the data with indices > 0.5. If the UI
is greater than 0.75, this applies to 99.7 % of the data. It is important
to note that this is a distribution of UI values that on average lead
to the described index, see Section 2.2. The sensitivity of magnitude

and real part decreases with increasing frequency, while that of the
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hase and imaginary part increases. The maximum is found in the
maginary part at around 50 Hz. At high frequencies, feature sensitivity
ecreases significantly, particularly for the MoliP42 A. This is due to the
ecreasing temperature sensitivity at higher frequencies. The SDI50E
easurement series data remain stable up to approximately 1000 Hz
ue to the low influence of inductances. This is also evident from the
aw data in the appendix, see Figs. C.5, C.6.

Fig. 4. UI evaluation based on raw data features. The figure illustrates the results for
he SDI50E and MoliP42 A measurement series at SoH = 100 %, 𝐷𝐶 = 0 A in the
emperature range 15 to 35 ◦C.

Table 6 can be generated by applying the evaluation algorithm to all
f the described features. The table compares the ten strongest features
f both measurement series.
Table 6
UI evaluation of all features from the respective measurement series. The table shows
the 10 most relevant features sorted in descending order for the temperature range
15–35 ◦C, SoH = 100 %, 𝐷𝐶 = 0 A.

MoliP42A SDI50E

UI Feature UI Feature

0.85 𝑑mag 0.80 Im(𝑍(63 Hz))
0.76 Im(𝑍locMax) 0.80 Im(𝑍(31 Hz))
0.75 Im(𝑍(50 Hz)) 0.78 Im(𝑍(16 Hz))
0.73 𝑥̃0.75, mag 0.75 𝑑IR-locMin, real
0.73 |𝑍(7 Hz)| 0.75 arg(𝑍(31 Hz))
0.73 Re(𝑍(7 Hz)) 0.74 arg(𝑍(63 Hz))
0.73 |𝑍(10 Hz)| 0.73 Im(𝑍(320 Hz))
0.72 Re(𝑍(10 Hz)) 0.73 arg(𝑍(16 Hz))
0.72 arg(𝑍(50 Hz)) 0.73 Im(𝑍(631 Hz))
0.72 Re(𝑍(5 Hz)) 0.72 𝑑
7

a

A comparison reveals significant differences between the SDI50E
and MoliP42 A measurement series. Specifically, the SDI50E series
is dominated by the imaginary part and phase at medium frequen-
cies, while the MoliP42 A features are concentrated on the magnitude
and real part in the medium to low frequency range. It is therefore
recommended to perform a cell-specific UI analysis. Fig. 4 illustrates
these differences. The imaginary part around 50 Hz appears in both
measurements. In addition, features from the statistical approach can
also be found. This primarily relates to the magnitude of the MoliP42 A
measurement series (𝑑mag, 𝑥̃0.75, mag). The 𝑑, represented in the SDI50E
ata, is similar to the 𝑑mag. However, while the 𝑑mag only analyzes
agnitude values, the 𝑑 represents the pairwise distance of the complex

mpedance in the Cartesian coordinate system. Table 6 shows that
oth datasets can be expected to have a high level of accuracy within
he selected temperature range. The indices fall within the range of
.75, indicating a 99.7 % probability for 𝛥𝑇 = 2 K. The resolution
an be halved at the expense of reliability, but this still allows for
istinguishability within the 2𝜎 range.

.3. Features in different temperature ranges

This section will discuss the suitability of features in different
emperature ranges. In literature, certain characteristics are often used
cross the entire range, but sensitivities decrease significantly at high
emperatures. The aim is to analyze which features are more suitable
or this purpose and maintain a high UI with increasing temperatures.
sing the MoliP42 A data and the UI evaluation method, four areas

0–15 ◦C, 15–30 ◦C, 30–45 ◦C, 45–55 ◦C) are analyzed. The effects of
geing and non-stationarity are not taken into account. The following
ndex values show the quality of the features even when the state of
harge varies, assuming knowledge of the exact SoC, cf. Section 2.2.
ig. 5 illustrates the raw data characteristics over frequency.

It is evident that the possibility of obtaining a reproducible and
recise estimate decreases significantly with increasing temperature. A
istinguishability of 2 K can be achieved for about 99.7 % of the data
p to 30 ◦C. As the temperature increases, there is a clear reduction
n the UI. Since the values are in the range of 0.3, it can be assumed
hat the 2 K temperature resolution applies to slightly more than 68 %
f the data. The subsequent temperature window (45–55 ◦C) only has
I values of 0 and was therefore not included in the figure above.
his means that the defined accuracy of 2 K cannot be achieved for
igh temperatures based on the MoliP42 A data. Even when analyzing
he total number of features, no deviating indices can be identified
n this area. As a result, this column was also removed from Table 7,
hich lists the strongest characteristics in descending order, taking into
ccount the specified temperature ranges. The recorded data was taken

fter charging. To ensure comparability with the discharge direction, an
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Fig. 5. Visualization of the utility indices of real and imaginary part, magnitude and phase from the data of the MoliP42 A measurement series. Subdivision based on different

temperature ranges. UI evaluation with 2𝜎 sensitivity range and 𝛥𝑇 = 2 K.
additional table has been included in the appendix, see Table E.1. The
comparison shows very similar results to those in Table 7, with only a
few exceptions.

Table 7
UI rating of all features from MoliP42A. It shows the 10 most relevant characteristics
sorted in descending order within a temperature range.

0–15 ◦C 15–30 ◦C 30–45 ◦C

UI Feature UI Feature UI Feature

0.86 arg(𝑍(100 Hz)) 0.84 𝑑mag 0.40 𝑑mag
0.85 arg(𝑍(50 Hz)) 0.76 Im(𝑍locMax) 0.36 𝑥̃0.75, mag
0.84 Im(𝑍(25 Hz)) 0.75 Im(𝑍(50 Hz)) 0.34 Im(𝑍(50 Hz))
0.83 Im(𝑍(50 Hz)) 0.73 |𝑍(7 Hz)| 0.33 Im(𝑍locMax)
0.83 Re(𝑍(5 Hz)) 0.73 Re(𝑍(7 Hz)) 0.31 arg(𝑍(50 Hz))
0.83 |𝑍(5 Hz)| 0.72 𝑥̃0.75, mag 0.31 𝑑Max, real
0.82 Im(𝑍locMax) 0.72 |𝑍(10 Hz)| 0.31 𝑅d, real
0.82 |𝑍(7 Hz)| 0.72 Re(𝑍(10 Hz)) 0.31 𝑑mag
0.82 Re(𝑍(7 Hz)) 0.70 Re(𝑍(5 Hz)) 0.31 Re(𝑍(5 Hz))
0.81 Re(𝑍(3 Hz)) 0.70 arg(𝑍(50 Hz)) 0.31 |𝑍(5 Hz)|

Table 7 indicates that the features remain mostly stable across
ifferent temperature ranges. For instance, all columns represent the
hase and imaginary part at 50 Hz, as well as the real part at 5 Hz.
owever, the number of statistical features increases with rising tem-
erature. The results demonstrate that above 15 ◦C the mean pairwise

distance of the magnitude 𝑑mag is the most sensitive. Regarding the
geometric characteristics, the imaginary part of the local maximum
Im(𝑍locMax) appears to be a promising option. The table demonstrates
that good results can also be obtained with individual frequencies,
e.g. Im(𝑍(50 Hz)). As Fig. 5 illustrates, sensitivity decreases notably

ith rising temperatures. The analysis of the SDI cells suggests a need
o adapt the feature selection in the low temperature range, cf. E.4.
owever, confirmation of this must be obtained using a larger amount
f data. The ECM features are not included in the listings due to
heir low index values (𝑖UI < 0.4), which renders them unsuitable for
emperature determination.

.4. Impact of aging, SoC and non-stationarity

The suitability of the features under varying conditions is analyzed
ased on their state-dependent utility index. For this purpose, SoH, SoC
s well as the direct current superimposition are varied. The 2𝜎 range
ith a temperature resolution of 𝛥𝑇 = 2 K is selected for evaluation.
he data obtained from the SDI measurement series is utilized.

First, the characteristics are compared at SoHC = 100 % and 80 %.
or this purpose, the cells were cycled until they reached 80 % of their
ominal capacity. Afterwards, the EIS measurement procedure was
8

carried out, see Section 3.2. The results are attached to the appendix
(Figs. C.13–C.16). Fig. 6 illustrates the utility index at begin of life in
comparison to SoHC = 80 %. The mean temperature window is used,
analogous to Section 4.2.

Fig. 6. Impact of aging on raw data features. Comparison between SoHC = 100 % and
80 %. Analysis based on the SDI50E measurement series between 15–35 ◦C, as well as
the 2𝜎 sensitivity range and 𝛥𝑇 = 2 K.

The results indicate that sensitivity, particularly of the magnitude
and real part, decreases with age due to cell-to-cell variations. These
variations may be caused by mechanical stresses resulting from de-
/intercalation of lithium. However, the imaginary part is proportionally
less affected. Therefore, it is still possible to achieve an estimate of
2 K for the 2𝜎 sensitivity range with features at low to medium
frequencies. Compared to the results at SoHC = 100 %, a shift towards
lower frequencies is observed. This suggests a change in the time
constants, which is also reflected in the variation of the charge transfer
semicircles, see Figs. C.7, C.15. It is therefore recommended to adjust
the features over the lifetime.

Next, we will discuss the influence of a change in the state of charge
and the DC superimposition. The SDI50E data is classified in such a way
that there is a variation in SoC within group 𝐾, see Section 2.2. This
variation affects the distribution and consequently the utility index. A
SoC range of 20 % is used due to the available dataset. The comparison
to the data with known SoC is illustrated in Fig. 7(a).

It is evident that a variation in the state of charge results in different
impacts on the characteristics. Specifically, the imaginary part in the
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Fig. 7. Influence of varying cell states on feature sensitivity. The illustration is based on the SDI50E measurement series at SoHC = 100 % in the temperature range 15–35 ◦C.
The calculation is performed with a sensitivity window of 2𝜎 and for 𝛥𝑇 = 2 K. (a) Impact of inaccurate SoC estimation on the characteristics. The comparison is based on the
assumption of an absolute SoC accuracy of ±10 %, compared to the knowledge of the exact state of charge. (b) Influence of a constant current superimposition.
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medium frequency range is significantly affected, while the influence
diminishes at high frequencies. Therefore, it can be inferred that higher
frequencies are more suitable for temperature determination measure-
ments with inaccurate SoC estimation. This conclusion is supported
by other research groups, cf. [12,13]. Based on the provided data,
the imaginary part at 631 Hz represents the optimum. A significant
reduction in the UI can be observed over the entire frequency range
when compared to the data with precise SoC estimation. This is also
evident in Table E.2, which shows a shift of the features to higher
frequencies, with an increasing representation from the statistical set.
In general, it can be stated that the characteristics of the raw data
predominate.

For online impedance measurements, it is important to consider
not only changes in the state of charge but also the effects of non-
stationarity. To achieve this, an evaluation of the remaining sensitivity
during direct current superimposition is performed using the raw data
characteristics. As explained in Section 3, we examine C-rates up to
0.3 C in both charging and discharging directions. Fig. 7(b) depicts the
results of the UI analysis. The calculation of the index value changes
due to a different classification, see Section 2.2. For the data with
known DC offset, all C-rates are evaluated individually, while for ‘‘DC
offset unknown’’ they are combined into a group.

Fig. 7(b) shows a slight influence for mid to high frequencies.
In contrast, the low frequency values, especially the real part and
magnitude, are significantly reduced. When comparing the ‘‘DC-Offset
known’’ data with the results without considering the C-rate, see Fig. 4,
there are barely any differences. This shows that the individual direct
current superimpositions can be easily distinguished, as can be seen in
Fig. C.11. From this observation it can be concluded that there is a po-
tential to correct the effects as recommended in the literature, cf. [11].
However, for the data presented, good results can be obtained in the
intermediate temperature range even without compensation or knowl-
edge of the effects. Table E.3 in the appendix shows a high potential
for the imaginary part at medium frequencies. With an index of 0.76,
it can be assumed that the 2 K temperature resolution can be achieved
on 99.7 % of the data despite the DC current.

In order to facilitate a comparison between the UI results and a
method that is commonly employed in literature, selected impedance
features are approximated using the extended Arrhenius equation:

𝑍(𝑇 ) = 𝐴 ⋅ exp
(

−𝐸a
𝑅c ⋅ 𝑇

)

+ 𝐵. (12)

The analysis is based on an SoC accuracy of ±10 % and an unknown
constant current superimposition at SoH = 100 %. To account for
9

C

ageing, the same analysis is also carried out for SoHC = 80 %. The
results can be seen in Fig. 8.

Fig. 8 shows that two different features are used for the evaluation
(Im(𝑍(631 Hz)), Im(𝑍(31 Hz))). The feature selection is based on
he utility index, cf. Table E.5. To ensure comparability with the UI
ethod, the temperature error is calculated using twice the standard
eviation. At SoHC = 100 % and temperatures between 15–35 ◦C,

the error is 1.48 K. The associated utility index has a value of 0.58.
Utilizing equation (8) and the assumptions delineated in Section 4.1,
the temperature error can be calculated from the utility index with

𝑇res =
2 K ⋅ (1 − 𝑖UI)

0.5
. (13)

In this instance, the change in the mean values |𝛥𝑥| is substituted with
the temperature resolution 𝑇res. For 𝑖UI = 0.58, this yields a value of
1.68 K. The discrepancy can be attributed to the disparate methodolo-
gies employed. Nevertheless, both approaches yield comparable results.
This can also be confirmed by the data at SoHC = 80 %, which shows
a value of 2.37 K and a UI of 0.37, resulting in 𝑇res = 2.52 K.

4.5. Discussion

The reduction of dependencies and sensitivities to a single index
leads to limitations that must be taken into account when interpreting
and selecting features. It is worth noting that the achievable accu-
racies are based on an average of all calculated UI values for the
corresponding groups. Depending on the classification, lower or higher
values may occur. Additionally, the utility index assumes normally
distributed dependencies, which may deviate from reality. Further-
more, the algorithm only provides sensitivity information and does
not allow for conclusions about trends. It may be possible to combine
this with correlation coefficients. To obtain meaningful results, at least
three cells and a sufficient number of different cell states are required.
However, it should be noted that the utility index may change as
the number of cells and cell states increase due to a more accurate
representation of the probability. When measuring the SDI cells, low
superimposed currents were used, which may have a minor impact. It
can be reasonably anticipated that a notable impact will be observed as
the current increases, particularly with regard to impedance features at
low frequencies. Therefore, it is necessary to confirm the influence of
non-stationarity at higher current rates and other profiles. Furthermore,
the present manuscript exclusively utilizes laboratory data. However,
the method can also be applied to noisy data, as is expected in the
vehicle environment. This may result in a deviation from the features
recommended in this manuscript.
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Fig. 8. Temperature determination based on UI feature recommendation. The figure shows the individual characteristics as well as their standard deviation and the approximation
using the extended Arrhenius equation for SoC = 50 % and between 15 and 35 degrees. It is based on an absolute SoC accuracy of ±10 % and an unknown constant current

superimposition. The results for SoHC = 100 % are shown in (a), those for SoHC = 80 % in (b).
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. Conclusion

Electrochemical impedance spectroscopy measurements can be in-
luenced by varying cell states, particularly during online applications.
dditionally, inductive effects may occur from measuring devices or

he surrounding environment. Due to these multidimensional depen-
encies, it is difficult to recommend a generally valid feature for
emperature estimation. Rather, it is advisable to choose a cell-specific
pproach.

The sensitivity analysis were conducted and the utility index was
alculated to evaluate characteristics from the impedance spectrum,
hile also considering the influence of changing cell states. The cal-

ulated index provides information about the maximum achievable
ccuracy for temperature determination. Four different approaches
ere used to extract 143 features from the impedance spectrum. It

urns out that the characteristics resulting from an equivalent electrical
ircuit approximation do not have a significant potential for tempera-
ure determination. Their indices were clearly below 0.4, which is why
he ECM features are not among the top 10 with the highest UI in
ny of the various conditions. From the list of geometric features, the
maginary part of the local maximum (Im(𝑍locMax)) has been shown to
e appropriate, cf. Table 6, 7, E.2, E.3. Additionally, the lists of key
haracteristics contain some of the statistical approaches. The mean
airwise distance is particularly promising. In general, the features
xtracted from raw data, particularly the imaginary part and phase,
erform well in all investigations. Based on these, a temperature es-
imate in the range of 2 K is still possible for around 95.4 % of the data
etween 15–35 ◦C, even at SoHC = 80 %. This was also investigated
sing the Arrhenius equation, taking into account additional effects
uch as SoC uncertainty and the superposition of direct currents. These
esults confirm the suitability of the presented UI-based method.

With increasing age, a shift to lower frequencies was observed. For
nline operation, it is advisable to adjust the characteristics over the
ifetime. The opposite behavior occurs when the state of charge or
he superimposed current changes. Therefore, for applications under
oad or with inaccurate SoC estimation, the use of higher frequencies
s preferable. The behavior in different temperature ranges was also an-
lyzed. The MoliP42 A cells did not exhibit any sensitivity above 45 ◦C
ithin the 2𝜎 range. Below this temperature, the sensitivity was very
ood, particularly for the raw data features, as well as for those from
he statistics and geometry. The index decreases as the temperature
ncreases. It was not demonstrated that adapting the feature selection
t different temperature ranges leads to a significant improvement. The
nalysis of the SDI cells indicates that an adjustment of the features at
ower temperatures may be necessary. However, this conclusion needs
10

o be verified against a larger database.
This article highlights the potential of the utility index and its appli-
ability to impedance spectra of lithium-ion batteries. The demonstra-
ion was carried out through two independent series of measurements
n different cells and under various conditions. The usability of the
tility index for machine learning algorithms as well as under dynamic
oad conditions represents a future field of research.
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Table A.1
Literature review on temperature estimation using EIS.

Ref. Temperature Method Feature Further dependencies Accuracy Chemistry

Range SOH SOC DC-Offset

[18] −60–20 ◦C EIS + ECM 𝑅ct – – – – Ni-based | C

[3] −20–66 ◦C EIS + ECM + Arrh.
EIS + LUT

arg(Z(40 Hz)), 𝑅s, 𝑅SEI – 5 %–95 % – – LCO | C
LFP | C
–

[42] −10–50 ◦C EIS + LUT arg(𝑍(40 Hz)) – 5 %–95 % – – LCO | C

[28] 0–25 ◦C EIS + mod. Arrh. Re(𝑍(10.3 kHz)) – 50 % – max. Error = 0.17 K (SOC known)
max. Error = 2.5 K (SOC unknown)

LCO+NCA | C

[17] −13–55 ◦C EIS + ECM + Arrh.
EIS + LUT

𝑅ct – – – – –

[2] −20–50 ◦C EIS + mod. Arrh. 𝑓 (Im = 0) 600 cyc. 20 %–
100 %

– – LFP | C
NCA | C

[26] −20–45 ◦C EIS + Arrh. &
2 ord. polynom

Re(𝑍(215 Hz)) - 𝑅s – 10 %–90 % +/−10A
+/−20A
Drivecycle

MAE = 0.6 K (Drivecycle) LFP | C

[43] −20–50 ◦C EIS arg(𝑍(Range)), Re(𝑍(Range)) 100 %–
75 %

10 %–
100 %

DCH: 0.5–2.5 C
CH: 1 C

MAE = 1 K (Pulse profile, T = 25–28 ◦C)
MAE = 1.5 K (Pulse profile, T = −10–(−5) ◦C)

–

[44] −20–45 ◦C EIS + TM + diff. KF Re(𝑍(215 Hz)) - 𝑅s – 10 %–90 % – RMSE = 2.04 K (EKF + Z’)
RMSE = 2.49 K (KF + Tsurf)
RMSE = 1.43 K (DEKF + Z’)
RMSE = 0.36 K (DKF + Tsurf)

LFP | C

[13] −10–95 ◦C EIS + Arrh.
+ 1 ord. Polynom

Im(𝑍(300 Hz)) – 0 %–100 % – MAE = 5.6 K
max. Error = 11.4 K

LCO

[8] 0–45 ◦C EIS arg(𝑍(79.4 Hz)) 100 %–
80 %

30 %–70 % – – LFP

[19] −20–50 ◦C EIS + LUT &
optimization

|Z(50 Hz)|, arg(𝑍(50 Hz)),
Re(𝑍(50 Hz)), Im(𝑍(50 Hz))

– 20 %–80 % – Mean Std. = 0.7 K
RMSE = 0.4 K

LFP

[45] −10–40 ◦C EIS + 2 ord. polynom arg(𝑍(1 kHz)) – 0 %–100 % – max. Error = 3.16 K (SOC known)
max. Error = 4.11 K (SOC unknown)

LTO

[46] −20–50 ◦C EIS 𝑓 (Im = 0)
𝑓 (Im ≠ 0)

– 20 %–
100 %

– – LFP

[20] −20–50 ◦C EIS + LUT &
optimization

|Z(50 Hz)|, arg(𝑍(50 Hz)),
Re(𝑍(50 Hz)), Im(𝑍(50 Hz))

– 20–80 % – MSE = 0.5 K (SOC known)
MSE = 0.7 K (SOC unknown)

LFP

[27] 10–25 ◦C EIS + 2D-TM +
KF/EKF

Re(𝑍(215 Hz)) - 𝑅s – – RMSE = 0.2–0.7 K LFP | C

[25] 5–55 ◦C EiS + 2 ord. polynom 𝑓 (Im = 0) – 29, 100 % – – NCA

(continued on next page)
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Table A.1 (continued).
Ref. Temperature Method Feature Further dependencies Accuracy Chemistry

Range SOH SOC DC-Offset

[47] 10–30 ◦C EIS + TM + mod.
Arrh.

| 𝑍(500 Hz)| – – – –

[48] −20–40 ◦C EIS + relax. model arg(𝑍(10 Hz)) – 0 %–100 % Puls: −1.5–1.5 C max. Error = 2 K (T = 10–15 ◦C)
max. Error = 3 K ( T = 20–25 ◦C)

LFP | C

[23] −40–0 ◦C EIS + 3 ord. polynom Re(𝑍(8 Hz)) – 50, 80 % – – NCA | C

[4] 10-TR EIS arg(𝑍(40 Hz)) – – – – NMC

[49] −20–50 ◦C EIS + LUT &
optimization

Re(𝑍(133 Hz)), Im(𝑍(133 Hz))
Re(𝑍(630 Hz)), Im(𝑍(630 Hz))

– 20 %–80 % −1–0.5 C avg. MSE = 1.1 K (without crosstalk)
avg. MSE = 1.1 K (with crosstalk)
avg. MSE = 4 K (with (D)CH)
avg. MSE = 3.8 K (with (D)CH & crosstalk comp.)

NMC

[50] 5–45 ◦C EIS + exp. Func. arg(𝑍(10 Hz)) – 10 %–90 % Step: +/−20 A
NEDC: −60–40 A

avg. Error = 0.33 K (T. Range = 15–25 ◦C, Step)
avg. Error = 0.5 K (T. Range = 25–26.5 ◦C, NEDC)

LFP

[29] 5–55 ◦C EIS + Arrh. arg(𝑍(various)) 93 %–59 % 0 %–100 % – MAE = 1 K LFP

[24] 10–55 ◦C EIS + 1 ord. Polynom Im(𝑍(200 Hz)) 100 %–
80 %

0 %–100 % – RMSE = 1.41 K LCO

[22] 10–60 ◦C EIS + ANN Re(𝑍(Range)) 100 %–
85 %

10 %–90 % DCH: 0–1.5 C
CH: 1 C

avg. RMSE = 1 K | max. RMSE = 5 K
avg. RMSE = 0.5 K
avg. RMSE = 0.7 K

-
NMC
NCA

[51] 5–55 ◦C EIS + Arrh. Im(𝑍(10 Hz)) – 10 %–90 % – max. Error = 1.5 K (SOC unknown, T = 25 ◦C)

[6] 10–60 ◦C EIS + SVR Im(𝑍(263 Hz))
Im(𝑍(524 Hz))

– 30 %–
100 %

– RMSE = 0.23 K (SOC known, 263 Hz)
RMSE = 0.57 K (SOC unknown, 263 Hz)
RMSE = 0.43 K (SOC known, 524 Hz)
RMSE = 0.69 K (SOC unknown, 524 Hz)

NMC

[52] −20-(−2) ◦C
−20–10 ◦C
0–18 ◦C

EIS + LUT + NLLS Re(𝑍(Range)), Im(𝑍(Range)) – 50 % +/−25 A (AC)
+/−35 A (AC)
Driving Profil

abs. Error = 0.6 K
abs. Error = 1.1 K
abs. Error = 1 K

–

[21] −10–60 ◦C EIS + ANN Re(𝑍(Range)), Im(𝑍(Range)) – 10 %–90 % −0.5 C, 0.5 C RMSE = <0.9 K NCA
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Appendix B. Measurement procedure

Fig. B.1. Flow chart illustrating the test procedure for both series of measurements. (a) shows the MoliP42A, (b) the SDI50E. SEIS refers to EIS measurements under stationary
conditions, DEIS to those carried out during (dis)charging.

Appendix C. Raw data in Nyquist & Bode diagram

Fig. C.1. Nyquist diagram shows the effect of temperature changes based on the MoliP42 A measurement series at SoHC = 100 %, SoC = 50 %.
13
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Fig. C.2. Bode diagram shows the effect of temperature changes based on the MoliP42 A measurement series at SoHC = 100 %, SoC = 50 %.

Fig. C.3. Nyquist diagram shows the effect of SoC changes based on the MoliP42 A measurement series at SoHC = 100 %, 𝑇 = 25 ◦C.

Fig. C.4. Bode diagram shows the effect of SoC changes based on the MoliP42 A measurement series at SoHC = 100 %, 𝑇 = 25 ◦C.
14
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Fig. C.5. Nyquist diagram shows the effect of temperature changes based on the SDI50E measurement series at SoHC = 100 %, SoC = 50 %.

Fig. C.6. Bode diagram shows the effect of temperature changes based on the SDI50E measurement series at SoHC = 100 %, SoC = 50 %.

Fig. C.7. Nyquist diagram shows the effect of SoC changes based on the SDI50E measurement series at SoHC = 100 %, 𝑇 = 25 ◦C.
15
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Fig. C.8. Bode diagram shows the effect of SoC changes based on the SDI50E measurement series at SoHC = 100 %, 𝑇 = 25 ◦C.

Fig. C.9. Nyquist diagram shows the effect of SoH changes based on the SDI50E measurement series at SoC = 50 %, 𝑇 = 25 ◦C.

Fig. C.10. Bode diagram shows the effect of SoH changes based on the SDI50E measurement series at SoC = 50 %, 𝑇 = 25 ◦C.
16
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Fig. C.11. Nyquist diagram shows the effect of a superimposed constant current based on the SDI50E measurement series at SoHC = 100 %, SoC = 50 %, 𝑇 = 25 ◦C.

Fig. C.12. Bode diagram shows the effect of a superimposed constant current based on the SDI50E measurement series at SoHC = 100 %, SoC = 50 %, 𝑇 = 25 ◦C.

Fig. C.13. Nyquist diagram shows the effect of temperature changes based on the SDI50E measurement series at SoHC = 80 %, SoC = 50 %.
17
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Fig. C.14. Bode diagram shows the effect of temperature changes based on the SDI50E measurement series at SoHC = 80 %, SoC = 50 %.

Fig. C.15. Nyquist diagram shows the effect of SoC changes based on the SDI50E measurement series at SoHC = 80 %, 𝑇 = 25 ◦C.

Fig. C.16. Bode diagram shows the effect of SoC changes based on the SDI50E measurement series at SoHC = 80 %, 𝑇 = 25 ◦C.
18
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Appendix D. Feature description

Table D.1
List of features from ECM.

Name Description

𝑅0 Ohmic resistance
𝐿0 Serial inductance
𝑅RL Resistance 𝑅 of RL-Element
𝐿RL Inductance 𝐿 of RL-Element
𝑅RCPE1 Resistance 𝑅 of the first ZARC-Element
𝑄RCPE1 Parameter 𝑄CPE of the first ZARC-Element
𝑛RCPE1 Factor 𝑛 of the first ZARC-Element
𝑅RCPE2 Resistance 𝑅 of the second ZARC-Element
𝑄RCPE2 Parameter 𝑄CPE of the second ZARC-Element
𝑛RCPE2 Factor 𝑛 of the second ZARC-Element
𝑅RCPE3 Resistance 𝑅 of the third ZARC-Element
𝑄RCPE3 Parameter 𝑄CPE of the third ZARC-Element
𝑛RCPE3 Factor 𝑛 of the third ZARC-Element

Appendix E. Further UI analysis

Table E.1
UI rating of all features from MoliP42A. It shows the 10 most relevant characteristics
sorted in descending order within a temperature range. The data is based on the
stationary impedance measurement after discharge.

0–15 ◦C 15–30 ◦C 30–45 ◦C

UI Feature UI Feature UI Feature

0.91 arg(𝑍(100 Hz)) 0.80 𝑑mag 0.40 𝑅d, real
0.91 Re(𝑍(5 Hz)) 0.74 𝑥̃0.75,mag 0.38 𝑑mag
0.91 |𝑍(5 Hz)| 0.74 𝑑mag 0.36 𝑥̃0.75,mag
0.91 |𝑍(7 Hz)| 0.73 Im(𝑍(50 Hz)) 0.33 𝑑max, real
0.90 Im(𝑍(50 Hz)) 0.72 Re(𝑍locMin) 0.32 Im(𝑍(50 Hz))
0.90 Im(𝑍locMax) 0.70 arg(𝑍(50 Hz)) 0.32 Im(𝑍locMax)
0.90 Re(𝑍(7 Hz)) 0.70 Im(𝑍(25 Hz)) 0.31 𝑑mag
0.90 |𝑍(10 Hz)| 0.70 Im(𝑍locMax) 0.31 arg(𝑍(50 Hz))
0.89 Re(𝑍(3 Hz)) 0.69 arg(𝑍(100 Hz)) 0.30 𝜎2

d, real
0.89 |𝑍(3 Hz)| 0.68 Re(𝑍(5 Hz)) 0.29 𝑑real

Table E.2
The table illustrates the influence of an inaccurate SoC estimate on feature selection.
The calculation is based on the SDI50E measurement series in the temperature range
15–35 ◦C, as well as the 2𝜎 sensitivity range and 𝛥𝑇 = 2 K. A SoC accuracy of ±10 %
is compared with the knowledge of the exact state of charge.

SoC known SoC with 20 % uncertainty

UI Feature UI Feature

0.80 Im(𝑍(63 Hz)) 0.62 Im(𝑍(631 Hz))
0.80 Im(𝑍(31 Hz)) 0.58 Im(𝑍(320 Hz))
0.78 Im(𝑍(16 Hz)) 0.56 arg(𝑍(631 Hz))
0.75 𝑑IR-locMin, real 0.54 Im(𝑍locMax)
0.75 arg(𝑍(31 Hz)) 0.52 Im(𝑍(158 Hz))
0.74 arg(𝑍(63 Hz)) 0.52 𝑥̃0.25,imag
0.73 Im(𝑍(320 Hz)) 0.52 𝑑IR-locMin, real
0.73 arg(𝑍(16 Hz)) 0.51 arg(𝑍(320 Hz))
0.73 Im(𝑍(631 Hz)) 0.50 𝑥̃IQR, real
0.72 𝑑 0.50 𝑑real
19
Table E.3
The table shows the influence of a superimposed constant current on the feature. Results
are based on the SDI50E measurement series in the temperature range 15–35 ◦C, as
well as across all SoC‘s at SoHC = 100 %.

DC-Offset known DC-Offset unknown

UI Feature UI Feature

0.79 Im(𝑍(31 Hz)) 0.76 Im(𝑍(63 Hz))
0.79 Im(𝑍(63 Hz)) 0.75 Im(𝑍(31 Hz))
0.77 Im(𝑍(16 Hz)) 0.74 Im(𝑍(158 Hz))
0.75 arg(𝑍(31 Hz)) 0.73 arg(𝑍(63 Hz))
0.74 𝑑IR-locMin, real 0.73 Im(𝑍locMax)
0.74 𝑥̃IQR, real 0.72 Im(𝑍(320 Hz))
0.74 Im(𝑍(158 Hz)) 0.72 arg(𝑍(31 Hz))
0.73 Im(𝑍(631 Hz)) 0.70 𝑑IR-locMin, real
0.73 arg(𝑍(63 Hz)) 0.69 Im(𝑍(631 Hz))
0.73 Im(𝑍(320 Hz)) 0.69 Im(𝑍(16 Hz))

Table E.4
UI rating of all features from the SDI50E measurement series. It shows the ten most
relevant features sorted in descending order within a temperature range, taking into
account all SoC’s for SoHC = 100 %.
−10–15 ◦C 15–35 ◦C

UI Feature UI Feature

0.83 |𝑍(158 Hz)| 0.80 Im(𝑍(63 Hz))
0.80 Re(𝑍(158 Hz)) 0.80 Im(𝑍(31 Hz))
0.73 Re(𝑍(63 Hz)) 0.78 Im(𝑍(16 Hz))
0.71 |𝑍(320 Hz)| 0.75 𝑑IR-locMin, real
0.67 arg(𝑍(3 Hz)) 0.75 arg(𝑍(31 Hz))
0.66 |𝑍(63 Hz)| 0.74 arg(𝑍(63 Hz))
0.65 𝑑IR-locMin, mag 0.73 Im(𝑍(320 Hz))
0.64 arg(𝑍(6 Hz)) 0.73 arg(𝑍(16 Hz))
0.63 𝑑mag 0.73 Im(𝑍(631 Hz))
0.63 Re(𝑍(31 Hz)) 0.72 𝑑

Table E.5
Influence of an inaccurate SoC estimate ( ±10 %) and an unknown DC offset on the
feature selection. The calculation is based on the SDI50E measurement series in the
temperature range 15–35 ◦C, as well as the 2𝜎 sensitivity range and 𝛥𝑇 = 2 K.

SoHC = 100 % SoHC = 80 %

UI Feature UI Feature

0.58 Im(𝑍(631 Hz)) 0.37 Im(𝑍(31 Hz))
0.57 Im(𝑍(320 Hz)) 0.36 Im(𝑍(63 Hz))
0.53 Im(𝑍locMax) 0.31 Im(𝑍(16 Hz))
0.52 arg(𝑍(631 Hz)) 0.29 Im(𝑍(158 Hz))
0.52 Im(𝑍(158 Hz)) 0.22 |𝑍(1.6 Hz)|
0.50 arg(𝑍(320 Hz)) 0.22 𝑥̃0.75, mag
0.48 𝑑IR-locMax, real 0.13 Im(𝑍(320 Hz))
0.48 𝑑IR-locMin, real 0.12 𝑓locMin
0.47 Im(𝑍(63 Hz)) 0.12 𝑥̃IQR, mag
0.47 arg(𝑍(158 Hz)) 0.11 arg(𝑍(158 Hz))
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