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A B S T R A C T   

Exploring the chemistry of materials at high pressure leads to discoveries of previously unknown compounds and 
phenomena. Here chemical reactions between elemental dysprosium and carbon were studied in laser-heated 
diamond anvil cells at pressures up to 95 GPa and temperatures of ~2800 K. In situ single-crystal synchrotron 
X-ray diffraction (SCXRD) analysis of the reaction products revealed the formation of novel dysprosium carbides, 
γ-DyC2, Dy5C9, and γ-Dy4C5, along with previously reported Dy3C2 and Dy4C3. The crystal structures of γ-DyC2 
and Dy5C9 feature infinite flat carbon polyacene-like ribbons and cis-polyacetylene-type chains, respectively. In 
the structure of γ-Dy4C5, carbon atoms form dimers and non-linear trimers. Dy3C2 contains ethanide-type carbon 
dumbbells, and Dy4C3 is methanide featuring single carbon atoms. Density functional theory calculations 
reproduce well the crystal structures of high-pressure dysprosium carbides and reveal conjugated π-electron 
systems in novel infinite carbon polyanions. This work demonstrates that complex carbon homoatomic species 
previously unknown in organic chemistry can be synthesized at high pressures by direct reactions of carbon with 
metals.   

1. Introduction 

The chemistry of binary compounds drastically changes and expands 
at high pressures. Recent striking examples include the synthesis of 
novel polyhalides [1,2], polynitrides [3–10], polyborides [11,12], pol-
yhydrides [13–15], whose structures possess various homonuclear 
chemical species, such as dimers, trimers, pentagonal and hexagonal 
rings, polymeric chains, atomic layers and 3D networks previously un-
observed in binary compounds at ambient pressures. The observed 
tendency of forming homonuclear chemical bonds is well understood by 
theory [16]: in very general terms, with increasing pressure the dis-
tances between atoms decrease and the value of resonance integrals 

increases, resulting in a larger gap between bonding and antibonding 
states and stronger bonds. Modern a priori structure prediction tech-
niques, however, are not precise enough to provide an exhaustive list of 
possible chemical compositions and phases at given thermodynamic 
conditions. Even moderate-pressure experiments report phases and 
crystal structures never predicted or previously considered [1,4,5,8,13]. 

Homonuclear chemical bonding between carbon atoms is at the heart 
of organic chemistry and the number of arrangements for carbons con-
nections (or catenation) known at ambient pressure is enormous. 
Strikingly, recent experimental observations indicate that carbon poly-
anions in metal carbides at high pressures may be unknown and even not 
foreseen at ambient pressure. For example, novel yttrium carbide γ-Y4C5 
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at 44–51 GPa possesses significantly bent carbon trimers [C3] isoelec-
tronic with ozone O3 [17]. Polycarbides of different compositions have 
been claimed in the Li–C system: due to the polymerization of Li2C2 
acetelenide upon compression [18] or formation of LiC2 graphenide and 
Li3C4 polyacenide [19] after laser heating. Beyond these, theoretical 
calculations for metal carbides at high pressure predict carbon poly-
anions with unusual geometry and chemical bonding [20–22], for 
example, in numerous polycarbides in the Ca–C, Y–C and Th–C systems 
[20,22–27]. Some of these novel carbon compounds are expected to 
have quite exotic structures, in which carbon atoms are polymerized to 
form infinite quasi-1D ribbons built of fused six-membered rings, and 
the synthesis of high-pressure CaC2 phase (HP–CaC2) with 
polyacene-like ribbons was recently reported [28]. All these predictions 
and discoveries call for systematic experimental studies of high-pressure 
carbides. 

Recently, we reported the synthesis of Dy3C2 and Dy4C3 at high 
temperatures and pressures below ~58 GPa [29]. Here we have 
extended the pressure range up to 95 GPa and report the results of our 
systematic high-pressure high-temperature (HPHT) investigations of the 
Dy–C system using laser-heated diamond anvil cells (DACs). 

2. Materials and methods 

Nomenclature 

For the sake of clarity for readers, in this paper we use simplified 
nomenclature of anionic units in the crystal structures of Dy–C com-
pounds. In particular, if not specified otherwise we will mean 
completely deprotonated species. So, by using the term ethanide, we will 
mean ethanehexaide C26-. Polyacetylide stands for fully deprotonated 
polyacetylene poly-[ethene-1,2-diyl]. Polyacenide is derived by full 
deprotonation of polyacene or poly(buta-1,3,-diene-1,4:3,2-tetrayl). 

2.1. Sample preparation 

In our experiments, we used BX90-type diamond anvil cells with a 
large X-ray aperture [30]. As anvils, we employed Boehler− Almax-type 
diamonds with culets diameter of 80/120 μm. Rhenium gaskets with an 
initial thickness of 200 μm were indented to ~16/22 μm and a hole of 
~35/55 μm laser-drilled in the center of the indentation. The dyspro-
sium (99.9 % purity, Merc Inc.) flakes were loaded between one of the 
diamonds and a layer of dry sodium chloride (99.999 % purity, Chem-
PUR) that played a role of a thermal insulator and pressure transmitting 
medium; diamond anvils were used as a carbon source. Samples were 
compressed to the desired pressure and laser-heated up to ~2800 K. 
Laser heating of the samples was carried out using an in house 
double-sided YAG laser (1064 nm wavelength) heating setup [31]. 
Thermal emission spectra from the heated area were collected via Iso-
Plane SCT 320 spectrometer with a 1024 × 2560 PI-MAX 4 camera [31]. 
The pressure was determined using the NaCl equation of states (EoS) 
[32,33]. 

2.2. X-ray diffraction 

The reaction products were analyzed by single-crystal X-ray 
diffraction measurements at the two synchrotron beamlines: ID11 of 
ESRF, Grenoble, France (λ = 0.2846 Å, beam size ~ 0.75 × 0.75 μm2); 
ID15B of ESRF, Grenoble, France (λ = 0.4100 Å, beam size ~1.5 × 2 
μm2). Powder XRD images were collected upon continuous rotation of 
the sample in a range ±1◦ around the vertical ω axis at ESRF. During 
single-crystal collection, the cell was rotated from − 38◦ to +38◦ with 
narrow 0.5◦ steps. Creating maps with XDI software [34] helps to 
visualize the phase distribution within the pressure chamber and to 
locate areas where the step-scans should be performed. The CrysAlisPro 

software package [35] was used for the analysis of the single-crystal 
XRD data (peak hunting, indexing, data integration, frame scaling, 

and absorption correction). To calibrate an instrument model in the 
CrysAlisPro software, i.e. the sample-to-detector distance, detector’s 
origin, offsets of the goniometer angles, and rotation of both the X-ray 
beam and detector around the instrument axis, we used a single crystal 
of orthoenstatite [(Mg1.93Fe0.06)(Si1.93,Al0.06)O6, Pbca space group, a =
8.8117(2) Å, b = 5.18320(10) Å, and c = 18.2391(3) Å]. The DAFi 
program was used for the search of reflection’s groups belonging to the 
individual single crystal domains [36]. Using the OLEX2 software 
package [37], the structures were solved with the ShelXT structure so-
lution program [38] using intrinsic phasing and refined with the ShelXL 
[39] refinement package using least-squares minimization. Crystal 
structure visualization was made with the VESTA software [40]. The 
equations of state were obtained by fitting the pressure-volume depen-
dence data using the EoSFit7-GUI [41]. 

Accurate determination of the positions of light carbon atoms in the 
presence of heavy dysprosium atoms is challenging. In order to improve 
both precision and accuracy in determining C–C distances, 12 to 27 
domains with Rint < 5 % and R1 < 8 % for each of the studied carbides 
were identified, their structures were refined, and C–C distances for each 
corresponding domain were averaged. That allows reduce the standard 
error of C–C distances to smaller than 0.009 Å, and the corresponding 
data presented in the main text of the paper. 

2.3. Theoretical calculations 

The properties of the synthesized compounds were determined 
through the first-principles calculations using the framework of density 
functional theory (DFT) as implemented in the VASP (Vienna ab initio 
simulation package) code [42]. To expand the electronic wave function 
in plane waves we used the Projector-Augmented-Wave (PAW) method 
[43]. The Generalized Gradient Approximation (GGA) functional was 
used for calculating the exchange-correlation energies, as proposed by 
Perdew–Burke–Ernzerhof (PBE) [44]. The PAW potentials with the 
following valence configurations of 5s5p6s5d for Dy (“Dy_3”) and 2s2p 
for C (“C”) were used to describe the interaction between the core and 
the valence electrons in frozen f-electrons approximation for Dy [42]. 
Convergence tests with a threshold of 1 meV per atom in energy led to an 
energy cutoff for the plane wave expansion of 750 eV for all phases and a 
Monkhorst-Pack [45] k-point grid of 15 × 7 × 6 for γ-DyC2, 4 × 4 × 6 for 
Dy5C9, 3 × 5 × 4 for γ-Dy4C5, 6 × 6 × 11 for Dy3C2, and 4 × 4 × 4 for 
Dy4C3. Computations were performed for eight volumes that cover the 
pressure range of 0–100 GPa. Harmonic lattice dynamics calculations 
were performed with the PHONOPY software [46] using the finite 
displacement method for 3 × 3 × 3 (γ-DyC2), 2 × 2 × 3 (Dy5C9), 2 × 2 ×
2 (γ-Dy4C5), 2 × 2 × 3 (Dy3C2) and 2 × 2 × 2 (Dy4C3) supercells with 
respectively adjusted k-points. The tetrahedron method was used for 
Brillouin zone integrations, employing a mesh of 16 × 16 × 16 k-points 
for γ-DyC2, 8 × 8 × 12 k-points for Dy5C9, 10 × 10 × 8 k-points for 
γ-Dy4C5, 12 × 12 × 22 k-points for Dy3C2 and 8 × 8 × 8 k-points for 
Dy4C3 [47,48]. The integrated values of the crystal orbital bond index 
(ICOBI) [49] and Mulliken charges were calculated using LOBSTER 
v4.1.0 software [50]. The charge distribution in the ionic approximation 
based on a generalization of Pauling’s concept of bond strength [51] was 
made using CHARDI2015 [52]. In our calculations, temperature, 
configurational entropy, and the entropy contribution due to lattice 
vibrations were neglected. 

3. Results and discussion 

A summary of our experiments is presented in Table S1. High- 
pressure reactions between dysprosium and carbon in DACs at pres-
sures of ~70 and ~95 GPa and temperatures of ~2800 K resulted in the 
formation of five dysprosium carbides, namely γ-DyC2, Dy5C9, γ-Dy4C5, 
Dy3C2, and Dy4C3 (Table S2). The first three are novel polycarbides. The 
full crystallographic datasets for all compounds were deposited to the 
Cambridge Structural Database (CSD), the Cambridge Crystallographic 
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Data Centre (CCDC) [53], and their deposition numbers are provided in 
the corresponding Tables in Supporting Information. The reconstructed 
reciprocal lattice planes obtained upon processing the synchrotron 
single-crystal XRD for all synthesized phases are shown in Fig. S1. 

The DyC2 phase synthesized at ~70 GPa has a crystal structure 
different from that of the two previously known DyC2 polymorphs, 
α-DyC2 (CaC2-type structure, tetragonal space group I4/mmm) [54] and 
β-DyC2 (KCN-type structure, cubic space group Fm-3m) [55,56]. Natu-
rally, we named it γ-DyC2. The γ-DyC2 phase (space group Immm, #71, Z 
= 4, Tables S2 and S3) is isostructural to the previously observed 
HP-CaC2 (Immm) [28] and the predicted YC2 (Immm) [23]. Its ortho-
rhombic unit cell contains four dysprosium atoms occupying the 
Wyckoff site 4i and eight carbon atoms occupying two distinct crystal-
lographic positions: C1 – 4h and C2 – 4g (Fig. 1, Table S3). 

In the structure of γ-DyC2 (Fig. 1, Tables S2 and S3), dysprosium 
atoms form distorted, slightly buckled closed packed layers in the (0 0 1) 
plane (Fig. 1b). Dysprosium atoms have 12 carbon neighbors arranged 
in a hexagonal prism with unequal bases (Fig. 1c). Carbon atoms lie in 
the (0 0 2) plane in the middle between planes of Dy atoms (Fig. 1). They 
are arranged in polymerized hexagonal rings – flat one-dimensional 
ribbons propagating along the [1 0 0] direction (Fig. 1). Thus, the car-
bon atoms form exotic 1∞[C4] one-dimensionally infinite polyanions. 

The structure of the Dy5C9 carbide (space group P4/mnc, #128, Z =
2) (Tables S2 and S4) is unprecedented, for we found neither any 
structural analogue, nor a relevant prediction from theoretical methods. 
Its unit cell contains two crystallographically distinct dysprosium atoms 
(Dy1 and Dy2 occupying 8h and 2b Wyckoff positions, respectively) and 
two types of carbon atoms (C1 and C2 occupying 16i and 2a Wyckoff 
positions, respectively). Dysprosium atoms form slightly distorted 
square layers in the (0 0 1) plane at a distance of 1/2c; each layer is 
rotated relatively to an adjacent one by ~40◦ (Fig. 2b and S2). The 
distinct dysprosium atoms have different environments – Dy1 atoms are 
in irregular polyhedra with 11 vertices, while Dy2 atoms are located in 
bicapped square prisms (Fig. 2c and d). The carbon atoms C2 have 
isolated positions in the structure like the carbon in methanides (Fig. 2). 
The C1 carbon atoms form zig-zag chains with four atoms per repeating 
element (Fig. 2). Chains are propagating along the [0 0 1] direction. 

The dysprosium carbide isostructural with the recently discovered 
γ-Y4C5 phase [17] is referred to as γ-Dy4C5 (orthorhombic space group 

Cmce, #64, Z = 8) (Tables S2 and S5, Fig. S3). Its structure described 
previously [17] contains carbon dimers [C2] (dumbbells) and non-linear 
trimers [C3] (the angle ∠(C2–C4–C2) is of ~132◦, Fig. S3). Two other 
carbides observed in this work (Table S2), dysprosium (III) methanide 
Dy4C3, and dysprosium (II) ethanide Dy3C2, have been synthesized at 
~55 GPa in our previous study [29]. For completeness, their structures 
at ~70 GPa (Dy3C2) and ~95 GPa (Dy4C3) are shown in Figs. S4 and S5 
and structural data are given in Tables S6 and S7. 

The analysis of the chemical nature of the novel dysprosium carbides 
containing polyanions requires a complex approach, especially because 
ab initio methods (see Methods section for details) do not always accu-
rately reproduce experimental observations for the f-element Dy [29,57, 
58]. Therefore, we first conduct the crystal-chemical analysis and then 
complement the analysis with theoretical calculations for isostructural 
(experimentally observed or hypothetical) compounds of analogous el-
ements devoid of f-electrons (like Ca or Y). 

In γ-DyC2, the carbon ribbons are flat. The C–C distances in the 
hexagons, refined at 70 GPa, are equal to 1.451(9) Å and 1.508(5) Å for 
the C2–C2 and C1–C2 bonds, respectively. Two angles in the hexagon 
are found to be of 122.5(7)◦, while the other four angles are of 118.8(3)◦
(Fig. 1d). The angles are close to 120◦, and C–C distances are quite 
similar indicating the sp2 hybridisation of carbon atoms. In the ideal 
polyacene chain with ordered single- and double-order carbon-carbon 
bonds [59], the distribution of shorter and longer C–C contacts is 
incompatible with the experimental observations for γ-DyC2 (and for 
HP-CaC2 as well [28]). Similar C–C bond lengths within the hexagons in 
γ-DyC2 (and HP-CaC2) suggest a conjugated π-electron system in 
polyacene-like ribbons. The integrated crystal orbital bond indexes 
(ICOBI) [49] calculated for γ-DyC2, HP-CaC2, and isostructural YC2 
(Table S8) vary from ~0.7 to ~1.0. These values, being sufficiently close 
to 1, confirm strong covalent bonding between carbon atoms. The ELF 
maps for γ-DyC2, HP-CaC2, YC2 (Fig. S6) also demonstrate localization of 
electrons on C–C bonds in hexagons, and ionic bonding between Dy and 
C units. Calculated electron density of states (eDOSes) (Fig. S6) for these 
phases show the presence of carbon p-electrons at the Fermi level that 
agrees with the formation of the conducting conjugated π-electron 
system. 

According to the experimental data, the length of common edges of 
hexagons in γ-DyC2 and HP-CaC2 is slightly (by ~0.05 Å) shorter than 

Fig. 1. Crystal structure of DyC2 at 66(3) GPa. Dy1 atoms are blue, C1 atoms are red, C2 atoms are brown; grey thin lines outline the unit cell. (a) A general view of 
the crystal structure. (b) The crystal structure viewed along the c-axis. (c) The coordination environment of the dysprosium atom. (d) A view of the carbon ribbon. (e) 
The electron localization function calculated in the (1 0 0) (top) and (0 0 1) plane containing carbon ribbons (bottom). (A colour version of this figure can be 
viewed online.) 
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the length of non-shared edges. This agrees with the calculations for all 
three isostructural high-pressure carbides (DyC2, CaC2, and YC2), which 
result in the shorter common edges by ~0.02–0.03 Å. This observation is 
in contrast with what is known for crystals of organic polyaromatic 
hydrocarbons (naphthalene, anthracene, tetracene, pentacene, pyrene 
[59–61]) where common edges of hexagon carbon rings are slightly 
longer (up to ~0.1 Å) than those with carbon connected to hydrogen. A 
similar effect is known, for example, for acetylene and acetylides [62]. 
The reason could be the strong electrostatic interaction between carbon 
and the metal ion: indeed, at ambient pressure, the difference in elec-
tronegativity of C and H is ~0.3 eV/e [63–65]. At 70 GPa, this difference 
significantly increases, reaching ~5.9 eV/e for C and Dy, ~17 eV/e − for 
C and Ca, and ~15.7 eV/e − for C and Y [64,65]. According to calcu-
lations and available experimental data, the average C–C distances in 
hexagons of γ-DyC2 and YC2 (~1.49 Å) are slightly longer than in 
HP-CaC2 (~1.45 Å). This qualitatively aligns with some additional 
electron transfer from cation to carbon ribbons in rare earth carbides in 
comparison to HP-CaC2: there is a small decrease of the C–C bond order 
and higher formal charges on Dy and Y in rare earth carbides than in 
HP-CaC2. 

According to SCXRD for Dy5C9 at ~70 GPa, the C–C distance in the 
carbon chains is of ~1.46 Å and the C–C–C angle is of ~132◦. All atoms 
of the chain lie in the same plane, as the torsion angle is zero (Fig. 2e). 
The crystal structure is well reproduced by theoretical calculations 
(Table S4). According to the theory, both in Dy5C9 and in a hypothetical 
Y5C9 with the same structure, the lengths of C–C bonds are very similar 
(alternating lengths along the chain are of ~1.42 Å and ~1.44 Å at 70 
GPa), and the angle between carbon atoms is of ~135◦. That implies cis- 
polyacetylene type deprotonated carbon chains with predominantly sp2- 
hybridized carbon and conjugated π-electron system. The ICOBI calcu-
lated for carbon atoms in the chains of Y5C9 and Dy5C9, are equal to 
~0.7 and ~1.1 respectively. The presence of carbon’s p-electrons at the 
Fermi level, as in the calculated eDOS (Fig. S7, Table S8) supports this 
assignment. Strong covalent bonding between carbon atoms in the 
chains, and the ionic nature of Dy and isolated C are evident from ELF 

maps (Fig. 2 and S7). At the same time, C–C distances are significantly 
longer than in cis-polyacetylene – 1.37 Å [66], and the bond angle is 
significantly larger than 120◦ expected for sp2-hybridized carbon. 
Remarkably, in γ-Dy4C5 and γ-Y4C5 the geometry of [C3] groups (in 
γ-Dy4C5, C–C contact is of ~1.43 Å, bond angle – ~132◦) is very similar 
to the geometry of elements forming cis-polyacetylene-type chains. 
Experimental and theoretical data on γ-Y4C5 [17] suggest that the bond 
order of carbon atoms in [C3] is ~1.31. Thus, carbon chains discovered 
in Dy5C9 can be considered as polymerized in cis conformation [C3] 
groups found in γ-Dy4C5 and γ-Y4C5. 

As discussed above, the analysis of ELF maps (Figs. 1 and 2, and S3- 
S7) suggests the ionic bonding between dysprosium and carbon species 
in γ-DyC2, Dy5C9, γ-Dy4C5, and Dy3C2. that allows considering them, 
along with Dy4C3, as salt carbides [62]. In fact, the synthesis of all these 
compounds from elements also makes them similar to salt carbides, so 
that one can assign a formal charge to a carbon atom or to carbon 
groups. 

There is a correlation between the formal charges of nitrogen and 
carbon dimers and their lengths. Recently we demonstrated this using as 
an example [N2]x− dimers in the high-pressure Na3(N2)4, Ca3(N2)4, 
Sr3(N2)4, and Ba(N2)3 compounds [3] and, for [C2]x− dimers, in yttrium 
carbide γ-Y4C5 containing both [C2] and nonlinear [C3] units [17]. In the 
structures of the carbon compounds synthesized in this study, there are 
more complex carbon arrangements, including infinite ribbons of fused 
carbon rings, that imposed a necessity to introduce the effective bond 
order into consideration to comprehend the relationship between the 
C–C bond lengths and formal charges of individual carbon atoms or their 
groups. We have collected the literature data for a number of binary 
metal-carbon compounds featuring [C2] or [C3] units [17,29,54,67–84] 
with reported C–C interatomic distances. For each of these compounds, 
we calculated the effective bond order (EBO) between the carbon atoms 
using two equations introduced below. For a compound containing both 
isolated “methanide”-type carbon atoms and carbon dimers, with the 
chemical formula Men(C2)mCk (k is number of isolated “methanide”-type 
carbon atoms, and m is the number of carbon dimers), the effective bond 

Fig. 2. Crystal structure of Dy5C9 at 68(3) GPa. All Dy atoms are blue, C atoms forming chains are brown, discrete C atoms are red; grey thin lines outline the unit 
cell. (a) A general view of the crystal structure. (b) Arrangement of parallel planes comprised of Dy atoms rotated relative to each other by ~40◦. (c) and (d) The 
coordination environment of the Dy1 and Dy2 atoms. (e) A carbon chain geometry (top) and the electron localization function calculated in the plane containing the 
carbon chain (bottom). (f) The electron localization function calculated in the (0 0 2) plane. (A colour version of this figure can be viewed online.) 
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order (EBO) between carbon atoms is calculated as follows: 

EBO =
(2 × 4m − nZMe + 4k)

2m
, (1)  

where “4” is the number of valence electrons in a free carbon atom, ZMe 
is the formal charge of the cation. Carbons’ formal charge in dimers is x 
= 4-EBO. For example, for barium acetylide, BaC2, according to this 
formula, the effective bond order of carbon atoms is ‘3’, and formal 
charge is ‘-1’. Similarly, for Men(C3)mCk carbides containing only [C3] 
units, we used the following equation: 

EBO =
(3 × 4m − nZMe + 4k)

4m
. (2) 

The results of our calculations for the binary metal-carbon com-
pounds found in the literature [17,29,54,67–84] are presented in the 
graphical form in Fig. S8, showing a correlation between the C–C dis-
tances in [C2] and [C3] units, d(C–C), and the bond order in the pairs of C 
atoms (green and blue dots). The data points shown by green and blue 
dots in Fig. S8 were fitted by the linear equation: EBO = 10.81 – 6.57 × d 
(C–C) (dashed line in Fig. S8). 

With the linear equation obtained above, we determined the bond 
order for C–C bonds for all dysprosium carbides studied here, using the 
values of d(C–C) obtained experimentally from SCXRD. For Dy3C2 we 
found the bond order ~1 in dimers, implying it to be an ethanide 
featuring [C2]6- units, which is in perfect agreement with the reasoning 
presented in Ref. [29]. In dimers of γ-Dy4C5, the EBO is of ~1.71 
(implying the formal charge of the dimers as [C2]4.6-), whereas in trimers 
the EBO is of ~1.40, suggesting [C3]6.4- units. For Dy5C9, all C–C bonds 
in the chains are similar, and the EBO is of ~1.22 (thus 

one-dimensionally infinite polyanions 
1
∞

[
(C4)

6.2−
]

). For γ-DyC2, pos-

sessing ribbons of fused hexagon rings, the estimated C–C EBO is of 
~1.27 for shared hexagon edges and of ~0.90 for unshared ones. This 
gives a formal charge of ~ − 3.0 for two carbons per formula unit. 
Remarkably, the same reasoning implies a formal charge of ~ − 2.4 per 
two carbon atoms in HP-CaC2 [28], that is about 1e less than expected 
for Ca2+ vs Dy3+. Knowing the EBO (thus formal charges) of the carbon 
polyanions, we can estimate the oxidation state of dysprosium atoms in 
the studied compounds: dysprosium (III) in γ-DyC2, Dy5C9, γ-Dy4C5, and 
Dy4C3, and dysprosium (II) in Dy3C2. 

The Mulliken charges of dysprosium in the carbides at ~70 GPa were 
found to be 1.66 for Dy1 in γ-DyC2; 1.88 for Dy1 and Dy2 in Dy5C9; 1.69 
for Dy1, 1.75 for Dy2 and 1.55 for Dy3 in γ-Dy4C5; 1.01 for Dy1 and 1.13 
for Dy2 in Dy3C2; and 1.64 for Dy in Dy4C3 (Table S9). The values for 
γ-DyC2, Dy5C9, γ-Dy4C5, and Dy4C3 are consistent with the Mulliken 
charges reported for other dysprosium(III)-containing compounds [29, 
85,86]. The lower Mulliken charges of dysprosium in Dy3C2 are in 
agreement with the assessment of the cation in this compound as Dy2+

[29]. The model Y–C system shows similar results (Table S10). 
Experimental studies of the equations of state of dysprosium carbides 

were beyond the scope of this work, however the pressure-volume re-
lations were simulated and described with the second order Birch- 
Murnaghan equation of state (Table S11). The calculated bulk moduli 
decrease with an increase in dysprosium content and a simultaneous 
decrease in the number of homoatomic bonds in carbon anions, pro-
gressing from carbon ribbons, chains, trimers, and dumbbells to discrete 
carbon atoms, as follows: K0(γ-DyC2) = 189(2) GPa > K0(Dy5C9) = 164 
(2) GPa > K0(γ-Dy4C5) = 123.8(8) GPa > K0(Dy3C2) = 96.7(9) GPa >
K0(Dy4C3) = 91.6(1.2) GPa (Table S11, Fig. S9). Although the dyspro-
sium content in Dy4C3 is slightly less than in Dy3C2, its bulk modulus is 
relatively lower. This is likely due to the different nature of carbon an-
ions: Dy3C2 contains carbon dumbbells, whereas the structure of Dy4C3 
features discrete carbon atoms. There is also an inverse correlation be-
tween the compressibility and the ratio R =<d > 3/(ZDy*ZC) (<d> is the 
average Dy–C distance in the first coordination sphere; ZDy and ZC are 
the formal charges of dysprosium and carbon) (Fig. S10a). For the 

studied compounds, with the increase of the R ratio the compressibility 
decreases (Fig. S10a), whereas for ionic and ionic-covalent compounds 
the correlation is known to be direct [3,87]. This indicates an unusual 
compression mechanism for the studied dysprosium carbides that is in 
line with the observation of the almost linear correlation between 
compressibility and the average bond order in carbon pairs (Fig. S10b). 

Computations of phonon dispersion relations in harmonic approxi-
mation at 0 K show that at 70 GPa γ-DyC2, Dy5C9, γ-Dy4C5 and Dy4C3 
exhibit dynamical stability (Fig. S11), while Dy3C2 shows tiny instability 
at 70 GPa (Fig. S11g) similar to that found previously for this compound 
at the synthesis pressure of 55 GPa [29]. γ-DyC2, γ-Dy4C5 and Dy4C3 are 
predicted to be dynamically stable at 0 GPa (Figs. S11b, f, j) and thus 
potentially quenchable to ambient conditions, but one should consider 
this prediction with caution. Notably, γ-Y4C5 discovered earlier was 
found dynamically unstable at ambient conditions [17] in contrast to the 
isostructural γ-Dy4C5 from the current study (Fig. S11f). 

The calculated convex hull diagram at 0 K and 70 GPa (Fig. 3) shows 
that according to the theory, γ-DyC2, γ-Dy4C5 and Dy3C2 are thermo-
dynamically stable at the synthesis pressure. Two dysprosium carbides, 
Dy5C9 and Dy4C3, lie above the convex hull by 70 and 16 meV per atom, 
respectively (Fig. 3). These differences in energy turn out to be smaller 
than kBT (241 meV) at the synthesis temperature (~2800 K), thus sug-
gesting that these phases might be metastable at ambient temperature 
and high pressures. 

4. Conclusion 

To summarize, novel dysprosium carbides γ-DyC2, Dy5C9, γ-Dy4C5, 
Dy3C2, and Dy4C3 were synthesized by the direct reaction of metallic 
dysprosium and carbon originated from diamond anvils upon laser 
heating to ~2800 K at ~70 GPa. Their crystal structures were studied in 
situ. The most notable features of the new carbides are polyacene-like 
ribbons in γ-DyC2 and cis-polyacetylene-type chains in Dy5C9. This 
study demonstrates the drastic effect of high pressures on the chemistry 
of the Dy–C system with the general tendency to formation of carbides 
with complex polyanions. 

Fig. 3. Calculated convex hull diagram constructed for the Dy–C binary system 
at 70 GPa. Only known Dy–C phases are included. Dashed lines indicate the 
convex hull; carbides synthesized in this work are given in red; Dy2C3 (shown in 
blue) has been previously observed both at extreme [29] and ambient condi-
tions [84]; carbides shown in green have been reported at ambient pressure 
(Dy2C [88], Dy4C5 [73,89,90], Dy3C4 [91,92], and DyC2 [54]). (A colour 
version of this figure can be viewed online.) 
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Data availability 

The details of the crystal structure investigations may be obtained 
from The Cambridge Crystallographic Data Centre (CCDC, https://www 
.ccdc.cam.ac.uk/structures/) by quoting the deposition numbers 
2311063, 2311064, 2311065, 2311066, and 2311067. All other infor-
mation is available in the main text or the Supplementary materials. 
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acetylide carbides Li2C2 and CaC2 at high pressure, J. Chem. Phys. 137 (2012) 
224507, https://doi.org/10.1063/1.4770268. 

[25] M. Debessai, J.J. Hamlin, J.S. Schilling, D. Rosenmann, D.G. Hinks, H. Claus, 
Superconductivity for CaC6 to 32 GPa hydrostatic pressure, Phys. Rev. B Condens. 
Matter 82 (2010) 132502, https://doi.org/10.1103/PhysRevB.82.132502. 

[26] A. Gauzzi, S. Takashima, N. Takeshita, C. Terakura, H. Takagi, N. Emery, et al., 
Enhancement of superconductivity and evidence of structural instability in 
intercalated graphite CaC6 under high pressure, Phys. Rev. Lett. 98 (2007) 067002, 
https://doi.org/10.1103/PhysRevLett.98.067002. 

F.I. Akbar et al.                                                                                                                                                                                                                                 

https://www.ccdc.cam.ac.uk/structures/
https://www.ccdc.cam.ac.uk/structures/
https://doi.org/10.1016/j.carbon.2024.119374
https://doi.org/10.1016/j.carbon.2024.119374
https://doi.org/10.1021/jacsau.3c00090
https://doi.org/10.1126/science.1244989
https://doi.org/10.1103/PhysRevMaterials.6.023402
https://doi.org/10.1002/anie.202207469
https://doi.org/10.1038/s41467-018-05143-2
https://doi.org/10.1038/s41467-024-46313-9
https://doi.org/10.1038/s41467-024-46313-9
https://doi.org/10.1021/acs.chemmater.6b04538
https://doi.org/10.1038/s41557-023-01148-7
https://doi.org/10.1038/s41557-022-00925-0
https://doi.org/10.1103/PhysRevLett.126.065702
https://doi.org/10.1103/PhysRevLett.126.065702
https://doi.org/10.1039/c5cp06745f
https://doi.org/10.1021/acs.chemmater.2c00520
https://doi.org/10.1021/acs.chemmater.2c00520
https://doi.org/10.1038/s41586-019-1201-8
https://doi.org/10.1103/PhysRevB.102.134109
https://doi.org/10.1038/ncomms12267
https://doi.org/10.1038/s41570-020-0213-0
https://doi.org/10.1103/PhysRevLett.127.135501
https://doi.org/10.1021/acs.jpclett.7b01779
https://doi.org/10.1021/acs.jpclett.7b01779
https://doi.org/10.1021/acs.jpcc.8b04081
https://doi.org/10.1039/c6cp01484d
https://doi.org/10.1038/srep45872
https://doi.org/10.1038/srep45872
https://doi.org/10.1038/s42004-018-0085-0
https://doi.org/10.1038/s42004-018-0085-0
https://doi.org/10.1063/1.4770268
https://doi.org/10.1103/PhysRevB.82.132502
https://doi.org/10.1103/PhysRevLett.98.067002


Carbon 228 (2024) 119374

7

[27] L. Zhang, Y. Xie, T. Cui, Y. Li, Z. He, Y. Ma, et al., Pressure-induced enhancement of 
electron-phonon coupling in superconducting CaC6 from first principles, Phys. Rev. 
B Condens. Matter 74 (2006) 184519, https://doi.org/10.1103/ 
PhysRevB.74.184519. 

[28] S. Khandarkhaeva, T. Fedotenko, A. Aslandukova, F.I. Akbar, M. Bykov, D. Laniel, 
et al., Extending carbon chemistry at high-pressure by synthesis of CaC2 and Ca3C7 
with deprotonated polyacene- and para-poly(indenoindene)-like nanoribbons, Nat. 
Commun. 15 (2024) 2855, https://doi.org/10.1038/s41467-024-47138-2. 

[29] F.I. Akbar, A. Aslandukova, A. Aslandukov, Y. Yin, F. Trybel, S. Khandarkhaeva, et 
al., High-pressure synthesis of dysprosium carbides, Front. Chem. 11 (2023) 1–9, 
https://doi.org/10.3389/fchem.2023.1210081. 

[30] I. Kantor, V. Prakapenka, A. Kantor, P. Dera, A. Kurnosov, S. Sinogeikin, et al., 
BX90: a new diamond anvil cell design for X-ray diffraction and optical 
measurements, Rev. Sci. Instrum. 83 (2012) 125102, https://doi.org/10.1063/ 
1.4768541. 

[31] T. Fedotenko, L. Dubrovinsky, G. Aprilis, E. Koemets, A. Snigirev, I. Snigireva, et 
al., Laser heating setup for diamond anvil cells for in situ synchrotron and in house 
high and ultra-high pressure studies, Rev. Sci. Instrum. 90 (2019) 104501, https:// 
doi.org/10.1063/1.5117786. 

[32] P.I. Dorogokupets, A. Dewaele, Equations of state of MgO, Au, Pt, NaCl-B1, and 
NaCl-B2: internally consistent high-temperature pressure scales, High Pres. Res. 27 
(2007) 431–446, https://doi.org/10.1080/08957950701659700. 

[33] T. Sakai, E. Ohtani, N. Hirao, Y. Ohishi, Equation of state of the NaCl-B2 phase up 
to 304 GPa, J. Appl. Phys. 109 (2011) 084912, https://doi.org/10.1063/ 
1.3573393. 

[34] R. Hrubiak, J.S. Smith, G. Shen, Multimode scanning X-ray diffraction microscopy 
for diamond anvil cell experiments, Rev. Sci. Instrum. 90 (2019) 025109, doi: 
10.1063/1.5057518. 

[35] Rigaku Oxford Diffraction, CrysAlisPro Software system, 2015, https://doi.org/ 
10.1063/1.2372734. 

[36] A. Aslandukov, M. Aslandukov, N. Dubrovinskaia, L. Dubrovinsky, Domain Auto 
Finder (DAFi) program: the analysis of single-crystal X-ray diffraction data from 
polycrystalline samples, J. Appl. Crystallogr. 55 (2022) 1383–1391, https://doi. 
org/10.1107/s1600576722008081. 

[37] O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard, H. Puschmann, OLEX2: 
a complete structure solution, refinement and analysis program, J. Appl. 
Crystallogr. 42 (2009) 339–341, https://doi.org/10.1107/S0021889808042726. 

[38] G.M. Sheldrick, SHELXT – integrated space-group and crystal-structure 
determination, Acta Crystallogr. Sect. A Found. Adv. 71 (2015) 3–8, https://doi. 
org/10.1107/S2053273314026370. 

[39] G.M. Sheldrick, Crystal structure refinement with SHELXL, Acta Crystallogr., Sect. 
C: Struct. Chem. 71 (2015) 3–8, https://doi.org/10.1107/S2053229614024218. 

[40] K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, 
volumetric and morphology data, J. Appl. Crystallogr. 44 (2011) 1272–1276, 
https://doi.org/10.1107/S0021889811038970. 

[41] J. Gonzalez-Platas, M. Alvaro, F. Nestola, R. Angel, EosFit7-GUI: a new graphical 
user interface for equation of state calculations, analyses and teaching, J. Appl. 
Crystallogr. 49 (2016) 1377–1382, https://doi.org/10.1107/ 
S1600576716008050. 

[42] G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals 
and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6 (1996) 
15–50, https://doi.org/10.1016/0927-0256(96)00008-0. 
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carbides R4C5 with R=Y, Gd, Tb, Dy, and Ho, J. Solid State Chem. 132 (1997) 
294–299, https://doi.org/10.1006/jssc.1997.7461. 

[74] M. Atoji, K. Gschneidner, A.H. Daane, R.E. Rundle, F.H. Spedding, The structures of 
lanthanum dicarbide and sesquicarbide by X-ray and neutron diffraction, J. Am. 
Chem. Soc. 80 (1958) 1804–1808, https://doi.org/10.1021/ja01541a008. 

[75] R. Czekalla, W. Jeitschko, R.-D. Hoffmann, H. Rabeneck, Preparation, crystal 
structure, and properties of the lanthanoid carbides Ln4C7 with ln = Ho, Er, Tm, 
and Lu, Zeitschrift für Naturforschung B 51 (1996) 646–654, https://doi.org/ 
10.1515/znb-1996-0505. 

[76] H. Ninomiya, T. Koshinuma, T. Nishio, H. Fujihisa, K. Kawashima, I. Hase, et al., 
Experimental and computational determination of optimal boron content in 
layered superconductor Sc20C8-xBxC20, Inorg. Chem. 59 (2020) 14290–14295, 
https://doi.org/10.1021/acs.inorgchem.0c02090. 

[77] T.W. Button, I.J. McColm, Reaction of carbon with lanthanide silicides IV: the 
Y5Si3-C system, J. Less Common. Met. 97 (1984) 237–244, https://doi.org/ 
10.1016/0022-5088(84)90028-6. 

[78] O. Reckeweg, A. Baumann, H.A. Mayer, J. Glaser, H.J. Meyer, On the coexistence 
of tetragonal and monoclinic CaC2: structural and spectroscopic studies on alkaline 
earth metal acetylides, MC2 (M = Ca, Sr, Ba), Zeitschrift für anorganische und 
allgemeine Chemie 625 (1999) 1686–1692, https://doi.org/10.1002/(sici)1521- 
3749(199910)625:10<1686::aid-zaac1686>3.3.co;2-o. 
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