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ABSTRACT
We present an efficient first-principles based method geared toward reliably predicting the structures of solid materials across the Periodic
Table. To this end, we use a density functional theory baseline with a compact, near-minimal min+s basis set, yielding low computational costs
and memory demands. Since the use of such a small basis set leads to systematic errors in chemical bond lengths, we develop a linear pair-
wise correction, available for elements Z = 1–86 (excluding the lanthanide series), parameterized for use with the Perdew–Burke–Ernzerhof
exchange–correlation functional. We demonstrate the reliability of this corrected approach for equilibrium volumes across the Periodic Table
and the transferability to differently coordinated environments and multi-elemental crystals. We examine relative energies, forces, and stresses
in geometry optimizations and molecular dynamics simulations.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0222649

I. INTRODUCTION
In materials science, first-principles simulations are the state-

of-the-art approach for obtaining detailed atomistic insights into the
structure and properties of bulk materials, surface–adsorbate sys-
tems, interfaces, and nanoparticles. To this end, Kohn–Sham density
functional theory (KS-DFT) methods employing generalized gradi-
ent approximation (GGA) functionals, such as the Perdew–Burke-
Ernzerhof (PBE) functional,1 are extremely popular. PBE reliably
describes equilibrium structures, vibrational spectra, binding and
cohesive energies for a broad range of materials.2 However, to cap-
ture the behavior of structurally complex systems (e.g., defects, inter-
faces, and amorphous phases), large simulation cells are required,
with concomitantly large demands of CPU time and memory.
In addition, to describe dynamic properties or finite-temperature
effects, molecular dynamics (MD) simulations with millions of sim-
ulation steps are required. Such simulations are hindered by the
computational cost of typical DFT calculations.

In terms of computational scaling, the bottleneck of KS-DFT
calculations lies in the solution of the KS eigenvalue problem.
Commonly used direct eigensolvers, such as ELPA,3 scale cubi-
cally (O(N3)) with system size. This cubic scaling KS solution step
therefore dominates the total cost of the self-consistent field (SCF)
cycle in the limit of large simulation cells. Considerable research is
being directed toward more cost-efficient ways to solve the eigen-
value problem. These efforts include iterative eigensolvers (e.g.,
SLEPc4) with better than cubic scaling or density matrix solvers
(e.g., NTPoly5) that bypass the diagonalization step to reach linear
scaling. Both iterative eigensolvers and density matrix solvers only
reach their full potential when applied to sufficiently large sparse
matrices, though (e.g., for lower dimensional systems and/or insu-
lators), whereas the computational cost is unfavorable for small- to
medium-sized systems and dense bulk systems with small bandgaps
(metals and semiconductors). Here, they are still outperformed by
direct eigensolvers. Consequently, despite significant progress in
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hardware and algorithms, KS-DFT calculations for systems with
thousands of atoms are in general far from routine.

Semiempirical electronic structure (SQM) methods are low-
cost alternatives to DFT, which overcome its computational
limitations by using minimal basis sets and empirical integral
approximations. Popular SQM methods in quantum chemistry
include the PMn methods based on the Neglect of Differential
Diatomic Overlap (NDDO, e.g., PM66), the extended tight-binding
methods GFNn-xTB (GFN-xTB7 and GFN2-xTB8), and the density
functional tight-binding (DFTB) approach.9–11

Clearly, methods that incorporate integral approximations
(e.g., within the DFTB or NDDO frameworks) have computational
advantages over methods that do not. On the flipside, these approx-
imations inevitably include empirical components, and their appli-
cability is therefore restricted to the original domain of interest. As a
consequence, SQM methods can display an unpredictable behavior
and large errors when going beyond this scope. This is extensively
documented in Ref. 12, where methods that display an excellent
performance for molecules were found to yield poor results for met-
als and other solids. SQM methods thus offer low computational
costs but lack the robustness and transferability of first-principles
methods.

Improved robustness and accuracy can be obtained when
semiempirical methods are built on top of a first-principles baseline.
This is for example done in the HF-3c method,13 which is presently
the most cost-efficient method of a set of “3c” methods devel-
oped by Grimme and co-workers.14 Specifically, the HF-3c method
uses Hartree–Fock (HF) in combination with a near-minimal basis
set.13 Clearly, the lack of electron correlation and basis-set incom-
pleteness introduces significant errors in energies and geometries.
HF-3c corrects these with three atom-pairwise empirical correc-
tions. These include corrections for the dispersion interaction, the
basis set superposition error (BSSE), and a short-range basis correc-
tion targeting the basis set incompleteness error (BSIE).13 Notably,
the “3c” approach has also been extended to DFT, e.g., with the
PBEh-3c15 and r2SCAN-3c16 methods. However, all 3c methods are
tailored to obtaining geometries and thermodynamic properties of
molecular systems. Yet, there is a similar demand for cost-efficient
methods for obtaining reliable geometries of inorganic bulk systems
at the DFT level, e.g., for initial screenings in materials discovery or
for generating training data for machine learning (ML) potentials.
The current work therefore introduces such an approach for bulk
materials within the FHI-aims DFT code.17

II. METHOD
As a basis for the proposed method, we employ a cost-efficient,

first-principles model using the semilocal PBE functional with a
near-minimal basis set termed min+s. We focus on the PBE func-
tional as a target, without additional dispersion corrections. While
such corrections are important for some classes of materials, they are
not used by default in general simulations of inorganic materials, as
they can be detrimental (e.g., in the description of metallic systems)
and parameterizations are not always broadly tested across the Peri-
odic Table. As a consequence, all major materials databases (e.g., the
Materials Project,18 AFLOW,19 and OQMD20) use plain PBE in their
computational setup. Since we observed systematic underbinding

at this level of theory (and consequently overestimated lattice con-
stants), we propose a simple empirical correction term. Together,
the min+s basis set and the proposed linear pairwise correction
(LPC) represent a robust and cost efficient method for structural
relaxations of materials across the Periodic Table. This method is
described in detail below.

A. PBE/min+s baseline
1. Basis set specification

In FHI-aims, KS orbitals are expressed in terms of numeric
atom-centered orbital (NAO) basis functions ϕi,17

ϕi(r) =
ui(r)

r
Ylm(Ω) (1)

with localized numerical tabulated radial functions ui(r) and spher-
ical harmonics Y lm(Ω). For each element, the NAO basis set is
hierarchically constructed from a minimal free-atom basis set by
iteratively adding additional radial functions until a required level
of energy convergence is reached. FHI-aims provides predefined
numerical settings for different levels of convergence. These settings
define a set of NAO basis functions and correspondingly adjusted
integration grids, multipole expansions for the Hartree potential,
etc. The most commonly used settings in FHI-aims are termed light
and tight. For GGA functionals, such as PBE, the tight settings
are essentially fully converged and recommended for highly pre-
cise energy calculations, whereas the light settings are much more
cost-efficient and often used for structural relaxations and ab initio
molecular dynamics.17 For large systems, where the solution of the
KS equations dominates the computational cost, even light settings
can become computationally prohibitive in terms of CPU time and
memory consumption, however.

In this work, we employ a cost-efficient near-minimal NAO
basis set, which we denote as min+s. The min+s basis consists of
a minimal set of basis functions (including the full valence shell
of the corresponding element) and one additional s-type function,
which grants some amount of radial flexibility to the basis set at a
negligible computational cost. Specifically, it substantially improves
equilibrium volumes V0 compared to the pure minimal basis set.
To illustrate this point, we benchmarked the relative equilibrium
volume error using the PBE functional for 71 ground-state elemen-
tal crystals21 against multiple small basis set choices (min, min+s,
min+sp, min+spd) compared to the converged tight basis set; see Fig.
S1. This reveals that min+s systematically improves the description
of all elements by reducing the error in V0 approximately by a fac-
tor of 2 compared to using the min basis set alone. Including higher
angular momentum p and d functions further decreases the error in
V0, but also lowers the computational benefit of using small basis
sets compared to the converged tight settings. In contrast, the cost of
min+s differs only negligibly from the min basis set.

All basis functions are localized within a basis set cutoff inher-
ited from the light settings, where the cutoff is chosen to be as
small as possible without significantly affecting the accuracy of
computations. For completeness, the min+s basis set cutoffs for
each element are provided in the supplementary material. To fur-
ther reduce the computational cost, only the chemically relevant
valence and shallow-core electrons are considered by using the
frozen core approximation in the solution of the KS equations. Here,
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we are using the implementation by Yu et al. (FC99+C+V) with
an energy cutoff of −100 eV (if not otherwise stated).22,23 Note
that despite improving the description of equilibrium volumes, the
min+s basis is inadequate for accurately describing the variation-
ally optimal electron density and KS wavefunction. This can be seen
from density difference plots between converged and small basis
electron densities for the Cu dimer (see Fig. S2), revealing that
the small basis sets fail to capture the redistribution of charge in a
chemical bond. Clearly, a spherically symmetrical s-function cannot
describe such anisotropic effects. Nonetheless, the density difference
plots do reveal small improvements in the overall density going from
min to min+s.

As an alternative to increasing the basis set size, there are also
recent approaches for designing adaptive small basis sets, such as
the NOTCH model of Wang and Neese24 or the adaptive q-vSZP
basis set reported by Müller et al..25 In general, this increases the
flexibility of the basis but also the empiricism of the underlying mod-
els. For example, NOTCH defines the contraction of a Gaussian
Type Orbital (GTO) basis set via bond length-dependent contrac-
tion coefficients. Similarly, Ref. 25 uses an atom-in-molecule adap-
tively contracted GTO minimal basis with effective atomic charge
and coordination number dependent contraction coefficients. The
current work avoids the empirical parameterization of such con-
tractions at the cost of lower flexibility. Alternatively, the ONETEP
code use similar ideas to optimize atom centered basis functions in
a completely non-empirical variational approach.26 However, this
significantly increases the computational effort of the calculations,

compared to a static (near) minimal basis set. Note that unlike
GTO methods, the NAO approach used herein does not require
deep contractions of primitive basis functions, since the NAOs
already represent atomic orbitals accurately. Consequently, NAOs
are well suited for small basis methods, such as the one used herein.
Meanwhile, the adaptive contraction approach cannot be directly
transferred to NAOs.

2. Computational cost
In Fig. 1(a), the computational cost of the min+s basis set

is compared to the light and tight settings for a single SCF iter-
ation on CsPbBr3 supercells with up to 2560 atoms. PBE/min+s
reduces the total wall-clock time on average to 52% and 21% com-
pared to PBE/light and PBE/tight. Beyond the runtime, large-scale
simulations are also often limited by their memory demand. Here,
PBE/min+s reduces the required memory usage on average to 15%
and 28% compared to PBE/light and PBE/tight, respectively. The
computational time and memory savings due to min+s are thereby
mainly due to the reduced number of basis functions and lighter
integration grids (compared to tight). However, the overall reduc-
tion varies according to the contained elements, as well as the size
and density of the examined system. Generally, the savings are
largest for elements with low atomic numbers and decrease for heavy
elements with many core orbitals. In this respect, CsPbBr3 is far
from the best case scenario. Nevertheless, the min+s settings clearly
lead to substantial savings compared to the light and especially tight
settings.

FIG. 1. Scaling behavior of the computational cost for self-consistent field (SCF) iterations employing the min+s, light, and tight settings as a function of system size for
CsPbBr3 supercells with 5, 150, 320, 625, 1080, and 2560 atoms. (a) Comparison of the number of basis functions, highest tracked memory usage, and total runtime. (b)
Subtimings for the first SCF iteration with the min+s and tight basis sets. The 5-, 150-, 320-, 625-, 1080-, and 2560-atom supercells have been computed on two nodes with
40 CPUs each with large memory nodes 192 GB on the HPC cluster Cobra (processor type: Intel Skylake 6148, processor clock: 2.4 GHz). For min+s settings, five-atom
computations were excluded due to ELPA errors from too small matrices for the chosen number of CPUs. For light and tight settings, the 2560-atom supercell could not be
computed due to memory limitations.
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To obtain better insights into the time savings for different sys-
tem sizes, we examine the major contributors to the total wall-clock
time of the first SCF iteration in Fig. 1(b). For small system sizes,
the major contributors to the total time are linear scaling grid-based
computational steps (Hartree potential, density update, and inte-
gration step). For large system sizes, the cubic scaling KS solution
dominates. By using the min+s basis set [Fig. 1(b), right] instead of
the tight basis set [Fig. 1(b) left], the computational cost for both
grid-based computational steps and the KS solution is decreased,
yielding lower computational cost for small-, medium-, and large-
scale systems. Even better, the relative savings increase with increas-
ing system size (see Table 1 of the supplementary material) due to
the increased sparsity of matrices obtained with the min+s basis
set. Crucial for enabling large-scale computations is the crossover
point, for which the cost of the cubic scaling KS solution exceeds
the linear scaling grid-based computational steps. PBE/min+s shifts
this crossover point to significantly larger system sizes (around 1000
atoms). In turn, this pushes the KS bottleneck to larger system sizes
and enables cost-efficient large-scale simulations.

3. Basis set incompleteness errors for crystals
Using the compact min+s basis clearly leads to computational

advantages, but this inevitably has negative effects on the predic-
tive accuracy of the calculations, due to basis set incompleteness
errors (BSIEs). For example, it has been observed that small basis
sets lead to systematically overestimated bond lengths in organic
molecules.13,28 To examine whether similar systematic trends can be
observed in solids, we computed energy–volume curves and derived
equilibrium properties (such as equilibrium volumes V0) of bulk
crystals across the Periodic Table. Note that for simplicity, we will
use the term BSIE for the discrepancy between min+s and tight set-
tings in the following, although there are also (smaller) contributions
from grid densities and other factors to this difference.

For illustration, the PBE/min+s and PBE/tight energy–volume
curves of bulk silicon in the diamond crystal structure are shown
in Fig. 2(a). The corresponding equilibrium volumes are obtained
from a Birch–Murnaghan equation-of-state fit,29,30 performed using
the atomic simulation environment (ASE).31 This reveals that

PBE/min+s overestimates the equilibrium volume V0 of silicon by
6%, compared to PBE/tight. Beyond this, the BSIE also impacts
the shape of the energy–volume curve. This discrepancy in shape
and equilibrium volume between two energy–volume curves can
be assessed with the Δ-value introduced by Lejaeghere et al. as
follows:21

Δ =
√
∫ΔE2(V) dV

ΔV
. (2)

These Δ-values will be used as an optimization target further
below.

Importantly, the overestimation of equilibrium volumes due to
BSIE is not just observed for silicon, but for a wide range of elements
and bonding types, including ionic, covalent, metallic, and molec-
ular systems. This is shown for a dataset of 128 crystals in Fig. 3
(see Table I). The volumes are commonly overestimated by 5%–10%,
and in some cases by more than 40%. Analyzing the BSIE for differ-
ent bonding types, we find that the error is smallest for systems that
are reasonably similar to free atoms, such as noble gases or ionic
materials. In contrast, the overestimation increases for more com-
plex bonding situations, e.g., in covalent, metallic, and molecular
systems. This can be rationalized by considering that the minimal
basis set is obtained from isolated atom calculations in the NAO
scheme. A near minimal basis is thus well suited for free atoms
(the limit of infinite volume in an energy–volume curve), and
the BSIE will be more pronounced for smaller volumes. Overall,
this results in underbinding and an overestimation of equilibrium
volumes.

B. Linear pairwise correction (LPC) for BSIE
1. Method definition

Having observed the systematic BSIE effect on energy–volume
curves, we now aim to correct the potential energy surface (PES) in
such a way that overestimated bond lengths are shortened without
adversely affecting the PES and the related thermodynamic ensem-
ble. To this end, we draw on the literature of minimally invasive
biases that have been developed for large-scale biomolecular

FIG. 2. Energy–volume curves for bulk silicon obtained with (a) PBE/min+s and (b) PBE/min+s/LPC, both relative to PBE/tight. The Δ-values show the dissimilarity of the
E(V) curves obtained from PBE/min+s and PBE/min+s/LPC compared to PBE/tight. The equilibrium volumes obtained with PBE/min+s, PBE/min+s/LPC, and PBE/tight are
marked by dots and crosses.
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FIG. 3. Performance of PBE/min+s and PBE/min+s/LPC for equilibrium volumes of bulk systems with different bonding types, relative to PBE/tight (see Table I). The mean
errors and standard deviations are indicated in black. The original data are plotted on the left side of each distribution.

TABLE I. Test set of 128 materials, including noble gases,21 ionic binary compounds,27 covalent semiconductor binary compounds,27 metalloids,21 metals,21 and molecular
elemental crystals.21

Bonding type
Number

of materials Materials

Noble gases 6 He, Ne, Ar, Kr, Xe, Rn21

Ionic 21 Alkali halides AB with A = Li, Na, K, Rb, Cs and B = F, Cl, Br, I27

Covalent 37 AlAs(ZB), AlN(WUR), AlN(ZB), AlP(ZB),AlSb(ZB), BAs(ZB), BP(ZB), CdS(WUR),
CdS(ZB), CdSe(WUR), CdSe(ZB), CdTe(ZB), GaAs(ZB), GaN(WUR), GaN(ZB),

GaP(ZB), GaSb(ZB), HgS(ZB), HgSe(ZB), HgTe(ZB), InAs(ZB), InN(WUR), InP(ZB),
InSb(ZB), MgO(RS), MgS(RS), MgSe(RS), PbS(RS), PbSe(RS), PbTe(RS), SiC(ZB),

ZnO(WUR), ZnS(WUR), ZnS(ZB), ZnSe(ZB), ZnTe(ZB), C(DIA)27

Metalloid 8 B, Si, Ge, As, Se, Sb, Po, Te21

Metallic 47 Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, Ba, Sc, Y, Lu, Ti, Zr, Hf, V, Nb,
Ta, Cr, Mo, W, Mn, Tc, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au,

Zn, Cd, Hg, Al, Ga, In, Sn, Tl, Pb, Bi21

Molecular elemental crystals 9 H2, O2, N2, F2, P, S, Cl2, Br2, I2
21

simulations. In particular, Pitera and Chodera introduced a linear
form of bias based on a maximum entropy argument, which dis-
torts the unbiased statistical ensemble the least.32,33 With this goal
in mind, we define a simple linear pairwise correction (LPC) eLPC,AB,
which is fast to evaluate and easy to parameterize,

eLPC,AB = cZAZB ⋅ (rAB − rcut,ZAZB) (3)

with rAB = ∣rAB∣ being the absolute distance between atoms A and
B, cZAZB denoting the element-pair dependent correction strength
(with cZAZB ≥ 0), and rcut,ZAZB denoting an element-pairwise cutoff
radius. The latter provides a measure for the onset of the cor-
rection, which should be short-ranged and act mainly on directly
bonded atoms, while interactions between next-nearest neighbors
and beyond are removed by a switching function (see below). The
effect of the LPC on the silicon energy–volume curve is shown in
Fig. 2(b). This confirms that the underbinding is corrected, without
otherwise distorting the potential energy surface.

To avoid the need for parameterizing all element-pairs in
the Periodic Table, the pairwise parameters cZAZB and rcut,ZAZB are
determined via arithmetic means of the contributing species,

cZAZB =
cZA + cZB

2
, (4)

rcut,ZAZB =
rcut,ZA + rcut,ZB

2
. (5)

The use of the arithmetic mean is a common choice for cutoff radii.
It is, e.g., also used for Lennard-Jones potentials. For the correction
strength cZAZB , use of the geometric mean was also explored. How-
ever, this proved problematic in cases where the parameterization
yielded values of cZA close to zero (see below). With the geomet-
ric mean, all pairwise corrections involving these elements would be
zero, while the arithmetic mean is more well behaved in this case.

The full correction term ELPC is obtained by summing up the
pairwise corrections eLPC,AB for each atom pair AB, multiplied by the
aforementioned switching function,

ELPC =
1
2

Nunit

∑
A

Nsuper

∑
B≠A

eLPC,AB ⋅ fswitch(rAB, rcut,ZAZB). (6)

The switching function fswitch of width w = 0.5 Å is given by34
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fswitch(rAB, rcut,ZAZB) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 if rAB < rcut,ZAZB − w,
1
2
(cos( π

w
⋅ (rAB − rcut,ZAZB + w)) + 1) if rcut,ZAZB − w ≤ rAB ≤ rcut,ZAZB ,

0 if rAB > rcut,ZAZB.

(7)

fswitch ensures a smooth transition to zero as rcut,ZAZB is approached.
This in turn leads to continuous derivatives, which enable force
and stress evaluations. Finally, the total corrected energy Emin+s/LPC
consists of the first-principles energy EPBE/min+s obtained with the
PBE/min+s baseline and the LPC correction term ELPC,

Emin+s/LPC = EPBE/min+s + ELPC. (8)

The expressions for LPC forces and stresses are given in the
supplementary material.

2. Parameterization
Clearly, the accuracy of the LPC ultimately depends on an

appropriate parameterization of the correction strength cZA and the
cutoff rcut,ZA . The latter mainly serves to ensure that the correction is
applied to all relevant short-range interactions, while leaving long-
range interactions unaltered. For most elements, this can be achieved
by setting rcut,ZA to 2.5 times the corresponding elemental single-
bond covalent radius (rcut,ZA = 2.5rcov,ZA ), with radii taken from
Refs. 35 and 36. Exceptions are made for some elements that require
larger cutoffs to cover the most common bonding situations. These
exceptions include noble gases for which van-der-Waals radii are
used (rcut,ZA = 2.5rvdW,ZA with rvdW,ZA for He, Ne, Ar, Kr, Xe from
Refs. 37 and 38). Furthermore, slightly larger cutoffs are used for S,
Hg, Pb, Se, Be (rcut,ZA = 3rcov,ZA ), of which all display diverse bonding
patterns in different crystal polymorphs.

In contrast to the cutoffs, the correction strengths cZA need to
be more carefully tuned for each element, in order to minimize the
systematic underbinding caused by the BSIE. To this end, a training
set including a range of common homoelemental bonding situa-
tions for each element (namely the dimer, graphite, diamond, β-tin,
bcc, and fcc prototypes) was used, as first reported in Ref. 39. This
consistent set of structures covers coordination numbers from 1
to 12 and is thus representative of the diverse bonding situations
encountered in solids. However, this diversity also has a downside,
in that less important high energy configurations (e.g., fcc oxygen)
can dominate the error when optimizing the parameters, leading to
unbalanced parameterizations.

To ensure that the LPC is robust for the important low
energy configurations of each element, the structures are therefore
weighted according to a Boltzmann distribution centered on the
energetically most stable structure (at the PBE/tight level), with the
Boltzmann factor pi of structure i ∈ I = {dimer, graphite, diamond,
β − tin, bcc, and fcc} given as

pi =
1
Z

exp(−ΔEi

kT
), (9)

with

ΔEi = E0,i −min ({E0,j ∣ j ∈ I}) (10)

and the normalization factor Z = ∑ j ∈I exp (−ΔE j
kT ). Here, kT is the

product of the Boltzmann constant k and the temperature T. In the
fitting procedure, kT is fixed to 0.25 eV, which provides a good
balance between the correct description of low energy configura-
tions and a qualitative description of higher energy configurations.
To further reduce the influence of outliers (e.g., in many cases the
dimers), structures with Boltzmann factors smaller than ten percent
are excluded from the fitting procedure.

Based on these structures, the cZA parameters for all ele-
ments were optimized with the Nelder–Mead method,40,41 for fixed
rcut,A, minimizing the loss function L(cZA) by summing over the
Boltzmann-factor pi [Eq. (9)] weighted Δi-values [Eq. (2)] for each
structure i in the training set,

L(cZA) =∑
i∈I

Δi(Emin+s/LPC, EPBE/tight) ⋅ pi. (11)

While this approach for reference data generation worked well
for most elements, exceptions were made for H, O, N, F, Cl, Br, and
I. This was necessary due to the fact that these elements form molec-
ular dimers, which dominate the loss function when following the
procedure described above. As the chemistry of molecular dimers is
very different from important classes of solids (i.e., hydrides, oxides,
nitrides, and halides), the corresponding parameters were reopti-
mized for representative binary compounds, keeping the parameters
of the other elements fixed. For further details regarding the dataset,
please refer to the supplementary material.

Overall, we thus obtained LPC parameters for elements with
Z = 1–86 (excluding the lanthanide series) for use with the min+s
basis set and the PBE functional. The min+s basis set and
the LPC correction are accessible through the corresponding
species defaults in FHI-aims starting from version 231 212 in
species_defaults/defaults_2020/minimal+s, which auto-
matically include the keyword to enable the basis set error correc-
tions (currently parameterized for use with the min+s basis set and
the PBE functional) for energies, forces, and stresses.

III. RESULTS AND DISCUSSION
Having defined the LPC, we first benchmark PBE/min+s/LPC

for equilibrium volumes of crystals against a PBE/tight reference.
Subsequently, we examine the performance of PBE/min+s/LPC for
geometry optimizations and MD simulations.
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A. Equilibrium volumes of crystalline solids
The performance of PBE/min+s/LPC is examined for a test set

of monoelemental and binary solid state systems categorized into
predominantly ionic, covalent, metalloid, and metallic materials and
molecular elemental solids (see Table I). For this test set, the equi-
librium volumes obtained with PBE/min+s/LPC and PBE/min+s
are compared to the PBE/tight reference. As mentioned above,
PBE/min+s overestimates most equilibrium volumes, whereas
PBE/min+s/LPC reduces the BSIE significantly and obtains reliable
equilibrium geometries for most materials; see Fig. 3.

Even though the LPC was mostly fitted on monoelemen-
tal reference structures, the method is transferable to multi-
elemental materials. Indeed, basis set errors are generally larger for
monoelemental systems (mainly represented in the metallic, cova-
lent, and molecular elemental classes) compared to poly-elemental
(e.g., ionic) materials. Overall, PBE/min+s/LPC shows the largest
residual errors for molecular elemental dimer structures such as
O2 or N2, where the performance is only slightly better than
PBE/min+s. This can be attributed to the fact that the LPC was fit-
ted to binary compounds (such as oxides and nitrides) for these
elements and is thus not well suited for the corresponding elemen-
tal molecular systems. Indeed, the results indicate that fitting on
elemental dimers would likely lead to an over-correction for solid
binaries, vindicating the selected fitting strategy.

It should be noted that the energy–volume curves are computed
by applying uniform strain to the cell. Under these conditions, the
curves for molecular dimers mainly reflect a stretching or compres-
sion of the covalent bonds in the dimers. In principle, one could also
compute energy–volume curves under the condition of fixed dimer
geometries. In this case, the curve would likely be dominated by
the basis set superposition error (BSSE), which leads to overbinding
in non-covalent interactions. BSSE effects are not addressed by the
LPC correction, since they occur on a different length scale (i.e., on
the order of van-der-Waals radii) and have the opposite sign. When
using a dispersion correction, BSSE effects can be compensated to a
certain degree by adjusting the damping factor and onset of damping
of the switching function. Furthermore, a method analogous to the
semiempirical geometrical counterpoise correction (gCP) of Kruse
and Grimme42 could be developed for solids. These developments
are beyond the scope of the current paper, however. At this stage,
the PBE/min+s/LPC method is not recommended for systems that
are dominated by van-der-Waals interactions.

To test the transferability of the PBE/min+s/LPC method fur-
ther, we examined its performance for a test set of 100 organo-metal
halide perovskite materials ABX3 (structures from Ref. 43) and 100
quaternary kesterite materials A2BCX4 (the first 100 structures from
Ref. 44); see Fig. 4. Because these materials consist of three to four
different elements and may include small organic molecules, this
represents a challenging test for the PBE/min+s/LPC method.

We find that PBE/min+s/LPC remains a consistent improve-
ment over PBE/min+s here, although the volumes are still over-
estimated by ∼5% on average. The improvement is particularly
significant for the kesterites, where volumes are overestimated by
up to 25% at the PBE/min+s level. Notably, the residual error of
PBE/min+s/LPC is fairly systematic so that most systems are still
underbound. This points to limitations of the simple functional form
of the LPC, which cannot distinguish different crystal environments.

0

FIG. 4. Performance of PBE/min+s, PBE/min+s/LPC, and PBE/light for equi-
librium volumes of 100 organo-metal halide perovskites ABX3 (structures from
Ref. 43) and 100 kesterites A2BCX4 (structures from Ref. 44), relative to PBE/tight.
The mean errors and standard deviations are indicated in black. The raw data are
plotted on the left side of each distribution.

Nonetheless, the current approach represents an improvement over
the baseline, even in this extrapolative setting.

B. Applications
One of the main use-cases for methods such as PBE/min+s/LPC

is the (pre-)relaxation of medium to large simulation cells, e.g., in
the context of ab initio thermodynamics studies or materials screen-
ing.45 While we have established that the proposed method will yield
improved equilibrium volumes, the task of geometry optimization
can potentially start from structures that are far from equilibrium.

To demonstrate this, the relative volume deviations for full
unit-cell relaxations of a compressed and rattled 512-atom silicon
supercell are shown in Fig. 5. The initial lattice constant was 4.95 Å
(corresponding to a volume compression of 26% in the 512-atom
supercell), and the atomic positions were randomly displaced from
the diamond structure with a standard deviation of 0.21 Å. This
cell was subsequently relaxed using the trust-radius enhanced
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm,17,46,47 with
a convergence criterion of ∣Fmax∣ ≤ 0.01 eV/Å. Note that this
medium-sized system was deliberately chosen to allow compar-
ison with fully converged PBE/tight calculations. Even here, the
PBE/min+s based models show significant computational benefits,
with 3–4 times lower memory demands and calculation times. Full
timings and memory usage statistics of each method are provided in
the supplementary material.

To gauge how the LPC affects the shape of the PES far from
equilibrium, we can examine the optimization path PBE/min+s/
LPC compared to PBE/min+s and PBE/tight; see Fig. 5. We
observe that the initial optimization steps are nearly identical for
PBE/min+s/LPC and PBE/min+s, displaying a fast expansion of the
cell volume. In contrast, the PBE/tight benchmark approaches the
equilibrium volume at a gradual pace. After the first five steps,
the LPC correction steers the optimization toward the PBE/tight
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FIG. 5. Geometry optimization path obtained with LPC corrected PBE/“minimal+s”
(energy cutoff −200 eV), PBE/min+s, and PBE/tight starting from a stretched
and rattled Si(DIA) 512-atom supercell. For each optimization step i, the relative
volume deviation compared to the relaxed reference geometry (PBE/tight ∣Fmax∣

≤ 0.01 eV/Å) is plotted.

equilibrium volume, diverging from the PBE/min+s path, which
overestimates the final relaxed volume by 7%, compared to a
1% overestimation with PBE/min+s/LPC. This behavior illustrates
the conservative nature of the LPC, in that it yields the correct
results around equilibrium and otherwise leaves the baseline method
mostly unaffected. This is an important property, because it avoids
the generation of spurious minima on the PES, which can result from
non-linear corrections.48,49

Moving beyond bulk systems, it is also important to establish
the transferability of the LPC to surface systems. Surface slab cal-
culations often require large supercells, in order to accommodate
complex reconstructions and obtain sufficiently bulk-like properties
for central atoms. An example for such a system is the Si(111)-
dimer-adatom stacking fault (DAS) 7 × 7 reconstruction.51 We use
an initial structure with 1033 atoms obtained from Ref. 50. Therein,
Shen et al. employed an ML force field to relax the structure, due
to the high computational cost of first-principles methods for such
systems.

We performed local relaxations of this surface structure, at
both the PBE/min+s/LPC and PBE/tight levels, with a convergence
criterion of ∣Fmax∣ ≤ 0.01 eV/Å. Importantly, the PBE/min+s/LPC
structure displays all the characteristic features of the DAS 7 × 7
reconstruction: two triangular faulted and unfaulted half unit cells
with adatoms, rest atoms, and dimers; see Fig. 6. Beyond these qual-
itative features, the structure is also quantitatively in good agreement
with the PBE/tight benchmark: The distances between the adatoms
shown deviate on average by 0.37%, the dimer bond lengths deviate
on average by 1.7%, and the distances of the rest atoms to the atoms
in the top layer deviate on average by 2.1%. Absolute distance errors
can be found in the supplementary material.

Structural relaxations yield the ground state geometry (or some
meta-stable state) of a system at T = 0 K. In practice, we are
often also interested in finite temperature properties, however. These
can be accessed via molecular dynamics (MD) simulations, which
by definition also explore non-equilibrium regions of the PES. To
explore the performance of PBE/min+s/LPC in this setting, we per-
formed MD simulations for bulk copper at T = 100, 300, 500,
and 2000 K. For each method, a 108-atom fcc-Cu supercell was

FIG. 6. (a) The relaxed Si(111)-DAS 7 × 7 surface reconstruction relaxed at the
PBE/min+s/LPC level, in top and side views. The lower eight sub-surface layers
are not shown for clarity. The Si atoms are color-coded analogously to Ref. 50
dumbbell atoms (orange), rest atoms (pink), dimer atoms (red), adatoms (green),
bulk-like atoms in the top layer (dark blue), and second-layer atoms (light blue).
The initial geometry was taken from Ref. 50. (b) Relaxed rest atom configurations
from the Si(111)-DAS 7 × 7 surface overlaid with the PBE/tight reference (dark
green).

first relaxed and subsequently equilibrated for 3 ps in the NVT
ensemble (using the Nosé–Hoover thermostat), followed by 3 ps
production runs in the NVE ensemble. A 3 fs time step was used
throughout.

The corresponding radial distribution functions (RDFs) are
shown in Fig. 7. Due to its underbinding tendencies (and conse-
quently too large unit cell), the PBE/min+s model significantly over-
estimates interatomic distances at low to moderate temperatures
(100, 300, and 500 K). In contrast, the corrected PBE/min+s/LPC
model faithfully reproduces the PBE/light reference, albeit with
slightly broadened features at 100 and 300 K. This trend reverses
somewhat as the RDF features broaden with higher temperatures
so that agreement between PBE/min+s/LPC and the reference is
essentially perfect at 500 K, and the RDF is slightly overstruc-
tured at 2000 K. Overall, these simulations show that the LPC
is also beneficial in molecular dynamics simulations, despite the
focus on equilibrium volumes in the parameterization. Further-
more, these simulations indicate that the LPC has no adverse effects
on the numerical stability of dynamics trajectory, as energy con-
servation during NVE simulations is unaffected; see Fig. 7 of the
supplementary material.
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FIG. 7. Performance of PBE/min+s/LPC for MD simulations of bulk copper com-
pared to PBE/min+s and PBE/light. Radial distribution functions for 108 atom
supercells in the NVE ensemble after equilibrating at T = 100, 300, 500, and
2000 K averaged over 600 snapshots after equilibration.

IV. CONCLUSION
In this paper, we proposed a semiempirical small basis set den-

sity functional method for cost-efficient, large-scale material simu-
lations denoted PBE/min+s/LPC. This method is parameterized for
elements up to radon (Z = 1–86, excluding the lanthanide series).
The method employs a well-balanced, near-minimal min+s NAO
basis set, which leads to significant savings in terms of computational
cost and memory demand, compared to fully converged calcula-
tions. In order to address the systematic overestimation of bond
lengths caused by basis set incompleteness, a minimally invasive
pairwise correction is used. The resulting method reliably provides
accurate equilibrium volumes for mono- and poly-elemental crys-
tals in diverse bonding situations. Despite focusing on equilibrium
structures for the parameterization, PBE/min+s/LPC does not dete-
riorate the quality of the baseline method when out of equilibrium
(e.g., for distorted structures or in MD simulations). While the
proposed method is geared toward use in the FHI-aims code, the
underlying concepts could easily be transferred to other codes using
atom centered basis functions. The LPC approach is also applicable
to other functionals, since the underlying cause (underbinding due
to basis set incompleteness) is not functional dependent. However,
it would be advisable to adjust the parameters when using different
functionals or basis sets.

It should be noted that SQM methods are commonly bench-
marked (and often also fitted) with respect to experimental struc-
tures or higher-level reference methods. The current method uses a
different approach by fitting on converged PBE data instead. This
is because one of the main use cases of the method is to pre-relax
structures for subsequent calculations with a converged basis. In
this context, being close to the target method is more important
than being close to experiment. PBE itself has of course been bench-
marked extensively to higher level computational methods as well
as experiment for solid-state and molecular properties.2,21 Extend-
ing PBE/min+s/LPC with a dispersion correction is also a worthy

goal. Here, a careful balance between BSSE effects (which mimic dis-
persion to a certain extent) and the dispersion correction must be
achieved. This is beyond the scope of the current work.

We envision that methods such as PBE/min+s/LPC will be use-
ful in the space between fully converged first-principles methods
(which offer high accuracy at a high computational cost) and effi-
cient ML potentials (which are computationally efficient but not
always reliable, depending on the availability of adequate training
data). For example, they can be used for initial relaxations or MD
trajectories to generate realistic atomistic configurations for training
an ML potential. In this case, the systematic volume errors of pure
PBE/min+s would be problematic, because they would bias the con-
figurations away from the target region. PBE/min+s/LPC can also
be useful as a pre-relaxation method, when fully converged DFT
structures are required.

SUPPLEMENTARY MATERIAL

The supplementary material contains additional figures on per-
formance and timings and also contains parameters for elements
with Z = 1–86.
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