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ABSTRACT
We present an exchange–correlation approximation in which the Coulomb interaction is split into long- and short-range components and
the range separation is determined by a non-empirical density functional. The functional respects important constraints, such as the homoge-
neous and slowly varying density limits, leads to the correct long-range potential, and eliminates one-electron self-interaction. Our approach
is designed for spectroscopic purposes and closely approximates the piecewise linearity of the energy as a function of the particle number. The
functional’s accuracy for predicting the fundamental gap in generalized Kohn–Sham theory is demonstrated for a large number of systems,
including organic semiconductors with a notoriously difficult electronic structure.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0204379

I. INTRODUCTION
Density functional theory (DFT)1–3 is a central pillar of elec-

tronic structure theory as it typically offers useful accuracy at a
moderate computational cost. The first and traditional purpose for
which DFT is employed is the prediction of the ground-state energy
and structural properties that follow from it. However, DFT is also
used for the second purpose of calculating spectroscopic properties.
One of the most important spectroscopic observables is the funda-
mental gap, defined by the difference between the first ionization
potential (IP) and the first electron affinity (EA),

Δg = IP − EA. (1)

The gap determines the character of a material, e.g., as a metal or
semiconductor, and in today’s research, predicting Δg reliably and
efficiently4 is of particular relevance because of the quest for energy-
converting materials: Δg is a decisive factor for determining whether
a material is suitable for, e.g., a solar cell or a photo-catalyst.5,6

The predictive power of a DFT calculation hinges on the accu-
racy of the employed exchange–correlation (xc) approximation. For
DFT’s first purpose, i.e., predicting the ground-state energy, years

of development have equipped the community with an impressive
selection of xc approximations, which allow one to target the level
of accuracy and computational cost that is required for the task at
hand, e.g., see Refs. 1, 2, 7, and 8 for reviews. In fact, for predicting
the ground-state energy, by now DFT can rival wavefunction-based
methods.9

For the second purpose, i.e., predicting spectroscopic observ-
ables and especially Δg, the situation is more complex. This is to a
certain extent a natural consequence of the very nature of DFT: it
focuses on the density, and orbitals were originally introduced just
as auxiliary objects for evaluating the kinetic energy. Thus, it is no
surprise that the single particle gap between the lowest unoccupied
(L) and highest occupied (H) orbital,

Δε = εL − εH (2)

in Kohn–Sham theory does not correspond to Δg even for the exact
xc functional.10–13 In a quasi-particle picture, the physical processes
corresponding to IP and EA, i.e., inserting or removing an elec-
tron, can be considered as creating a quasi-electron or quasi-hole,
respectively. These quasi-particles contain the response effects of the
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correlated many-electron system to the presence of the extra electron
or hole. In many-body perturbation theory, the GW approach14–16

provides for a natural way of calculating the quasi-particle energies.
By going from Kohn–Sham to generalized Kohn–Sham theory,

it is possible to establish the equality Δg = Δε within DFT.17 While
one can define more than one non-interacting reference systems in
generalized Kohn–Sham theory, generalized Kohn–Sham is not a
heuristic construct18 and the gap is a well-defined observable.19,20

Thus, being able to predict the many-body observable Δg reliably in
an inexpensive single particle-like calculation is extremely attractive.
However, constructing xc approximations that fulfill this promise
in practice is a challenge because several of DFT’s most demanding
aspects have to be addressed for reliable gap prediction: one-electron
self-interaction must be corrected to avoid erroneous offsets of
the occupied eigenvalues,21 a non-zero derivative discontinuity is
required in the Kohn–Sham scheme to correctly lift up the unoc-
cupied eigenvalues,11–13,22 the xc potential must have the proper
asymptotics,23,24 the energy should be a straight line as a function
of particle number between integers,10,25,26 and correspondingly, the
highest occupied eigenvalue should not depend on its occupation
number.27–29

II. RANGE SEPARATION
A decisive step forward in the reliability of DFT predicted

gaps was reached based on range separation, i.e., by splitting the
Coulomb interaction into a long- and a short-range component.30–32

In practice, this is often done in the form

1
∣r − r′∣

=
erf(ω∣r − r′∣)
∣r − r′∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
long range

+
1 − erf(ω∣r − r′∣)

∣r − r′∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

short range

, (3)

where the range-separation parameter, ω, plays a decisive role. In
recent years, range-separated hybrid (RSH) functionals have mostly
been developed along two lines.

In one line of development, successful functionals have been
constructed empirically by determining a value for ω by fitting
to reference data.8,33–38 Many different forms have been devised,
e.g., using exact exchange in either short- or long-range or both,
and possibly combining Eq. (3) with further concepts, such as the
one of local hybrids.39–42 In this class of functionals, there are
two recently developed ones that are particularly interesting in the
present context because they lead to promising results for both bind-
ing effects and spectroscopic properties. The DM2143 functional
reaches remarkable accuracy; however, it is hard to deduce insight
into xc effects from the underlying trained neural network. The
ωLH22t44–46 functional is of a different nature. Its form is guided by
functional development concepts, with nine parameters that are fit-
ted empirically, and it is accurate for many ground- and excited-state
observables. As it is one of the most accurate functionals with an
exceptionally wide range of application, we return to ωLH22t below
for comparison.

A second, alternative way of using Eq. (3) is the concept
of determining ω by optimal tuning (OT).47–49 Here, we refer
to OT that uses exact exchange in the long range with just one
parameter ω that is determined non-empirically: It exploits the

IP theorem10,28 and adjusts ω such that the frontier eigenvalues
become as close as possible to IP and EA as calculated from total
energy differences between the neutral, the cation, and the anion
systems. The OT approach is specifically designed to yield a func-
tional for spectroscopy. It has been extremely successful and, thus
inspired RSHs have been further developed, e.g., to incorporate
the effects of screening.50–53 OT allows avoiding the empirical fit-
ting of parameters. This is desirable as the final form of empirical
approaches depends on the details of the fitting procedure,54 and
developing non-empirical functionals is part of the quest for deeper
understanding and universality in DFT.3,55,56

The widespread use of OT underlines the strong need for
functionals that predict spectroscopic properties reliably. However,
OT also has non-negligible drawbacks. First, the tuning is compu-
tationally involved, requiring many calculations also for charged
systems. Second, tuning violates size consistency,47,57,58 and the
system-specific determination of ω can have further surprising con-
sequences.59 Third, the applicability of OT is limited by intrinsic
questions of consistency. Tuning can fail, e.g., for donor–acceptor
systems of largely different chemical nature. More importantly, yet,
for systems with delocalized electrons, the tuning procedure spu-
riously yields ever smaller values of ω for systems of increasing
size.60,61 Thus, the functional becomes increasingly semilocal, and
consequently, the well-known problems of semilocal functionals,
such as too low fundamental gaps,62 reappear. Ultimately, these fail-
ures have their origin in the fact that OT is system-specific, and thus,
ω is turned into a density functional, but one that is only very implic-
itly defined. One can mitigate the problems by judiciously tuning
only for a subsystem.63–66 However, this works reliably only up to a
certain system size, and the originally high predictive power of OT
might eventually be compromised.

III. A CONSTRAINT-GUIDED
EXCHANGE–CORRELATION FUNCTIONAL
WITH LOCAL RANGE SEPARATION

These problems can be overcome by going from global to local
range separation, i.e., one continues to use Eq. (3), yet makes ω an
explicit density functional ω([n], r). In the following, we thus solve
the problems that arise with the only implicitly defined density func-
tional of OT, as the explicit dependence on the density naturally
leads to different forms of ω([n], r) for different systems. At the
same time, we avoid empiricism by designing ω([n], r) such that it
fulfills the important fundamental constraints of the homogeneous
electron gas, of the slowly varying density limit, and of being free
from one-electron self-interaction.

Previous studies using local range separation67–71 focused on
finding functionals for traditional ground-state properties and relied
on empirically fitted parameters. Our aim here is different, as our
focus is on constructing a functional that will allow reliably predict-
ing the fundamental gap Δg from first principles. Therefore in our
functional construction, we deliberately focus on those properties of
the xc functional that are relevant for gap prediction, and not on
atomization energies.

Making use of Eq. (3), one can write the xc energy in the form

ElRSH
xc = ELR,ex

x + ESR,sl
x + Esl

c . (4)
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Here, ELR,ex
x denotes exact long-range exchange, i.e., the Fock-

integral evaluated with the first term on the right-hand side of
Eq. (3). This choice by construction guarantees the correct long-
range asymptotics of the potential. Here, ESR,sl

x and Esl
c are semilocal

functionals, taking into account short-range exchange and corre-
lation, respectively. The key idea for the non-empirical construc-
tion is to use Eq. (4) in combination with the range-separation
functional

ωσ(r) = CGE
∣∇nσ(r)∣

nσ(r)
1

1 − 1
2(zσ(r)ζ2

(r) + zσ(r))
. (5)

Here, nσ(r) is the spin-density, ∣∇nσ(r)∣ is its gradient, and τσ(r)
= 1

2∑i ∣∇ϕiσ(r)∣2 is the non-interacting kinetic energy density (in
Hartree atomic units). The functions zσ(r) and ζ2

(r) refer to
the ratio of τσ and its single orbital (von Weizsäcker) limit, i.e.,
zσ = ∣∇nσ ∣

2
/(8nστσ), and the spin-polarization, ζ = (n↑ − n↓)/

(n↑ + n↓). CGE =
√

5/18 ≃ 0.124226 is a non-empirical coefficient
(see below). We base the ω-dependent short-range exchange Esl,SR

x
on the local density approximation (LDA) in the analytical form
given in Ref. 72. The correlation

Esl
c = ∫ dr(εLDA

c [n↑(r), n↓(r)] −∑
σ

zσ(r)εLDA
c [nσ(r), 0]) (6)

is based on LDA with a self-interaction correction (SIC), where εLDA
c

is the correlation energy density in the parametrization by Perdew
and Wang.73

This functional is motivated by the following considerations.
First, it respects the homogeneous-electron-gas limit: ωσ(r) van-
ishes in this limit71 and the correlation energy of Eq. (6) reduces
to LDA. Second, we incorporate the slowly varying limit (gradi-
ent expansion to second order) of the exchange energy density,74

εxσ = C0n4/3
σ (1 + C2(∣∇nσ ∣/n4/3

σ )
2
+ ⋅ ⋅ ⋅ ), with C0 = −3(6π2

)
1/3
/4π

and C2 = 10/(81 ⋅ 4(6π2
)

2/3
). This is ensured as our ωσ(r) has

ωGE
σ (r) = CGE

∣∇nσ(r)∣
nσ(r)

(7)

as the leading term of is gradient expansion, and the choice CGE
=
√

5/18 yields the proper gradient expansion coefficient.70,71

Third, it corrects for one-electron self-interaction. Here, a del-
icate balance is required. If one corrects straightforwardly for one-
electron self-interaction as done in Hartree–Fock or Perdew–Zunger
SIC, one typically overcorrects. A manifestation of overcorrection is
that the energy as a function of particle number, E(N), is concave.
On the other hand, if one does not correct enough, then the func-
tional retains too much of its semilocal character, which manifests
in a convex E(N). However, a straight-line E(N) is important for
obtaining physically meaningful eigenvalues,26,75,76 and the straight-
line condition provides a guide rail in functional construction in
addition to the exact constraints. We can reach the proper balance
with local range separation by using iso-orbital indicators and spin
functions77–84 as done in Eq. (5) with the last multiplicative term on
the right-hand side. This term tends to infinity when the denomi-
nator vanishes, making the functional go to full exact exchange in
this case.68,71 How this limit is reached is controlled by zσ and ζ.
Here, zσ distinguishes between the homogeneous-electron-gas limit
(zσ → 0) and the one-orbital limit (zσ → 1). On the other hand, zσζ2

is bound between its value in closed-shell systems or the homoge-
neous electron gas (zσζ2

→ 0) and its value in one-electron regions
(zσζ2

→ 1). The linear combination of zσ and zσζ2 ensures that
one-electron systems are fully self-interaction corrected, while other
systems are subjected to a more moderate correction, with the spatial
profile of the density being taken into account via the nσ , ∇nσ , and
τσ contributions. The interplay between the homogeneous electron
gas limit on the one hand and, on the other hand, ensuring a van-
ishing interaction for one-electron system while also guaranteeing

FIG. 1. Highest occupied eigenvalue of benzene as a function of the fractional electron number (N0 electrons: neutral system) calculated with the functional of Eqs. (4)–(6),
labeled ωBT23. See the main text for a discussion of the other two curves.
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a general correction, is also the guiding principle in the correlation
functional of Eq. (6).85,114

IV. RESULTS
Figure 1 shows the fractional charge behavior that our func-

tional reaches for the paradigm case of the benzene molecule. It
shows the dependence of εH on the particle number. This depen-
dence directly reflects the curvature in E(N).26–28,76,86 For our func-
tional (labeled ωBT23, where the acronym “BT” refers to “Bayreuth,”
the university city of the first author), the eigenvalue is independent
of the particle number in an excellent approximation both below
and above the integer. As a reference and to illustrate the above-
mentioned balance, we also show the curves that would be obtained
when one would only use either 1 − zσζ2 or 1 − zσ in the denomina-
tor of the last term in Eq. (5). One would clearly obtain a positive
or negative curvature in E(N), respectively. That the linear combi-
nation of the two terms tends to balance their individual trends is
an observation that we made for all systems for which we made this
analysis.

These and all the following calculations involving local
range separation were performed with a development version of
TURBOMOLE,87 into which we implemented our functional. The

self-consistent evaluation relies on the developments of Klawohn
and Bahmann.69 See the supplementary material for more details.

Having explained and verified the guiding principles of our
functional construction, we proceed to use it for the prediction of
fundamental gaps of a set of molecules.88 We chose this set because
it is ideally suited for several reasons: First, the molecules are prac-
tically relevant as they are typical for the type of systems that are
used in organic electronics. Second, they cover a considerable range
of sizes and chemical compositions. Third and most importantly,
reliable reference data are available for this set: On the one hand,
highly accurate results have been obtained in wavefunction-based
calculations,88 and on the other hand, several different versions
of DFT89 and diligently conducted GW calculations90 have been
reported for these systems. Figure 2 shows the fundamental gap
calculated as the difference between the generalized Kohn–Sham
frontier eigenvalues of our functional plotted against the wavefunc-
tion reference. One sees that there are a few systems for which the
difference is as large as a few 0.1 eV, but overall, the results are
close to the diagonal dashed line that indicates perfect agreement.
The mean absolute error (MAE) across the set is 0.20 eV for ωBT23.
This finding is put into perspective when one compares it to the
accuracy reached with other methods. On the one hand, for the
same set of molecules, OT with an individual adjustment of the
range-separation parameter for each molecule leads to an MAE of

FIG. 2. Fundamental gaps of organic molecules calculated as the difference of the frontier eigenvalues of the ωBT23 density functional plotted against the reference gaps
calculated from CCSD(T)88 (cf. the supplementary material for raw data). Three variants of G0W 0,89,90 namely, using PBE, Hartree–Fock, and OT-ωPBE as a starting point,
respectively, are also shown. Ideal agreement is indicated by the dashed line.
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0.38 eV.89 On the other hand, Fig. 2 shows the gaps that are obtained
with different variants of G0W0: with a Perdew–Burke–Ernzerhof
(PBE) calculation as the starting point, one finds a serious under-
estimation, whereas with Hartree–Fock (HF) as the starting point,
one finds a slight overestimation. Putting G0W0 on top of OT-
ωPBE, which has been identified90 as one of the best possible
GW approaches for this benchmark set, leads to an MAE of
0.26 eV.89 Thus, gap prediction based on non-empirical general-
ized Kohn–Sham DFT with ωBT23 can clearly compete with both
non-empirical OT and G0W0 with a diligently chosen starting point.
While reaching this accuracy in the GW approach requires one
to perform a DFT calculation with a range-separated hybrid first
and then in addition the computationally expensive G0W0 calcula-
tion, our locally RSH functional yields the same accuracy from the
DFT calculation alone. The fact that DFT can rival GW in accu-
racy has recently also been demonstrated for the ωLH22t functional,
for which an MAE of 0.23 eV has been reported in Ref. 45 for the
gaps of this set. In the supplementary material, we report further
comparisons to ωLH22t.

The accuracy of our functional is also confirmed when look-
ing at the eigenvalues of the organic semiconductor molecules
NTCDA (i.e., 1,4,5,8-naphthalene-tetracarboxylic dianhydride) and
PTCDA (i.e., 3,4,9,10-perylene-tetracarboxylic acid dianhydride),
which have been studied in detail both experimentally and

theoretically, e.g., in Refs. 91–93. They constitute a formidable chal-
lenge to conventional DFT because of their mixture of delocalized
and localized orbitals94 and are also tricky for non-empirical opti-
mal tuning95 because a judiciously chosen fraction of short-range
exact exchange is needed for a correct description.96 For NTCDA,
the first IP is 9.67 eV experimentally and 9.62 eV with ωBT23, and
for PTCDA, the values are 8.20 and 8.16 eV, respectively. With a
consistently chosen starting point, G0W0 yields 9.65 and 8.13 eV
for the first IP.45,97 For the second IP, G0W0 yields 10.34 and
9.76 eV, respectively, whereas the numbers are 10.39 and 10.00 eV,
respectively, with ωBT23. Thus, even for these particularly difficult
systems, the ωBT23 results are in a similar trust range as the G0W0
results.

Finally, we check whether the non-empirical local range sep-
aration can remedy the issues that one encounters with optimal
tuning for conjugated systems of increasing size. Figure 3 shows the
fundamental gaps calculated with ωBT23 and OT-ωPBE60 for the
paradigm case of oligoacenes of increasing size, plotted as a func-
tion of the accurate wavefunction-based reference gaps.98,99 While
the absolute accuracy achieved with optimal tuning is quite good
for the smaller systems, the trend that the errors increase notice-
ably with the system size is clearly visible in the deviation from the
diagonal dashed line. However, in particular larger-size systems with
lower gaps are of technological interest. Therefore, it is reassuring to

FIG. 3. Size dependence of the fundamental gap for the series of oligoacenes (from benzene to hexacene, i.e., one to six molecular units) calculated with the ωBT23
functional and OT-ωPBE60 and plotted with respect to the reference gaps calculated from CCSD(T)98,99 (cf. the supplementary material for raw data).
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see that with our local range separation the accuracy is consistently
high (deviations below 0.1 eV) for all system sizes, with an MAE of
0.06 eV.

V. CONCLUSION AND OUTLOOK
On summarizing our findings, we conclude that the success-

ful concept of RSHs becomes particularly powerful when the range
separation is governed by a density functional. We have developed
such an explicit functional from first principles for the purposes of
predicting the fundamental gap without adjustable parameters. Our
construction is guided by the constraints of yielding the proper long-
range asymptotic potential, respecting the homogeneous electron
gas limit, fulfilling the second-order gradient expansion, and elim-
inating one-electron self-interaction. This leads to a functional for
which the energy as a function of the particle number approximates
a straight line, which can be interpreted as a sign for the reduction
of many-electron self-interaction.100,101

In view of this success, one should nevertheless be aware that
ωBT23 is not a panacea. We report some atomization energies and
barrier heights in the supplementary material. For ground-state
energetics, other functionals, e.g., the ones from Refs. 44 and 71,
are considerably more accurate. Furthermore, calculations with a
constant range-separation parameter run efficiently in many codes.
Therefore, we do not expect ωBT23 to generally replace OT or
well-calibrated general-purpose functionals. However, ωBT23’s spe-
cific non-empirical design for spectroscopic purposes makes it ideal
for applications where other methods, such as OT or GW, reach
their limits, i.e., its intended application is similar to the one of OT
functionals.

In this context, having the density functional ω([n], r) instead
of a (tuned) parameter has several advantages. First, it makes the
functional universal. Thus eliminating the need for the system spe-
cific determination of parameters not only simplifies computational
procedures but also avoids the size-consistency problem of OT.
Second, whereas OT may fail for, e.g., donor–acceptor systems
that require largely different values of the range-separation para-
meter for donor and acceptor, respectively, the functional ω([n], r)
can adjust individually to the separate components. Third, pos-
sible problems that OT faces for systems of increasing size are
avoided. As a final outlook, we note that local range separation
is promising not only from the perspective of DFT but also from
the one of time-dependent DFT (TDDFT). Based on general argu-
ments102 and the experience from optimally tuned RSHs24,48,76,103–105

and range-separated local hybrids,44,45 one expects that function-
als that yield frontier eigenvalues that reflect ionization poten-
tial and electron affinity, respectively, will also be accurate in
TDDFT for charge-transfer excitations. Implementing the equa-
tions of TDDFT for RSHs with local range separation is beyond
the scope of the present work. However, the concept of devel-
oping RSHs with an explicit density dependence, an example of
which we have given in this paper, is also promising from this
perspective.

SUPPLEMENTARY MATERIAL

The supplementary material, which includes Refs. 106–113,
contains computational details, the data underlying Figs. 2 and 3,

further comparison of ωBT23 and ωLH22t, and information about
atomization energies and barrier heights with ωBT23.
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