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ABSTRACT
In this work, we use a Bayesian optimization (BO) algorithm to sample the space of covalent organic framework (COF) components aimed
at the design of COFs with a high hole conductivity. COFs are crystalline, often porous coordination polymers, where organic molecular
units—called building blocks (BBs)—are connected by covalent bonds. Even though we limit ourselves here to a space of three-fold symmetric
BBs forming two-dimensional COF sheets, their design space is still much too large to be sampled by traditional means through evaluating
the properties of each element in this space from first principles. In order to ensure valid BBs, we use a molecular generation algorithm
that, by construction, leads to rigid three-fold symmetric molecules. The BO approach then trains two distinct surrogate models for two
conductivity properties, level alignment vs a reference electrode and reorganization free energy, which are combined in a fitness function as
the objective that evaluates BBs’ conductivities. These continuously improving surrogates allow the prediction of a material’s properties at
a low computational cost. It thus allows us to select promising candidates which, together with candidates that are very different from the
molecules already sampled, form the updated training sets of the surrogate models. In the course of 20 such training steps, we find a number
of promising candidates, some being only variations on already known motifs and others being completely novel. Finally, we subject the six
best such candidates to a computational reverse synthesis analysis to gauge their real-world synthesizability.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0223540

I. INTRODUCTION

Covalent organic frameworks (COFs) are a class of crystalline
porous polymers formed by organic molecular building units, called
building blocks (BBs), connected through covalent bonds.1,2 Since
their first inception,3 there has been a growing number of COF
applications, such as electrochemical energy storage4–6 and opto-
electronic devices.7 There, highly conductive COFs allow for rapid
charge transfer between catalysts in catalysis and in charge/discharge
processes in energy storage devices.8–11 On top of that, the versatility
of the COF platform might allow their use as an active component
in photovoltaic applications.12 In all of these applications, one of

the major criteria for the applicability of a material is the degree of
charge carrier mobility they exhibit.13

While, in principle, COFs can be synthesized as one, two, or
three dimensional materials, it is the class of two dimensional (pos-
sibly layered) sheets that has received the most attention in the
literature.14 In order to form an area-filling two-dimensional COF
sheet, the building blocks need to exhibit at least a three-fold rota-
tional symmetry. Compared to the space of all possible organic
molecules,15 a fixed molecular symmetry obviously limits the choice
of possible BB candidates, yet still leaves a huge number of molecules
to be considered. In turn, this gives rise to a large variety of chem-
ical and physical properties of the resulting frameworks, explaining
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the versatility of this material class. Unfortunately, such a variety
also hampers targeted efforts to design COFs with specific proper-
ties through the sheer number of molecules in that design space. To
exhaustively sample these massive spaces, modern approaches tend
to apply surrogate machine learning models of the properties to be
optimized. Thereby, efforts are mostly focused on materials’ stabili-
ties and structural properties,16 or factors contributing to the trans-
port of charge carriers.17,18 Regarding COFs, machine learning (ML)
approaches are mostly focused on the optimization of stability, ther-
mal properties, or band edges.19–23 Active machine learning (AML)
and Bayesian optimization (BO) are successfully applied to the pre-
diction, design, and engineering of porous materials.24–26 Following
our earlier work on molecular organic semiconductors,27 we here
modify an AML algorithm to efficiently sample the design space of
building blocks for potential COF semiconductors.28–31 Specifically,
we focus on two properties associated with charge transport,13 the
reorganization energy—correlated with the barrier toward charge
transport—and the electronic level alignment—measuring poten-
tial barriers to charge injection and extraction. In order to reduce
search complexity somewhat, in this work we focus on three-fold
rotationally symmetric BBs able to form hexagonal (honeycomb)
networks. First, we focus on developing a morphing algorithm that
generates rotationally symmetric molecules. We separate symmetric
BBs into sub-units that we call bricks, which are then subjected to
molecular morphing steps and replicated three times to form the
full BBs. To efficiently sample this ever-growing brick space, we
formulate a batch-based full-exploitation BO scheme based on the
ground procedures of our original AML approach.27 The surrogate
models employed in the BO scheme are based on Gaussian progress
regression (GPR),32 which we demonstrated to have adequate pre-
dictive capabilities for the two properties we concentrate on.27 After
20 search steps, we find in total 1736 promising BBs out of 2160
candidates that are subjected to computationally intensive electronic
structure calculations.

II. METHODS
Sampling a molecular design space with BO search essentially

consists of two distinct steps. First, the generation step, where new
molecules can automatically be spawned from old ones, e.g., through
alchemical modification or “morphing” of their constituents. Sec-
ond, the evaluation step, where the properties of the newly created
molecules are predicted by surrogate models or computed from first
principles. As mentioned earlier, we here focus on COF building
blocks. These not only need a well-defined three-fold rotational sym-
metry but should also be stiff enough to preserve the pores’ shapes
when the area-filling network is synthesized. Compared to our orig-
inal approach,27 we thus modify the morphing algorithm to fulfill
these requirements. In the following, we outline our new morphing
algorithm, the conductivity properties we employed in the BO search
and, finally, the BO search strategy and its hyperparameters.

A. Morphing algorithm
Similarly to the original approach, we generate three-fold rota-

tionally symmetric BBs by repeat application of simple molecular
morphing operations to the smallest aromatic BB, a single ben-
zene molecule. These operations, 61 in total and listed in Table

S1 of the supplementary material, are split into two kinds, namely
two backbone operations—ensuring the stiffness of the resulting
BB—and 59 side group operations, including 1 annelation reaction,
1 substitution reaction, and 57 side group additions, extracted from
molecules found in the Cambridge Structural Database.33,34 Back-
bone operations are the addition of aromatic units to the three fold
symmetric stiff scaffold, while side group operations are annela-
tion, substitution, and side group addition reactions, all consisting
of the most common organic elements C, H, N, and O. To gen-
erate the three-fold rotationally symmetric BBs, we first produce
molecules, named bricks, without any specifically defined sym-
metry and attach them to a central benzene. Two further bricks
are attached to the benzene’s meta positions—in the case of sin-
gle atom-capped bricks—or ortho-fused to the central benzene—in
the case of ring-capped bricks. In each case, the two additional
bricks are rotated by ± 120○, respectively. Similar to our earlier
efforts,27 bricks themselves are the products of mutation reac-
tions encoded as “Reaction SMARTS”35,36 that represent pathways
from a reactant molecule. Repeat application of these mutations
allows us to successively enlarge the design space of potential
COF bricks.

All such cheminformatics-related tasks were carried out using
RDKit,37 if not stated otherwise. The detailed morphing algorithm is
illustrated in Fig. 1 and outlined below. In both cases, we use phenyl
addition and hydroxyl addition as examples for backbone and side
group operations, respectively.

1. Starting from a benzene molecule, two kinds of operations
can be performed. Using the two operations mentioned ear-
lier produces a biphenyl molecule and a phenol molecule as
our new bricks. Note that ring addition backbone operations
such as the phenyl addition only occur at backbone sites,
defined as the atom farthest from the core benzene. This way,
we ensure that the ring addition only happens along the axis
of symmetry. In addition, the side group operations occur at
sites except backbone sites to preserve the backbone sites for
further necessary connections.

2. The such generated bricks are then connected to a benzene
core. Thereby, the connection between core benzene and
bricks can be a single bond or a triple bond; both of them are
rigid bonds. In addition, the connection can also be two rings
fused together to form a final BBs central triphenylene.

3. Rotate the brick around the core benzene once by 120○

and once by −120○ to finally create a three-fold rotationally
symmetric molecule.

Repeating these steps for all morphing operations, we obtain a gen-
eration of potential COF BBs. Subsequent generations are produced
by repeating steps (1)–(3) starting from the bricks of previous gen-
erations. Given that some combinations of operations may lead to
duplicates, we prune the ensemble of such generated BB candidates,
called the molecular space, after steps 1 and 2. Note that, at this
stage, generated molecules are still only 2D graphs and need fur-
ther processing to yield 3D structures. We first relax them with
very low accuracy density functional tight-binding (DFTB) opti-
mization calculations to obtain structural xyz-coordinates rapidly,
and then coordinates are transformed to SMILES by Open Babel.38

After this structural check, only 15%–25% BBs survive as coordi-
nates with physically plausible structural integrity. Subsequently,
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FIG. 1. Morphing algorithm of backbone (left) and side group (right) reactions starting from a simple benzene unit. Three connection ways are shown, taking two backbone
and one annelation reaction as examples in step (2). Here, phenyl(solid lines) and hydroxyl(dash lines) additions were taken as examples to represent backbone and side
group operations, respectively.

each candidate in the generated BBs space is labeled with ML model
predicted properties. This way, we could generate an in principle infi-
nite molecular space with any-fold rotational symmetry simply by
changing the rotation step. In this work, specifically, we do not per-
form a search in a fully enumerated candidate pool but rather sample
a space restricted only by symmetry and stability considerations,
discussed earlier.

B. Conductivity properties
For reasons of computational efficiency and practicality,

van der Waals (vdW) corrected density functional tight-binding
(DFTB)39 is used for the calculation of properties throughout the
present work. Yet, recognizing the limited accuracy of such an
approach, especially with regards to electronic level alignments, we
aligned all DFTB results to vdW-corrected hybrid DFT40,41 levels of
accuracy using a linear scaling scheme.27 DFTB calculations of prop-
erties were conducted with the xTB (v6.2.3) code based on GFN1-
xTB theory.42,43 Initial 3D coordinates of the BBs were created from

2D molecular graphs using the computationally cheaper dispersion
corrected (DC)-self consistent charge (SCC) DFTB method imple-
mented in the DFTB+ package.44 These rough DFTB relaxations also
guarantee the physical plausibility of generated structures, consider-
ing that structures with overlapping atoms or other unreasonable
configurations would simply lead to the immediate abortion of these
relaxations. All candidates surviving this step were relaxed further by
the xTB internal approximate normal coordinate rational function
optimizer (ANCopt) at the default geometry convergence crite-
rion. Afterward, properties related to the conductivity of a material
formed by these BBs are calculated on the resulting xTB relaxed
geometries.

As in our earlier work, these properties are the highest occu-
pied molecular orbital (HOMO) energy εHOMO and the reorga-
nization energy.13,34 The former measures the barrier to charge
injection from a standard gold electrode45–47 as εalign = ∣εHOMO
−ΦAu∣,48 the alignment vs the electrode’s Fermi level, here taken
as ΦAu = −5.1 eV.49 In an ideal semiconductor, the energy level of
the hole matches the electrode’s Fermi level. In addition, note that
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hereby we assume our resulting COF to be of p-type semiconduc-
tor character.50 The intra-molecular (hole) reorganization energy
λh, which is computed via the popular four-point scheme,51 mea-
sures the energy cost of accommodating a new charge state after
the carrier has moved to another site.52 In a solid, λh is connected
to electron–phonon coupling13 and, therefore, should be minimized
for efficient transport. To evaluate the candidates’ performance and
optimize the selection of BB candidates, these two properties εHOMO
and λh are combined in the scalar fitness function,

F = −∥( λh

εalign
) ⋅w∥

2

. (1)

Here, a weight vector w = (1.0, 0.7)T is employed to balance the
scales between two properties. Comparing to known organic
semiconducting materials, the values of w are chosen such that if λh
falls into a favorable range, the value of 0.7 scaling εalign will yield an
Ohmic alignment with the electrode of ∣εalign < 0.3 eV∣. In an earlier
study,27 we found this scalar fitness function to yield values of
F ≥ −0.2 for promising candidates. Consequently, we use this
threshold to probe the discovery success of our AML search
strategy.53 Ideal candidates are expected to maximize the value of F.

C. BO search strategy and hyperparameter
optimization

In this work, batch-based BO is utilized to create ever-
improving surrogate models of the conductivity properties based
on the GPR algorithm.32 Note that we employ two distinct GPR
models, one for each property, to account for the fact that the
prediction of εalign might be more accurate than that of λ or vice
versa. The GPR kernel function based on the MinMax kernel54

closely related to the Tanimoto kernel37 is illustrated in Sec. II of
the supplementary material. In both models, the molecular BB can-
didates are represented by Morgan fingerprints55 extracted up to a
radius of five bonds around each atom. The input dataset into the
models X = {x1, . . . , xN}, xN is the Morgan Fingerprints vector. In
our previous work, during each learning step, in order to balance the
exploitation and exploration of the surrogate model, candidates were
elected based on the upper confidence bound (UCB) acquisition
function56 Facq,

Facq = F + κ ⋅ σ, (2)

where F is the fitness function of candidates defined earlier and σ
denotes the prediction uncertainty obtained from the standard devi-
ation of the GP.57 The free parameter κ thus balances exploitation
and exploration,58 where larger κ implies that higher uncertainty
is preferred and more distinct candidates are chosen.56,59 In this
work, we aim to optimally explore the unlimited COF BB molecular
space in a limited number of learning steps and optimize the hyper-
parameter κ accordingly. In our earlier work,27 κ > 0 was found
to be optimal, resulting in an active machine learning scheme. As
discussed in more detail below, here we find κ = 0 to be more favor-
able. Our search thus reduced to a Bayesian optimization approach
focused on exploitation.

As a quantitative benchmark to measure the performance of
the BO strategy, we employ the discovery success S(N),27 which is
the ratio of well-performing molecules with F ≥ −0.2 divided by the

full population of molecules queried with DFT-corrected xTB, cf.
Sec. II B. The surrogate model is initialized from a set of N initial
= 160 molecules, which are BBs formed from 62 bricks, generated
by applying 61 morphing operations and the original benzene, and
used to predict the fitness of each candidate in the current gener-
ation. As the workflow depicted in Fig. 2 shows, at each learning
step, we choose Nmutation bricks from the current population to
yield a BB space. Therefore, elements of the search space are pre-
dicted by pre-trained GPR models of the two properties. Of these,
Nbatch molecules with a predicted fitness of F ≥ −0.2 are queried
and labeled by fist-principles calculated properties as added training
data.

We further realize a reinforcement learning strategy27,60 with
tree search in the brick space extension. At every learning step,
Nmutation batch bricks are selected to undergo morphing reactions and
generate a new layer of brick space. From this freshly generated
layer, Nmutation batch bricks are selected thereafter to produce second
layer brick space. This operation could be repeated as many times
as needed to generate a multi-layer tree-like molecular space. The
number of layers, namely the search depth, is noted as d.

In the previous work,27 molecules in the tree-like search space
were labeled by ML prediction of two properties, and Nmutation of
them was sampled by maximizing the acquisition function through
roulette-wheel selection. Here, however, mutations are performed
on bricks—cf. step (1) in Fig. 1—and, therefore, not directly on the
BBs, which are subject to our surrogate model evaluation. This mis-
match between the heuristically growing brick space and ML models
trained by BBs requires a different sampling criterion instead of the
acquisition function. Instead, we label them with similarity scores,
which are measured by a Tanimoto distance matrix61,62 between
a specific molecule and training set, each evaluated from their
molecular fingerprints. We compare three sampling approaches,
that are (1) dissimilarity sampling, i.e., bricks with high dissimilar-
ities are assigned higher probabilities to be selected; (2) similarity
sampling, i.e., bricks with low dissimilarities are assigned higher
probabilities to be selected; and (3) random sampling. As Fig. 3
shows, the performance of dissimilarity sampling is most robust.
Random sampling is most powerful at the early steps but further
falls down without considering the heuristics between ever-growing
molecules at different steps. In these three sampling approaches,
the brick selection is wrapped into a BO search algorithm using
the ML surrogate models to select promising BBs to be labeled
by DFT-corrected DFTB calculations. As a comparison, though,
we also tested an approach solely based on the dissimilarity mea-
sure, cf. pink diamonds in Fig. 3, which we find to yield very
poor results. Instead, dissimilarity sampling of bricks together with
the evaluation of BBs by surrogate ML models ensures a robust
algorithm.

Therefore, in the following, we focus on dissimilarity sampling
(green area in Fig. 2). In detail, Nmutation batch bricks with the high-
est dissimilarities are chosen to generate the brick space. From this
space, Nmutation bricks with the highest dissimilarities are chosen to
form the three-fold rotational symmetric BBs following the steps
(2)–(4) in Fig. 1.

The BB optimization itself is then, as already mentioned earlier,
performed by a BO search algorithm, in contrast to our earlier work.
The reason for this is that we found an acquisition function with κ
= 0 to be most efficient after five-step optimization, as depicted in
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FIG. 2. The workflow of BO including brick space extension (green area), machine learning representation and training (orange–purple area), and selection of molecules
based on the model prediction queried into the full population (blue area).

FIG. 3. Three sampling metrics of bricks are compared based on the perfor-
mances that are evaluated by success ratio S(N) at every learning step n. The
performance of the full-exploitation dissimilarity search strategy is also depicted.

Fig. S2 of the supplementary material. κ = 0 indicates that this is a
full-exploitation BO without enforced exploration since the struc-
tural dissimilarity is already taken into account in the mutation
process.

Candidates with F ≥ −0.2 are queried, and the queried num-
ber is noted as Nbatch. At each learning step, the full population
of DFT-corrected DFTB-valuated molecules is thus Npop = Ninitial

+
n
∑Nbatch. These molecules are used to retrain the surrogate model.

The complete BO search workflow is illustrated in Fig. 2.
The hyperparameters of the BO process are d, Nbatch, Nmutation,

and Nmutation batch. The metric of our hyperparameter search is
again S(N). The hyperparameters are in the range of d = 1, 2, 3,
Nbatch = 100, 200, 500, Nmutation = 1200, 800, 500, and Nmutation batch

FIG. 4. Natural logarithm of (a) the number of molecular bricks generated in each
generation N and (b) the cost time T in units of seconds plotted with respect to
generation steps.

= 10, 20, 50, as illustrated in Fig. S3. In general, different hyperpa-
rameters strongly affect the calculation and search efficiency. For
example, the Nmutation batch is taken as 20 molecules to achieve the
highest efficiency. As Fig. S3(d) shows, a too small Nmutation batch
would lead to a small candidate pool, with potentially many invalid
structures after rough relaxation, decreasing the feasibility of the
sampling. In accordance with our optimization results, we set
(d, Nbatch, Nmutation, Nmutation batch) to (1, 100, 800, 20) to optimize
the procedure’s performance. Based on Figs. S2 and S3, five-step
optimization for parameters (including κ) can provide a stable
assessment of search efficiency. In the earlier steps, S(N) is occa-
sionally non-monotonic, and the comparison of distinct searches
with different parameters is not able to be carried out. Apart from
that, five-step calculation expense is justifiable. Note that we further
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FIG. 5. At learning step n = 1, 8, 15, 20, the distributions of queried Nbatch molecules that are not contained in the train set of GPR models are depicted. Their (a) DFT-corrected
xTB calculated εHOMO, GPR predicted εHOMO, and (b) DFT-corrected xTB calculated λh, GPR predicted λh.

FIG. 6. Visualization of BO search results with optimal parameters. (a) Success ratio denoted by S(N) of BO search and random search is plotted with respect to learning
step n. Note that all parameters in these two searches are the same. Distributions of (b) fitness F, (c) εHOMO, and (d) λh are outlined over Nbatch molecules at each n. When
n = 0, it is the distribution of the initial population Ninitial .

perform these optimization searches until 20-step in order to ensure
the trends established by five-step ones are reliable. These verifica-
tion runs are not counted as hyperparamter optimization costs for
BO searches.

III. RESULTS
As already mentioned earlier, we initialize the BO search strat-

egy from a very limited molecular space containing 160 BBs. These

not only serve to initially train the surrogate models but also as the
basis for further BB generation steps. The generation rate and esti-
mated computational cost per generation are depicted in Fig. 4 and
Table S2. The generation rate is not fully exponential since several
constraints are set during the morphing process. The most impor-
tant two rules are the longest allowed topological distance, i.e., the
maximum number of involved bonds in a molecule, and the maxi-
mum number of allowed side groups. These two values are 11 and 2,
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FIG. 7. Six top-performing molecular structures from the BO search space are
listed; in addition, λh, εHOMO, and F are noted below.

respectively, to ensure the synthesizability of a final COFs structure.
In principle, one generated brick could produce eight three-fold
rotationally symmetric building blocks. The three considered con-
nection types between the generated brick and the core benzene of
the BB are single and triple bond connections and two rings fused
together. As Fig. S1(a) illustrates, the single and triple bond con-
nection sites are two vertices along the molecular backbone axis
for bond connections. For ring fusion [Fig. S1(b)], the connection
sites are four pairs of meta- and para-points in the molecule. Note
that some bricks are not able to form eight BBs; for instance, the
meta-position of phenol in 3-phenylphenol is occupied and further
formation is prohibited. Apart from these limitations, molecular
symmetries cause structural duplicates; for example, biphenyl at
most produces three BBs. After the generation procedure of eight
BBs, we exclude duplicates and illegal structures where, e.g., side
groups would overlap, geometry optimization failed (for whichever
reason), or those structures that could otherwise not be used to form
a 2D area-filling network. With all duplicate or illegal structures
removed, 160 molecules survive and are counted as the initial pop-
ulation to be fed to batch-based BO. We fully evaluate this initial
space with xTB to already find four molecules reaching our fitness
baseline. From this, we then perform our BO search based on ever-
improving surrogate models. In Fig. 5, we sketch the distributions of
Nbatch molecules. These molecules are not contained in the train set
of GPR models that are used to predict their εHOMO and λh before the

query. Their corresponding DFT-corrected xTB calculations label
them after the query.

It shows that the distributions continuously reach the iden-
tity line with learning step n going. Meanwhile, the correlations
between predictions and calculations of two properties converge to
the ideal points gradually. This proves that the robustness of models
at deep steps could lead the search to an unknown but promis-
ing space. The performances of each model on the training set are
depicted in Fig. S4. Figure 6 outlines the BO search and random
search results after 20eaning steps with optimal parameters, where
(κ, d, Nbatch, Nmutation, Nmutation batch) = (0, 1, 100, 800, 20). The para-
meter optimization is of great significance in our approach, and
the target criterion during it is the balance between the calculation
expense and the search efficiency. As Figs. S2 and S3 show, five-
step optimization is able to provide reliable parameters that still
perform as expected in the further steps. Figure 6(a) shows that
1736 promising BBs along with F ≥ −0.2 are collected with a success
ratio S(2160) = 0.80, while the distribution of fitness F is depicted
in Fig. 6(b). There, similar to our earlier uses of AML, we find that
the median fitness of the search population rises quickly, while the
distribution itself remains broad due to our measures to improve
the exploration of the molecular design space. This is illustrated in
more detail in Figs. 6(c) and 6(d). Especially the level alignment
gets narrower with the median value of εhomo approaching −5.1.
Therefore, εalign tends toward a perfect fit of 0.0. Meanwhile, also,
the median of λh tends toward smaller values. In principle, with
each learning step, the molecules intuitively get more and more
complex, leading to a higher rate of failure of our property calcu-
lations, e.g., due to more potential for steric overlap between side
groups. Therefore, in later generations we need to go to greater
lengths to relax the geometries to avoid such invalid molecular
overlaps.

After running the BO discovery over 20 steps, we extract the six
top-performing BBs with high F scores and display them in Fig. 7.
The central motif of the top five well-performing molecules is 1,3,5-
triphenylbenzol, and it is a compound of BTPB/BTPA in the syn-
thesis of hexagonal BTP-COFs with 4 nm open pores.63 The fused
ring naphthalene motifs contribute to an increased conductivity of
BBs through conjugate bonds. Naphthalene-based linkers are widely
used in the synthesis of COF to connect BBs.64–66 Here, we involve
this scaffold into promising BBs directly, which leads to poten-
tially different synthesis and characterization of COFs. Furthermore,
we focus on the well performing molecule (f), which exhibits a
central triphenylene motif, which is also commonly synthesized in
some COFs, such as COF-53 and T-COF-OH.67,68 Such motifs are
widely used in diverse applications owing to their high thermal
stability and strong fluorescence. The similar nitrogen substituted
and nitrogen-containing functional groups attached to the tripheny-
lene motif were also reported by Yilun et al.69 in HPP-COF, which
shows high-rate H+/OH− conduction. Overall, we find that the S,
N, and O rich functional groups tethered to the backbone tend to
increase the conductivity. Additionally, they could provide anchor-
ing points for small molecules in the pores for chemical or photo-
chemical applications of the COF. In order to assess the synthesize
ability of our BBs, we employed the computer-assisted organic syn-
thesis software SPAYA,70,71 which indeed found synthetic routes
for (a) and (e).
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Finally, looking at the collection of best performing molecules
as a whole, we found that our more stringent symmetry and
stability requirements compared to earlier work27 alleviated one of
the downsides of the earlier AML.

There, as a consequence of the minimization of λ,34 the
molecules tended toward ever larger and softer scaffolds, that are
bricks in our current BO search. Indeed, a generation algorithm
without the built-in rigidity constraints, only ensuring 3-fold sym-
metry of the BB candidates, would lead to quite similar results, as
depicted in Fig. S5. Specifically, floppy bonds (e.g., -O-, -N-) were
included in the AML morphing algorithm to ensure the diversity
of the search space. BBs generated with these soft bricks are also
floppy and show no potential to form a structural framework. Focus-
ing on those BBs that could feasibly form area-filling COF sheets,
we thus feel justified in enforcing rigidity already at the generation
level.

IV. CONCLUSION
In this work, we adapted a successful batch-based Bayesian

optimization strategy to sample the design space of building blocks
for conductive covalent organic frameworks. Thereby, we rely on
two proven properties, measuring charge injection barriers (εHOMO)
and barriers to charge transport across COF layers (λ). Owing to
the high discovery success rate while also ensuring a high candi-
date diversity, the BO strategy allowed us to efficiently mine BBs
among the overwhelming wealth of potential COF BB molecules.
By adapting the generation algorithm, we ensure that only valid and
sufficiently rigid BBs are generated. After 20 BO steps, we extract
the six top-performing BB candidates to find both well-known and
uncommon structural motifs. Our modified generation algorithm
counteracts a tendency of BO based on the used properties to maxi-
mize the size of the molecules in order to minimize λ. Instead, the
constraints we put into the generation algorithm were shown to
lead to very plausible BB candidates. Finally, recognizing the need
to connect our results to experiments, we also subjected the six best
performing BBs to a computational retrosynthesis analysis. While
not perfect, the used tool already found synthetic routes for at least
two of the BBs.

However, in this work, we only focused on BBs and did not
target full 2D COF sheets or even layered 3D structures. Given
that most conductive COFs known so far mostly show transport
in the out-of-plane direction,72 we would need to generate full 3D
models of the layered COF material. Yet, our morphing algorithm
and the molecular representation are based on “SMILES.” This 2D
encoding and decoding of molecular structures does not give us
access to real 3D COF structures. Future work could remedy this
by also including 3D structural data in our surrogate modeling.
Nevertheless, there are hints that, due to fortuitous error cancella-
tion, gas phase calculations can actually be used to predict εHOMO
of experimental condensed phase results.73 Overall, though, this
study once again demonstrated how the use of machine learned
surrogate models, paired with suitable constraints derived from
a physical and chemical understanding of the design space, can
lead to tangible results potentially guiding further development of
materials.

SUPPLEMENTARY MATERIAL

Supplementary material is available online as a single PDF con-
taining a complete list of morphing operations, an estimate of the
size of the design space at each step, the GPR kernel function, two
graphs depicting the results of the hyperparameter optimization, and
a graph of BBs resulting from an application of our approach without
the molecular stiffness constraint.

ACKNOWLEDGMENTS
H.O. acknowledges support from the German Science Foun-

dation (DFG) through the Heisenberg scheme under Grant No.
OB 425/9-1. This work was partially funded by the DFG under
Germany’s Excellence Strategy (Grant No. EXC 852 2089/1-
390776260, Econversion) and the State of Bavaria as part of the
“Solar Technologies go Hybrid” initiative.

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Yuxuan Yao: Data curation (lead); Formal analysis (lead); Inves-
tigation (lead); Methodology (equal); Software (lead); Validation
(equal); Visualization (lead); Writing – original draft (lead). Harald
Oberhofer: Conceptualization (lead); Funding acquisition (lead);
Methodology (equal); Project administration (lead); Resources
(lead); Validation (equal); Writing – review & editing (lead).

DATA AVAILABILITY
The full code and the population used for the ini-

tial training of the surrogate models are available at
https://github.com/yuxuan1023/COF_Brick_BO_Search. The
dataset of 1736 potential building blocks for the construction of
COF is available at https://zenodo.org/records/12698407.

REFERENCES
1K. Geng, T. He, R. Liu, S. Dalapati, K. T. Tan, Z. Li, S. Tao, Y. Gong, Q. Jiang, and
D. Jiang, “Covalent organic frameworks: Design, synthesis, and functions,” Chem.
Rev. 120, 8814–8933 (2020).
2J. Keupp and R. Schmid, “Topoff: Mof structure prediction using specifically
optimized blueprints,” Faraday Discuss. 211, 79–101 (2018).
3A. P. Côté, A. I. Benin, N. W. Ockwig, M. O’Keeffe, A. J. Matzger, and
O. M. Yaghi, “Porous, crystalline, covalent organic frameworks,” Science 310,
1166–1170 (2005).
4Y. Zhou, Z. Wang, P. Yang, X. Zu, and F. Gao, “Electronic and optical prop-
erties of two-dimensional covalent organic frameworks,” J. Mater. Chem. 22,
16964–16970 (2012).
5X. Zhao, P. Pachfule, and A. Thomas, “Covalent organic frameworks (COFs) for
electrochemical applications,” Chem. Soc. Rev. 50, 6871–6913 (2021).
6D. Zhu, G. Xu, M. Barnes, Y. Li, C.-P. Tseng, Z. Zhang, J.-J. Zhang, Y. Zhu,
S. Khalil, M. M. Rahman, R. Verduzco, and P. M. Ajayan, “Covalent organic
frameworks for batteries,” Adv. Funct. Mater. 31, 2100505 (2021).

J. Chem. Phys. 161, 074102 (2024); doi: 10.1063/5.0223540 161, 074102-8

© Author(s) 2024

 10 February 2025 08:37:19

https://pubs.aip.org/aip/jcp
https://doi.org/10.60893/figshare.jcp.c.7373821
https://github.com/yuxuan1023/COF_Brick_BO_Search
https://zenodo.org/records/12698407
https://doi.org/10.1021/acs.chemrev.9b00550
https://doi.org/10.1021/acs.chemrev.9b00550
https://doi.org/10.1039/c8fd00051d
https://doi.org/10.1126/science.1120411
https://doi.org/10.1039/c2jm32321d
https://doi.org/10.1039/d0cs01569e
https://doi.org/10.1002/adfm.202100505


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

7N. Keller and T. Bein, “Optoelectronic processes in covalent organic
frameworks,” Chem. Soc. Rev. 50, 1813–1845 (2021).
8R. Wang, H. Lyu, G. S. H. Poon Ho, H. Chen, Y. Yuan, K.-T. Bang, and Y. Kim,
“Highly conductive covalent–organic framework films,” Small 20, 2306634 (2024).
9C. S. Diercks, S. Lin, N. Kornienko, E. A. Kapustin, E. M. Nichols, C. Zhu, Y.
Zhao, C. J. Chang, and O. M. Yaghi, “Reticular electronic tuning of porphyrin
active sites in covalent organic frameworks for electrocatalytic carbon dioxide
reduction,” J. Am. Chem. Soc. 140, 1116–1122 (2018).
10J. Liang, Q. Liu, A. A. Alshehri, and X. Sun, “Recent advances in nanostructured
heterogeneous catalysts for n-cycle electrocatalysis,” Nano Res. Energy 1, 9120010
(2022).
11H. Liao, H. Wang, H. Ding, X. Meng, H. Xu, B. Wang, X. Ai, and C. Wang,
“A 2D porous porphyrin-based covalent organic framework for sulfur storage in
lithium–sulfur batteries,” J. Mater. Chem. A 4, 7416–7421 (2016).
12M. Dogru, M. Handloser, F. Auras, T. Kunz, D. Medina, A. Hartschuh,
P. Knochel, and T. Bein, “A photoconductive thienothiophene-based covalent
organic framework showing charge transfer towards included fullerene,” Angew.
Chem., Int. Ed. 52, 2920–2924 (2013).
13H. Oberhofer, K. Reuter, and J. Blumberger, “Charge transport in molec-
ular materials: An assessment of computational methods,” Chem. Rev. 117,
10319–10357 (2017).
14M. S. Lohse and T. Bein, “Covalent organic frameworks: Structures, synthesis,
and applications,” Adv. Funct. Mater. 28, 1705553 (2018).
15P. G. Polishchuk, T. I. Madzhidov, and A. Varnek, “Estimation of the size of
drug-like chemical space based on GDB-17 data,” J. Comput. Aided Mol. Des. 27,
675–679 (2013).
16K. M. Jablonka, D. Ongari, S. M. Moosavi, and B. Smit, “Big-data science in
porous materials: Materials genomics and machine learning,” Chem. Rev. 120,
8066–8129 (2020).
17J. Lederer, W. Kaiser, A. Mattoni, and A. Gagliardi, “Machine learning–based
charge transport computation for pentacene,” Adv. Theory Simul. 2, 1800136
(2019).
18P. Reiser, M. Konrad, A. Fediai, S. Léon, W. Wenzel, and P. Friederich,
“Analyzing dynamical disorder for charge transport in organic semiconductors
via machine learning,” J. Chem. Theory Comput. 17, 3750–3759 (2021).
19Y. Lan, X. Han, M. Tong, H. Huang, Q. Yang, D. Liu, X. Zhao, and C. Zhong,
“Materials genomics methods for high-throughput construction of COFs and
targeted synthesis,” Nat. Commun. 9, 5274 (2018).
20P. Yang, H. Zhang, X. Lai, K. Wang, Q. Yang, and D. Yu, “Accelerating the
selection of covalent organic frameworks with automated machine learning,” ACS
Omega 6, 17149–17161 (2021).
21S. Kumar, G. Ignacz, and G. Szekely, “Synthesis of covalent organic frameworks
using sustainable solvents and machine learning,” Green Chem. 23, 8932–8939
(2021).
22C.-W. Wu, F. Li, Y.-J. Zeng, H. Zhao, G. Xie, W.-X. Zhou, Q. Liu, and G. Zhang,
“Machine learning accelerated design of 2D covalent organic frame materials for
thermoelectrics,” Appl. Surf. Sci. 638, 157947 (2023).
23D. Wang, H. Lv, Y. Wan, X. Wu, and J. Yang, “Band-edge prediction of 2D cova-
lent organic frameworks from molecular precursor via machine learning,” J. Phys.
Chem. Lett. 14, 6757–6764 (2023).
24A. Deshwal, C. M. Simon, and J. R. Doppa, “Bayesian optimization of
nanoporous materials,” Mol. Syst. Des. Eng. 6, 1066–1086 (2021).
25Y. Xie, C. Zhang, H. Deng, B. Zheng, J.-W. Su, K. Shutt, and J. Lin, “Accelerate
synthesis of metal–organic frameworks by a robotic platform and Bayesian
optimization,” ACS Appl. Mater. Interfaces 13, 53485–53491 (2021).
26C. Chowdhury, “Bayesian optimization for efficient prediction of gas uptake in
nanoporous materials,” ChemPhysChem e202300850 (published online, 2024).
27C. Kunkel, J. T. Margraf, K. Chen, H. Oberhofer, and K. Reuter, “Active
discovery of organic semiconductors,” Nat. Commun. 12, 2422 (2021).
28T. Lookman, P. V. Balachandran, D. Xue, and R. Yuan, “Active learning in mate-
rials science with emphasis on adaptive sampling using uncertainties for targeted
design,” npj Comput. Mater. 5, 21 (2019).
29J. S. Smith, B. Nebgen, N. Lubbers, O. Isayev, and A. E. Roitberg, “Less is more:
Sampling chemical space with active learning,” J. Chem. Phys. 148, 241733 (2018).

30J. Vandermause, S. B. Torrisi, S. Batzner, Y. Xie, L. Sun, A. M. Kolpak, and
B. Kozinsky, “On-the-fly active learning of interpretable Bayesian force fields for
atomistic rare events,” npj Comput. Mater. 6, 20 (2020).
31J. P. Janet, S. Ramesh, C. Duan, and H. J. Kulik, “Accurate multiobjective design
in a space of millions of transition metal complexes with neural-network-driven
efficient global optimization,” ACS Cent. Sci. 6, 513–524 (2020).
32C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learn-
ing, Adaptive Computation and Machine Learning (MIT Press, 2006), pp. I–XVIII,
1–248.
33F. H. Allen, “The Cambridge structural database: A quarter of a million crystal
structures and rising,” Acta Crystallogr., Sect. B: Struct. Sci. 58, 380–388 (2002).
34C. Kunkel, C. Schober, J. T. Margraf, K. Reuter, and H. Oberhofer, “Finding
the right bricks for molecular legos: A data mining approach to organic
semiconductor design,” Chem. Mater. 31, 969–978 (2019).
35C. A. James and D. Weininger, Daylight Theory Manual (Daylight Chemical
Information Systems, Inc., Laguna Niguel, CA, 2008).
36E. S. R. Ehmki, R. Schmidt, F. Ohm, and M. Rarey, “Comparing molecular pat-
terns using the example of smarts: Applications and filter collection analysis,”
J. Chem. Inf. Model. 59, 2572–2586 (2019).
37G. Landrum, Rdkit: Open-source cheminformatics (2016),
https://www.rdkit.org/.
38N. M. O’Boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch, and G. R.
Hutchison, “Open babel: An open chemical toolbox,” J. Cheminf. 3, 33 (2011).
39M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim,
S. Suhai, and G. Seifert, “Self-consistent-charge density-functional tight-binding
method for simulations of complex materials properties,” Phys. Rev. B 58,
7260–7268 (1998).
40A. D. Becke, “Density-functional exchange-energy approximation with correct
asymptotic behavior,” Phys. Rev. A 38, 3098–3100 (1988).
41C. Lee, W. Yang, and R. G. Parr, “Development of the Colle-Salvetti correlation-
energy formula into a functional of the electron density,” Phys. Rev. B 37, 785–789
(1988).
42S. Grimme, C. Bannwarth, and P. Shushkov, “A robust and accurate tight-
binding quantum chemical method for structures, vibrational frequencies,
and noncovalent interactions of large molecular systems parametrized for all
SPD-block elements (z = 1–86),” J. Chem. Theory Comput. 13, 1989–2009 (2017).
43C. Bannwarth, S. Ehlert, and S. Grimme, “GFN2-xTB—An accurate and broadly
parametrized self-consistent tight-binding quantum chemical method with mul-
tipole electrostatics and density-dependent dispersion contributions,” J. Chem.
Theory Comput. 15, 1652–1671 (2019).
44B. Hourahine, B. Aradi, V. Blum, F. Bonafé, A. Buccheri, C. Camacho, C. Ceval-
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