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Abstract
We give an introductory account of the recent hyperdensity functional theory for the equilibrium
statistical mechanics of soft matter systems (Sammüller et al 2024 Phys. Rev. Lett. 133 098201).
Hyperdensity functionals give access to the behaviour of arbitrary thermal observables in
spatially inhomogeneous equilibrium many-body systems. The approach is based on classical
density functional theory applied to an extended ensemble using standard functional techniques.
The associated formally exact generalized Mermin-Evans functional relationships can be
represented accurately by neural functionals. These neural networks are trained via
simulation-based supervised machine learning and they allow one to carry out efficient
functional calculus using automatic differentiation and numerical functional line integration.
Exact sum rules, including hard wall contact theorems and hyperfluctuation Ornstein–Zernike
equations, interrelate the different correlation functions. We lay out close connections to
hyperforce correlation sum rules (Robitschko et al 2024 Commun. Phys. 7 103) that arise from
statistical mechanical gauge invariance (Müller et al 2024 Phys. Rev. Lett. 133 217101). Further
quantitative measures of collective self-organization are provided by hyperdirect correlation
functionals and spatially resolved hyperfluctuation profiles. The theory facilitates to gain deep
insight into the inherent structuring mechanisms that govern the behaviour of both simple and
complex order parameters in coupled many-body systems.

Keywords: classical density functional theory, liquid state theory, fluctuation profiles,
force sampling, Ornstein–Zernike relation, hyperforce correlations, neural functionals

1. Introduction

The Mermin-Evans theorem [1–6] of density functional the-
ory provides the finite temperature and classical mechanical
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generalization of the pivotal Hohenberg-Kohn proof [7, 8].
These theorems enable a full representation of the equilibrium
statistical mechanics of particle-based systems via systemat-
ically constructed functional dependencies. In particular the
eponymous one-body density profile ρ(r), where r denotes
spatial position, plays a leading role as a variational quant-
ity. Higher-body correlation functions are accessible both
via the Ornstein–Zernike relationship [5, 9] and Percus’ test
particle route [5, 10] to represent the full correlated physics
that emerges from the underlying coupling of the individual
particles. Full thermodynamic information, including bulk and
interfacial contributions, is thereby accessible.
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In typical applications one is interested in situations where
spatial inhomogeneity is induced by the action of an external
potential Vext(r). Appropriate choices of the form of Vext(r)
allow one to model a broad class of different types of external
influence that is exerted onto a system, including walls, con-
finement, the behaviour around solutes, etc. The microscopic
degrees of freedom of the system are thereby coupled through
an interparticle interaction potential u(rN) that depends on all
coordinates rN = r1, . . . ,rN of the N particles. Typically the
thermodynamic state point is given via prescribing values of
the chemical potential µ and of the absolute temperature T.

From an elementary statistical mechanical point of view it
is in principle a standard task to predict the density profile ρ(r),
which in the classical realm is straightforward to accomplish
in computer simulations. One needs to average the density
operator ρ̂(r) =

∑
i δ(r− ri), where the sum over i runs over

all N particles, and δ(·) indicates the Dirac distribution. The
thermal ensemble average is indicated by ⟨·⟩ and it can readily
be realized via importance sampling on the basis of e.g. grand
canonical Monte Carlo simulations [11–13]. Thereby power-
ful histogram [12], force sampling [11, 14–21] and mapped
averaging [22–34] techniques are available.

Given this quite pedestrian status it can seem surprising
that the density profile ρ(r) = ⟨ρ̂(r)⟩ is of Nobel-prize win-
ning format in the quantum realm [8]. The situation can seem
even more perplexing as ρ(r) is the only relevant variational
variable in density functional theory, which hence seemingly
lacks any explicit occurrence of two- and higher-body cor-
relation functions. Using any further problem-specific, tailor-
made order parameters is also quite alien to the framework.

That these apparent deficiencies can all be remedied by
the mere inversion of the functional map, i.e. realizing and
establishing ρ(r)→ Vext(r), can seem mysterious. Possibly at
the centre of the mystery is the density functionalists’ credo
that ‘everything is a density functional’, which poignantly
expresses that, for given interparticle interaction potential
u(rN), from knowledge of ρ(r) the Hamiltonian itself can be
reconstructed. Once the Hamiltonian is known along with the
thermodynamic conditions, any equilibrium property, no mat-
ter how complex or intricate, is known in principle and has
thus become a density functional. This formal structure can
certainly seem surprising and we here wish to lay out its con-
crete consequences and route to practical implementation.

Functional relationships have acquired new and compelling
relevance in light of the recent neural functional theory [35–
44]. This hybrid approach utilizes many-body simulations to
generate data for supervised training of an artificial neural net-
work, which then acts as a neural functional. A number of
features set this approach apart from more generic machine-
learning methods [45–48], from physics-informed machine
learning in liquid state integral equation theory [49–51], as
well as from other uses of machine learning in classical [52–
62] and in quantum density functional theory [63–70]. As is
argued in [35–44], the neural functional theory constitutes a
genuine theoretical framework that permits one to carry out

deep functional calculus and to obtain a very complete picture
of the physics under investigation.

We summarize several key features of neural function-
als. (i) Learning of the relationship between input and output
data pairs is based on a rigorous mathematical relationship,
which is known from first principles to exist and to be unique,
see the discussion given in [38]. (ii) Local learning [35–38]
facilitates data-efficient training and subsequent ‘beyond-the-
box’ application of the resulting neural functional to chal-
lenging multi-scale problems. (iii) Efficient implementation
of functional calculus is provided by automatic functional
differentiation [71] and fast numerical functional integration.
(iv) The neural representations of both direct correlation func-
tionals and of free energy functionals are accurate and per-
formant. (v) The internal consistencies of a neural functional
can be tested via numerical evaluation of a wide variety of
exact statistical mechanical sum rules.

The body of literature addressing statistical mechanical
sum rules, i.e. exact identities that hold universally, is both
large and diverse; see e.g. [72–74]. The recent thermal Noether
invariance theory provides a systematic approach for both
the derivation and the classification of sum rules [75–84].
The thermal Noether invariance is thereby inherent in the
very foundations of the statistical mechanics and constitutes
a gauge transformation for statistical mechanical microstates
[83, 84]; see the very recent Viewpoint given by Rotenberg
[85]. The approach is free of simplifying assumptions and
approximations. Technically the symmetry is an invariance of
the phase space integral under specific transformation opera-
tions of the phase space variables. The Noether framework not
only generates exact identities, but it also acts as a construction
device to generate the specific correlation functions for which
these identities hold. The correlation functions range from
standard density-based statistical mechanical correlations to
force-based observables, which were shown to shine new light
on liquid structure even in bulk [80, 81].

In a remarkable contribution Hirschfelder [86] generalized
the standard virial theorem [5], which dates back to Clausius
and the very origins of thermodynamics, to include an arbit-
rary observable Â, as represented by a phase space function
in the present classical context. The hyperforce theory of [82]
performs a similar generalization of the force-balance relation-
ship, as expressed in local form via a hierarchy of equations
due to Yvon [87] and Born and Green [88]. Hyperforce sum
rules hold both globally as well as locally resolved in position
and they couple in specific ways the general observable Âwith
the fundamental degrees of freedom of the system via force-
and density-based correlation functions.

We recall that the one-body force balance equation integ-
rates itself very naturally into density functional theory, where
it is recovered as the spatial gradient of the fundamental
Euler–Lagrange equation [2, 6, 79]. An analogous correspond-
ence exists for the hyperforce framework [82–84], as this is
mirrored and complemented by the corresponding hyperdens-
ity functional theory [40]. This approach facilitates the explicit
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construction of the mean of the observable Â as a density func-
tional, i.e.A[ρ], where the brackets indicate the functional rela-
tionship. Here we give an introductory and extended account
of the hyperdensity functional theory [40], including a detailed
discussion of its relationship with the hyperforce sum rules
of [82] and the underlying gauge invariance concept [83–85].

Briefly, hyperdensity functional theory [40] allows one to
address the equilibrium behaviour of complex order paramet-
ers Â in a tightly integrated and concrete statistical mechanical
framework. The equilibrium average of Â, expressed as a dens-
ity functional A[ρ], is associated with a hyperdirect correlation
functional cA(r; [ρ]) and a hyperfluctuation profile χA(r), both
of which are specific to the form of Â. The one-body hyper-
direct correlation functional cA(r; [ρ]) plays a role similar to
that of the one-body direct correlation functional c1(r; [ρ]) of
standard density functional theory. The hyperfluctuation pro-
file χA(r) can be viewed as a generalization of thermody-
namic fluctuation profiles [89–96], such as the well-studied
local compressibility χµ(r) [89–91, 96].

Together with the standard two-body direct correlation
functional c2(r,r ′; [ρ]), the correlation functions cA(r; [ρ]) and
χA(r) are connected via an exact hyper-Ornstein–Zernike rela-
tion [40], which generalizes the standard inhomogeneous two-
body Ornstein–Zernike relation [2, 5, 6] to general observ-
ables Â. The hyper-Ornstein–Zernike relation is of relatively
simple one-body form (two-body functions feature only inside
of a spatial integral) and the mathematical structure is akin to
the one-body fluctuation-Ornstein–Zernike relationships [94,
95]. The fluctuation-Ornstein–Zernike equation for the local
compressibility χµ(r) [94, 95] was shown to deliver effi-
ciently accurate results in demanding drying situations using
neural density functional methods together with automatic
differentiation [39]. An illustration of the relationship between
the key quantities is shown in figure 1.

In exemplary applications to concrete systems, the hyper-
density functional was used for the investigation of cluster-
ing properties of standard model fluids. The behaviour of one-
dimensional hard rods was compared to that of square-well
attractive rods and of hard sphere fluids in three dimensions.
Our definition of the clustering follows a standard proced-
ure (see, e.g. [97]). One starts with a bonding criterion that
declares two particles as bonded provided that their mutual
distance is smaller than some cut-off (taken to be 1.2σ with
σ indicating the particle size). Although the bonding criterion
itself is a two-body function, the resulting graph structure
of bonded particles is non-trivial with naive implementations
requiring iterated passes over all particles, but more efficient
algorithms can be used [40, 97]. In a second step the number of
particles in each cluster is counted and the largest such number
is searched for, which then is taken as the observable Â. Each
microstate gives a unique value of the size of the largest cluster
Â, hence Â is indeed a phase space function, as is required in
the hyperdensity functional framework. However, in contrast
to standard phase space functions such as the Hamiltonian etc,
no closed expression for Â is available and hence Â consti-
tutes an algorithmically defined observable. Nevertheless, as

Figure 1. Functional relationships of classical density functional
theory (left column) and the hyperdensity functional generalization
(right column). The scaled excess free energy functional −βFexc[ρ]
is related to the one-body direct correlation functional c1(r; [ρ]) via
functional differentiation, δ/δρ(r), and, inversely, by functional
integration,

´
D[ρ]. Analogous relationships connect the

hyperdensity functional A[ρ] that expresses the mean of any given
observable Â and the hyperdirect correlation functional cA(r; [ρ]).
The local compressibility χµ(r) and the hyperfluctuation profile
χA(r) play analogous roles and they are respectively connected via
Ornstein–Zernike and hyper-Ornstein–Zernike relations, which both
feature the two-body direct correlation functional c2(r,r ′; [ρ]). An
extended ensemble allows differentiating with respect to the
coupling parameter, ∂/∂λ|λ=0.

we lay out, the thermal mean A= ⟨Â⟩ is a unique hyperdens-
ity functional.

The paper is structured as follows. In section 2 we describe
the hyperdensity functional theory of [40]. Specifically, the
extended ensemble for the treatment of general observables
Â is described in section 2.1. The average ⟨Â⟩ and the local
hyperfluctuation profile χA(r) are introduced in section 2.2.
TheMermin-Evansminimization principle of classical density
functional theory, as is at the heart of the hyperdensity gener-
alization, is described in section 2.3. A brief account of Levy’s
constrained search method for the construction of the intrinsic
free energy density density functional is given in section 2.4.
The hyper-Ornstein–Zernike relation is derived in section 2.5.
General observables are expressed as hyperdensity function-
als in section 2.6. The wall hypercontact theorem is presented
in section 2.7.

In section 3 we relate the hyperdensity functional theory to
the hyperforce theory of [82] as it arises from statistical mech-
anical gauge invariance [83, 84]. In particular we derive in
section 3.1 the exact one-body hyperforce balance relationship
[82] from the extended ensemble, which is an alternative both
to the Noether functional invariance method [82] and to the
phase space operator approach [83, 84]. In section 3.2 we
present exact sum rules that connect the hyperforce correla-
tion functions with the hyperdensity functionals. In section 4
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we treat specific simple cases of choice of the observable
Â including one-body (section 4.1) and two-body forms
(section 4.2). We describe applications in section 5, includ-
ing a description of the workflow that is required in the hyper-
density functional studies in section 5.1, the training of neural
hyperdensity functionals in section 5.2, and a model applica-
tion to clustering of hard spheres in section 5.3. We give our
conclusions and an outlook in section 6.

2. Hyperdensity functional theory

2.1. Extended statistical ensemble

We start by introducing the generalized equilibrium grand
ensemble used in [40] as a basis for the statistical mechanics.
The extended ensemble facilitates to incorporate the statistical
behaviour of a given observable Â, which can be arbitrarily
chosen, into the density functional framework. The use of an
extended ensemble is a standard means of generalization, see
e.g. [98, 99]. In their remarkable contribution Anero et al [99]
formulated a functional thermodynamics as a generalization
of dynamic density functional theory [2, 6, 41, 100, 101] to
non-isothermal situations.

Here we are ultimately interested in the equilibrium prop-
erties of systems with Hamiltonians of the following standard
form:

H=
∑
i

p2
i

2m
+ u
(
rN
)
+
∑
i

Vext (ri) , (1)

where pi denotes the momentum of particle i, the variable m
indicates the particle mass, u(rN) is the interparticle interac-
tion potential as a function of all position coordinates rN =
r1, . . . ,rN, the external one-body potential is Vext(r), and the
sums over i run over all N particles, such that i = 1, . . . ,N.

We wish to address the properties of a given phase space
function Â(rN) which represents a physically relevant observ-
able, such as an order parameter that characterizes the beha-
viour of the system specified by the Hamiltonian (1). We
consider the system to be coupled to both a heat bath with
absolute temperature T and to a particle reservoir that sets
the chemical potential µ. Hence the corresponding standard
grand canonical Boltzmann factor is e−β(H−µN), where β =
1/(kBT) with kB denoting the Boltzmann constant. According
to standard procedure the partition sum is Tre−β(H−µN) and
the grand potential is −kBT lnTre−β(H−µN). Here the clas-
sical ‘trace’ operation is defined in the standard way as
Tr =

∑∞
N=0(N!h

dN)−1
´
drNdpN, where h denotes the Planck

constant, d is the space dimension, and
´
drNdpN indicates

the phase space integral over all position and momentum
variables.

In order to address the statistical behaviour of a given
observable Â(rN) we consider an extended setup, which can
be described in two equivalent ways. First, we consider the
Hamiltonian (1) to be unchanged but extend the statistical
ensemble itself, such that its generalized Boltzmann factor

is e−β(H−µN)+λÂ, where the coupling parameter λ regulates
the degree of influence of Â on the probability distribution
function. The corresponding normalization factor is the exten-
ded partition sum given by Ξ = Tre−β(H−µN)+λÂ. Averages
in the extended ensemble are then obtained as ⟨·⟩= Tr ·
e−β(H−µN)+λÂ/Ξ and the extended grand potential (or exten-
ded grand canonical free energy) is Ω=−kBT lnΞ and this
depends per construction parametrically on λ. Despite the gen-
eralization, we remain ultimately interested in the limit λ→ 0,
which however is taken typically only after carrying out the
appropriate derivatives.

The second route leads to the identical statistical physics
and it is based on modifying the Hamiltonian itself rather than
merely the statistical ensemble used for the description. Here
one defines an extended Hamiltonian

HA = H−λÂ/β, (2)

where H is the original Hamiltonian according to equation (1)
and the observable Â is hence considered to actually contribute
to the interactions that define the system. Again the parameter
λ tunes the strength of these now extended interactions and as
before the physical units of λ are those of the inverse to Â(rN)
such that the second term in equation (2) has units of energy,
which arise from 1/β = kBT.

In this second route the extended Hamiltonian (2) is fed
in a straightforward way into the standard grand ensemble
machinery. Hence the Boltzmann factor is e−β(HA−µN) =

e−β(H−λÂ/β−µN) = e−β(H−µN)+λÂ, where in the first step
we have replaced HA according to equation (2) and in the
second step have re-ordered the terms. The resulting expres-
sion is identical to the Boltzmann factor of the extended
ensemble according to the above first route. Following the
standard procedure the resulting partition sum is then Ξ =
Tre−β(HA−µN), the thermal equilibrium average is defined
as ⟨·⟩= Tre−β(HA−µN)/Ξ, and the grand potential is Ω=
−kBT lnΞ. These expressions are all equivalent to their
respective above counterparts from the first route via the
ensemble extension.

2.2. Observables beyond the density profile

As laid out in the introduction, density functional theory
assigns a special role to the equilibrium one-body density dis-
tribution ρ(r). When expressed as a thermal average the dens-
ity profile is simply given as

ρ(r) = ⟨ρ̂(r)⟩. (3)

The one-body density ‘operator’ (phase space function) ρ̂(r)
has the standard form

ρ̂(r) =
∑
i

δ (r− ri) , (4)

with δ(·) denoting the Dirac distribution in d dimensions. We
consider the average in equation (3) to be taken over the exten-
ded ensemble. Hence this is specific to the form of Â(rN) and it
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depends parametrically on the value of the coupling parameter
λ. Taking λ→ 0 restores the original Hamiltonian, HA → H,
and thus ρ(r) reduces to the density profile that corresponds
to the ‘real’ Hamiltonian H.

Besides thermodynamic quantities, such as the free energy
and the pressure, density functional theory encompasses
in principle two- and higher-body correlation functions, as
defined in generalization of equation (3) via the Ornstein–
Zernike route; we sketch the mathematical structure below in
section 2.5. For systems that interact only with pairwise inter-
particle forces this allows one to express the locally resolved
force density within a force-based formulation of density func-
tional theory [79, 102]. Furthermore, hyperforce sum rules can
be exploited to obtain a range of additional correlation func-
tions from standard density functional calculations; we refer
the Reader to the conclusions of [82] for a discussion of these
opportunities.

Here we generalize further and hence are interested in the
behaviour of a given observable Â(rN). We first consider its
mean value

A= ⟨Â⟩, (5)

which is a global quantity provided that Â(rN) itself car-
ries no further dependence on position. Alternatively, in case
Â(rN;r,r ′, . . .) carries further dependence on generic position
variables r,r ′, . . . then the mean A(r,r ′, . . .) will be a spatially
resolved (correlation) function.

In order to address the average (5) via the extended
ensemble of section 2.1, we first revert to the standard mech-
anism of generating averages via parametric derivatives. In the
present case we have

A=−∂βΩ

∂λ
, (6)

where we recall the definition of the extended grand poten-
tial Ω=−kBT lnΞ with the extended partition sum Ξ =

Tre−β(H−µN)+λÂ. Both the form of the external potential
Vext(r) as well as the state point µ,T are kept fixed when dif-
ferentiating with respect to λ in equation (6). The validity of
this relationship can be seen from standard parametric differ-
entiation [5]: A= ∂ lnΞ/∂λ= Ξ−1Tr∂e−β(H−µN)+λÂ/∂λ=

Ξ−1Tre−β(H−µN)+λÂÂ= ⟨Â⟩.
In order to also systematically incorporate locally resolved

fluctuations of Â we construct a one-body fluctuation profile
χA(r). The inspiration stems from the local compressibility
[89–96] and the local thermal susceptibility [92, 94, 95], which
respectively correlate the fluctuations of the local density with
the total number of particles and the entropy.

In the present case of a general observable Â, the hyperfluc-
tuation profile is obtained as the covariance of the considered
observable with the position-dependent density operator (4)
according to

χA (r) = cov
(
ρ̂(r) , Â

)
(7)

= ⟨ρ̂(r) Â⟩− ρ(r)A, (8)

where equation (8) is the explicit form of the covariance in
equation (7). The covariance of two general phase space func-
tions X̂ and Ŷ is cov(X̂, Ŷ) = ⟨X̂Ŷ⟩− ⟨X̂⟩⟨Ŷ⟩. We recall that
by construction for cases where the mean product factorizes
according to ⟨X̂Ŷ⟩= ⟨X̂⟩⟨Ŷ⟩, then by its very definition the
covariance vanishes, cov(X̂, Ŷ) = 0. Hence nonvanishing cov-
ariance of two observables is a measure of the degree of devi-
ation from an idealized factorization behaviour. Using the
generic definition of the covariance in equation (7) gives the
hyperfluctuation profile χA(r) in the more explicit form (8),
where the density profile ρ(r) is given by equation (3) and
the mean A is given by equation (5) and, equivalently, by
equation (6).

While defining the mean A via equation (5) is entirely
standard, the definition of the hyperfluctuation profile χA(r)
via equation (7) introduces position-dependence by correlat-
ing the presence of a particle at a specific position r with the
overall value of Â(rN). The hyperfluctuation profile is hence
not a merely ‘local’ version of the order parameter Â(rN) in
the sense that a space integral of the local version gives the
global version. Rather the position integral gives

´
drχA(r) =´

drcov(ρ̂(r), Â) = cov(N, Â), where the latter equality holds
due to

´
drρ̂(r) =

´
dr
∑

i δ(r− ri) =
∑

i 1= N. Hence one
obtains the (non-trivial) covariance of the value of Â and the
total number N of particles in the system, where we recall that
the latter is a fluctuating quantity in the grand ensemble that
we use as a foundation.

That the specific covariance form (7) of χA(r) is a physic-
ally meaningful measure of local fluctuations of Â(rN) is sug-
gested by several recent theoretical developments that inde-
pendently point to the relevance of this specific type of correl-
ation function. The arguably most prominent example is the
local compressibility χµ(r) = βcov(ρ̂(r),N), which is much
advocated by Evans and coworkers as a highly useful indic-
ator for drying phenomena that occur at a substrate [89–91,
93]. In the present general framework we recover χµ(r) by the
simple choice Â= βN in equation (7). The local compressib-
ility χµ(r) attains further significance as the parametric deriv-
ative χµ(r) = ∂ρ(r)/∂µ [89–91, 93], which hence measures
the changes in the equilibrium density profile upon changing
the chemical potential (while keeping both the shape of the
external potential and temperature constant).

The motivation to treat the dependence on T similarly
to the dependence on µ led Eckert et al [94, 95] to cor-
respondingly consider the thermal susceptibility χT(r) =
∂ρ(r)/∂T, whereby µ and again the shape of the external
potential are kept fixed upon differentiating. An equival-
ent covariance expression is χT(r) = cov(ρ̂(r), Ŝ), where the
entropy operator is Ŝ=−kB lnΨeq with the standard equi-
librium probability distribution Ψeq = e−β(H−µN)/Ξ; see [94,
95] for further considerations that make χT(r) accessible in
simulations.
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While both of the above similarities are based on concrete
choices for Â, in the recent hyperforce theory by Robitschko
et al [82] the explicit form (7) of χA(r) features in the formu-
lation of exact Noether sum rules that emerge from thermal
gauge invariance [83]. We lay out in detail the relationship of
the present hyperdensity functional approach to the hyperforce
theory below in section 3.

It is straightforward to show that the covariance form (7)
of the hyperfluctuation profile χA(r) is generated in analogy
to the mechanism used in [89–92, 94, 95] from parametrically
differentiating the density profile (3). In the present case we
have

χA (r) =
∂ρ(r)
∂λ

, (9)

where µ,T and the form of the external potential Vext(r) are
all kept fixed upon building the derivative. That equation (9)
holds can be seen by explicit calculation of the parameter
derivative of the density profile. To do so, we explicitly spell
out the average (3) to obtain the density profile in the form
ρ(r) = Tr ρ̂(r)e−β(H−µN)+λÂ/Ξ. The dependence on λ occurs
both directly in the extended Boltzmann factor e−β(H−µN)+λÂ

as well as in the extended partition sumΞ = Tre−β(H−µN)+λÂ.
Upon differentiating, the product rule gives two terms that
constitute the covariance (7). As before, we remain thereby
interested in the case λ→ 0 after having taken the derivative
in equation (9). Hence the local fluctuations of Â are captured
as they are generated from interparticle coupling that the ori-
ginal Hamiltonian H generates in the system.

A further important mechanism to generate the hyperfluc-
tuation profile was identified by Eckert et al [95] in the context
of their investigation into the local compressibility and thermal
susceptibility. Upon investigating this specific case, they have
identified the following general mechanism:

χA (r) =− δA
δβVext (r)

. (10)

Equation (10) is significant as it reveals χA(r) as the response
function of the average A against changes in the (negative and
thermally scaled) external potential.

Proving equation (10) is straightforward upon starting with
χA(r) in the parametric derivative form (9) and interchanging
the order of differentiation according to

χA (r) =
∂ρ(r)
∂λ

=
∂

∂λ

δΩ

δVext (r)
=

δ

δVext (r)
∂Ω

∂λ

=− δ

δβVext (r)

(
−∂βΩ

∂λ

)
=− δA

δβVext (r)
. (11)

We have first re-written the density profile via the standard
functional response formula [2, 5]

ρ(r) =
δΩ

δVext (r)
, (12)

Figure 2. Illustration of parametric and functional relationships in
the extended ensemble. The generalized Hamiltonian
HA = H−λÂ/β is given by equation (2) and it has the associated
scaled grand potential −βΩ and density profile ρ(r). The mean A is
obtained via parametric differentiation according to ∂/∂λ|λ=0.
Similarly the hyperfluctuation profile χA(r) follows according to
equation (10).

and then identified the average A=−∂βΩ/∂λ via
equation (6). Note that the standard mechanism (12) to gen-
erate the density profile ρ(r) bears strong similarities with
the generation (10) of the hyperfluctuation profile χA(r) via
functional differentiation. Figure 2 depicts an illustration of
the mutual relationships.

2.3. Mermin-Evans minimization principle in the extended
ensemble

We base the construction of the density functional formula-
tion on the extended Hamiltonian (2) and hence consider the
system as an interacting many-body system that is exposed
to an unchanged external potential Vext(r) as it occurs in
equation (1). Crucially, we attribute the differences between
the two Hamiltonian H and HA solely to a change in inter-
particle interactions. This implies going from the original
interparticle interaction potential u(rN) to the virtual inter-
particle interaction potential uA(rN) of the extended system,
as it is given by

uA
(
rN
)
= u

(
rN
)
−λÂ

(
rN
)
/β. (13)

Using equation (13) to eliminate the explicit occurrence of
u(rN) in the extended Hamiltonian (2) then yields HA in the
standard form HA =

∑
i p

2
i /(2m)+ uA(rN)+

∑
iVext(ri). The

same result is obtained from simply replacing u(rN) by uA(rN)
in equation (1).

In typical systems u(rN) can be of very specific form, say
being composed of solely pair interaction contributions. Even
if this is the case, then the form of uA(rN) can in general be
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much more complex and in particular it can possess many-
body contributions, depending on the specific form of the
dependence of Â(rN). Furthermore additional one-body con-
tributions, on top of the bare external potential Vext(r), could
be present. In principle one can split off such terms and com-
bine them with Vext(r) into a modified external potential. We
do not perform this modification though and both for simpli-
city and conceptual clarity keep uA(rN) in its full form (13).We
hence rather exploit that the general density functional frame-
work poses no restrictions on the form of the interparticle
potential other than that the resulting thermal ensemble needs
to be well-defined. We return to the cases of specific one- and
two-body forms of the observable Â(rN) in section 4 after the
development of the general framework.

Although we remain ultimately interested only in the limit
λ→ 0, such that the extended Hamiltonian (2) reduces to the
Hamiltonian (1) of the original system, we start by formulat-
ing the grand potential density functionalΩ[ρ] for the general-
ized Hamiltonian HA. The general variational principle [1–3]
ascertains that

δΩ[ρ]

δρ(r)
= 0 (min), (14)

where equality holds at the minimum and the minimizer is the
true equilibrium density distribution ρ(r) given as the thermal
average (3). In our present formulation ρ(r) is the density
profile of the extended system with generalized interparticle
potential uA(rN) and in the presence of the fixed external
potential Vext(r) and at the fixed thermodynamic state point
µ,T.

The standard form of the grand potential density functional
Ω[ρ] consists of a sum of ideal gas, excess (over ideal gas), and
external contributions according to [2, 5]

Ω[ρ] = Fid [ρ] +Fexc [ρ] +

ˆ
drρ(r) [Vext (r)−µ] . (15)

The intrinsic Helmholtz free energy functional of the
ideal gas, Fid[ρ], is exactly known in the form Fid[ρ] =
kBT
´
drρ(r)[ln(ρ(r)Λd)− 1], where Λ denotes the thermal

de Broglie wavelength. The excess free energy functional
Fexc[ρ] is unknown in general and due to all remaining inter-
actions that are not accounted for by Vext(r). Hence in the
present setup Fexc[ρ] depends on and is generated by the exten-
ded interparticle interaction potential uA(rN), as is given by
equation (13). In particular, the dependence of uA(rN) on the
coupling parameter λ renders the excess free energy functional
Fexc[ρ] parametrically dependent on λ. In the limit λ→ 0 the
excess free energy functional of the original system, with bare
interparticle interaction potential u(rN), is thereby restored by
construction.

Inserting the grand potential density functional split-
ting (15) into the minimization principle (14) and calculating
the functional derivative yields the Euler–Lagrange equation
of classical density functional theory in the following standard

form [2, 5, 6]:

c1 (r; [ρ]) = ln
[
ρ(r)Λd

]
+β [Vext (r)−µ] . (16)

Thereby the one-body direct correlation functional c1(r; [ρ]) is
given as the density functional derivative of the scaled excess
free energy functional −βFexc[ρ], such that

c1 (r; [ρ]) =−δβFexc [ρ]

δρ(r)
. (17)

Clearly the ensemble generalization is imprinted into c1(r; [ρ])
through the generalized interparticle potential uA(rN) given via
equation (13). As a result c1(r; [ρ]) depends both on the value
of the coupling parameter λ as well as on the specific form of
the observable Â(rN). Performing the limit λ→ 0 restores the
one-body direct correlation functional of the original system,
with bare interparticle interaction potential u(rN).

Before we take the parametric limit though, we differentiate
equation (17) with respect to λ and hence define the resulting
hyperdirect correlation functional cA(r; [ρ]) as

cA (r; [ρ]) =
∂c1 (r; [ρ])

∂λ

∣∣∣
ρ
, (18)

where the density profile is kept fixed upon building the para-
metric derivative, which hence acts exclusively on the implied
Hamiltonian HA. In general cA(r; [ρ]) will remain nonvanish-
ing when the limit λ→ 0 is performed in equation (18) after
the parametric derivative is taken. This procedure both restores
the statistical mechanics of the original system, but as we will
demonstrate in the following, it also allows one to capture the
relevant statistical information of the behaviour of Â(rN) that
the original system displays via the one-body hyperdirect cor-
relation functional cA(r; [ρ]).

The functional derivative relationship (17) can be inverted
straightforwardly by functional integration. The general func-
tional integral −βFexc[ρ] =

´
D[ρ]c1(r; [ρ]) can be paramet-

rized efficiently according to [2, 3, 36]:

−βFexc [ρ] =

ˆ
drρ(r)

ˆ 1

0
dac1 (r; [aρ]) . (19)

The functional argument aρ(r) of the one-body direct cor-
relation functional is thereby merely a scaled version of the
‘target’ density profile ρ(r) [2, 3]. Equation (19) is suit-
able for numerical evaluation upon providing a specific form
of c1(r; [ρ]) for the system under consideration [35–40].
Analogously, functional integration is relevant for evaluat-
ing the density functional A[ρ] given a hyperdirect correlation
functional cA(r; [ρ]), as described in more detail in section 2.6.

2.4. Levy’s constrained search in the extended ensemble

The existence and uniqueness of the grand potential dens-
ity functional (15) is typically proven by contradiction [2, 5].

7
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Levy’s constrained search method [8, 103] provides an argu-
ably more constructive route and the method applies clas-
sically as well [6, 104]. Briefly, one starts from the stand-
ard Mermin-Evans many-body functional [1, 2] ΩM[Ψ] =
TrΨ(HA−µN+ kBT lnΨ) where Ψ(rN,pN) is a many-body
distribution function which is normalized according to TrΨ =
1 but is otherwise general. Splitting off fromΩM[Ψ] the contri-
butions from chemical potential and external potential leaves
over an intrinsic many-body functional FM[Ψ] given by

FM [Ψ] = Tr

(∑
i

p2
i

2m
+ uA

(
rN
)
+ kBT lnΨ

)
Ψ. (20)

The Levy method generates from equation (20) the corres-
ponding free energy density functional F[ρ] = Fid[ρ] +Fexc[ρ]
via the following constrained search:

F [ρ] = min
Ψ→ρ

FM [Ψ] . (21)

Here Ψ(rN,pN) is constrained to generate the prescribed ‘tar-
get’ density profile ρ(r), which is the functional argument on
the left hand side of equation (21). The constraint, indicated
as Ψ→ ρ in equation (21), enforces the following identity

ρ(r) = Tr ρ̂(r)Ψ, (22)

where the density operator ρ̂(r) is defined in equation (4).
It is interesting to note that the mean of the considered

observable, for given form ofΨ(rN,pN) is obtained as the fol-
lowing partial derivative:

A=−∂FM [Ψ]

∂λ

∣∣∣
Ψ,µ,T

, (23)

where the value A is the intended one provided that Ψ(rN,pN)
has the correct equilibrium form. That no further terms become
relevant when parametrically differentiating is not immedi-
ately obvious and we postpone the construction of the density
functional A[ρ] to section 2.6 below.

2.5. Hyper-Ornstein–Zernike relation

While we have introduced microscopic expressions for the
hyperfluctuation profile χA(r) both via the covariance (7) and,
equivalently, by the parametric derivative (9), this particular
correlation function emerges also very naturally within the
present hyperdensity functional treatment based on a hyper-
Ornstein–Zernike relation, as we will demonstrate in the fol-
lowing. We recall that the two-body Ornstein–Zernike rela-
tionship is a staple of liquid state theory and that its origin
lies, together with the introduction of pair direct correlation
functions, in the treatment of critical opalescence by Ornstein
and Zernike in 1914 [5, 9].

The two-body direct correlation functional is given as the
following second density functional derivative:

c2 (r,r ′; [ρ]) =− δ2βFexc [ρ]

δρ(r)δρ(r ′)
. (24)

Expressing one of the two chained functional derivatives in
equation (24) via equation (17) leads to the following altern-
ative and equivalent form:

c2 (r,r ′; [ρ]) =
δc1 (r; [ρ])
δρ(r ′)

. (25)

A complementary hierarchy of total correlation functions
is obtained from functionally differentiating the element-
ary grand potential with respect to Vext(r) [2, 5], such that
δ2Ω/[δVext(r)δVext(r ′)] = βcov(ρ̂(r), ρ̂(r ′)) = βH2(r,r ′),
where H2(r,r ′) is the standard two-body correlation function
of density fluctuations [2, 5]. The inhomogeneous Ornstein–
Zernike equation then relates the total and direct correlation
functions on the two-body level according to [2, 5, 6]:

H2 (r,r ′) = ρ(r)δ (r− r ′)

+ ρ(r)
ˆ

dr ′ ′c2 (r,r ′ ′; [ρ])H2 (r ′ ′,r ′) . (26)

To derive the hyper-Ornstein–Zernike relation, we follow a
formal and very direct strategy based on the Euler–Lagrange
equation [6, 94, 95, 105, 106]. The method is based on exploit-
ing the generality of the minimization condition (16) and the
concept that this remains a valid identity upon suitable differ-
entiation. Carrying out functional derivatives thereby requires
to take account of both direct changes as well as mediated
changes that are generated via changes in the density pro-
file itself. We refer the Reader to [6] for the correspond-
ing derivation of the two-body Ornstein–Zernike relation (26)
from functionally differentiating the standard Euler–Lagrange
equation (16) with respect to Vext(r ′).

Here we turn to the extended ensemble and differentiate
the Euler–Lagrange equation (16) with respect to the coupling
parameter λ. We consider both the one-body direct correlation
functional c1(r; [ρ]) and the equilibrium density profile ρ(r) to
be those corresponding to the extended Hamiltonian HA. The
external potential Vext(r) and the state point µ,T remain pre-
scribed. Hence the Euler–Lagrange equation (16) is satisfied
for a range of values of λ.We hence retain a valid identity upon
differentiating equation (16) with respect to λ. Respecting the
involved dependencies yields the following hyper-Ornstein–
Zernike equation:

cA (r; [ρ]) =
χA (r)
ρ(r)

−
ˆ

dr ′c2 (r,r ′; [ρ])χA (r ′) , (27)

where the one-body hyperdirect correlation functional
cA(r; [ρ]) remains being defined via the parametric
derivative (18).

8
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We provide a detailed derivation of equation (27) in the
following. We first consider the left hand side of the Euler–
Lagrange equation (16). Differentiating the occurring one-
body direct correlation functional c1(r; [ρ]) with respect to λ
yields

∂c1 (r; [ρ])
∂λ

∣∣∣
Vext

=
∂c1 (r; [ρ])

∂λ

∣∣∣
ρ

+

ˆ
dr ′

δc1 (r; [ρ])
δρ(r ′)

∂ρ(r ′)
∂λ

∣∣∣
Vext

(28)

= cA (r; [ρ])+
ˆ

dr ′c2 (r,r ′; [ρ])χA (r ′) .

(29)

The two terms in equation (28) arise from the direct changes
upon changing λ (first term) and from the changes that are
mediated by alteration of the density profile and using the
functional chain rule (second term). To obtain equation (29)
we have identified the two parametric derivatives as the
one-body hyperdirect correlation functional cA(r; [ρ]) via
equation (18) and the hyperfluctuation profile χA(r) via
equation (9).

It remains to also differentiate the right hand side of the
Euler–Lagrange equation (16) with respect to λ. We recall
that the state point µ,T and the shape of the external potential
Vext(r) are kept fixed upon changing the parameter λ. Hence
the corresponding terms vanish upon differentiating and the
result is compact:

∂ ln
[
ρ(r)Λd

]
∂λ

+
∂ [βVext (r)−βµ]

∂λ
=

1
ρ(r)

∂ρ(r)
∂λ

=
χA (r)
ρ(r)

,

(30)

where in the last step we have again identified χA(r) via
equation (9). The exact sum rule then follows from equating
the right hand sides of equations (29) and (30), which yields
the hyper-Ornstein–Zernike equation in the form (27) after re-
arranging.

The hyper-Ornstein–Zernike equation (27) is exact and in
a similar fashion as the inhomogeneous two-body Ornstein–
Zernike equation of liquid state theory [5] it can assume a mul-
titude of different roles. That equation (27) only depends on a
single free position argument, rather than two space points, as
are occurring in equation (26), is in keeping with the fluctu-
ation Ornstein–Zernike relations for χµ(r) and for χT(r) [94,
95]. Furthermore, similarly to equation (27) these exact rela-
tionships also feature the mediation of fluctuations via spatial
integration of the standard two-body direct correlation func-
tional c2(r,r ′; [ρ]); we refer the Reader to [95] for further
details.

In the following we describe two application scenarios
of the hyper-Ornstein–Zernike relation (27) with a specific
choice of the observable Â(rN) being under consideration. We
assume that the density profile ρ(r) for the bare HamiltonianH
has been obtained from either solution of the Euler–Lagrange
equation (16) or from the equilibrium average (3) as carried

out e.g. in grand canonical Monte Carlo simulations. In both
cases the form of Vext(r) has been given and the thermody-
namic state point µ,T has been prescribed. The situation is
hence similar to application of the standard inhomogeneous
two-body Ornstein–Zernike equation (26) where knowledge
of the density profile is typically also required. Furthermore
we assume that the two-body direct correlation functional
c2(r,r ′; [ρ]) is available. This can come either from the stand-
ard second functional derivative (24) of a (typically approxim-
ate) analytical model form of the excess free energy functional
Fexc[ρ]. Alternatively, the neural functional calculus of [35–
37] provides direct representation of c1(r; [ρ]) as a trained
neural network and performing automatic differentiation [35–
37, 71] then creates the neural two-body direct correlation
functional c2(r,r ′; [ρ]) via the first functional derivative (25).

We first assume that both the hyperdirect correlation func-
tional cA(r; [ρ]) and the two-body direct correlation functional
c2(r,r ′; [ρ]) are known. The particles interact thereby solely
via the bare interaction potential u(rN) and hence λ→ 0 has
been taken. Then evaluating cA(r; [ρ]) at the equilibrium dens-
ity ρ(r) turns the left hand side of the hyper-Ornstein–Zernike
equation (27) into a fixed spatial inhomogeneity cA(r). The
remaining terms on the right hand side need to accommod-
ate this inhomogeneity and hence equation (27) constitutes an
integral equation for the hyperfluctuation profile χA(r). Here
c2(r,r ′; [ρ]), when evaluated at the equilibrium density pro-
file, yields a generalized, i.e. fully position-dependent, con-
volution kernel c2(r,r ′). Besides the (standard) input of the
density profile and c2(r,r ′; [ρ]), this requires mere availabil-
ity of the hyperdirect correlation functional cA(r; [ρ]), which
points to the prowess of this object and we recall its definition
via the parametric derivative (18) of the extended one-body
direct correlation functional. See [39] for the application of
this route to the calculation of the local compressibility.

The second use of the hyper-Ornstein–Zernike relation (27)
targets the construction of cA(r; [ρ]). The method is based on
simulations, where the hyperfluctuation profile χA(r) is avail-
able via sampling the covariance (7). We assume that this has
been accomplished together with sampling of ρ(r), again for
given Vext(r),µ,T. We also assume that the two-body direct
correlation functional c2(r,r ′; [ρ]) is known by one of the two
methods described above (or alternatively by inhomogeneous
liquid integral equation theory). Then all terms on the right
hand side of equation (27) can be evaluated for the specific
system under consideration, as specified by its Hamiltonian
H, including the form of the external potential, and the ther-
modynamic parameters µ,T. For the specific chosen observ-
able Â(rN) the right hand side of equation (27) can hence be
evaluated and the one-body hyperdirect correlation function
cA(r) for the specific system under consideration has become
available. While knowing the function in a specific case does
not yet imply knowledge of the functional cA(r; [ρ]), creat-
ing a set of such profiles from simulating the system under
a range of different conditions is the basis for using super-
vised machine learning following [35–39] in the construction
of neural hyperdirect correlation functionals cA(r; [ρ]) [40].
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Details and concrete applications of this technique are given
in section 5.

Having demonstrated the intimate links between the hyper-
Ornstein–Zernike equation (27), the hyperdirect correlation
functional (18) and the hyperfluctuation profile (7), we next
turn to addressing the mean A of the chosen observable, given
via the elementary form (5), in the density functional context.

2.6. Any observable as a hyperdensity functional

We aim at a density functional representation of the average
A. We start from the parametric differentiation according to
equation (6). However, rather than using the elementary form
of the grand potential, Ω=−kBT lnΞ, we work on the basis
of the grand potential functional Ω[ρ]. The splitting of Ω[ρ]
into its additive constituents via equation (15) enables one to
carry out the required parametric derivative with respect to λ
under identical conditions as in equation (6), i.e. at fixed form
of Vext(r) and fixed state point µ,T. The result (derived below)
is compact:

A [ρ] =−∂βFexc [ρ]

∂λ

∣∣∣
ρ
, (31)

where Fexc[ρ] is the excess free energy functional generated
by the extended Hamiltonian HA and the density profile ρ(r)
is kept fixed upon differentiating. As before we can take the
limit λ→ 0 after the derivative is taken, in order to restore the
statistical mechanics of the original Hamiltonian H. No other
terms in equation (15) depend explicitly on λ, which leads to
the simplicity of the right hand side of equation (31).

As equation (31) is a central and arguably counter-intuitive
result, we provide more elementary details for its derivation.
Taking into account the definition of A via equation (6), we
start from the grand potential functionalΩ[ρ], as expressed via
the splitting (15), and differentiate with respect to the coupling
parameter λ as follows:

∂Ω[ρ]

∂λ

∣∣∣
Vext

=
∂Ω[ρ]

∂λ

∣∣∣
ρ
+

ˆ
dr

δΩ[ρ]

δρ(r)

∣∣∣
Vext

χA (r) . (32)

The first term on the right hand side of equation (32) accounts
for the ‘inherent’ changes in Ω[ρ] that occur upon keeping the
density profile fixed, as is indicated in the notation. This term
can be pictured as λ controlling the extended HamiltonianHA,
see equation (2), upon keeping the density profile fixed when
changing HA. By splitting Ω[ρ] according to equation (15) we
can simplify as follows:

∂Ω[ρ]

∂λ

∣∣∣
ρ
=

∂Fexc [ρ]

∂λ

∣∣∣
ρ

+
∂

∂λ

∣∣∣
ρ

(
Fid [ρ] +

ˆ
drρ(r) [Vext (r)−µ]

)
(33)

=
∂Fexc [ρ]

∂λ

∣∣∣
ρ
, (34)

where the ideal, external, and chemical contributions in
equation (33) carry no dependence on λ and hence vanish
under the parametric derivative, which leads to equation (34).

The second contribution on the right hand side of
equation (32) arises from the chain rule and identifying the
hyperfluctuation profile χA(r) via the definition (9) as the
partial derivative ∂ρ(r)/∂λ. However, it follows straightfor-
wardly that

ˆ
dr

δΩ[ρ]

δρ(r)

∣∣∣
Vext

χA (r) = 0. (35)

This simplification is due to the first term inside of the integ-
rand vanishing: δΩ[ρ]/δρ(r)|Vext = 0, where, as indicated, the
derivative is taken at fixed Vext(r) and at constant value of
the coupling parameter λ and fixed state point µ,T. Due to
the fundamental variational principle (14) in the extended
ensemble the result vanishes identically. Collecting the res-
ults (34) and (35) leaves over only the compact right hand side
of equation (31).

Certainly the simplicity of equation (31) points towards re-
affirming the central role of the excess free energy functional
within the density functional framework as encapsulating the
essence of the interparticle coupling. The extended ensemble
thereby facilitates to both retain this encapsulation, but also to
extend towards a general observable Â.

We can now establish a connection between A[ρ] and
cA(r; [ρ]). Inserting equation (17) into equation (18), exchan-
ging the orders of the functional density derivative and the
parametric derivative with respect to λ, and identifying the
density functional A[ρ] via equation (31) yields:

cA (r; [ρ]) =
δA [ρ]
δρ(r)

. (36)

Equation (36) adds further significance to the hyperdirect cor-
relation functional as reflecting the changes in the mean A
upon changing the density profile. As laid out and explicitly
used in the derivation, the changes in the density profile are
monitored in the system at fixed thermodynamic conditions
and the particles interact solely via the original interaction
potential u(rN).

As we have alluded to above, the practical access to
cA(r; [ρ]) via supervised machine learning is arguably more
direct than attempting to construct A[ρ] from first prin-
ciples. Once the one-body hyperdirect correlation functional is
known, one can straightforwardly carry out a functional integ-
ral, which we write first in a formal way in the form

A [ρ] =
ˆ

D [ρ]cA (r; [ρ]) . (37)

The functional integral operator
´
D[ρ] performs a line integ-

ral in the space of density functions; we refer the Reader to
the classical presentations by Evans [2, 3] and to [36] for
the implications in the light of the neural functional theory.
In practice carrying out the formal functional integral (37)

10
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requires to choose a parametrizaion, e.g. according to a simple
scaling:

A [ρ] =
ˆ

drρ(r)
ˆ 1

0
dacA (r; [aρ]) . (38)

Here the functional argument aρ(r), with parameter 0⩽ a⩽
1, of the hyperdirect correlation functional is a scaled version
of the ‘target’ density profile ρ(r) that is the argument on the
left hand side of equation (38). Equation (38) thereby mir-
rors closely the functional integration of c1(r; [ρ]) to obtain
the excess free energy via equation (19). When working with
neural functionals, evaluating equation (38) numerically is a
very fast operation, similar in performance to the correspond-
ing functional integral (19) over c1(r; [ρ]) [35–39, 43, 44].

2.7. Wall hypercontact theorem

As a specific situation, we consider a semi-infinite system,
where a hard wall at x= 0 constrains all particle coordinates ri
such that all xi > 0. For large distances from the wall, x→∞,
the system approaches bulk with vanishing external potential.
The bulk pressure p then characterizes the system and it is
related to the density ρ(0+) at the wall by the contact theorem
[5, 79],

ρ
(
0+
)
= βp. (39)

In generalization of the procedure by Evans and Stewart of
changingµ [89], as followed up by Eckert et alwho considered
changing T [95], we here parametrically differentiate the hard
wall contact theorem (39) with respect to the coupling para-
meter λ. The result is

χA
(
0+
)
=
Ab
V
, (40)

where χA(0+) is the contact value of the fluctuation profile
χA(r), the bulk expectation value of Â(rN) is indicated by Ab,
and V is the bulk volume. The left hand side of the contact
theorem (40) is obtained from using the parametric derivative
form (9) of the hyperfluctuation profile. The right hand side of
equation (40) follows from noting that in bulk Ω=−pV and
expressing the mean A via the parametric derivative (6) of the
grand potential, which gives Ab =−∂βΩ/∂λ= V∂βp/∂λ=
V∂ρ(0+)/∂λ= VχA(0+).

This concludes our presentation of the essentials of the
hyperdensity functional theory of [40]. We proceed to demon-
strating the close relationship with the hyperforce framework
by Robitschko et al [82]. This theory has rather different
roots, as it arises from the application of Noether’s theorem
[75–83] to the gauge invariance of statistical mechanics [83].
Similarly to the present hyperdensity functional theory, how-
ever, this approach also enables one to independently choose
the Hamiltonian H and the observable Â under investigation.

3. Hyperforce correlations

3.1. Local hyperforce balance

The hyperdensity functional theory described in section 2 is
based on the standard density functional theory concepts of
representing the correlated many-body physics in terms of
generating functionals. Examples of their use are the gen-
eration of the direct correlation functionals from the excess
free energy functional Fexc[ρ] via equation (17) and the loc-
ally resolved equilibrium balance condition in the form of
the Euler–Lagrange equation (16) that expresses the spatial
homogeneity of the sum of all contributions to the chem-
ical potential. Although the underlying Hamiltonian gener-
ates forces and the classical mechanics crucially rests on the
concept of forces, typically these do not feature prominently in
accounts of density functional theory, although there are not-
able exceptions [6, 79, 102].

Here we aim to introduce forces into the hyperdens-
ity functional framework and thereby work on the basis
of the extended Hamiltonian HA together with the stand-
ard grand canonical setting at chemical potential µ and
temperature T, as described in section 2.1. The extended
Hamiltonian HA contains the extended interparticle interac-
tion potential given by equation (13), which we reproduce
as uA(rN) = u(rN)−λÂ(rN)/β. The corresponding extended
one-body interparticle force density operator is then defined
as

F̂int (r) =−
∑
i

δ (r− ri)∇i uA
(
rN
)
, (41)

where the spatial localization is provided by the Dirac distri-
bution, similarly to the mechanism in the density operator (4).
The mean equilibrium force density balance then attains the
standard form [6]:

βFint (r) =∇ρ(r)+ ρ(r)∇βVext (r) . (42)

The mean one-body interparticle force density distribution is
the average

Fint (r) = ⟨F̂int (r)⟩, (43)

with F̂int(r) given by equation (41) and the density profile
ρ(r) = ⟨ρ̂(r)⟩ according to equation (3), with all averages
being those of the extended ensemble.

By construction the extended force density balance (42)
holds for any value of λ. We proceed very similarly to
our above strategy in section 2.5, where we differentiated
the Euler–Lagrange equation (16) for the extended sys-
tem with respect to λ to derive the hyper-Ornstein–Zernike
relation (27).

Here we parametrically differentiate the force density bal-
ance (42) with respect to λ, which yields a non-trivial identity
as we will demonstrate. We proceed stepwise and first address

11
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the interparticle force density operator (41). Taking account of
the form (13) of uA(rN) yields the result

∂βF̂int (r)
∂λ

= ŜA (r) , (44)

where we follow Müller et al [83, 84] in defining the hyper-
force density ‘operator’ (phase space function) as

ŜA (r) =
∑
i

δ (r− ri)∇i Â
(
rN
)
. (45)

We next differentiate the entire average on the left hand side
of equation (42), which gives via the product rule:

∂βFint (r)
∂λ

= cov
(
βF̂int (r) , ρ̂(r)

)
+SA (r) , (46)

where the mean hyperforce density is SA(r) = ⟨ŜA(r)⟩ with
ŜA(r) given by equation (45). The covariance on the right
hand side of equation (46) arises from differentiating the
mean ⟨F̂int(r)⟩ upon keeping the extended force density oper-
ator (41) itself fixed. The second term on the right hand side
of equation (46), i.e. the hyperforce density SA(r), stems from
differentiating the operator F̂int(r), according to equation (44),
inside of the average.

It remains to also parametrically differentiate the two terms
on the right hand side of equation (42), which respectively
gives

∂

∂λ
∇ρ(r) =∇χA (r) , (47)

∂

∂λ
ρ(r)∇βVext (r) = χA (r)∇βVext (r) . (48)

Carrying out the derivatives on the left hand sides of
equations (47) and (48) is performed as before with both β and
Vext(r) being kept fixed. In both cases the parametric deriv-
ative of ρ(r) with respect to λ then generates the hyperforce
fluctuation profile χA(r) via equation (9).

In summary, using the results (46)–(48) allows one to
express the derivative with respect to λ of the extended force
density balance (42) as

SA (r)+ cov
(
βF̂int (r) , Â

(
rN
))

−∇χA (r)−χA (r)∇βVext (r) = 0. (49)

Taking the limit λ→ 0 retains the form of equation (49) and
reduces the extended force density operator therein to that of
the original system, F̂int(r) =−

∑
i δ(r− ri)∇i u(rN). Hence

equation (49) applies to general forms of interparticle interac-
tion potentials u(rN) and independently chosen forms of the
observable Â(rN).

The formally exact sum rule (49) constitutes the locally
resolved hyperforce density balance obtained previously by
Robitschko et al [82]. Their derivation of equation (49) rests
on the both conceptually and practically very different method

of exploiting thermal Noether invariance of the average A in
the standard ensemble. Alternatively, the hyperforce density
balance (49) can also be derived from suitable ad hoc partial
integration procedures on phase space according to the Yvon
theorem [82]. Its arguably most striking, as well as compact,
derivation is that from the phase space operator methods pro-
posed by Müller et al [83] based on the recently discovered
statistical mechanical gauge invariance ofmicrostates [83, 84].

By collecting the different force contributions one can put
equation (49) into more compact form as

SA (r)+ cov
(
βF̂(r) , Â

(
rN
))

= 0. (50)

Herewe have introduced the total one-body force density oper-
ator F̂(r) in the simple momentum-independent form

F̂(r) = F̂int (r)− kBT∇ρ̂(r)− ρ̂(r)∇Vext (r) , (51)

which allows upon taking account of the covariance form (7)
of χA(r) to rewrite equation (49) as equation (50) [82].
As Robitschko et al [82] argue, the covariance on the left
hand side of equation (50) can also be written as merely
the mean ⟨βF̂(r)Â(rN)⟩ because the factorized contribu-
tion vanishes, ⟨F̂(r)⟩⟨Â(rN)⟩= 0, due to ⟨F̂(r)⟩= Fint(r)−
kBT∇ρ(r)− ρ(r)∇βVext(r) = 0 according to the equilibrium
force density balance (42).

That the hyperforce density balance (50) is obtained from
the present conceptually quite simple route of parametrically
differentiating the force density balance (42) in the extended
ensemble is a further indication of the fundamental status of
this relation (see also the arguments given in [82]). We take the
apparent tight interconnection as a demonstration of the capa-
city of the generalized ensemble to yield non-trivial insight.
As anticipated in our discussion of the hyperfluctuation pro-
file χA(r) in its covariance form (7), this local measure of the
coupling of fluctuations in density and in the observable Â(rN)
features prominently in the hyperforce density balance (49)
both via the diffusion-like first term and the external force-like
second term on the left hand side of equation (49).

3.2. Hyperforces and hyperdensity functionals

The conceptual bridge between the present hyperforce con-
cepts and the density functional point of view of section 2 is
provided by linking the force density balance (42) with the
Euler–Lagrange equation (16). In the standard way [6] we
hence build the gradient of the latter identity, which yields
upon multiplication by βρ(r) the result

ρ(r)∇c1 (r; [ρ]) =∇ρ(r)+ ρ(r)∇βVext (r) , (52)

where we have simplified ρ(r)∇ lnρ(r) =∇ρ(r). Then com-
paring equation (52) and the force density balance (42) allows
one, on the basis of the two identical right hand sides, to
identify:

βFint (r) = ρ(r)∇c1 (r; [ρ]) . (53)
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One significant consequence of equation (53) is the implic-
ation that its left hand side is elevated from a mere average
Fint(r) = ⟨F̂int(r)⟩ given by equation (43) to also being a dens-
ity functional, Fint(r; [ρ]), as given via the right hand side of
equation (53).

We recall that we still work in the extended ensemble and
that hence both sides of equation (53) are understood in this
way. In order to make progress we parametrically differentiate
equation (53) with respect to λ. The result is the following
identity:

cov
(
βF̂int (r) , Â

(
rN
))

+SA (r)

= χA (r)∇c1 (r; [ρ])+ ρ(r)∇cA (r; [ρ])

+ ρ(r)
ˆ

dr ′χA (r ′)∇c2 (r,r ′; [ρ]) . (54)

The left hand side of equation (54) follows directly from
equation (46). The three terms on the right hand side of
equation (54) follow respectively from the right hand side of
equation (53) via: (i) differentiating the prefactor ρ(r) and
using equation (9), (ii) differentiating c1(r; [ρ]) parametrically
upon fixing the density profile according to equation (18), and
(iii) using the chain rule upon monitoring the changes in the
functional argument ρ(r) and using equation (9) to identify the
hyperfluctuation profile χA(r).

We can now restore the original Hamiltonian in
equation (54) by taking the limit λ→ 0, which in par-
ticular again sets the interparticle force density operator
to that of the original interparticle interaction potential,
F̂int(r) =−

∑
i δ(r− ri)∇i u(rN). As a consistency check,

we replace the left hand side of equation (54) on the basis of
the hyperforce density balance (49) and regroup terms, which
yields

∇χA (r)+χA (r)∇βVext (r)−χA (r)∇c1 (r; [ρ])

= ρ(r)∇cA (r; [ρ])+ ρ(r)
ˆ

dr ′χA (r ′)∇c2 (r,r ′; [ρ]) .

(55)

Replacing the one-body direct correlation functional by using
the Euler–Lagrange equation (16) allows one to simplify the
second term on the left hand side. Upon dividing by the density
profile the result is

∇χA (r)
ρ(r)

+χA (r)
∇ lnρ(r)
ρ(r)

=∇cA (r; [ρ])+
ˆ

dr ′χA (r ′)∇c2 (r,r ′; [ρ]) , (56)

which is identical to the gradient of the hyper-Ornstein–
Zernike relation (27).

In conclusion of this section, we find a tight integration
of the recently investigated hyperforce correlations into the
hyperdensity framework. This situation is structurally similar

to the relationship between averages of bare forces in element-
ary statistical physics and in standard density functional the-
ory, see [6] for an extended discussion of this force point of
view.

4. Specific forms of observables

4.1. One-body observables

The considerations presented thus far have been general in the
sense that no restrictions on the specific form of the observable
Â(rN) under consideration were applied other than that the res-
ulting extended ensemble is well-defined or, analogously, that
HA defined via equation (2) can serve as a valid Hamiltonian
and that indeed HA → H in the limit λ→ 0.

Here we follow the SI of [40] and address specific types of
Â(rN)with the aim to classify the behaviour that arises accord-
ing to different form of the dependence on the particle config-
uration rN. We first consider one-body forms

Â
(
rN
)
=
∑
i

a1 (ri) , (57)

where a1(r) is a given function of position r. Recalling the
form of the density operator (4) as a sum of Dirac distributions,
we can rewrite equation (57) as

Â
(
rN
)
=

ˆ
drρ̂(r)a1 (r) . (58)

Averaging equation (58) on both sides directly gives the
thermal mean A as a density functional

A [ρ] =
ˆ

drρ(r)a1 (r) , (59)

where we have exchanged on the right hand side the order of
the average and spatial integral and have identified ρ(r) as the
average (3). From equation (59) it is clear that a standard dens-
ity functional treatment suffices to obtain all relevant inform-
ation as within density functional theory the density profile is
of course available.

For this simple one-body case we obtain the corres-
ponding hyperdirect correlation functional via insertion of
equation (59) into equation (36), which yields

cA (r; [ρ]) = a1 (r) , (60)

such that there is no density functional dependence. The
simple result (60) can serve as a toy to illustrate more general
hyperdirect correlations.

The corresponding hyperfluctuation profile χA(r) is
according to the covariance form (7) obtained as

χA (r) =
ˆ

dr ′a1 (r ′)cov(ρ̂(r) , ρ̂(r ′)) (61)

=

ˆ
dr ′a1 (r ′)H2 (r,r ′) , (62)
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where H2(r,r ′) = cov(ρ̂(r), ρ̂(r ′)) is the standard correlation
function of density fluctuations [2, 5]; see our discussion in
the context of the standard inhomogeneous Ornstein–Zernike
equation (26). Inserting the results (60) and (62) into the gen-
eral hyper-Ornstein–Zernike equation (27) then yields this
relation upon dividing by β in the following one-body form

ˆ
dr ′ ′a1 (r ′ ′)

[
ρ(r)
ˆ

dr ′c2 (r,r ′)H2 (r ′,r ′ ′)

+ρ(r)δ (r− r ′ ′)−H2 (r,r ′ ′)] = 0. (63)

The identity (63) is straightforward to prove directly as the
term in brackets already vanishes due to the standard two-body
Ornstein–Zernike relationship (26) [5, 6].

In alternative reasoning we note that equation (63) holds
for any permissible form of a1(r). Hence we retain a valid
identity upon functionally differentiating with respect to a1(r).
Differentiating the right hand side of equation (63) trivially
gives zero. Differentiating the left hand side gives the brack-
eted expression, which hence necessarily needs to vanish.
Alternatively, one can argue that a1(r) is amere test function of
arbitrary form and hence equation (63) can only hold provided
the bracketed expression vanishes. The result constitutes a
derivation of the standard two-body Ornstein–Zernike rela-
tion starting from the hyper-Ornstein–Zernike relation (63),
providing a demonstration of the self-consistency of the
framework.

For the present one-body observables (57) the following
two terms that appear in equation (54) become identical to
each other:

SA (r) = ρ(r)∇cA (r) , (64)

where we recall that SA(r) = ⟨
∑

i δ(r− ri)∇i Â(rN)⟩; see the
corresponding operator identity (45). To prove the relation-
ship (64), we use equation (57) to re-write the left hand
side as ⟨

∑
i δ(r− ri)∇i a1(ri)⟩= ρ(r)∇a1(r) = ρ(r)∇cA(r),

where in the first step we have started from Â(rN) =
∑

i a1(ri),
which gives ∇iÂ(rN) =∇i a1(ri), and then identified the spe-
cific form cA(r) = a1(r) according to equation (60).

The resulting equation (60) allows one to simplify
equation (54) in the following form

ˆ
dr ′a1 (r ′)cov

(
βF̂int (r) , ρ̂(r ′)

)
= χA (r)∇c1 (r; [ρ])

+ ρ(r)
ˆ

dr ′χA (r ′)∇c2 (r,r ′; [ρ]) . (65)

On the above left hand side we have re-written
cov(βF̂int(r), Â(rN)) =

´
dr ′a1(r ′)cov(βF̂int(r), ρ̂(r ′)). We

have furthermore used equation (64) to simplify. Functional
differentiation of equation (65) with respect to a1(r ′ ′) yields

upon taking account of the form (62) of χA(r) the result:

cov
(
βF̂int (r) , ρ̂(r ′ ′)

)
= H2 (r,r ′ ′)∇c1 (r; [ρ])

+ ρ(r)
ˆ

dr ′H2 (r ′,r ′ ′)∇c2 (r,r ′; [ρ]) . (66)

Here the right hand side can be obtained as a functional
derivative of the one-body interparticle force density distribu-
tion, −δFint(r)/δVext(r ′ ′), using equation (53), the functional
chain rule, the identity H2(r,r ′ ′) =−δρ(r)/δβVext(r ′ ′). The
left hand side of of equation (66) is the identical expres-
sion −δFint(r)/δVext(r ′) according to the general identity
δA/δVext(r) =−βcov(ρ̂(r), Â) by Eckert et al. [95]; see also
equation (10). We take the demonstration that the general
hyperdensity functional theory reduces to known limits for
the case of one-body observables (57) as an indication for the
internal consistency of our approach.

A specific example could be a simple static model
countoscope [107], where we choose Â(rN) =

´
dra1(r)ρ̂(r)

with a1(r) = Θ(l− |r|) being an indicator function for the
spherical countoscope of diameter 2l; here Θ(·) indicates the
Heaviside unit step function. Alternatively, one could use a
version with planar symmetry, a1(r) = Θ(l− |x|).

A formally even simpler case is recovered when con-
sidering the total number of particles N. Then, the frame-
work reduces, up to a scaling factor β, to considering the
local compressibility [89–96], χµ(r) = βχA(r), as we demon-
strate in the following. We choose Â= N, which corresponds
to a1(r) = 1 in equation (57). Following equation (60) the
hyperdirect correlation functional becomes constant unity,
cA(r; [ρ]) = 1. As a consequence the hyper-Ornstein–Zernike
equation (27) reduces upon multiplication by ρ(r) to

ρ(r)
ˆ

dr ′c2 (r,r ′; [ρ])χµ (r ′)+βρ(r) = χµ (r) , (67)

which constitutes the exact fluctuation Ornstein–Zernike
relation [94, 95] for the local compressibilityχµ(r) = βχA(r).
The general functional integral (38) reduces according to
equation (59) to the explicit result A[ρ] =

´
drρ(r). This

clearly is the mean number of particles, expressed as a dens-
ity functional, due to

´
drρ(r) =

´
dr⟨ρ̂(r)⟩= ⟨

´
drρ̂(r)⟩=

⟨N⟩= A.

4.2. Two-body observables

The reduction of the hyperdensity functional framework to
spatial integration of the standard Ornstein–Zernike relation
extends beyond the above one-body forms of Â(rN). In the
two-body case we have

Â
(
rN
)
=
∑
ij

a2 (ri,rj) , (68)
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where the sums over i and j run over all particles and the func-
tion a2(r,r ′) is a given two-body field. By inserting two dens-
ity operators we can re-write equation (68) as

Â
(
rN
)
=

ˆ
drdr ′ρ̂(r) ρ̂(r ′)a2 (r,r ′) . (69)

In order to formulate the mean A, we build the thermal average
of equation (69). Observing that ⟨ρ̂(r)ρ̂(r ′)⟩= H2(r,r ′)+
ρ(r)ρ(r ′) we obtain

A=

ˆ
drdr ′ρ(r)ρ(r ′)a2 (r,r ′)

+

ˆ
drdr ′H2 (r,r ′)a2 (r,r ′) , (70)

where the first term on the right hand side is an explicit dens-
ity functional. Expressing the second term also as a density
functional however requires to have access to H2(r,r ′; [ρ])
as a density functional. Conventionally one would base this
on solving the inhomogeneous two-body Ornstein–Zernike
equation (26) for the specific situation at hand, which can be
numerically demanding; see e.g. [79, 102].

4.3. Interparticle energy as an observable

For the specific case of the considered observable being
identical to the interparticle interaction potential, Â(rN) =
u(rN), the generic hyperfluctuation profile in covariance
form (7) becomes

χu (r) = cov
(
ρ̂(r) ,u

(
rN
))

. (71)

Up to a scaling factor of 1/(kBT2) this is identical to the
interparticle contribution to the local thermal susceptibility
χT,int(r) = cov(ρ̂(r),u(rN))/(kBT2), as identified by Eckert
et al [95]. Hence χT,int(r) = χu(r)/(kBT2). These authors
have proven a contact theorem at a hard wall, χT,int(0+) =
⟨u(rN)⟩/(VkBT2); see [95] for the derivation. From the gen-
eral hypercontact theorem (40) we reproduce their result in
the equivalent form χu(0+) = ⟨u(rN)⟩/V.

In the present case the general hyperforce density bal-
ance (49) reduces to the previously found identity [82]

cov
(
βF̂(r) ,u

(
rN
))

= Fint (r) , (72)

which we can re-write by using the definition of χu(r) and re-
ordering as

cov
(
βF̂int (r) ,u

(
rN
))

= Fint (r)+∇χu (r)+χu (r)∇βVext (r) . (73)

The general hyper-Ornstein–Zernike relation (27) retains
its form as

cu (r; [ρ]) =
χu (r; [ρ])
ρ(r)

−
ˆ

dr ′c2 (r,r ′; [ρ])χu (r ′) , (74)

which can be viewed as the interparticle contribution to the
fluctuation Ornstein–Zernike equation for the thermal suscept-
ibility χT(r) [94, 95]. For additional generalizations, we refer
the Reader to the very recent study by Kampa et al [44], who
derived and applied meta-Ornstein–Zernike relations on the
basis of the explicit treatment of the pair interaction potential
via neural metadensity functionals.

5. Machine learning neural hyperdensity
functionals

5.1. Hyperdensity functional workflow

We first lay out the principal workflow for the application of
the hyperdensity functional theory to a concrete physical prob-
lem. We assume that all necessary functional relationships are
accessible in a concrete way. After establishing the formal
procedure, we then describe how supervised machine learning
allows one to train neural networks that provide the required
functional closure for the theory. Figure 3 depicts a graphical
representation of the hyperdensity functional workflow. The
relationships between the different relevant functionals and
correlation functions are illustrated on the basis of data for the
clustering in the one-dimension hard rodmodel, which is taken
as a prototypical case for a non-trivial observable in [40].

We turn to the general structure. We assume that a specific
observable Â has been chosen as the relevant target quant-
ity of interest for a given many-body system, as specified by
its Hamiltonian H. The extended ensemble, as described in
section 2.1, requires no explicit treatment. The aim is to study
the equilibrium statistical mechanical behaviour for, in gen-
eral, spatially inhomogeneous systems at state points µ,T, and
for given form of the external potential Vext(r). Results for the
equilibrium density profile ρ(r) follow from standard dens-
ity functional minimization (14) on the basis of the chosen
excess free energy functional Fexc[ρ] and corresponding one-
body direct correlation functional c1(r; [ρ]), cf their functional
derivative relationship (17). Typically one obtains the solution
of the Euler–Lagrange equation (16) numerically. Then eval-
uating the grand potential functional Ω[ρ] gives access to the
thermodynamics. Furthermore the two-body direct correlation
functional c2(r,r ′; [ρ]) follows from the functional derivative
relationships (24) or (25), which gives access to the pair struc-
ture; see e.g. [39] for recent work.

This standard density functional structure provides a back-
drop for the hyperfunctional application. Using the thus
obtained equilibrium density profile ρ(r) and either evaluat-
ing the hyperdensity functional A[ρ] directly or via performing
the functional integral (38) of the one-body hyperdirect correl-
ation functional cA(r; [ρ]) then gives the desired thermal mean
A for the considered system.

The hyper-Ornstein–Zernike equation (27) allows one to
determine the corresponding hyperfluctuation profile χA(r).
We recall the role of χA(r) as a spatially resolved measure
of correlations of the local particle number and the value
of Â via the covariance (7). Here, however, we do not have

15



J. Phys.: Condens. Matter 37 (2025) 083001 Topical Review

Figure 3. Overview of hyperdensity functional theory applied to the cluster statistics of one-dimensional hard rods of size σ. The
observable Â is the size of the largest cluster, where two particles are bonded provided their mutual distance is < 1.2σ. (a) The local
chemical potential βµloc(x) = βµ−βVext(x) creates spatially inhomogeneous systems. Shown are representative examples from 512 grand
canonical Monte Carlo simulations with both randomized values of βµ and forms of βVext(x). (b) Corresponding scaled density profiles
ρ(x)σ sampled via equation (3). (c) Corresponding scaled hyperfluctuation profiles χA(x)σ obtained via equation (7). (d) Two-body direct
correlation functions c2(x,x ′; [ρ]), as obtained via automatic differentiation from c1(x; [ρ]) [35, 36]. (e) Hyperdirect correlation functions
cA(x) obtained by solving the hyper-Ornstein–Zernike equation (27). Using the density profile as input and the simulation results for cA(x)
as target, supervised training yields a neural network that represents the hyperdirect correlation functional cA(x; [ρ]). (f) Predicted values
A[ρ] =

´
D[ρ]cA(x; [ρ]) from functional integration according to equation (38). For a test set of 256 systems not encountered during training

the predictions of A[ρ] are compared against reference simulation data Asim. (g) The relative numerical error of the predicted mean size A of
the largest cluster is smaller than ∼ 1%. Reprinted (figure) with permission from [40], Copyright (2024) by the American Physical Society.

to resort to many-body sampling, as all information that is
required for the application of equation (27) is attainable
via two functional relationships: (i) evaluating the hyperdir-
ect correlation functional gives the concrete hyperdirect cor-
relation function cA(r) = cA(r; [ρ]) for the specific system at
hand, and (ii) evaluating the two-body direct correlation func-
tional, c2(r,r ′) = c2(r,r ′; [ρ]), gives the standard two-body
direct correlation function c2(r,r ′), which is ready to act as a
generalized convolution kernel in the hyper-Ornstein–Zernike
equation (27). Due to χA(r) appearing both in bare form and
inside of the generalized, i.e. fully position-dependent, spatial
convolution one can solve equation (27) straightforwardly for
χA(r), as this constitutes a system of linear equations when
using spatial discretization.

We next turn to three-dimensional hard sphere fluids and
describe our machine learning strategy for the application of
the hyperdensity functional approach to the cluster statistics, in
generalization of the one-dimensional hard rod system shown
in figure 3.

5.2. Training neural hyperdensity functionals

Carrying out the work programme described in section 5.1
requires one to have prescriptions for the excess free energy
functional Fexc[ρ] and for the hyperdensity functional A[ρ]

to arrive at a closed theory. Alternatively and equival-
ently based on functional integration, which in practice is
numerically straightforward [35, 36, 38–40], one can start
with the one-body direct correlation functional c1(r; [ρ]) and
the hyperdirect correlation functional cA(r; [ρ]). We recall
their respective relationships with Fexc[ρ] and A[ρ] via func-
tional differentiation according to equations (17) and (36),
as well as via functional integration according to equations
(19) and (38).

To facilitate concrete access to these functionals, we resort
to simulation-based supervised machine learning and use local
learning of one-body direct correlation functionals [35–40].
Constructing the density dependence of the direct correla-
tion functional c1(r; [ρ]) follows the methodology of [35–39]
where the Euler–Lagrange equation (16) is used to generate
training data that consists of target values c1(r) for given dens-
ity profile ρ(r ′) within a limited range of positions r ′ around
the target location r. The application to the one-dimensional
hard rod model [36, 37] indicates numerical performance that
is in practice equivalent to that of Percus’ exact solution [108,
109]. Functional differentiation, as is readily accessible via
automatic differentiation [35–39, 57, 61] yields the two-body
direct correlation functional c2(r,r ′; [ρ]). As we are interested
in hard sphere behaviour we re-use the trained neural func-
tional of [35].
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Training the neural hyperdirect correlation functional
cA(r; [ρ]) proceeds along very similar lines as training the
standard one-body direct correlation functional c1(r; [ρ]). The
training data is acquired by grand canonical Monte Carlo sim-
ulations, where the chemical potential µ, the temperature T
and the shape of the external potential Vext(r) are prescribed
(in practice in a randomized way). The density profile ρ(r) is
accessible via sampling according to equation (3) (or via more
advanced methods [11, 18]). For the chosen observable Â, data
for the hyperfluctuation profile χA(r) follows from sampling
the covariance (7). As the two-body direct correlation func-
tional c2(r,r ′; [ρ]) is known from the above standard dens-
ity functional treatment, the complete information is avail-
able to numerically evaluate the right hand side of the hyper-
Ornstein–Zernike equation (27) and hence to construct the
one-body hyperdirect correlation function cA(r) for the spe-
cific training system under consideration. This data is then
used as the target for training the neural representation of the
one-body hyperdirect correlation functional cA(r; [ρ]) using
solely the density profile ρ(r ′) as an input following the lines
of [35–40]. We use a simple (fully connected) multi-layer per-
ceptron to represent cA(r; [ρ]) and refer the Reader to [110] for
all technical details.

We emphasize that the above laid out machine learning
strategy is heavily influenced by the successful neural func-
tional methodology of local learning of one-body direct cor-
relation functionals [35–40]. This method represents the clas-
sical density functional framework [2–6] in a very direct way.
Moreover, it is computationally straightforward to implement
in all its three key aspects of: data generation via simulation,
training of the neural network, and numerical application; we
refer to [39] for a demonstration of the breadth of applicabil-
ity of the resulting neural theory in the context of gas–liquid
phase separation.

This neural functional approach needs to be contrasted
with brute force machine learning, where one could envis-
age bypassing the density functional relationships and work-
ing directly with the ensemble averages in order to represent
the mean A via equation (5) and machine learn the relationship
Vext(r)→ A. The current strategy is very different, as it resorts
to machine learning only the genuinely non-trivial hyperdir-
ect correlation functionals and letting the encompassing struc-
ture be informed by the theoretical physics. This is analogous
to putting the focus on c1(r; [ρ]) in standard DFT treatments,
instead of considering other possible mappings of interest [55,
56] or merely mimicking the simulation procedure, i.e. learn-
ing Vext(r)→ ρ(r).

5.3. Application to cluster statistics

We have applied the machine learning strategy of section 5.2
to three-dimensional hard spheres in planar inhomogeneous
environments, choosing Â as the size of the largest cluster in a
given microstate. Specifically, we define two particles i and j
as being bonded provided that their mutual distance is below a
cut-off value, which we choose as |ri− rj|< rc = 1.2σ, where
σ is the hard sphere diameter. Clusters are then defined as

groups of particles that are (transitively) bonded. Each cluster
consists of a specific number of particles such that each config-
uration rN is associated with a specific distribution of cluster
sizes. We choose the number of particles in the largest occur-
ring cluster as our target observable Â.

We use a fixed box size with lateral area 5σ× 5σ and an
elongated x-direction of length L= 10σ, along which the sys-
tem is spatially inhomogeneous.We first consider confinement
by two parallel hard walls represented by the scaled external
potential βVext(x) =∞ for x/σ < 1 and x/σ > 9, and zero
otherwise. We show in figure 4 (taken from the SI of [40]) res-
ults from the hyperdensity functional theory compared against
stand-alone simulation results that provide the reference. The
density profile exhibits the familiar oscillatory behaviour, as
is induced by hard sphere packing, see Figure 4(a) for results
over a range of increasing values of the scaled chemical poten-
tial βµ.We have used the neural hard sphere functional of [35],
which was shown to outperform in accuracy the White Bear
Mk. II version of fundamental measure theory [111–113].

The corresponding one-body hyperdirect correlation func-
tions cA(x) are obtained from evaluating the neural hyperdir-
ect correlation functional at the respective equilibrium density
profile ρ(x). Here x denotes the coordinate of r along which
the system is spatially inhomogeneous. The spatial variation
of cA(x) is much smoother than the corresponding density pro-
file and a pronounced broad peak is apparent at the centre of
the system, see Figure 4(b). We attribute the latter feature to
the strong effect on the size of the largest cluster that follows
from having particles near the centre of the system. Crucially,
via functional integration of cA(x; [ρ]), the thermal average A,
i.e. the mean size of the largest hard-sphere cluster, can be
reproduced faithfully, as is evident from comparison to simu-
lation data.

The scaled hyperfluctuation profiles χA(x)σ3 shown in
Figure 4(c) possess very pronounced oscillations with an
envelope that decays towards either wall. We recall that χA(x)
measures the covariance (7) of having a particle at x with the
size of largest cluster in the system.

In figure 5 we compare the clustering behaviour in the
three following situations of i) bulk fluids, where the external
potential vanishes, Vext(x) = 0, ii) planar confinement inside
of a double well potential represented by the following
form: βVext(x) = 3[(x/σ− 5)2 − 2.52]2/2.54 − 1.5, and iii)
the above hard wall case, which we use as a reference. The
perhaps most striking difference between the double well and
the hard wall confinement is the overcoming of the depression
that both cA(x) and χA(x) display at the centre of the double-
well system. This can be attributed intuitively to the hump of
the potential well loosing its disrupting effect on the clustering
upon increasing chemical potential.

6. Conclusions

In conclusion we have described in detail the recent gener-
alization of classical density functional theory towards the
description of the equilibrium statistical properties of virtu-
ally arbitrary observables Â(rN). Thereby the dependence on
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Figure 4. Cluster statistics of three-dimensional hard spheres confined between two parallel hard walls with distance 8σ. The observable Â
is the number of particles in the largest cluster. Theoretical results are shown for βµ=−2 (dotted), 0 (dashed), and 2 (solid lines, symbols
indicate reference simulation data). (a) The scaled density profile ρ(x)σ3 as a function of the scaled distance x/σ across the slit is obtained
from numerical solution of the Euler–Lagrange equation (16) with the neural hard sphere one-body direct correlation functional c1(x; [ρ])
of [35]. (b) Corresponding hyperdirect correlation functions cA(x) from evaluating the neural hyperdirect correlation functional cA(x; [ρ]) at
the three respective density profiles. Functional integration according to equation (38) gives predictions for the mean A of the size of the
largest cluster, as compared to the simulation reference A= ⟨Â⟩ (values in parenthesis). (c) Hyperfluctuation profiles χA(x) are obtained
from solving the hyper-Ornstein–Zernike relation (27) for the three considered situations using as input ρ(x) and the neural functionals
cA(x; [ρ]) and c2(x,x ′; [ρ]) = δc1(x; [ρ])/δρ(x

′). The simulation reference is obtained via sampling χA(x) = cov(ρ̂(x), Â) according to
equation (7). The three simulation snapshots (right column) show hard sphere configurations for βµ= 2. The highlighted particles belong to
the largest cluster (bright red) or to the second-largest cluster (dark violet). The number Â of particles in the largest cluster fluctuates
considerably over microstates. Reprinted (figure) with permission from [40], Copyright (2024) by the American Physical Society.

the position coordinates rN of all particles in the system can
be very general and hence can accommodate a multitude of
physical quantities including complex, intricate order para-
meters of interest. Our terminology parallels Hirschfelder’s
hypervirial theorem [86] to refer to a generalization to arbit-
rary observables. The hyperdensity functional theory [40] is
formally exact and we have provided detailed descriptions
of the underlying generalized statistical ensemble, including
the natural emergence of the hyperfluctuation profile χA(r)
as a spatially resolved measure of fluctuations of the observ-
able under consideration. The exact hyper-Ornstein–Zernike
equation (27) relates χA(r) to the one-body hyperdirect cor-
relation functional cA(r; [ρ]) and the standard two-body direct
correlation functional c2(r,r ′; [ρ]) plays its common role as a
generalized convolution kernel that mediates spatial correla-
tions over finite distances.

Our derivation of the hyper-Ornstein–Zernike relation (27)
generalizes and connects to the standard two-body Ornstein–
Zernike relation [6], the dynamical nonequilibrium Ornstein–
Zernike framework [6, 105, 106], the local compressibility and
the local thermal susceptibility [94, 95], and the very recent

meta-Ornstein–Zernike framework for the explicit treatment
of the form of the pair potential [44].

Besides constituting the spatial inhomogeneity in the
hyper-Ornstein–Zernike equation (27) and thus driving the
spatial structuring of the hyperfluctuation profile χA(r), the
hyperdirect correlation functional cA(r; [ρ]) also offers an
avenue to express the thermal average of the observable as
a genuine density functional, A[ρ]. The construction of the
functional dependence involves formal functional integration,
which can in practice be numerically carried out with great
efficiency provided that the functional integrand cA(r; [ρ]) is
available. Centring the approach around the one-body hyper-
direct correlation functional cA(r; [ρ]) is motivated by its con-
crete accessibility via simulation-based supervised machine
learning. Here a neural network is trained to act as a surrogate
for the formally defined exact functional.

The training data is provided by grand canonical Monte
Carlo simulations. Crucially, only standard techniques are
thereby necessary, without any need to explicitly consider
the extended ensemble on which the derivations are based
formally. The ensemble extension merely serves as a device
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Figure 5. Hyperdensity functional results for the largest cluster in hard sphere fluids in bulk (left column), in a double well potential
(middle column), and between two parallel hard walls (right column, reproduced from figure 4); see the corresponding scaled external
potentials βVext(x) (gray lines in the top panels). Shown are as a function of the scaled distance x/σ: the scaled density profile ρ(x)σ3 (top
row), the hyperdirect correlation function cA(x) (middle row), and the scaled hyperfluctuation profile χA(x)σ3 (bottom row). The scaled
chemical potential has values βµ=−2,0,2 (as indicated) and corresponding values of the mean size of the largest cluster A[ρ] are given for
each system. Note the striking structural difference between the double well potential (middle column) and the planar pore (right column).

to establish the required exact functional relationships that
underlie the supervised machine learning. Pre-processing of
data involves a (standard) generalized convolution opera-
tion with a kernel given by the two-body direct correlation
functional, which in turn is represented by a trained neural
functional [35–37]. In practice these computational demands
are entirely manageable.

The hyperfluctuation profile χA(r) has previously emerged
as a key quantity in the context of the hyperforce correla-
tion theory [82] that is based on considering thermal gauge
invariance [83, 84] of the mean value A of the given observ-
able. Earlier versions are the local compressibility χµ(r)
[89–91] and the thermal susceptibility χT(r) [92, 94, 95].
While both the statistical mechanical Noetherianmethodology
[40, 75–82] and density functional theory itself [2–5] put
functional relationships at the centre of theory construction,
both approaches are complementary and hence the respect-
ive prominent occurrence of χA(r) is very noteworthy, see
equation (49). Together with a corresponding interparticle
hyperforce contribution, the total one-body hyperforce dens-
ity correlation function is restored and ultimately related via
equation (50) to the mean localized phase space gradient of
the observable Â(rN) under consideration [82], see the defin-
ing equation (45) of the corresponding hyperforce phase space
function.

We have shown that the hyperforce density balance
relationship, see equation (49), follows naturally from the
extended ensemble. The derivation is based on starting from
the standard force density balance in the extended ensemble
and parametrically differentiating with respect to the coup-
ling parameter λ that tunes the strength of the generalized
contribution. We take the existence of this additional route to
the hyperforce balance, besides the derivations from Noether
invariance [82], from ad hoc phase space integration by parts
[82], and from operator methods within gauge invariance [83,
84] both as an indicator for the fundamental status of this sum
rule as well as for a sign of consistent treatment of the statist-
ical mechanics within the hyperforce, hyperdensity, and gauge
invariance frameworks.

These theoretical developments are interesting due to the
fundamental structure that they reveal to be present in the
many-body statistical physics. Furthermore, as we demon-
strated, they provide a concrete blueprint for devising machine
learning schemes and in particular for working with neural
direct and hyperdirect correlation functionals. These neural
networks enable: (i) immediate access to the relevant func-
tional dependencies, (ii) efficient functional calculus via fast
numerical functional integration and via automatic func-
tional differentiation, as is relevant for accessing generat-
ing functionals and higher-order correlation functions, (iii)
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carrying out consistency checks for the theoretical concepts
and for the numerics, and (iv) gaining fresh and signific-
antly deep insight into the correlatedmany-body physics under
investigation.

The relevance of the hyperdensity functional theory lies
in its combination of the rigorous aspects of classical dens-
ity functional theory, and hence the modern view of statistical
mechanics of working with functional relationships, with the
wide spectrum of different types of observables, order para-
meters, and general quantities of interest that are in present-
day use and often directly accessible via many-body simula-
tions. In such work one commonly faces the task of finding
physical meaning and structure in the simulation output. The
hyperdensity functional theory offers a formal framework for
performing this task without having to resort to costly many-
body simulations.

To provide a specific example for this strategy, we have
provided a hardwall hypercontact theorem that relates the con-
tact value χA(0+) of the hyperfluctuation profile at a hard wall
with the mean bulk value Ab of the corresponding observable
per system volume. Given this quite counter-intuitive relation-
ship, one would surely be hard-pressed to discover the rela-
tion by mere inspection of simulation data. A similar contact
theorem holds for Evans and coworkers’ local compressibil-
ity χµ(r) [89–91] as used in a multitude of interfacial studies.
As we demonstrated, the local compressibility is recovered
in the general framework when making the specific choice
Â= βN.

For several different classes of specific forms of the general
observable Â(rN)we have investigated the thus arising simpli-
fications. In particular, for one-body forms of Â(rN) all relev-
ant information is already available within a standard density
functional treatment. Treating two-body observables within
the standard approach requires (numerical) solution of the
inhomogeneous two-body Ornstein–Zernike equation, which
typically comes at non-negligible computational expense. We
have shown that the hyperdensity approach is consistent with
the standard method, while it does not suffer from higher-
order restrictions, as it entirely operates on the one-body level.
As a challenging test, we have considered cluster statistics of
hard spheres, which are inaccessible in standard density func-
tional treatments. As we have demonstrated, the hyperdens-
ity functional framework gives ready access to this complex
order parameter and its associated correlation and fluctuation
measures.

Future work could address the analytical construction of
hyperdensity functionals for specific observables. It would
be interesting to see whether concepts from fundamental
measure theory [113–115] could be used in the construc-
tion of hard sphere hyperdensity functionals. Also generaliz-
ations of fundamental measure concepts beyond hard sphere
systems acquire new relevance, in particular the general-
ized weight functions for soft interactions [116–120]. As
was the case for the Rosenfeld functional [113–115], inspir-
ation could come from liquid integral equation theory [5],
see [121] for recent work. Also investigating relationships
with the internal-energy functional formulation [122] and with

functional thermodynamics [99] could be interesting. We have
here worked with a fixed finite system size. Investigating the
scaling behaviour of the cluster statistics with changing system
size is a relevant topic that could possibly be addressed using
the (inverse) system size as an input to the neural functional,
see [39]. This would allow to address multi-scale questions
[123–126], as previously demonstrated successfully for neural
density functionals [35–38].

Apart from these important conceptual points, it would be
highly interesting to use machine learning and consider the
application of neural hyperdensity functionals to a wider vari-
ety of order parameters and systems. This would potentially
facilitate the investigation of physical phenomena at the much
increased numerical efficiency that the neural hyperdensity
functional theory delivers. We here have provided the full the-
oretical andmethodological background required for engaging
in such endeavours. The generalization of the hyperdensity
functional framework to the multivariate case of several sim-
ultaneous observables of interest will be presented elsewhere
[127].
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