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Abstract
We combine power functional theory and machine learning to study non-equilibrium overdamped
many-body systems of colloidal particles at the level of one-body fields. We first sample in steady
state the one-body fields relevant for the dynamics from computer simulations of Brownian
particles under the influence of randomly generated external fields. A neural network is then
trained with this data to represent locally in space the formally exact functional mapping from the
one-body density and velocity profiles to the one-body internal force field. The trained network is
used to analyse the non-equilibrium superadiabatic force field and the transport coefficients such
as shear and bulk viscosities. Due to the local learning approach, the network can be applied to
systems much larger than the original simulation box in which the one-body fields are sampled.
Complemented with the exact non-equilibrium one-body force balance equation and a continuity
equation, the network yields viable predictions of the dynamics in time-dependent situations. Even
though training is based on steady states only, the predicted dynamics is in good agreement with
simulation results. A neural dynamical density functional theory can be straightforwardly
implemented as a limiting case in which the internal force field is that of an equilibrium system.
The framework is general and directly applicable to other many-body systems of interacting
particles following Brownian dynamics.

1. Introduction

Analyzing how a many-body system reacts to controlled stimuli offers a means to understand its collective
behavior emerging from interparticle interactions. Soft matter systems respond to several types of external
fields [1–3] such as e.g. electric [4, 5], magnetic [6, 7], gravitational [8–10], optical [11], and mechanical [12,
13] fields. The response of the many-body system to the external perturbation can be highly non-trivial,
particularly in non-equilibrium situations. A detailed case-by-case analysis is often required to rationalize
the complex dynamics of the system.

Due to the large number of microscopic degrees of freedom in a many-body system, coarse-graining [14]
is necessary in order to define a reduced set of relevant variables that encapsulates the physics of the system.
Averaging over the many-body probability distribution function yields an exact one-body force balance
equation in overdamped Brownian [15] as well as in inertial classical [16] and quantum [17] systems. The
one-body fields remain sharply resolved in both space and time [18]. The force balance equation combined
with a continuity equation describes the microscopic dynamics of the system at the one-body level.

Depending on the underlying particle dynamics, different contributions appear in the force balance
equation [18]. In overdamped Brownian dynamics, the only unknown contribution is the one-body internal
force field, fint(r,t), originated by an average of the interparticle interactions resolved in position, r, and time,
t. The response of the system to an arbitrary external force field can be determined provided that the internal
force field is known.
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In equilibrium, classical density functional theory (DFT) [19] is the reference framework to build
approximations for the one-body internal force field. DFT establishes a mapping from the equilibrium
density profile ρ(r) to the internal force field fint(r; [ρ]) via the one-body direct correlation functional [20]
(we indicate with square brackets the functional dependence of the internal force field on the density profile).
Several works [21–28] have demonstrated that machine learning is a reliable technique to construct density
functionals. An important difference among these works is the dataset used to train the machine learning
model. These include pairs of external potentials and density profiles [22, 24, 25] as well as radial
distribution functions of homogeneous fluids [28]. Recently, we have shown [26] that a neural network can
be efficiently employed to represent the equilibrium functional mapping from the density profile to the
direct correlation functional. The mapping can then be used to construct a neural functional theory [26],
which for a hard-sphere system outperforms the most sophisticated analytical density functionals [29]. Two-
and three-body correlation functions as well as free energy values are accessible via functional calculus
implemented with automatic differentiation and functional line integration.

Power functional theory (PFT) demonstrates that fundamental mappings also exist in overdamped and
inertial classical and quantum many-body systems in non-equilibrium [18]. For overdamped Brownian
systems, there is a formally exact kinematic mapping from both the one-body density ρ(r, t) and velocity
v(r, t) profiles to the internal force field fint(r, t; [ρ,v]) [15]. The functional dependence of fint is on the whole
time-history of both fields, ρ(r, t) and v(r, t), until the current time t. Previous works have constructed
analytical approximations to the kinematic mapping [30], revealing how the non-equilibrium internal force
field is responsible for notable phenomena in colloidal systems. These include shear migration [31, 32], the
emergence of viscosity and structural forces [33], lane formation [34], the governing mechanisms of the time
evolution of the van Hove function [35], and the mobility induced phase separation [36] and freezing [37] in
active Brownian particles.

In a recent perspective about dynamical density functional theory [38], we showed that a neural network
can accurately represent the functional kinematic mapping from the density and the velocity profiles to the
internal force field. We refer here to the trained network as the neural force functional. As a proof of concept,
we trained a network using only bulk flows (i.e.∇· v ̸= 0 and∇× v= 0) in which the external force points
only along one Cartesian direction. In this type of flow, the non-conservative contribution of the one-body
external field is limited to a uniform constant force. Here, we demonstrate that using data augmentation and
a local learning approach [26], the mapping can be efficiently learnt in general planar geometry (that is, for
flows exhibiting non-vanishing curl and non-vanishing divergence of the velocity field). Furthermore, we
showcase the network’s predictive capability in several applications. We generate the one-body fields directly
from particle-based computer simulations of overdamped isotropic colloidal particles in steady state under
the influence of randomly generated external force fields. The particles interact with each other via a
Lennard-Jones potential. We then train a neural network to represent the kinematic mapping. The internal
force field is learnt locally in space. As a result, the network can be applied to systems of variable size. We
show several applications that use the neural force functional combined with the exact force balance
equation: (i) splitting and analysing non-equilibrium superadiabatic forces, (ii) performing inverse design by
finding the external force field that generates the desired dynamical response of the many body-system
(custom flow [39]), and (iii) quantifying non-equilibrium transport coefficients. Finally, we demonstrate
that the network is capable to generalize to systems of any length (beyond the size of the simulation box) and
to full non-equilibrium situations (beyond steady-states).

Our neural force functional is computationally efficient and delivers results with precision close to
simulation data. The capability to process systems of size much larger than that of the training data opens a
route to study the dynamics of macroscopic systems with microscopic resolution at near simulation quality.

2. Theory

2.1. Force balance equation
We consider a classical system of N interacting particles suspended in a solvent and following overdamped
dynamics. The equation of motion for the ith particle is

γ
dri (t)

dt
= ηi (t)−∇i u

(
rN

)
+ fext (ri, t) , (1)

where γ is the friction coefficient against the implicit solvent, ri is the position of the particle, ηi(t) is a
Gaussian random force acting at time t on the ith particle, fext is an external force field,∇i indicates the
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derivative with respect to ri, and

u
(
rN

)
=
∑
i

∑
i<j

ϕ
(
rij
)

(2)

is the total potential energy of microstate rN = r1, . . . ,rN with ϕ(rij) being the interparticle pair potential, rij
being the distance between particles i and j, and the first sum runs over all particles. Although for simplicity
only two-body potentials are considered here, PFT [18] is directly applicable to many-body interparticle
potentials (see an example in [32]).

One-body fields are obtained as averages of microscopic operators [18]. For example, the one-body
density profile is

ρ(r, t) =

⟨∑
i

δ (r− ri)

⟩
, (3)

with δ(·) being the Dirac distribution. The angular brackets ⟨·⟩ denote an average that in non-equilibrium is
performed at each time t over an ensemble of systems. The systems differ in their initial microstate and also
in the realization of the random forces, i.e. ηi in equation (1). Alternatively, in steady state and in
equilibrium, the average can be evaluated over time.

The one-body fields are related via an exact one-body force balance equation [15, 18]

γv(r, t) = fid (r, t)+ fint (r, t)+ fext (r, t) , (4)

with v(r, t) being the one-body velocity field at position r and time t. The first contribution on the right
hand-side of equation (4) is the thermal diffusive term, which is known exactly:

fid (r, t) =−kBT∇ lnρ(r, t) . (5)

Here kB is the Boltzmann constant and T is (absolute) temperature.
The internal force field, fint(r, t), follows from the internal force density field Fint(r, t) = ρ(r, t)fint(r, t),

which is simply

Fint (r, t) =−

⟨∑
i

δ (r− ri)∇i u
(
rN

)⟩
. (6)

The last contribution on the right hand-side of equation (4) is the external force field, fext(r, t).
For overdamped Brownian particles following the equation of motion (1), the force balance equation (4)

is exact and valid in general non-equilibrium situations. In non-equilibrium steady state and in equilibrium,
the one-body fields become independent of time. Additionally, in equilibrium, the one-body velocity field
vanishes everywhere. A detailed derivation of the force balance equation can be found e.g. in [18].

The one-body density profile is linked to the one-body current profile, J(r, t) = ρ(r, t)v(r, t), via the
continuity equation

ρ̇(r, t) =−∇ · J(r, t) , (7)

where the overdot denotes a partial time derivative. Hence, from a theoretical point of view, the force balance
equation (4) can be used in combination with the continuity equation (7) to find the time evolution of the
one-body fields ρ(r, t) and v(r, t). However, we first need to approximate the unknown internal force field.

In equilibrium, DFT establishes that the internal force field is a functional of the one-body density profile
via

fint (r; [ρ]) =−∇δFexc [ρ]

δρ(r)
. (8)

Here, Fexc[ρ] is the excess (over ideal gas) free energy functional. Hence, knowledge of the equilibrium
density profile suffices to determine the internal force field (provided that Fexc[ρ] is known).

Dynamical density functional theory (DDFT) [19, 40] (for a recent and exhaustive review see [41])
approximates the non-equilibrium internal force field by that of an equilibrium system via equation (8).
However, there are several concerns that challenge the reliability of this adiabatic approximation [38]. A
mayor one follows directly from equation (8): the one-body internal force field in non-equilibrium contains
conservative and non-conservative contributions but DDFT predicts always an equilibrium-like force field
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which is therefore conservative. The non-conservative contribution of the internal force field can be
important. For example, colloidal migration in shear fields [33, 42, 43] and lane formation in oppositely
driven mixtures [5, 34, 44] are physical phenomena that can be rationalized on the basis of the
non-conservative contributions of the non-equilibrium internal force field.

2.2. Power functional theory
To overcome the limitations of DDFT we use PFT [15, 18] which is based on a formally exact variational
principle for non-equilibrium many-body systems. In PFT, a functional (with units of power) is minimized
with respect to the current profile (or the velocity profile) at fixed density profile and fixed time. The
functional is constructed such that the associated Euler-Lagrange equation is the exact force balance
equation (4). The functional depends functionally not only on the density (as it is the case in equilibrium
DFT) but also on the velocity profile. Formally, the dependence is not instantaneous on time but rather on
the complete history of both fields. The original formulation of PFT was done using a functional of ρ and
J [15]. However, working with ρ and v turns out to be more convenient to construct analytical
approximations, see e.g. [30, 33] and section 3.4.

In PFT the internal force field is split into adiabatic and superadiabatic contributions

fint (r, t; [ρ,v]) = fad (r, t; [ρ])+ fsup (r, t; [ρ,v]) . (9)

The adiabatic contribution is defined as the internal force field of a virtual equilibrium system with the same
density profile as the non-equilibrium system. Hence, the adiabatic contribution can be formally obtained
via equation (8) and it is at each time t a functional of the instantaneous one-body density, ρ(r, t), only. In
contrast, the genuine non-equilibrium superadiabatic contribution is given by the functional derivative of
the excess power functional P exc

t [ρ,v]

fsup (r, t; [ρ,v]) =− 1

ρ(r, t)

δP exc
t [ρ,v]

δv(r, t)
. (10)

The superadiabatic force is a functional of both ρ and v since it inherits the functional dependencies of the
generating functional. Equation (10) is formally exact but it requires knowledge of the excess power
functional. It is possible to construct analytical approximations to the excess power functional using an
expansion in powers of the velocity field [30]. Here, we follow a different approach. Instead of finding
approximations for P exc

t [ρ,v], we machine learn the relation {ρ,v}→ fint that maps both the density and the
velocity profile to the internal force field. We learn the complete internal force field, i.e. both superadiabatic
and adiabatic contributions, since the splitting can be done a posteriori as we show in section 3.2.

The first step in any machine learning application is the generation of the training set that we discuss in
the following.

2.3. Simulations and training set
We employ adaptive Brownian dynamics simulations [45] to integrate the many-body equations of
motion (1) over time and to generate the data of the training set. All terms contributing to the force balance
equation (4) can be obtained from many-body computer simulations. The velocity profile can be sampled
either directly via the central difference derivative of the position vector with respect to time or indirectly via
the force balance equation. For details see e.g. the appendix of [39]. The training set contains the one-body
density and the velocity profiles as input fields, and the one-body internal force as the output field.

We simulate N Lennard-Jones particles in a cubic simulation box with length L/σ = 10 and periodic
boundary conditions. Here, σ is the length scale of the Lennard-Jones potential. We use a cutoff distance for
the interparticle potential rc/σ = 2.5. The energy parameter of the Lennard-Jones potential ϵ acts as our
energy scale. Our time scale is τ = σ2γ/ϵ and we work at constant (supercritical) temperature kBT/ϵ= 1.5.

The number of particles N is chosen uniformly in the interval 200⩽ N⩽ 800. Hence, the bulk density in
the training set varies within the interval 0.2⩽ ρbσ

3 ⩽ 0.8. The particles are randomly initialized in the
simulation box and then equilibrated in bulk (without external force) for a total time t/τ = 10. We then
switch on an external force and wait 100τ for the system to reach a steady state. As shown in the appendix of
[38], the initial state has no influence at all on the final steady state (note that we consider ergodic fluids only
and stay away from phase transitions). The particle initialization affects only the dynamical path followed by
the system towards the steady state (provided that the system is ergodic). Once the system is in steady state,
we sample the one-body fields of interest as an average over time during at least 3 · 103τ .

The external force field is generated randomly according to

fext (z) =
∑
α

fext,α (z) êα, (11)
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Figure 1. Training set: from particles to fields. (a) Components of a randomly generated external force as a function of the z
coordinate and characteristic snapshot of the system in the corresponding steady state. We generate data for the one-body fields
from the many-body system by sampling the steady state which results from applying a randomly generated external force field.
(b) One-body fields involved in the training set as sampled in the simulations. The fields correspond to the steady state of the
external force shown in panel (a). Input fields: density ρ and velocity v profiles as a function of z. Output field: internal force fint
as a function of z. Zero baselines in plots of vector components are indicated with horizontal dash-lines. The colored arrows
indicate the direction at selected positions of the component of the vector field.

with fext,α being the Cartesian α-component of the external force field and êα the unit vector along the
α-direction. To make the model as general as possible while avoiding the sampling of multidimensional data,
we use external force fields with components along the three spatial directions but allow inhomogeneity to
occur only along the z-direction (êz). This planar geometry allows us to work solely with one-dimensional
histograms, which eases sampling, data preparation and neural network construction. Each component of
the external force field is generated randomly via superposition of Fourier modes

fext,α (z) = aα0 +

Mα∑
m=1

aαm sin

(
2π z

L
kαm +ψα

m

)
. (12)

The coefficient aα0 , which plays a major role determining the average current, is chosen uniformly in the
interval [0,50ϵ/σ]. The maximum number of superimposed Fourier modes for component α isMα which is
randomly selected between one and four. The amplitudes aαm and the phases ψα

m of each Fourier mode are
chosen uniformly; the phases within the interval [0,2π) and the amplitudes within the interval [0,30ϵ/σ] for
α= x,y and [0,4ϵ/σ] for α= z. To reduce ergodicity problems during the generation of the training set, the
maximum amplitude is smaller along the inhomogeneous direction. The parameters kαm are randomly
selected integers ranging from one to four.

We then generate several external forces according to equation (12) and run the corresponding
simulations. Approximately five percent of the simulations were discarded since they contained regions in
which the density was locally very low (smaller than 0.01σ3) which could be an indication of the system not
being ergodic. This can happen if e.g. the external force varies strongly in a small region effectively trapping
the particles. We complement the training set with that of [38], which consists of 1000 simulations in which
the external force is generated according to equation (12) but where the only non-vanishing external force
contribution is the z-component, i.e. fext = fext,z(z)êz. Roughly ten percent of this subset of simulations
corresponds to the relevant case of equilibrium systems for which fext has only a z-component and az0 = 0.
Having equilibrium profiles in the training set is relevant to e.g. split the internal force field into adiabatic
and superadiabatic components [46].

We illustrate in figure 1 the data preparation and sampling of the one-body fields with one example of
the training set. The one-body fields are sampled in z-direction using histograms with bin size 0.01σ. The
final training set contains 2897 individual simulation results which we split as usual into training (1877),
validation (868), and test (152) sets. The accuracy of the predictions depends on the amount of data in the
training set. The approximate size of the data set was decided based on our experience with previous
systems [26, 38]. We have checked that halving the dataset, increases the value of the cost function evaluated
on the test data by approximately one order of magnitude. The complete dataset and the trained model are
deposited in Zenodo [47]. After training, additional simulation data is obtained to compare with the
predictions of the neural network for selected systems (see section 3).
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Figure 2. Schematic of the local learning approach. The input fields are the density profile ρ and the three components of the
velocity profile v in an interval centered at z0 and half-width∆= 2.8σ. The output of the network are the three components of
the internal force field at position z0. The kinematic map is represented with a convolutional neural network.

2.4. Data augmentation
We use coordinate transformations which keep the non-equilibrium physics unchanged to augment the
training data. For instance, one can flip the z-axis, i.e. perform the transformation z→−z, and hence
duplicate the training data by changing the original data accordingly (which in this case also implies flipping
the sign of the z-components of the vector fields v and fint). We use eight coordinate systems: the original
one, three in which we flip only one axis, other three in which we flip two axes, and one with all axes flipped.
Moreover, since the system is inhomogeneous along the z-direction only, we can interchange the x and
y-components of v and fint. Applying this symmetry to each of the eight coordinate systems results in sixteen
possible coordinate transformations to augment our training data.

Data augmentation serves two purposes. It expands the number of input-output pairs available for
training (no data augmentation is used in either the validation or the test sets) and consequently the accuracy
of the predictions. For example, a neural network trained with half of the data plus data augmentation is
approximately as accurate as a network trained with the full training set but without data augmentation.
More importantly, data augmentation indirectly imposes the physically relevant symmetries of our system
into the neural network. Alternatively, it might be possible to incorporate the symmetries of the system using
equivariant neural networks [48] and other physics-informed machine learning techniques [49].

2.5. Local learning
The internal force field at a given position z0 is fully determined by the density and the velocity profiles in the
neighbourhood of that position. This allows us to use a local learning approach, similar to the one used by
Sammüller et al [26] for equilibrium systems. We use the network to represent the kinematic mapping at
position z0, see figure 2. That is, the output of the neural network is f

⋆
int(z0). We use here and in the following

the superscript ⋆ to indicate quantities that have been obtained with the neural force functional. The input
fields of the network are ρ and v in an interval of width 2∆ centered at z0. Here, we use∆= 2.8σ which
produces optimal results for our training set. Overfitting starts to occur for larger values. On the other hand,
the accuracy of the predictions rapidly deteriorates for values of∆ smaller than one particle size, i.e.∆≲ σ.
The optimal value of∆might depend on several variables including the interparticle potential, the
temperature, and the range of currents in the training set.

Instead of one input-output training sample per simulation, the local learning strategy facilitates to use
the data of each histogram bin (103 per simulation) individually, thereby increasing data efficiency
substantially. Additionally, data augmentation multiplies the number of samples by a factor sixteen, see
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section 2.4. Hence, from the original 1887 simulations used for training we generate approximately 3 · 107
local input-output pairs.

This local learning approach is crucial since (i) it simplifies the learning process, (ii) it imposes the
short-ranged spatial dependence of the underlying functional by construction, and (iii) it allows us to apply
the network to systems much larger than the original simulation box. The implementation of local learning
eliminates the intrinsic length scale constraint dictated by the size of the simulation box. Note that local
learning is possible due to the specific form of the mapping that is represented. Local learning is not possible
if one learns e.g. the relation between fint and fext since the internal force field at a given position depends on
the global shape of the external field.

We use a convolutional neural network with three convolutional layers, see details in appendix. PFT [15,
18] guarantees the existence of the kinematic functional map from the velocity and the density profiles to the
internal force field. In time-dependent situations, the map involves the history of the density and velocity
fields. Here, we restrict the study to stationary steady-states. Hence, the input data of our network comprises
only the required elements to generate the output, without any superfluous or lacking components. We
believe this contributes to a successful learning process and makes it possible to efficiently learn a non-trivial
problem in statistical physics with a relatively simple network architecture (compared with cutting-edge
models).

3. Results

After training, the network acts as a neural force functional representing the kinematic functional mapping
from the density and velocity profiles to the internal force field. Combined with the force balance and the
continuity equations, the neural force functional allows us to study the many-body dynamics at the
one-body level. We show several applications in this section.

3.1. Neural custom flow
Custom flow is a numerical method to find the external force field that generates the desired dynamics
(prescribed by the one-body density and velocity profiles). The method has been developed for
Brownian [39] and Newtonian [50] many-body systems. We have used custom flow to design flows that
facilitate the analysis of the superadiabatic forces [33, 51] and to perform the adiabatic construction [46]
(that is, to find the conservative potential that generates in equilibrium the same density profile as that in an
out-of-equilibrium system). The adiabatic construction can be used to split the internal force into adiabatic
and superadiabatic contributions, see equation (9).

Custom flow, which is an example of the growing field of inverse design in statistical physics [52–54], is
computationally expensive. The method requires to run several simulations to iteratively find the precise
form of the external force field (up to the imposed numerical tolerance). In contrast, with the network we
perform the same task instantly. We fix ρ(r) and v(r) in steady-state and use the neural network to infer the
corresponding f⋆int(r; [ρ,v]). Then, using the exact force balance equation (4), we solve for the external force
field

f⋆ext (r) = γv(r)+ kBT∇ lnρ(r)− f⋆int (r) . (13)

An example of inverse design using custom flow is shown in figure 3. Generalizing one of the flows
considered in [38], we prescribe a density profile with a kink, see figure 3(a), and also include kinks in the x-
and y-components of v, see figure 3(b). In planar geometry, the continuity equation (7) imposes that in
steady state the z-component of v is determined up to a multiplicative constant by the density profile

vz (z) =
J0
ρ(z)

, (14)

with J0 being the magnitude of the steady current. The corresponding external force is shown in figure 3(c).
To test the validity of the method, we next run Brownian dynamics simulations using the predicted external
force profile and sample the one-body fields, see the symbols (simulations) and solid-lines (neural force
functional) in figure 3. Both sets of profiles agree well, specially considering that this is a demanding test
because profiles with kinks were not included during training. Moreover, when comparing the internal force
fields obtained with BD and the neural force functional there are two main sources of error. First, the
network produces an error calculating the internal force field. Second, due to this error in f⋆int, the external
force calculated with the force balance equation (13) is not exactly the one that generates the prescribed
kinematic profiles in simulations. Hence, the internal force field sampled in the simulations does not exactly
correspond to the internal force field of the prescribed kinematic fields.
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Figure 3. Inverse design via neural custom flow and superadiabatic forces. One-body fields according to the neural force
functional (solid lines) and simulations (symbols) as a function of z: (a) density ρ, (b) velocity v, (c) internal force fint, (d) external
force fext, (e) adiabatic force fad, (f) superadiabatic force fsup, (g) viscous superadiabatic force fvis, (h) structural superadiabatic
force fstr. The first, second and third column correspond to the x-, y-, and z-components of the respective vector fields. The
arrows indicate the direction at selected positions of the component of the vector field. The horizontal dashed lines indicate the
zero baseline of the vector components. The inset in (d) is an enhanced view of the region in which fext is discontinuous.

The kink in the density profile creates a discontinuity in the ideal gas diffusive term of the force balance
equation, see equation (5). The discontinuity can only be balanced by the external force, see equation (13)
and figure 3(d), because both the velocity and the internal force field cannot be discontinuous. This is
another advantage of having the internal force as the output field since its properties remain well-behaved
even for demanding input fields (besides the benefit of being able to use a local learning approach).

3.2. Superadiabatic forces
To split the internal force field into adiabatic and superadiabatic components, we simply evaluate the neural
force functional to yield the internal force field in equilibrium (v= 0) which corresponds to the adiabatic
force

f⋆ad (r; [ρ]) = f
⋆
int (r; [ρ,v= 0]) . (15)

The superadiabatic contribution is obtained by subtracting the adiabatic part from the total internal force
field

f⋆sup (r; [ρ,v]) = f
⋆
int (r; [ρ,v])− f⋆ad (r; [ρ]) . (16)

8
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In simulations, we sample the adiabatic force field using the external force field obtained from
equation (13) with f⋆ad as the internal force field and v= 0. The resulting force field is conservative since the
adiabatic system is in equilibrium. In figures 3(e) and (f) we compare the adiabatic and superadiabatic
contributions obtained with the neural force functional and with simulations. The z-component of the
adiabatic force field is the only non-vanishing component because the equilibrium internal force field is a
gradient field, see equation (8), and our system is homogeneous along the x- and y-directions.

Viscous and structural components
In steady-state, the superadiabatic force field can be split into viscous (or flow), fvis, and structural, fstr,
components

fsup (r; [ρ,v]) = fvis (r; [ρ,v])+ fstr (r; [ρ,v]) . (17)

We outline here only the main ideas and refer the reader to [33] for a complete description. The viscous
component responds to the direction of the velocity field and it often opposes the flow. The structural
component responds to the shape of the velocity field but not to its direction and it can create structure in
the fluid. To split fsup we create a reverse steady state in which the flow points in opposite direction,
vr(r) =−v(r), but the density profile remains unchanged, ρr(r) = ρ(r). The subscript r refers to quantities
in the reverse steady state. Hence, the viscous component flips sign in the reverse system whereas the
structural component remains unchanged. The superadiabatic force field in the reverse system is then

fsup,r (r; [ρr,vr]) =−fvis (r; [ρ,v])+ fstr (r; [ρ,v]) . (18)

Note that if the superadiabatic force field is expanded in powers of the velocity field, then the odd (even)
terms in powers of v generate viscous (structural) force contributions. From equations (17) and (18) it
follows that

fvis (r; [ρ,v]) =
fsup (r; [ρ,v])− fsup,r (r; [ρr,vr])

2
, (19)

fstr (r; [ρ,v]) =
fsup (r; [ρ,v])+ fsup,r (r; [ρr,vr])

2
. (20)

The superadiabatic force field in the reverse system can be obtained using the neural network according
to

f⋆sup,r (r; [ρr,vr]) = f
⋆
int (r; [ρ,−v])− f⋆ad (r; [ρ]) . (21)

The viscous and the structural components of the superadiabatic force field (neural force functional and
simulations) are shown in figures 3(g) and (h), respectively. To find the external force field that in the
simulations generates the reverse system, we use equation (13) with f⋆int(r; [ρ,−v]) as the internal force field.

3.3. Transport coefficients
We can also use the neural force functional to effortlessly extract transport coefficients such as the shear and
bulk viscosities. We illustrate the process with two model shear and bulk flows.

3.3.1. Shear flow
We prescribe the following spatially periodic shear flow (Kolmogorov flow [55])

ρ(z) = ρb, (22)

v(z) = v0 sin(2π z/L) êx, (23)

with ρb and v0 constants. That is, the density profile is uniform and the velocity profile is a sinusoidal wave
along the x-direction. The velocity profile is therefore divergence-free∇· v= 0 and it has a non-vanishing
curl∇× v ̸= 0. The one-body fields are shown in figure 4(a).

We have studied this flow in a two-dimensional system in [33] using custom flow to understand the
superadiabatic forces. Also, a closely related flow was analysed in [31, 32]. There, a sinusoidal external force
drives the system. For sufficiently weak external driving, the velocity profile closely resembles the sinusoidal
shape of the driving force and the density is almost uniform. However, for strong enough driving the velocity
profile can differ substantially from a sinusoidal wave, and the particles migrate to the regions of low shear
rate generating therefore a density modulation [31, 32].

Here, we impose the density profile to be homogeneous, equation (22). Hence, the entire internal force
field is superadiabatic. Another advantage of this flow is the natural splitting of the viscous and the structural
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Figure 4. Shear flow. (a) Prescribed density ρ and velocity vx profiles as well as the predicted viscous (fint,x) and structural (fint,z)
components of the internal force field fint as a function of z in a model shear flow. Solid lines (symbols) are neural force functional
predictions (Brownian dynamics simulations). The average density is set to ρbσ3 = 0.8 and the imposed flow is a sinusoidal wave
of amplitude v0σ/τ = 50 (blue) and 10 (grey). Amplitudes of the viscous (Av) and the structural (As) superadiabatic forces (b) as
a function of the strength of the flow v0 for several values of the average bulk density ρb (color bar), and (c) as a function of the
bulk density ρb for several amplitudes of the flow v0 (color bar). The amplitudes are obtained as half of the difference between the
maximum and the minimum value of the corresponding force. The insets in (b) are a close view of the weak flow regime.

components along different Cartesian directions [33]. The internal force field along the x-direction (parallel
to the flow) is viscous and it opposes the flow, see figure 4(a). This component of the force reverses if we
reverse the flow. Along the z-direction, perpendicular to the flow, there is additionally a superadiabatic force
field which is of structural type. Reversing the flow does not alter this component of the force. If we remove
the constraint of uniform density, the structural force field would create a density modulation [31, 32] with
peaks around the regions of low shear rate. Note how the structural force field, fstr(r) = fint,z(r)êz, tries to
move particles from the high (z/σ = 0 and 5) to the low (z/σ = 2.5 and 7.5) shear rate regions. An external
force field in z-direction balances the structural force such that the density profile remains homogeneous.

To simulate the flow, we use the external force field obtained with neural custom flow (as explained in
section 3.1) and then sample the one-body fields. The predictions of the neural force functional agree well
with computer simulations, see figure 4(a).

We have studied this flow previously in Brownian [31–33] and Newtonian [51] systems. However, we
used either a sinusoidal external force field [31, 32] (in which case the velocity profile is not a perfect
sinusoidal wave and there is a density modulation) or custom flow which is computationally
demanding [33]. In contrast, using the network it is straightforward to design the flow and to also obtain and
analyze the internal force field. For example, we show in figures 4(b) and (c) the amplitudes Av and As of the
viscous and structural superadiabatic force fields as a function of the amplitude of the flow v0 and the bulk
density ρb, respectively. The amplitude is determined by taking half of the difference between the maximum
and minimum values of the superadiabatic force field. These amplitudes are (up to factors of ρb) the
transport coefficients associated to the viscous and the structural response [31]. In the limit of weak flows
v0 → 0 the viscous force grows linearly with v0 whereas the structural force grows quadratically, see insets of
figure 4(b). This behaviour agrees with the superadiabatic response predicted by an approximated PFT
constructed by expanding the excess term in powers of the velocity field [31]. In this geometry, the
superadiabatic response generated by the first two terms in the expansion is

ρbfsup =−ηs∇× (∇× v)−χ∇(∇× v)2 . (24)

The first term on the right hand side is the viscous component (linear in v) and the second term is the
structural component (quadratic in v). The parameters ηs (shear viscosity) and χ are the transport
coefficients associated to each superadiabatic force field in the limit of weak flows (recall that we have
retained only the first terms of the expansion). Hence, our analysis with the neural force functional confirms
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Figure 5. Shear flow plus constant driving. Internal forces in a system with constant density profile, ρbσ3 = 0.7, following a
sinusoidal shear flow along the x-direction, vx(z) = v0 sin(2π z/L) with v0τ/σ = 25, and a constant flow along the z-direction
vz = v1 of magnitude v1 = 0 (gray), Jzσ2τ = 4 (light blue), and Jzσ2τ = 10 (dark blue), with Jz = v1ρb the current along the
z-direction. The internal force field (top row) is entirely superadiabatic fint = fsup since ρ is constant. The viscous fvis (middle
row) and the structural fstr (bottom row) superadiabatic force fields depend on the value of v1. The left (right) panels display the
x-component (z-component) of the forces.

the suitability of previous analytical approaches. For strong flows the network predicts the saturation of the
superadiabatic forces which is also in agreement with previous simulations [56].

3.3.2. Shear plus constant flow
In equilibrium, the neural functional [26] satisfies exact sum rules that follow from Noether invariance [57]
even though they have not been imposed during training. In non-equilibrium, the network also complies
with symmetries of the underlying physical system that have not been imposed by e.g. data augmentation.
For example, we have verified that adding a constant to the x- or y-component of the velocity field in the
shear flow shown in figure 4 leaves the internal force field predicted by the network unchanged. This is
expected because all one-body fields are homogeneous in both x- and y-directions. Hence, we are simply
changing the Galilean reference frame and the internal force field is invariant under such transformation.

The velocity, the internal force field, and the external force field are inhomogeneous along the
z-direction. Hence, adding a constant term to the z-component of the velocity is not equivalent to a change
between two inertial frames of reference. The network is also able to discern whether adding a constant flow
is equivalent to changing to another inertial frame of reference. We show in figure 5 the internal force field
and its splitting into viscous and structural components for a shear flow. Like in figure 4, the system is
constructed to have constant density and the x-component of the velocity profile is a sinusoidal wave. In
addition, there is a constant drift along êz. That is

ρ(z) = ρb, (25)

v(z) = v0 sin(2π z/L) êx + v1êz. (26)

Since the density is constant, the entire internal force field is superadiabatic. The presence of the z-component
of the velocity clearly alters the internal force field. First, the viscous force along êx and the structural force
along êz depend on the value of v1. Additionally, switching on the constant flow along êz generates a
superadiabatic viscous force along êz and a structural force along êx. Both superadiabatic force fields are not
present if v1 vanishes. We have confirmed with Brownian dynamics simulations that the predictions of the
neural force functional closely match the simulation data (compare lines and symbols in figure 5).

A steady state approximation to the excess power functional based on a series expansion in powers of the
gradient of the velocity field,∇v, can be enough to reproduce the superadiabatic force field accurately [30,
31]. This example shows that there are certain cases in which the mean value of the velocity field is also
relevant to determine the superadiabatic forces. For those cases, an approximate analytical excess power
functional can contain terms that depend on the velocity field itself, v, such as those included in [33]. For a
discussion of exact nonequilibrium sum rules for the non-stationary dynamics, we refer the reader to [57].
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Figure 6. Bulk flow. (a) One-body profiles in a model bulk flow as a function of z for two different density modulations: ρ1 = 0.1
(gray) and ρ1 = 0.5 (blue), see equation (27). In both cases the average density is ρ0σ3 = 0.6 and the current is J0σ2τ = 7. All the
vector fields point along the (gradient) z-direction. Shown are the density ρ, the velocity vz, the internal force fint,z, the adiabatic
force fad,z, and the splitting of the superadiabatic force field in viscous fvis,z and structural fstr,z components. (b) Transport
coefficients of the viscous (Av) and the structural (As) superadiabatic forces as a function of the current J0 for different values of
the density modulation ρ1 (color bar). Solid lines are neural force functional predictions and symbols are Brownian dynamics
simulations.

The Galilean transformation could also be used for data augmentation to potentially improve the quality
of the network predictions [58].

3.3.3. Bulk flow
In the shear flow, the homogeneous density profile along with the viscous and structural forces being
perpendicular to each other facilitates the analysis of the transport coefficients. Bulk (compressible) flows are
more challenging since the flow and viscous components are parallel to each other. Nevertheless, the neural
force functional still provides an accurate description of the superadiabatic forces [38] and the transport
coefficients for bulk flows. We illustrate this using the following flow

ρ(z) = ρ0 (1+ ρ1 cos(2π z/L)) , (27)

J(z) = ρ(z)v(z) = J0êz, (28)

with constant ρ0 (average density), ρ1 (amplitude of density modulation) and J0 (current). Hence, by
construction∇× v= 0 and∇· v ̸= 0. Since the current is constant, the velocity profile is simply
v(z) = J0/ρ(z)êz.

The one-body profiles are shown in figure 6(a) and compared to Brownian dynamics simulations. Only
the z-component of the internal force field does not vanish. It contains adiabatic and superadiabatic
contributions since the density is not homogeneous. Moreover, the superadiabatic contribution incorporates
both viscous and structural terms. The complete analysis of the internal force field makes use of the network
three times: for the total internal force field, for the splitting into adiabatic and superadiabatic components
and to split the superadiabatic force field into viscous and structural components. Each time we obtain an
external field via the force balance equation and run a BD simulation to split the forces in simulations.
Although each step introduces and accumulates errors, we see in figure 6 that the network predictions
remain in good agreement with the simulation results. The neural force functional correctly describes all
contributions to fint(r; [ρ,v]) even though the overall shape changes non-trivially with e.g. the amplitude of
the density modulation, as illustrated in figure 6(a). The transport coefficients associated to the viscous (Av)
and the structural (As) components are shown in figure 6(b). They again scale differently in the limit of weak
flows (J0 → 0) signaling a different dependence on powers of the velocity field.

3.4. Beyond the simulation box
The network is trained to reproduce the internal force field locally, at a given space point. Due to this local
inference, there is no constraint on the specific choice of the system size. The neural force functional can be
used straightforwardly to predict the internal force field in systems that outscale those used during training.

An illustrative example is shown in figure 7. We create a steady state in a system of size 100σ along the
z-direction (i.e. ten times larger than the length of the training simulation box). The flow is directed along
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Figure 7. Beyond the simulation box. (a) Density profile ρ and z-components of (b) the internal force field fint and (c) the
superadiabatic force field fsup as a function of z in a system of size 100σ along the z-direction. The neural network is hence used
for predictions in a system which is one order of magnitude larger than those used for its training. The system is in steady state
with a current of magnitude J0σ2τ = 10.

the z-axis only and the magnitude of the current is J0σ2τ = 10. The density profile, and hence the velocity
profile, oscillate smoothly at length scales of the order of 10σ. Despite these rather smooth oscillations (as
compared to e.g. those in a crystal state) the superadiabatic force, figure 7(c), is a significant contribution to
the total internal force, figure 7(b).

This system illustrates the relevance of superadiabatic forces to understand the dynamics in systems
much larger than the length scale of the particles. Our local learning approach opens the door to describe the
dynamics of macroscopic systems with microscopic resolution.

3.5. Beyond steady states
Although the network has been trained only with steady states, we can use it to investigate full
non-equilibrium situations in which the one-body fields depend explicitly on time t. This constitutes an
approximation to the real dynamics since the memory effects in full non-equilibrium and in steady state are
not identical [59]. Formally, the full time-dependent nonequilibrium mapping as given by PFT requires to
include not only instantaneous profiles, but also their history up to the time of interest. Nevertheless, as we
demonstrate here, the agreement with simulations is still good since the network provides a reasonable
approximation for the superadiabatic force field in full non-equilibrium.

In the general case, a time and space-dependent external force field fext(r, t) drives the dynamics of the
density ρ(r, t) and the velocity v(r, t) profiles.

We discretize time in steps of∆t. Using the continuity equation (7), we evolve the density profile one
time step

ρ(r, t+∆t) = ρ(r, t)−∆t∇· J(r, t) . (29)

Via the exact force balance equation (4), we can calculate the velocity profile at time t+∆t

γv(r, t+∆t) = fint (r, t+∆t)+ fext (r, t+∆t)− kBT∇ lnρ(r, t+∆t) . (30)

Since the internal force at time t+∆t is unknown, the solution to this equation can be found using a Picard
iteration: We start with a guess for v(r, t+∆t) and use it together with ρ(r, t+∆t) from equation (29) and
the network to obtain the corresponding internal force field fint(r, t+∆t). Next, using the right hand side of
equation (30) we construct a new v(r, t+∆t) and repeat the procedure until the left and the right hand side
of equation (30) coincide up to a given tolerance. In our experience, only a few iterations are needed to
achieve convergence.
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In practice, if the time step is small enough (here we use∆t/τ = 5 · 10−5) the Picard iteration to evolve
the velocity profile in time is not necessary. The velocity profile at the next time step is well approximated by
assuming

γv(r, t+∆t) = fint (r, t)+ fext (r, t+∆t)− kBT∇ lnρ(r, t+∆t) , (31)

with

fint (r, t) = f
⋆
int (r; [ρ(r, t) ,v(r, t)]) , (32)

that is, the network prediction for the internal force field of the previous time step.

Neural dynamical density functional
To draw a comparison we construct here a neural dynamical density functional (nDDFT) which neglects the
superadiabatic contributions to the internal force field. The task is straightforward since we simply need to
use fint(r, t) = f

⋆
ad(r, t; [ρ]) in equation (31). Recall that the adiabatic force field f⋆ad(r, t; [ρ]) is at each time t

that of an equilibrium system (v= 0) with the same ρ as the out-of-equilibrium system, see equation (15).
We compare predictions of the neural force functional and nDDFT with computer simulations in figure 8

and in supplementary movie 1. The time-dependent one-body fields in the simulations have been obtained
by averaging at the desired time t over an ensemble of∼105 simulations that differ in the initial microstate
and in the realization of the noise (Brownian motion). The starting point is a bulk system with constant
density ρbσ3 = 0.5. At t= 0 we switch on the external force field shown in figure 8(a) which is

fext (z, t) = f0 sin(k0z) êx + f1 cos(ω1t− k1z) êz, (33)

with parameters f0σ/ϵ= 30, k0L= 2π, f1σ/ϵ= 5, ω1τ = 4π, and k1L= 4π. That is, the motion is driven by a
static wave in x-direction, and a travelling wave in z-direction.

The system responds to the external driving with a density modulation, figure 8(b), that travels along the
z-direction. Dynamical density functional theory is entirely unaware of the internal force field along the
x-direction, figure 8(c), which is non-conservative and purely superadiabatic since the density is
homogeneous in this direction. Note that the flow in x-direction is given according to the force balance
equation (4) by the sum of the external and the internal force fields. Therefore, the absence of superadiabatic
forces in nDDFT leads in general to an inaccurate description of such nonequilibrium flows [38], which we
have exemplified here via the time-dependent situation depicted in figure 8. In contrast, the internal force
field provided by the neural force functional and therefore the flow are in good agreement with simulations,
see figure 8(c).

The internal force field along the z-direction, figure 8(d), has both adiabatic and superadiabatic
components. The adiabatic component dominates and hence the prediction of nDDFT seems at first glance
reasonable as compared to simulations. However, the superadiabatic component, which is correctly
reproduced by the neural force functional, is far from being negligible and it is responsible for a clear physical
effect. We show in figure 8(d) the amplitude of the density modulation∆ρ as a function of time (see also
supplementary movie 1). The density modulation grows after switching on the external force and afterwards
it varies periodically with time. Dynamical density functional theory completely misses this effect which is
due to structural superadiabatic forces generated by the flow in z-direction. Again the neural force functional
reproduces the oscillations of the density modulation although it slightly overestimates the amplitude. The
differences with simulation results arise, at least partially, due to memory effects being different in steady
state and in full non-equilibrium, which is not captured by our neural network due to the steady state
training data.

Our neural force functional can simultaneously generalize to systems that are larger than the simulation
box and that are in full non-equilibrium. An illustrative example is shown in supplementary movie 2 where a
system with size L/σ = 30 and subject to a complex time-dependent external force is analyzed. The
predictions of the neural force functional for the density and the velocity profiles as well as for the internal
force field are much closer to the simulation data than those of nDDFT.

4. Conclusions and future work

We have trained a neural network to represent the kinematic functional mapping {ρ,v}→ fint described in
PFT for particles following overdamped Brownian dynamics. We create the one-body fields directly from
particle-based computer simulations of the supercritical Lennard-Jones fluid. After machine learning the
mapping, the network can be deployed in several applications including custom flow, the analysis of
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Figure 8. Beyond steady state. Time evolution of selected one-body fields in a full non-equilibrium system according to the neural
force functional (solid lines), nDDFT (dashed lines), and BD simulations (symbols). The color indicates the time t1/τ = 0.40
(blue), t2/τ = 0.64 (light violet), and t3/τ = 0.72 (dark violet). Shown are as a function of the z coordinate: the components of
the external force field fext in x- and z-direction (a), the density profile ρ (b), and the components of the internal force field in x-
(c) and z-direction (d). Panel (e) shows the amplitude of the density modulation∆ρ as a function of time t.

superadiabatic forces, and the quantification of transport coefficients. Analogously to neural functional
theory in equilibrium [26], the application of the network is not restricted to the original size of the
simulation box in which the training data has been created. The representation of the functional kinematic
mapping is constructed in a spatially local manner and hence the prediction of the internal force field can be
applied straightforwardly to systems of virtually any size. Despite the network being trained with steady-state
data, in our tests it gives a reasonable approximation of the internal force field in full non-equilibrium
situations. In our comparison with simulations, only relatively small deviations occur due to memory effects.
Note, however, that the time scales of memory effects can be small [35] and hence large deviations might
appear at sufficiently small time scales. The results agree well with simulations and clearly outperform
dynamical density functional theory that can also be straightforwardly implemented as a limiting case of the
neural force functional.

The input space of the dataset sets the main limitation of the approach. Since the kinematic mapping is
formally exact, the discrepancies between the predictions of the neural force functional and the simulation
data are due to the errors associated with the network. Inaccurate predictions can occur if we try to
extrapolate far from the input space (for example predicting the internal force of a system with a current
much larger than the maximal current included in the training set). The symmetry operations used to
augment the data can also be used to asses the validity of the predictions. If the predicted internal force field
does not satisfy the symmetry operations, we can be certain that the solution is not accurate. Conversely, if
the predicted force field satisfies the symmetry operations, it strongly indicates that the prediction is
accurate. For the case of neural dynamical density functional theory, the discrepancies between the
predictions and the simulation data are mostly due to the neglect of the superadiabatic forces in nDDFT.
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Several applications and extensions of this work merit further consideration. (i) We have trained the
network at constant (supercritical) temperature T. A natural extension is to prepare a training set with
different values of the temperature and using T as another input network parameter. Complications might
arise e.g. in the two-phase regions of the phase diagram. (ii) The method can be directly applied to other
interparticle potentials, including hard interactions [60] for which the internal force field can be sampled
indirectly via the force balance equation. Of particular interest are the cases of active particles [36] and
anisotropic particles. There, the one-body density distribution depends not only on the spatial coordinates
but also on the particle orientations. Also, if there are torques acting on the particles, the force balance
equation couples to a torque balance equation [61, 62] and hence, the internal torque field also needs to be
learnt. (iii) Finite size effects (and those due to truncation of the potential) might be systematically analyzed
with a training set containing data from several simulation box sizes (cutoff distances). In particular it might
be possible to rationalize the effect of the lateral size of the simulation box [63–65] on the dynamics, which
constitutes an open problem that so far has not received much attention. (iv) The network used here is
simple in terms of architecture and number of trainable parameters. Therefore, it might be feasible to
generalize the geometry further and to train networks with generic two- and three-dimensional flows.
Reduced-variance sampling methods [62, 66–69] can improve the sampling efficiency during the generation
of the training set. (v) We have used only soft external forces but the training set can be complemented with
other profiles such as e.g. particles in the presence of hard walls. (vi) As in equilibrium [26], the neural force
functional can be used to perform functional calculus. Using automatic differentiation [70], it is possible to
compute the functional derivatives of the output with respect to the inputs of the neural network. This gives
direct access to e.g. the second and higher order derivatives of the excess power functional with respect to the
velocity. In the limit of weak flows, the second derivative is related to the transport coefficients such as shear
and bulk viscosities. Higher order derivatives might provide valuable information about the mathematical
structure of the functional. Also, using functional line integration [26, 71] might be a practical route to the
determination of the value of the excess power functional for prescribed ρ(r) and v(r). (vii) Arguably the
most promising extension is the application of the method to full non-equilibrium systems for which both,
the training set (which then carries an explicit time dependence) and the architecture of the network need to
be modified. A neural force functional trained with full non-equilibrium data in combination with
automatic differentiation might provide direct access to the memory kernels [72–75] of the many-body
system. (viii) Finally, the method is not restricted to overdamped Brownian dynamics. The network can be
trained with data from particles following e.g. Newtonian [16], Langevin, and quantum many-body
dynamics [17] in full non-equilibrium. There, the internal force field and the kinetic stress tensor carry in
general an explicit dependence on the acceleration field [51, 76]. Hence, it might be convenient to also
include the acceleration field, a, as an input field of the training set even though it follows from the time
derivative of the velocity field (a= v̇). Moreover, the transport term in the force balance equation is not
diffusive and also needs to be learnt.

We have trained the network with simulation data but it might be possible to generate a training set
directly from experiments. Arrays of optical tweezers [77], magnetic patterns [78] and micro-fabricated
obstacles [79] are examples of experimental setups in which the external force field can be customized. The
internal force field could then be measured either directly [80] or indirectly via the force balance equation
and also via machine learning the non-equilibrium dynamics from time-lapse microscopy images [81].

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).
The dataset and the trained model are deposited in Zenodo [47].

Appendix. Architecture of the neural network

We use a convolutional neural network, see figure 9(a), implemented in Keras [82]. The size of the input
layer is (561, 4). That is, we use 4 channels (one-dimensional arrays) to represent the four one-body profiles
(density and three components of the velocity) which are discretized within [z0 −∆,z0 +∆] leading to 561
input values per profile. The input layer is then processed by convolutional layers followed by a fully
connected layer.

The first convolutional layer uses 16 filters. Hence, it takes the input layer and outputs a feature map of
size (561, 16). Each value of the feature map is calculated by convolving the values of all the channels in the
previous layer in a window of size 20 (kernel size).

We use three convolutional layers connected sequentially and double the number of filters in each layer
(the kernel size is kept constant). An average pooling layer is connected after each convolutional layer. The
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Figure 9. Neural network. (a) Schematic of the convolutional neural network. The input layer contains windows of the density
and the three components of the velocity profile. Convolutional (average-pooling) layers are represented in blue (orange). The
last average-pooling layer is flattened (grey) and connected to a fully connected layer (blue circles). The output layer consists of
three nodes that output the components of fint at position z0. The numbers inside parentheses indicate the elements per channel
and the number of channels of each layer. (b) Log-log plot of the relative error∆f(z0) of the neural network as a function of the
magnitude of the internal force fint(z0) for the samples in the test set. The data points are colored according to the magnitude of
the current (color bar).

pooling layers calculate the average of two consecutive values of the feature map in the preceding
convolutional layer, halving therefore the size of the feature map.

After the last pooling layer, the two-dimensional data is reshaped to a 1d-array via a flatten layer which is
then connected to a fully connected layer containing 100 nodes. This layer connects to the output layer, made
of three single nodes that output the three components of the internal force field at position z0, i.e. f

⋆
int(z0).

Note that we do not normalize either the input fields (density and velocity) or the output field (internal
force field) since we are interested in the raw value of the internal force field which depends on the raw values
of the density and the velocity profiles. We have not encountered stability problems of the neural network in
the range of currents analysed here. Since the internal force field tends to saturate for high values of the
current, we do not expect stability problems if the range of currents is increased, but we cannot completely
rule out their occurrence.

We use softplus activation functions for the nodes in the network (except the output nodes that use linear
activation functions to output the internal force directly). In our experience, the softplus activation functions
significantly improve the quality of the output.

The network contains about 5 · 105 parameters that are adjusted with the Adam optimizer to minimize
the mean-square-error between network predictions and actual values of the internal force field. The initial
learning rate is 2.5 · 10−4 and it decreases by 1.5% after each epoch. The network is trained for 150 epochs
with an initial batch size of 512 which is doubled every 50 epochs. The sequence of input-output pairs in
each batch is selected randomly.

We show in figure 9(b) the relative error of the network prediction∆f = |f⋆int(z0)− fint(z0)|/|fint(z0)| as a
function of the magnitude of the internal force field |fint(z0)| for the data in the test set. Recall that quantities
without a star are simulation data. Data points are colored according to the magnitude of the current.

17



Mach. Learn.: Sci. Technol. 5 (2024) 035062 T Zimmermann et al

Samples with large relative errors typically correspond to cases where the internal force field is small. A large
relative∆f is then expected since the statistical noise is comparable to the signal. This likely explains also the
general trend of negative slope in figure 9(b). For fixed value of the magnitude of the internal force, the error
increases with the magnitude of the current. For a comparable size of the training set, higher precision is
achieved in equilibrium using a neural network to represent the functional map from ρ to c1 [26]. This is not
surprising due to the increased mathematical complexity of the non-equilibrium mapping. If higher
precision is required, it should be possible to decrease the relative error by increasing the size of the training
set.
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