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Abstract
We present a deep neural network which predicts the stability of isotropic
steady states of the asymptotically flat, spherically symmetric Einstein–Vlasov
system in Schwarzschild coordinates. The network takes as input the energy
profile and the redshift of the steady state. Its architecture consists of a U-Net
with a dense bridge. The network was trained on more than ten thousand steady
states using an active learning scheme and has high accuracy on test data. As
first applications, we analyze the validity of physical hypotheses regarding the
stability of the steady states.

Keywords: Einstein–Vlasov, general relativity, stability, deep learning,
neural network, numerics

1. Introduction

The Einstein–Vlasov system describes the dynamics of self-gravitating, collisionless matter
by coupling Albert Einstein’s general relativity with the Vlasov (or collisionless Boltzmann)
equation. This system holds strong significance in astrophysics, frommodeling the evolution of
star clusters and galaxy clusters to understanding the formation of black holes [4–7, 10, 21, 26,
36]. An ensemble of particles or gas—interacting solely via their self-generated gravitation—
is treated as a continuous distribution of mass represented by a phase-space density function f.
We are only interested in the asymptotically flat case with a vanishing cosmological constant.
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The speed of light and the gravitational constant are normalized to unity. We always assume
spherical symmetry. We state the system in this setting in section 2.1. For an overview of what
is known about the Einstein–Vlasov system, we refer the interested reader to [4, 26, 36] and
the references therein.

The Einstein–Vlasov system possesses a plethora of steady state solutions. Such a solution
corresponds to a configuration with constant-in-time density. Hence, steady states are common
models for star clusters which have settled in an equilibrium state. In this work we investig-
ate isotropic steady states of the Einstein–Vlasov system. This means that the phase space
density of the steady state depends only on the particle energy. The density of particles with a
certain energy is determined by the prescribed energy profile function Φ: [0,1[→ [0,∞[; see
section 2.2 for a concrete description. A physically motivated [18, 37] assumption is that Φ
is strictly increasing. This results in the concentration of ever more energetic particles to be
decreasing within the equilibrium configuration. Another parameter of the steady state is the
redshift factor κ> 0. Loosely speaking, large values of κ correspond to highly relativistic
configurations, while choosing smaller values of κ lead to less relativistic steady states. Under
suitable assumptions on Φ, any combination of Φ and κ> 0 yields a compactly supported
steady state of the Einstein–Vlasov system. We review the steady state construction in more
detail in section 2.2.

It should be mentioned that there exist steady states which are anisotropic, i.e. the distri-
bution function not only depends on E, see [24]. Extending the present analysis to this more
general case is a natural next step—however, this would require much more computational
resources.

Stability theory analyzes the response of steady states to small perturbations. For instance,
a star cluster in equilibrium might be perturbed by the gravitational force of other star clusters
passing by. Loosely speaking, a stable steady state remains close to the equilibrium config-
uration after perturbation, while an unstable steady state evolves away from the equilibrium.
In the present setting, slightly perturbing an unstable steady state either carries (parts of) the
configuration to a new equilibrium or leads to the collapse into a black hole [12]. Obviously,
we cannot expect to meet in nature an unstable steady state [9, chapter 5]. We must therefore
first determine the stability of a steady state that is to be used as a model in reality.

Unfortunately, analyzing the stability of the aforementioned steady states turns out to be
very challenging. In fact, neither the stability nor the instability of any such steady state has
yet been mathematically proven. We refer to [27] for a recent review of the mathematical
results towards this question. Let us explicitly mention here the following two results proven
on the linearized level, i.e. in a simplified yet physically well motivated setting: For a fixed
energy profile function Φ (satisfying suitable regularity assumptions), any not too relativistic
steady state (0< κ≪ 1) is stable [15], while any highly relativistic steady state (κ≫ 1) is
unstable [14]. It is conjectured that this also holds for the actual non-linear stability behavior.
Furthermore, in the astrophysics literature, some hypotheses regarding the precise location of
the onset of instability, i.e. the κ-value where the steady states change from being stable to
being unstable, have been developed.

Since the 1960’s, the stability of steady states of the Einstein–Vlasov system has also been
analyzed numerically. We refer to [13, section 1.2] and [27, section 8] for an overview over
past numerical investigations. The motivation is that a thorough understanding of the stability
of steady states, derived numerically, ought to be useful for proving the stability properties
mathematically. For instance, a recent numerical investigation [13] falsified a long-standing
stability hypothesis from the astrophysics literature. In numerical stability investigations, one
first computes a steady state, perturbs it slightly, and then evolves the resulting configuration
over time using a suitable simulation of the Einstein–Vlasov system. We describe our explicit
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numerical algorithm in section 2.3. Although the numerical simulations have become very
accurate and reliable over the years, they are still computationally expensive. Determining the
stability of a large amount of steady states, e.g. to test the validity of a physical hypothesis in
depth, is usually not possible due to limited computational resources.

For this reason we have developed a deep neural network which can quickly and accur-
ately predict the stability of steady states: the EVStabilityNet. The architecture of the
EVStabilityNet consists of a U-Net with a dense bridge. These two parts mostly work in
parallel and are unified only at late layers of the network. This architecture is motivated by
mathematical aspects of the problem. We discuss the architecture in more detail in section 3.1.

The EVStabilityNet was trained on over 104 steady states, which were labeled as ‘stable’ or
‘unstable’ using the numerical simulations outlined above. In order to select the training data,
we employed an active learning scheme [23, 33], i.e. after starting with a randomly chosen set
of training data, cf section 3.2.1, we added more training data iteratively. We explain in detail
the entire training process in section 3.2.

In section 3.3 we analyze the speed and accuracy of the EVStabilityNet. On randomly
selected test data, the EVStabilityNet reaches an accuracy of 99%. We also test the accuracy
on isotropic polytropic steady states as well as on the steady states from [13, figure 4]. The
former are particularly natural from a mathematics point of view, whereas the latter exhibit
highly diverse stability properties. The EVStabilityNet completes all tests with convincing
accuracy.

We have made the EVStabilityNet publicly available so that it can be tested and applied by
everyone. The download link and some notes on how to use it are provided in section 3.4.

In section 4, we apply the EVStabilityNet to test the validity of several hypotheses from
the astrophysics literature regarding the stability of steady states. All these hypotheses are
about linking (in)stability to a criterion that can be checked by examining specific quantities
of the steady state, such as its total mass or redshift. To investigate the validity of such a
hypothesis, we compare its statements about the stability of steady states to the predictions of
the EVStabilityNet. Due to the EVStabilityNet’s low computational costs, we can perform this
comparison on larger data sets than would otherwise be possible. If the stability predictions of
the hypothesis and the EVStabilityNet consistently agree, it provides a strong indication of the
hypothesis’s validity. Otherwise, the EVStabilityNet provides promising examples of steady
states for which the hypothesis does not hold. These examples can then be double-checked
with the conventional particle-in-cell method.

The first hypothesis we examine in this way is the so-called weak binding energy hypo-
thesis. It states that if the redshift κ is increased for steady states with a fixed energy profile
function Φ, the steady states are stable at least up to the first maximum of the binding energy
Eb, see (2.12) for a definition of this quantity. This hypothesis has been tested and confirmed
repeatedly in the literature [8, 12, 13, 19, 20, 25, 34, 35]. We can confirm it again here after
testing it on 2000 randomly generated energy profile functions. The second hypothesis, the
strong binding energy criterion, is more rigid than the first, claiming that the stability changes
precisely at the first maximum of Eb. As noted above, this hypothesis has been proven to be
not valid for general steady states in [13]. We come to the same conclusion here. It is notable
that the hypothesis, nonetheless, seems to hold true for a significant proportion of the randomly
selected steady states we tested it on. The third hypothesis originates from [8, 12, 35] and states
that every steady state with negative binding energy has to be unstable. The predictions of the
EVStabilityNet are in agreement with this hypothesis on a large number of randomly gener-
ated steady states. Lastly, we outline a future application concerning the presence of oscillating
and damped star clusters at the end of section 4.
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2. Mathematical and numerical background

2.1. The Einstein–Vlasov system

We describe the evolution of a star cluster by its phase-space density function f. Due to the
assumption of spherically symmetry, f = f(t,r,w,L) can be written as a function of the time
variable t ∈ R, the radial space variable r⩾ 0, the radial momentum variable w ∈ R, and the
variable L⩾ 0 describing the squared modulus of the angular momentum. The mass density
and pressure associated to f are given by

ρf (t,r) =
π

r2

ˆ ∞

0

ˆ
R
ε f(t,r,w,L) dwdL, (2.1)

pf (t,r) =
π

r2

ˆ ∞

0

ˆ
R

w2

ε
f(t,r,w,L) dwdL, (2.2)

respectively, where we introduce the abbreviation

ε :=

√
1+w2 +

L
r2
. (2.3)

We consider Schwarzschild coordinates

ds2 =−e2µ(t,r)dt2 + e2λ(t,r)dr2 + r2
(
dθ2 + sin2 (θ)dψ2

)
, (2.4)

in which the metric parameterizing the geometry of spacetime is determined by the two func-
tions µf = µf(t,r) and λf = λf(t,r) given by ρf and pf via the differential equations

e−2λf (2r∂rλf− 1)+ 1= 8π r2ρf, e−2λf (2r∂rµf+ 1)− 1= 8π r2pf. (2.5)

Equation (2.5) correspond to Einstein’s equations in Schwarzschild coordinates. The assump-
tion that we consider an isolated system with a regular center (at r= 0) is implemented math-
ematically by incorporating the following boundary conditions on µf and λf :

lim
r→∞

λf (t,r) = lim
r→∞

µf (t,r) = 0= λf (t,0) . (2.6)

We refer to [4, 26] for more background, but state here the following nice feature of
Schwarzschild coordinates: The variable t can indeed be interpreted as the proper time of
an observer looking onto the configuration from spatial infinity. The reason we choose these
coordinates is because they simplify Einstein’s equations sufficiently and because they are
the most commonly used in the literature. However, past numerical investigations suggest
that choosing other coordinates does not affect the stability properties which we will analyze
later [12, 13]. The metric coefficients µf and λf determine the evolution of f via the partial
differential equation

∂tf+ eµf−λf
w
ε
∂rf−

(
w∂tλf+ εeµf−λfµ ′

f −
L
r3ε

eµf−λf

)
∂wf = 0. (2.7)

This equation is known as the Vlasov equation. Accordingly, the system (2.1)–(2.7) is the
asymptotically flat Einstein–Vlasov system in Schwarzschild coordinates. For brevity, we shall
refer to it simply as the Einstein–Vlasov system throughout this article. It is a closed system
for the phase-space density function f. A derivation of the system in the above form can be
found in [26]. The existence theory is reviewed in [4].

4



Class. Quantum Grav. 41 (2024) 065002 C Straub and S Wolfschmidt

2.2. Steady states

A steady state is a time-independent solution f0 = f0(r,w,L) of the Einstein–Vlasov sys-
tem (2.1)–(2.7). As motivated earlier, we seek such steady states by assuming that they only
depend on the particle energy. More precisely,

f0 (r,w,L) = Φ

(
1− E(r,w,L)

E0

)
, (2.8)

where the energy E= E(r,w,L) of a particle with phase-space coordinates (r,w,L) is given
by

E(r,w,L) = eµf0 (r)ε, (2.9)

and E0 ∈ ]0,1[ is the cut-off energy which we determine below. For the energy profile function
Φ: [0,1[→ [0,∞[, we make the following assumptions:

(Φ1) Φ is continuous and increasing with Φ(0) = 0.
(Φ2) There exist constants η0 > 0 and 0< k⩽ 2 such that

Φ(η) = ηk, 0< η < η0. (2.10)

The assumption (Φ2) looks rather restrictive at first glance, but we discuss it below. We
always extend Φ continuously onto ]−∞,1[ by setting Φ(η) := 0 for η < 0, which implies
f0(r,w,L) = 0 if E(r,w,L)⩾ E0.

Making the ansatz (2.8) reduces the Einstein–Vlasov system for f 0 to a scalar integro-
differential equation for the auxiliary quantity y := ln(E0)−µf0 , see [28, section 1]. It is
proven in [24] that for any initial value y(0) = κ > 0 and any energy profile function Φ sat-
isfying (Φ1) and (Φ2) with 0< k< 3

2 , the integro-differential equation has a unique solution
leading to a steady state f 0 with cut-off energy E0 determined by E0 = exp(limr→∞ y(r)). This
steady state is compactly supported and has finite (ADM-)mass, i.e. {f0 > 0} is bounded and
M :=

´
εf0 <∞, which shows that f 0 indeed serves as a realistic model for a star cluster in

equilibrium. Our numerical simulations show that the same properties also hold for 3
2 ⩽ k⩽ 2,

which is why we include these cases here too.
By the scaling law from [13, section 2.3], multiplying the energy profile function Φ by a

positive factor results in a steady state with the same stability behavior. This means that, after
rescaling, our investigation also covers energy profile functions satisfying

Φ(η) = cηk, 0< η≪ 1, (2.11)

for some c> 0 and k as above. Requiring equality in (2.11) is of mere technical nature—in
numerical practice, one could also consider energy profile functions which only asymptotically
satisfy (2.11), like theKingmodel eη − 1. Anyway, the steady states satisfying (2.11) constitute
a sufficiently extensive and diverse class for the numerical analysis.Mathematically, evenmore
general energy profile functions could be considered [24].

In conclusion, we obtain for every energy profile Φ a family of stationary solutions which
we denote as ( fκ)κ>0. We only consider κ< 1 since we have never encountered a steady state
which is stable for κ> 0.8.

A physically important quantity associated to a steady state f 0 is its (fractional) binding
energy

Eb =
N−M
M

, (2.12)

where N=
´
eλf0 f0 is the particle number of f 0 and M is its mass.
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2.3. Numerical stability analysis

In order to determine the stability of a steady state f 0, we analyze the solution f of the Einstein–
Vlasov system launched by the initial distribution f̊ := αf0. One should think of f̊ as a perturb-
ation of the steady state f 0. In fact, the observed stability behaviour is independent of the way
of generating the perturbation, e.g. one could equivalently use dynamically accessible per-
turbations [8, 12]. The strength of the perturbation f̊ is determined by the difference of the
amplitude α and 1. As observed in [8, 12], choosing α> 1 in the case of an unstable steady
state f 0 leads to the collapse of the matter and the formation of a black hole. One manifest-
ation of this behavior is that eµf(t,0) gets close to 0. On the other hand, choosing α< 1 leads
to dispersion or a heteroclinic orbit [8, 12]. Although instability can always be observed for
α> 1 and α< 1, in practice, it is more convenient to only consider α> 1 since the resulting
behavior can be distinguished more clearly from the stable case. In the case of a stable steady
state, any slight perturbation, i.e. |1−α| ≪ 1, results in the solution f remaining close to f 0
for all times.

We evolve the initial condition f̊ numerically using a particle-in-cell scheme. This is the
state-of-the-art method for simulating the Einstein–Vlasov system and is also the most com-
monly used in the literature [2, 3, 8, 12, 13, 30]. The basic idea is to split the (r,w,L)-support
of f̊ into a finite number of cells. In the center of each cell we place a numerical particle repres-
enting the contribution of its cell. These particles are propagated according to the characteristic
system associated to the Vlasov equation (2.7); the arising ODE is solved using the fourth-
order Runge–Kutta method. Based on the new positions of the numerical particles, the metric
coefficients are updated after each time step. We refer the interested reader to the literature
cited above for more details on the particle-in-cell scheme. The code realizing this numerical
method is written in C++. Based on [22], it is parallelized using the Pthreads API. For the choice
of all numerical parameters we have followed [13]. For instance, we use roughly 7 · 107κ 3

2

numerical particles to represent the distribution function. The κ-dependency is included here
in order to handle the more peaked metric coefficients occurring at more relativistic configur-
ations. As described in [13, section 3], this method simulates the Einstein–Vlasov system with
high accuracy.

The amplitude α, which determines the strength of the perturbation, is fixed at α= 1.0001.
In order to automatically detect a stable or unstable steady state, we distinguish between two
situations: If eµf(t,0) eventually converges to zero due to the perturbation, in which case we
stop the simulation, we define the steady state as unstable. Otherwise, eµf(t,0) stays roughly
at eµf(0,0) until t= 500M, and we deem the steady state stable unless we observe unusual
behavior after manually inspecting eµf(t,0). Note that this dichotomy has been found in all the
numerical studies mentioned earlier.

3. The EVStabilityNet

3.1. Architecture

The neural network architecture for predicting the stability of steady states of the Einstein–
Vlasov system is based on a U-Net [32] with a dense bridge bypassing the U-Net. The archi-
tecture is shown in detail in figure 1. For a general overview on the different types of layers
and for background on deep learning as a whole, we refer to [1, 11].

U-Nets have their origins in image segmentation tasks [32] and are commonly used in that
field. Their fully convolutional architecture enables them to effectively capture local features
within the input data. In the present context, this could, e.g. be the slope of the energy profile
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Figure 1. Architecture of the EVStabilityNet.

Table 1. Structure of the input data for the EVStabilityNet for the steady state associated
to the energy profileΦ(η) = η and redshift κ= 0.2; note that 1− e−0.2 ∈ ]0.181,0.182[.

Index Nr. 0 1 2 · · · 180 181 182 183 · · · 639

κ 0.2 0.2 0.2 · · · 0.2 0.2 0.2 0.2 · · · 0.2
Φ(η) 0 0.001 0.002 · · · 0.18 0.181 0 0 · · · 0

function Φ. The U-Net consists of an encoder and a decoder, both using convolutional and
pooling layers. To avert loss of information in the encoding stage, skip connections transfer
the information from the encoding path to the decoding path.

In addition to the fully convolutional U-Net, we integrate a dense bridge into the
EVStabilityNet. This improves the network’s capacity for capturing global features in the input
data. This is useful in our context because global information about the steady state, such as
its total mass or particle number, is connected to its stability in certain cases [12, 13].

As an aside, we have alternatively tried using a pure dense network, a pure U-Net, and
different convolutional networks instead of theU-Net, but this has led toworse results at similar
training costs.

The network takes as input a steady state as a two-dimensional tensor of size 2× 640,
i.e. two channels of length 640. The first channel contains the redshift value κ> 0 repeated
640 times; this is done to ensure access to the value of κ in the convolutional layers. The second
input channel stores the values of the energy profile function Φ, discretized with a step size of
∆η = 0.001. We further set the values of Φ outside [0,1− e−κ] to 0 as these values have no
significance in the computation of the steady state, cf section 2.2. Because we always choose
κ< 1, this also shows that we generally only need the values of Φ on [0,1− e−1]⊂ [0,0.639],
leading to the input length of 640. An example of the input data is given in table 1. For the
dense path, we flatten the input tensor and delete the copies of the value of κ.

Finally, the outputs from the dense bridge and U-Net path are concatenated, and the archi-
tecture concludes with several additional dense layers to combine the information from both

7



Class. Quantum Grav. 41 (2024) 065002 C Straub and S Wolfschmidt

paths. Overall, the network has 263937 trainable parameters. The network outputs a num-
ber p ∈ ]0,1[. If p⩽ 0.5, the network predicts the input steady state as unstable, otherwise it
predicts the steady state to be stable.

Throughout all layers, we use L2-regularization to prevent overfitting to the training data.
We always use the ReLU activation function apart from the last layer where a sigmoid func-
tion is employed for binary classification. In order to arrive at the final architecture of the
EVStabilityNet, we have implemented several stages of hyperparameter-tuning by, e.g. chan-
ging the number of filters in the convolutional layers, the number of neurons in the dense
layers, the regularization parameters, etc.

3.2. Training

For the training of the EVStabilityNet, we have first developed an algorithm to randomly gen-
erate steady states of the Einstein–Vlasov system satisfying the conditions from section 2.2.
From a large set of steady states generated this way, we then select interesting ones, label
them, and use them as training data. We describe these steps in more detail in the following
subsections.

3.2.1. Random steady states. The key step to create a random steady state as in section 2.2
is to randomly choose an energy profile function Φ satisfying (Φ1)–(Φ2). Let us describe the
process we use for this; some examples of the resulting energy profile functions are depicted
in figure 2:

(i) Choose random numbers k ∈ [ 14 ,2] and η0 ∈ ]0,1].
(ii) Choose a random integer N ∈ {0, . . . ,50} which determines from how many parts the

energy profile is generated.
(iii) Generate the energy profile iteratively by adding up piecewise linear functions: We start

with

Φ0 (η) :=

{
η, 0⩽ η ⩽ η0,

0, else.

For each i ∈ {1, . . . ,N}, we choose random numbers s ∈ [0,10], l ∈ [η0,1], and r ∈ [l,1]
corresponding to the incline, the left boundary, and the right boundary of the piecewise
function, respectively. We then define

Φi (η) :=


s(η− l) , l⩽ η ⩽ r,

s(r− l) , η > r,

0, else.

(iv) The final energy profile is given by

Φ(η) :=

(
N∑
i=0

Φi (η)

)k

, η ∈ [0,1[.

Finally, we choose a random redshift 0.005< κ < 1 where the lower limit is to prevent
numerically expensive outliers; we never observe unstable steady states for such small values
of κ anyways.
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Figure 2. An illustration of sixteen randomly generated energy profile functions follow-
ing the process described in (i)–(iv).

Figure 3. The training process for the EVStabilityNet using active learning.

Let us briefly comment on the range of k in (i): The precise bounds on k are chosen some-
what arbitrarily, and it is in principle possible to enlarge the range [ 14 ,2]. However, including
smaller or larger values of k requires more and more expensive numerical simulations.

A pair of the energy profile function and the redshift (Φ,κ) can be labeled as stable (1) or
unstable (0) using the particle-in-cell method described in section 2.3.

3.2.2. Training process. The training process is illustrated in figure 3. The first part of the
training process consisted of gathering a large basis of ∼3000 randomly generated, labeled
data, according to section 3.2.1. From this, we have implemented various versions of the final
network in order to optimize accuracy, reducing variance and bias, training duration, and for
fixing the hyperparameters suitably. Throughout the entire training process, we have split all
labeled data into the actual training set (80%) and a cross-validation set (20%). The latter was
used for hyperparameter tunig and to monitor possible overfitting to the training data.

From this point onwards, the architecture of EVStabilityNet is fixed and only the parameters
are subject to further learning through an active learning exploration; see [23, 33] for more
background on active learning. Concretely, we generate a large number of random, unlabeled
steady states, as pairs of (Φ,κ), and predict stability of the corresponding steady states via the
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current version of the EVStabilityNet. We then choose those pairs for further labeling which
are in some sense critical cases according to one of the following criteria:

(i) The predicted value p is close to 1
2 , i.e. the EVStabilityNet is unsure about the stability

behavior for the particular pair (Φ,κ).
(ii) The predicted values pκ corresponding to (Φ,κ) probed along κ vary largely in a small

range of values of κ.

The first case (i) is commonly known as the least confidence criterion, corresponding to
data where the network is unsure or inaccurate in its prediction of the stability behavior. The
second case (ii) is more adapted to the present problem and detects steady states which are
in some sense close to the boundary where stability changes. Choosing to label these critical
examples via the particle-in-cell method should yield much more valuable information com-
pared to adding more randomly picked, labeled data. After adding a suitable amount of new
training data through this active learning process, we retrain the EVStabilityNet parameters
starting from the previous parameters of the network. For the actual training process, we train
in parallel multiple networks employing different number of epochs as well as various learning
rate schedules. Consequently, we choose the resulting network with the lowest cross-validation
error as the next version of the EVStabilityNet. This whole process was repeated several times.
Throughout the training process, the cross-validation error decreased, although we added edge
case steady states to the training and cross-validation sets iteratively.

The training set’s final size is 8163, the cross-validation set’s 2145. The network’s final ver-
sion achieves a cross-validation accuracy of 96.83% and a training accuracy of 99.00%. This
difference of over two percentage points can be justified by the recurrent retraining involved
in the active learning approach, which is rather sensitive to overfitting. Nonetheless, we shall
see in the following section that overfitting is not an issue on test data.

3.3. Performance

We now assess the EVStabilityNet’s accuracy on three different test sets. Before doing so, let
us briefly comment on its computational costs. The EVStabilityNet can predict the stability
of 103 steady states within a few seconds when run on an ordinary laptop. Compared to the
particle-in-cell program, which takes up to a day to determine the stability of a single steady
state when run on a 40-core supercomputer, this is rather fast.

Performance on random test data: The first test set consists of 500 randomly gener-
ated, labeled data, i.e. we have determined the stability of these steady states as described in
section 2.3; recall section 3.2.1 for the generation of random steady states. On this test set,
the EVStabilityNet achieves an accuracy of 99.00%, making incorrect predictions in only five
cases.

It should be noted that this error is comparable to the expected error rate resulting from
numerical inaccuracies in the particle-in-cell scheme described in section 2.3. Since the latter
is used to label the data, we conclude that the performance of the EVStabilityNet on this test
set is as accurate as can be reasonably hoped for.

Performance on polytropes: An important class of steady states is obtained by the poly-
tropes where the energy profile function is given by Φ(η) = ηk for η > 0 and some suitable
k> 0. In the literature, it has been confirmed repeatedly [8, 12, 13] that—for a fixed poly-
tropic exponent k—stability along the redshift κ changes at the first local maximum of the
binding energy (2.12). We have compared this criterion with the predictions made by the
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Figure 4. Performance of the EVStabilityNet on data from [13, figure 4].

EVStabilityNet for the polytropic energy profiles with 1
4 ⩽ k⩽ 2 and 0.005⩽ κ⩽ 1. The res-

ult shows agreement in 99.06% of the cases. The errors are due to edge cases close to the point
where stability changes along κ.

We note that, in contrast to the training set and the first test set, the polytropes are not
derived from the random steady state generation from section 3.2.1. Despite the differing data
distribution of the polytropes, the EVStabilityNet’s accuracy is similar as on the training set
and the first test set. This shows that the EVStabilityNet is not overfitted to the distribution
chosen in section 3.2.1.

Performance on data from [13]: In [13], a class of piecewise energy profiles has been
introduced which boasts unique stability features, i.e. energy profiles which contradict the
so-called strong binding energy hypothesis and ones that comprise multiple stability changes
along the redshiftκ. On the same set of data as illustrated in [13, figure 4], our network correctly
predicts the stability behavior in 97.43% of the cases. The error here is larger than the test set
error due to the focus on edge cases in [13, figure 4] which are inherently hard to predict
correctly. The stability predictions of the EVStabilityNet on this data set alongside the actual
stability behavior is depicted in figure 4. It is remarkable that the EVStabilityNet can reproduce
these unique stability behavior results with good accuracy, as a large amount of computational
resources went into finding the results published in [13].

3.4. How to use the neural network

The EVStabilityNet is available in the repository

https://github.com/Sebastian-D-G/EVStabilityNet

for public use. The network has been implemented and trained in Python 3.7.7 using
Tensorflow 2.11.0. Besides the trained network, we also provide a simple working example of
the network as well as the test set from above consisting of 500 random steady states.11

https://github.com/Sebastian-D-G/EVStabilityNet
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We have described earlier, in particular in section 3.1, the input that can be used for the
EVStabilityNet. Let us summarize this here once more.

(i) The energy profile function Φ must satisfy (Φ1) and (Φ2). It should have neither discon-
tinuities nor too large slopes.

(ii) The redshift κ must satisfy 0.005⩽ κ⩽ 1.
(iii) The input data must be of the format described in section 3.1, see table 1.

4. First applications

The reason we developed the EVStabilityNet is that we can investigate the (predicted) sta-
bility of a large number of steady state with little computational costs. Let us discuss some
applications relying on this feature.

The weak binding energy hypothesis: A long standing hypothesis, which has been con-
firmed over and over again numerically [8, 12, 13, 19, 25, 34, 35] and made plausible by phys-
ical reasoning [20], is the weak binding energy hypothesis. It claims that steady states with
the same energy profile function parameterized by the redshift κ are stable at least up to the
first local maximum of the binding energy (2.12) as a function in κ. We test the weak binding
energy hypothesis by generating 2000 random energy profiles as in section 3.2, determining
the location of the first local binding energy maximum, and consequently predicting stabil-
ity for the corresponding family of steady states with the EVStabilityNet. The results show
that the weak binding energy hypothesis holds for 1984 families of steady states. In 16 cases
the EVStabilityNet predicts instability closely before the first local maximum of the binding
energy. However, we have checked these handful of steady states manually via the particle-
in-cell method, and ascertained that these steady states are in fact stable, i.e. the prediction
of the EVStabilityNet was slightly incorrect; this is to be expected with the accuracy of the
EVStabilityNet at roughly 99%. Overall, we take our results as strong evidence for the valid-
ity of the weak binding energy hypothesis, as this hypothesis was never tested on such a large
dataset before.

The (strong) binding energy criterion: The first local maximum of the binding energy in
κ along a family of steady states often coincides with the onset of instability. For example, the
polytropes seem to follow this rule, recall section 3.3. With the same techniques as with the
weak binding energy hypothesis, we have checked how often along a family of steady states,
this ‘(strong) binding energy criterion’ holds. We find that it is satisfied for 1220 of the 2000
energy profile functions, i.e. in 61.0% of the cases. Given that it was shown in [13] that the
binding energy criterion does not hold in general, it is remarkable that it is nonetheless valid
for such a large number of energy profiles. Further research is required to grasp the relation
between the binding energy and stability analytically.

Negative binding energy: In [8, 35], it was observed numerically and discussed formally
that suitable perturbations of steady states with negative binding energy Eb always result in
complete dispersion. This was put into perspective in [12], where it was found that steady
states with negative binding energy, which do not completely disperse, exist. Nonetheless, it
is still commonly believed that every steady state with Eb < 0 is unstable. We conducted an
analysis of∼188000 randomly generated steady states with negative binding energy to check
the validity of this hypothesis. The EVStabilityNet predicts that all of these steady states are
indeed unstable, thereby further strengthening the hypothesis.

12
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Damping vs. oscillation for stable steady states: A future application, which we only
sketch here, is to further investigate the dynamical behavior of slightly perturbed stable steady
states. In a related context, it has recently be shown that, depending on the underlying steady
state, such solutions either oscillate around the original equilibrium or converge towards it
in a suitable sense (‘damping’) [16], see also [17, 31]. Similar behaviors have also been
observed numerically for the Einstein–Vlasov system [8, 12, 13, 36]. First steps towards prov-
ing the existence of oscillations around certain stable steady states in this context are made
in [36, chapter 6]. Nevertheless, the connection between stable steady states and the pres-
ence of damped or oscillating behavior (as well as the frequency of the oscillation) is elusive
for the Einstein–Vlasov system. To advance further research, a detailed numerical study of
the behavior of many slightly perturbed stable steady state will certainly be helpful. Since
one has to know which steady states are stable in the first place, the fast stability predictions
of the EVStabilityNet can be used to significantly reduce the computational costs of such
investigation.

We hope that the EVStabilityNet can be used for a larger range of applications beyond our
initial scope, making it a valuable tool for researchers exploring the diverse field of stability
of steady states of the Einstein–Vlasov system.
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