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Summary/Zusammenfassung 

Summary 

Over the past decade, metal-organic frameworks (MOFs) and covalent organic 

frameworks (COFs) have undeniably emerged as a leading class of advanced reticular 

materials, demonstrating considerable potential in environmental science, energy, 

chemical engineering, biomedical engineering, and other areas. However, the insoluble 

nature and processing challenges associated with COF and MOF powders significantly 

impede their practical applications. My work aims to develop methods for processing 

reticular MOFs and COFs into self-standing, two-dimensional (2D) and three-

dimensional (3D) membranes and open-cell sponges. These self-standing materials 

with hierarchical porous structures, mechanical stability, and functional properties, 

thereby expected to unlock new possibilities for their applications. Moreover, 

recovering frameworks after use as self-standing membranes and sponges, rather than 

as powder, should be more efficient enhancing the recycling efficiency and cost-

effectiveness, making it a more sustainable option for use. Therefore, the use of the self-

standing MOF and COF objects in water purification and catalysis is also shown with 

recyclability possibility in a collaborative work.  

Initially, my efforts were focused on devising a template-assisted process for creating 

porous, self-standing COF membranes.  The method utilizes an electrospun polymer 

membrane as a sacrificial template skeleton on which in the first step COFs are grown. 

In the second step the template electrospun polymer is removed by solvent extraction 

to leave large dimension porous self-standing membranes entirely made-up of only 

COF. These COF membranes have high crystallinity, large surface area (1153 m² g-1), 

and notable mechanical stability and flexibility, demonstrated by their ability to 

withstand bending over 10,000 times. Building on this groundwork, the method was 

adapted to fabricate functional (acidic and basic) self-standing MOF membranes. The 

effectiveness of functional MOF membranes as catalysts for one-pot cascade reactions 



Summary/Zusammenfassung 

10 
 

over multiple cycles has been demonstrated in collaboration with my laboratory 

colleague, Ms. Yingying Du. 

The innovative aspect of this template-assisted framework synthesis involves 

immobilizing one of the MOF/COF components on the template electrospun polymer 

membranes by mixing it into the electrospinning solution. Upon exposure of the 

electrospun membrane to the second MOF/COF component under appropriate 

conditions, the in-situ framework growth on the template commences. Combining both 

framework components from the start with the template electrospinning polymer 

solution, followed by electrospinning and subsequent solid-state polymerization on the 

electrospun template, resulted in a non-crystalline porous organic polymer framework. 

This framework was utilized by Prof. Senker’s group for CO2 uptake and gas separation 

analysis (CO2/N2 and CO2/CH4). The CO2 uptake was recorded at 3.0 mmol g-1 (0 °C, 

1 bar), with CO2/CH4 selectivity approximately 20 (0 °C, 1 bar). 

3D open-cell sponges, with their hierarchical porous structure, offer higher porosity and 

pore volume compared to 2D membranes, enhancing mass transfer. Despite challenges 

in achieving a mechanically stable pure framework (MOF/COF) sponge, this work 

successfully developed a composite sponge. This was accomplished by the in-situ 

growth of frameworks (MOF/COF) on a lightweight, open-cell skeleton sponge made 

from polyimide (PI) electrospun short fibers using poly acrylonitrile as binder. This 

work also demonstrates the utility and recyclability of these sponges as adsorbents and 

filters, exemplified by the removal of organic dyes from water.   

The results are published in five peer-reviewed journals as follows: Advanced 

Functional Materials, 2021, 31(49), 2106507; ChemCatChem, 2022, 14(22), 

e202201040; Microporous and Mesoporous Materials, 2022, 329, 111519; Advanced 

Functional Materials, 2023, 2309938; Advanced Energy and Sustainability Research, 

2023, 2300218. 
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Zusammenfassung 

Über das letzte Jahrzehnt hinweg haben sich metallorganische Gerüstverbindungen 

(MOFs) und kovalente organische Gerüstverbindungen (COFs) zweifellos als führende 

Klasse fortschrittlicher netzartiger Materialien etabliert und dabei beträchtliches 

Potenzial in Umweltwissenschaften, Energie, chemischer Verfahrenstechnik, 

Biomedizintechnik und anderen Bereichen gezeigt. Allerdings behindern die unlösliche 

Natur und die Verarbeitungsherausforderungen von COF- und MOF-Pulvern erheblich 

ihre praktische Anwendung. Meine Arbeit zielt darauf ab, Methoden zur Verarbeitung 

von netzartigen MOFs und COFs zu selbsttragenden zweidimensionalen (2D) und 

dreidimensionalen (3D) Membranen und offenzelligen Schwämmen zu entwickeln. 

Diese selbsttragenden Materialien mit hierarchisch porösen Strukturen, mechanischer 

Stabilität und funktionalen Eigenschaften sollen somit neue Möglichkeiten für ihre 

Anwendungen erschließen. Darüber hinaus sollte die Rückgewinnung der 

Gerüstverbindungen nach ihrer Verwendung als selbsttragende Membranen und 

Schwämme, anstatt als Pulver, effizienter sein und die Recyclingeffizienz und 

Kosteneffektivität verbessern, was sie zu einer nachhaltigeren Option für den Einsatz 

macht. Daher wird in einer kooperativen Arbeit auch die Verwendung der 

selbsttragenden MOF- und COF-Objekte in der Wasseraufbereitung und Katalyse mit 

der Möglichkeit der Wiederverwertbarkeit gezeigt. 

Zunächst lag der Fokus meiner Bemühungen auf der Entwicklung eines 

templateunterstützten Prozesses zur Herstellung poröser, selbsttragender COF-

Membranen. Die Methode nutzt eine elektrogesponnene Polymermembran als 

opferhaften Vorlagengerüstrahmen, auf dem in einem ersten Schritt COFs wachsen. In 

einem zweiten Schritt wird das Vorlagen elektrogesponnene Polymer durch 

Lösungsmittelextraktion entfernt, um große dimensionale poröse selbsttragende 

Membranen vollständig aus COF zu hinterlassen. Diese COF-Membranen weisen eine 

hohe Kristallinität, eine große Oberfläche (1153 m² g-1) und eine bemerkenswerte 

mechanische Stabilität und Flexibilität auf, die sich in ihrer Fähigkeit zeigen, über 

10.000-mal gebogen zu werden. Aufbauend auf dieser Grundlage wurde die Methode 
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angepasst, um funktionale (saure und basische) selbsttragende MOF-Membranen 

herzustellen. Die Wirksamkeit von funktionalen MOF-Membranen als Katalysatoren 

für Ein-Topf-Kaskadenreaktionen über mehrere Zyklen hinweg wurde in 

Zusammenarbeit mit meiner Laborkollegin Frau Yingying Du demonstriert. 

Das innovative Merkmal dieser templateunterstützten Rahmen-Synthese besteht darin, 

eines der MOF/COF-Komponenten auf den elektrogesponnenen Polymermembranen 

zu immobilisieren, indem es in die Elektrospinnlösung gemischt wird. Bei Einwirkung 

der elektrogesponnenen Membran auf die zweite MOF/COF-Komponente unter 

geeigneten Bedingungen beginnt das in-situ Rahmenwachstum auf der Vorlage. Durch 

die Kombination beider Rahmenkomponenten von Anfang an mit der Elektrospinn-

Polymerlösung, gefolgt von der Elektrospinnung und anschließender 

Feststoffpolymerisation auf der elektrogesponnenen Vorlage, entstand ein nicht-

kristallines poröses organisches Polymergerüst. Dieses Gerüst wurde von der Gruppe 

von Prof. Senker für CO2-Aufnahme und Gasabscheidungsanalyse (CO2/N2 und 

CO2/CH4) genutzt. Die CO2-Aufnahme wurde mit 3,0 mmol g-1 (0 °C, 1 bar) gemessen, 

mit einer CO2/CH4-Selektivität von etwa 20 (0 °C, 1 bar). 

3D offenzellige Schwämme bieten aufgrund ihrer hierarchisch porösen Struktur eine 

höhere Porosität und Porenvolumen im Vergleich zu 2D-Membranen und verbessern so 

den Stofftransport. Trotz der Herausforderungen, einen mechanisch stabilen reinen 

Rahmen (MOF/COF)-Schwamm zu erreichen, wurde in dieser Arbeit erfolgreich ein 

Verbundschwamm entwickelt. Dies wurde durch das in-situ-Wachstum von Gerüsten 

(MOF/COF) auf einem leichten, offenzelligen Gerüstschwamm aus 

elektrogesponnenen kurzen Polyimidfasern unter Verwendung von Polyacrylnitril als 

Bindemittel erreicht. Diese Arbeit zeigt auch die Nützlichkeit und Recyclingfähigkeit 

dieser Schwämme als Adsorbentien und Filter, wie am Beispiel der Entfernung 

organischer Farbstoffe aus Wasser. 

Die Ergebnisse sind in fünf peer-reviewed Zeitschriften wie folgt veröffentlicht: 

Advanced Functional Materials, 2021, 31(49), 2106507; ChemCatChem, 2022, 14(22), 

e202201040; Microporous and Mesoporous Materials, 2022, 329, 111519; Advanced 

Functional Materials, 2023, 2309938; Advanced Energy and Sustainability Research, 
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2023, 2300218. 

 

  



Summary/Zusammenfassung 

14 
 

 

  



1. Introduction 

15 
 

1. Introduction 

1.1 Motivation 

In recent decades, the rapid and sustained development of the world economy has 

intensified social concerns about energy shortages and global environmental issues, 

causing many scientists in academia and industry to turn their attention to the materials 

world, especially porous materials [1-5]. Among these, crystalline porous reticular 

framework materials constructed through reticular chemistry, metal-organic 

frameworks (MOFs) and covalent organic frameworks (COFs) have gained prominence. 

Their swift advancement has broadened the scope of porous materials in numerous 

applications, such as gas separation and storage [6-8], sensors [9-10], optoelectronics [11-12], 

catalysis [13], environmental remediation [14-15], biomedical engineering [16-17] and 

energy [18-19]. 

MOFs are composed of organic linkers and metal ions/clusters through strong 

coordination bonds, while COF are formed by organic linkers through strong covalent 

bonds. Compared with traditional porous materials, MOFs and COFs exhibit large 

surface areas, high porosity, designable and modifiable framework structures. Despite 

several favourable properties, MOFs and COFs are usually one-dimensional (1D) 

micro/nano powders synthesized through solvothermal synthesis, which are insoluble 

in the common organic solvents and difficult-to-process, and greatly limits their 

practical applications. Therefore, in order to promote the application of porous 

materials in real life, it is necessary to develop new methods of constructing 

mechanically stable, self-standing monolithic MOF and COF architectures (two-

dimensional (2D) films/membranes and three-dimensional (3D) 

aerogels/sponges/foams). [20-24] This is the aim of my research also.  The various 

dimensionality COFs and MOFs would be highly promising for various applications 

(Figure 1-1). 
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Figure. 1-1. 1D, 2D and 3D MOF and COF materials and their applications are 

demonstrated. 

 

The versatile method of electrospinning is used in my research work to construct 2D 

MOF and COF porous membranes and 3D MOF and COF sponges. 

In the following section, I review the available knowledge regarding the synthesis and 

applications of MOFs, COFs and other organic porous polymers, as well as the 

challenges faced in practical applications. At the same time, the electrospinning process 

and its characteristics and advantages in preparing 2D nanofiber membranes and 3D 

nanofiber monolithic materials are also introduced.  

1.2 Reticular chemistry: MOFs and COFs 

Reticular chemistry, derived from the Latin term “reticulum”, meaning “small net” or 

“net-like”, and involves using strong bonds to join individual building blocks (such as 

molecules and clusters) in a designed way to form broad and coherent structures with 

highly ordered arrangements. [25-26] Taking MOFs and COFs as examples, through the 

design of reticular chemistry and using different individual building blocks, the crystal 

framework structure and chemical composition can be accurately predicted, and give 
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them properties such as high surface area and porosity, well-defined pore size and good 

stability. [27-29] These unique properties make MOFs and COFs widely used in fields 

such as catalysis, environmental remediation, sensors, gas adsorption and separation, 

energy and biomedicine engineering. 

MOFs are the first type of porous crystalline materials synthesized through reticular 

chemistry, composed of organic linkers and metal ions/clusters through strong 

coordination bonds, Figure 1-2. Yaghi and Li et al. [30] synthesized rectangular crystal 

MOFs in 1995 through solvothermal process using aromatic ligands and copper ions as 

raw materials, as show in Figure 1-3. The way in which the organic and inorganic units 

are connected through strong directional bonds allows the surface area of MOFs to far 

exceed that of all porous materials known so far. And the infinite combination of 

organic and inorganic chemistry has resulted in MOFs becoming the most diverse class 

of crystals (more than 20,000). [31] 

 

Figure 1-2. Schematic structure of the MOF. 

 

 

Figure 1-3. Schematic illustration presenting the structural analogy recognized 
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between diamond and two new Cu(4,4'-bipyridine) solids. The length of the rod-like 

4,4'-bipyridine ligand (shown as dark lines) allows the formation of open frameworks 

b and c that are based on tetrahedral coordination of Cu(I). The Cu(I) centers in parts b 

and c are distinguished as open and dark spheres for clarity.  

 

COFs are the second type of reticular framework materials, which are composed 

entirely of molecular organic structural units connected by covalent bonds, Figure 1-4. 

Synthesis conditions need to be carefully designed to make the formation of covalent 

bonds microscopically reversible, thereby achieving crystallization. Moreover, COFs 

are porous crystals composed entirely of light elements (H, B, C, N, O, and S), showing 

low density and good chemical stability. Since Yaghi and colleagues first synthesized 

COFs (Figure 1-5) in 2005,[32] a variety of connections have been found for the 

synthesis of COFs, including boroxine-linked [33-34], imine-linked [35-36], azine-linked 

[37-38], hydrazone-linked [39-40], β-ketoenamine-linked [41-42], phenazine-linked [43-44], 

triazine-linked [45-46], and SP2-carbon-linked [47-48]. However, compared to MOFs, the 

number of known COFs is relatively small (greater than 570).[49] 

 

Figure 1-4. Schematic structure of the COF. 
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Figure 1-5. (a to d) Condensation reactions of boronic acids used to produce discrete 

molecules and extended COFs.  
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The solvothermal method is one of the common methods of preparing frameworks. It 

refers to a synthesis method in which the reaction is carried out in an autoclave in an 

organic solvent and the reactants are reacted at a certain temperature and the autogenous 

pressure of the solution. [50-51] It is the earliest method used to synthesize MOFs and 

COFs. However, in order to comply with the principles of safety and green chemistry 

in daily production, scientists have developed a variety of green solvents for the 

synthesis of MOFs and COFs. UiO-66 is one of the most common MOFs, and DMF is 

usually used as the reaction solvent, as show in Figure 1-6. Vaccaro et al. [52] chose 40 

green solvents with low cost, low toxicity and complete biodegradability to synthesize 

UiO-66. Gao's research group [53] used choline chloride (ChCl)-hexafluoroisopropanol 

(HFIP) linked deep eutectic solvents (DESs) as the reaction solvent to synthesize highly 

crystalline COF particles without the need for additional catalysts. And by simply 

changing the molar ratio of ChCl and HFIP in DES, various imine-linked COFs with 

high crystallinity can be synthesized. Therefore, environmentally friendly solvothermal 

synthesis of MOFs and COFs is an important direction for future development. 

Although solvothermal method is the most commonly used method, the maintenance 

of high temperature, high pressure and long reaction time make it unsuitable for the 

large-scale production of MOFs and COFs. 

 

Figure 1-6. Schematic structure of UiO-66. 

 

Microwave-assisted synthesis has been widely used in the preparation of nanoporous 

materials. [54-55] Based on the ability of the material to absorb microwave and convert it 

into heat, the material is heated rapidly by two mechanisms: ion conduction (for ions) 
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and dipole polarization (for dipoles), which shows the characteristics of fast heating 

speed, high thermal energy utilization rate, sensitive response and high product quality. 

As a result, the resulting particles exhibit uniform morphology and narrow particle size 

distribution. As many theories and experiments have shown, the nucleation and growth 

of MOFs and COFs crystals are thermodynamically controlled. Microwave-assisted 

synthesis can accelerate the nucleation and growth of crystals and shorten the entire 

synthesis time. Back in 2005, Chang et al. [56] synthesized chromium trimesate 

(designated as MIL-100) with microwave assistance for the first time. In addition, the 

yield of the product synthesized by this method in 4 hours is equivalent to that of the 

traditional electric heating in 4 days, and the synthesis speed is 20 times faster. 

Subsequently, Cooper and co-workers [57] obtained COF-5 by microwave heating in 20 

minutes with a good yield (68-95%) and a high surface area (SBET = 2099 m2 g-1), which 

is 200 times faster than conventional solvothermal synthesis. In conclusion, 

microwave-assisted synthesis could be a simple option for enhancing the production 

efficiency of MOFs and COFs.  

Another step in the direction of green synthesis of frameworks is by using 

mechanochemistry, which is the generation of sufficient energy through mechanical 

action (grinding, extrusion, shearing) to induce changes in the structure and physical 

and chemical properties of substances, and induce chemical reactions. [58-59] Different 

from ordinary thermochemical reactions, mechanochemistry can quickly synthesize 

products without solvent or with a small amount of solvent, which is in line with the 

concept of low energy consumption and solvent-free green chemistry. In recent years, 

it has been widely used to synthesize porous organic polymers such as MOFs and COFs. 

In 2006, James and colleagues [60] were the first to produce MOF (Cu(INA)2) in 10 min 

by mechanochemistry using a dry grinding reaction between copper (II) acetate 

monohydrate and isonicotinic acid (INA). The formed byproducts (water and acetic 

acid) can be captured by the micropores and can be expelled by heating. Another study 

showed that a rapid (90 mins) synthesis of Zr-based MOFs (UiO-66 and UiO-66-NH2) 

grams was possible at room temperature using liquid-assisted grinding. [61] Banerjee's 

group [62] first synthesized three β-ketoenamine-linked COFs by room temperature 
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solvent-free mechanochemical grinding in 2013. The color change of the product can 

be clearly detected during the grinding process. In the mechanochemical synthesis 

process, the graphene-like layer of COF can be obtained, which is different from the 

solvothermal synthesis of COF. Therefore, compared with traditional solvothermal 

synthesis, mechanochemical synthesis is an environmentally friendly, fast and 

convenient method for large-scale synthesis of MOFs and COFs, which has great 

potential in industrial scale production. 

The shape and size of MOF and COF particles can be effectively controlled by adding 

the modulating agents. In the process of solvothermal synthesis of MOFs, the addition 

of modulating agent can lead to the deprotonation of organic ligands and thus accelerate 

the nucleation rate of crystals. Secondly, the modulating agent can also compete with 

the organic ligand for the coordination sites of the metal clusters, resulting in a slowing 

down of the reaction kinetics, resulting in the formation of nanoparticles of different 

shapes and sizes. [63-64] Lu et al. [65] reported an acid/base (acetic acid/triethylamine) co-

modulation method for the synthesis of monodisperse Zr-based MOF (UiO-66). Acetic 

acid is used to regulate the shape of the crystal, and triethylamine is used as a 

coregulator to control the nucleation of the crystal, so as to accurately control the shape, 

size and defects of UiO-66. Yaghi's research group [66] used aniline as a nucleation 

inhibitor and a competitive regulator of amino organic linking units to slow down the 

nucleation and growth of crystals. At the same time, the reversibility of imide bond 

formation and error correction process was enhanced, and several imide 3D COFs 

(COF-300, COF-303, LZU-79, and LZU-111) single crystals with particle sizes of tens 

of microns were obtained. 

Surfactants are another class of modulators added during the synthesis of MOFs and 

COFs. In solution, a certain concentration of surfactant forms micelles and a stable 

layer of nano-sized droplets is formed at the interface of two immiscible phases. [67-68] 

Zhu and co-workers [69] synthesized the hierarchical mesoscopic structure Cr-based 

MOF (MIL-101) with various morphisms (microcrystals, nanospheres, and 

nanoflowers) using cationic surfactant cetyltrimethylammonium bromide (CTAB) as a 

structure-directing agent. Compared with bulk MIL-101, hierarchical mesoscopic MIL-
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101 showed a faster adsorption rate for dyes. Zhao et al. [70] used 

dodecyltrimethylammonium bromide (DTAB) as a modulating agent to prepare hollow 

COFs microspheres through emulsion interfacial polymerization. The COF 

microsphere serves as an effective host for laccase immobilization and exhibits 

excellent adsorption performance and rapid degradation rate for tetracycline. 

In addition to the above modulating agents, inorganic salts and ionic liquids can also be 

used as modulators for the synthesis of MOFs and COFs, and the size of the crystals 

can be changed by controlling the growth rate of the crystals. [71-72] 

The highlighted extensive work shows that researchers have developed many methods 

for synthesizing MOF and COF particles. Their composition and functionalization are 

diverse, with different physical and chemical properties. To deepen the understanding 

of their properties, characterization of morphology, shape, size, porosity, and surface 

charge is required. Several methods are reported in the literature which are used in 

combination for a precise characterization of MOFs and COFs (Figure 1-7).[73] 

 

Figure 1-7. Characterization methods of reticular nanoparticles. The full names of NTA, 

TRPS, DSC, AFM and SEC are nanoparticle tracking analysis, tunable resistive pulse 

sensing, differential scanning calorimetry, atomic force microscopy and size exclusion 

chromatography respectively. Reprinted with permission from ref. [73]. Copyright 

(2020) Wiley-VCH. 

 



1. Introduction 

24 
 

1.2.1 2D MOF and COF films/membranes 

In recent years, the size and shape of MOF and COF particles have been controlled 

through different methods, but powdered MOF and COF materials cannot meet the 

requirements of many practical applications. [13,74] The physical properties of 

micro/nanoparticles make it easy for MOFs and COFs to block reactors and pipelines 

during separation, catalysis and other industrial applications. At the same time, its poor 

processing performance leads to the problem of difficulty in recycling, and serious 

material loss inevitably occurs when flushed with fluid (gas or liquid). This has greatly 

hindered the development and application in the industrial field. Moreover, with the 

rapid development of economy and society, more and more membrane materials are 

developed, both in industrial development and in daily life. [75-76] Especially with the 

rapid development of low energy consumption, scalable and easy-to-operate membrane 

separation processes, various polymer membranes emerge like polyacrylonitrile (PAN) 

[77], polyethersulfone (PES) [78], polysulfone (PSF) [79], and poly(vinylidene fluoride) 

(PVDF) [80]. However, compared with MOFs and COFs, these polymers lack ordered 

nanopores and high porosity, which is not conducive to material transport. Therefore, 

processing MOFs and COFs into membranes can not only improve their processability, 

but also have help stimulate more research interest and applications in MOF and COF 

materials. Described below are some literature examples for the preparation of 

MOF/COF membranes. 

a). In-situ solvothermal method 

In situ solvothermal method of making framework membranes is also called direct 

growth method. In this process COF/MOF is grown as a thin film on a substrate. The 

substrate is put in the reaction solution (vertically or horizontally) during the 

solvothermal synthesis of frameworks. [81-82] Lai et al. [83] successfully synthesized the 

first continuous and well-intergrown Zn4O(BDC)3 (MOF-5) membranes on a porous 

substrate (α-Al2O3) through a solvothermal method. And the thickness of the membrane 

can be adjusted by controlling the reaction time. In 2011, Dichtel and co-workers [84] 

reported the growth of oriented 2D COF (COF-5) films on single-layer graphene via 
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in-situ solvothermal method. Moreover, compared with traditional solvothermal 

synthesized COF powders, COF films exhibit higher crystallinity. 

In-situ solvothermal method is the most direct and convenient method for MOF and 

COF membranes preparation. However, it is usually difficult for organic linkers to form 

bonds with the surface of the substrate, resulting in poor heterogeneous nucleation of 

MOFs and COFs, and not easy to nucleate and grow directly on the surface of the 

substrate. Many studies have shown that functional modification of the substrate 

surface is an effective way to prepare dense MOF and COF membranes. [7,85] Huang 

and colleagues [86-87] successfully modified porous alumina substrates using 3-

aminopropyltriethoxysilane (APTES), and subsequently prepared ZIF-22 and ZIF-90 

membranes with high separation performance. In this study, the ethoxy group in APTES 

interacts with the -OH on the surface of alumina, while the -NH2 at the other end reacts 

with the aldehyde group in the organic ligand and acts as a bridge between porous 

alumina and MOFs, allowing the MOFs to nucleate and grow at a fixed site and form a 

complete membrane.  

In another study, [88] APTES was also used to modify an alumina substrate with amino 

functional groups, and imine-linked COF-LZU1 layer and azine-linked ACOF-1 layer 

were sequentially grown on the substrate through an in-situ solvothermal method. The 

formed COF-COF double-layer composite membrane has a staggered pore network and 

has excellent gas separation performance.  

In addition, COF-MOF composite membranes can be obtained through similar methods. 

Qiu et al. [89] sequentially grew COF (COF-300) membrane and MOF (ZIF-8) 

membrane on the surface of polyaniline-modified SiO2 discs to form COF-MOF 

composite membranes. The COF-MOF composite membranes have higher H2/CO2 gas 

mixture separation selectivity than individual single phase (COF or MOF) membranes. 

Therefore, the in-situ solvothermal method is one of the most effective methods for 

preparing MOF membranes, COF membranes, and their composite membranes. 

b). Interface synthesis 

Interfacial synthesis means that two highly reactive monomers are dissolved in two 

mutually incompatible solvents, polymerization occurs at the interface of the two liquid 
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phases, and a film is formed. [90-91] It is characterized by low reaction temperature and 

relatively simple process equipment, and is often used in the preparation of polymer 

films. In recent years, it has also been used in the preparation of MOF and COF films. 

Zhu's research group [92] used benzenehexathiol (HBT) as an organic ligand and 

prepared 2D π-d conjugated MOF (Cu-HBT) film through liquid/liquid 

(dichloromethane/water) interface reaction. The Cu-HBT film is composed of highly 

oriented nanosheets and has a room temperature conductivity of up to 1.580 S cm-1, 

which was the highest value reported for coordination polymers at the time. Banerjee 

and colleagues [93] synthesized four different free-standing Schiff base COF films at 

room temperature via liquid/liquid interfacial polymerization. 

And they can be easily transferred to various substrates and exhibit high solvent 

permeability for selective molecular separation in a variety of solvents. 

MOF and COF films can also form at the gas/liquid interface. Hu et al. [94] developed a 

polymer-assisted space-confined strategy and successfully formed large-area free-

standing MOF (Cu-CAT) based film at the air-liquid interface. Lai et al. [95] used the 

gas/liquid interface to synthesize large-area COF membranes for high-throughput 

organic solvent nanofiltration.  

In summary, interfacial synthesis can synthesize large-area MOF and COF films at 

room temperature, but the lower reaction temperature also makes the time taken for the 

preparation of the films too long. 

c). Layer-by-layer stacking 

Layer-by-layer stacking was first used to prepare large-area graphene or graphene oxide 

films. In short, bulk materials are first transformed into nanosheets through methods 

such as ultrasound, mechanical grinding, and liquid intercalation. The nanosheets are 

then stacked layer by layer on the porous substrate via vacuum-assisted filtration or 

high-temperature evaporation to form a continuous large-area film. [96-97] This method 

is also suitable for preparing continuous MOF and COF films. Yang's research team [98] 

used methanol to destroy the interlayer interaction of the block to obtain MOF 

nanosheets, and adsorbed n-propanol on the surface of the resulting nanosheets to 

prevent their aggregation. The nanosheet dispersion did not precipitate for at least two 
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weeks. Finally, the nanosheet dispersion is coated on the porous alumina surface to 

form a sub-10 nm thick MOF film in a high temperature environment. And the MOF 

film exhibits excellent H2/CO2 separation performance. Jiang and colleagues [99] 

deposited 2D COF nanosheets and 1D cellulose nanofibers on the surface of a 

polyacrylonitrile membrane through vacuum-assisted filtration to form mixed-

dimensional assembled COF composite membranes. The multiple interactions between 

COF nanosheets and cellulose nanofibers improve the stability of the COF membranes. 

Moreover, the COF membranes exhibit excellent performance in molecular separation. 

d). Mixed Matrix Membranes 

Mixed matrix membranes (MMMs) are made of mixture of fillers and matrix materials, 

consisting of the interaction of dispersed particulate phase (filler) and continuous 

polymer phase (matrix material). The filler and matrix are usually inorganic and 

polymer respectively, which makes MMMs have the advantages of organic and 

inorganic membrane materials at the same time, and the comprehensive performance is 

better. It is usually used to prepare reverse osmosis, forward osmosis and nanofiltration 

membranes. [100-101] Using powder MOF and COF materials as fillers not only improves 

their processability, but also integrates their own characteristics into the MMMs, 

improving the performance of the MMMs. [102-103] The dispersion of fillers in the matrix 

is one of the main challenges in preparing high-performance MMMs. Based on the 

theory of similar miscibility, Li et al. [104] selected appropriate polymers to form a 5-10 

nm thick polymer layer on the surface of MOF particles, thereby achieving statistically 

random dispersion of MOF particles in the MMMs. Most COFs are purely organic 

structures and are easily prepared as 2D nanosheets with good compatibility in MMMs. 

Since the first report of COFs-based MMMs for efficient CO2 separation in 2016, [105] 

COFs with various structures and functions have been used as fillers for MMMs and 

have achieved surprising results in separation. [106-107] 

e). Electrospinning process 

Electrospinning is a top-down, simple and effective method for preparing various 

nanofiber architectures. It has been also widely used to prepare composite fiber (organic, 

inorganic, and organic/inorganic materials) membranes. [108-109] Generally speaking, the 
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preparation of MOF composite fiber membranes through electrospinning is mainly 

divided into two methods: 1) direct electrospinning of MOF particles and polymer 

mixed solutions; 2) in-situ growth of MOF particles on electrospun fibers. [110-111] Wang 

et al. [112] dispersed four kinds of MOF (ZIF-8, Mg-MOF-74, MOF-199, and UiO-66-

NH2) particles in PAN solution or PS solution respectively, and directly prepared a 

series of high-loading MOF composite fiber membranes through electrospinning, 

which showed excellent performance in air filtration as filter membranes. Zhang et al. 

[113] first dissolved Cobalt (II) acetate tetrahydrate (Co(AC)2) in PAN solution, obtained 

Co(AC)2/PAN fibers through electrospinning, and then immersed them in an ethanol 

solution containing 2-methylimidazole (2-MeIm) ligand to prepare ZIF-67/PAN fiber 

membranes. Compared with embedding MOF particles in polymer fibers, MOF 

particles grow in situ on the surface of polymer fibers, which can expose more active 

sites and exhibit better mechanical properties. 

Yan et al. [114] dispersed COF-SCU1 particles in PAN solution and obtained 

PAN@COF-SCU1 nanofibers through electrospinning. Thomas and colleagues [115] 

prepared a series of PAN@COF nanofiber membranes by in situ growing vertically 

aligned COF nanoplates on amino-functionalized electrospun PAN fiber substrate. I 

show in the present research methods of making self-standing pure COF membranes as 

described in the later section. The method is extended to the preparation of MOF 

membranes in collaboration with my Laboratory colleague Yingying Du. 

1.2.2 3D MOF and COF monolithic materials 

In today's society, with the rapid development of industrialization, the damage of heavy 

metals and organic pollutants to aquatic ecosystems has become an environmental issue 

of increasing concern. Among many water environment remediation methods, 

adsorption method is one of the most important and effective methods to remove 

pollutants from wastewater. [116-117] Many porous materials have been used as efficient 

adsorbents for pollutants, such as porous carbon materials, [118] porous organic polymers, 

[119] and zeolite [120]. Compared with other traditional porous materials, MOFs and COFs 
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have the characteristics of large surface area, high porosity and customizable 

framework structure. They are perfect materials as adsorbents, and substantial progress 

has been made. [14,121-122] However, MOFs and COFs are usually difficult-to-process 

powders that are difficult to separate and easy to lose during the water environment 

remediation process. Processing them into 3D monolithic materials (aerogel, sponge, 

and foam) is an effective way to solve this problem. Among them, 3D monolithic 

materials have the characteristics of well-defined hierarchical structure, high porosity 

and good mechanical stability, which are conducive to mass transfer, and the recovery 

and reuse of adsorbents. Therefore, processing MOFs and COFs into 3D monolithic 

materials can not only improve their processability, but also combine their advantages 

with the characteristics of the monolithic materials to develop adsorbents with better 

performance. 

a). Pure MOF and COF monolithic materials 

MOFs and COFs crystals nucleate and symbiosis occur in the solution, then excess 

solvent is removed through supercritical drying or freeze-drying to form pure MOF and 

COF monolithic materials. Kaskel et al. [123] dissolved trimesic acid and iron nitrate in 

ethanol, obtained iron-based MOF (MIL-100-Fe) gel through vigorous stirring, and 

obtained MOF aerogel through supercritical CO2 drying. The combination of 

micropores and macropores in the MOF aerogel is beneficial to mass transfer, providing 

a possibility for designing new MOFs-based catalysts or catalytic carriers. Zamora and 

colleagues [124] synthesized three 2D imine-based COF aerogels with hierarchical 

porous structures, low density, and high porosity through three steps of sol-gel 

transition, solvent exchange, and supercritical CO2 drying. Further, they compressed 

the COF aerogels into centimeter-scale COF-membranes, and showed excellent 

separation performance for CO2/CH4 or CO2/N2 mixed gases. [125] This also provides a 

new path for preparing self-standing COF membranes. 

b). MOF-based and COF-based composite monolithic materials 

Pure MOF and COF monolithic materials inherit the brittleness of crystals, resulting in 

poor mechanical stability. By combining MOFs and COFs with other carriers (wood, 

graphene, and commercial sponge), mechanically stable MOF-based and COF-based 
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composite monolithic materials can be obtained. [126-131] And there are usually two 

methods to achieve this: 1) MOF and COF powders are encapsulated inside the carrier; 

2) MOF and COF powders are grown in-situ on the surface of the carrier. 

Yamauchi and colleagues [132] dispersed MOF powders in aqueous solution of agarose 

(AG) and obtained MOF/AG aerogels by freeze-drying. MOF/AG aerogels exhibit 

excellent mechanical stability and flexibility, and can remove dyes from wastewater 

multiple times. Dong et al. [133] used a similar method to prepare COF@chitosan 

aerogels. At the same time, Pd was loaded into COF powders to form 

Pd@COF@chitosan composite aerogel, which can be used to construct high-efficiency 

continuous flow microreactor for chlorobenzene (CB) dechlorination in water at room 

temperature. 

Encapsulating MOF and COF powders in carriers makes it easy to prepare MOF-based 

and COF-based composite monolithic materials, but it may cause some of the pores of 

MOFs and COFs to be blocked. This problem can be avoided by growing MOF and 

COF powders in-situ on the surface of the carrier. 

Wang's research group [134] used strong wood aerogel as a carrier and loaded a large 

amount of Zr-MOF (UiO-66-NH2) on its surface through two in-situ growths, thus 

achieve MOF-based aerogels with high MOF loading. And because the wood aerogel 

itself has directional and penetrating tubular microchannels, which is conducive to the 

rapid transmission of UO2
2+, the MOF-based composite aerogels can efficiently extract 

uranium from natural seawater. The surface of layered graphene oxide (GO) is rich in 

oxygen-containing functional groups, which is conducive to the growth of COFs on its 

surface. Thomas et al. [23] dispersed graphene oxide (GO) nanosheets in the precursor 

solution of COFs. During the hydrothermal synthesis process, GO was reduced to 

reduced graphene oxide (rGO), and a large number of COFs grew on the surface. 

COF/rGO aerogels were further obtained by freeze-drying.  

Electrospinning is employed as the primary tool in my research; therefore, the 

fundamentals of electrospinning are elucidated in the following section. 



1. Introduction 

31 
 

1.3 Electrospinning 

Fiber has always been present in nature. Spiders rely on webs constructed of spider silk 

to capture food. Silkworms use cocoons of silk to protect them from harm. Humans 

make natural fibers into fabrics, clothes and paper, driving the development of society. 

[135-136] With the advent of the industrialization era, humans have developed many kinds 

of polymers and processed them into chemical fibers (polymer fibers). Chemical fibers 

have wide sources of raw materials, high yields and simple preparation methods. They 

have gradually replaced natural fibers and expanded the application of fibers in human 

life and production. [137] 

With the rapid development of nanotechnology, nanofibers have received widespread 

attention due to their small diameter, high surface area, low density and excellent 

mechanical properties, and have been applied in many fields, including energy, 

environment, biomedicine, sensor and catalysis. [138-139] However, the diameter of fibers 

prepared by traditional methods (wet, dry, melt and gel spinning) is usually in the range 

of 10~100 m and cannot form nanofibers. Therefore, scientists have developed many 

nanofiber fabrication techniques, including bicomponent fiber splitting, physical 

stretching, template synthesis, thermally induced phase separation, self-assembly, and 

electrospinning. [140-141] Taking into account the controllability of the preparation 

process, the complexity of the equipment, and the cost, electrospinning is currently the 

simplest, most effective, and the only method that can prepare continuous nanofibers 

on a large scale. Moreover, electrospinning can be used to obtain fabrics of different 

shapes (curled fibers, beaded fibers, aligned fibers, patterned fibers, and 

aerogels/sponges) and materials (metals, ceramics, organic, organic/inorganic hybrid), 

which have huge application potential in various fields. [142] 

1.3.1 History of electrospinning 

Electrospinning can be traced back to 1887, when Charles V. Boys [143] first reported 

the application of an external electric field to a viscous fluid to draw out fibers. This is 
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the prototype of the electrospinning process. In 1902, John Francis Cooley and William 

Morton [144-145] applied for two electrospinning patents respectively and introduced the 

electrospinning device. Subsequently, Zeleny [146] further supplemented electrospinning. 

It was not until 1934 that Antonin Formhals [147] published a patent for electrospinning 

equipment for producing cellulose acetate using acetone as a solvent. In the following 

years, he applied for a series of patents and disclosed electrospinning equipment, which 

promoted the development of electrospinning. [148] In 1936, Norton [149] applied for a 

patent for current- and air-flow-assisted melt electrospinning. In 1938 and 1939, 

Rozenblum and Sokolov used electrospinning to prepare cellulose acetate nanofibers 

for use as air filters and mass-produced them. [150] Since then, as scientists have 

gradually deepened their understanding of the principles of electrospinning. Between 

1964 and 1969, Geoffrey Taylor proposed the “Taylor cone” mathematical model 

through systematic research on the shape change of fluid from spherical to conical 

during the electrospinning process. [151-153] In the following 20 years, scientists 

published many articles on the application of electrospinning, but they did not receive 

much attention. [154-155] With the development of science and technology, scientists can 

intuitively observe nanoscale materials through scientific instruments, and 

electrospinning has been further developed. In 1996, Darrell Reneker et al. [156] obtained 

more than 20 types of polymer nanofibers through electrospinning and studied the 

changes in fiber diameter. Since then, electrospinning has entered a stage of rapid 

development. Scientists have conducted extensive research on the process parameters 

and equipment types during the electrospinning process, as well as the synthesis and 

characterization of nanofibers.  [157-159] Nowadays, electrospinning has become one of 

the most commonly used methods for preparing nanofibers, and has achieved surprising 

results in many fields. [160-162] And the number of publications on electrospinning is also 

increasing year by year, as shown in Figure 1-8. Table 1-1 lists the development history 

of electrospinning. 



1. Introduction 

33 
 

 

Figure 1-8. Number of publications on electrospinning. All data used are from Web of 

Science. The function we use is to analyze the results and create a citation report. 
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Table 1-1. A comprehensive account on the advancements in electrospinning process 

Year Nature of Advancements Ref. 

1887 
Under an external electric field, Charles V. Boys pulled 

fibers out of the viscous fluid for the first time 
[143] 

1902 
Cooley and Morton published patent on the 

electrospinning process 
[144-145] 

1914 John Zeleny discovers jets at the tip of metal capillaries [146] 

1934 

Formhals publishes patent on electrospinning equipment 

for manufacturing cellulose acetate using acetone as 

solvent 

[147] 

1936 
Norton Company publishes patent for melt-formed air 

fibers 
[148] 

1938-1940 
Rozenblum and Sokolov use electrospinning to mass-

produce air filters 
[149] 

1964-1969 
Geoffrey Taylor established a mathematical model of the 

“Taylor cone” 
[150] 

1971 
Baumgarten invents device to electrospinning acrylic 

microfibers 
[151-153] 

1978 
Annis prepared polyurethane pads for use as vascular 

prostheses by electrospinning 
[154-155] 

1996 
Darrell Reneker et al. obtained more than 20 polymer 

nanofibers through electrospinning 
[156] 

1997-2005 

Research on process parameters and equipment types 

during electrospinning, synthesis and characterization of 

nanofibers 

[157-159] 

2006-Now Electrospinning is used in many fields [160-162] 

 

1.3.2 Principle of electrospinning 

The basic principle of electrospinning is that polymer liquid is ejected under the action 

of high-voltage electric field and forms continuous polymer nanofibers. An 

electrospinning device usually consists of three main parts: a sampling device 
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(including a syringe pump, a syringe and a spinneret), a high-voltage power supply and 

a collector, as shown in Figure 1-9a. In the process of electrospinning, the polymer 

liquid is extruded from the spinneret by the injection pump, and spherical droplets are 

formed under the action of surface tension. When a high voltage electric field is applied, 

a large amount of electric charge will accumulate on the surface of the droplet. When 

the charge repulsion on the droplet surface is greater than its surface tension, the 

spherical droplet changes shape, transforms into a “Taylor cone”, and then ejected a 

polymer jet. The polymer jet experienced short distance steady stretching and whipping 

instability. In this process, the diameter of polymer jet decreases sharply, the solvent 

evaporates rapidly, forms solid fibers and accumulates on the collector, as shown in 

Figure 1-9b. [109] 

 

Figure 1-9. (a) The basic device for electrospinning. (b) Diagram showing the path of 

an electrospinning jet. Reprinted with permission from ref. [109]. Copyright (2019) 

American Chemical Society. 

 

1.3.3 Parameters affecting electrospinning 

One of the major advantages of preparing nanofibers by electrospinning is that the 

morphology of the fibers can be precisely controlled by adjusting various parameters 
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during the electrospinning process to meet different needs. It can be mainly divided into 

three influencing parameters, namely solution parameters, environmental parameters 

and process parameters. [163-164] 

a). Solution parameters 

Solution parameters include concentration/viscosity, molecular weight, conductivity, 

surface tension, and solvent type. [165-166] The molecular weight of the polymer directly 

affects the viscosity, surface tension and conductivity of the solution, and is an 

important parameter in the electrospinning process. During the electrospinning process, 

the molecular chains in the solution become entangled, increasing the viscosity of the 

solution and solidifying into continuous nanofibers, which requires the polymer to have 

sufficient molecular weight. When the molecular weight of the polymer is fixed, the 

concentration and viscosity of the polymer solution are increased, and the entanglement 

concentration of the molecular chains is also increased and the surface tension is 

reduced, which is conducive to the formation of larger diameter and smooth continuous 

nanofibers, as shown in Figure 1-10. Greiner et al. [167] found that continuous and 

smooth nanofibers could be obtained when the concentration of Poly-L-lactide (PLA) 

electrospinning solution was 5%. As the concentration of the solution decreases, the 

diameter of the nanofibers also decreases. Moreover, when the solution concentration 

is less than 3%, the fiber diameter further decreases, and there are a large number of 

spherical beads or spindle-shaped beads on the nanofibers.  

During the electrospinning process, the polymer jet is stretched under the action of a 

high-voltage electric field to form nanofibers. Increasing the conductivity of the 

polymer solution allows the jet to be more fully stretched and form nanofibers with 

smaller diameters. Some inorganic salts are usually added to improve the conductivity 

of the polymer solution, such as NaCl [168], MgCl2
 [169], AlCl3

 [170], CuCl2
 [171], CaCl2

 [172], 

KH2PO4 and NaH2PO4
 [173]. Reneker's research group [174] added NaCl to increase the 

conductivity of the polyethylene oxide (PEO) aqueous solution. The diameter of the 

prepared nanofibers was reduced, and the bead-like structure was also greatly reduced. 

The properties of the solvent, such as surface tension, conductivity, volatility, and 

interaction with the polymer, will affect electrospinning, resulting in nanofibers of 
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different shapes. Generally speaking, the main function of the solvent is to dissolve the 

polymer into a polymer solution, and the selected solvent must meet the dissolution 

needs of the polymer. Secondly, the conductivity of the solvent itself will also affect the 

conductivity of the electrospinning solution. The better the conductivity, the more fully 

it can stretch the jet and form nanofibers with smaller diameters. Finally, the volatility 

of the solvent should be moderate. During the electrospinning process, excessive 

volatility will cause the solution to solidify rapidly at the outlet of the spinneret, 

blocking the outlet, making continuous spinning impossible. Too low volatility will 

cause the jet to be incompletely solidified when it reaches the receiver, causing adhesion 

between fibers. [175-176] In addition, when the polymer is dissolved in a multi-component 

solvent, the volatilization rates of different solvents are different, which will cause 

phase separation of the polymer jet during the curing process, forming a porous 

structure on the fiber surface, and obtaining porous fibers. Wang et al. [177] dissolved 

poly(l-lactide) (PLLA) in a mixed solvent of CH2Cl2/DMF to form an electrospinning 

solution. When the nanofibers are solidified, CH2Cl2 is easy to volatilize, forming a 

porous PLLA fiber membrane. And the porous PLLA fiber membrane has high 

adsorption capacity for dyes and excellent oil/water separation capabilities. 

 

Figure 1-10. Effect of increasing polymer solution viscosity on electrospun fibers 

morphology. 

 

b). Processing parameters  

The process parameters that affect electrospinning mainly include the working voltage, 



1. Introduction 

38 
 

the flow rate of the solution, the distance from the spinneret to the collector, and the 

type of spinneret (needle). The polymer solution forms droplets at the spinneret, and is 

affected by the high-voltage electric field to accumulate charges on the surface and form 

electrostatic repulsion. At the same time, it overcomes its own surface tension and 

transforms into “Taylor cone”, which further forms tiny jets and solidifies into 

nanofibers on the collector. Therefore, the operating voltage that just makes the droplet 

transform into a “Taylor cone” is called the critical voltage.  

When the working voltage is lower than the critical voltage, the electrostatic repulsive 

force cannot overcome the surface tension of the droplets, the jet cannot be ejected, and 

nanofibers cannot be formed. When the working voltage is greater than the critical 

voltage and is within a reasonable range, a jet is ejected on the surface of the droplet to 

form nanofibers. Moreover, the diameter of nanofibers decreases with the increase of 

operating voltage. When the working voltage is too large, a large amount of charge 

accumulates on the surface of the droplet, and the electrostatic repulsion is too large, 

which leads to the instability of the jet, and has a certain influence on the forming of 

nanofibers. [178] 

The flow rate of electrospinning solution is usually affected by the working voltage. 

When the working voltage is fixed and the flow rate of the solution is too low, the 

outflowing polymer droplets will not be enough to form a continuous jet, resulting in 

interruptions in the electrospinning. When the flow rate of the solution is too high, the 

operating voltage is insufficient to completely convert the large number of droplets 

flowing out simultaneously into “Taylor cone” and jets, resulting in the formation of 

beaded fibers and even dripping. When the solution flow rate is appropriate, the 

diameter of the nanofibers increases with the increase of the flow rate. [179-180] 

The distance between the spinneret and the collector is usually called the 

electrospinning distance. When other parameters are appropriate, if the electrospinning 

distance is too short, the solvent will not be fully volatilized, forming beaded fibers, 

and adhesion will occur between nanofibers. When the electrospinning distance is too 

long, the whipping instability of the jet will be aggravated, causing the collector to be 

unable to collect enough nanofibers. Therefore, a reasonable electrospinning distance 
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is an important parameter in the electrospinning process, which is beneficial to fiber 

collection. [181] 

A single needle is generally used for electrospinning, and the diameter of the needle 

directly affects the diameter of the nanofiber. The smaller the diameter of the needle, 

the less polymer is delivered per unit time, forming a finer jet under the same working 

voltage, and thus the smaller the diameter of the nanofibers formed. In order to form 

multi-component or different morphology nanofibers, scientists have also developed 

coaxial needles to prepare nanofibers with core-shell structure and side-by-side 

structure. Moreover, hollow fibers are formed by selectively removing the core part of 

the core-shell structure fiber. Jiang's research group [182] added PVP and titanium 

isopropoxide ethanol solution and paraffin oil into the outer and inner needles 

respectively to form core-shell nanofibers in independent compartmented chambers, 

and removed the paraffin oil by calcination to form multichannel microtubes. Moreover, 

through the design of the coaxial needle, multichannel microtubes with channel 

numbers of 2 to 5 can be obtained. In order to increase the yield of electrospinning, 

multi-needle electrospinning devices have been developed. In one study, researchers 

designed a 64 (8  8 array) needles simultaneous melt electrospinning device with a 

production rate of 18 m2 h-1, which greatly improved production efficiency.[183]  

In addition, by changing the type of collector, different products can be obtained, such 

as non-woven fabrics, aligned fibers, honeycomb structured fibers, and yarns. 

c). Ambient parameters 

Ambient parameters are mainly temperature and humidity. The increase in temperature 

will reduce the viscosity and surface tension of the polymer solution, accelerate the 

movement of molecules, and make the jet easier to stretch, resulting in a smaller fiber 

diameter. In addition, the increase in temperature is conducive to the volatilization of 

the solvent and further reduces the diameter of the fiber. Clerck et al. [184] found that an 

increase in temperature would lead to a decrease in the average diameter of the 

nanofibers during the electrospinning process of cellulose acetate (CA) and polyvinyl 

pyrrolidone (PVP) nanofibers. 

Humidity, as another ambient parameter, has an equally complex impact on 
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electrospinning. Simply put, an increase in humidity will slow down the solidification 

speed of the jet, causing the fiber diameter to decrease. However, when the humidity is 

too high, the diameter of the formed nanofibers is unevenly distributed and the surface 

is rougher, and even beaded fibers may be produced.  

Kocbek and colleagues [185] studied the effect of humidity on the diameter of electrospun 

polyvinyl alcohol (PVA), polyethylene oxide (PEO), polyvinyl alcohol/hyaluronic acid 

(PVA/HA), and polyethylene oxide/chitosan (PEO/CS) nanofibers. When the ambient 

humidity increased from 4% to 60%, the diameter of PVA nanofibers decreased from 

667 nm to 161 nm, and the diameter of PEO nanofibers decreased from 252 nm to 75 

nm. When the ambient humidity increased from 4% to 50%, the diameter of the 

PVA/HA composite nanofibers decreased from 231 nm to 46 nm, while the diameter of 

the PEO/CS composite nanofibers also decreased from 179 nm to 41 nm. 

1.3.4 Materials of electrospinning 

In early research, people basically mastered the principles of electrospinning and its 

influencing parameters by studying the electrospinning process of polymers. And 

further developed melt electrospinning and sol-gel electrospinning. As people gradually 

realize the importance of composite materials, electrospinning has become one of the 

simplest and most effective methods to prepare organic/inorganic composite nanofibers 

and is widely used in various fields. [186] 

a). Organic nanofibers 

In the early stages of the development of electrospinning, polymer nanofibers were 

mainly prepared by dissolving polymers in solvents through solution electrospinning. 

To date, more than 100 polymers have been prepared into nanofibers through 

electrospinning, including some natural polymers (gelatin, cellulose, chitin, chitosan) 

and synthetic polymers (polystyrene, polyacrylonitrile, polyimide and polyvinyl 

alcohol), as show in Table 1-2. Some small organic molecules can also be used for 

electrospinning. The key is that there needs to be sufficient interaction between the 

small molecules. Long et al. [187] obtained phospholipid nonwoven electrospun 
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membranes through electrospinning for the first time. When the concentration of 

phospholipids is large enough, their micellar morphology evolves from spherical to 

cylindrical, and stacks and winds in a polymer-like manner, so that electrospun fibers 

with a diameter of 1 to 5 m can be obtained. 

In addition, multi-component polymer composite nanofibers can be prepared by 

electrospinning, and the properties of different polymers can be combined with each 

other. The preparation methods mainly include the following four methods: 1) blended 

electrospinning, in which a variety of polymers are dissolved in the same solvent in a 

certain proportion to obtain composite nanofibers; 2) multi-layer electrospinning, 

different polymers are deposited on the collector successively through electrospinning 

to form multi-layer composite nanofibers; 3) electrospinning with multiple spinnerets, 

different polymers are placed in different syringes, and different fibers are stacked 

together through electrospinning to form polymer composite nanofibers; 4) coaxial 

electrostatic spinning, the use of coaxial needles for electrostatic spinning, so as to 

obtain core-shell structure of polymer composite nanofibers. 
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Table 1-2. Common polymer nanofibers. 

Polymer Solvent Ref. 

Cellulose LiCl/DMAc [188] 

Chitin Ionic liquid [189] 

CS CH2Cl2 
[190] 

Gelatin Acetic acid [191] 

SF H2O [192] 

SA H2O [193] 

CA Acetone and DMAc [194] 

PVA H2O [195] 

PAM H2O and DMF [196] 

PVP Ethanol [197] 

PLLA CHCl3 and DMF [198] 

PS DMF [199] 

PAN DMF [200] 

PC CHCl3 
[201] 

PI DMAc [202] 

PU DMF [203] 

PVDF DMAc [204] 

PA Formic acid and Acetic acid [205] 
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b). Organic/inorganic composite nanofibers 

Inorganic nanomaterials are dispersed in polymer nanofibers to form organic/material 

composite nanofibers. The main methods are divided into hybrid electrospinning and 

sol-gel electrospinning. 

Hybrid electrospinning refers to directly electrospinning inorganic nanomaterials 

(including ceramics, metals, metal oxides, metal sulfides and carbon materials) 

dispersed in a polymer solution to prepare composite nanofibers. Hou et al. [206] 

dispersed rGO in polyimide nanofibers, and the PI/rGO nanofibers prepared showed 

excellent mechanical properties, with the tensile strength and Young's modulus of a 

single composite nanofiber up to 4.2GPa and 121GPa, respectively. 

Sol-gel electrospinning is to disperse the precursor (sol-gel) in a polymer solution and 

prepare organic/inorganic composite nanofibers through electrospinning. Among them, 

during the electrospinning process, the precursor is rapidly hydrolyzed in the air and 

converted into inorganic nanomaterials. Xia and Li [207] dissolved titanium 

tetraisopropoxide and PVP in ethanol to obtain as-spun composite nanofibers by 

electrospinning. The as-spun composite nanofibers were then exposed to air for 5 h to 

ensure that titanium tetraisopropoxide was completely hydrolyzed to TiO2, resulting in 

the formation of TiO2/PVP composite nanofibers. Table 1-3 lists common 

organic/inorganic composite nanofibers. 
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Table 1-3. Common organic/inorganic composite nanofibers. 

Inorganic Polymer Ref. 

SiO2 Cellulose Acetate [208] 

BN PVP [209] 

TiO2 PVAc [210] 

ZnO PVA [211] 

Al2O3 PVDF [212] 

CuO PVDF [213] 

CdS PVP [214] 

ZnS PVA [215] 

Ag PAN [216] 

Au PVP [217] 

Cu PAN [218] 

Ni PU [219] 

CNT PAN [220] 

rGO PI [206] 

 

c). Inorganic nanofibers 

In recent decades, inorganic nanomaterials have been widely used in many fields due 

to their excellent physical and chemical properties such as mechanical, catalytic, optical, 

thermal, electrical and magnetic properties. Among the many current methods, 

electrospinning is one of the important methods for preparing 1D inorganic nanofibers. 

And inorganic nanofibers can be divided into four categories: oxide nanofibers, metal 
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nanofibers, carbon nanofibers and inorganic hybrid nanofibers. 

Lukas et al. [221] obtained ZrOCl2/PVP nanofibers by electrospinning, and then calcined 

them in air or argon at a temperature of 600 °C to 1000 °C for 2 h to form ZrO2 

nanofibers. Further, the metal oxide nanofibers can be reduced to metal nanofibers. 

Bognitzki et al. [222] obtained Cu-based composite nanofibers through electrospinning 

and converted them into CuO nanofibers under high-temperature combustion. Finally, 

the CuO nanofibers are treated in a hydrogen atmosphere at 300 °C to form Cu 

nanofibers. 

Carbon nanofibers are usually formed from polyacrylonitrile nanofibers through 

carbonization. To avoid the shrinkage of carbon nanofibers during heat treatment, the 

entire process is usually divided into a stabilization step and a carbonization step. [223] 

In addition, inorganic nanofibers can also be composed of multiple components, such 

as SiO2/TiO2 
[224], ZnO/Cu/C [225], and C/Fe3O4 

[226] composite nanofibers. 

1.3.5 3D electrospun fiber sponges 

3D porous materials find extensive applications in various fields, including catalysis, 

energy, environmental remediation, thermal insulation, biomedicine, and sensors, 

owing to their attributes such as low density, high porosity, large surface area, and 

robust mechanical stability. [227-228] Typically, traditional electrospun fibers are 

assembled into 2D fiber membranes, and their restricted porosity poses a limitation in 

certain fields, such as tissue engineering. Hence, the conversion of 2D fiber membranes 

into 3D fiber materials proves to be an effective strategy for expanding the application 

fields of electrospinning. 

Currently, the preparation of 3D fiber materials through electrospinning is primarily 

categorized into two methods: direct electrospinning and the 2D fiber membrane 

reconstruction method. [229-230] The direct electrospinning method involves depositing 

fibers on a collector and directly forming 3D fiber materials by adjusting 

electrospinning parameters. The 2D fiber membrane reconstruction method 

encompasses embedding in hydrogels, 3D printing, gas-foaming, and freeze-drying. 
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Notably, the freeze-drying method has gained significant attention due to its simplicity, 

controllable shape, and microstructure. In the freeze-drying method, a 2D fiber 

membrane is cut in a solvent to create a fiber slurry, and subsequently, a 3D electrospun 

fiber sponge is formed through freeze-drying. Throughout the freeze-drying process, 

the solvent transitions from the liquid phase to the solid phase at low temperatures. 

Subsequently, it directly sublimates to the gas phase under low ambient pressure, 

resulting in the formation of a porous structure. The fibers are stacked to create a porous 

structural framework, ensuring the mechanical stability of the 3D electrospun fiber 

sponge. Furthermore, the manipulation of the internal structure and external shape of 

the 3D electrospun fiber sponge is easily achievable by adjusting freeze-drying 

procedures and modifying molds. [231] This approach demonstrates remarkable 

performance in diverse fields, including environmental applications (e.g., water 

purification and desalination), energy applications (e.g., supercapacitors), biomedical 

engineering (e.g., drug delivery), electronics (e.g., pressure sensors), and chemical 

engineering (e.g., catalyst supports, thermal insulation), yielding promising results.[232] 

The unique characteristics of 3D electrospun fiber sponges provide a solution to the 

challenges of processing difficulty, recycling issues, and agglomeration tendency 

encountered with MOFs and COFs. Consequently, in the present research, I illustrate 

the fabrication of hierarchically porous COF sponges utilizing 3D electrospun fiber 

sponges as carriers. Collaborating with my laboratory colleague, Yingying Du, we 

successfully extended this approach to the preparation of MOF sponges. 
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2. Aim and Overview of the Thesis 

Aim  

MOFs and COFs have the characteristics of high porosity, large surface area, designable 

framework structure and easy functionalization, and have been widely used in fields 

such as energy, environmental remediation, sensors, biomedical engineering and 

catalysis. However, their insolubility in solvents and non-melting character due to the 

network structure makes their processing to the desired object difficult. This has 

hindered the sustainable application of frameworks in several fields. Generally, they are 

used in the form of powder. The recovery of framework powders after use for recycling 

is inefficient and cost intensive process.  If available in the form of self-standing 

architectures like membranes and sponges, the sustainable use of frameworks in 

catalysis, water purification and energy sector would be possible highlighting the 

possibility of their use for several cycles. Therefore, the purpose of this research is to 

provide versatile preparation methods to process polymer frameworks, such as MOFs 

and COFs into monolithic materials, including 2D membranes, and 3D sponges. The 

main processing tool used in this work is electrospinning. The utility of the successfully 

prepared self-standing framework architectures is then shown in catalysis for cascade 

reactions in one pot, water purification and gas separation in collaboration with Ms. 

Yingying Du (Agarwal group) and Ms. Marion Breunig (Senker group). The results are 

presented in the form of cumulative thesis with five published articles in peer-reviewed 

journals (Advanced Functional Materials, ChemCatChem, Microporous and 

Mesoporous Materials, Advanced Functional Materials and Advanced Energy and 

Sustainability Research) (section 2.1 to section2.5). The work is summarized 

graphically in Figure 2-1. 
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Figure 2-1. Context of this thesis showing preparation methods and applications of (ⅰ) 

2D covalent organic framework (COF) membranes, (ⅱ) 2D metal-organic framework 

(MOF) membranes, (ⅲ) 2D porous organic polymer (POP) membranes, (ⅳ) 3D COF 

sponges, (ⅴ) 3D MOF sponges. 

 

Overview 

In the first section (section 2.1), I proposed a template-assisted process to prepare 

porous self-standing COF membranes. The method uses an electrospun polymer 

membrane as a sacrificial large dimension template skeleton on which in the first step 

COFs were grown. In the second step the template electrospun polymer was removed 

by solvent extraction to obtain large dimension porous self-standing COF membranes 
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with high crystallinity, large surface area, mechanical stability and flexibility. The 

applicability of the established template-assisted framework preparation method was 

studied for the preparation of acid and base functional MOF membranes (section 2.2).  

This work was carried out in collaboration with my laboratory colleague Ms. Yingying 

Du. The functional MOF membranes were highly effective in acid and based catalyzed 

cascade reactions in one-pot and reusable for several cycles. In the template assisted 

framework preparation method one of the components of COF/MOF was immobilized 

on the template electrospun polymer membranes by mixing them in the electrospinning 

solution. When such polymer membrane with one of the framework components comes 

in contact with the second component of COF/MOF and suitable reaction conditions, 

the in-situ growth on the template started.  

Mixing both the components of a framework with the template electrospinning polymer 

solution and exposing such membrane to suitable framework formation reaction 

conditions led to non-crystalline porous organic polymer framework which was used 

by Prof. Senker’s group for CO2 uptake and for gas (CO2/N2 and CO2/CH4) separation 

(section 2.3).   

Compared to 2D fiber membranes, 3D fiber sponges have hierarchical porous structure 

and exhibit higher porosity, which is beneficial to mass transfer. Sections 2.4 and 2.5 

describe preparation procedures for making 3D COF and MOF sponges and their 

applications in waste water purification. Polyimide (PI) electrospun short fibers with 

high thermal/chemical stability are used as the network skeleton of the 3D fiber sponge, 

on which COFs and MOFs are grown in situ, to construct COF and MOF 3D sponges, 

and use them for wastewater treatment. Based on the hierarchical structure and 

excellent mechanical stability of 3D COF fiber sponges and 3D MOF fiber sponges, 

they can be repeatedly used to remove organic dyes from water quickly and efficiently. 

In the following section, the aforementioned work is elaborated in detail. 
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2.1 Flexible, Mechanically Stable, Porous Self-Standing 

Microfiber Network Membranes of Covalent Organic 

Frameworks: Preparation Method and Characterization 

 

Chenhui Ding, Marion Breunig, Jana Timm, Roland Marschall, Jürgen Senker, Seema 

Agarwal. Flexible, Mechanically Stable, Porous Self‐Standing Microfiber Network 

Membranes of Covalent Organic Frameworks: Preparation Method and 

Characterization. Advanced Functional Materials, 2021, 31(49), 2106507. 

Specific contributions by authors: 

In this publication, I was the lead author. I carried out all experiments for membrane 

preparation and, most of the characterization, and writing of the manuscript. Dr. Marion 

Breunig performed and analyzed the XRD and solid-state NMR measurements in 

guidance of Prof. Jürgen Senker. Dr. Jana Timm and Professor Roland Marschall were 

responsible for BET measurements and analysis. Professor Seema Agarwal designed, 

guided and supervised the project. All authors contributed to discussions and finalizing 

the manuscript. 

 

In this work a highly versatile preparation procedure for making a self-standing, flexible 

and crystalline COF membrane is established. As an example, the COF membrane 

based on p-phenylenediamine (Pa) and 1,3,5-triformylphloroglucino (Tp) was prepared, 

as shown in Figure 2-2a. The method is named as template-assisted framework (TAF) 

preparation process as the framework is grown on a polymer electrospun template 
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membrane made of randomly laid polymer fibers. The TAF preparation procedure is 

divided into three steps. The first step is the immobilization of one of the reactants of 

the framework, i.e. diamine (Pa) on the template polymer (polyacrylonitrile (PAN)) 

electrospun membrane. This is done by electrospinning PAN solution mixed with the 

diamine. In the second step, the electrospun PAN/Pa fiber membrane is dipped into 

dichloromethane (CH2Cl2) solution of the second reactant of the COF, a trialdehyde (Tp) 

containing acetic acid as catalyst. In this step the growth of COF on the template PAN 

fiber is started at 120 °C. In the last step, the template polymer (PAN) was removed by 

solvent extraction giving porous self-standing COF membrane (~ 100 micron thick). 

The complete TAF process is shown in Figure 2-2b. Several experiments were carried 

out by changing temperature, reactant amounts, electrospinning conditions, template 

removal method to establish the optimum parameters for obtaining mechanically stable, 

self-standing flexible and crystalline COF membranes.  

 

Figure 2-2. General schematic of TpPa COF (a). Preparation of porous self-standing 

COF fiber membranes by template-assisted framework (TAF) process (b). PAN = 

polyacrylonitrile, Pa = p-phenylenediamine, Tp = 1,3,5-triformylphloroglucinol. 
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Scanning electron microscope (SEM) was used to study the morphology of COF and 

the fiber membranes (Figure 2-3). It is obvious from the SEM pictures that COF 

nanoparticles grow both on the surface and in the bulk of the template PAN fibers. After 

removing PAN, the porous COF fiber formed has a core-shell structure. The inner core 

exhibits a hierarchical porous structure and is composed of loosely packed COF 

nanoparticles; the outer shell is composed of COF nanoparticles closely packed to form 

a dense wall. The structural characterization of the COF membranes was carried out 

using a combination of different analytical methods including 13C and 15N NMR 

techniques (collaboration with Prof. Senker group). The analysis by NMR, FT-IR 

spectra and XRD patterns showed complete removal of the template polymer (PAN) 

and formation of highly crystalline COF membranes (Figure 2-4a-d). N2 physisorption 

isotherms were conducted to examine the surface areas, the pore size distributions, and 

the cumulative pore volumes of TpPa COF powders and material from different steps 

of the TAF process (Figure 2-4e-f). The pore size distribution of the COF fiber 

membranes exhibits maxima between 1.7-1.8 nm, matching the pore sizes of the TpTa 

COF powder and the ones determined from the XRD data. The surface area of COF 

membrane is as high as 1153 m2 g-1, exceeding even that obtained for the TpPa COF 

powder. The removal of the template polymer by solvent extraction creates a 

hierarchically porous material with a microporosity, that renders all COF nanoparticles 

accessible (including in the bulk).  
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Figure 2-3. SEM images of PAN/Pa fiber (a) and (b), PAN/COF fiber (b) and (e), and 

COF fiber (c) and (f). Photographs of PAN/Pa fiber membrane (g), PAN/COF fiber 

membrane (h), and c) porous self-standing COF fiber membrane (i). 
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Figure 2-4. 13C (a), 15N (b) CP MAS NMR, FT-IR (c) spectrum and XRD (d) patterns 

of Pa, PAN, PAN/Pa fiber membranes, COF membrane and COF powder. N2 

adsorption–desorption isotherms of PAN/COF membrane, COF membrane, and COF 

powder (a), their pore size distribution, and cumulative pore volume obtained using the 

quenched solid density functional theory method (b). 
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The highest tensile strength of COF membrane in this work is 0.64 MPa (Figure 2-5a). 

Although the value seems low but sufficient to handle membranes for different 

applications as shown in the later part of the work. A 10 000-cycle bending test with a 

compression of 50% was carried out to study the flexibility of the COF membranes. 

Excellent bending stability, and flexibility was proved as the mechanical properties 

remain unchanged after 10 000 bending tests (Figure 2-5a, d). The sample that 

underwent a bending cycle did not show any cracks as seen by SEM images (Figure 2-

5b-c).   

 

Figure 2-5. Typical stress–strain curves of COF membrane, and COF membrane after 

10 000 cycles of bending (a). SEM images of COF membrane (b), and COF membrane-

10000 cycle (c). Bending and recovery processes for the COF, and the test at different 

bending states (d). 

 

In summary, I could successfully establish a method (template-assisted framework 

process) for preparing a large-sized porous self-standing crystalline COF membranes 

with high surface area, good mechanical stability and flexibility. This was a big 

challenge in the field of COFs. The field of preparation and characterization of COFs 

is developing very fast and the existence of COFs in the form of 2D membranes is 

expected to open several new application areas, such as catalysis, water purification 

and energy storage.   



2. Aim and Overview of the Thesis 

78 
 

The next question is if same method can also be extended to the preparation of other 

types of frameworks like MOFs. Consequently, efforts were dedicated to studying the 

preparation and properties of self-standing MOF membranes using the TAF process, as 

described in the following section. 
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2.2 Template-assisted Preparation of Self-standing 2D-MOF 

Membranes for Application in Cascade Reactions 

 

Yingying Du, Chenhui Ding, Jana Timm, Roland Marschall, Seema Agarwal. 

Template‐assisted Preparation of Self‐standing 2D‐MOF Membranes for Application 

in Cascade Reactions. ChemCatChem, 2022, 14(22), e202201040. 

Specific contributions by authors: 

In this work the experiments for making MOF powder and membranes were carried out 

by me and Yingying Du. In addition, characterization of samples by SEM and X-ray 

was done by me. Yingying Du is the lead author and carried out FTIR and experiments 

for use of MOF membranes as catalysts in cascade reactions.  Dr. Jana Timm and 

Professor Roland Marschall were responsible for BET measurements and analysis. Prof. 

Seema Agarwal designed, guided and supervised the project. The manuscript was 

written by Yingying Du and all authors contributed to discussions and finalizing the 

manuscript. 

  

In this work, two different functional self-standing MOF (UiO-66-SO3H and UiO-66-

NH2) membranes with acid and base functional groups were prepared using TAF 

process. The UiO-66-SO3H and UiO-66-NH2 MOF powders are in general prepared by 

reaction of ZrCl4 with 2-aminobenzenedicarboxylic acid (BDC-NH2) and 2-
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sulfobenzenedicarboxylic acid monosodium salt (BDC-SO3Na), respectively (Figure 

2-6a). For the preparation of the self-standing membranes, the template polymer (PAN) 

is electrospun with ZrCl4. The resulting electrospun membrane is then dipped in 

aqueous solutions of BDC-NH2 or BDC-SO3Na containing acetic acid as catalyst, and 

reacted at 120 ℃ to obtain the PAN/MOF membranes. Finally, through solvent 

extraction, PAN is removed to obtain the self-standing MOF UiO-66-SO3H and UiO-

66-NH2 membranes (thickness 240 ± 12 μm and 265 ± 10 μm, respectively) (Figure 2-

6b). 

 

Figure 2-6. General schematic of UiO-66-SO3H and UiO-66-NH2 (a). Strategy to 

fabricate the self-standing UiO-66-SO3H and UiO-66-NH2 membranes (b). 

 

SEM was used to characterize the morphology of the self-standing MOF membranes 

before and after removal of PAN. A large amount of MOF can be found growing on the 

surface of the PAN fiber and completely wrapping it. After removing the PAN, the MOF 

membranes with randomly laid hollow MOF fibers were formed (Figure 2-7). The COF 

fibers as described in the previous section showed slightly different morphology with 

COF growing in the bulk of the template PAN fibers also. Whereas, MOF grew only on 

the surface of the template fibers leading to hollow MOF fibers after removal of the 

template. The difference is ascribed to the size of the framework particles.  
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Figure 2-7. SEM images of PAN/UiO-66-SO3H (a), PAN/UiO-66-NH2 (b), UiO-66-

SO3H (c), UiO-66-NH2 (d). Cross-sectional SEM images of UiO-66-SO3H (e), UiO-

66-NH2 (f). 

 

The combination of analytical methods like XRD and FTIR confirmed the successful 

preparation of crystalline UiO-66-SO3H/-NH2 membranes (Figure 2-8a-b).  

The N2 physisorption isotherms indicated the presence of micropores and mesopores 

(Figure 2-8c-d). The specific surface areas of the membranes, as calculated using the 

BET (Brunauer Emmet Teller) model with the Roquerol correction for microporous 

materials are 330 and 84 m2 g-1 for UiO-66-NH2 and UiO-66-SO3H respectively. The 

values are lower than the specific surface areas of powder samples (UiO-66-NH2: 1051 

m2 g-1, UiO-66-SO3H: 539 m2 g-1). This decrease in the surface area could be explained 

by the partial change in the crystal structure of the crystals of the UiO-66 materials, 

which was already observed due to the broadening of the reflections in the XRD pattern. 
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Figure 2-8. XRD patterns of UiO-66 simulated, UiO-66-SO3H powder, UiO-66-SO3H 

membrane, UiO-66-NH2 powder and UiO-66-NH2 membrane (a). FT-IR spectra of 

UiO-66-SO3H powder, UiO-66-SO3H membrane, UiO-66-NH2 powder and UiO-66-

NH2 membrane (b). N2 physisorption isotherms of UiO-66-SO3H powder, UiO-66-

SO3H membrane, UiO-66-NH2 powder and UiO-66-NH2 membrane (c). Pore size 

distribution and cumulative pore volume of UiO-66-SO3H powder, UiO-66-SO3H 

membrane, UiO-66-NH2 powder and UiO-66-NH2 membrane (d). 

 

Still, the fiber morphology in membranes, acid-base functionalities and capability of 

using the individual membranes in a modular way led to their use in two-step cascade 

reactions within a one-pot. The use of acid-base catalysts in one pot is not trivial due to 

the Wolf-Lamb-type character deactivating each other. Also, the membrane nature of 

the catalysts is expected to provide easy recovery and reuse. The membranes prepared 

by me were given to Ms. Yingying Du for studying their utility in a one-pot cascade 

reaction as a part of her Ph.D. work. The two step cascade reactions were: the acid 

catalyzed conversion of benzaldehyde dimethyl acetal to benzaldehyde and base 

catalyzed subsequent reaction of benzaldehyde with different active methylene 
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compounds, such as malononitrile, ethyl cyanoacetate, and diethyl malonate. The 

system worked very well for cascade reactions involving malononitrile, ethyl 

cyanoacetate in the second step with the yield of the product was as high as 99.9%. The 

catalytic membranes were reusable without any significant loss in activity (Figure 2-

9).  

 

Figure 2-9. One-pot acid-base cascade reactions were studied in the present work (a). 

Research on catalyst recycling of self-supporting MOF membranes (b). 

 

In conclusion, the TAF procedure has demonstrated versatility by its extension to the 

preparation of self-standing, functional MOF membranes. The utility of these 

membranes as sustainable catalysts for cascade reactions in a one-pot setup has been 

effectively shown. This work signifies an important advancement towards the 

preparation and utilization of macroscopically sized MOF membranes as sustainable 

catalysts.  

My subsequent research question explored the possibility of immobilizing both 

framework-forming components on a template electrospun fiber and then initiating 

framework formation simply by establishing the appropriate reaction conditions. 
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2.3 Electrospun, non-woven fiber membranes of porous 

polyimides with high carbon dioxide uptakes and selectivities 

 

Marion Breunig, Jian Zhu, Chenhui Ding, Renée Siegel, Seema Agarwal, Jürgen 

Senker. Electrospun, non-woven fiber membranes of porous polyimides with high 

carbon dioxide uptakes and selectivities. Microporous and Mesoporous Materials, 2022, 

329, 111519. 

Specific contributions by authors: 

In this work, Marion Breunig was the lead author responsible for the, data processing, 

making experiments regarding bulk films and gas uptake studies. She was also 

responsible for writing, reviewing, and editing the manuscript. Jian Zhu and I were 

responsible for the experiments establishing electrospinning of the framework 

components with template polymers, their solid-state polymerizations and mechanical 

stability tests. SEM characterization of samples was done by me. I also contributed to 

writing the manuscript. Renée Siegel completed writing the first draft. Professors 

Seema Agarwal and Jürgen Senker directed and supervised the project. 

 

The concept of the work is to prepare the self-standing framework membranes by 

immobilizing the starting components on the electrospun polymer template membrane 

followed by the solid-state polymerization with the simultaneous removal of the 

template polymer by thermal degradation. For this, polyimide (PI) framework 

formation by reaction between tetrakis (4-aminophenyl) methane (TAPM) and 

naphthalene-1,4,5,8-tetracarboxylic acid (NTCA) was considered. Poly(vinyl 
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pyrrolidone) (PVP) was used as the template polymer. 

The entire preparation process can be divided into three steps, as shown in Figure 2-

10. First, a DMF solution of linkers (TAPM and NTCA in 1:2 molar ratio) and template 

polymer (PVP) was electrospun into precursor fiber membranes (PIM_pre). In the 

second and third step, the precursor fiber membranes are heated with a stepwise heating 

profile to first start polymerization of TAPM and NTCA to initiate polyimide 

framework formation and later on to complete imidization and hence the framework 

formation with the simultaneous removal of the template polymer by thermal 

degradation to obtain the porous polyimide fiber membranes (PIM_420).  

 

Figure 2-10. Preparation of framework membranes by template-assisted process. 

TAPM = tetrakis (4-aminophenyl) methane, NTCA = naphthalene-1,4,5,8-

tetracarboxylic acid, PVP = polymer polyvinylpyrrolidone. 

 

The process was optimized by varying the amount of PVP, and heating temperatures 

(350 ℃ and 420 ℃). The 13C and 15N CP MAS as well as FTIR were used to prove the 

incorporation of the two educts (TAPM and NTCA) in the electrospun PVP fibers and 

the formation of PI framework and the removal of the template polymer after 

programmed heating (Figure 2-11a-c). Unlike COF and MOF in the previous sections, 

the PI framework is amorphous based on XRD measurements. An apparent BET surface 

area of 222 m2 g-1 was measured and membrane exhibits a remarkable microporosity 

with a high amount of ultramicropores (Figure 2-11d-f). The framework membranes 

are flexible and showed a carbon dioxide uptake of 13.1 wt% (0 °C, 1 bar) and very 
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low affinity for nitrogen and methane, thereby promising high CO2/N2 selectivities for 

separation applications (Table 2-1). The gas permeation experiments were carried out 

by Ms. Marion Breunig (Senker group). 

 

Figure 2-11. 13C (a) and 15N (b) CP MAS NMR, FT-IR (c) spectra of PIM_pre, 

PIM_350 and PIM_420. Argon isotherms measured at 87 K with the surface area 

calculated based on the BET equation, and SEM images of PIM_pre (d), PIM_350 (e), 

and PIM_420 (f). 

 

Table 2-1. Uptakes taken from individual Isotherms. The values were determined at p 

= 1 bar. 

Polymer 

CO2 / mmol g-1 N2 / mmol g-1 CH4 / mmol g-1 

0 °C 25 °C 40 °C 0 °C 25 °C 40 °C 0 °C 25 °C 40 °C 

PIM_420 3.0 2.4 1.9 0.1 - - 0.6 0.3 0.3 
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Figure 2-12. The PIM_420 fiber membranes exposed to different bending states. They 

include folding, twisting and curling and indicate good flexibility and mechanical 

stability of the membranes. 

 

In summary, the feasibility of transforming microporous organic polyimide frameworks 

into self-standing, flexible membranes via a template-assisted process has been 

established. These porous polyimide fiber membranes exhibit notable flexibility and 

mechanical stability, allowing for bending, curling, and twisting actions as 

demonstrated in Figure 2-12. The membranes are thermally stable and promising for 

use in gas separation. The membrane fabrication method introduced in this study holds 

potential for broader application across various porous polymer framework systems, 

offering a novel approach to the processing and shaping of challenging porous polymers.  

After establishing preparation procedures for 2D framework membranes and showing 

applications in catalysis and gas separation, the next question is if the TAF process can 

also be extended to the preparation of 3D sponges. The following section will elaborate 

on research related to 3D framework sponges. 
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2.4 Open-Cell Robust COF-Nanowire Network Sponges as 

Sustainable Adsorbent and Filter 

 

Chenhui Ding, Yingying Du, Seema Agarwal. Open‐Cell Robust COF‐Nanowire 

Network Sponges as Sustainable Adsorbent and Filter. Advanced Functional Materials, 

2023, 2309938. 

Specific contributions by authors: 

Concepts and resources were generated by Professor Seema Agarwal. I designed 

experiments in consultation with Professor Seema Agarwal. I performed all 

experiments, and analyzed data. Yingying Du performed filtration experiments with me. 

The manuscript was written with the help of all coauthors. 

 

In this work, a simple scalable procedure is shown for making a robust, highly 

compressible 3D crystalline COF nanowire interconnected porous open-cell sponge.  

Utilizing the TAF process requires a template in the form of a sponge. Extensive 

research by the research groups of Greiner and Agarwal has focused on the preparation 

and properties of polymer sponges made from electrospun short fibers. Typically, 

electrospun fibers are continuously long, but mechanical cutting can produce short 

fibers ranging from 20-100 microns in length. These short fibers can be dispersed in a 

water/organic solvent mixture and freeze-dried to form an open-cell porous structure 

(sponge). The sponge's density is determined by the concentration of short fibers in the 

dispersion and the cooling step during the freeze-drying process. Such sponges are 

https://onlinelibrary.wiley.com/authored-by/Ding/Chenhui
https://onlinelibrary.wiley.com/authored-by/Du/Yingying
https://onlinelibrary.wiley.com/authored-by/Agarwal/Seema
https://onlinelibrary.wiley.com/authored-by/Agarwal/Seema
https://onlinelibrary.wiley.com/authored-by/Agarwal/Seema
https://onlinelibrary.wiley.com/authored-by/Du/Yingying
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promising candidates for use as templates in the TAF process. Given that PAN was 

utilized as the template polymer in previous sections, I opted to use an electrospun PAN 

sponge prepared by the aforementioned method as the template sponge. However, 

growing a COF framework on the PAN sponge and then removing the PAN resulted in 

the collapse of the structure, failing to yield a mechanically stable pure COF sponge. 

Consequently, a composite sponge was prepared, in which COF frameworks grow on a 

high-temperature stable and mechanically strong template sponge without removing the 

template. The preparation process comprises two steps. First, polyimide (PI) short 

fibers and 2,5-diaminobenzenesulfonic acid (Pa-SO3H) are dispersed in a dimethyl 

sulfoxide (DMSO) solution containing polyacrylonitrile (PAN), and a PI/Pa-SO3H 

composite sponge is obtained through freeze-drying. Here, PI short fibers form the 

network skeleton of the composite sponge, ensuring mechanical stability; PAN acts as 

a binder to enhance the sponge's strength; Pa-SO3H serves as one of the organic 

connectors in the sulfonic acid-functionalized COF (COF-SO3H), as shown in Figure 

2-13a. In the second step, the PI/Pa-SO3H composite sponge is soaked in a solution of 

1,3,5-triformylphloroglucinol (Tp, another organic linker for COF-SO3H) in 1,4-

dioxane and acetic acid. COF-SO3H nanowires grow on the PI short fibers at 120 °C, 

resulting in a PI/COF-SO3H composite sponge, as shown in Figure 2-13b. 
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Figure 2-13. General schematic of COF-SO3H (a). Schematic illustration of the 

preparation of PI/COF-SO3H composite sponges (b). PI = polyimide, PAN = 

polyacrylonitrile, Pa-SO3H = 2,5-diaminobenzenesulfonic acid, Tp = 1,3,5-

triformylphloroglucinol, DMSO = dimethylsulfoxide, CH3COOH = acetic acid. 

 

Through SEM, it can be found that PI short fibers build highly interconnected open-

cell structures, which is conducive to mass transfer. And a large number of COF 

nanowires are densely grown on its surface (Figure 2-14). Compared with COF-SO3H 

powder, PI/COF-SO3H composite sponge exposes more active sites, which is 

conducive to dye adsorption. 
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Figure 2-14. Photographs and SEM images of PI/Pa-SO3H (a-d), and PI/COF-SO3H 

(e-h). 

 

Next, we explored the mechanical stability of the PI/COF-SO3H composite sponges 

and its dye removal performance in wastewater. Before the PI/Pa-SO3H composite 

sponges is freeze-dried, different contents of Pa-SO3H are added to finally obtain a 

series of PI/COF-SO3H composite sponges with different COF-SO3H loading contents. 

The PI/COF-SO3H composites sponge have good mechanical stability, and their height 

does not change significantly after 50 compression-release cycles (50% strain). 

Secondly, as the COF-SO3H loading increases, the compressive strength and 

deformation recovery performance of the PI/COF-SO3H composite sponges also 

increase (Figure 2-15). This is because COF-SO3H nanowires serve as a protective 

layer to enhance the mechanical stability of the composite sponges. 

 

Figure 2-15. Compression-release stress-strain (a-d), compressive stress-strain curves 
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(e), and the corresponding compressive Young's modulus (f) of PI/COF-SO3H 

composite sponges.  

 

Since COF-SO3H contains sulfonic acid functional groups, it can be used to adsorb the 

cationic dye methylene blue (MB). It can be found that the adsorption capacity and 

removal efficiency of PI/COF-SO3H composite sponges for MB increases with the 

increase of COF-SO3H content in the sponges (Figure 2-16).  

 

Figure 2-16. Adsorption capacity (a), and removal efficiency (b) of MB by PI/COF-

SO3H composite sponges. 

 

Because PI/COF-SO3H composite sponges have a highly porous structure, good 

mechanical stability, and excellent dye adsorption capacity, they can also be used as 

wastewater filters. Take the PI/COF-SO3H-2.0 composite sponge as an example, put it 

into a syringe and build a simple filtration device (Figure 2-17a). At the same time, 

four simple filtration units are combined into one system for the continuous filtration 

of wastewater for a long time (Figure 2-17b). The system can work continuously for 

24 h and exhibits excellent filtration performance for MB solutions (basically complete 

removal of MB within 12 h) (Figure 2-17c). Additionally, it exhibits a high water flux 

(2355 L h-1 m-2). 
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Figure 2-17. Photograph of PI/COF-SO3H sponges and syringe assembled facile filter 

for removal of MB, one syringe (a), and four syringes (b). Filtration removal efficiency 

of MB by PI/COF-SO3H-2.0 within 24 h. 

 

In summary, this work establishes a simple method to construct strong, compressible 

3D COF sponges with highly interconnected open-cell structures. The COF sponges 

can be used as an adsorbent and filter respectively, showing high removal efficiency 

and long service life for dye wastewater. Combining the functional diversity of COFs 

with the network framework structure of sponges not only improves the processability 

of COFs, but also expands the application fields of COFs. Moreover, COF sponges are 

prepared based on electrospinning and freeze-drying, and are expected to be prepared 

on a large scale. 

My subsequent research question explores the possibility of applying a similar 

methodology to develop 3D MOF sponges. Detailed operational procedures and 

methodologies will be elaborated in the following section. 
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2.5 Sustainable Hierarchically Porous Reusable Metal-Organic 

Framework Sponge as a Heterogeneous Catalyst and Catalytic 

Filter for Degradation of Organic Dyes 

 

Yingying Du, Chenhui Ding,  Seema Agarwal. Sustainable Hierarchically Porous 

Reusable Metal–Organic Framework Sponge as a Heterogeneous Catalyst and Catalytic 

Filter for Degradation of Organic Dyes. Advanced Energy and Sustainability Research, 

2023, 2300218. 

Specific contributions by authors: 

Concepts and resources presented by Prof. Seema Agarwal. Yingying Du and I designed 

the experiments in consultation with prof. Agarwal. The sponges were prepared by both. 

I completed the measurement and analysis of SEM and XRD. Yingying Du performed 

all other experiments and analyzed data. The manuscript was written with the help of 

all co-authors. 

 

In this work, we successfully prepared 3D MOF sponges using a similar method to the 

previous work. Using ZIF-67 (Figure 2-18a) as a functional MOF. Specifically, PI 

(polyimide) short fibers (length L = 77 ± 33 m), PAN (polyacrylonitrile) and 

Co(NO3)2·6H2O are dispersed in dimethyl sulfoxide (DMSO), and freeze-dried to form 

PI/PAN/Co2+ sponge with honeycomb structure. Then PI/PAN/Co2+ sponge is put into 

https://onlinelibrary.wiley.com/authored-by/Du/Yingying
https://onlinelibrary.wiley.com/authored-by/Ding/Chenhui
https://onlinelibrary.wiley.com/authored-by/Agarwal/Seema
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the precursor solution of ZIF-67 (an aqueous solution of Co(NO3)2·6H2O and 2-

methylimidazole (2-MeIm)), and ZIF-67 grows in situ on the surface of the PI short 

fiber to obtain the PI/PAN@ZIF-67 sponge. As shown in Figure 2-18b. 

 

Figure 2-18. General schematic of ZIF-67 (a). Preparation of the PI/PAN@ZIF-67 

sponge (b). Co2+ comes from Co(NO3)2·6H2O; 2-MeIm is 2-methylimidazole. 

 

Through SEM analysis of the internal morphology of the PI/PAN@ZIF-67 sponge, it 

can be found that it has hierarchical porous structure, and a large number of ZIF-67 

particles grow on the surface of PI short fibers (Figure 2-19a-c). The hierarchical 

porous structure is conducive to the absorption and release of stress. The compressive 

strength of the PI/PAN@ZIF-67 sponge is 23.5 kPa (50% strain), and after 300 

compression cycles, the height only dropped by 9.9% (Figure 2-19d). It shows that the 

PI/PAN@ZIF-67 sponge has good compressive resistance and mechanical stability.  
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Figure 2-19. The photo of PI/PAN@ZIF-67 sponge (a). SEM image of PI/PAN@ZIF-

67 sponge (b and c). Cyclic compressive stress-strain curves at 50% strain for 

PI/PAN@ZIF-67 sponge (d). 

 

Taking Rh B as a typical example, we explored the potential of PI/PAN@ZIF-67 sponge 

as a catalyst to activate peroxomonosulfate (PMS) to degrade organic dyes. Figure 2-

20a shows the degradation of Rh B under different catalytic systems. The 

PI/PAN@ZIF-67 sponge can quickly degrade Rh B, with a degradation rate of up to 

97.4% within 5 minutes and almost complete degradation within 30 minutes. 

Furthermore, the PI/PAN@ZIF-67 sponge can be easily separated and washed, and 

reused to degrade dyes. After 5 cycles of use, the degradation efficiency of Rh B by the 

sponge remained basically unchanged (Figure 2-20b). In addition, we constructed 

PI/PAN@ZIF-67 sponge as a simple filtration device to evaluate its performance in the 

continuous treatment of dye wastewater (Figure 2-20c). Based on the hierarchical 

porous structure of PI/PAN@ZIF-67 sponge, Rh B solution can quickly pass through 

PI/PAN@ZIF-67 sponge under the action of self-gravity, and after catalytic degradation, 

the clarified solution is obtained. After continuous treatment of Rh B solution for 6 h, 

the removal rate of Rh B is still as high as 95% (Figure 2-20d). 
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Figure 2-20. Plots of Ct/C0 versus time for studying the degradation of Rh B under 

different conditions (a). Reusability test of PI/PAN@ZIF-67 sponge (b). Photograph of 

the assembly showing the degradation of Rh B through the filtration process. The 

PI/PAN@ZIF-67 sponge was installed in the syringe as a catalytic filter to degrade Rh 

B (c). Continuous degradation experiment of Rh B using PI/PAN@ZIF-67 sponge as 

filter (d). 

 

In summary, we successfully prepared a 3D MOF sponge (PI/PAN@ZIF-67) through 

in-situ solvothermal growth of ZIF-67. The PI/PAN@ZIF-67 sponge has good 

compression resistance and mechanical stability. And as a catalyst for PMS activated 

degradation of dyes, it shows excellent degradation performance and can be reused 

many times. Secondly, the PI/PAN@ZIF-67sponge is used as a catalytic filter for 

flowing degraded dyes, showing excellent degradation performance and long service 

life. This research provides a new method for 3D MOF monolithic materials and 

expands the application fields of MOFs. 
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3. Outlook 

In the past two decades, metal-organic frameworks (MOFs) and covalent organic 

frameworks (COFs) have become an emerging and booming class of crystalline porous 

materials. They have large surface area, high porosity, tailor-made structures, adjustable 

pore size and good thermal/chemical stability, and have been used in many fields, 

including energy, environment, biomedical engineering, chemical engineering, and 

optoelectronics. Despite unprecedented progress, MOFs and COFs are typically 

processed into powders that are difficult to dissolve, melt, and process. This leads to 

unavoidable losses during use and difficulty in reuse, which greatly hinders their further 

development.  Therefore, in this work, based on the electrospinning process, 

combined with the template-assisted process and freeze-drying method, we obtained 

mechanically stable 2D MOF and COF fiber membranes, and 3D MOF and COF 

sponges, respectively, and their practical applications are studied. Further, we expanded 

to other porous materials and prepared 2D Microporous organic polyimide (MOPI) 

fiber membranes. In order to further deepen the combination of electrospinning 

technology with MOFs and COFs, and prepare macro-objects (MOFs-based and COFs-

based) with diverse structures and functionalities, research needs to be conducted from 

multiple aspects. How does microstructure influence the properties of macroscopic 

objects is an important question? By manipulating specific structural units or applying 

post-synthesis modifications, it is possible to precisely control the microstructural 

characteristics of MOFs and COFs-such as chemical composition, pore size, and 

porosity-to investigate their effects on the macroscopic properties of these materials.  

The targeted use of MOF/COF macro-objects for specific applications, like energy 

storage devices and fuel cells would also be interesting. 
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