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Abstract    

I  

 

Abstract 

Artificial intelligence (AI) heralds a new age of information technology, offering promising 

opportunities. These opportunities contribute to the well-being of individuals, the success and 

innovation of businesses, and the prosperity and progress of society. In particular, the benefits 

of AI for businesses lie in its ability to perform complex tasks previously considered to be the 

domain of humans. This growing potential of business applications has led to significant 

investments, which has led to copious amounts of AI use cases. The conventional approach of 

AI use cases has been to treat humans and machines as substitutes that can replace one another 

in the execution of tasks. However, combining the complementary strengths of AI-enabled 

systems and human agents can offer distinct benefits, e.g., performance improvements. 

Consequently, this combination paves the way for a new generation of highly performant 

services that create new areas of value creation.  

In this vein, this doctoral thesis takes a twofold approach: First, an integrative perspective on 

understanding human-AI hybrids as the foundation for smart services is required to understand 

better the nature of human-AI-hybrids and analyze their range of roles in depth. Hence, 

Research Article #1 presents a taxonomy that provides a clear structure for the collaborative 

interworking of human agents and AI-enabled systems. Second, exploring the opportunities and 

challenges of AI-driven services in the manufacturing and energy sectors is imperative to 

develop artifacts to structure and derive actionable recommendations for designing purposeful 

smart services. Research Article #2 provides a decision model for the manufacturing industry 

to support industrial companies that act as full-service providers in selecting economically 

advantageous predictive maintenance algorithms. Research Article #3 develops a taxonomy to 

structure smart energy service characteristics into four entities and 15 dimensions to deepen the 

understanding of smart services in the energy sector. Taking on a business model perspective, 

Research Article #4 enables structuring and developing business models for smart energy 

services like non-intrusive load monitoring in the industrial sector. To support the more 

widespread use of non-intrusive load monitoring for industrial applications and reduce data 

challenges, Research Article #5 develops an active learning model using real-world data.   

This doctoral thesis contributes to understanding human-AI hybrids as a foundation for 

purposeful smart services. It proposes artifacts for structuring smart services and deriving 

actionable recommendations fostering more expansive use of smart services in the future. 
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I Introduction 

1 Motivation  

Artificial intelligence (AI) currently heralds a new age of information technology, offering 

promising opportunities (Ågerfalk 2020; Berente et al. 2021). These opportunities are believed 

to contribute to the well-being of individuals, the success and innovation of businesses, and the 

prosperity and progress of society (Thiebes et al. 2021). Studies by McKinsey, 

PricewaterhouseCoopers, and TeamLease estimate that the utilization of AI could yield an 

additional worldwide economic output of 13 to 16 trillion USD by 2030 (Bughin et al. 2018; 

Rao and Verweij 2017; TeamLease Digital 2023). The benefits of AI for businesses lie in its 

ability to perform complex tasks previously thought to be the domain of humans (Lins et al. 

2021). Examples of such complex tasks include analyzing medical data to enable innovative 

diagnostics by assisting physicians (Al-Antari 2023) or analyzing vast amounts of market data 

in real-time to enable faster stock portfolio management (Flavián et al. 2022). At the same time, 

this growing potential of business applications has led to significant investments and, as a result, 

a plethora of AI applications (Dellermann et al. 2019a).  

A part of those AI applications are smart services. Smart services are data-driven applications 

or systems that use advanced technologies (e.g., AI) to provide users with personalized, 

contextual, and proactive service (Beverungen et al. 2019; Knote et al. 2021; Wuenderlich et 

al. 2015). Examples of smart services are telematics tariffs in car insurance (i.e., calculating 

individual tariffs based on transmitted driving data) or smart home solutions (e.g., automated 

indoor climate improvement by sensor measurement and automatic (roof) window opening). 

Smart services offer companies numerous new opportunities to expand their existing service 

portfolios and create new business opportunities (Beverungen et al. 2019; Knote et al. 2021). 

Consequently, there have been many advances in the research area of designing smart services, 

predominantly with a technological focus. However, the perspective on the interaction between 

humans and machines in smart services is still underrepresented in research. Nevertheless, a 

deep understanding of this interplay is necessary to make sensible design decisions for smart 

services since smart services usually involve a human and an IT component that must be closely 

intertwined. Therefore, a multidimensional socio-techno-economic perspective is necessary for 

purposeful design decisions. In this vein, in addition to the current, predominantly technological 

focus, it is essential to cover both an organizational and an economic perspective. Designing in 

this context refers to the conception and building of a smart service using knowledge derived 
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from theory and related artifacts to support the practical application of smart services (Hevner 

2007; Maglio and Spohrer 2013). In this vein, research lacks guidelines for designing and 

implementing purposeful smart services in practice (Anke et al. 2020; Larson 2016; Wolf et al. 

2020). This lack of guidance leads to various economic problems (e.g., missing commercially 

viable business models and monetization) and organizational challenges (e.g., impact on 

distribution structure, cultural and competency issues). Against this backdrop, research should 

adress not only technological challenges but also focus on organizational and economical 

challenges related to smart services. This is of particular interest to the IS research community 

as it adresses challenges at the interface between IT and organizations (Peffers et al. 2020). 

Within the application of smart services and, thus, at the intersection of IT and organizations, 

human factors are especially pivotal (Larson 2016). Skills previously dominated by humans can 

be replaced by AI, changing the way people work. For example, an AI can perform automated 

data analysis much faster than a human, leaving the human more time for customer contact. 

This change creates a variety of new service opportunities but also brings challenges such as 

very heterogeneous ways for humans and AI to work together. It is, therefore, essential to have 

a clear picture of how humans and AI will work together as a basis for designing targeted, smart 

services (Loureiro et al. 2021; Østerlund et al. 2021). Hitherto, the conventional approach to AI 

applications has been to treat humans and machines as substitutes that can replace one another 

in the performance of tasks (Daugherty and Wilson 2018; Raisch and Krakowski 2021). 

However, certain aspects of tasks are likely to align well with the capabilities of AI-enabled 

systems, while others are likely to correspond better with those of human agents (Daugherty 

and Wilson 2018; Rai et al. 2019). Human agents and AI-enabled systems perform different 

roles and interactions to facilitate collaborative work (Daugherty and Wilson 2018; Davenport 

2018). In line with this, recent studies have revealed that this limited perspective (i.e., human 

and AI as substitutes) has had two unfortunate consequences: First, a disproportionately large 

focus on automation and second, a tendency to neglect the powerful interworking and resulting 

benefits that occur when humans and AI augment each other (Dellermann et al. 2019b; Rai et 

al. 2019; Seeber et al. 2020). Recent literature emphasizes that combining the complementary 

strengths of AI-enabled systems and human agents can offer distinct benefits, including 

increased organizational knowledge and performance improvements (Fügener et al. 2021; 

Maedche et al. 2019; Sturm et al. 2021). Consequently, the integrated perspective on human-

AI hybrids addresses the issues above and paves the way for a new generation of highly 
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performant smart services that create new areas of value creation (Agrawal et al. 2018; Sjödin 

et al. 2021).  

Despite the promising opportunities to improve value creation and profitability, several 

economical and organizational challenges exist in designing and implementing smart services 

(Heuchert et al. 2020; Klein et al. 2018; Pressmair et al. 2021; Töytäri et al. 2017). To realize 

these opportunities, research must address three key challenges in particular (e.g., Klein et al. 

(2018), Maglio and Lim (2016), Marquardt (2017), Paukstadt et al. (2019b)): 1) missing 

specifications for the structure and design of sector-specific or application-specific smart 

services, 2) insufficient integration of the economic perspective for designing smart services, 

and 3) inadequate data availability and quality.  

First, a well-structured but purely overarching perspective (e.g., Paukstadt et al. (2019b)) is 

insufficient for many sectors or applications because it lacks specific characteristics for 

designing purposeful smart services. An in-depth consideration of smart services' specific 

characteristics (e.g., specific customers, data types, value propositions) is necessary for an 

organized knowledge structure to support an informed decision (e.g., how to concept and build 

a smart service in the energy context). For this case, it is crucial to know and structure the 

context of specific smart services (e.g., specifics of smart services in the energy context, like 

energy-specific input data or use cases like light or heating). Therefore, a detailed specification 

of smart services is also necessary at the sector or application level. For example, in the smart 

city domain, Pourzolfaghar and Helfert (2017) have provided such a specification of smart 

services (e.g., different aspects of purposes like sustainability and social aspects), thus 

contributing to the design of more effective smart services to respond to citizens' concerns and 

meet smart city quality requirements.  

Second, the economic perspective of smart services is often not sufficiently considered, e.g., 

how smart services can be economically marketed and operated to complement the company's 

traditional product offerings (Klein et al. 2018; Winter 2023). In addition, the emerging 

complexity of value creation and the shift from product- to service-oriented businesses 

(especially in manufacturing) require companies to consider new business models and 

customer-centric monetization. Consequently, companies need guidance in developing 

economically viable business models (Bundesministerium für Wirtschaft und Energie (BMWi) 

2019; Geissdoerfer et al. 2018; Spieth et al. 2014). Therefore, an economic perspective is 

necessary to exploit the promising value-creation potential of smart services and operate them 
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not only functionally, but also economically. Therefore, better guidance on the economic design 

of smart services is needed. 

Third, smart services are data-based and directly depend on data availability and quality. 

However, businesses often face challenges in meeting the necessary data requirements 

regarding quality, quantity, and other barriers (Klein et al. 2018; Preidel and Stark 2021). These 

barriers include, for example, the complexity of networking across multiple stakeholders within 

an ecosystem (e.g., clarifying data sharing and ownership). There is also the challenge of 

merging data from different sources (both internal and external): In the example of a smart 

service in the energy sector, data on the company's electricity consumption, the electricity 

generated by its power plants, market price forecasts, and weather data can be incorporated, 

among others. In addition, the data may be partly structured and partly unstructured. 

Furthermore, industrial companies often face the problem of costly retrofitting of existing 

equipment with sensors to create a foundation for smart services. 

To address these challenges and reduce barriers for designing of smart services, this doctoral 

thesis will address selected issues related to the above challenges in two selected sectors. These 

two sectors are industrial manufacturing and energy services. 

First, companies face changes in industrial manufacturing due to globalization, cost pressures, 

and supply chain bottlenecks. Increased competition forces companies to consider innovative 

and technology-driven changes, economic factors, and product differentiators (e.g., sustainable 

products and excellent customer service) to remain competitive. Hybrid value creation and 

smart services are particularly relevant in shifting from product-oriented to service-oriented 

businesses. For example, smart services can help leverage existing field data and knowledge 

about customers to create new customer value, enabling high margins on smart services and 

high scalability. Incumbents need to develop new digital value propositions, i.e., smart services, 

to meet the ever-increasing competitive pressure. Since maintenance is one of the most 

significant cost drivers in industrial manufacturing, predictive maintenance (PdM) is an 

auspicious smart service (Windmark et al. 2018). Combining technology and economics, PdM 

leverages the interworking of human expertise on machines and failure types with the analytical 

capabilities of AI to predict upcoming failures and corresponding maintenance needs to avoid 

downtime and reduce maintenance costs (Chen et al. 2019; World Economic Forum 2015). 

Therefore, PdM pursues and supports three core objectives: First, increased provider efficiency 

in maintenance operations and scheduling to save costs. Second, this enhanced equipment 
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availability increases customer satisfaction and creates greater efficiency for the customer by 

reducing production bottlenecks or lost revenue due to machine downtimes. Third, this 

combination of technology and economics provides the basis for new business models, such as 

pay-per-use. In summary, the economic perspective is essential for the sensible design of PdM-

based business models, and maintenance strategies. The technological perspective is well 

researched from a design perspective, so there is a plethora of algorithms, selection criteria, and 

decision support tools, as the research focus is mainly on the performance metrics of statistical 

algorithms (e.g., event prediction accuracy). Hitherto, the economic perspective has been 

underrepresented, especially in the industrial domain. 

Second, the energy services sector is developing rapidly and is one of the sectors of the 

economy that can benefit most from smart services (Kratochwill et al. 2020). Given the need to 

address climate change in all sectors, not just industry, focusing on energy efficiency and CO2 

savings is critical. Due to the complexity of environmental changes and energy systems, AI is 

expected to support humans in diverse use cases, such as minimizing environmental load or 

optimizing energy storage and distribution (Ahmad et al. 2022; Liu et al. 2022). Therefore, AI 

is gaining importance due to its offering opportunities (European Commission 2020). For 

example, AI can help intelligently manage volatile supply by predicting renewable energy 

generation and demand (Moreno et al. 2019). Further, AI can also support consumers, such as 

in smart homes, by analyzing behavior patterns and adjusting energy consumption accordingly 

(Lee et al. 2023). However, this requires a high level of coordination and information exchange 

between stakeholders, including energy suppliers, grid operators, and consumers. Providing 

smart services in the energy sector can facilitate this coordination and enable real-time 

communication (Paukstadt and Becker 2021a, 2021b). For example, non-intrusive load 

monitoring (NILM) allows identifying individual consumers in an aggregated power 

consumption load profile measured from a single meter using algorithms and machine learning 

(Ruano et al. 2019). Using a single measurement device, NILM reduces the need for 

coordination and enables improved streamlined information sharing. Despite these promising 

opportunities and demand for such smart services, 80% of energy startups funded in 2010 at 

the height of the "cleantech boom" failed to meet their investors' expectations ten years later 

(Bennett et al. 2021). One possible reason could be the lack of alignment with human needs 

when using AI in the energy sector (e.g., trust and acceptance of the service offering). Due to 

their novelty and heterogeneity, little research supports designing smart services in the energy 

sector (Paukstadt and Becker 2021a). In addition, challenges are associated with implementing 
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these smart services, such as the lack of a business model perspective and the difficulty of 

collecting appropriate data. An integrated design perspective is needed to address these barriers, 

considering both technical and economic aspects.  

Although the powerful combination of AI and humans is expected to deliver new, value-

generating smart services, many organizations face challenges in realizing the value of using 

AI (Ransbotham et al. 2020). This doctoral thesis aims to reduce the barriers to designing 

purposeful smart services by a twofold approach: On the one hand, an integrative perspective 

on understanding human-AI hybrids as the foundation for smart services is taken to understand 

better the nature of human-AI hybrids and analyze their range of roles in depth. On the other 

hand, this doctoral thesis aims to contribute to the challenges above by developing artifacts to 

structure smart services and derive actionable recommendations for designing purposeful 

smart services.  

2 Research Aim & Structure 

This doctoral thesis addresses the outlined challenges of designing purposeful smart services 

in the previous section in a twofold approach. It builds on existing research, such as taxonomies, 

business model archetypes, and studies, to develop applicable artifacts that deliver descriptive 

knowledge and offer actionable recommendations for designing purposeful smart services. 

First, regarding understanding human-AI hybrids as the foundation for smart services, previous 

research is undoubtedly detailed but often focuses on either a technical or a social perspective. 

However, an integrative perspective is needed to focus on the complementary interaction of 

human agents and AI-enabled systems to address the multiple interdependencies between 

humans and AI (Jarrahi 2018). There is agreement among several scientists on this point 

(Agrawal et al. 2018; Daugherty and Wilson 2018; Traumer et al. 2017), with Davenport and 

Ronanki (2018) inferring from their survey of 250 executives that companies are more 

successful in developing AI use cases when they focus on augmenting human capabilities rather 

than replacing them. Furthermore, research has yet to embrace a holistic perspective that 

acknowledges the contribution of human agents and AI-enabled systems as separate entities 

with distinct, globally intra-act characteristics of human-AI hybrids (Rai et al. 2019). Hence, 

this doctoral thesis aims to contribute to this challenge by drawing from weak sociomateriality 

as justificatory knowledge to the descriptive knowledge on human-AI hybrids and the ongoing 

discourse on human-AI collaboration (Benbya et al. 2021; Dwivedi et al. 2021; Raisch and 

Krakowski 2021; Seeber et al. 2020) by providing 1) a well-founded taxonomy of human-AI 
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hybrids and 2) archetypes of human-AI hybrids. The taxonomy provides a holistic structure to 

human-AI hybrids and connects the discourse on human-AI collaborations (Dellermann et al. 

2019b; Maedche et al. 2019; Rai et al. 2019). The taxonomy provides a new, balanced 

perspective that considers the characteristics and capabilities of both human agents and AI-

enabled systems. In this way, the taxonomy makes it easy to classify how humans and AI work 

together, enabling decision makers to analyze and understand human-AI hybrids and how to 

use them wisely. In addition, the archetypes of human-AI hybrids, with their distinctive 

combinations of characteristics, facilitate a deeper understanding of how human-AI hybrids 

work in concrete, practical terms. 

Second, this doctoral thesis offers several insights regarding artifacts to structure smart services 

and derive actionable recommendations for designing purposeful smart services. In this vein, 

this doctoral thesis addresses selected challenges in the industrial manufacturing and energy 

service sectors: 1) missing specifications for the structure and design of sector-specific or 

application-specific smart services, 2) insufficient integration of the economic perspective for 

designing smart services, and 3) inadequate data availability and quality. 

In the industrial manufacturing sector, this doctoral thesis aims to address the challenge of 

insufficient integration of the economic perspective. Especially with cost pressure, global 

competition, and the shift from product-oriented to service-oriented business, focusing on PdM 

in industrial manufacturing is a promising approach for a valuable smart service. However, the 

current research on the operation of PdM is mainly driven from a technical perspective. As a 

result, not the entire value potential may be realized if an algorithm is selected purely from a 

statistical perspective based on performance metrics without integrating an economic 

perspective. Therefore, this doctoral thesis covers an economic design perspective for PdM in 

industrial manufacturing by developing a decision model to support decision-makers in 

designing economically viable smart services. The decision model focuses on economic criteria 

in selecting algorithms to predict upcoming failures and maintenance needs.  

This doctoral thesis contributes to all three challenges above in the energy service sector. First, 

due to their novelty and heterogeneity, research on the design of smart services in the energy 

sector is scarce (Paukstadt and Becker 2021a). As a result, while partial research findings are 

available (e.g., on the general structure of smart services or individual use cases), there is a lack 

of an integrative perspective that enables a common, descriptive understanding of the complex 

and heterogeneous nature of smart services in the energy sector. Therefore, this doctoral thesis 
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presents a taxonomy that supports researchers and practitioners in describing and analyzing 

SES and connects smart service research and energy service research. Second, regarding the 

economic perspective support for designing and developing a successful business model is 

missing for a wider use of smart services in the energy sector. Therefore, a business model 

framework is developed to contribute a practical and strategic framework for concretizing and 

implementing business ideas on SES. Third, challenges regarding adequate data quantity and 

quality exist. As a result, applications are challenging to implement. For example, NILM is 

already used extensively in private households, but transferability to industrial companies is 

problematic due to a lack of data quantity and quality. Therefore, this dissertation contributes 

to increasing data quality through active learning. 

To summarize, the overarching objective of this work is to examine AI´s impact on designing 

purposeful smart services from a twofold perspective: First, the doctoral thesis takes an 

overarching perspective on the powerful combination of human-AI hybrids, which has a 

profound impact on smart services. Second, the doctoral thesis takes a detailed perspective on 

several artifacts to structure smart services and derive actionable recommendations for 

designing purposeful smart services.  

As a cumulative doctoral thesis, this work consists of five research articles that address its 

fundamental topic using different qualitative and quantitative methodological approaches, 

different forms of empirical evidence, and different perspectives to design purposeful smart 

services (s. Figure 1). Therefore, this doctoral thesis offers a new theoretical perspective on 

human-AI hybrids and conceptualizing the interaction between humans and AI-enabled 

systems. This provides an understanding of human-AI hybrids as the foundation for designing 

purposeful smart services. In addition, the research contributions provide artifacts that structure 

smart services and derive actionable recommendations. Consequently, all the research 

contributions in this doctoral thesis relate to designing purposeful smart services. 
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Figure 1: Assignment of the research articles to the topics structuring this doctoral thesis 

Section II.1 presents Research Article #1, which addresses an understanding of human-AI 

hybrids as the foundation for smart services. The taxonomy of human-AI hybrids puts a clear, 

descriptive structure to the collaborative interworking of human agents and AI-enabled systems 

and allows its analyzing (Nickerson et al. 2013; Oberländer et al. 2019).  

In doing so, the taxonomy provides a new, balanced perspective that considers human agents' 

and AI-enabled systems' characteristics and capabilities. The taxonomy facilitates classifying 

human-AI interactions along three entities (i.e., human, AI, and socio-material practices). In 

doing so, it enables decision-makers to analyze and understand human-AI hybrids and their 

wise use. Moreover, it lets decision-makers comprehend the characteristics that constitute 

specific human-AI hybrids and what these characteristics might entail. Further, the work 

derives five archetypes of human-AI hybrids, each illustrating different AI-enabled systems' 

roles in those collaborative interworking scenarios. Building on an extensive knowledge base, 

these archetypes offer insights into the prototypical implementation of human-AI hybrids in the 

real world. In doing so, the taxonomy embeds itself in previous research and serves as a catalytic 

means for the progress of broader theorizing on human-AI hybrids and the future of work in 

general. Furthermore, it sheds light on how human agents and AI-enabled systems could 

combine their strengths and achieve results that would be impossible if they acted separately.  

Section II.2 presents Research Articles #2, #3, #4, and #5, which develop artifacts to structure 

smart services and derive actionable recommendations. Research Article #2 provides an 

artifact in the form of a decision model intending to support industrial companies in selecting 

economically advantageous PdM algorithms. Hence, the decision model provides economic 

insights into the trade-off between the two general types of prediction errors (i.e., false positive 

– false alarm and false negative - ignored failure). This integration enables the decision model 
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to give the user an economic perspective when designing smart services. Research Articles #3, 

#4, and #5 focus on energy research topics, especially smart energy services (SES). Research 

Article #3 provides a deeper understanding of SES's essential characteristics by reviewing the 

scientific literature and developing a taxonomy to structure SES's characteristics into four 

entities and 15 dimensions. The taxonomy supports researchers and practitioners in describing 

and analyzing the essential characteristics of SES and offers a theoretically and empirically 

validated foundation for understanding SES. Following a design science research approach, 

Research Article #4 presents a business model framework that enables structuring and 

developing business models for NILM as a representative SES for industrial applications. 

Research Article #4 contributes to literature and practice by complementing the ongoing, 

mainly technological-focused research activities by providing a methodically sound and 

practical business model framework. To foster wider use of NILM for industrial applications 

and reduce data challenges, Research Article #5 develops an active learning model using real-

world data and comparing three disaggregation algorithms with a benchmark model by 

efficiently selecting a subset of training data.  

Section III concludes this doctoral thesis with a summary of key findings, limitations, and 

directions for future research. Section IV lists the references used in this doctoral thesis. Finally, 

the Appendix in section V provides an index of the research articles presented in this doctoral 

thesis (V.1), my contributions (V.2), and the overview of included research articles (V.3 to V.7)  
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II Building Purposeful Smart Services 

1 Understanding Human-AI Hybrids as the Foundation for Smart Services 

AI, especially its application, affects organizations by offering promising potential for 

enhancing and augmenting human capabilities. With increasingly sophisticated AI-related 

technologies, researchers and practitioners identify numerous application scenarios in 

organizations (Bughin et al. 2018). Although the necessity for human-AI collaboration has 

already been confirmed, insights on the fruitful combination of human agents and AI-enabled 

systems are sparse. Moreover, little effort has been made to holistically analyze and understand 

the entangled interworking in the so-called human-AI hybrids, which form when human agents 

and AI-enabled systems collaborate. Simultaneously, the rise of potential business applications 

has led to significant investments from organizations resulting in copious amounts of AI pilot 

projects or proof of concepts (Dellermann et al. 2019a; Pumplun et al. 2019). As outlined in the 

Introduction, the traditional approach in those initiatives has been to view humans and machines 

as substitutes that can replace each other in performing tasks and jobs (Daugherty and Wilson 

2018; Raisch and Krakowski 2021). However, recent studies revealed that this binary 

perspective on AI technologies not only results in an over-emphasized focus on automation but 

also in a neglection of the powerful collaboration that occurs when humans and machines 

augment each other (Dellermann et al. 2019b; Rai et al. 2019; Seeber et al. 2020). In the current 

literature, many studies focus on either the technical or the social perspective, offering detailed 

but fragmented information and insights. Because of the highly entangled nature of the 

interworking of human agents and AI-enabled systems, emphasizing an integrative perspective 

that focuses on the complementary cooperation of both is paramount (Jarrahi 2018). This notion 

is backed by many experts in the field (e.g., Agrawal et al. (2018), Daugherty and Wilson 

(2018), Davenport (2018), Traumer et al. (2017)), with Davenport and Ronanki (2018) inferring 

from their survey of 250 executives that companies are more successful in developing AI use 

cases when they focus on augmenting human capabilities rather than replacing them. However, 

the knowledge of the collaborative interworking of human agents and AI-enabled systems from 

a holistic perspective is sparse (Davenport 2018), which leaves us with an incomplete picture 

and a missing ground for further discussion and sensemaking (Sarker et al. 2019). So far, a 

differentiated view of the precise ways in which human agents and AI-enabled systems can 

complement one another when performing tasks is missing (Rai et al. 2019). Therefore, Rai et 

al. (2019) call for studies on the tasks and roles of humans and AI in so-called human-AI 
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hybrids, a term they use to describe the new collaborative forms of interworking between 

human agents and AI-enabled systems. Against this backdrop, Research Article #1 proposes a 

taxonomy of human-AI hybrids adopting Nickerson et al.’s (2013) iterative taxonomy 

development method that allows to understand and analyze the complex domain of the 

interworking of human agents and AI-enabled systems (Nickerson et al. 2013; Oberländer et 

al. 2019). To allow for a deeper understanding of the implications of the symbiotic interworking 

in human-AI hybrids, a hybrid lens that combines sociomateriality and a pre-structured 

differentiation of the theory of sociotechnical systems is applied (Kautz and Jensen 2013; 

Gaskin et al. 2014). Research Article #1 uses this lens to present a taxonomy of nine dimensions 

and 38 characteristics.  

Figure 2 presents the final taxonomy, including three layers: socio-material entities, 

dimensions, and characteristics. Thereby, Figure 2 puts a clear structure to the collaborative 

interworking of human agents and AI-enabled systems. Using weak sociomateriality as 

justificatory knowledge, Research Article #1 presents AI-enabled systems and human agents as 

separate entities with distinct characteristics interacting globally to form socio-material 

practices. Bearing this in mind during the taxonomy development process, an integrated 

perspective on the complementary interworking of human agents and AI-enabled systems was 

taken. It follows that the taxonomy enables a well-founded classification of individual human-

AI hybrids and creates a better understanding of what constitutes human-AI hybrids. Based on 

such a theoretically founded and empirically validated understanding of human-AI hybrids, this 

study complements existing research that structures specific aspects of human-AI collaboration 

and hybrid intelligence, such as tasks and interactions (Dellermann et al. 2019a; Dellermann et 

al. 2019b; Traumer et al. 2017). 
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Figure 2: Taxonomy of human-AI hybrids 
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To better understand the conceptualization of human-AI hybrids, Research Article #1 

investigates whether there were any overarching interworking patterns across the classified 

hybrids. Based on the classification and analysis of 101 human-AI hybrids, the authors searched 

for archetypes of human-AI hybrids that outline the design opportunities that come with the 

collaborative interworking of human agents and AI-enabled systems. For this purpose, an 

agglomerative cluster analysis was applied, deriving five archetypes to conceptualize 

prototypical human-AI hybrid usage scenarios: sequential automation (AI pre-worker), parallel 

automation (outsourcing AI), sequential augmentation (superpower-giving AI), sequential co-

evolution (assembly line AI), and flexible co-evolution (collaborator AI). These archetypes 

provide a comprehensive picture of the possibilities available when human agents and AI-

enabled systems engage in socio-material practices (s. Figure 3).  

Each archetype represents a unique form of interworking, illustrated by analyzing an exemplary 

human-AI hybrid. Building on an extensive knowledge base, these archetypes offer insights 

into the prototypical implementation of human-AI hybrids in the real world. The taxonomy of 

human-AI hybrids also makes it possible to indicate differences in how closely human-AI 

hybrids are entangled in these archetypes. The analysis of relative frequencies and the 

correlation between different characteristics of human-AI hybrids reveals interesting 

dependencies, such as a link between the interworking mode and the flexibility requirement for 

human agents. Moreover, the study finds that an AI-enabled system’s focus is connected to the 

learning possibilities. This work acknowledges the importance of both human and non-human 

agency, thus complementing existing research that focuses on specific use cases as well as 

predominantly social (e.g., Davenport et al. (2020), Maedche et al. (2019), Paschen et al. 

(2020), Rzepka and Berger (2018)) or technical aspects (e.g., Liew (2018), Østerlund et al. 

(2021)). 
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Figure 3: Archetypes of human-AI hybrids 
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2 Artifacts to Structure Smart Services and Derive Actionable Recommendations  

2.1 Industrial Manufacturing: Predictive Maintenance as Promising Application of AI  

Research Article #1 results implicate that human-AI hybrids play a pivotal role in the upcoming 

worksettings. Particularly in the service sector, combining the strengths of AI-enabled systems 

in processing data and generating insights with the unique qualities that humans (e.g., 

emphasizing and explaining) bring to service interactions is a promising approach. One 

example where human expertise complements the capabilities of AI-enabled systems is PdM. 

AI-enabled PdM systems can augment human inspectors in detecting upcoming machine 

failures and maintenance planning (Shin et al. 2021). As maintenance is one of the most 

significant cost drivers in the manufacuring sector, PdM is a value-promising application of AI 

in this sector (Windmark et al. 2018). Traditionally, maintenance strategies in the industrial 

context are either reactive or preventive. Data-based PdM approaches leverage collected data 

to analyze the fluctuation of system and process parameters and provide automatic signals if 

threshold values are exceeded (Bevilacqua and Braglia 2000). This approach involves, for 

example, using AI algorithms to predict upcoming failures and corresponding maintenance 

needs. In turn, maintenance cycles are optimized, which prevents breakdowns and reduces 

maintenance costs (Chen et al. 2019; World Economic Forum 2015). 

Hitherto, statistical measures (e.g., absolute and relative measures) have been the paramount 

consideration in the selection and evaluation of PdM algorithms (e.g., Baptista et al. (2018)). 

In this context, statistical measures refer to the two types of prediction errors - alpha errors and 

beta errors. An alpha error means a machine runs as expected, but the algorithm falsely indicates 

an alarm. A beta error involves the algorithm ignoring a failure even though maintenance is 

required. The effects of alpha and beta errors on costs are unequal, as the two error types do not 

necessarily result in the same actions and costs. On the one hand, the costs of an ignored failure 

(beta error) and the resulting machine downtimes can vary considerably. In the case of a 

bottleneck machine, for example, a failure would affect the entire production line, resulting in 

high costs. On the other hand, the cost of an unnecessary check in response to a false alarm 

(alpha error) can also vary and may depend on technician density and availability in a specific 

sales territory, the cost of travel, and the type of check required. Consequently, in a sales 

territory with a very low service technician density or the case of a product with meager costs 

for machine downtimes, the cost resulting from an alpha error may be greater than the cost 

resulting from a beta error. This means that the statistical optimization of algorithms (e.g., a 

comparison based on relative error measures) will not necessarily lead to an economically 
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favorable – or even economically viable – solution.  

Alpha errors and beta errors may not be the only criteria (e.g., the type and granularity of the 

data and/or the algorithm's robustness may also have an influence), but they are essential factors 

in a decision. Hence, an economic trade-off between these two types of errors must be 

considered within any algorithm selection: If an algorithm is set to reduce the number of alpha 

errors, the number of beta errors will increase, et vice versa. This is because reducing the 

number of false alarms increases the probability of ignored failures. However, in a purely 

statistical perspective, the trade-off´s cost implications are neglected. In the industrial context, 

academics and practitioners – particularly FSPs – require support to select an economically 

viable option and optimize costs when introducing PdM as a means to leverage the potential of 

AI. Against this backdrop, Research Article #2 builds and evaluates a decision model that 

allows FPSs to prioritize economic concerns when selecting algorithms. In doing so, the 

decision model uses the underlying statistical foundation to translate into an economic 

perspective. For developing this decision model, Research Article #2 adopts the Design Science 

Research paradigm as established by Gregor and Hevner (2013), Hevner et al. (2004), and Jones 

and Gregor (2007). Sonnenberg and vom Brocke's (2012) evaluation guidelines were used to 

instantiate and evaluate this decision model. For instantiation and evaluation in a real-world 

setting, the case company is a European machinery company that builds and operates car wash 

systems.  

The foundation for the decision model are the statistical error measures, i.e., the included 

statistical standard ratios for classification problems based on four decision model states, as 

explained in the following. The states contained in the decision model build on two actual 

system states ('failure', 'no failure') and two types of algorithm predictions ('alarm', 'no alarm'). 

Before a failure occurs, the algorithm can detect the failure (True positive) or miss the failure 

(False negative/beta error). If no failure occurs, the algorithm can falsely detect a failure (False 

positive/alpha error). If no failure is detected, the algorithm correctly does not indicate a failure 

(True negative).  

The algorithms' prediction builds on data input through system observations. An observation 

could be a data point that can be classified (e.g., from previous experience with the system) as 

either incontrol or outcontrol. An observation classified as outcontrol means that a failure will 

occur within a specified time period following this observation, e.g., following a large deviation 
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from a value in the normal state. An observation classified as incontrol means that no failure is 

predicted based on this observation since the observed value is in the normal state. 

By applying an economic perspective, the decision model translates the prediction-based 

actions into the corresponding cost to reflect economic impacts (s. Table 1). This setup should 

enable our decision model's application in different PdM scenarios based on generic cost types 

meaningful to FSPs in the industrial context. 

Table 1. Cost Implications of Decision Model States 

Algorithm prediction 

Actual system state 

Alarm No alarm  

Failure TC + CC + RC TC + CC + RC + PC 

No failure TC + CC No cost 

 

Overall, the four decision model states and four cost types (travel cost (TC), check cost (CC), 

repair cost (RC), and penalty cost (PC)) lead to an observation cost function, which is linked to 

a time period-dependent observation function (e.g., seven days). First, if an observation is 

correctly detected as outcontrol, TC and CC for checking the failure and RC for repairing the 

system are incurred. Second, if the PdM algorithm does not detect a failure, PC needs to be 

considered in addition to TC, CC, and RC because service-level agreements are likely to have 

been breached. Third, if the PdM algorithm falsely indicates a failure, TC and CC, but no RC, 

will be incurred. Last, no cost will be incurred if the system runs as expected and no alarm is 

given. The cost for observations are calculated separately for each algorithm's prediction. By 

considering multiple time points sequentially, the four decision model states and four cost types 

lead to a total cost function that refers to the overall considered time period, adding up the 

corresponding observation cost. Optimizing the total cost function balances the trade-off 

between alpha errors and beta errors by considering the associated cost (i.e., TC, CC, RC, PC) 

to minimize the total cost for each algorithm. Then, to select the economically advantageous 

algorithm, the economically advantageous configuration (e.g., hyperparameter tuning) for each 

algorithm is selected for comparison among the set of algorithms. Finally, after comparing the 

total cost of the individual algorithms, the algorithm with the overall minimum total cost is to 

be selected from an economic perspective. 
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In order to identify an economically advantageous algorithm for PdM and prove the fidelity to 

the real world as well as the applicability of the decision model, sensor data from 4.9 million 

car wash cycles provided by the case company were analyzed. An exemplary subset of three 

algorithms was used to apply the decision model and select the economically advantageous 

algorithm. After comparing the total cost of the algorithms under consideration, the 

instantiation demonstrated that the decision model might lead to relevant cost savings (i.e., 

~450,000 €, 17% compared to the second-best algorithm and more than 40% to reactive 

maintenance).  

Research Article #2 contributes an artifact in the form of a decision model intending to support 

industrial companies that act as FSPs in selecting economically advantageous PdM algorithms. 

The authors rely on four generic cost components of FSPs to ensure the decision model is 

generalizable and transferable. These cost components (i.e., the specific value) can be 

determined individually for each case, offering applicability for a wide range of use cases. The 

case company confirmed the decision models' generalizability and transferred the decision 

model to other systems and failure types. Consequently, the decision model can also be applied 

in other industrial contexts and domains beyond the industrial context. An example for the 

applicability of the decision model could be the energy domain. For example, research in the 

energy domain examines PdM for wind farms (e.g., Florea et al. (2012), Vanden Haute and Pire 

(2020)) and should also consider economic factors. 

2.2 The Potential of AI in the Context of Smart Energy Services  

Understanding Smart Energy Services 

Besides the potential of AI in the industrial manufacturing sector, numerous opportunities to 

utilize AI arise in the energy service sector. For example, the German government sees AI as a 

lever for mastering some of the most significant challenges of our time, such as climate change 

and pollution (The Federal Government of Germany 2020). AI is deemed for the transition to 

a more sustainable, reliable, intelligent energy ecosystem. This requires coordination and 

information sharing among various stakeholders, including utilities, grid operators, and 

consumers. Providing smart services in the energy sector can facilitate this coordination and 

enable vairous benefits (e.g., real-time communication, energy efficiency) (Paukstadt and 

Becker 2021a, 2021b; Paukstadt et al. 2019a). So called smart energy services (SES) are 

considered AI-based services in the energy sector (both residential and industrial) that provide 

a service based on data from a smart energy product (Paukstadt 2019; Paukstadt and Becker 
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2021b). However, given the important role of SES in driving a greener, smarter, and customer-

centric energy transition, research hardly supports the design of SES (Paukstadt and Becker 

2021a).  

From an academic perspective, there is only a paucity of research supporting the development 

of SES, and there is still a lack of a holistic perspective that provides a structured overview of 

the heterogeneous nature of SES (Paukstadt and Becker 2021a). Most classifications and 

taxonomies consider smart services (e.g., Fischer et al. (2020), Knote et al. (2021), Paukstadt 

et al. (2019b)) or smart service systems in general (e.g., Beverungen et al. (2019), Brogt and 

Strobel (2020), Herterich et al. (2016)). Hitherto, SES has focused on the the application of SES 

in general (e.g., Matschoss and Kahma (2015), Matschoss et al. (2015)) and on SES business 

models (e.g., Chasin et al. (2020a), Paukstadt and Becker (2021b), Paukstadt et al. (2019a)). In 

addition, some frameworks refer to the research context of smart city services, only limited 

considering energy services, as research on smart cities has a deviating but cross-cutting focus 

with SES (e.g., Benites and Simões (2021), Lee and Lee (2014), Pourzolfaghar and Helfert 

(2017)). Two frameworks offer partially structural insights (i.e., Paukstadt (2019) and Paukstadt 

and Becker (2021b)), but do not address the aforementioned lack of a structured approach for 

describing SES in their heterogenous nature. To that end, there is specific research on SES, but 

a structuring approach for SES in general is missing.  

However, an understanding of the essential characteristics of SES is important to understand 

how an SES can be built and developed to suit the market and customers. This is especially 

relevant as service providers and service innovators (e.g., business development and start-ups) 

still are facing challenges developing, and deploying purposeful SES (Bennett et al. 2021). 

There is a high failure-rate of green start-ups in delivering the expected outcomes and meeting 

investors expectations with over 80% of failed or cheaply sold start-ups (Bennett et al. 2021). 

A standardized, detailed, and structured description of the essential characteristics of SES can 

help to create a common and sound knowledge base to classify and describe the heterogeneous 

nature of SES. Among other things, a structured description enables organized thinking for the 

innovation process and can serve as a tool for market analysis (i.e., one can classify existing 

SES and identify market gaps) by shedding light on the facets of SES and providing an unbiased 

interpretation of the characteristics. Against this background, Research Article #3 proposes a 

taxonomy of SES based on the established procedure by Kundisch et al. (2021) and Nickerson 

et al. (2013). The taxonomy is derived from existing conceptualizations in literature, analyzing 

existing SES, and evaluated with five interviews by experts from practice and science.  
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The taxonomy includes four layers: Structure, Value Creation, Delivery, and Energy-related 

Data Input. It comprises four distinct SES entities: (1) the structuring of a service in the energy 

domain itself, (2) the characteristics of how the service creates value, (3) the way the service 

delivers the value, and (4) the fundamental characteristics of the SES's data. Each layer contains 

four dimensions, except delivery with three dimensions, resulting in a total of 15 dimensions, 

eight of which are mutually exclusive (ME) and seven of which are non-exclusive (NE) (see 

Figure 4).  

With this structure, the taxonomy provides a descriptive, structuring approach to the relatively 

new and heterogeneous field of SES. Drawing on the understanding of SES, an integrated 

perspective on the complementary construction of SES was taken when developing the 

taxonomy. As a result, the taxonomy enables a well-founded classification of individual SES 

and deepens the understanding of what specifically characterizes SES. Based on such a 

theoretically grounded and empirically validated understanding of SES, the study complements 

existing research that structures specific aspects of smart services and energy services (e.g., 

Fischer et al. (2020), Paukstadt and Becker (2021b), Paukstadt et al. (2019b)).  
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Figure 4: Taxonomy of SES 
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The taxonomy connects to and advances the discourse on SES and future work in IS, business 

development, and energy research (e.g., Beverungen et al. (2019), Chasin et al. (2020a), Chasin 

et al. (2020b), Paukstadt and Becker (2021b)). In this regard, our taxonomy adds descriptive 

knowledge to the field of SES by describing them in a detailed and structured way. In this vein, 

the taxonomy supports practice-oriented research as well as service providers and innovators in 

the more efficient use and development of value-creating SES in the future. Furthermore, the 

taxonomy enables research and practice to group existing SES into a taxonomy based on 

common characteristics and clarify their relationships based on their characteristics (Cook et 

al. 1999; Nickerson et al. 2013). Because SES are a new and rapidly evolving phenomenon, 

there is less support for analyzing existing services and developing new smart service offerings. 

Therefore, Research Paper #3 contributes a solid basis for identifying SES characteristics as a 

starting point for further investigation through research and practice. Consequently, it answers 

the calls of IS and the energy sector research (e.g., Paukstadt and Becker (2021a)) for a 

structuring approach to SES and lays a foundation for further developments like business 

models for SES. 

Business Model Perspective on NILM as a Smart Energy Services 

The industrial sector is motivated to reduce energy consumption due to rising prices, threatening 

competitiveness (Rusche et al. 2021). Additional economic pressure comes from the volatile 

electricity supply, resulting in fluctuating energy prices (Scheubel et al. 2017). Therefore, 

energy efficiency and flexibility are increasingly vital to counter rising economic pressure and 

get management's attention (Bauer et al. 2021; Glenk et al. 2021; Paukstadt and Becker 2021b).  

One promising SES to foster energy efficiency and flexibility is NILM. NILM identifies 

individual consumers (i.e., energy-consuming devices) in an aggregated power consumption 

load profile measured from a single meter (Ruano et al. 2019). Each device generates a load 

profile that suitable algorithms can identify and classify. Thus, NILM enables transparency of 

energy consumption (Barth et al. 2018; Bergman et al. 2011; Gopinath et al. 2020). 

Consumption transparency, in turn, is required for energy efficiency and flexibility using 

energy management systems (Lindner et al. 2021; Seow and Rahimifard 2011). For instance, 

transparency allows monitoring the overall condition of appliances and enables identifying 

inefficient operating modes or imminent failures to take predictive measures to reduce 

efficiency losses and downtime. NILM is already used in many private households. However, 

industrial NILM service providers are rare (Kalinke et al. 2021). Furthermore, research on 
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NILM in industrial applications almost exclusively investigates technical aspects, such as 

optimizing different algorithms to achieve higher accuracy and identify appliances more 

accurately. In other words, there is a gap between technically oriented research and applying 

NILM in practice, although it would be promising for energy efficiency and flexibility. 

Therefore, to leverage the business potential of NILM in a manufacturing environment, a 

business model framework that enables structuring and developing a business model for NILM 

in industrial applications is needed. Therefore, Research Article #4 adapts the Design Science 

Research Approach following Hevner (2007) and Jones and Gregor (2007) for building and 

evaluating an artifact - the Smart Co-Creation Service Canvas (SCSC). 

The SCSC enables the structuring and development of a business model for NILM in the 

industrial sector. Research Article #4 is divided into three main steps. First, it analyzes the 

knowledge base in step one by conducting a literature review. This knowledge base is enriched 

with the author’s experience and expertise gained in (research) projects to have a solid basis for 

developing the SCSC. This step allows us to derive 59 hypotheses for the SCSC.  

Second, Research Article #4 incorporates requirements from the contextual environment to 

verify and evaluate the artifact. Given the complexity of a business model with its many 

elements and the still rudimentary state of research on industrial NILM applications and their 

practical relevance, expert interviews are used for evaluation. 

The SCSC (see Figure 5) is developed based on the evaluation of 59 hypotheses through expert 

interviews. The SCSC contains nine interrelated elements relevant to SES for a holistic 

framework: customer segments, value proposition, value creation, key resources, technical 

infrastructure and digital platform, interaction and co-production, cost structure, revenue 

streams, and key partners. 
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Figure 5: Empirically verified and revised elements of the SCSC 
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With this setup, the SCSC allows interdisciplinary solutions and leveraging technical and 

economic potentials, merging previously separate research streams. In this vein, the SCSC 

provides holistic guidance for business model development for NILM. Therefore, the SCSC 

offers a business perspective on NILM as an applicable, realistic, and practical model, which is 

confirmed by the experts (Sonnenberg and vom Brocke 2012). Following the business 

perspective, the SCSC provides a twofold view, examining the customer and provider sides of 

co-creating value and monetizing SES. As the interviews confirmed, monetizing SES is crucial. 

However, especially for SES, there is hardly any guidance. Existing works are mostly limited 

to payment/rate models without further details (e.g., Paukstadt and Becker (2021b)). However, 

it is crucial to quantify the economic potential individually, especially for SES in the industrial 

context, which encounters highly individual applications. This builds customer trust and creates 

a profitable business model, which is the basis for customer-centric pricing. Hence, the SCSC 

provides insights and information on revenue streams and cost structure. 

In sum, Research Article#4 contributes to the prescriptive knowledge of SES, in general, and 

NILM-based services in the industrial sector. Since the SCSC brings an economic perspective 

to what is otherwise a primarily technical and computer science-oriented area of the literature, 

the SCSC guides implementing a NILM-based business model.  

Understanding Data Challenges when Designing Purposeful SES 

As Research Article#4 shows, NILM-based services are promising and cost-effective 

approaches that incorporate techniques that infer individual applications' energy consumption 

from aggregated consumption. These solutions enable smart energy management and 

transparency on energy consumption data and are needed to enforce energy efficiency. Use 

cases of NILM include energy monitoring, demand side management, peak shaving, job 

scheduling, as well as anomaly and fault detection for saving energy (Barth et al. 2018; 

Bergman et al. 2011; Gopinath et al. 2020). For example, early detection of those faults or 

anomalies with the help of NILM avoids economic, energy, and environmental losses due to, 

e.g., maintenance cost reduction, machine fault reduction, increased spare part life, or the 

identification of inefficient applications (Gopinath et al. 2020). However, although NILM has 

existed for decades, the primary application area of NILM is smart energy monitoring in the 

residential sector (Langevin et al. 2022; Verma et al. 2021; Zhou et al. 2021) while it has not 

been widely adopted in industrial applications (Cui et al. 2022; Gopinath et al. 2020; 

Holmegaard and Baun Kjaergaard 2016). A fundamental problem is the lack of industrial data 
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labels as input for effective supervised algorithms (Feng and Tian 2021). Nevertheless, labeling 

new data in an industrial environment requires domain-specific knowledge, is time-consuming 

and expensive to obtain and is often unattractive in practice (Feng and Tian 2021; Yu et al. 

2021). Labeling in the context of NILM means determining the disaggregated applications from 

the total electrical energy consumption and to what extent they were used at the given 

timestamp. 

Consequently, Research Article #5 aims to reduce labeling efforts using active learning. Active 

learning is a machine learning approach in which experts query the unlabeled data with the 

highest level of informativeness to provide targeted feedback to the learning algorithm to 

improve its performance (Das et al. 2016; Mehrotra et al. 2017). The concept of active learning 

is applied in various disciplines (Angelis et al. 2022; Das et al. 2016; Kumar and Gupta 2020; 

Ren et al. 2022). In the context of NILM, the labeled data is used for training the disaggregation 

algorithms that predict the energy consumption of the individual applications. In other domains 

besides NILM, previous research has shown the potential of active learning to reduce the 

labeling effort   ožanec et a .  0  ;  an  ee  en and Koo e  0 3; Zhao et a .  0   . 

Therefore, Research Article #5 integrates an active learning model into NILM for industrial 

applications. Reducing the labeling effort, especially in an industrial environment, increases the 

attractiveness of NILM. This enables smart energy management and favors companies 

ecologically and economically. Research Article #5 develops an active learning model using 

the HIPE data set based on a real-world production plant (Bischof et al. 2018). It implements 

the model to validate the underlying concept of reducing the labeling effort. The methodology 

is based on the Cross-Industry Standard Process for Data Mining (CRISP-DM). The proposed 

model does not replace existing NILM techniques. Instead, it complements its techniques by 

significantly reducing data labeling and user effort while maintaining appropriate 

disaggregation accuracies. This reduces concerns about the cost of NILM and supports 

intelligent energy management based on the transparency provided. To demonstrate its 

performance, the active learning model is compared with established supervised learning 

models in NILM systems for industrial applications.  

The results show that the present active learning model can effectively reduce the labeling effort 

for NILM by up to 99% while still achieving up to 80% of the prediction performance compared 

to a benchmark with 100% labeled training data. The design of the active learning model 

consists of an unsupervised model, a feedback module, and a supervised model. Research 

Article #5 also provides a sensitivity analysis to demonstrate the impacts of different parameter 
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settings (i.e., different budget constraints for the feedback module). In active learning, budget 

refers to limited resources, often labeled examples, that can be used to train the active learning 

model (Das et al. 2016). The results show that the designed active learning model leads to a 

more cost-effective NILM system in practice. In addition to the possibility of using easily 

collected energy consumption data, the expert system combined with human annotators can be 

efficiently used to further optimize the active learning model on the specific industry and use 

case.  

The presented active learning architecture reduces the labeling effort, mitigating one of the 

critical barriers to adopting NILMs in industrial applications. For example, practitioners could 

use NILM for failure prediction, leading to cost savings and increased equipment efficiency, or 

for emission reduction and energy savings through smarter energy management (Beverungen 

et al. 2019). Consequently, more expansive use of NILM could help practitioners save energy 

and costs and contribute to cleaner and more sustainable production. Therefore, Research 

Article #5 concludes that the proposed active learning could be a viable alternative to traditional 

submetering, although it has deficits in disaggregation compared to established supervised 

learning models. The significant time and resource savings compensate for this shortcoming. 
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III Summary and Limitations 

1 Summary 

AI offers promising opportunities believed to contribute to the well-being of individuals, the 

success and innovation of businesses, and the prosperity and progress of society (Thiebes et al. 

2021). The powerful combination of AI and humans is expected to deliver new, value-

generating smart services. However, many organizations face challenges in realizing the value 

of using AI (Ransbotham et al. 2020). Motivated by these circumstances, this doctoral thesis 

aims to reduce the barriers to designing purposeful smart services by a twofold approach: On 

the one hand, an integrative perspective on understanding human-AI hybrids as the foundation 

for smart services is taken to understand better the nature of human-AI hybrids and analyze 

their range of roles in depth. Therefore, this doctoral thesis deepens our understanding of the 

entanglement between human agents and AI-enabled systems. In this vein, it provides a 

taxonomy to identify human-AI hybrids' characteristics and structure them. Furthermore, it 

identifies archetypes of human-AI hybrids by investigating ideal-typical occurrences of human-

AI hybrids in practice. On the other hand, this doctoral thesis aims to contribute to the 

challenges above by developing artifacts to structure smart services and derive actionable 

recommendations for designing purposeful smart services. Doing so, this doctoral thesis 

provides insights into the design of smart services in the industrial manufacturing and energy 

service sectors, providing several artifacts: an economic decision-support model for PdM for 

FSPs, a taxonomy to characterize and structure SES, a business model framework for SES, and 

an active learning model to reduce labeling efforts for NILM as specific SES. Consequently, it 

provides practical and empirically validated artifacts to support structuring and designing smart 

services. 

Concerning the understanding of human-AI hybrids as the foundation for smart services, 

Section II.1 provides an overview of the characteristics and archetypes that practitioners and 

academics deem relevant when companies use AI. Furthermore, it investigates the 

transformation of the interworking of humans and AI-enables systems (Research Article #1). 

Drawing from weak sociomateriality as justificatory knowledge, Section II.1 provides a holistic 

understanding of the entangled interworking of human-AI hybrids. Therefore, this doctoral 

thesis provides a new, balanced perspective that accounts for the complementary attributes and 

capabilities of human agents and AI-enabled systems in equal measure to foster their 

collaborative interworking. Based on this perspective, the identified five archetypes of human-
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AI hybrids outline the design opportunities that come with the interworking of human agents 

and AI-enabled systems.  

Concerning artifacts to structure smart services and derive actionable recommendations for 

designing purposeful smart services, Section II.2 provides a quantitative decision-support 

model that assists decision-makers in choosing the economically favorable algorithm for their 

PdM services based on their underlying cost structure (Research Article #2). The decision 

support models' applicability was instantiated and evaluated in a real-world setting with a 

European machinery company providing full-service solutions for car wash systems. The 

instantiation uses its customers' data, i.e., the data of large petrol station chains, to demonstrate 

the decision model's applicability and effectiveness with fidelity to a real-world phenomenon. 

In sum, the decision model provides economic insights into the trade-off between the 

a  or thms’ error t pes and ena  es  sers to  oc s on econom c concerns  n a  or thm se ect on. 

The work contributes to the prescriptive knowledge of algorithm selection and predictive 

maintenance in line with considering different types of costs.  

Section II.3 provides a new theoretical foundation on the characteristics of SES. This new 

theoretical foundation provides a taxonomy of four entities and 15 dimensions (Research 

Article #3). The taxonomy supports researchers and practitioners in describing and analyzing 

the essential characteristics of SES and offers a theoretically and empirically validated 

foundation. In this vein, the taxonomy provides a descriptive, structuring approach to the 

essential characteristics of SES and helps to analyze, and identify different possible SES and 

their configuration options. Building on this understanding of SES, a business model 

framework – the SCSC - is provided to structure and support the development of a business 

model for NILM (Research Article #4). The SCSC is a practical and strategic framework for 

concretizing and implementing a business idea to complement the ongoing, mainly 

technological-focused research activities. Since the SCSC brings an economic perspective to 

what is otherwise a primarily technical and computer science-oriented area of the literature, it 

guides implementing a business model for NILM. Furthermore, the doctoral thesis developed 

an active learning model using real-world data and compared three disaggregation algorithms 

with a benchmark model by efficiently selecting a subset of training data (Research Article #5). 

The approach demonstrates that the active learning model achieves satisfactory accuracy with 

highly reduced user input. This model aims to overcome the critical challenge of NILM in 

industrial applications: the scarcity of labeled data, which leads to costly and time-consuming 

workflows. In this vein, this model lays the foundation for further optimizations regarding the 
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architecture of an active learning model and serves as a first benchmark for active learning in 

NILM for industrial applications. With these three research articles, this doctoral thesis 

contributes to reducing barriers through practical and empirically validated artifacts and 

recommendations for designing purposeful SES. 

2 Limitations and Future Research 

The results of this doctoral thesis have limitations that provide an impetus for future research 

endeavors. This section provides an overview of these limitations, resulting in future avenues 

for scholars that examine the interworking of humans and AI in general and the implications of 

the design of smart services. Furthermore, the individual research articles provide a detailed 

perspective on the limitations of this research endeavor and their potential for future research 

(see the Appendix section). 

First, the developed taxonomies of Research Articles #1 and #3 have demonstrated the potential 

to deepen the understanding of human-AI hybrids and SES. However, the inherently descriptive 

nature of a taxonomy limits the extent of guidance and insights they can give. The development 

of taxonomies requires a certain extent of generalization and simplification of complex issues. 

Consequently, these generalizations and simplifications inevitably limit our findings from both 

analyses. However, further research (e.g., in-depth case studies) could provide the additional 

insights needed to tease out interdependencies of characteristics not captured by the two 

taxonomies. Furthermore, as the deployment of human-AI hybrids and SES is still in its infancy, 

more elaborate use cases of human-AI hybrids and SES are likely to emerge. These projected 

advances may require specific changes to the proposed dimensions or extensions of the 

taxonomies. Therefore, the developed taxonomies should not be considered as a completed 

artifact but as a basis for further research to review and revise the taxonomies at appropriate 

intervals. 

Second, Research Articles #2, #4, and #5 must also make simplifiying assumptions. Research 

Article #2 has to break down a complex cost structure into four generic cost types. For example, 

penalty costs can differ from customer to customer, as can travel costs, which are only 

considered in terms of averages in the decision model. Also, the cost could be staggered in 

reliance of, e.g., working time, customer types, or service level agreements. Research Article 

#4 did not address the technical aspects to the extent that might have been necessary to provide 

a practical solution for a primarily technology-oriented business idea. However, both artifacts 

are designed to be generic and transferable. Therefore, both artifacts provide an opportunity for 
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further development and application in future research, e.g., in the form of (multiple) case 

studies in other companies, countries, and industries. In Research Article #5, by design, active 

learning models assume that the expert system is infallible. This assumption may differ in many 

real-world situations, especially when a human is involved in labeling. Hence, to increase the 

feasibility of the active learning model, future research could sprinkle random misjudgments. 

Alternatively, a proactive learning model could be proposed instead of adding randomness, as 

it is a generalization of active learning with the purpose of reducing idealistic assumptions. 

Therefore, it could bridge the gap between traditional active learning and more suitable real-

world applications. 

Third, the developed artifacts in the Research Articles #1, #2, #3, and #4 were evaluated by 

external experts. These experts were carefully selected to relate as closely as possible to the 

topic, with the goal of covering a broad but relevant range of opinions and experiences. 

However, bias cannot be ruled out as these are only random samples. Most experts are familiar 

with working in international and globally operating companies and can provide a broad 

assessment. In principle, further evaluations with more experts would be conceivable. For 

example, evaluating the artifacts by groups of experts divided by region could provide 

interesting insights and enable a comparison (e.g., concerning regional characteristics).  

Fourth, the used data is a limitation for Research Articles #2 and #5. Since data plays an 

essential role in the algorithms, the accessibility, structure, and quality of data affect the 

predictive performance. This, in turn, directly affects the predicted cost of the decision support 

model in Research Article #2. The DM's instantiation focus is restricted to one case company 

and limited to one specific failure type and one sensor. Further research should consider more 

sensor data and the interaction between sensors and the environment. A broader data set, 

including environmental data (e.g., meteorological data), will allow for sophisticated prediction 

variants, e.g., in the case of predicting special environmental pollution (e.g., Sahara dust) and 

thus extraordinary wear of machine parts. By adding more sensors and machine parts, combined 

maintenance planning across multiple components and taking into account economic factors 

(e.g. synergies in maintenance planning) is also possible. For Research Article #5, the proposed 

active learning model was validated on a single data set containing only ten applications 

covering one power-electronics plant. This limitation must be overcome in further research with 

more data sets and a broader application scenario (e.g., more plants). 
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In summary, the application of AI is driving the pace of change in many industries, transforming 

human-AI collaboration and bringing new opportunities for business models, especially in the 

service domain. By providing insights into existing opportunities and challenges, I sincerely 

hope that this dissertation will help researchers and practitioners explore the changes brought 

about by the powerful interaction of humans and AI. Furthermore, I hope it will support 

researchers and pracitioners in the design of purposeful smart services.  
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2 Individual Contribution to the Research Articles  

This cumulative doctoral thesis comprises five research articles representing the main body of 

work. All articles were developed in teams with multiple co-authors. This section details the 

respective research settings and highlights my individual contributions to each article. 

Research Article #1: This research article was developed by a team of five co-authors (Lukas 

Fabri, Björn Häckel, Anna Oberländer, Marius Rieg, and Alexander Stohr). Regarding the 

development of the manuscript, I co-developed the initial draft of the research article and was 

engaged in conceptualizing the results and crafting their implications for theory and practice. 

Additionally, I was involved in further developing and revising the research article and textual 

elaboration.  

Research Article #2: I co-authored this research article with Björn Häckel, Robert Keller, and 

Anna Oberländer. Nearly all co-authors jointly developed the decision-support model for 

choosing the economically favorable algorithm for predictive maintenance. I was involved in 

all stages of developing this research article, from crafting the initial research idea and 

manuscript to multiple rounds of textual refinement throughout multiple revisions. Further, I 

was especially responsible for interpreting the data, including several interviews with industry 

experts, embedding our research in the existing literature, and textual elaboration of the 

discussion and contribution.  

Research Article #3: This research article was developed by three co-authors (Lukas Fabri, 

Jan Weißflog, Simon Wenninger). As the leading author of this research article, I developed its 

basic research idea and concept and was responsible for elaborating the research method, model 

development, evaluation, and crafting the complete manuscript. Additionally, I was in charge 

o  prepar n  the art c e’s re  nement and prepar n   t  or s  m ss on. Wh  e, to a  ar e e tent, 

this article reflects my work, all co-authors promoted the advancement of the paper throughout 

the entire project. 

Research Article #4: I co-authored this research article with Jennifer Günter (leading author), 

Can Kaymakci, and Simon Wenninger. Regarding the development of the manuscript, I co-

developed the coding of the literature sample consisting of a structured literature review and 

elaborated the insights into the textual paper form. Further, I was responsible for refining the 

interpretation of the results consisting of the developed canvas. Additionally, I was in charge 

o  prepar n  the art c e’s re  nement and preparing it for submission.  
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Research Article #5: This research article was developed by four co-authors (Lukas Fabri, 

Daniel Leuthe, Manuel Schneider, Simon Wenninger). Regarding the development of the 

manuscript, I was engaged in revising the literature and embedding the results in the current 

literature. Further, I was part of crafting their implications for theory and practice. Additionally, 

I was involved in further developing and revising the research article and textual elaboration.  
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3 Research Article #1 

Disentangling Human-AI Hybrids: Conceptualizing the Interworking of Humans and 

AI-Enabled Systems 

 

Authors: Fabri, L.; Häckel, B.; Oberländer, A.M.; Rieg, M.; Stohr, A. 

Published in: Business & Information Systems Engineering (BISE) (2023) 

 Abstract: Artificial intelligence (AI) offers great potential in organizations. The path to 

achieving this potential will involve human-AI interworking, as has been 

confirmed by numerous studies. However, it remains to be explored which 

direction this interworking of human agents and AI-enabled systems ought to 

take. To date, research still lacks a holistic understanding of the entangled 

interworking that characterizes human-AI hybrids, so-called because they form 

when human agents and AI-enabled systems closely collaborate. To enhance 

such understanding, this paper presents a taxonomy of human-AI hybrids, 

developed by reviewing the current literature as well as a sample of 101 human-

AI hybrids. Leveraging weak sociomateriality as justificatory knowledge, this 

study provides a deeper understanding of the entanglement between human 

agents and AI-enabled systems. Furthermore, a cluster analysis is performed to 

derive archetypes of human-AI hybrids, identifying ideal–typical occurrences of 

human-AI hybrids in practice. While the taxonomy creates a solid foundation 

for the understanding and analysis of human-AI hybrids, the archetypes illustrate 

the range of roles that AI-enabled systems can play in those interworking 

scenarios.  

Keywords: Human-AI hybrids; Human-AI collaboration; Taxonomy; Archetypes; 

Sociomateriality 
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4 Research Article #2 

 How to Select Algorithm for Predictive Maintenance: An Economic Decision Model and 

Real-world Instantiation 

Working Paper in 3rd round of revision 

Authors: Fabri, L.; Häckel, B.; Oberländer, A.M.; Keller, R. 

Keywords: Algorithm selection, decision model, economic perspective, machine learning, 

prediction error, predictive maintenance 

Extended Abstract1: 

The increasing availability of large amounts of data and computing power provides 

opportunities for research and business  (Abbasi et al. 2016; Bichler et al. 2017; Eggert and 

Alberts 2020; Maass et al. 2018). In the industrial context, the increasing connectivity of 

physical equipment and the corresponding availability of data dramatically increase the 

potential use of Machine learning in, e.g., maintenance strategies (Agrawal et al. 2018; vom 

Brocke et al. 2018). As maintenance is one of industrial production's most significant cost 

drivers (Windmark et al. 2018), applying ML to address maintenance needs is particularly 

promising. Predictive maintenance (PdM) approaches leverage collected data and ML 

algorithms to predict upcoming failures and corresponding maintenance needs, preventing 

breakdowns and reducing maintenance cost (Chen et al. 2019; World Economic Forum 2015).  

Reduced maintenance cost resulting from PdM use holds particular value potential for full-

service providers (FSPs) business models. An FSP ensures the operational availability of a 

system and holds responsibility for any maintenance efforts (Huber and Spinler 2012). For the 

evaluation, comparison, and selection of PdM algorithms, a variety of statistical measures have 

been considered hitherto. Examples are mean error, root mean squared error, or mean absolute 

percentage error (e.g., Baptista et al. (2018)). However, a purely statistical approach to 

algorithm selection may not necessarily lead to the optimal economic outcome, as the two types 

of prediction errors (alpha error and beta error) are negatively correlated and, thus, cannot be 

jointly optimized, and are associated with different cost.  

In the current literature, much Machine Learning research, particularly in the industrial domain, 

 
1 At the time of writing, this research article is under review for publication in a scientific journal. Therefore,an 

extended abstract, taken from the research article, is provided here 
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uses real-world data and builds and evaluates algorithms for predictions (e.g., maintenance 

events). However, economic calibration – especially in the industrial domain - has been 

underrepresented. Thus, existing approaches may not provide sufficient a priori decision 

support to companies aiming to introduce PdM. However, the different cost implications of the 

two prediction errors have already been shown in other contexts (e.g., Jiang and Cukic (2009), 

Kim et al. (2012)). Against this backdrop, we seek to guide PdM algorithm selection from an 

economic perspective based on the cost implications of alpha errors and beta errors. We argue 

that the different prediction- ased act ons and correspond n  cost re ated to the a  or thms’ 

error types must be understood, as alpha errors and beta errors do not necessarily lead to the 

same actions and cost. This is especially relevant for the business model of FSPs since FSPs 

bear all cost and risks for maintaining operational availability (Hou and Neely 2018) and usually 

pay a penalty if the agreed-upon level of service availability cannot be met (Huber and Spinler 

2012).  

Consequently, we developed a decision model for industrial full-service providers, applying an 

economic perspective to selecting predictive maintenance algorithms. The decision model was 

instantiated and evaluated in a real-world setting with a European machinery company 

providing full-service solutions in car wash systems. Building on sensor data from 4.9 million 

car wash cycles, the instantiation demonstrates the applicability and effectiveness of the 

decision model with fidelity to a real-world phenomenon. In sum, the decision model provides 

economic insights into the trade-o    et een the a  or thms’ error t pes and ena  es  sers to 

focus on economic concerns in algorithm selection. Our work contributes to the prescriptive 

knowledge of algorithm selection and predictive maintenance in line with the consideration of 

different types of cost. 

References 
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5 Research Article #3 

 Unraveling the Complexity: A Taxonomy for Characterizing and Structuring Smart 

Energy Services 

Authors: Fabri, L.; Weißflog, J.; Wenninger, S. 

Published in:  Journal of Cleaner Production (2024) 

Abstract:  Achieving climate goals requires restructuring the current energy systems, 

which, among other things, involves decentralizing energy systems. This entails 

new challenges, e.g., a high degree of coordination and information exchange. 

Especially the building sector, being the largest energy consumer, offers great 

improvement potential to reduce emissions. Smart energy services promise 

various benefits in overcoming these challenges, e.g., through optimized energy 

generation, demand control, and more efficient energy control systems. 

Although smart energy services are crucial to transitioning to a more sustainable, 

reliable, and intelligent energy (eco)system, research lacks a holistic perspective 

of their essential characteristics and configuration options due to their novelty 

and heterogeneity. Nevertheless, this perspective is crucial as service providers, 

service innovators (e.g., business development and start-ups), and 

researchers face problems developing and deploying value-adding and 

sustaining smart energy services. Consequently, this work identifies the essential 

characteristics of building-related smart energy services by reviewing scientific 

and practitioner literature. It structures them by developing a taxonomy and 

organizing them in 15 dimensions and 54 characteristics, along smart energy 

service structure, value creation, delivery, and energy-related data input. The 

taxonomy and the derived theoretical and managerial implications support 

researchers and practitioners in designing and conceptualizing future smart 

energy service innovations. 

Keywords: Data-driven energy management; Smart energy services; Smart services; 

Taxonomy 
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6 Research Article #4 

 Developing a business model framework for industrial data-driven services - a non-

intrusive load monitoring case study 

Working Paper in 2nd round of revision  

Authors: Günter, J.; Fabri, L.; Kaymakci, C.; Wenninger, S.; 

Keywords: Nonintrusive load monitoring; Business model; Data-driven services; Smart 

energy services; Smart manufacturing; Sustainable manufacturing 

Extended Abstract1:  

With the increasing impact of climate change and the tightening of climate policy, industrial 

companies face the challenges of becoming more sustainable. Nowadays and into the future, 

with a volatile electricity supply, the economic pressure on the industrial sector will rise (Bauer 

et al. 2021; Glenk et al. 2021; Paukstadt and Becker 2021). Consequently, the industrial sector 

sees its competitiveness threatened due to rising CO2 and energy prices (Rusche et al. 2021). 

Consumption transparency is a prerequisite for energy efficiency and leveraging energy 

flexibility potentials with energy management systems (Lindner et al. 2021; Seow and 

Rahimifard 2011). For instance, transparency allows monitoring the overall condition of 

appliances and enables identifying inefficient operating modes or imminent failures to take 

predictive measures to reduce efficiency losses and downtime. 

Consequently, with advances in digitization, research has brought new approaches like smart 

energy services to uncover the causes of energy consumption. Smart energy services go beyond 

core functions of energy consumption billing as they enable, for example, the optimization of 

energy consumption. Hence, smart energy services like NILM are gaining importance as they 

help to improve energy efficiency and flexibility, which are becoming increasingly significant 

assets to counter rising economic pressure (Bauer et al. 2021; Glenk et al. 2021; Paukstadt and 

Becker 2021). However, research on NILM in industrial applications almost exclusively 

investigates technical aspects. 

Current literature in the industrial sector studies almost exclusively technical aspects, such as 

optimizing different algorithms to achieve higher accuracy (e.g., Li et al. (2021)). Furthermore, 

 
1 At the time of writing, this research article is under review for publication in a scientific journal. Therefore,an 

extended abstract, taken from the research article, is provided here 
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the scientific literature offers little evidence to support the adoption of smart energy services 

such as NILM, even though they offer an economic advantage over expensive sub-meters 

(Armel et al. 2013; Bucci et al. 2021; Hosseini et al. 2017; Yi et al. 2019). Consequently, a 

business model perspective is hardly considered. However, to leverage the business potential 

of smart energy services in a more digital manufacturing environment, a business model 

framework that enables structuring and developing a business model for NILM as a 

representative smart energy service for industrial applications is needed. 

To provide a complete picture of a smart, data-based energy monitoring service, we derived 59 

hypotheses, which should provide a suitable basis for conceptualizing a service- and 

technology-oriented business model. First, we examine the status quo in the existing literature 

regarding smart services, service-oriented business models, and smart energy services like 

NILM to derive hypotheses for building the SCSC. Then, we empirically evaluate these 

hypotheses and further refine them with the help of expert interviews. We argue that by 

providing a methodically sound and practical SCSC, we contribute to literature and practice by 

complementing the ongoing, mainly technological-focused research activities. We thereby help 

to accelerate the introduction of smart energy services like NILM to the industrial sector. 
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7 Research Article #5 

 Fostering Non-Intrusive Load Monitoring for Smart Energy Management in Industrial 

Manufacturing: An Active Machine Learning Approach 

Working Paper 

Authors: Fabri, L.; Leuthe, D.; Schneider L.-M.; Wenninger, S. 

Keywords: Active Learning; Energy efficiency; Machine Learning; Non-Intrusive Load 

Monitoring; Smart Energy Management 

Extended Abstract1: 

Companies introduce smart energy management to enforce energy reduction (Zhang et al. 2022; 

Ali et al. 2021). Non-Intrusive Load Monitoring (NILM) is an emerging approach to enable 

more sophisticated smart energy management (Cui et al. 2022; Liu et al. 2022; Angelis et al. 

2022). NILM estimates the power consumption of individual applications from aggregated 

power measurements (Gopinath et al. 2020; Hart 1992). In contrast to intrusive load monitoring, 

NILM equalizes the implementation of expensive submetering while providing valuable 

information for energy-saving decision-making (Cui et al. 2022). Use cases of NILM include 

energy monitoring, demand side management, peak shaving, job scheduling and anomaly, and 

fault detection for saving energy (Barth et al. 2018; Bergman et al. 2011; Gopinath et al. 2020). 

For example, early detection of those faults or anomalies with the help of NILM avoids 

economic, energy, and environmental losses due to, e.g., maintenance cost reduction, machine 

fault reduction, increased spare part life, or the identification of inefficient applications 

(Gopinath et al. 2020). 

However, besides the lack of feasible industrial time series data, the key challenge of NILM in 

industrial manufacturing is the scarcity of labeled data, leading to costly and time-consuming 

workflows. Current NILM research focuses on technical and data science dimensions, including 

mathematical optimization and supervised and unsupervised machine learning algorithms (Cui 

et al. 2022). However, although NILM has existed for decades, it has not been widely adopted 

in industrial manufacturing (Holmegaard and Baun Kjaergaard 2016; Cui et al. 2022; Gopinath 

et a .  0 0 .  he reasons are     ’s comp e  t  and the  ac  o   nd str a  data  a e s  or 
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promising supervised algorithms (Feng and Tian 2021). Nevertheless, labeling new data in an 

industrial environment requires domain-specific knowledge, is time-consuming and expensive 

to obtain - and is often unattractive in practice (Feng and Tian 2021; Yu et al. 2021). To reduce 

labeling efforts, research introduced the concept of active learning (Settles 2010; Guo et al. 

2020), which is applied in various disciplines (Das et al. 2016; Ren et al. 2022; Angelis et al. 

2022; Kumar and Gupta 2020). However, active learning has gathered little attention in the 

context of NILM (Jin 2016). 

We develop an active learning model using the HIPE data set based on a real-world production 

plant (Bischof et al. 2018). We implement our model to validate the underlying concept of 

reducing the labeling effort. Our methodology is based on the Cross-Industry Standard Process 

for Data Mining (CRISP-DM). The proposed model does not replace existing NILM 

techniques. Instead, it complements its techniques by significantly reducing data labeling and 

user effort while maintaining appropriate disaggregation accuracies. Hence, we reduce the 

concerns about the cost of NILM and make them more applicable for reducing energy 

consumption. 

This work contributes to research and practice in three ways. First, we combine the two research 

streams on NILM for industrial manufacturing (Kalinke et al. 2021; Gopinath et al. 2020) and 

the research on active learning (Das et al. 2016; Finder et al. 2022). Second, we develop an 

active learning model, define the best-performing architecture depending on the disaggregation 

algorithms to separate  nd   d a  app  cat ons’ ener   cons mpt on, and compare three q er  

strategies to efficiently select a subset of the training data. Third, the resulting active learning 

model fosters the introduction of a cost-effective NILM system that enables practitioners to 

save energy through smarter energy management and contribute to cleaner production. 
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