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Chapter 1

Summary

Accretion is a phenomenon commonly observed throughout the universe across
many length scales (Clarke & Carswell 2009). From active galactic nuclei (AGN),
located at the center of galaxies, at the largest scale (Shakura 2018) to small T
Tauri stars and their accretion disks on the smaller side. Their feature of com-
monalty is matter, in the form of gas (or sometimes plasma) and dust falling onto
the central object due to gravity.
This thesis specifically researches protoplanetary disks. These are accretion disks
around young stellar objects (YSOs), with the potential to form planets. The
process of planet formation and, closely connected, the structure of planetary
disks are topics of great interest in astrophysics. Understanding the intricacies
of distant protoplanetary disks could also lead to insights in the formation of the
solar system. Ever improving earthbound and satellite telescopes are currently
observing nascent exoplanets in ever increasing numbers (Keppler, M. et al. 2018),
as well as probing the extend of proto-planetary disks and their spatially resolved
radiation. This radiation can be scrutinized in spectra and through interferometry
as visibility curves.
In order to make conclusions from experimental observations to the inner work-
ings of the disk, a physically self-consistent model of the processes within the
disk is necessary. Such a model has been realised in this work as a numerical
simulation. The model includes the radiative transfer of energy from the star
onto the disk, the transport of energy through the disk via radiative diffusion
and thermal conduction, the dissipation of energy as it is converted from the
motion of accretion to heat, and the energy loss from the disk through radiative
cooling (Schobert et al. 2019). It includes the equilibrium of the density within
the disk with respect to the stellar gravity, its own gravity, the centrifugal force
and steady-state accretion. Most importantly it includes the sublimation and
reformation of the dust at the inner rim of the disk, as well as the diffusion of
dust via turbulence as it bounds to the gas (Schobert, B. N. & Peeters, A. G.
2021).
This thesis features three different publications, which will for brevity be referred

3



to as (SPR19) (Schobert et al. 2019), (SP21) (Schobert, B. N. & Peeters, A. G.
2021) and (SVUFP24) in the following. The latest one is currently in review at
Astronomy & Astrophysics. The three publications are closely connected and
form a coherent path that cumulates in the final publication. While the first two
publications can certainly be seen to stand on their own based on scientific merit,
they simultaneously lay the foundations for the third paper.
The first work (SPR19) investigates the influence of accretion heating and tur-
bulent heat conduction on the equilibrium of protoplanetary disks. Extending
a previous 2D axis-symmetric passive disk model (Flock et al. 2016) a new and
independent numerical code was developed. The model includes dust sublim-
ation and radiative transfer with the flux-limited diffusion approximation, and
predicts the density and temperature profiles as well as the dust-to-gas ratio of
the disk. It is shown that the addition of accretion heating has a large impact:
For accretion rates above 5 · 10−8M�/yr (solar masses per year) a zone forms
behind the silicate condensation front with sufficiently high temperature to sub-
limate the dust and form a gaseous cavity. Assuming a Prandtl number ∼ 0.7,
it is furthermore shown that the turbulent heat conduction cannot be neglected
in the evaluation of the temperature profile. While the inner rim position is not
affected by viscous heating, the dead zone edge shifts radially outward for higher
accretion rates. The main impact of this work was the previously often neglected
accretion heating. This effect is therefore necessarily included in all the following
works.
The second work (SP21) hypothesizes if turbulence in protoplanetary disks is
necessary for accretion and small dust particles are well coupled to the gas, they
have to undergo diffusion due to this turbulent motion. SP21 then investigates
the influence of turbulence-induced dust diffusion on the equilibrium of proto-
planetary disks, by including dust diffusion in the model. It is shown that dust
diffusion can have a large impact: Assuming the dust survives for 104 seconds
or longer before it can be evaporated, this leads the dust diffusion to widen the
inner disk considerably. This effect is generated through a feedback mechanism
as the diffusion length is much shorter than the disk width. With increasing dust
diffusion, the inclination of the inner rim toward the stellar radiation becomes
steeper until it is almost vertical. The temperature range of evaporation and
condensation, which is linked to the dust composition, has no influence on this
effect. For realistic parameters, dust diffusion cannot be neglected when determ-
ining the equilibrium of the disk. Stronger turbulence inside the disk induces
more dust diffusion. Therefore, the dust density grows more gradually over a
greater distance and less radiation reaches the disk surface. The new equilibrium
shape of the disk is more inclined toward the star. This effect is universal and
independent of the specific dust composition. The main impact of this work is
the inclusion of dust diffusion, which enables a significantly better and physically
more realistic treatment of the dust sublimation front. This effect is therefore
necessarily included in the following work.
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The third and final paper (SVUFP24) uses the now fully developed model (with
accretion heating and dust diffusion) to explain the spectral energy distribution
and visibility curves in near- and mid-infrared of the Herbig Ae star HD 144432.
HD 144432 is an object of elevated interest in the astrophysical community (Pérez,
M. R. et al. 2004; Carmona, A. et al. 2007; Müller, A. et al. 2011; Varga, J. et al.
2018), because its luminosity to radial extension relation is as theoretically expec-
ted in the near-infrared, but it is larger than expected in the mid-infrared region.
It has this feature in common with several systems that have been observed and
various theories have been proposed to explain this phenomenon. HD 144432 is
like many other YSOs a system of multiple stars, specifically a hierarchical triple
system. This paper finds that these companion stars to HD 144432A provide
a necessary boundary condition on the outer rim of the disk and its ability to
radiatively cool the disk. Further the influence of accretion heating cannot be
neglected and is important for the understanding of the structure of this disk.
This corresponds well with measured visibility curves from HD 144432, where
mid infrared radiation, is observed coming from further away from the star as ex-
pected without accretion heating. Further it is possible to constrain the accretion
rate and inner rim radius of the disk, as well as confining possible dust compos-
itions. The 3 µm visibility curve is strongly connected to the inner rim position
and there is an easy analytical equation connecting half-width of the visibility
to the inner rim position. The 9 µm visibility curve is indicative of the amount
of accretion heating within the disk, HD 144432 has a high turbulent viscosity,
with α = 0.04 and an accretion rate of Ṁ = 1.6 · 10−8M�yr−1. The SED is best
reproduced with graphite and silicate particles with sizes in the range of 0.003-1
µm and an absorption to emission ratio of ε = 0.11. So (SVUFP24) presents a
method, with which it is possible to extract decisive properties of a system from
observational data using the proposed physical model. The code for which can
be found online at https://bitbucket.org/astro_bayreuth/rmhdcode.
The structure of this thesis is as follows: after the English and German abstracts
a theory chapter is provided with all the necessary derivations for the model used
in the publications. In chapter 4 the numerics are explained, followed by a list of
the publications and then the publications themselves.
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Chapter 2

Zusammenfassung

Akkretion ist ein Phänomen, das über viele Längenskalen hinweg im gesamten
Universum beobachtet wird (Clarke & Carswell 2009). Die größten Objekte
sind aktive Galaxiekerne, die sich im Zentrum von Galaxien befinden (Shak-
ura 2018) und am kleineren Ende der Skala sind die T-Tauri-Sterne mit ihren
Akkretionsscheiben. Das gemeinsame Merkmal aller Akkretionsprozesse ist, dass
Materie in Form von Gas (oder manchmal Plasma) und Staub aufgrund der
Schwerkraft auf das zentrale Objekt fällt.
Diese Arbeit untersucht speziell protoplanetare Scheiben. Sie sind Akkretions-
scheiben um junge Sterne, mit dem Potenzial, Planeten zu bilden. Der Prozess der
Planetenbildung und, eng damit verbunden, die Struktur planetarer Scheiben sind
Themen großen Interesses in der Astrophysik. Das Verständnis der Feinheiten
entfernter protoplanetarer Scheiben könnte auch zu Einblicken in die Entstehung
des Sonnensystems führen. Die sich stetig verbessernden bodengebundenen und
Satelliten-Teleskope beobachten derzeit immer mehr junge Exoplaneten, die in
der Entstehung begriffen sind (Keppler, M. et al. 2018). Außerdem sondieren die
Teleskope die Ausdehnung protoplanetarer Scheiben und ihre räumlich aufgelöste
Strahlung. Diese Strahlung kann in Spektren oder durch Interferometrie als In-
terferenzkurven untersucht werden.
Um Schlussfolgerungen aus experimentellen Beobachtungen auf die inneren Ab-
läufe der Scheibe ziehen zu können, ist ein physikalisch selbst konsistentes Mod-
ell der Prozesse innerhalb der Scheibe erforderlich. Ein solches Modell wurde
in dieser Arbeit als numerische Simulation realisiert. Das Modell umfasst den
Strahlungstransport von Energie vom Stern auf die Scheibe, den Transport der
Energie durch die Scheibe mittels Strahlungsdiffusion undWärmeleitung, die Um-
wandlung von Energie, die durch Akkretionsheizung aus der Bewegung entsteht,
und Verlust von Energie aus der Scheibe durch Strahlungskühlung (Schobert
et al. 2019). Es umfasst das Kräftegleichgewicht eines Dichteelements innerhalb
der Scheibe unter Berücksichtigung der Gravitation des Sterns, der Gravitation
des Dichteelements selbst und der Zentrifugalkraft um stationäre Akkretion zu
gewährleisten. Am wichtigsten ist jedoch die Sublimation und Kondensation des
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Staubs am inneren Rand der Scheibe sowie die Diffusion des Staubs durch Tur-
bulenz, während er sich im Gas suspendiert befindet (Schobert, B. N. & Peeters,
A. G. 2021).
Diese Arbeit umfasst drei verschiedene Veröffentlichungen, die der Einfachheit
halber im Folgenden als (SPR19) (Schobert et al. 2019), (SP21) (Schobert, B. N.
& Peeters, A. G. 2021) und (SVUFP24) bezeichnet werden. Die neueste befin-
det sich derzeit in der Überprüfung bei "Astronomy & Astrophysics". Die drei
Veröffentlichungen sind eng miteinander verbunden und bilden einen stringenten
Weg hin zur abschließenden Veröffentlichung. Während die ersten beiden Ver-
öffentlichungen aufgrund ihres wissenschaftlichen Beitrags für sich allein stehen
können, legen sie gleichzeitig auch die Grundlagen für das dritte Papier.
Die erste Arbeit (SPR19) untersucht den Einfluss von Akkretionsheizung und
turbulenter Wärmeleitung auf den Gleichgewichtszustand von protoplanetaren
Scheiben. Der verwendete numerische Code wurde selbst entwickelt, basiert auf
einem früheren 2D-achsensymmetrischen Modell (Flock et al. 2016) ohne Akkre-
tionsheizung und erweitert dieses. Das Modell umfasst die Sublimation von Staub
und den Strahlungstransport mit der flusslimitierten Diffusionsnäherung und sagt
die Dichte- und Temperaturprofile sowie das Staub-zu-Gas-Verhältnis der Scheibe
voraus. Es wird gezeigt, dass die Ergänzung der Akkretionsheizung einen großen
Einfluss hat: Für Akkretionsraten über 5 · 10−8M�/Jahr (Sonnenmassen pro
Jahr) bildet sich hinter der Silikatkondensationsfront eine Zone mit ausreichend
hoher Temperatur, um den Staub zu sublimieren und eine gasförmige Kavität zu
bilden. Unter der Annahme einer Prandtl-Zahl von ∼ 0.7 wird außerdem gezeigt,
dass die turbulente Wärmeleitung bei der Bewertung des Temperaturprofils nicht
vernachlässigt werden kann. Während die Position des inneren Rands nicht von
der viskosen Heizung beeinflusst wird, verschiebt sich der Rand der toten Zone
radial nach außen bei höheren Akkretionsraten. Der Hauptbeitrag dieser Arbeit
war die zuvor oft vernachlässigte Akkretionsheizung. Dieser Effekt ist daher in
allen folgenden Arbeiten notwendigerweise enthalten.
Die zweite Arbeit (SP21) stellt die Hypothese auf, dass sich kleine Staubpartikel,
die die Bewegung des Gases mitvollziehen, diffusiv verhalten aufgrund der Tur-
bulenz des Gases, die für Akkretion in protoplanetaren Scheiben notwendig ist.
SP21 untersucht dann den Einfluss der turbulenzinduzierten Staubdiffusion auf
das Gleichgewicht von protoplanetaren Scheiben, indem die Staubdiffusion im
Modell berücksichtigt wird. Es wird gezeigt, dass die Staubdiffusion einen großen
Einfluss haben kann: Wenn angenommen wird, dass der Staub 104 Sekunden oder
länger überlebt, bevor er sublimieren kann, führt dies dazu, dass die Staubdiffu-
sion den inneren Rand der Scheibe erheblich erweitert. Dieser Effekt wird durch
einen Rückkopplungsmechanismus erzeugt, da die Diffusionslänge viel kürzer ist
als die Scheibenbreite. Mit zunehmender Staubdiffusion wird die Neigung des
inneren Rands zur stellaren Strahlung steiler, bis sie fast vertikal ist. Der Tem-
peraturbereich der Sublimation und Kondensation, der mit der Staubzusam-
mensetzung verbunden ist, hat keinen Einfluss auf diesen Effekt. Für real-
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istische Parameter kann die Staubdiffusion nicht vernachlässigt werden, wenn
das Gleichgewicht der Scheibe bestimmt wird. Stärkere Turbulenzen innerhalb
der Scheibe induzieren eine größere Staubdiffusion. Daher nimmt die Staubdi-
chte über eine größere Entfernung allmählicher zu, und weniger Strahlung erreicht
die Oberfläche der Scheibe. Die neue Gleichgewichtsform der Scheibe neigt sich
stärker zum Stern hin. Dieser Effekt ist universell und unabhängig von der spezi-
fischen Staubzusammensetzung. Der Hauptbeitrag dieser Arbeit besteht in der
Berücksichtigung der Staubdiffusion, die eine deutlich bessere und physikalisch
realistischere Behandlung der Staubsublimationsfront ermöglicht. Dieser Effekt
ist daher in der folgenden Arbeit notwendigerweise enthalten.
Das dritte und abschließende Papier (SVUFP24) verwendet das nun vollständig
entwickelte Modell (mit Akkretionsheizung und Staubdiffusion), um die spek-
trale Energiedichteverteilung und die Interferenzkurven im nahen und mittleren
Infrarotbereichs des Herbig Ae-Sterns HD 144432 zu erklären. HD 144432 ist
ein Objekt von hohem Interesse in der astrophysikalischen Gemeinschaft (Pérez,
M. R. et al. 2004; Carmona, A. et al. 2007; Müller, A. et al. 2011; Varga, J.
et al. 2018), weil sein Verhältnis von Leuchtkraft zu radialer Ausdehnung im
Nahinfrarot theoretisch erwartungsgemäß ist, aber im mittleren Infrarot größer
als erwartet ist. Es hat dieses Merkmal mit mehreren Systemen gemeinsam,
die beobachtet wurden, und es wurden verschiedene Theorien vorgeschlagen, um
dieses Phänomen zu erklären. HD 144432 ist wie viele andere Systeme aus mehr-
eren Sternen zusammengesetzt, in diesem Fall handelt es sich speziell ein hier-
archisches Dreifachsystem. Diese Arbeit zeigt, dass diese Begleitsterne von HD
144432A eine notwendige Randbedingung am äußeren Rand der Scheibe und
ihre Fähigkeit zur Strahlungskühlung bereitstellen. Darüber hinaus kann der
Einfluss der Akkretionsheizung nicht vernachlässigt werden und ist wichtig für
das Verständnis der Struktur dieser Scheibe. Dies entspricht gut den gemessenen
Interferenzkurven von HD 144432, bei denen mittlere Infrarot Strahlung, weiter
vom Stern entfernt als ohne Akkretionsheizung erwartet, beobachtet wird. Weit-
erhin ist es möglich, die Akkretionsrate und den inneren Rand der Scheibe sowie
mögliche Staubzusammensetzungen einzuschränken. Die 3 µm Interferenzkurve
ist eng verknüpft mit der Position des Staubsublimationsfront und (SVUFP24)
präsentiert einen analytischen Zusammenhang zwischen dem Halblichtradius der
3 µm Interferenzkurve und der Position der Sublimationsfront. Die 9 µm Inter-
ferenzkurve ist kenneichnend für die Menge an Akkretionswärme in der Scheibe,
HD 144432 hat eine hohe turbulente Viskosität, mit α = 0.04 und einer Akkre-
tionsrate von Ṁ = 1.6 · 10−8M�yr−1. Die SED kann am besten mit der Sim-
ulation genähert werden, wenn Graphit- und Silikatpartikel als Staub angen-
ommen werden mit Korngrößen von 0.003-1 µm und einem Verhältnis zwischen
Absorption und Emission der Staubopazitäten von ε = 0.11. Daher präsentiert
(SVUFP24) eine Methode, mit der es möglich ist, entscheidende Eigenschaften
eines Systems aus Beobachtungsdaten unter Verwendung des vorgeschlagenen
physikalischen Modells abzuleiten. Der Code hierfür ist online verfügbar unter
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https://bitbucket.org/astro_bayreuth/rmhdcode.
Die Struktur dieser Arbeit ist wie folgt: Nach den englischen und deutschen
Zusammenfassungen kommt ein Theoriekapitel mit allen notwendigen Herleitun-
gen für das in den Veröffentlichungen verwendete Modell. In Kapitel 4 wird die
Numerik erläutert, gefolgt von einer Liste der Veröffentlichungen und dann den
Veröffentlichungen selbst.
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Chapter 3

Theoretical Background

This chapter motivates the model equations and provides the necessary theor-
etical background for the three publications and the numerical framework used
therein.

3.1 Protoplanetary disks

A protoplanetary disk is the material orbiting around a YSO, mainly dense gas
and dust. The gas is comprised of mostly hydrogen and to a lesser part helium
and other trace gases. The dust is mainly silicates, but iron and carbon based
grains are also present to a lesser extent in some disks. The disk extents from
close to the stellar surface to several astronomic units outward and its vertical
dimension is much smaller than its radial distance from the star. The central
star is either a Herbig Ae/Be star or a T Tauri star, depending on its mass.
Herbig Ae/Be stars are slightly more massive (2-5 M�) while younger than our
sun (Herbig 1960) and T Tauri stars have even less mass (<2 M�) and are also
early in their evolution.
The specific mechanism of disk formation may vary in each scenario, yet initial
insights can be gleaned through general principles. For instance, one could con-
sider a gas cloud contracting due to its own gravitational pull (Clarke & Carswell
2009). Typically, the cloud possesses a finite angular momentum relative to its
centre of mass, which remains conserved. Consequently, as the cloud’s diameter
decreases, its rotational velocity must increase. Meanwhile, internal energy can
escape the system through radiation into the surrounding areas. The emitted
photons carry energy but only very little momentum. As a result, the internal
temperature and pressure decrease, while the angular momentum almost com-
pletely remains. After contracting in one dimension, the system tends to adopt
a disk-like configuration.
These disks then evolve further, transporting angular momentum outwards and
matter inwards to the central star in a process called accretion. It is aided by
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3.2. HYDROSTATIC EQUILIBRIUM

the viscosity of the flow, however, calculations show that the molecular viscosity
within accretion disks would lead to much larger time scales of evolution than
observed. Therefore the process of accretion within most protoplanetary disks
must be aided by turbulence. This is further described in section 3.6.
The temperature in the disk generally decreases with the distance from its central
star. So there is a position within the disk where it becomes sufficiently cold for
the dust particles to be formed. This transition area is called the inner rim of
the disk and it exists in a delicate balance with the stellar radiation. The pres-
ence of dust increases the opacity of the disk medium and thus more radiation is
absorbed. Further, the disk rim, if it is sufficiently large, can cast a shadow on
the disk behind it. Because of these effects the inner rim is a particular area of
interest in the structure of protoplanetary disks.
It is advantageous to have a theoretical framework for a protostellar disk to assess
it against empirical observations and to evaluate the impact of different factors.
Given that the non-linear equations governing the evolution of such a disk lack
known analytical solutions, employing numerical simulations emerges as the most
viable approach.
The objective is to compute the density and temperature distributions of the disk
for a star characterized by specific parameters, namely its mass M∗, radius R∗,
and luminosity L∗ (or alternatively, surface temperature T∗). The methodology
adopted here closely mirrors that outlined in (Flock et al. 2016). Nonetheless, for
thoroughness, the following sections motivate the model equations and provide
the necessary theoretical background.

3.2 Hydrostatic Equilibrium

The density structure is derived by assuming hydrostatic equilibrium between the
pressure exerted by an ideal gas, the centrifugal force and gravity. This assump-
tion is justified due to the relatively rapid attainment of this equilibrium com-
pared to other processes discussed in section 4.1, as demonstrated subsequently.
To facilitate integration along the optical path later on, employing spherical co-
ordinates (r, θ, φ) for the simulation proves convenient. The polar axis of the
coordinate system aligns with the rotational axis of the disk, thereby situating
the protostellar disk within the equatorial plane. Consequently, the azimuthal ve-
locity of the gas substantially surpasses the radial or polar velocities (vφ � vr, vθ).
Commencing with the Euler equation

ρ (∂tv + (v · ∇)v) = −∇p− ρ∇Φ (3.1)

and employing ∂tv = 0 along with the gradient in polar coordinates results in

ρ
vφ

r sin θ
∂φ

(
vφφ̂

)
= −∇p− ρ∇Φ. (3.2)
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3.2. HYDROSTATIC EQUILIBRIUM

In this context, ∂x represents the partial derivative with respect to x. Next,
one differentiates the unit vector φ̂ with respect to φ and arranges the terms
according to their unit vectors, yielding

−ρ
v2
φ

r sin θ
(cos θ θ̂ + sin θ r̂) = − (∂rp+ ρ∂rΦ) r̂ − 1

r
∂θ p θ̂ (3.3)

∂rp = −ρ∂rΦ +
ρ v2

φ

r
(3.4)

1

r
∂θ p =

ρ v2
φ

r tan θ
, (3.5)

where ρ represents the gas density, vφ denotes the velocity in the azimuthal dir-
ection, and uppercase Φ denotes the gravitational potential, defined as Φ = GM∗

r
,

where G is the gravitational constant and M∗ is the stellar mass. The pressure
p is incorporated for closure with the thermodynamic equations, assuming ideal
gas pressure as follows:

p =
ρkBT

µgu
, (3.6)

where T denotes temperature, kB signifies the Boltzmann constant, µg represents
the mean molecular weight, and u denotes the atomic mass unit.
A reasonable approximation is that ∂θT = 0, owing to the fact that many particles
orbit around the star in a plane slightly tilted with respect to the equator. A
small volume of these particles retains its temperature during one orbit, thus
providing a constant temperature along θ for a fixed radius. Although not entirely
accurate, this assumption provides further insight, as elaborated in section 4.3.1.
Employing this approximation on equation (3.5) alongside (3.6), one obtains:

1

r

kBT

µgu
∂θρ =

ρ v2
φ

r tan θ
(3.7)

This simplifies to:

c2
s ∂θρ =

ρ v2
φ

tan θ
(3.8)

where cs =
√
∂ρp =

√
kBT
µgu

represents the isothermal speed of sound, and tan θ =
r
z
, where z is the height over the midplane, and rdθ ≈ −dz =⇒ ∂θ ≈ −r∂z

around θ = π/2 at the equator. Hence:

1

ρ
∂zρ = −

v2
φ

r2 c2
s

z = −Ω2

c2
s

z (3.9)
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3.3. RADIATION EQUILIBRIUM

leading to the solution:

ρ(z) = ρ0 exp

(
− z2

2H2

)
(3.10)

representing a Gaussian density profile for an isothermal disk. Here, H signifies
the pressure scale height, defined as:

H =
cs
Ω
, (3.11)

where the rotational frequency Ω = vφ/r is utilized. Substituting Ω with the
Kepler rotational frequency:

ΩK =

√
GM∗
r3

, (3.12)

the pressure scale height becomes:

H =

√
kBTr3

GM∗µgu
(3.13)

with M∗ representing the stellar mass. Defining the surface density as:

Σ(r) =

∞∫
−∞

ρ(r, z)dz (3.14)

ρ0 can be expressed through integration of (3.10) as:

Σ =
√

2πHρ0 (3.15)

ρ0 =
Σ√
2πH

. (3.16)

This expression for ρ0 is utilized to calculate the midplane density in the code,
and by utilizing formulae (3.4) and (3.5), the density can be integrated for every
point, as further explained in section 4.3.1.

3.3 Radiation equilibrium
To determine the temperature distribution, one must solve a coupled set of equa-
tions for the radiation energy density ER and the internal energy density of the
gas ε. These equations describe radiation transfer and represent a subset of ideal
radiative magnetohydrodynamics (RMHD). If electric and magnetic fields were
neglected, these equations, combined with those from the previous section, would
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3.3. RADIATION EQUILIBRIUM

describe the complete ideal RMHD. However, these fields only become signific-
ant at the turbulent length scale and will be introduced later through viscous
dissipation. The two coupled equations remaining are:

∂tρε = −σc(aRT 4 − ER)−∇ · F∗ (3.17)

∂tER −∇
cλ

σ
∇ER = +σc(aRT

4 − ER), (3.18)

where σ represents the mean opacity, aR = 4σB/c denotes the radiation constant
with σB being the Stefan-Boltzmann constant, F∗ stands for the irradiation flux
from the star, c indicates the vacuum speed of light, and λ signifies the flux
limiter. The flux limiter serves as the diffusion constant for the radiation energy
density and is determined according to Levermore & Pomraning (1981). They
propose the following rational approximation:

λ =
2 +R

6 + 3R +R2
with (3.19)

R =
|∇ER|
σER

, (3.20)

where R = |∇ER|
σER

. This approximation satisfies lim
R→0

λ(R) = 1/3 in the optically
thick limit and lim

R→∞
λ(R) = 0 in the optically thin limit. Ensuring causality, the

flux-limited diffusion theory (FDT) restricts the radiative flux to never exceed c
times the radiation energy density.
To establish closure between internal energy and temperature, the ideal gas ap-
proximation is employed again:

ρε =
p

Γ− 1
=

ρkBT

(Γ− 1)µgu
= cV ρT (3.21)

Here, Γ denotes the adiabatic index and cV signifies the specific heat capacity.
This yields for equation (3.17):

cV ∂tρT = −σc(aRT 4 − ER)−∇ · F∗ . (3.22)

The irradiation flux is modelled as blackbody radiation times an attenuation
factor:

F∗(r) =

(
R∗
r

)2

σBT
4
∗ e
−τ∗ . (3.23)

Here, e−τ∗ accounts for the absorption of light in the stellar medium and the disk.
The optical depth from the star is computed by integrating along the optical path
starting at the magnetic truncation radius Rtrunc of the star:

τ∗ =

r∫
Rtrunc

σ∗dr = τ0 +

r∫
rmin

σ∗dr , (3.24)
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where τ0 represents the optical depth up to the inner box radius rmin. This
estimation is linear, τ0 = κgasρ(rmin)(rmin − Rtrunc), being the product of the
distance from the truncation radius of the star to the inner box radius times the
mean gas opacity. The mean gas opacity is the product of the gas density at
the inner box radius and the density-independent opacity of the gas κgas at the
frequency of the stellar light.
The mean opacities at the typical wavelengths of the stellar light and the rim’s
thermal emission are defined as:

σ∗ = ρdustκdust(ν∗) + ρgasκgas and (3.25)
σ = ρdustκdust(νrim) + ρgasκgas with (3.26)

ρdust = fd2gρgas . (3.27)

Here, κgas represents the density-independent opacity of the gas, which is gen-
erally frequency-dependent. For computational simplification, an average value
of κgas = 10−5,m2kg−1 is assumed for all frequencies, ensuring that the radial
optical depth τ∗ remains small throughout the gaseous inner disk before reaching
the dust condensation front. This choice prevents excessive radiation blockage
and ensures that the inner rim does not approach the star too closely.
Regarding the dust opacity, two wavelengths are significant: the stellar light’s
wavelength and the thermal radiation of the rim at the condensation temperat-
ure.
With these characteristic temperatures T and their corresponding wavelengths ν
known the Planck mean opacities are calculated with the formula

κPlanck =

∫∞
0
κνBν(T )dν∫∞

0
Bν(T )dν

(3.28)

with

Bν(ν, T ) =
2hν3

c2

1

exp
(

hν
kBT

)
− 1

(3.29)

For example for a star with a surface temperature T∗ = 10, 000 K, a dust opacity of
κdust(ν∗) = 210m2kg−1 was calculated in (Flock et al. 2016) using the frequency
dependent opacity κ(ν) obtained by the MieX code by Wolf & Voshchinnikov
(2004). Similarly, they determined an opacity value for the thermal radiation
at approximately 1300 K, representing a typical dust sublimation temperature.
This value is κdust(νrim) = 70m2kg−1.
The next point of interest is the dust, fd2g denotes the dust-to-gas ratio of the
respective densities, the calculation of which will be explained in the following
section.
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3.4 Dust treatment
Arguably, the most significant factor influencing the evolution of the disk is dust
sublimation. Due to its higher radiation absorption compared to gas, dust ex-
periences substantial heating from both the star and its own emitted infrared
radiation, a process known as backwarming.
Additionally, even a small amount of dust can considerably attenuate the radi-
ation that penetrates beyond it, resulting in a narrow transition zone between
vapour and condensed dust. Within the three publications that comprise this
thesis the treatment of the dust has evolved, these changes are explained in the
following.

3.4.1 Starting point

To address the sharp boundary, the dust sublimation formula proposed by Flock
et al. (2016) smooths the transition over a temperature span of 100 K, employing
the hyperbolic tangent function as a modelling tool. The formula, expressed as:

fd2g =
f∆τ

2

{
1− tanh

[(
T − Tev
100K

)3
]}{

1− tanh(1− τ∗)
2

}
if T > Tev

=
f0

2
{1− tanh(20− τ∗)}+ f∆τ if T < Tev ,

(3.30)

utilizes the dust evaporation temperature Tev, the reference dust-to-gas ratio f0,
and the transition dust-to-gas ratio f∆τ .
For the dust evaporation temperature, the fitting model proposed by Isella &
Natta (2005) is adopted:

Tev = 2000K
(

ρ

1 g cm−3

)0.0195

(3.31)

which characterizes the evaporation temperature’s dependence on gas density for
silicate grains. The transition dust-to-gas ratio f∆τ is defined as:

f∆τ =
∆τ∗

ρgasκdust(ν∗)∆r
=

0.3

ρgasκdust(ν∗)∆r
(3.32)

where ∆r denotes the radial size of a single grid cell. The choice of a transition
optical depth ∆τ∗ = 0.3 ensures the resolution of radiation absorption at the rim
(Flock et al. 2016).
To maintain numerical stability, it is beneficial to impose a minimum value of
fmin
d2g = 10−10, indicating virtually complete dust evaporation, and a maximum
value of f0 = 10−2, representing the dust-to-gas reference ratio.
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The dust sublimation formula illustrates a gradual formation of the dust halo
for temperatures lower than Tev, while it delineates the actual sublimation front
for temperatures exceeding it. Notably, the formula for the dust halo reaches an
upper limit of f∆τ beyond an optical depth of one and close to the evaporation
temperature. Beyond the condensation front, the dust-to-gas ratio increases with
optical depth and peaks past τ∗ = 20.
However, if an optically thick region is heated beyond the evaporation temper-
ature, this method experiences discontinuity. Such an occurrence was noted in
(Schobert et al. 2019) as dust waves traversing the inner hole of the disk. To ad-
dress this issue and provide a smoother description, (Schobert, B. N. & Peeters,
A. G. 2021) introduces a new formula for the dust-to-gas ratio that is both sim-
pler and continuous. This new formula and the introduction of dust diffusion,
that enables it is presented in the next section.

3.4.2 Dust diffusion

The simplified dust-to-gas ratio is:

fd2g,2021 =
f0

2

{
1− tanh

[(
T − Tev
∆Tdust

)3
]}{

1− tanh(1− τ∗)
2

}
, (3.33)

The substitution of f∆τ with f0 ensures that there is no longer a need for a dis-
tinction between temperatures above and below the evaporation point, as the
second scenario outlined in equation (3.30) is now integrated into the first one.
Achieving the same outcome as before, where fd2g = f0 for low temperatures and
high optical depths, is preferable with just a single continuous equation. Further-
more, a new parameter, ∆Tdust, is introduced to characterize the temperature
range over which the transition in dust-to-gas ratio occurs. This parameter’s
value, generally set at ∆Tdust = 100,K in this work, is contingent upon the dust
composition, though various values are explored in (Schobert, B. N. & Peeters,
A. G. 2021).
Incorporating this new formula into the numerical framework becomes feasible
by circumventing a drawback of the previous model, where all radiation would
be absorbed within a single cell if the dust-to-gas ratio increases too steeply. To
ensure a seamless transition, the new model now relies on the phenomenon of
dust diffusion instead of a staggered dust-to-gas ratio.
To formulate a description for dust diffusion, one begins by considering the con-
tinuity equation and incorporates both the advective and diffusive flux compon-
ents:

∂ρ

∂t
= ∇ · (D∇ρ)−∇ · (vρ) +R, (3.34)

where ρ represents density, D stands for the diffusion coefficient, v denotes fluid
velocity, and R encompasses any necessary source or sink terms relevant to dust
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description. Due to the relatively small magnitude of the diffusion term, it can
initially be disregarded, allowing the equations to be solved for the purely advect-
ive scenario. This results in the hydrostatic solution for gas density (Flock et al.
2016; Schobert et al. 2019), yielding ρdust = fd2gρgas = ρ0 as the most suitable
approximation, considering that R is incompletely characterized. Substituting
this lowest-order solution ρ0 into the first-order terms yields:

ρdiff − ρ0

τdiff
= ∇ · (D∇ρdiff) (3.35)

ρdiff − ρ0

τdiff
= D∇2ρdiff (3.36)[

1−Dτdiff∇2
]
ρdiff = ρ0, (3.37)

where ρ0 represents the lowest-order solution for density, accounting solely for
advection, while ρdiff denotes the first-order solution incorporating diffusion. A
forward difference approach was employed along with a typical time scale, τdiff,
to approximate the derivative. In Step (3.36), it is assumed that the gradient
length of the mass density is significantly smaller than the length scale over which
the diffusion coefficient D varies. To incorporate diffusion, the following implicit
equations are computed numerically:[

1−Dτdiff∇2
]
ρgas,diff = ρgas (3.38)[

1−Dτdiff∇2
]
ρdust,diff = ρdust (3.39)

expressed by the dust-to-gas ratio as fd2g = ρdust,diff/ρgas,diff , ρdiff denotes the
respective density of dust or gas following one diffusion time step. Here, τdiff rep-
resents the typical duration for dust condensation or evaporation, and D signifies
the dust diffusion constant. The concept revolves around the notion that dust
particles undergoing formation or destruction continue to be displaced over this
period due to intrinsic turbulence or their strong coupling with the gas. One can
visualize this as a form of dust memory, as its creation and annihilation are not
instantaneous.
The dust diffusion constant is linked to gas diffusion through the Stokes number
St (Brauer et al. 2008):

Ddust =
Dgas

1 + St
≈ Dgas (3.40)

Given that St < 1 for small particles, both coefficients approximately coincide
(Brauer et al. 2008), leading to Ddust = ν = αcsH.
The typical condensation time τdiff spans from 105 to 107 s (Morfill 1988). Chon-
drules form within a timescale of 105 s (Tachibana et al. 2011), while the form-
ation timescales for corundum and hibonite range from 105 to 107 s (Nakamura
et al. 2007). Silicate grain destruction occurs via sublimation and proceeds under
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quasi-equilibrium conditions (Lenzuni et al. 1995), suggesting that the evapora-
tion of silicate dust takes a comparable time to its formation.
Assuming one diffusion time as the average formation time is a useful simplifica-
tion, as the exact nucleation time of dust particles and their evaporation depend
on the dust’s chemistry and the temperature difference between the evaporation
temperature and the particle’s environment. However, to encompass a wide range
of possible dust compositions, a study on the impact of different formation times-
cales was conducted in (Schobert, B. N. & Peeters, A. G. 2021).
The references discussed above show that a one µm sized grain can survive longer
than 105 seconds. To further strengthen this point a short concise estimate is
provided that shows, that a grain can not evaporate on a timescale much shorter
than the one considered. The following presents a comparison between the energy
needed for evaporation and the maximum energy available to the grain within
one diffusion time:
First one calculates the latent heat of evaporation of the dust grain. For all intents
and purposes now the physical properties of forsterite are used. Forsterite is an
olivine, that is abundant in the Earth’s upper mantle and is commonly found in
meteorites Hashimoto (1990), it is used here as a stand in for our generic silicate
grains. First the mass of the dust grain is, assuming a radius of 1µm,

mgrain =
4

3
π(1µm)3ρforsterite ≈ 1.36 · 10−11g (3.41)

with the density of forsterite being ρforsterite = 3.25 g
cm3 .

The enthalpy of evaporation is

∆Hv = 543± 33
kJ
mol

(3.42)

as stated by Nagahara et al. (1994) in the abstract. This is corroborated by
Chase et al. (1986), which states

∆H0 = 139.7± 8.0
kcal
mol

= 584.5± 33.5
kJ
mol

(3.43)

as the enthalpy of evaporation. Using the molar weight of forsterite, 140.69 g
mol−1, and the average of both values given

∆H = 4.01
kJ
g

(3.44)

yields
∆Eevap = mgrain∆H = 5.45 · 10−8J (3.45)

Next, the maximum amount of gas molecules that can pass their energy onto
the dust grain within τdiff = 105 seconds is calculated. The gas molecules move
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at the speed of sound. The speed of sound is

cs =

√
kBΓT

mg

(3.46)

where mg = 2.353u is the mass of a gas molecule, u is the atomic unit of mass
and Γ = 1.42 is the adiabatic index. This yields for T = 1385.7 K, which is taken
from a fiducial simulation at the τ = 1 surface and also a reasonable estimate for
the temperature of evaporation:

cs ≈ 2637
m
s

(3.47)

Multiplying this by the time yields

l = csτdiff = 2.637 · 108 m (3.48)

If the the gas travels this distance past the dust grain then it covers a cyl-
indrical volume of

V = l (1µm)2π ≈ 8.28 · 10−4m3 (3.49)

assuming the grain has a radius of 1 µm. This volume contains N gas molecules

N =
V ρgas
mg

≈ 7.46 · 1013 (3.50)

with which the dust grain can theoretically collide, assuming a gas density
ρgas = 3.52 · 10−13 g/cm3, taken from the simulation at the point of interest
(namely the lateral side of the inner rim, where the significant widening takes
place). These can transmit a maximum heat of

∆E =
3

2
NkB∆T = 3.1 · 10−8 J < ∆Eevap = 5.45 · 10−8J (3.51)

if the temperature difference is ∆T = 20 K, which is directly taken from the
simulation results in (Schobert, B. N. & Peeters, A. G. 2021).
Not only is the calculated energy that can be transferred to the dust grain in
the time 105 seconds smaller than the energy needed to evaporate the grain, it is
also overestimates the energy that can realistically be transmitted to the grain,
because it neglects that the grain will receive less radiation from grains nearby
as it travels to regions where dust is less abundant and will radiate more itself
as it gets hotter. Also collisions are neglected, which are expected to reduce the
energy flow from the gas to the dust. This estimate is a very simple picture that
directly shows that the gas cannot transport enough energy onto the grain to
evaporate it within 105 seconds.
Finally, it should be noted that 105 seconds must be considered a very short
timescale when compared with any of the other physical processes occurring in
the disk. It is, for instance two orders of magnitude smaller than a full revolution
around the star at 1 AU.
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3.4.3 Self shadowing disk

Previous theoretical models have included a raised inner rim with a shaded area
behind it (Dullemond et al. 2001). The model depicted in (SVUFP24) exhibits
multiple brightness rings in Fig. 2, therein, particularly for 9µm. Upon com-
parison with Fig. 9 in (SVUFP24), it becomes apparent that the ring positions
correlate with an elevated region of dust density.
The model proposed in (SVUFP24) employs a formula for the dust-to-gas ratio
adapted from Flock et al. (2016), which was further simplified in Schobert, B.
N. & Peeters, A. G. (2021), and now additionally improved by eliminating the
optical depth dependency:

fd2g,2024 =
f0

2

{
1− tanh

[(
T − Tev
∆Tdust

)3
]}

, (3.52)

where Tev represents the dust evaporation temperature, ∆Tdust = 100K denotes
the evaporation temperature range, and the reference dust-to-gas ratio is f0 =
10−2. For the dust evaporation temperature, the fitting model proposed by Isella
& Natta (2005) is still used.
Using Eq. (3.52), one can interpret the green lines in Fig. 9 in (SVUFP24). The
solid line represents the equilibrium point fd2g = f0

2
or T = Tev, corresponding

to an almost conical rim with a wall-like inner surface. It also exhibits a small
raised rim, resulting in a shaded region between ∼ 0.35 AU and ∼ 0.9 AU. This is
further highlighted in the dashed line, where fd2g = 5 ·10−7 or T ≈ Tev +170K; it
demonstrates a higher polar angle at the rim, decreasing to lower angles behind it
before the disk starts to flare at approximately 0.6 AU. This dust density profile
translates to the two brightness rings observed in Fig. 2 in (SVUFP24), indicative
of a shaded disk. At even lower dust thresholds, the characteristic rounded-off rim
connected to a density-dependent evaporation temperature becomes apparent.

3.5 Disk structure and inner rim

3.5.1 Grazing angle

This section briefly examines the radial variation of the grazing angle γ defining
the angle at which stellar radiation reaches the surface of a flared accretion disk
and derives the solution for the flaring disk. This solution will later serve as
a boundary condition for the outer regions. The methodology outlined in the
appendix of Ruden & Pollack (1991) is applied to derive the formula provided by
Chiang & Goldreich (1997).
In cylindrical coordinates, with the centre of the disk lying in the z = 0 plane
and denoting the distance from the ẑ-axis as r, the height of the disk surface
above the midplane is denoted by H(r). Thus, the spherical radius R satisfies
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R2 = r2 +H2. Let n̂d be the normal vector to the disk surface, n̂∗ be the normal
to a surface element dA∗ on the stellar surface, and s = sn̂ be the ray from the
element dA∗ to the disk surface. The energy flux from dA∗ intercepted normally
by a unit area of the disk surface is given by:

Fν = Bν(T∗)

∫∫
A∗

dA∗
s2

(n̂ · n̂∗)(−n̂ · n̂d), (3.53)

assuming the star radiates like a blackbody with constant surface temperature
T∗. The surface integral is evaluated using spherical coordinates with the polar
axis along the line joining the center of the star and the disk surface element, and
the origin in the disk surface element. The polar angle is Ψ and the azimuthal
angle is Φ. This geometry is shown in figure 3.1. The integration is done over
concentric half annuli on the stellar surface. The normal vectors expressed in
these coordinates are:

n̂d =−
dH
dr√

1 +
(
dH
dr

)2
n̂x +

1√
1 + (dH

dr
)2

n̂z (3.54)

n̂ =

[
r

R
cos(Ψ) +

H(r)

R
sin(Ψ) cos(Φ)

]
n̂x

− sin(Ψ) sin(Φ)n̂y +

[
H(r)

R
cos(Ψ)− r

R
sin(Ψ) cos(Φ)

]
n̂z.

(3.55)

midplaner

H(r)

αβ

disk
surface

R∗

light ray s Ψ

Figure 3.1: Depiction of coordinates, the dotted line represents the surface of
the protostellar disk, the dashed line is the path of a light ray that is also used
as the polar axis for the spherical coordinates.
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The scalar product of the normal vectors is given by:

−n̂ · n̂d =
dH
dr√

1 +
(
dH
dr

)2

[
r

R
cos(Ψ) +

H(r)

R
sin(Ψ) cos(Φ)

]

− 1√
1 + (dH

dr
)2

[
H(r)

R
cos(Ψ)− r

R
sin(Ψ) cos(Φ)

]

=
tan(α)√

1 + (tan(α))2
[cos(β) cos(Ψ) + sin(β) sin(Ψ) cos(Φ)]

− 1√
1 + (tan(α))2

[sin(β) cos(Ψ)− cos(β) sin(Ψ) cos(Φ)]

= sin(α) [cos(β) cos(Ψ) + sin(β) sin(Ψ) cos(Φ)]

− cos(α) [sin(β) cos(Ψ)− cos(β) sin(Ψ) cos(Φ)]

= cos(Ψ)[sin(α) cos(β)− cos(α) sin(β)]

+ sin(Ψ) cos(Φ)[sin(α) sin(β) + cos(α) cos(β)]

= cos(Ψ) sin(α− β) + sin(Ψ) cos(Φ) cos(α− β),

where the following angles have been defined:

tan(α) =
dH

dr
(3.56)

tan(β) =
H

r
(3.57)

=⇒ cos(β) =
r

R
and sin(β) =

H

R
.

Now the first part of the integrand is transformed accordingly

dA∗
s2

(n̂ · n̂∗) =
1

s2
dÂ∗ · n̂

=
1

s2
dÂray · n̂

=
1

s2
dAray(n̂ · n̂)

=
1

s2
s2 sin(Ψ)dΨdΦ

= sin(Ψ)dΨdΦ.

This significant simplification arises from a specific choice of coordinates. The cru-
cial step involves transitioning the surface parameterization from dÂ∗ to dÂray.
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This transition ensures that the same area is covered after integration, while ac-
counting for the viewing angle. The integration utilizes spheres with a radius
identical to s for each infinitesimal half ring, with their normal vectors matching
the ray direction n̂.

The following step involves determining the boundaries of the new integral
Ψmax and Φmax. The polar angle reaches its maximum at the star’s edge, indic-
ating that

sin(Ψmax) =
R∗
R

=
R∗√

r2 +H2
=

R∗

r
√

1 +
(
H2

r2

) =
R∗
r

+O

((
H

r

)2
)

(3.58)

and Φmax is a non-trivial function of Ψ and r, but its exact form isn’t necessary.
One can reasonably approximate Φmax = π

2
by integrating the azimuthal angle

from −Φmax = π
2
to Φmax = π

2
, forming precisely a half ring. The assumption is

that the lower half of the star remains unseen from the upper disk surface. Now,
solving the integral and integrating over all frequencies yields the total flux on
the disk:

Fd =

∫ ∞
0

dνBν(T∗)

∫ Ψmax

0

sin(Ψ)dΨ

∫ Φmax

−Φmax

dΦ[cos(Ψ) sin(α− β)

+ sin(Ψ) cos(Φ) cos(α− β)]

(3.59)

= 2

∫ ∞
0

dνBν(T∗)

∫ Ψmax

0

sin(Ψ)dΨ

∫ Φmax

0

dΦ[cos(Ψ) sin(α− β)

+ sin(Ψ) cos(Φ) cos(α− β)]

(3.60)

= 2
1

π
σT 4
∗

∫ Ψmax

0

dΨ sin(Ψ)
[π

2
cos(Ψ) sin(α− β) + sin(Ψ) cos(α− β)

]
(3.61)

=σT 4
∗

[
1

2
sin2(Ψmax) sin(α− β)

+
1

π
cos(α− β)(Ψmax − sin(Ψmax) cos(Ψmax))

]
.

(3.62)

In the limit where H � r and R∗ � r, the functions in Ψmax and α − β can
be Taylor-expanded, retaining only the lowest-order terms in these quantities.
Assuming α − β � 1 implies the disk doesn’t flare excessively. This results in
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the flux:

Fd = σT 4
∗

[
1

2
sin2(Ψmax) sin(α− β) +

1

π
cos(α− β)(Ψmax −

1

2
sin(2Ψmax))

]
≈ σT 4

∗

[
1

2
sin2(Ψmax)(α− β) +

1

π
(Ψmax −Ψmax +

2

3
Ψ3

max)

]
≈ σT 4

∗

[
1

2

(
R∗
r

)2(
dH

dr
− H

r

)
+

2

3π

(
R∗
r

)3
]

= σT 4
∗

[
1

2

(
R∗
r

)2

r
d

dr

(
H

r

)
+

2

3π

(
R∗
r

)3
]
. (3.63)

Now, defining an effective angle γ under which the star’s radiation impinges on
the disk at radius r:

Fd = σT 4
∗
γ

2

(
R∗
r

)2

(3.64)

This leads to the grazing angle γ:

γ =
4

3π

R∗
r

+ r
d

dr

(
H

r

)
. (3.65)

This expression is utilized to derive the flaring disk approximation by equating
emitted and absorbed fluxes:

F∗ = Fdisk (3.66)
εr2σBT

4 = γR2
∗σBT

4
∗ (3.67)

T 4 = γ
1

ε

(
R∗
r

)2

T 4
∗ , (3.68)

where ε represents the ratio between emission and absorption efficiencies, r de-
notes the radial distance, σB stands for the Stefan-Boltzmann constant, T (r)
signifies the height-averaged disk temperature, R∗ indicates the stellar radius,
and T∗ denotes the stellar surface temperature. Subsequently, (3.65) is employed,
with the initial term disregarded due to the radii of interest being significantly
larger than R∗, and (3.13) is utilized for H, as the pressure scale height offers a
suitable approximation for the disk’s height:

T 4 =
T 4
∗R

2
∗

ε r

d

dr

(
H

r

)
(3.69)

=
T 4
∗R

2
∗

ε r

d

dr

(√
kBTr

µguGM∗

)
(3.70)

=
T 4
∗R

2
∗

ε r

√
kB

µguGM∗

(
1

2
T 0.5r−0.5 +

1

2
T−0.5r0.5dT

dr

)
. (3.71)
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Once again, the initial term can be disregarded for large distances r, resulting in:

T 4.5 =
T 4
∗R

2
∗

2ε

√
kB

µguGM∗
r−0.5dT

dr
(3.72)

r0.5dr = C T−4.5dT (3.73)
2

3
dr1.5 = −2

7
C dT−3.5 (3.74)

r1.5 ∝ T−3.5 (3.75)

T ∝ r−3/7, (3.76)

where C encompasses all constants. Thus, at significant distances from the star,
the dominant factor is the flaring term, affirming the correctness of the flaring
disk solution with T (r) ∝ r−3/7. This serves as a boundary condition for the
outer radii in the simulation.

3.5.2 Inner rim

In (Schobert, B. N. & Peeters, A. G. 2021) the radial position and height of the
inner rim is compared against a theoretical model described in (Dullemond et al.
2001). For better understanding this theoretical model is briefly explained here.
Dullemond et al. (2001) describe a cylindrical inner rim, a inner hole around the
star, where dust is fully evaporated and only gas exists.
In (Dullemond et al. 2001), the rim position was defined as the radius where
radiative equilibrium is attained at the evaporation temperature:

Rrim =

(
L∗

4πT 4
rimσB

)1/2(
1 +

Hrim

Rrim

)
. (3.77)

Here, L∗ represents stellar luminosity, Trim stands for the evaporation temperat-
ure at the rim, σB denotes the Stefan-Boltzmann constant, and Hrim = χrimhrim
represents the height of the disk at the rim, which is χrim times the pressure
scale height at that location. The second factor in this equation accounts for the
radiation emitted from the opposing disk area.
To compute χrim, a vertical Gaussian density profile is assumed, along with a
linear relationship of H(R)/R with a slope of −1/8 (refer to section A3 in (Dulle-
mond et al. 2001), this slope is an estimate). In this context, the surface height
is defined as the height at which the optical depth τ of the rim on a radially
outward directed ray exceeds 1:

τ(Hrim) =

∫ ∞
Rrim

ρ(R,Hrim)κdust(T∗)fd2gdR = 1

erf
(
χtheo
rim√

2

)
= 1− 1

4Σ(Rrim)κdust(T∗)fd2g
.

(3.78)
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In this context, the symbol erf(x) represents the error function, and Σ represents
the gas surface density of the disk. From the formulae above it is possible to
calculate the rim radius and the disk height, or its ratio with the pressure scale
height, by applying them iteratively until the values converge, if Σ is a function
of Rrim. If Σ is chosen to be constant, then no iteration is necessary.

3.5.3 Disk structure

The structure of a protoplanetary disk can be sectioned into four distinct regions
as identified in (Flock et al. 2016; Ueda et al. 2017), it is advantageous to identify
them in an early example simulation, with fixed surface density of 100 gcm−2,
no dust diffusion and no accretion heating, the S100 case. This case is shown in
Fig. 3.2.
The first region comprises a dust-free inner zone following the optically thin
gas temperature and is situated inward of 0.3 AU.
Next is the dust halo, where the dust-to-gas ratio gradually increases before
reaching the condensation temperature at 0.5 AU.
Following this is the condensation front enveloping the third region, formed
by the rounded-off rim. At its centre lies an active zone where MRI is possible.
This stands in contrast to a dead zone, where temperatures are too low for MRI
(see following section) to occur.
The fourth and outermost region is the outer disk, growing colder with radial
distance and situated at optical depths beyond unity. Complete thermal equi-
librium is achieved, the temperature within the disk is vertically constant. This
zone is also called the dead zone, because it can not sustain MRI.
Even further out than visible in Fig. 3.2 the disk becomes optically thin again
as the surface density decreases. In this possible fifth region it can be ionized by
interstellar radiation or far-UV radiation from the jet of the central star and be
potentially MRI active again, marking the end of the dead zone.

3.6 Turbulence and MRI

Incorporating the influences of accretion and viscous heating necessitates estim-
ating the viscosity within the disk. This task presents challenges due to various
turbulence-inducing instabilities in the disk, notably the magnetorotational in-
stability or MRI (Velikhov 1959; Chandrasekhar 1960; Balbus & Hawley 1998).
A widely employed method to address this complexity is the α-viscosity pre-
scription introduced by Shakura & Sunyaev (1973). The concept parallels the
kinematic ideal gas viscosity, which is proportional to the product of the mean
free path of molecules and their thermal velocity:

νideal ∝ λfreevtherm , (3.79)
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Figure 3.2: 2D profiles of temperature (top) and the logarithm of the dust
density in g/cm3 to the base 10 (bottom) for the S100 case. The y-axis is the
polar angle in rad offset by π/2 and the x-axis the radial distance in AU.
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Similarly, the turbulent viscosity νt is approximated by considering the standard
length scale of eddies in a turbulent flow. Although this length L exceeds the
molecular mean free path, it remains smaller than the pressure scale length H,
roughly corresponding to the height of the disk. Additionally, the velocities of
these eddies are notably slower than the speed of sound cs. Combining these
factors and introducing a dimensionless constant α < 1 yields the expression for
viscosity:

νt = αHcs (3.80)

=
αc2

s

Ω
. (3.81)

Here, eq. (3.11) was utilized to express the kinematic turbulent viscosity νt in
terms of the speed of sound cs squared divided by the Keplerian rotation fre-
quency Ω. Typically, the constant α falls within the range of 10−1 for strong
turbulence to 10−3 for weaker turbulence. Shakura & Sunyaev (1973) argued
that for α > 1, turbulence must be supersonic, resulting in rapid plasma heating
and consequently reducing α to α ≤ 1.
Having determined the viscosity, it becomes feasible to compute the surface dens-
ity and examine the impact of viscous dissipation on temperature.
The magnitude of the viscosity is determined by the mechanism that drives the
turbulence. Of specific interest is the magneto-rotational instability (Velikhov
1959; Chandrasekhar 1960; Balbus & Hawley 1998), because it sustains α values
between 0.1 and 10−2 (Flock et al. 2017) in a sufficiently ionized medium. In an
unionised medium different hydrodynamical processes, such as shear flow, lead to
turbulence, but at a smaller scale of α = 10−3 to 10−5. This stark difference ex-
plains why the dead zone is described as such, it exhibits drastically less dynamic
turbulence as MRI active zones, therefore it is comparatively dead.

3.7 Steady state accretion

The surface density Σ is characterized by employing the steady thin disk ap-
proximation. This implies that the disk is cool, nearly Keplerian, axisymmetric
(∂φ = 0), and vz = 0. To streamline the derivation, it is conducted in cylindrical
coordinates. However, since the solution is integrated over the height z, it is
equally applicable for spherical coordinates. In a steady disk, ∂t = 0, and the
mass accretion rate Ṁ remains constant throughout the disk. The derivation in
this section closely follows Clarke & Carswell (2009). With these assumptions,
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3.7. STEADY STATE ACCRETION

the continuity equation can be manipulated as follows:

∂tρ+∇ · (ρv) = 0 (3.82)
1

r
∂r(rρvr) = 0 (3.83)

∂r(rΣvr) = 0 (3.84)
rΣvr = C1. (3.85)

In the second step, the integration over z was performed, followed by integration
over the radius r in the third step. The integration constant C1 can be determined
by considering the mass accretion rate through a ring, given by Ṁ = −2πrΣvr.
This leads to C1 = −Ṁ/2π. The subsequent equation to consider is the φ
component of the Navier-Stokes equation:

ρ (∂tv + (v · ∇)v) = ∇ · σ − ρ∇Φ (3.86)

ρ
(
vr∂rvφ +

vrvφ
r

)
= ∂r(η∂rvφ) + ∂z(η∂zvφ) +

1

r
∂r(ηvφ)− ηvφ

r2
, (3.87)

which is also integrated over z to obtain

Σ
(
vr∂rvφ +

vrvφ
r

)
= ∂r(νΣ∂rvφ) +

1

r
∂r(νΣvφ)− νΣvφ

r2
. (3.88)

Here, η = ρν represents the dynamic viscosity, expressed in terms of kinematic
viscosity and density. Consequently, after integration, one obtains Σ, the surface
density, and ν, which becomes the density-weighted average value of kinematic
viscosity over z. Integrating over z implicitly disregards any variation of vr and
vφ with z, although any such dependence would likely be minimal. The term
involving ∂2

zvφ disappears upon integration, under the assumption that η∂zvφ
equals 0 at the top and bottom surfaces of the disk. Utilizing Ω = vφ/r, the sum
of (3.84)·vφ and (3.88)·r can be expressed as:

1

r
∂r(Σr

2vφvr) =
1

r
∂r

(
νΣr3dΩ

dr

)
. (3.89)

It follows by integration over r:

Σr3Ωvr − νΣr3dΩ

dr
= C2 (3.90)

with the integration constant C2. Determining its value necessitates finding an
inner boundary condition. As matter accretes, it flows onto the surface of the star,
increasing its velocity as it moves inward. However, the surface of the star rotates
with an angular velocity Ω∗ lower than the Keplerian velocity, ensuring stability.
This implies that the angular velocity attains a maximum, where dΩ

dr
= 0, likely
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located near the stellar surface. Assuming this point is at r = R∗ and Ω = ΩK(R∗)
there, the condition is:

ΣR3
∗ΩKvr = −Ṁ

2π
R2
∗ΩK (3.91)

= −Ṁ
2π

(GM∗R∗)
0.5 = C2. (3.92)

This yields

−Ṁ
2π

(GM∗r)
0.5 − νΣr3dΩ

dr
= −Ṁ

2π
(GM∗R∗)

0.5 (3.93)

3

2
νΣ(GM∗r)

0.5 =
Ṁ

2π
[(GM∗r)

0.5 − (GM∗R∗)
0.5] (3.94)

Σ =
Ṁ

3πν

[
1−

(
R∗
r

)0.5
]
≈ Ṁ

3πν
(3.95)

at a significant distance from the star, the condition holds true. Here, Ṁ rep-
resents the accretion rate, r denotes the radial distance, and ν stands for the
kinematic viscosity. To estimate the viscosity, one utilizes the α-viscosity pre-
scription introduced by Shakura & Sunyaev (1973) in the preceding section:

νt = αHcs =
αc2

s

Ω
. (3.96)

The pressure scale height H = cs/Ω was employed to express the kinematic
turbulent viscosity νt in terms of the local speed of sound cs and the Keplerian
rotation frequency Ω =

√
GM∗/R3.

Given a specific viscosity, it becomes feasible to compute the surface density using
the formula:

Σ =
ṀΩ

3παc2
s

. (3.97)

In (SVUFP24) the simulation box was closer to the star, than in the previous
works, so the approximation in eq. (3.95) was not used. Instead R∗ was replaced
by Rtrunc the magnetic truncation radius of the star, because the maximum of
the rotation frequency can safely be assumed to be further from the star then the
truncation radius (which is about 3 to 5 stellar radii) (Calvet & Gullbring 1998).

3.8 Accretion heating
The initial equation in the radiative hydrodynamics section (3.17) outlines the
internal energy density of the gas, yet it is incomplete. A complementary equation
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in general fluid dynamics for the internal energy will be introduced in this section,
as it incorporates additional physical processes.
The total energy equation of a fluid, as derived in works such as (Johnson 1998),
is:

ρDt

(
1
2
v2 + ε

)
= −∇ · q +∇ · [σ · v] with (3.98)

σ = −pI + η
(
∇v + (∇v)t

)
− (2

3
η − κ)(∇ · v)I and (3.99)

q = −k∇T . (3.100)

In this expression, Dt denotes the substantial or total derivative with respect
to time, defined in this context as ρDtX = ∂tρX + (ρv · ∇X). The tensor σ
represents the stress tensor, η stands for the dynamic viscosity, κ represents the
bulk viscosity, I denotes the identity matrix of dimension three, q signifies the
heat flux, and k denotes the thermal conductivity.
To obtain the internal energy density, it is necessary to subtract the mechanical
energy, which can be derived from the Navier-Stokes equation by taking the inner
product with the velocity vector v:

ρDtv = ∇ · σ (3.101)
v · ρDtv = v · (∇ · σ) (3.102)
ρDt

(
1
2
v2
)

= v · (∇ · σ). (3.103)

Now taking the difference yields

ρDtε = −∇ · q +∇ · [σ · v]− v · (∇ · σ) (3.104)
= −∇ · q + (σ : ∇v) (3.105)

in a coordinate-independent notation, where : signifies a double contraction.
Now, assuming an ideal gas ε = cV T and constant thermal conductivity, this can
be expressed as:

ρcVDtT = k∇2T + (σ : ∇v) (3.106)
= k∇2T + Θ− p(∇ · v) with (3.107)

Θ = σ : ∇v + p(∇ · v). (3.108)

Here Θ is the dissipation function and it can be written in Gibb’s notation as

Θ =
1

2
η
([
∇v + (∇v)t − 2

3
(∇ · v)I

]
:
[
∇v + (∇v)t − 2

3
(∇ · v)I

])
+ κ(∇ · v)2.

(3.109)

As this formula remains coordinate-independent, calculating the dissipation func-
tion Θ in spherical coordinates is a straightforward task. The requisite metric
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is:

g =

1 0 0
0 r2 0
0 0 r2 sin2 θ

 (3.110)

With this, one can compute all the required Christoffel symbols for the covariant
derivatives and derive the expression for Θ. Given the lengthiness of the calcu-
lation, only the final result is presented here, which is also available in Johnson
(1998):

Θ = η

[
2(∂rvr)

2 + 2

(
1

r
∂θvθ +

vr
r

)2

+ 2

(
1

r sin θ
∂φvφ +

vr + vθ cot θ

r

)2

+

(
1

r
∂θvr + r∂r

(vθ
r

))2

+

(
1

r sin θ
∂φvθ +

sin θ

r
∂θ

( vφ
sin θ

))2

+

(
r∂r

(vφ
r

)
+

1

r sin θ
∂φvr

)2
]
− (2

3
η − κ)

(
1

r2
∂r(r

2vr)

+
1

r sin θ
∂θ(vθ sin θ) +

1

r sin θ
∂φvφ

)2

.

(3.111)

In the context of accretion disks many of these terms become zero, as seen in the
following.
The substantial turbulent viscosity, as discussed in section 3.6, indicates the
necessity of considering heat dissipation in the energy balance, particularly for
active disks. Unlike in (Flock et al. 2016), this effect is accounted for in the
internal energy without solving the full set of hydrodynamic equations.
Due to the orientation of the coordinate system along the rotational axis, there
exists a strong ordering of velocities vφ � vθ, vr. Furthermore, owing to the
spherical symmetry, ∂φ = 0 and ∂θ = 0. Consequently, terms of the form ∂rvφ
are the only ones remaining and are naturally the dominant ones.
Subsequently, the dissipation function simplifies to:

Θ = η
(
r∂r

(vφ
r

))2

(3.112)

= η(r∂rΩ)2 (3.113)

and further the term −p(∇·v) vanishes. This yields an additional term in (3.17):

∂tρε = −σc(aRT 4 − ER)−∇ · F∗ +Qheat. (3.114)

The new term Qheat is the dissipation function

Qheat = ρνt [r ∂r Ω]2 (3.115)

with the angular rotation frequency Ω(r). It describes the heating of the matter
through viscous interaction and the effect of this new term is discussed in the
first publication (Schobert et al. 2019).
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3.9 Thermal conduction
Another term appearing in the energy equation is thermal conduction. Since
momentum eddy diffusivity and heat transfer eddy diffusivity are related through
the turbulent Prandtl number Prt = cpνtρ/kt = O(1), the impact of thermal
conduction should be comparable to that of viscous dissipation and therefore
warrants consideration. This addition is entirely new to this model and plays an
important role in the regime of high accretion rates explored in this thesis. Here,
kt represents the turbulent thermal conductivity and cp denotes the specific heat
at constant pressure. This leads to the expression for kt:

kt =
ρνtΓcV
Prt

, (3.116)

utilizing cp = Γcv with the adiabatic index Γ, one obtains another additional
term in (3.17):

∂tρε = −σc(aRT 4 − ER)−∇ · F∗ +Qheat +Qcond (3.117)

with
Qcond = kt∇2T . (3.118)

The effects of thermal conduction are also discussed in the first publication
(Schobert et al. 2019).

3.10 Spectral energy distribution (SED)
A spectral energy distribution (SED) illustrates the energy emitted by an object
across various wavelengths. In case of an accretion disk it includes the contri-
bution from central star and from the disk itself. The stellar spectrum is ap-
proximately a black body spectrum with the star’s effective temperature. The
contribution of the disk has also a continuum component related to its surface
temperature in the near- and mid-infrared and additionally line features.
These will show, depending on the specific dust composition, features at charac-
teristic wavelengths, i.e. the silicate feature at ca. 10 µm. Other materials found
in protoplanetary disks, that produce prominent peaks are polycyclic aromatic
hydrocarbons (PAH) (Habart, E. et al. 2004) and in some cases diamonds (Goto
et al. 2009).
Apart from the dust composition the SED also gives insight into the geometry
and temperature surface profile of the disk through its continuum component. A
hotter inner rim will emit at shorter wavelengths compared to a colder inner rim.
However, the SED alone can not provide a complete picture of the disk, mul-
tiple geometry and temperature profile combinations can lead to the same SED.
Therefore, it is necessary to spatially resolve the disk, but often direct imaging is
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impossible due to technical limitations of the telescopes. Then a visibility curve
can provide additional information about the configuration of the disk, this is
explained in the following section.

3.11 Visibility
The interferometric visibility, also referred to as interference visibility or fringe
visibility, is a metric indicating the contrast of interference in any system ex-
periencing wave superposition. It is often used in astrophysics to gain spatial
information about objects, that otherwise could not be spatially resolved. A
prominent example was the imaging of the supermassive black hole M87∗ (Col-
laboration et al. 2019).
Visibility can be computed from the mutual coherence function:

Γ12(u, v) =

∫ ∫
source

I(l,m) exp(−2πi(ul − vm)) dl dm, (3.119)

which is defined as the Fourier transform of intensity I according to the van Cit-
tert–Zernike theorem (van Cittert 1934; Zernike 1938). Here, (u, v) is the angular
coordinates vector in the Fourier plane and (l,m) is the angular coordinate vector
in the plane of the sky. The complex visibility µ(u, v) is normalized as follows:

µ(u, v) =
Γ12(u, v)

Γ12(0, 0)
(3.120)

However, the complex visibility cannot be directly measured for near- and mid-
infrared wavelengths; only the absolute value can be determined. Under the
assumption of cylindrical symmetry, it is convenient to employ the radial distance
in phase space, or baseline, B =

√
u2 + v2:

V (B) =
∣∣∣µ(
√
u2 + v2)

∣∣∣ (3.121)

The baseline essentially represents the distance between the two measuring tele-
scopes.
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Chapter 4

Numerical Methods

This chapter outlines the procedure utilized in the code, along with the numerical
methods employed. It also discusses the set of initial and boundary conditions.
Establishing the boundary conditions, in particular, presents a delicate challenge
that requires cautious exploration because of its impact on the speed of conver-
gence. Finally, a benchmark for a specific set of parameters is provided.

4.1 Time scales

The numerical method relies on the separation of several time scales to differ-
entiate between processes and simplify numerical computations. The shortest
time scale corresponds to radiative transfer in the optically thin regime, denoted
as trad = R/c, where light traverses a characteristic distance R at nearly va-
cuum light speed c. The second shortest time scale is the dynamical time scale
required to achieve hydrostatic equilibrium, expressed as tdyn = R/vk = 1/Ω,
where vk represents the Keplerian orbital velocity and Ω denotes the angular ve-
locity. After one orbit, each particle experiences equilibrium between the upper
and lower hemispheres. Subsequently, the thermal time scale ttherm = Et/Wheat

emerges, representing the time it takes for the temperature to reach equilibrium.
This can be estimated by dividing the enthalpy of the disk per volume by the
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viscous dissipation:

ttherm =
Γ

Γ−1
p

ρνt[r∂rΩ]2
(4.1)

=
Γ

Γ− 1

kBT
µgu

ρ
9
4
Ω2νtρ

(4.2)

=
4Γ

9(Γ− 1)

c2
s

αΩ2 c
2
s

Ω

(4.3)

≈ 1

αΩ
. (4.4)

The fourth and final time scale to consider is the viscous time scale, denoted
as tvisc = R/(−vr), where vr represents the radial drift speed. This time scale
pertains to the evolution of the surface density profile. To estimate the radial
drift velocity, one can utilize equation (3.95) and the accretion flux through a
ring:

Ṁ = 3πνtΣ = −2πRΣvr (4.5)

vr = −3νt
2R

(4.6)

tvisc =
2R2

3αHcs
(4.7)

=
2

3αΩ

(
R

H

)2

. (4.8)

This time scale is the longest because R� H, or equivalently, the radial velocity
is very small. This explains why the radial velocity could be neglected in previous
calculations.
Given the order of magnitudes as:

trad � tdyn � ttherm � tvisc (4.9)

one can separately compute the radiation flux from the star and the local volume
density through the vertical hydrostatic balance for each temperature profile.
These values can then be used to solve the equations for the internal energy and
the radiation energy to obtain the next temperature profile. The global surface
density profile changes slowly over many iterations of the temperature profile and
is the last variable to converge.

4.2 Finite volumes
The system of coupled equations discussed in section 3.3 is numerically solved us-
ing the finite volume method. This involves dividing the space into small volumes,
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which, in the case of spherical coordinates, are spherical segments. Naturally,
these volumes vary in size and must be duly considered. The necessary geomet-
ric coefficients are computed in this section.
Given that the focus of the problem lies in energies, namely internal and radi-
ation energy, the two formulae adopt the general form of a conservation law with
source and loss or exchange terms. Therefore, to illustrate the principle, it is be-
neficial to examine a simple conservation law expressed by the following partial
differential equation:

∂tE +∇ · (∇E) = 0. (4.10)

The complete expressions for ε and ER will be provided in section 4.3. Initially,
the process involves integrating over a specific cell (i, j) with volume vi,j.

∫
vi,j

∂tE dV +

∫
vi,j

∇ · (∇E) dV = 0 (4.11)

vi,j∂tEi,j +

∮
Si,j

∇E · n dS = 0. (4.12)

In the next step, Ei,j denotes the averaged value of E within the cell (i, j), and
for the second term, the divergence theorem is employed. Next, the spherical
coordinates are introduced:

∂tEi,j +
1

vi,j

∮
Si,j

(
∂rEr +

1

r
∂θEθ +

1

r sin θ
∂φEφ

)
· n dS = 0, (4.13)

the equation was divided by vi,j, and the bold symbols represent orthonormal
vectors. Due to the system’s axisymmetry, ∂φ = 0, the third term in the brackets
is zero. The first two terms in the brackets are evaluated by assuming constant
∂rE and ∂θE over the small surfaces of one tiny volume:

∂tEi,j +
1

vi,j

[
(Ar∂rE)ri+0.5∆r − (Ar∂rE)ri−0.5∆r +

(
Aθ

1

r
∂θE

)
θj+0.5∆θ

−
(
Aθ

1

r
∂θE

)
θj−0.5∆θ

]
= 0.

(4.14)

Subsequently, the volume vi,j and the areas Ar and Aθ are computed. To simplify,
a new notation is introduced, where ri± 0.5∆r = ri±0.5, θj ± 0.5∆θ = θj±0.5, and
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φk ± 0.5∆φ = φk±0.5:

vi,j =

φk+0.5∫
φk−0.5

θj+0.5∫
θj−0.5

ri+0.5∫
ri−0.5

r2 sin θdrdθdφ (4.15)

=
1

3
(r3
i+0.5 − r3

i−0.5)(cos θj−0.5 − cos θj+0.5)(φk+0.5 − φk−0.5) (4.16)

Ari =

φk+0.5∫
φk−0.5

θj+0.5∫
θj−0.5

r2
i sin θdθdφ (4.17)

= r2
i (cos θj−0.5 − cos θj+0.5)(φk+0.5 − φk−0.5) (4.18)

Aθj =

φk+0.5∫
φk−0.5

ri+0.5∫
ri−0.5

r sin θjdrdφ (4.19)

=
1

2
(r2
i+0.5 − r2

i−0.5) sin θj(φk+0.5 − φk−0.5). (4.20)

Especially the respective ratios

Ari
vi

=
r2
i

1
3
(r3
i+0.5 − r3

i−0.5)
and (4.21)

Aθj
vi

=
sin θj

cos θj−0.5 − cos θj+0.5

1
2
(r2
i+0.5 − r2

i−0.5)
1
3
(r3
i+0.5 − r3

i−0.5)
(4.22)

≈ sin θj
cos θj−0.5 − cos θj+0.5

1

ri
(4.23)

are of interest.
In the previous step, the rule of L’Hospital was employed to assess the limit of
the second ratio, which is valid for infinitesimal volumes and provides a highly
accurate approximation for small ones. With this, it becomes both possible and
advantageous to define some of the geometry coefficients as follows:

Sri = r2
i (4.24)

Sθj = | sin θj| (4.25)

V r
i =

1

3
(r3
i+0.5 − r3

i−0.5) (4.26)

V θ
j = | cos θj−0.5 − cos θj+0.5|, (4.27)
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taking the absolute value ensures that both volume and surface are always pos-
itive. These values can be substituted into (4.14) to obtain

∂tEi,j +
Sri+0.5

V r
i

(∂rE)i+0.5,j −
Sri−0.5

V r
i

(∂rE)i−0.5,j

+
Sθj+0.5

r2
i V

θ
j

(∂θE)i,j+0.5 −
Sθj−0.5

r2
i V

θ
j

(∂θE)i,j−0.5 = 0.

(4.28)

Finally, all partial derivatives can be substituted with centered differences, except
for the time step, which utilizes a backward difference:

En+1
i,j − En

i,j

∆t
+
Sri+0.5

V r
i

En+1
i+1,j − En+1

i,j

∆r
−
Sri−0.5

V r
i

En+1
i,j − En+1

i−1,j

∆r

+
Sθj+0.5

r2
i V

θ
j

En+1
i,j+1 − En+1

i,j

∆θ
−
Sθj−0.5

r2
i V

θ
j

En+1
i,j − En+1

i,j−1

∆θ
= 0,

(4.29)

here, the superscript n denotes the time iteration. This notation is also adopted
in section 4.3 to present the equations.

4.3 Iterative procedure
The process for determining the final disk structure involves three main steps.
Firstly, the hydrostatic equilibrium is computed for a given temperature distri-
bution, this will be explained in the following section 4.3.1. Additionally, the
optical depth is calculated using equation (3.24), allowing for the determination
of the corresponding radiation flux F∗ using equation (3.23).
Secondly, the two coupled equations for the temperature and radiation field from
section 3.3 are solved implicitly, see section 4.3.2 for more details.
The last step involves computing the dust-to-gas ratio using equation 3.52 or its
earlier versions depending on the flags set in the input file. When diffusion is
included another matrix inversion is performed on the dust and gas density files,
to simulate one diffusion time passing, as described in section 3.4.2.
Following this, the process iterates again, commencing with the determination of
hydrostatic equilibrium for the updated temperatures until the simulation con-
verges. To aid numerical stability the dust-to-gas ratio logarithmically increases
for the first few steps through a prefactor, so that the calculation begins with
no dust present and then the effect is slowly introduced. The specific number
of steps over which the dust is introduced can be set in the input file; 30 steps
has proven beneficial. The grid spacing is equidistant in both radial and polar
direction. Furthermore it is possible to set multiple different time step sizes, e.g.
initially smaller ones for a set number of iterations, then bigger ones afterwards
and in the end smaller ones again. This way the code converges into a stable
configuration faster. The convergence criteria are explained in section 4.4.
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4.3. ITERATIVE PROCEDURE

4.3.1 Vertical integration

To determine the gas density distribution of the disk, the hydrostatic equations
outlined in section 3.2 are integrated outward from the midplane, both upwards
and downwards in the polar direction.
For the density at the equatorial plane ρ0, the surface density Σ and the pressure
scale height H = [kBTr

3/(GM∗µgu)]0.5 are employed:

ρ0 =
Σ√
2πH

. (4.30)

As the density peaks at the centre of the disk, this value gradually decreases
further above or below the midplane. However, in the outer regions of the
Gaussian-like distribution, this reduction may lead to negative density values
if overestimated. To mitigate this issue, the logarithm of the density is utilized,
then integrated, and subsequently exponentiated again. Employing a fourth-order
Runge-Kutta integration ensures high accuracy in density calculations. Indeed,
the sum of all densities at a particular radius is within 0.01% of the postulated
Σ(r) with which the integration commenced.
Following the calculation of ρ0, the next step involves determining vφ at the
midplane using equation (3.4):

ρv2
φ

r
= ∂rp+ ρ∂rΦ (4.31)

v2
φ = r

(
1

ρ
∂rp+ ∂rΦ

)
(4.32)

vφ =

[
r

(
1

ρ
∂rp+ ∂rΦ

)]0.5

(4.33)

=

[
r

(
kB
µgu

∂rT +
kBT

µguρ
∂rρ−

GM∗
r2

)]0.5

. (4.34)

The derivatives are computed using five-point stencils. Since the temperature is
known everywhere and the density is known for the midplane, vφ can be com-
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puted. Substituting this into (3.5), one has:

∂θp =
ρv2

φ

tan θ
(4.35)

kB
µgu

(ρ∂θT + T∂θρ) =
ρv2

φ

tan θ
(4.36)

1

T
∂θT +

1

ρ
∂θρ =

µgu

kBT

v2
φ

tan θ
(4.37)

∂θ(log ρ) =
1

T

(
µgu v

2
θ

kB tan θ
− ∂θT

)
(4.38)

(log ρ)j+1 = (log ρ)j + ∆θ

[
1

T

(
µgu v

2
θ

kB tan θ
− ∂θT

)]
j+0.5

(4.39)

This process is employed to compute the next polar row of ρ(θ). Initially, it is
executed for the upper half and then for the lower one, both for the grid points and
half grid points simultaneously. The temperature is linearly interpolated to obtain
values at the half grid points. Only the initial step from the midplane outwards
needs to be predictive, as subsequently the half grid points are integrated using
the grid points for the evaluation of the integral and vice versa. The values of ρ
and vφ are stored at both half grid points and grid points for later use. The final
profile in the θ-direction retains a Gaussian-like shape, as depicted in figure 4.1,
while also accounting for the non-uniform temperature distribution.
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Figure 4.1: The gas density distribution as a function of θ at a constant radius
resembles a Gaussian.
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4.3.2 Matrix inversion and implicit equations

The second step is to implicitly solve the two coupled equations for the temper-
ature and radiation field from section 3.3. The equations are in the notation from
section 4.2:
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(4.40)
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(4.41)

The last term in eq. (4.41) was transformed according to section 2.1 in (SVUFP24).
The equations are coupled by linearising the term proportional to T 4, which ap-
pears in both of them, as explained in (Commerçon et al. 2011):(

T n+1
)4

= 4 (T n)3 T n+1 − 3 (T n)4 . (4.42)

This formulation allows the equations to be arranged into a matrix form,A·x = b,
where x represents the solution vector of the form x =

(
T n+111, En+1R, 11, T n+1

12 , ...
)t,

with alternating entries of temperature and radiation energy, and b contains all
terms that are not proportional to En+1

R or T n+1. As a result, the matrix has
non-zero entries on seven diagonals, as illustrated in figure 4.2.
The next step involves inverting the matrix A. In the earlier version of the code,
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Figure 4.2: The matrix A with non-zero entries marked with a +.

named radiation_code and written in octave, this is accomplished using the
BiCSTAB solver initially introduced by Van der Vorst (1992), as it is well-suited
for sparsely populated, non-symmetric matrices. For preconditioning, incomplete
LU-factorization is utilized, and the convergence criteria rely on the reduction of
the L2 norm of the residual, ||r||2/||rinit||2 < 10−5. This code is used for the first
two publications.
The code was then completely rewritten in C++ and renamed rmhd_code. This
version uses the LU-factorisation provided by the UMFPACK (Davis 2006) and
was used in the third publication. It has a considerably improved runtime, and
enables the solution of problems at significantly higher grid resolutions.
The matrix A is represented in compressed column form, i.e. it consists of three
arrays (Ap[n+1], Ai[nz] and Ax[nz]). If the matrix is m-by-n with nz entries and
has the following form:

A =


2.5 3 0 0 0
3 0 4 0 6
0 5 7 2.6 0
0 0 1 0 0
0 4 2 0 1

 (4.43)

Then Ap[j] stores the cumulative number of entries up to and including the j-th
column. The first entry Ap[0] is always 0 and the final entry Ap[n+1] is always
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nz the total number of entries. The row indices of entries in column j are stored
in Ai[ ] (starting to count at 0 for the first row) and the corresponding numerical
values are stored in Ax, that means for the matrix A as above the three arrays
would be:

Ap[ ] = {0, 2, 5, 9, 10, 12}
Ai[ ] = {0, 1, 0, 2, 4, 1, 2, 3, 4, 2, 1, 4}
Ax[ ] = {2.5, 3, 3, 5, 4, 4, 7, 1, 2, 2.6, 6, 1}

(4.44)

The matrix inversion for the dust diffusion is separate, because it needs to be per-
formed sequentially after the temperature and radiation energy matrix inversion.
However, it follows the same numerical process as described above.

4.4 Convergence Criteria

As a convergence criterion the change in the temperature and density fields is
examined. Simulations are converged when they fulfil:

max(max((T n − T n−1)/T n−1),max((ρn − ρn−1)/ρn−1)) < 10−4 (4.45)

In all cases shown in this work the criterion plateaus afterwards, sometimes at
even lower values.
One exception to this rule is the periodic behaviour observed in one case show-
cased in (Schobert, B. N. & Peeters, A. G. 2021). In that case the disk was
considered converged when the outer region fulfils the convergence criterion and
the inner periodic region has completed more than 100 cycles.

4.5 Initial and boundary conditions

As stated in the previous section, initially, no dust is present, resulting in a
dust-to-gas ratio of zero throughout. Consequently, the initial temperature dis-
tribution mirrors that of an optically thin gas. Assuming the existence of a single
spherical dust grain with radius a at a distance r from the star, it presents a
geometric cross-section of πa2 and radiates its energy across its entire surface
area 4πa2. Equating the cooling and heating rates of the dust grain yields:

Fcool = Fheat (4.46)

4πa2βσBT
4
thin = πa2ασB

(
R∗
r

)2

T 4
∗ (4.47)

Tthin(r) =

(
1

ε

)0.25(
R∗
2r

)0.5

T∗ (4.48)

47



4.5. INITIAL AND BOUNDARY CONDITIONS

where ε represents the ratio between emission and absorption efficiency (Dulle-
mond & Monnier 2010). The initial temperature distribution is computed with
εgas = 1. Subsequently, the initial surface density can be calculated using eq.
(3.95), or set as constant, as in the benchmark case, with density integration
performed accordingly. The initial condition for the radiation energy density is:
ER = aRT

4 with the radiation constant aR.
Next the boundary conditions must be considered. The temperature field is sub-
ject to a zero gradient on all four edges, while the boundaries for the energy
density remain fixed.
Determining boundary conditions for the outer regions poses a challenge, par-
ticularly due to their higher dust content, making it difficult to obtain analytic
solutions. Therefore, at the outer edge (r = rmax), the radiation energy is fixed.
In the first two publications the outer point was at 4 AU and the boundary con-
dition was set at ER = 3.4255 · 10−6 J/m3, approximately equivalent to 260 K.
This temperature matches the outer edge temperature reported in Flock et al.
(2016) and is also close to the analytical expression in Ueda et al. (2017). In
the third publication it was necessary to consider the stellar environment to find
a realistic value, additionally the computational domain was chosen larger, for
more detailed information see (SVUFP24).
To establish boundary conditions for the remaining three edges, one must ana-
lytically solve (3.17). Assuming convergence of the final solution, ∂t = 0 is set to
obtain:

0 = −σc(aRT 4 − ER)−∇ · F∗ (4.49)

and with the expression for the stellar flux (3.23) and the divergence in spherical
coordinates this is

0 = −σc(aRT 4 − ER) + F∗∂rτ. (4.50)

With (3.24), one can derive the optical depth τ towards the radius, expanding
the mean opacities σ and σ∗ using (3.25) - (3.27) to obtain:

cρgas[κgas + fd2gκdust(νrim)](aRT
4 − ER) = F∗ρgas[κgas + fd2gκdust(ν∗)] (4.51)

(aRT
4 − ER) =

F∗
c

κgas + fd2gκdust(ν∗)

κgas + fd2gκdust(νrim)
. (4.52)

On the right hand side one finds the ratio between the mean opacities, which can
be identified with the previous ε like this:

ε =
κgas + fd2gκdust(νrim)

κgas + fd2gκdust(ν∗)
, (4.53)
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that simplifies the equation to

(aRT
4 − ER) =

F∗
c

1

ε
(4.54)

ER = aRT
4 − 1

ε

F∗
c
. (4.55)

Now, an assumption for the temperature is required, which can be obtained in
the optically thin regime using (4.48). Additionally, the stellar flux is expanded
to find:

ER = aRT
4
thin −

1

ε

σB
c

(
R∗
r

)2

e−τ∗T 4
∗ (4.56)

= aRT
4
thin −

1

ε

4σB
c

(
R∗
2r

)2

e−τ∗T 4
∗ (4.57)

= (1− e−τ∗)aR
1

ε

(
R∗
2r

)2

T 4
∗ (4.58)

= (1− e−τ∗)aRT
4
thin. (4.59)

And this serves as the boundary condition for the radiation energy density in the
optically thin regime.
At the inner edge (r = rmin), this condition simplifies to:

ER = (1− e−τ0)aRT 4
thin(rmin), (4.60)

which accounts for the optical depth up to the inner boundary, while still assum-
ing εgas = 1 since no dust is present near the star.
On the upper and lower radial boundaries (θ = θmin, θmax), the situation is more
intricate. While the gas remains optically thin, the condition is given in eq.
(4.59) but with the modified ε incorporating the dust-to-gas ratio from eq. (4.53).
This means the ratio between emission and absorption efficiencies ε continuously
transitions from the gas value εgas = 1 to the dust value εdust = 1

3
. This approach

continues until the dust-to-gas ratio on the rim reaches its maximum value f0.
At this juncture, the assumption of an optically thin gas temperature breaks
down. Therefore, once the dust is fully present (fd2g = f0), the flaring disk ap-
proximation for the radiation energy, derived for the temperature in section 3.5.1,
is employed:

ER = aRT
4
flaring (4.61)

= aR

(
550K

r
3/7
AU

)4

, (4.62)

In the first two publications, the value of 550K is also adopted from Flock et al.
(2016), and rAU denotes the radius in astronomical units. These analytic expres-
sions partially align with those presented by (Ueda et al. 2017).
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Table 4.1: Model S100 setup parameters.

Parameter Value
Surface density 100 g cm−2, uniform
Nr ×Nθ 1280× 129
[rmin, rmax] [0.2AU, 4AU]
[θmin, θmax] [π/2− 0.18, π/2 + 0.18]
Stellar parameter T∗ = 10000 K, R∗ = 2.5R�, M∗ = 2.5M�
Gas parameter µg = 2.353, Γ = 1.42
Dust-to-gas ratio f0 = 0.01
Time steps dt1 = 104 s, dt2 = 1012 s
Iterations N1 = 40, N2 = 20

4.6 Benchmark

To verify the consistency of the code with previous findings, this section presents
a benchmark against the S100 run from Flock et al. (2016). Therefore, both vis-
cous heating and thermal conduction are disabled, and the run utilizes a constant
surface density in every iteration for comparability, following the same setup as
the comparison run. The parameters employed are listed in table 4.1, typical for
a Herbig Ae class star (van den Ancker et al. 1998).
The resulting radial temperature is depicted in figure 4.3, while the dust-to-gas
ratio is shown in figure 4.4. The temperatures exhibit good agreement, with
slight deviations likely arising from differences in grid spacing or boundary con-
ditions. Similarly, the dust-to-gas ratios demonstrate congruence, albeit a minor
discrepancy appears at 0.5,AU due to variations in radial cell sizes. In (Flock
et al. 2016), a logarithmically spaced grid was employed, whereas this version
adopts equidistant spacing, impacting f∆τ in (3.30). Consequently, the runs are
not numerically identical due to differences in code implementation.
Figure 3.2 illustrates a vertical 2D cross-section through the protoplanetary disk.
The star is located further to the left, while the disk extends into space on the
right. Notably, the y-axis represents the polar angle rather than height, hence
a conical disk appears flat in this representation, whereas a flaring disk exhibits
expansion to greater angles with larger radii. The x-axis, logarithmic to better
display the inner region of interest, indicates radial distance from the star. Since
the disk is symmetric in the φ-direction, a 2D cut effectively captures all signi-
ficant features.
The lower depiction showcases a profile of the dust density, revealing familiar
characteristics such as the dust halo from 0.3AU to 0.5AU, a rounded-off rim
from 0.5AU to 1.0AU, and a shadowed region beyond 1.0AU, consistent with
findings from the S100 run. The upper image displays the temperature profile,
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Figure 4.3: The midplane radial temperature profile (blue solid line) for model
S100 compared to the temperature profile of (Flock et al. 2016) (red dashed
and dotted line). The evaporation temperature (green dashed line) is shown for
reference.
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Figure 4.4: The midplane radial profile of the dust-to-gas ratio (blue solid line)
for model S100 compared to the dust-to-gas ratio of (Flock et al. 2016) (red
dotted line).
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with temperatures following the analytic prediction for an optically thin gas from
0.2AU to 0.3AU. Subsequently, as the dust halo forms, the midplane temperature
plateaus at approximately 1400K before dropping abruptly at the evaporation
front at 0.5AU. The temperature within the rounded-off rim remains relatively
constant at 1000K. Transitioning to the shadowed region at 1.0AU, temperat-
ures gradually decrease to 500K before aligning with the analytic prediction for
a flaring disk. In the outer disk region, temperatures remain vertically constant
at each radius.
These findings align entirely with those of Flock et al. (2016), indicating that the
simulation faithfully reproduces qualitative and quantitative results for identical
parameters. Thus, the benchmark is deemed complete and successful.
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Chapter 5

List of Publications with Author
Contributions

This chapter lists all the publications that are included in the cumulative thesis,
and states where they where published.
The included works are:

• Schobert, B. N., Peeters, A. G. & Rath, F., 2019, The Astrophysical
Journal, 881:56
Title: "The Impact of Accretion Heating and Thermal Conduc-
tion on the Dead Zone of Protoplanetary Disks"
URL: https://doi.org/10.3847/1538-4357/ab2df6
Short: SPR19, see Chapter 6

• Schobert, B. N. & Peeters, A. G., 2021, Astronomy & Astrophysics, 651,
A27
Title: "Impact of dust diffusion on the rim shape of protoplan-
etary disks"
URL: https://doi.org/10.1051/0004-6361/202039398
Short: SP21, see Chapter 7

• Schobert, B. N., Varga, J., Ueda, T., Flock, M. & Peeters, A. G., 2024,
submitted to Astronomy & Astrophysics, in review
Title: "Numerical modelling of the inner disk structure of
a young stellar object: HD 144432 based on near- and mid-
infrared interferometry and spectroscopy "
Short: SVUFP24, see Chapter 8

The first two works have been published in "The Astrophysical Journal" Schobert
et al. (2019) and "Astronomy & Astrophysics" Schobert, B. N. & Peeters, A.
G. (2021) respectively. The third paper has been submitted to "Astronomy &
Astrophysics" and is currently in review.
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5.1. SPR19

5.1 SPR19

As mentioned in the initial summary the aim of this project was to understand
the inner physical processes of a protoplanetary disk. Specifically to investigate
passive versus active disks, where accretion heating plays only a minor role in the
first category, whereas it is significant in the second one.
For this publication I (Benjamin N. Schobert, first author) developed a phys-
ical model based on a previous work Flock et al. (2016). I included accretion
heating in the energy conservation, which is a equilibrium between internal heat
and radiative energy. I wrote the code in octave (see: https://bitbucket.org/
astro_bayreuth/radiation_code), made all the simulations, interpreted the
results and made analytical calculations. The paper contents, i.e. the text as
well as all plots, were created by me.
The second author, Prof. A. G. Peeters, has contributed in his role as my super-
visor, by providing helpful hints and guidance. He has also proofread the final
manuscript before and during the submission process.
The third author, Dr. F. Rath, has contributed during the initial model build-
ing phase through invaluable discussions about the literature and protoplanetary
disk models and has proofread the final manuscript before submission.

5.2 SP21

The second work makes an important step by not only proofing that dust diffu-
sion necessarily occurs in protoplanetary disks, but also by its incorporation in
the code, the dust dependence on the temperature can be simplified and is made
more physically realistic.
For this work I completely rewrote the code from octave to C++ (see: https://
bitbucket.org/astro_bayreuth/rmhdcode), making it more capable to handle
bigger problems, which were previously unfeasible. This facilitated the inclusion
of dust diffusion through an additional implicit system of equations, changes to
the dust temperature dependence and better handling of boundary conditions. I
made analytical calculations about the lifetime of a typical dust grain, about its
Stokes number, measuring how well it is bound to the gas, I ran the simulations
and interpreted the results. The paper contents, i.e. the text as well as all plots,
were created by me.
The second author, Prof. A. G. Peeters, has contributed in his role as my super-
visor, by providing helpful hints and guidance. He has also proofread the final
manuscript before and during the submission process.
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5.3 SVUFP24
This paper uses the physical model presented in the previous two papers to ex-
plain the experimental observations of the YSO HD 144432, especially the devi-
ation of its mid-infrared visibility curve from an a priori expectation.
For this work I specifically modified my code to enable simulations encompassing
the complete disk, whereas I only simulated the inner rim region before. I made
analytical calculations pertaining to the outer boundary condition as it is set by
the companion stars of HD144432A. I programmed a tool to simulate the vis-
ibility curve as it would be measured by an interferometric telescope array and
performed ray-tracing simulations for the SED. I interpreted the results and for-
mulated conclusions. The paper contents, i.e. the text as well as all the plots,
but not the observational data measured by telescopes, were created by me.
The second author, Dr. J. Varga, has provided the observational data, i.e. the
SED, as well as the near- and mid-infrared visibility curves Varga, J. et al. (2024)
measured by VLTI/MATISSE. He has provided me with the source code of his
diagnostic to calculate visibility curves from synthetic images, from which my
tool is based off and benchmarked against. We had multiple meetings, where he
provided helpful hints and guidance towards the project and explained how the
data was measured. He has also proofread the final manuscript before and during
the submission process.
The third author, Dr. T. Ueda, provided helpful hints and guidance towards the
project through his extensive experience during multiple meetings. He has also
proofread the final manuscript before and during the submission process.
The fourth author, Dr. M. Flock, suggested the initial idea for the project and
has made the connection between Dr. Varga and me possible, by facilitating a
meeting and encouraging a potential cooperation. We had multiple meetings,
where he provided helpful hints and guidance towards the project through his
extensive experience. He has also proofread the final manuscript before and dur-
ing the submission process.
The fifth author, Prof. A. G. Peeters, has contributed in his role as my super-
visor, by providing helpful hints and guidance. He has also proofread the final
manuscript before and during the submission process.
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Abstract

The paper investigates the influence of accretion heating and turbulent heat conduction on the equilibrium of
protoplanetary disks, extending the 2D axisymmetric passive disk model of Flock. The model includes dust
sublimation and radiative transfer with the flux-limited diffusion approximation, and predicts the density and
temperature profiles as well as the dust-to-gas ratio of the disk. It is shown that the accretion heating can have a
large impact: for accretion rates above 5·10−8Me yr−1 a zone forms behind the silicate condensation front with
sufficiently high temperature to sublimate the dust and form a gaseous cavity. Assuming a Prandtl number ∼0.7, it
is furthermore shown that the turbulent heat conduction cannot be neglected in the evaluation of the temperature
profile. While the inner rim position is not affected by viscous heating, the dead zone edge shifts radially outward
for higher accretion rates.

Key words: accretion, accretion disks – conduction – hydrodynamics – methods: numerical – protoplanetary disks
– radiative transfer

1. Introduction

The observational techniques used to picture exoplanets have
constantly been enhanced culminating in the recent observation
of a nascent exoplanet, PDS 70b (Keppler et al. 2018; Müller
et al. 2018). In order to explain the formation of planets it is
paramount to understand the physics of the protoplanetary
disks where they originate. Modern terrestrial and satellite
telescopes use large parts of the electromagnetic spectrum,
especially near-infrared (NIR), to resolve young stellar objects
and their disks. Thus, they deliver valuable data for the models
to be tested against or built upon. Of special interest are Herbig
Ae/Be stars, since they are slightly more massive (2–5Me) but
also younger than the Sun (Herbig 1960). Interferometric
examinations of such stars allow for conclusions about their
disks; however, the interpretation has proven difficult.

Therefore, the theoretical model of such disks has been
continually augmented. Early contributions are the α-prescrip-
tion to estimate the turbulent viscosity (Shakura &
Sunyaev 1973) and the flaring disk model (Chiang &
Goldreich 1997) for passive disks. In passive disks the effects
of viscous dissipation are neglected, which is assumed to be a
good approximation for accretion rates below 2·10−7Me yr−1

(van den Ancker 2005). The effect of viscous dissipation on the
vertical structure of passive disks has been treated in 1D for T
Tauri stars by D’Alessio et al. (1998).

Because rocky planets originate in the inner regions of the
disk, this is a focus of research (Kretke et al. 2009). The
temperatures close to the star are sufficient to sublimate the
dust and an inner gaseous zone forms. In Dullemond et al.
(2001) this area was modeled to be limited by a cylindrical
sublimation front. The stellar radiation is strongly absorbed at
this front, leading to a region of lower temperature behind the
front known as the dead zone. In this zone the ionization is
expected to be insufficient for magnetorotational instability
(MRI; Balbus & Hawley 1998) and, consequently, the
turbulent viscosity is also possibly small (Turner et al. 2014).

The geometry of the inner rim was further explored by Flock
et al. (2016) for Herbig Ae/Be stars. Using a 2D radiative

transfer model based on the flux-limited diffusion approx-
imation a rounded-off rim was obtained with four distinct
regions: an inner gaseous hole, an optically thin dust halo, the
round irradiated rim, and a shadowed region behind it. That
work also included accretion heating through viscous dissipa-
tion in some models with rates up to Ṁ =10−8Me yr−1. To
achieve this a hydrostatic simulation was run first and then the
results were used as initial conditions for a second hydro-
dynamic simulation based on previous work (Flock et al.
2013). At this accretion rate a small increase in temperature of
only 10% in the shadowed region was found. The density and
temperature structure remained similar to that of a hydrostatic
model without accretion heating.
In this paper the abovementioned model is extended to

include accretion heating through viscous dissipation at rates
beyond 10−8Me yr−1. Indeed, experimental data suggest that
accretion rates up to 10−6Me yr−1 are common (van den
Ancker 2005) and that 25% of HAe stars have˙ > - -M M10 yr7 1 (Garcia Lopez et al. 2006). Furthermore,
the accretion rate of a star decreases with time and is therefore
likely to be high in the early stages of development that are
relevant for the planet formation. The accretion heating is
modeled within a single hydrostatic simulation by modifying
the energy balance to include viscous heating. The model is
also expanded by adding thermal conduction, so that turbulent
heat transport is no longer neglected. This is a reasonable
addition considering that turbulence plays a vital role in
momentum transfer; it might impact heat transfer as well. The
term is estimated by assuming a Prandtl number of order unity
and turns out to be relevant as well, especially for cases of high
viscous heating. Therefore, it needs to be treated simulta-
neously, as will be discussed later in Section 2.6.
This paper is structured as follows: Section 2 explains the

model equations needed to describe the disk. In Section 3 the
numerical model used to solve the equations is presented.
Additionally, the boundary conditions are motivated and a
benchmark to validate the implementation is performed.
Section 4 outlines the results and the qualitative changes
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compared to a model without accretion heating and thermal
conduction. Section 5 discusses the results and possible
limitations of the work. The paper concludes in Section 6 with
a summary of the results and a short outlook.

2. Model Equations

The model used in this paper closely follows the model of
Flock et al. (2016), extending the latter to include viscous
heating and turbulent heat conduction. In this section the model
equations are presented. Since there is a considerable overlap
with Flock et al. (2016) at some points the discussion is brief
and the reader is referred to the latter reference. The model
describes the density and temperature distributions of the disk
for a star with known parameters, specifically mass M*, radius
R*, and luminosity L* or, equivalently, surface temperature T*.

The model relies on the large difference in relevant
timescales. These are the dynamical timescale in which
hydrostatic equilibrium is achieved tdyn, typically the duration
of one orbit; the timescale of radiative transfer in the optically
thick regime ttrad

1, typically 50 orbits; and the viscous
timescale tvisc over which the surface density changes, typically
104 orbits. For typical disk parameters the ordering is

( ) tt t t . 1dyn rad
1

visc

The timescale followed in the solution is that of the surface
density; it changes slowly over many iterations of the
temperature profile and is the last variable to converge. The
temperature profile for each step is obtained by solving the
equations for the internal and radiation energy, which operate
on the intermediary timescale. For the density one can assume
vertical hydrostatic balance for each step because that forms on
an even shorter timescale (Flock et al. 2016).

2.1. Hydrostatic Equilibrium

The density structure is calculated assuming a hydrostatic
equilibrium between ideal gas pressure, the centrifugal force,
and gravity. It is convenient to use spherical coordinates (r, θ,
f) for the model problem, since they facilitate a straightforward
integration of the radiation from the star along its optical path.
The polar axis of the coordinate system is oriented along the
rotational axis of the star, so that the protoplanetary disk lies in
the equatorial plane. This means the azimuthal velocity of the
gas will be significantly greater than radial or polar velocities
vf ? vr, vθ. Neglecting the latter the hydrostatic equations are

( )r
r¶

¶
= -

¶F
¶

+ fp

r r

v

r
, 2

2

( )
q

r

q
¶
¶

= f

r

p v

r

1

tan
, 3

2

where ρ is the gas density, vf is the velocity in azimuthal
direction, Φ=G M*/r is the gravitational potential, and p is
the pressure. For closure with the thermodynamic equations an
ideal gas is assumed:

( )r
m

=p
k T

u
, 4

g

B

with temperature T, Boltzmann constant kB, mean molecular
weight μg, and atomic mass unit u.

2.2. Radiative Hydrodynamics

The temperature distribution is the solution of a coupled
system of equations for the radiation energy density ER and the
internal energy density of the gas ò. These equations represent a
subset of ideal radiative magnetohydrodynamics with magnetic
and electric field neglected. The two coupled equations for the
radiation and internal energy are

( ) · ( )r s¶ = - - -  Fc a T E , 5t R R
4

*

( ) ( )l
s

s¶ -   = + -E
c

E c a T E , 6t R R R R
4

where σ is the mean opacity, aR=4σB/c is the radiation
constant with σB being the Stefan–Boltzmann constant, F* is
the irradiation flux from the star, c is the vacuum speed of light,
and λ is the flux limiter. The flux limiter acts as a diffusion
constant for the radiation energy density; it is taken from
Levermore & Pomraning (1981) and has the following form:

( )l =
+

+ +
R

R R

2

6 3
with 7

2

∣ ∣ ( )
s

=


R
E

E
, 8R

R

which fulfills ( )l =


Rlim 1 3
R 0

in the optically thick limit and

( )l =
¥

Rlim 0
R

in the optically thin limit. Since the product R λ

(R) can never exceed unity, this flux-limited diffusion theory
(FDT) preserves causality by never allowing the radiative flux
to exceed the radiation energy density times the speed of light
in vacuum.
For closure between internal energy and temperature again

the ideal gas approximation

( )r r= c T 9V

is used. Here cV is the specific heat capacity. This yields for (5)

( ) · ( )r s¶ = - - -  Fc T c a T E . 10V t R R
4

*
For the irradiation flux blackbody radiation times an attenua-
tion factor is assumed:

⎜ ⎟⎛
⎝

⎞
⎠( ) ( )s= t-F r

R

r
T e , 11

2

B
4

*
*

* *

where τ is the optical depth

( )ò òt s t s= = +dr dr 12
R

r

r

r

0
min

* * *
*

and ( )( )t k r= -r r R30 gas min min * .
Furthermore, the mean opacities at the typical wavelengths

of the stellar light and the rim’s thermal emission are defined as

( ) ( )s r k n r k= + , 13dust dust gas gas* *

( ) ( )s r k n r k= + , 14dust dust rim gas gas

( )r r= f . 15dust d2g gas

Here κgas is the frequency-averaged opacity of the gas. Finally,
fd2g is the dust-to-gas ratio of the respective densities, and its
calculation is explained in the following section.

2

The Astrophysical Journal, 881:56 (10pp), 2019 August 10 Schobert, Peeters, & Rath



2.3. Dust Sublimation and Opacities

The most crucial effect for the evolution of the disk is
arguably the dust sublimation. Because the dust absorbs more
radiation than the gas, it is strongly heated by the star and
through its own so-called back-warming, i.e., the infrared
radiation emitted by the dust. A small amount of dust can
substantially decrease the radiation that reaches the area behind
it, making the transition between vapor and condensed dust
very thin.

In order to resolve this thin layer the dust sublimation
formula from Flock et al. (2016) smooths the transition over a
temperature range of 100 K and uses the tangens hyperbolicus
as a model function. The formula is

⎜ ⎟
⎧⎨⎩

⎡
⎣⎢
⎛
⎝

⎞
⎠

⎤
⎦⎥
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- -
>

= - - + <

t

t

D

D

f
f T T

T T

f
f T T

2
1 tanh

100 K

1 tanh 1

2
if

2
1 tanh 20 if , 16

d2g
ev

3

ev

0
ev

*

*

with the dust evaporation temperature Tev, the reference dust-
to-gas ratio f0, and the transition dust-to-gas ratio fΔτ. For the
dust evaporation temperature the fitting model proposed by
Isella & Natta (2005)

⎛
⎝⎜

⎞
⎠⎟ ( )r

=
-

T 2000 K
1 g cm

17ev 3

0.0195

is used. It describes the dependence of the evaporation
temperature on the gas density for silicate grains. The transition
dust-to-gas ratio tDf is defined as

( ) ( ) ( )t
r k n r k n

=
D

D
=

DtDf r r

0.3
, 18

gas dust gas dust

*
* *

with Δr being the radial size of one grid cell. The transition
optical depth of Δτ*=0.3 is chosen so that the absorption of
the radiation at the rim can be resolved (Flock et al. 2016).
Furthermore, it is useful for numeric stability to impose a
minimum value of = -f 10d2g

min 10. The maximum value of
f0=10−2 is chosen because it reflects the amount of dust
present in the interstellar medium (Li & Draine 2001) and
therefore represents the maximum ratio in the protoplane-
tary disk.

The dust sublimation formula describes gradual building up
of the dust halo for temperatures lower than Tev and the actual
sublimation front for temperatures above. By design, the
formula for the dust halo has an upper limit fΔτ, which is
reached for optical depths larger than one, close to the
evaporation temperature. Beyond the condensation front the
dust-to-gas ratio grows with the optical depth and reaches its
maximum for τ*�20.

Similar to Flock et al. (2016) an average value of
k = - -10 cm ggas

4 2 1 is used in the computations of this paper.
This value ensures that the optical depth τ* remains small
enough inside the gaseous inner disk, preventing the absorption
of too much stellar radiation in this region, which would result
in the inner rim moving too close to the star.

For the opacity of the dust two wavelengths are important,
the stellar light’s and the thermal radiation of the rim at the

condensation temperature. In the specific case of a star with a
surface temperature T*=10,000 K a dust opacity of

( )k n = -2100 cm gdust
2 1

* is calculated in Flock et al. (2016)
using the MieX code by Wolf & Voshchinnikov (2004). Using
the same method an opacity of ( )k n = -700 cm gdust rim

2 1 is
obtained for thermal radiation of approximately 1300 K, which
represents a typical dust sublimation temperature.

2.4. Surface Density

The surface density Σ is modeled using the steady thin disk
approximation (Clarke & Carswell 2009)

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

˙ ˙ ( )
pn pn

S = - »
M R

r

M

3
1

3
, 19

t t

0.5
*

where the latter approximation applies at distances much larger
than the radius of the star. Here Ṁ is the accretion rate, r the
radial distance, and νt the kinematic turbulent viscosity.
As an estimate for the viscosity the α-viscosity prescription

introduced by Shakura & Sunyaev (1973) is employed:

( )n a
a

= =
W

Hc
c

, 20t s
s
2

where the pressure scale height H=cs/Ω was used to
expresses the kinematic turbulent viscosity νt through the local
speed of sound r= ¶ ¶c ps and the Kepler rotation

frequency W = GM R3
* . The constant α is on the order of

10−2 for turbulent flow.
With a given viscosity it is possible to calculate the surface

density and the effect of the viscous dissipation on the
temperature.

2.5. Viscous Dissipation

The significant turbulent viscosity suggests that heat
dissipation needs consideration in the energy balance, espe-
cially for active disks. In contrast to Flock et al. (2016) this
effect is included in this paper by introducing the heating term
in the equation for the evolution of the internal energy. The
viscous heating term can be obtained from the Navier–Stokes
equation by taking the scalar product with the velocity field.
This yields an additional term Qheat in (5):

( ) · ( )r s¶ = - - -  + Fc a T E Q , 21t R R
4

heat*
with

( )s= vQ : , 22heat

where “:” denotes a double contraction. In spherical coordi-
nates assuming a dominant azimuthal velocity the expression of
(22) simplifies to

[ ] ( )rn= ¶ WQ r . 23t rheat
2

The effect of this new term is discussed in Section 4.1.

2.6. Thermal Conduction

Since momentum eddy diffusivity and heat transfer eddy
diffusivity are linked through the turbulent Prandtl number

( )n r= = Pr c k 1t p t t , the effect of thermal conduction should
have a similar impact on the internal energy as the effect of
viscous dissipation and therefore will also be considered. This
new addition to the model will be shown to be important for the

3
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higher accretion rates studied in this paper. Here kt is the
turbulent thermal conductivity and cp is the specific heat at
constant pressure. This yields for kt

( )rn
=

G
k

c

Pr
, 24t

t V

t

where cp=Γcv, with Γ being the adiabatic index. The addition
of the turbulent heat conduction changes Equation (5) to

( ) · ( )r s¶ = - - -  + + Fc a T E Q Q , 25t R R
4

heat cond*
with

( )= Q k T. 26tcond
2

The changes through thermal conduction will be addressed in
Section 4.1.

3. Numerical Implementation

This section details the numerical implementation of the
above described model as well as the set of initial and boundary
conditions. In particular, the boundary conditions pose a
delicate problem that needs to be explored tentatively because
of their influence on the final solution. Also, a benchmark for a
specific set of parameters is presented. The implementation in
this paper is partially derived from the model of Flock et al.
(2013), but deviates when expedient. The code used in this
paper can be found at bitbucket.org/astro_bayreuth/radiation_
code. It is written in Matlab/Octave and implicitly solves the
radiation hydrodynamic equations.

3.1. Iterative Procedure

The procedure to determine the final disk structure is
threefold.

The first step is to calculate the hydrostatic equilibrium for a
given temperature distribution using the equations of
Section 2.1 to determine the density distribution. For the
density in the equatorial plane ρ0 the surface density and the
pressure scale height [ ( )]m=H k Tr GM ugB

3 0.5
* are used:

( )r
p

=
S

H2
. 270

Then, from the midplane outward, density and pressure are
integrated. At this point one also calculates the optical depth
with formula (12) and the corresponding radiation flux F*.

The second step is to implicitly solve the two coupled
equations for the temperature and radiation field from
Section 2.2. This is done using the BiCSTAB solver first
presented by Van der Vorst (1992). For preconditioning the
incomplete LU-factorization is used, and the convergence
criterion is met if the reduction of the L2 norm of the residual
∣∣ ∣∣ ∣∣ ∣∣r r2 init 2 is <10−5. This deviates from Flock et al. (2013)
where the matrix is Jacobi preconditioned, but faster conv-
ergence is found with incomplete LU-factorization.

The final step is to calculate the dust-to-gas ratio with
formula (16). After these three steps, the process is repeated
starting again with the hydrostatic equilibrium using the newly
obtained temperature distribution. The iterations are continued
until the relative change of temperature and density field

⎛
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n n

n

1

1

1

1

which is used as the convergence criterion, reaches a steady
state.
For stability it has been found that it is advantageous to

introduce the dust-to-gas ratio logarithmically in the first 30
steps of the iteration. The calculation begins with no dust
present and then the effect is slowly introduced. This was done
in Flock et al. (2016) as well, but only for the first five
iterations. It is necessary to introduce the dust slower because
of the different grid spacing. The grid is equidistantly spaced in
radial and polar direction, in contrast to Flock et al. (2016),
where a logarithmically spaced radial grid is employed.
Therefore, to compensate for the bigger grid cells in the inner
region, the model needs more steps to equilibrate during the
dust introduction. Furthermore, up to three different time steps
are used, initially smaller ones dt1 for N1 iterations then bigger
ones dt2 for N2 iterations and finally again smaller ones dt3 for
N3 iterations. This way the code converges into a stable
configuration with less iterations. The small steps dt1=dt3 are
chosen as 104 s or 0.0056 inner orbits, while the bigger ones dt2
are 1012 s or 560 thousand inner orbits in the benchmark case
and 107 s or 5.6 inner orbits in all later cases.

3.2. Initial and Boundary Conditions

As stated in the previous section there is initially no dust
present and the dust-to-gas ratio is zero everywhere. Therefore,
the initial temperature distribution is that of an optically thin
gas:

⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠( ) ( )=


T r

R

r
T

1

2
, 28thin

gas

0.25 0.5
*

*

with = 1gas . Using the initial temperature the surface density
can be calculated using Equation (19). (Note that for the
benchmark presented below the density has been set constant.)
Then the density can be integrated. The initial condition for the
radiation energy density is ER=aRT

4 with the radiation
constant aR.
The boundary condition for the temperature field is zero

gradient on all four edges. For the energy density the
boundaries are fixed. At the outer edge

·= -E 3.4255 10 J mR
6 3, which is equivalent to about 260

K. This is the temperature of the outer edge in Flock et al.
(2016) and also close to the analytical expression in Ueda et al.
(2017). At the inner edge the condition is

( ) ( ) ( )= - t-E e a T r1 , 29R R thin
4

min0

which accounts for the optical depth up to the inner boundary,
and uses gas since there is no dust present in proximity to
the star.
Along the upper and lower radial boundaries the problem is

more complex. While the gas is still optically thin, the
boundary condition is given by inserting (28) in (29) with a
modified ò that includes the dust-to-gas ratio:

( )
( ) ( )k k n

k k n
=

+

+


f

f
. 30

gas d2g dust rim

gas d2g dust *

This method is used up to the transition radius rtrans=0.83 au
that was calculated with expressions from Ueda et al. (2017),
specifically Equations (6), (17), and (19) therein. For these
calculations a ratio between surface height and pressure scale

4
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height z*/H=3.6 is used. For the temperature in this region
Equation (21) from Ueda et al. (2017) can be modified to

⎜ ⎟
⎧⎨⎩

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎫⎬⎭ ( )
p

p
=

-
+T

r r

h
T

2
arctan

2
, 31trans

1 4

trans

where Ttrans is the temperature at rtrans and h=0.04 rtrans.
This holds true until T<Tflaring, with

( )=T
r

550 K
32flaring

au
3 7

being the flaring disk approximation from Chiang & Goldreich
(1997). The value of 550 K is also taken from Flock et al.
(2016) and rau is the radius in astronomical units. Then the
temperature Tflaring is used. All these temperatures are
transformed into the corresponding radiation energy values
analog to (29) with the optical depth being capped at unity.

3.3. Benchmark

To verify the compliance of the code with previous results a
benchmark against the S100 run from Flock et al. (2016) is
presented. In this simulation both viscous heating as well as
thermal conduction are neglected, and the run uses a constant
surface density in every iteration for comparability. This is the
same setup as was used in the run that it is compared against.
The parameters used are listed in Table 1. They are typical for a
Herbig Ae class star (van den Ancker et al. 1998). The dust-to-
gas ratio is fixed after the 40 small steps for faster convergence.

The resulting radial temperature can be seen in Figure 1. The
temperatures are in very good agreement corroborating the
correctness of the implementation.

Figure 2 represents the 2D profile for a case with thermal
conduction and without viscous heating. The parameters used
are as listed in Table 2 but with =N 2503 . It shows all the
features, like the dust halo, a rounded-off rim, and a shadowed
region behind the rim, that were also found in the S100 run
from Flock et al. (2016). It follows that the simulation code
used in this paper reproduces both qualitatively as well as
quantitatively the results of Flock et al. (2016), giving
confidence in the implementation.

4. Results

This section presents the results for cases with viscous
heating and thermal conduction, describes the influence of the
accretion rate, and analyzes the effect on the structure of
the rim.

4.1. Rise in Temperature through Viscous Dissipation and
Cooling through Thermal Conduction

As a first step the influence of viscous heating and thermal
conduction will be examined. To do so four cases are compared
with viscous heating turned on (VH1) versus turned off (VH0)
and thermal conduction enabled (TC1) or disabled (TC0) with
otherwise identical parameters as listed in Table 2.
The accretion rate chosen is · 

- -M5 10 yr8 1 to nicely
exemplify all effects, and α is set to 0.95·10−2; cases with
different α and Ṁ are explored in the next section. Little is
known about the turbulent Prandtl number in accretion disks,
but the Prandtl number of hydrogen at temperatures from 700
to 1000 K is 0.68 (McCarty et al. 1981), and it is this value that
is used in the model. Furthermore, like α, the Prandtl number is
taken to be uniform in the computational domain, and the
optical depth in the first cell τ0 is multiplied with qτ=0.1 to
prevent the rim from moving outside the computational domain
(Flock et al. 2016).
Figure 3 depicts the midplane temperature profiles of the

four runs. A significantly hotter inner rim is obtained in the
cases with viscous heating, with temperatures reaching the
evaporation temperature. In particular, the optically thick
regions deviate in temperature from the runs without viscous
heating because the heat generated in these regions cannot be
radiated away efficiently. The two runs without viscous
heating, TC0VH0 and TC1VH0, have almost identical temp-
erature profiles as expected for nonviscous heated cases with
the same surface density. The temperature in the shadowed
region is elevated through the dissipation as well, and regions
with fully evaporated dust begin to appear at around 0.5 au.
Due to the diffusive nature of the heat conduction the radial

variation of the temperature is less steep in the TC1VH1 case
compared to TC1VH0. The fairly pronounced temperature sink
before the rise is still present, and the shadowed regions are
also slightly cooler. In general the effect of thermal conduction
effectively cools the disk and leads to a significant difference in
the profile.

Table 1
Model S100 Setup Parameters

Parameter Value

Surface density 100 g cm−2, uniform
Nr×Nθ 1280×129
[ ]r r,min max [ ]0.2 au, 4 au
[θmin, θmax] [ ]p p- +2 0.18, 2 0.18
Stellar parameter T*=10,000 K, R*=2.5Re, M*=2.5Me

Dust-to-gas ratio f0=0.01
Time steps =dt 101

4 s, =dt 102
12 s

Iterations N1=40, N2=20

Figure 1. Our midplane radial temperature profile (blue solid line) for model
S100 compared to the temperature profile of Flock et al. (2016) (red dashed
−dotted line). The evaporation temperature (green dashed line) is shown for
reference.
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4.2. The Influence of the Accretion Rate

All cases in this section consider both viscous heat as well as
thermal conduction. All of them have the same surface density
(provided that temperatures are equal), but different accretion
rates and corresponding α. Three cases are considered with
parameters identical to those listed in Table 2.

Since typical accretion rates for Herbig Ae/Be stars are
expected to be high, especially in the early stages, the effect of
viscous heating is important. Experimental data suggest that
accretion rates up to 10−6Me yr−1 are common (van den
Ancker 2005) and that 25% of HAe stars have˙ > - -M M10 yr7 1 (Garcia Lopez et al. 2006). For this reason,˙ = - -M M10 yr7 1, ˙ · = - -M M5 10 yr8 1, and

˙ = - -M M10 yr8 1 are chosen for models mdot1e-7,
mdot5e-8, and mdot1e-8, respectively.
In order for all cases to have the same surface density, α is

chosen to be 1.9·10−2, α=0.95·10−2, and 1.9·10−3 for
the mdot1e-7, mdot5e-8, and mdot1e-8 cases,

Figure 2. 2D profiles of temperature (top) and the logarithm of the dust density in g cm−3 to the base 10 (bottom) for the jTC1e-7 case. The y-axis is the polar angle
in rad offset by π/2 and the x-axis the radial distance in astronomical units.

Table 2
Model Setup Parameters for Figures 3 and 4

Parameter Value

Surface density ( ) ˙ ( )pnS =r M 3 t

Nr×Nθ 5120×513
[ ]r r,min max [0.2 au, 4 au]
[θmin, θmax] [π/2−0.18, π/2+0.18]
Stellar parameter T*=10,000 K, R*=2.5 Re, M*=2.5 Me

Dust-to-gas ratio f0 = 0.01
Time steps =dt 101

4 s, dt2=107 s, dt3=104 s
Iterations N1=30, N2=40, N3=50
qτ 0.1

Figure 3. Comparison of four radial temperature profiles of runs including
viscous heating (VH1) and/or thermal conduction (TC1), the black solid line is
for the model TC0VH0, the red dotted line is for TC1VH0, the blue dashed
−dotted line is for TC0VH1, and the purple solid line is for TC1VH1. The
evaporation temperature (green dashed line) is shown for reference.
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respectively. These represent realistic values for thin disks
(King et al. 2007; Davis et al. 2010). Furthermore, α is constant
throughout the whole box.

The midplane temperature profiles of all three runs are
depicted in Figure 4. For the mdot1e-8 case, the temperature
no longer reaches the evaporation temperature, but the other
two still have an area where the dust is fully evaporated. The
area, where all the dust is evaporated, has a wider extent in the
case with an higher accretion rate.

These gaseous regions could be ionized and MRI active, thus
vindicating the high values for α that are used in the setup.
Although the temperature at which the MRI sets in depends on
various parameters, like gas density and dust-to-gas ratio
(Umebayashi & Nakano 1988; Desch & Turner 2015), a typical
value is 1000 K. Both runs with viscous heating turned on are
well above this mark before 1 au.

The position of the dust rim (t = 1r* ) does not change for
different accretion rates, as seen in Table 3. For all three cases
the rim lies at 0.29 au, since its position is determined by the
surface density in the gaseous disk and these are identical for
all three models.

The dead zone edge (Tmid=1000 K), the point where the
MRI is no longer dominant, lies further from the star as the
accretion rate increases. The range is 0.70–0.87 au, and in
particular, the value for mdot1e-7 0.87 au is in good
agreement with the value that was found in Flock et al.
(2016) for MDe-7 of 0.86 au. It lies further outward because
the viscous heating can maintain a larger hot section for
stronger accretion rates.

4.3. Structure of the Rim

The structure of the rim is affected by the viscous dissipation
and turbulent heat conduction. It still displays four distinct
regions as found by Flock et al. (2016) but has a very different
thermal and density profile as can be seen in Figure 5 for the
mdot1e-7 case. Depicted is the mdot1e-7 case with
parameters as in Table 2, but N2=1 and N3=135. This is

the case at an earlier stage than previously to show the
development of the dust-free zone inside the rounded-off rim.
The first region is a dust-free inner zone that follows the

optically thin gas temperature and lies inward of 0.25 au.
The next zone is the dust halo where the dust-to-gas ratio

gradually rises before the condensation temperature is reached
at 0.35 au.
Following that is the condensation front that engulfs the third

region. This section is formed by the rounded-off rim and in its
center can be an active zone that reaches the condensation
temperature through the viscous dissipation. This is the exact
opposite of a dead zone, a zone where temperature is too low
for MRI to arise. This region can reach MRI capable conditions
and is kept at high temperature because of the resulting high
viscosity in combination with the high optical thickness that
does not allow for effective radiative cooling.
The last and fourth region is the outer disk that is getting

colder with radial distance and lies at optical depth beyond
unity. The part of this region that is close to the equatorial plane
is warmer than the higher altitudes; the outer disk is not
isothermal at constant radius, contrary to the case without
viscous heating.
Potentially there are two stable states that can be reached by

a protoplanetary disk: one with a dead zone, if the viscous
heating is insufficient, and the area inside the rounded-off rim
cools because no external radiation can heat it and another with
an active zone, if the viscous heating is strong enough and the
heat is trapped inside the disk. These two cases can be seen in
the bottom panel of Figure 6. On the left viscous heating is
disabled and the radiation energy density inside the disk is
almost in equilibrium with the radiation energy density outside.
On the right viscous heating is included and a significant
increase of radiation energy density inside the disk is visible.
This means the energy created by the viscous heating cannot be
radiated away at a sufficient rate through the optically thick
rim. That leads to an equilibrium with an active zone. Both
cases use parameters as in Table 2, but N2=3 and N3=170.
Interesting to note is that despite the strong radial

temperature gradients no local pressure maximum forms in
the midplane. In agreement with Flock et al. (2016) there is no
local pressure maximum for constant α; once a temperature-
dependent α is introduced a local pressure maximum appears at
the location where the viscosity changes. In the model
description of this paper the viscosity is uniform, and a rise
in the temperature with radius occurs through the viscous
heating. This increase in temperature, however, is insufficient
for the pressure gradient to change sign.
The top panel of Figure 6 shows the mdot1e-7 case with

parameters as in Table 2, but N2=3 and N3=170. It shows
that the active zone inside the rounded-off rim is in its final
size. After the active zone has reached a certain size small
temperature deviations start to occur and travel through it.

Figure 4. Comparison of three radial temperature profiles of runs including
viscous heating and thermal conduction, but with different accretion rates; the
black solid line is for the model mdot1e-8, the red dotted line is for
mdot5e-8 (note that this is identical to TC1VH1), and the blue dashed
−dotted line is for mdot1e-7. The evaporation temperature (green dashed
line) is shown for reference.

Table 3
Model Results for Different Accretion Rates

Model t = 1r* Tmid=1000 K

mdot1e-8 0.29 0.70
mdot5e-8 0.29 0.82
mdot1e-7 0.29 0.87

Note.Model name, position of dust rim (t = 1r* ), and position of the dead zone
edge (Tmid=1000 K) in astronomical units.
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These small deviations manifest in the depiction as walls where
the dust is present. Since the simulation does not include latent
heat it is not possible to decide whether these small deviations
have to occur or not, but they were consistently found for every
parameter set that produced a dust-free zone.

The surface density in Figure 7 mirrors the cavity that is also
present in Figure 6. The dust density falls to S » 2dust g cm−2

in the dust-free zone. To further analyze the equilibrium in the
dust-free zone an alternative sublimation formula is in progress.

The optical depth at constant radius

( )òt s=
-¥

¥
dz 33z

for near-infrared radiation in Figure 8 suggests that the dust-
free zone forms after a large enough depth in the θ direction is
reached because diffusion of radiation energy is no longer
sufficient to cool the disk.

5. Discussion

This work represents an early stage in developing a self-
consistent model of the inner rim of protoplanetary disks. In
this section some important limitations of the model will be
discussed.

The simplifications introduced in Flock et al. (2016), such as
a uniform dust-to-gas ratio in the shadowed region and a non-
frequency-dependent gas opacity are also applied in this work.
A more elaborate sublimation formula is needed in the future,

especially with respect to the dust-free cavity inside the disk. A
detailed implementation of gas line radiation transfer would go
beyond the scope of this work. Further, the value of α was
chosen to be constant throughout the box. However, the
strength of the turbulence is expected to be influenced by the
temperature and could be lower in MRI inactive regions (Lesur
et al. 2014; Turner et al. 2014; Simon et al. 2015). A
temperature-dependent α will be explored in further work.
The temperature deviations and dust walls described at the

end of Section 4.3 will have to be further scrutinized in
combination with the modeling of the dust-to-gas ratio. Small
differences in the temperature can lead to significant changes in
the dust-to-gas ratio around the sublimation temperature. This
is therefore a delicate problem that needs to be explored
tentatively and might necessitate the inclusion of further effects
like dust diffusion, latent heat, and temperature-dependent
viscosity.

6. Conclusions and Outlook

This paper presents a 2D model for protoplanetary disks that
consistently includes viscous heating and thermal conduction.
The model expands previous works (Flock et al. 2016) and
explores new parameter ranges that led to qualitatively new
results. These results are:

(1) For accretion rates ˙ · 
- -M M3 10 yr8 1 the viscous

dissipation cannot be neglected. It affects all regions and

Figure 5. 2D profiles of temperature (top) and the logarithm of the dust density in g cm−3 to the base 10 (bottom) for the mdot1e-7 case at an early stage. The y-axis
is the polar angle in rad offset by π/2 and the x-axis the radial distance in astronomical units.
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can cause an MRI active zone to form behind the
condensation front.

(2) The thermal conduction is important since high radial
temperature gradients exist through the accretion heating.
The cooling through thermal conduction is a significant
part in the energy balance of the disk; it can therefore also
not be neglected for the parameters used.

(3) Despite the strong radial temperature gradients no local
pressure maximum forms in the midplane. Therefore, the
model calculations do not provide for a region where the
radial drift of grains generated by the friction with the gas
is reversed (Guilera & Sándor 2017).

(4) The inner rim position is not affected by viscous heating
but is determined by the surface density.

Figure 6. 2D profile of the logarithm of the dust density in g cm−3 to the base 10 (top) for the mdot1e-7 case at a late stage with waves visible and a comparison of
the radiation energy densities (bottom) of the jTC1e-7 case (left) and the mdot1e-7 case. The y-axis is the polar angle in rad offset by π/2 and the x-axis the radial
distance in astronomical units.

Figure 7. Comparison of gas (solid line) and dust (dotted line) surface density
for model mdot1e-7.

Figure 8. Vertical optical depth in NIR for model mdot1e-7.
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(5) The dead zone edge shifts radially outward for higher
accretion rates because of a larger zone with viscous
heating.

The code used to produce these results can be found
atbitbucket.org/astro_bayreuth/radiation_code.

This model could be expanded through temperature-
dependent viscosity or thermal conductivity and embedded it
in a computationally more demanding 3D simulation. Also a
subsequent paper is devoted to study the spectral energy
densities produced by active disks. But this lies outside the
scope of this work.
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ABSTRACT

Context. Multiple mechanisms are known to give rise to turbulence in protoplanetary disks, which facilitates the accretion onto the
central star. Small dust particles that are well coupled to the gas undergo diffusion due to this turbulent motion.
Aims. This paper investigates the influence of turbulence-induced dust diffusion on the equilibrium of protoplanetary disks.
Methods. The model accounts for dust sublimation, radiative transfer with the flux-limited diffusion approximation, and dust diffusion.
It predicts the density and temperature profiles as well as the dust-to-gas ratio of the disk.
Results. It is shown that dust diffusion can have a large impact: Assuming the dust survives for 104 s or longer before it can be
evaporated, this leads the dust diffusion to widen the inner disk considerably. This effect is generated through a feedback mechanism
as the diffusion length is much shorter than the disk width. With increasing dust diffusion, the inclination of the inner rim toward the
stellar radiation becomes steeper until it is almost vertical. The temperature range of evaporation and condensation, which is linked to
the dust composition, has no influence on this effect.
Conclusions. For realistic parameters, dust diffusion cannot be neglected when determining the equilibrium of the disk. Stronger
turbulence inside the disk induces more dust diffusion. Therefore, the dust density grows more gradually over a greater distance and
less radiation reaches the disk surface. The new equilibrium shape of the disk is more inclined toward the star. This effect is universal
and independent of the specific dust composition.

Key words. protoplanetary disks – radiative transfer – diffusion

1. Introduction

Herbig Ae Be stars are intermediate mass stars that are younger
than the Sun. They have accretion disks that are believed to be
the origin of planets. In recent years the resolution at which pro-
toplanetary disks (PPDs) can be observed has increased, mak-
ing the inner rim more visible and allowing for constraints
on its structure. Lazareff et al. (2017) found the ratio between
disk height and radius in the inner disk to be z/R ≈ 0.2,
which is larger than predicted by previous theoretical models
(Vinković & Jurkić 2007; Mulders & Dominik 2012) by a fac-
tor of approximately two. The shape of the inner rim has long
been debated because it determines the physical conditions in
the dusty planet-forming region.

In an early development, Dullemond et al. (2001) modeled
the inner rim as a cylindrical wall that truncates the disk where
the evaporation temperature of the dust is reached. Isella & Natta
(2005) took into consideration that this evaporation temperature
is dependent on the gas density, which leads to a rounded rim.
Flock et al. (2016) then incorporated this function for the evapo-
ration temperature into their radiative transfer model, confirming
the structure of the rim. An alternative explanation for a rounded
rim that does not rely on a density-dependent Tev involves the
different speeds of dust settling for two species of dust particles
(Tannirkulam et al. 2007).

The transition between no dust and dust at the inner rim can
be especially difficult to resolve because of the high tempera-
ture gradient and the significant change in opacity. In Flock et al.
(2016) the dust-to-gas ratio was chosen such that not too much
star light would be absorbed within a single cell in order to
ensure a smooth transition. Using the same dust description,

Schobert et al. (2019) found model solutions with interesting
feedback loops when considering the absorption of star light.
That work found temperature deviations that manifested as dust
walls traveling through the disk. As fluctuations in the spectral
energy distribution (SED) with periods of days to weeks are a
common observation in PPDs (Flaherty et al. 2014), exploring
these fluctuations could prove to be insightful. This paper con-
tinues to investigate the idea that these fluctuations are related
to the treatment of dust at its evaporation temperature. In light
of the observed feedback, and to describe the transition at the
dust boundary more realistically, this work introduces the effect
of diffusion into the description of the dust.

A complete description of the inner rim necessarily includes
dust diffusion. Gas accretion is commonly believed to be facil-
itated by turbulence. This turbulence will inevitably induce dif-
fusion in the dust particles as long as they are strongly bound
to the gas. This builds upon the notion that for micrometer dust
particles the Stokes number is close to one, and therefore the
dust diffusion coefficient will be nearly equivalent to the gas
diffusion coefficient (Brauer et al. 2008). Since neither dust for-
mation nor destruction are instantaneous processes, dust will
be found slightly outside of its equilibrium position in regard
to temperature. The timescale on which dust can be formed or
destroyed is of order 105−107 s (Morfill 1988; Tachibana et al.
2011; Nakamura et al. 2007; Lenzuni et al. 1995). Dust diffusion
will therefore take place on that timescale. This addition is also
beneficial because it naturally smooths the transition from no
dust to dust, which was previously difficult to resolve. There-
fore, this paper presents a method of incorporating the diffu-
sive motion of the dust particles into the model from Flock et al.
(2016) and Schobert et al. (2019).
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A short back-of-the-envelope calculation of the length scale
corresponding to dust diffusion, ldiff = 6.5×10−4 AU (for details,
see Sect. 4.2), suggests that the length scale is negligible to the
overall conformation of the inner rim. However, it will be shown
in this paper that the impact of dust diffusion is much larger than
can be expected from this estimate.

This paper is structured as follows: Sect. 2 explains the
model equations introduced to describe the dust diffusion. In
Sect. 3 the numerical implementation and convergence criteria
are briefly detailed. Section 4 outlines the results and qualitative
changes compared to a model without dust diffusion. Section 5
discusses the results in comparison to an analytical prediction
and with respect to the rim shape. The paper concludes in Sect. 6
with a summary of the results.

2. Model equations

The model equations used in this work for radiative transfer
and hydrostatic equilibrium follow those proposed in Flock et al.
(2016) and Schobert et al. (2019). The exact equations and
numerical methods are detailed in Schobert et al. (2019). For
brevity, only the changes applied to the model compared to
Schobert et al. (2019) are outlined in the following section.

2.1. Dust-to-gas ratio

Dust sublimation is of deciding importance for the configuration
of the inner rim and thereby for the evolution of the complete
disk. Because the dust shields the area behind it from irradiation
and because it is heated by the star and the infrared radiation it
itself emits, the dust greatly affects the temperature profile of the
disk. The transition distance between vapor and condensed dust
is very thin and requires special attention.

In order to resolve this thin layer, the dust sublimation for-
mula from Flock et al. (2016) smooths the transition over a tem-
perature range of 100 K and uses the tangens hyperbolicus as a
model function. The formula is

fd2g,old =



f∆τ
2

{
1 − tanh

[(
T−Tev
100 K

)3
]}
·
{

1−tanh(1−τ∗)
2

}
, if T > Tev

f0
2 {1 − tanh(20 − τ∗)} + f∆τ, otherwise,

(1)

where Tev is the dust evaporation temperature, f0 is the reference
dust-to-gas ratio, and f∆τ is the transition dust-to-gas ratio. For
the dust evaporation temperature, the fitting model proposed by
Isella & Natta (2005),

Tev = 2000 K
(

ρ

1 g cm−3

)0.0195

, (2)

is used. It describes the dependence of the evaporation tempera-
ture on the gas density for silicate grains. The transition dust-to-
gas ratio ( f∆τ) is defined as

f∆τ =
∆τ∗

ρgasκdust(ν∗)∆r
=

0.3
ρgasκdust(ν∗)∆r

, (3)

where ∆r is the radial size of one grid cell. The transition optical
depth of ∆τ∗ = 0.3 was chosen so that the absorption of the radi-
ation at the rim can be resolved (Flock et al. 2016). This numer-
ical remedy ensures that the transition can be described within
each chosen radial resolution; however, it is not necessitated by
the physics involved. Furthermore, it is useful for numeric stabil-
ity to impose a minimum value of f min

d2g = 10−10. The maximum

value of f0 = 10−2 was chosen because it reflects the amount of
dust present in the interstellar medium (Li & Draine 2001) and
therefore represents the maximum ratio in the PPD.

This method, however, becomes discontinuous if an optically
thick area is heated above the evaporation temperature. This was
observed in Schobert et al. (2019) in the form of dust waves trav-
eling through the inner hole of the disk. To remove this discon-
tinuity from the description, a new formula for the dust-to-gas
ratio is presented in this paper that is simpler and continuous:

fd2g,new =
f0
2

1 − tanh


(

T − Tev

∆Tdust

)3



{
1 − tanh(1 − τ∗)

2

}
, (4)

where f∆τ was replaced by f0. This also means that a separation
between temperatures above and below the evaporation temper-
ature is no longer necessary because the second case of Eq. (1)
is incorporated into the first. It is also preferable to get the same
result ( fd2g = f0 for low temperatures and high optical depths)
as before with just one equation that is continuous. Additionally,
a new variable, ∆Tdust, is introduced to describe the size of the
temperature range over which the dust-to-gas transition occurs.
This parameter is dependent on the composition of the dust; in
this paper ∆Tdust = 100 K is generally chosen, but different val-
ues are investigated. This allows the model to be more general.
Section 4.3 details the impact of different temperature ranges on
the results.

The use of this new formula in the numerical implementation
becomes possible by overcoming a pitfall of the previous model:
All of the radiation would be absorbed in a single cell if the dust-
to-gas ratio were allowed to rise too rapidly. To ensure a smooth
transition, the new model now relies on the effect of dust diffu-
sion instead of a staggered dust-to-gas ratio. How dust diffusion
was incorporated into the model is explained in the following
section.

2.2. Dust diffusion

To derive a description for dust diffusion, one starts with the con-
tinuity equation and inserts the advective and diffusive flux com-
ponents:

∂ρ

∂t
= ∇ · (D∇ρ) − ∇ · (uρ) + R, (5)

where ρ is the density, D the diffusion coefficient, u the fluid
velocity, and R any source or sink terms necessary for dust
description. Because of the relative smallness of the diffusion
term, one can neglect it at first and solve the equations for the
purely advective case. This leads to the hydrostatic solution for
the gas density (Flock et al. 2016; Schobert et al. 2019) and to
ρdust = fd2gρgas = ρ0 for the dust density as a best approximation
considering that R is not fully known. Inserting this lowest-order
solution, ρ0, into the first-order terms leads to:

ρdiff − ρ0

τdiff
= ∇ · (D∇ρdiff) (6)

ρdiff − ρ0

τdiff
= D∇2ρdiff (7)

[
1 − Dτdiff∇2

]
ρdiff = ρ0, (8)

where ρ0 is the lowest-order solution for the density including
only advection and ρdiff is the first-order solution including dif-
fusion. A forward differentiation was used together with a typi-
cal time of τdiff to approximate the derivative. Step (7) uses the
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fact that the gradient length of the mass density is expected to be
much smaller than the length scale on which the diffusion coef-
ficient (D) changes. To implement the diffusion, the following
two implicit equations are computed via the BiCGStab solver:[

1 − Dτdiff∇2
]
ρgas,diff = ρgas (9)

[
1 − Dτdiff∇2

]
ρdust,diff = ρdust. (10)

Here, the dust-to-gas ratio is fd2g = ρdust,diff/ρgas,diff , ρdiff is the
respective density of dust or gas after one diffusion time step has
taken place, τdiff is the typical time it takes for the dust to con-
densate or evaporate, and D is the diffusion constant of the dust.
The idea is that dust particles that are in the process of forming or
being destroyed will still be displaced during that time through
the intrinsic turbulence or through the gas with which they are
very well coupled. One can imagine this as a residual of the dust
because its destruction and formation is not instantaneous.

The diffusion constant of the dust is connected to the gas
diffusion by the Stokes number, St (Brauer et al. 2008):

Ddust =
Dgas

1 + St
≈ Dgas. (11)

Since St< 1 for small particles, both coefficients approximately
match each other (Brauer et al. 2008), and thus Ddust = ν =
αcsH.

Typical condensation times for τdiff range from 105 to 107 s
(Morfill 1988). The formation timescale of chondrules is 105 s
(Tachibana et al. 2011). The formation timescales of corun-
dum and hibonite range from 105 to 107 s (Nakamura et al.
2007). Forsterite has been observed to nucleate within 1.4 ×
105 s−3.3 × 105 s (Tachibana et al. 2014). Destruction of sili-
cate grains occurs via sublimation and proceeds under quasi-
equilibrium conditions (Lenzuni et al. 1995; Duschl et al. 1996).
This implies that the evaporation of silicate dust takes an amount
of time comparable to that of its formation. It is a useful sim-
plification to assume one diffusion time as the average time of
formation since both the exact time the nucleation of dust par-
ticles takes and the time their evaporation takes are dependent
on the chemistry of the dust composition as well as on the tem-
perature difference between the evaporation temperature and the
environment of the particle. In order to still cover a wide range
of possible dust compositions, a study on the effect of different
formation timescales is performed in Sect. 4.2.

3. Numerical implementation

This section details the numerical implementation of the model
described above as well as the convergence criteria. The first step
is to determine the density distribution by solving the hydrostatic
equilibrium equations for a given temperature profile using the
method detailed in Schobert et al. (2019). The second step is to
implicitly solve the two coupled equations for the temperature
and radiation energy density. This is done using the BiCSTAB
solver first presented by Van der Vorst (1992). For precondition-
ing, the incomplete LU factorization is used. The final steps
are calculating the dust-to-gas ratio with Eq. (4) and then exe-
cuting one diffusive step. The numerical implementation of the
dust diffusion is consistent with the calculation of the radiative
equilibrium. It is calculated implicitly for gas and dust density
using Eqs. (9) and (10), respectively. This is done using both the
BiCGStab solver and LU factorization. After these three steps,
the process is repeated, starting again with hydrostatic equi-
librium and using the newly obtained temperature distribution.
The iterations are continued until the convergence criterion is
reached.
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Fig. 1. Midplane profiles for temperature, optical depth, and dust-to-gas
ratio. The crosses represent grid points, and the lines are to help guide
the eye. The small black line labeled “diffusion length” represents one
diffusion length, which is smaller than one radial grid cell.

3.1. Convergence criterion

The convergence criterion used is the same as that in
Schobert et al. (2019), where the relative local changes in den-
sity and temperature are observed. These normally show an
exponential decline in time and converge faster close to the star
than farther out because of the dynamical timescale. By the time
the outer regions complete several orbits and the disk is verti-
cally isothermal, the inner regions have completed many more
orbits and should also be converged. However, some cases were
observed where the inner regions showed periodic behavior. This
is discussed in detail in Sect. 4.4 and is also consistent with
findings from Schobert et al. (2019). In these cases, the disk is
considered converged if the outer regions fulfill the convergence
criterion and the inner periodic region has completed more than
100 cycles.

3.2. Resolution study

Figure 1 shows the midplane profiles of several key quantities
and is zoomed in on the rim transition. The crosses represent grid
points at the resolution used in the cases presented in this work.
They form continuous, smooth transitions, which are resolved
over several grid cells. No jumps or oscillations are visible, and
therefore the quantities are well resolved. The critical region in
particular, where the optical depth (τ) increases from 0.1 to 10,
is resolved over 103 grid points in the midplane. Additionally, to
ensure that the numerical resolution is sufficient, a fiducial run at
double resolution was performed.

4. Results

This section presents the findings produced by introducing:
(i) the new dust-to-gas ratio, (ii) the influence from both diffu-
sion and the temperature range, and (iii) the effect on the waves
that were observed with the previous implementation of the dust-
to-gas ratio. The model parameters used are listed in Table 1.
These values were chosen because they are typical for Herbig
Ae stars (van den Ancker et al. 1998). The surface density was
determined using the assumption of a steady state with an accre-
tion rate of Ṁ = 10−8 M� yr−1, except in Sect. 4.4, where the
accretion rate is set higher at Ṁ = 10−7 M� yr−1 to show the
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Table 1. General model setup parameters.

Parameter Value

Nr × Nθ 2560 × 257
[rmin, rmax] [0.2 AU, 4 AU]
[θmin, θmax] [π/2 − 0.18, π/2 + 0.18]
Stellar parameter T∗ = 10 000 K, R∗ = 2.5 R�, M∗ = 2.5 M�
Dust-to-gas ratio f0 = 0.01

waves. The lower rate was chosen such that no dust-free hole
forms inside the disk, whereas the higher rate includes that fea-
ture. In Schobert et al. (2019) it was shown that for accretion
rates above Ṁ = 10−8 M� yr−1 the accretion heating can generate
a gaseous inner hole in the dust distribution. Waves in the dust
density formed inside this cavity; they are examined in Sect. 4.4.

4.1. Differences through the new dust-to-gas ratio

In Fig. 2 the dust densities for the old (Eq. (1)) and new (Eq. (4))
dust-to-gas ratios are compared. The new dust-to-gas ratio for-
mula changes the configuration of the inner region, specifically
at the transition between vaporized and condensed dust. As can
be seen in Fig. 2, the transition radius lies closer to the star, mov-
ing from 0.55 AU to 0.45 AU. Furthermore, the condensed area
is wider in the θ-direction at the transition radius and therefore
has a steeper angle toward the stellar radiation.

The regions inward of the transition radius are identical in
the two versions; the halo forms in an identical shape and at the
same distance from the star. Past 0.8 AU, the models also agree
with each other.

At the transition point in the midplane in the right panel of
Fig. 2 there is a small line of condensed dust inside the disk.
Because the stellar radiation is impinging on the disk that is
directly perpendicular to it in the midplane, this point is prone
to heat up and condense. In a physical disk with gas turbulence,
the dust above and below would be diffused into that line and
close this gap. In the following section, this effect is introduced,
and even the smallest amount of dust diffusion that we tested
effectively mitigates this artifact.

The old dust-to gas ratio kept the amount of dust at the transi-
tion artificially small; it used the f∆τ term, such that the absorp-
tion of the radiation at the rim could be resolved (Flock et al.
2016). If the amount of dust is artificially diminished, the evap-
oration front forms farther away from the star. Since f∆τ is a
function of the density at each point, the diminishing effect
is increased for smaller densities or, equivalently, farther away
from the midplane. Removing this artificial factor will therefore
move the evaporation closer to the star and, to a greater extent,
farther above and below the midplane. These two effects are
exactly what we see in Fig. 2. Raising the resolution will increase
f∆τ and remedy these effects, beginning in the midplane, as is
shown in the appendix of Flock et al. (2016). To completely rem-
edy the effect of f∆τ far above and below the midplane, resolu-
tions that are not obtainable would be necessary. The resolution
would need to be increased in both dimensions by at least a factor
of 100. Therefore, it is preferable to remove f∆τ from the equa-
tion completely. Doing so, however, creates artifacts connected
with a poorly resolved radiation absorption, as can be seen in
Fig. 2. To remove these artifacts, dust diffusion was introduced
as it provides a physically motivated smoothing effect that allows
the radiation absorption to be resolved. This was achieved for

even for the smallest amount of diffusion tested. Increasing the
effect of diffusion to a reasonably motivated amount will change
the shape of the rim to an even greater degree, as is discussed in
the following section.

4.2. Influence of the diffusion

This section elaborates on the influence of the diffusion. Eight
runs with different diffusion times (τdiff) were performed (see
Fig. 3). The times were chosen such that they encompass the full
possible range of formation times of dust particles as explained
in Sect. 2.2. The profiles show where light falling vertically onto
the disk reaches an optical depth of unity, which is used as a
measure for the height of the disk. The first difference to note
is between the two magenta lines, which denote the different
ways of calculating the dust-to-gas ratio. With the new formula,
Eq. (4) (dashed line), the inner regions of the rim move closer
to the star and are more rounded, while the outer regions stay
almost unchanged. This is discussed in more detail in Sect. 4.1.

All the profiles with diffusion times given in this section use
the new dust-to-gas formula. Comparing the profiles for no dif-
fusion up to a diffusion time τdiff = 103 shows that the change in
diffusion time within this range has very little effect on the pro-
file. The starting point in the midplane remains the same; from
0.5 AU to 0.6 AU the profiles deviate slightly from each other,
and past that distance they align once again. At first the height
slightly decreases with higher diffusion times of up to τdiff = 102,
but this trend stops with τdiff = 103, when the height of the disk
begins to increase with diffusion time. Overall, the deviances for
these four runs are small compared to the ones with higher dif-
fusion times.

Comparing the profiles for diffusion times of τdiff = 103 up
to τdiff = 106 shows a stronger influence of diffusion on the pro-
files. First, the starting point of the profile is closer to the star
for higher diffusion times, moving the inner rim inward, and sec-
ond, the height of the inner regions increases significantly for the
closer regions (0.4 AU to 0.5 AU) and moderately for the mid-
region (0.5 AU to 0.8 AU). The outer regions again align with
one another. This leads to a change in the configuration of the
disk. While disks at τdiff = 102 have a narrow rounded-off inner
region, disks with diffusion times of τdiff = 104 and higher dis-
play an enlarged surface of the inner region with a higher grazing
angle. Although a higher grazing angle means a larger area fac-
ing the star and therefore more absorption of stellar irradiation,
this is mitigated by a more diffused and therefore gradual dust
transition, and a new equilibrium is found.

It is interesting to note the discrepancy between the expected
diffusion length (ldiff) and the actual scale of the effect. The typ-
ical diffusion length is

ldiff =
√
τDdust (12)

and can be used to compare the effect of dust diffusion on the rim
shape with what could be expected. For the typical values used in
this paper – τ = 105 s and Ddust = 1.27 × 1011 m2 s−1, calculated
as described in Sect. 2.2 – the diffusion length is ldiff = 1.1 ×
108 m = 7.5× 10−4 AU. The displacement of the τ = 1 surface as
seen in Fig. 3 is an order of magnitude bigger than one diffusion
length. This suggests a mechanism that reinforces the effect of
diffusion on the rim. The equilibrium disk height with diffusion
may potentially be increased further because the radiation from
the star is absorbed over a greater distance and more gradually,
which allows for a steeper grazing angle in return. The smoother
the transition into dust, the steeper the grazing angle can be. This
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Fig. 2. Comparison of old and new dust-to-gas ratio equations. Depicted is the natural logarithm of the dust density for both cases. The simulation
on the left uses the old variant (Eq. (1)), whereas the simulation on the right uses the new (Eq. (4)). The y-axis is the polar angle in rad offset by
π/2, and the x-axis is the radial distance in AU.
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Fig. 3. Comparison of eight radial disk height
profiles on different diffusion timescales.
Depicted is the height vertically above the
midplane where the optical depth measured
vertically toward the midplane from the box
boundary reaches unity. The two magenta lines
are cases with no dust diffusion (i.e., τdiff = 0)
for the old (solid lines) and new (dashed lines)
versions of fd2g as described in Sect. 2.1. The
six other cases cover the range of diffusion
times from 10 s to 106 s. The small blue bar to
the left represents one diffusion length in the
vertical direction for τdiff = 105 s. It is signifi-
cantly smaller than the change in shape of the
corresponding blue profile.

is one explanation for the strong effect of diffusion on the rim
shape, which is elaborated on in Sect. 5.2.

4.3. Influence of the temperature range

This section describes the impact of the temperature range ∆Tdust
over which evaporation occurs. The parameter is introduced in
Eq. (4), and its default value is 100 K. Figure 4 shows a com-
parison between three otherwise identical cases where ∆Tdust is
50 K (black line), 100 K (red line), and 200 K (blue line), respec-
tively. The figure shows that the magnitude of the temperature
range ∆Tdust has little impact on the configuration of the rim.
All three cases form a flattened structure with a nearly vertical

cusp. However, the range does affect the radius at which the con-
densation front facing the star forms. In the midplane, the front
moves inward, from 0.49 AU in the first case to 0.45 AU and
0.37 AU in the second and third, respectively. If dust can con-
dense at a higher temperature due to the larger range, the optical
depth measured radially outward from the star grows faster. This
means that the region behind the point, where the first dust par-
ticles start to appear (T ≈ Tev−0.5∆T ), receives less irradiation
and the condensation front (T = Tev) moves inward.

Different temperature ranges simulate different dust compo-
sitions of the disk. Depending on the size of the grains and their
chemical components, they evaporate at different temperatures.
Since the configuration of the rim is not greatly affected by the
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Fig. 4. Comparison of three radial disk height profiles for different evap-
oration temperature ranges. Depicted is the height vertically above the
midplane where the optical depth measured vertically toward the mid-
plane from the box boundary reaches unity. The black line is a case
with ∆T = 50 K, the red line represents ∆T = 100 K, and the blue
∆T = 200 K.

temperature range, the findings of this paper can be applied to a
wide variety of disks.

4.4. Waves

In this section a case with an increased accretion rate, Ṁ =
10−7 M� yr−1, is explored. The dust diffusion time (τdiff) is set
to 105 s and the temperature range is 100 K.

At these parameters an inner hole forms inside the disk
because the heat produced through viscous heating by accre-
tion is sufficiently trapped inside the disk and the midplane
heats above the evaporation point, as explained in Schobert et al.
(2019). Inside this inner hole, waves in the dust density were
traveling through the simulation domain away from the star.
However, there are two differences with respect to the case in
Schobert et al. (2019). First, the dust walls caused by small tem-
perature deviations that were observed in the previous work are
no longer present. This suggests that they were an artifact of the
discontinuous dust-to-gas ratio description, as was presumed in
that paper. Since the dust-to-gas ratio is less sensitive around
the evaporation temperature, a continuous temperature region is
present inside the hole with a smooth dust density.

The second difference is that waves in the dust density tra-
verse along the outer perimeter of the disk away from the star.
They originate at the closest distance of the disk to the star
and then progress away from the star while continuously los-
ing intensity. Eventually they fade into the body of the disk. One
such cycle can be seen in Fig. 5. The progression goes from left
to right, then from top to bottom, with 3 × 104 s between each
panel.

The first step is the formation of a new dust front at the tran-
sition radius, which is at approximately 0.3 AU for this case.
This front then gradually grows bigger and starts to move radi-
ally outward. Once the front is big enough, it splits along the
midplane and two separate dust density maxima move along the
outer edge of the disk. Along the way, they lose intensity and
morph into the disk before they reach 0.4 AU. Once the dust
front splits, it leaves the front of the disk open for the next dust
front to form, and the cycle continues. Fourier analysis of the

temperature over time at a fixed position in the midplane shows
an average dominant wave frequency at 2.19 × 10−6 Hz (i.e.,
a period of 5.3 days). Coincidentally, fluctuations of a similar
period have been observed in protostellar disks (Flaherty et al.
2014). For the shown case, the effect of these density fluctua-
tions on synthetic SEDs of the disk was found to be negligible
by Dullemond et al. (2012) using RADMC3D, but the intensity
of these waves depends on the diffusion time chosen, as well as
the surface density of the disk (which is determined here through
the accretion rate). These waves are consistently found for every
parameter set but are more pronounced for longer diffusion times
as well as higher surface densities.

5. Discussion

This section discusses the results in comparison to another theo-
retical model and quantifies the effects on rim shape and grazing
angle. Synthetic images are shown that represent what different
levels of diffusion would look like observationally.

5.1. Theoretical comparison

The cylindrical shape of the rim toward the star is reminiscent of
a model previously proposed by Dullemond et al. (2001). This
section compares that model to the findings of this paper, specif-
ically the rim radius and rim height.

The rim position was determined in Dullemond et al. (2001)
as the radius where radiative equilibrium is reached at the evap-
oration temperature:

Rrim =


L∗

4πT 4
rimσ


1/2 (

1 +
Hrim

Rrim

)
, (13)

where L∗ is stellar luminosity, Trim the evaporation temperature
at the rim, σ the Stefan-Boltzmann constant, and Hrim = χrimhrim
the height of the disk at the rim, which is χrim times the pressure
scale height at that location. The second factor of this equation
takes into account the radiation that is reemitted from the oppos-
ing disk area.

To calculate χrim, a vertical Gaussian density profile is
assumed, as well as a linear behavior of H(R)/R with a slope
of −1/8 (see Appendix A.3 in Dullemond et al. 2001). Here the
surface height is defined to be the height to which the optical
depth (τ) of the rim on a radially outward directed ray is greater
than one:

τ(Hrim) =

∫ ∞

Rrim

ρ(R,Hrim)κdust(T∗) fd2gdR = 1

erf

χtheo

rim√
2

 = 1 − 1
4Σ(Rrim)κdust(T∗) fd2g

,

(14)

where erf(x) denotes the error function and Σ is the gas surface
density of the disk.

While in Dullemond et al. (2001) Σ is chosen to be constant,
this work has a radially dependent surface density. Therefore,
Σ(Rrim) needs to be chosen self-consistently to calculate χ, which
in turn is needed to iteratively find Rrim with Eq. (13). This yields
χtheo

rim = 3.69 and Rtheo
rim = 0.64 AU. However, since the simulation

does not take into account the reemitted radiation at the opposing
dust rim, it is advantageous for the comparison to neglect the
second factor of Eq. (13), which yields χtheo

rim = 3.69 and Rtheo
rim =

0.60 AU. The height ratio χ does not change within two decimals
because the change in surface density is small and the radius
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Fig. 5. Evolution of one wave cycle. Depicted is the natural logarithm of the dust density at four points in time. The y-axis is the polar angle in rad
offset by π/2, and the x-axis is the radial distance in AU.

moves slightly inward, as expected if less radiation falls onto
the rim. These last two values (i.e., χtheo

rim = 3.69 and Rtheo
rim =

0.60 AU) are illustrated in Fig. 6 by the solid line.
For comparison, the same quantities can be calculated from

the simulation data, where Rsim
rim is the radius (where the opti-

cal depth in the midplane measured from the star reaches one)
and χsim

rim is found through the height (where the optical depth
at the boundary facing away from the star minus the optical
depth at the rim radius reaches one). This yields χsim

rim = 4.13 and
Rsim

rim = 0.45 AU and is illustrated in Fig. 6 by the dotted line. The
discrepancy in radius can be explained by the difference caused
by slowly increasing the dust-to-gas ratio with the radius as in
the simulation and switching from no dust being present to the
maximum dust-to-gas ratio in the theoretical model. As more
stellar radiation is absorbed closer to the star, the equilibrium
point moves inward as well. The same effect was observed in
Sect. 4.1: When the discontinuity in the dust-to-gas model was
removed, the rim radius moved radially inward. The difference
in χ is largely due to the change in pressure scale height with
radius. As such, it is conducive to also compare the radians cov-
ered by the different heights: θsim = 0.29 and θtheo = 0.33. These
two values are in reasonably good agreement with each other,
as can be seen in Fig. 6. This comparison shows that while an
accurate assessment of course demands a numerical simulation,
the analytic estimates provide a good approximation.

Another comparison can be drawn to observational data from
Lazareff et al. (2017), where the height of the inner rim was esti-
mated by considering the fraction of the stellar luminosity that
is reprocessed to near-infrared radiation (NIR). That approach
leads to z/R ≈ 0.2, which exceeds the predictions of previous
hydrostatic models by a factor of two (Vinković & Jurkić 2007;
Mulders & Dominik 2012). However, it only exceeds the height
of the inner rim that is discussed in this section: z/R ≈ 0.5
θsim = 0.145 by 38%. This discrepancy can be due in part to
the different methods of evaluating the rim height and the spe-
cific choice of parameters for the case presented in this section.
Nevertheless, incorporating dust diffusion into hydrostatic mod-
els is a possible solution to the mismatch of disk heights in pre-
vious simulations and the disk heights observed in Lazareff et al.
(2017).

5.2. Rim shape

To characterize the rim shape, it is helpful to divide the rim into
two sections. The first one extends from R1, the radius where the
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Fig. 6. Comparison between analytical prediction and simulation. The
dashed line shows Rrim and the disk height calculated from the simula-
tion, and the solid line shows Rrim and the disk height calculated as in
Dullemond et al. (2001). Depicted is the natural logarithm of the dust
density for the case with ∆T = 100 K.

vertical optical depth in the near infrared becomes nonzero and
ends at R2, the radius where the radial optical depth for the star
light is one. This region encompasses the very beginning of the
disk and is nearly vertical for higher diffusion cases. The angle
β1 is calculated from the disk height at R2 and the difference
between the two radii (R1 and R2).

The second section lies beyond R2 and extends to R3, the
radius where the midplane temperature falls below 1000 K. Cor-
responding to this section, an angle β2 can be calculated, which
is the average disk angle between R2 and R3. The angle βtotal is
the average angle of the disk from R1 to R3. The values χ2 and
χ3 are the ratios of disk height, calculated with the vertical NIRR
optical depth, and the pressure scale height at R2 and R3.

In Table 2 the values for β1 suggest that the diffusion does not
significantly influence the angle of the first section, up to a diffu-
sion time of 102 s. For higher diffusion times, the angle rapidly
steepens until it is fully vertical for the final value. The inner
radius (R1) stays identical within two decimals up to a diffusion
time of 105 s, and then it starts to slowly decrease with increasing
diffusion time. Similarly, R2 moves inward with higher diffusion
times, and the distance between these two radii decreases. The
effect of the diffusion time on R3 is small except for the two
cases with the largest dust transition ranges, τdiff = 106 s and
∆T = 200 K, where the midplane temperature dropped farther
from the star because the heating through irradiation could reach
farther inside the disk.

None of the tested cases displayed a shadow cast on the outer
region of the disk. The grazing angle always tends to zero before
the disk starts to flare again farther out. The change in stellar
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Table 2. Properties of the different models discussed in this paper.

Series Figure τdiff ∆Tdust R1/AU R2/AU χ2 z2/R2 R3/AU χ3 z3/R3 β1 β2 βtotal

Diffusion 2 0 s 100 K 0.46 0.50 2.03 0.034 0.54 3.49 0.051 23.9◦ 14.2◦ 19.0◦
time 10 s 100 K 0.46 0.50 1.80 0.030 0.54 3.19 0.047 21.3◦ 13.6◦ 17.3◦

102 s 100 K 0.46 0.49 1.31 0.022 0.54 2.90 0.043 22.7◦ 12.4◦ 15.6◦

103 s 100 K 0.46 0.46 0.55 0.009 0.53 3.61 0.053 43.6◦ 19.9◦ 21.8◦

104 s 100 K 0.46 0.47 2.09 0.034 0.52 4.72 0.068 69.6◦ 19.9◦ 30.7◦

105 s 100 K 0.45 0.45 1.78 0.029 0.53 5.27 0.076 83.4◦ 19.5◦ 27.0◦

106 s 100 K 0.42 0.42 0.48 0.008 0.78 5.21 0.092 90.0◦ 10.8◦ 11.3◦

Temperature 3 105 s 50 K 0.49 0.50 0.65 0.011 0.56 5.20 0.078 74.1◦ 30.5◦ 33.2◦

range 105 s 200 K 0.37 0.38 1.18 0.018 0.78 4.90 0.086 77.3◦ 8.6◦ 9.4◦

flux absorbed per unit distance monotonously decreases with the
radius. This is in contrast to the theoretical model from the pre-
vious section. Heating by accretion keeps the disk hot enough to
not collapse into a shadowed region.

The change in the rim shape due to the diffusion of dust is
quite dramatic compared to expectations informed by the diffu-
sion length. As mentioned in Sect. 4.2, the displacement of the
transition in the vertical direction is two orders of magnitude
larger then predicted. Because the transition between evaporated
and condensed dust is such a delicate problem, with repercussions
for all areas behind it, even small differences can inform a signifi-
cant change in the overall configuration. Therefore, dust diffusion
plays an important role in the formation of the inner rim.

The introduction of dust diffusion allows dust to exist for a
short period of time outside of areas where the previous model
(without dust diffusion) had predicted it. This newly displaced
dust will have a cooling effect on everything in its shadow. More
dust particles can form because of the lower temperature in these
areas, enhancing the dust-to-gas ratio and thus shifting the posi-
tion of the dust-to-gas transition. Dust will be displaced by dif-
fusion once again until equilibrium is reached. The shape of
the rim is substantially altered through dust diffusion, although
the diffusion length is small compared to this change. However,
the diffusion length is not small compared to all important scale
lengths. The critical distance over which the dust-to-gas transi-
tion occurs is comparable to the diffusion length.

5.3. Synthetic images

To provide a realistic view of the rim, synthetic images were cre-
ated using the RADMC3D code from Dullemond et al. (2012).
Figure 7 shows the intensity at a wavelength of 2µm for a disk
with a diffusion time τdiff = 0 s or diffusion turned off (upper
panel) and a disk with τdiff = 105 s representing moderate diffu-
sion (lower panel). The disks are viewed from above at an angle
of 60◦ from face-on orientation, and as such the rim can be seen.
The luminosity from the star itself is suppressed and the flux
conservation is of second order.

The case without diffusion shows a thinner and rounder rim
compared to the one with diffusion, in agreement with Fig. 3.
The peak luminosity is reached at the rim itself in both cases;
however, the maximum is 2.1×10−7 erg [s cm2 Hz ster]−1 without
diffusion and 3.5×10−7 erg [s cm2 Hz ster]−1 with diffusion. This
is a 67% increase in luminosity in the rim region.

The total luminosity is 3.12×10−4 erg [s cm2 Hz ster]−1 with-
out diffusion and 3.31×10−4 erg [s cm2 Hz ster]−1 with diffusion.
This is a 6% increase in luminosity in the region of the near-
infrared bump.
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Fig. 7. Synthetic images of the disk, viewed 60◦ from face-on at 2µm
wavelength. The intensity maps correspond to no diffusion (top) and
τdiff = 105 s (bottom).

6. Conclusions

This paper presents a two-dimensional model for PPDs that syn-
chronizes the dust description over all temperature ranges and
consistently includes dust diffusion. The model builds upon ear-
lier work (Flock et al. 2016; Schobert et al. 2019), leading to
qualitatively new results:
1. Dust diffusion has a far larger impact than a simple estimate

of the diffusion length suggests. A feedback effect leads to a
more gradual dust transition, which absorbs the stellar radi-
ation along a longer path. This allows for a steeper grazing
angle of the inner rim and a wider disk height.

2. Varying the temperature range moves the inner radius, while
the general structure of the rim remains unchanged. This
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means the model is robust for different possible dust com-
positions.

3. The intensity emitted by the disk at a wavelength of 2µm
is a function of the diffusion time. It increases significantly
at the apex of the rim and increases slightly when averaged
over the whole disk.

4. No more waves are observed inside the gaseous hole, unlike
what was found in Schobert et al. (2019): those waves were
an artifact of the discontinuous dust description.

5. Waves in dust density propagate along the outer perimeter of
the disk for higher accretion rates and lower dust diffusion
times. They display a period of 5.3 days.

The code used to produce these results can be found online1.
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ABSTRACT

Context. Recent observations suggest that many disks around young stellar objects (YSOs) have oversized half-light radii in the
mid-infrared region compared to the size-luminosity relation in the near-infrared.
Aims. This paper aims to determine the structure and key properties of a protoplanetary disk, using a physics based model that is
constrained by the observations of SED (spectral energy distribution) as well as the visibility in the near and mid-infrared. The results
are used to interpret observational data from VLTI/MATISSE.
Methods. The physics based model predicts density and temperature profiles, while self-consistently accounting for dust sublimation
and radiative transfer. Synthetic images are produced via ray tracing from these profiles and converted into SEDs and visibility curves.
The model parameters are adjusted until the simulated SEDs and visibilities compared well to their observational counterparts.
Results. Reasonable agreement between model prediction and observation is obtained. The 3 µm visibility curve is strongly connected
to the inner rim position and there is an easy analytical equation connecting half-width of the visibility to the inner rim position. The
9 µm visibility curve is indicative of the amount of accretion heating within the disk, HD 144432 has a high turbulent viscosity, with
α = 0.04 and an accretion rate of Ṁ = 1.6 · 10−8 M�yr−1. The SED is best reproduced with graphite and silicate particles with sizes in
the range of 0.003-1 µm and an absorption to emission ratio of ε = 0.11.
Conclusions. The accretion heating has a important impact on HD 144432 and must be included to explain the large mid-infrared
region. It is possible to determine regions where the majority of the near- and mid infrared radiation originates. This corresponds well
with measured visibility curves from HD 144432, where longer wavelength radiation, i.e. colder radiation, is observed coming from
further away from the star as expected. Furthermore, it is possible to constrain the accretion rate and inner and outer rim radii of the
disk, as well as confining possible dust compositions.

Key words. Accretion, accretion disks – protoplantary disks – radiative transfer – Techniques: interferometric – Methods: numerical
– Methods: observational

1. Introduction

Accretion disks, made of gas and dust, surround many young
stellar objects (YSOs), that have been observed. In order to un-
derstand the formation of planetary systems it is necessary to
know the structure of the disk itself. This proves especially dif-
ficult for the inner regions of the disk, because these are hard
to spatially resolve for remote objects using current methods.
Within this inner region of the disk, the temperature of the gas
gradually drops as a function of the distance to the star and even-
tually reaches the condensation temperature of the dust. At this
point the inner disk rim (Dullemond & Monnier 2010) forms,
the evaporation front of the dust suspended in the gas.
Spectra and interferometric examinations of stars and disks en-
able predictions about the disk’s internal structure, when they
are compared to theoretical models. Early models predicted a
cylindrical wall-like puffed up inner rim with a shadowed region
behind it (Dullemond et al. 2001). Subsequently, the introduc-

tion of a density-dependent evaporation temperature or multi-
ple dust species yielded a rounded off rim structure (Isella &
Natta 2005; Flock et al. 2016; Tannirkulam et al. 2007), that still
could incorporate shadowing. However the temperature profile
of this rounded off structure seems to strongly depend on the disk
properties, especially the accretion rate (Jankovic et al. 2021;
Chrenko et al. 2022). The temperature profile within the disk de-
termines where MRI (magneto rotational instability) can occur,
and the transition of turbulent regimes can lead to dust traps that
facilitate planet formation (Ueda et al. 2019).
HD 144432 is a well studied system with multiple stars. It was
initially categorized as a binary by Wackerling (1970) and fur-
ther identified to be a Herbig Ae/Be star with a companion by
Pérez et al. (2004). Carmona et al. (2007) found no disk for the
companion, but one present for the central star HD 144432A.
Later Müller et al. (2011) imaged the companion with enough
resolution to determine it to be a binary itself, making HD
144432 a hierarchical triple system.
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Therefore, HD 144332 is a young triple system with a planet-
forming disk around its central object, which has recently been
imaged with the VLTI (Very Large Telescope Interferometer),
revealing an oversized half-light radius in the mid-infrared re-
gion. The observed SED (spectral energy distribution) and es-
pecially the visibility curves (Varga, J. et al. 2024) for distinct
wavelengths of light are valuable constraints for the disk model
used in this paper.
Previous mid-infrared-size surveys found the phenomenon of an
enlarged mid-infrared region in disks to be common (Monnier
et al. 2009; Menu et al. 2015). This is especially peculiar, since
the correlation between the near-infrared size of the disks to
their luminosities is strong, while the mid-infrared sizes are too
large for the corresponding luminosity. It has been proposed that
this deviation from the theoretical expectation can be explained
through gaps in the disk caused by planets, or disk clearing by
binary companions, or emission from remnant dust envelopes.
This paper will employ a radiative transfer code, based on previ-
ous work by Flock et al. (2013) and including accretion heating
(Schobert et al. 2019) and dust diffusion (Schobert & Peeters
2021) to self consistently calculate temperature and density pro-
files, as well as the specially resolved dust-to-gas ratio, to pro-
duce SEDs and visibility curves matching the observations. By
employing physical constraints through equilibrium states and
steady-state accretion it is possible to narrow down properties of
the disk, like the inner rim radius, the outer rim radius, the ac-
cretion rate and make statements on the composition of the dust.
The physics based model, therefore, reduces the number of ad-
justable parameters and yields a consistent disk description.
This paper is structured as follows: Sect. 2 explains the model
equations needed to describe the disk in terms of boundary con-
ditions imposed by companion stars, as well as the method used
to calculate the visibility curves. In Sect. 3 the numerical im-
plementation, convergence criteria as well as processes to create
simulated SEDs and visibility curves is outlined. Section 4 de-
tails the results and how specific properties of the system HD
144432 can be constrained using the observational data in con-
junction with the simulations. Section 5 discusses the results as
they pertain to the structure of protoplanetary disk in general and
the effect of shadowing. The paper concludes in Sect. 6 with a
summary of the results.

2. Model equations

The model equations used in this work for radiative transfer and
hydrostatic equilibrium are those from (Schobert et al. 2019)
with the additions from (Schobert & Peeters 2021). Given the
characteristic parameters of a star, i.e. mass M∗, radius R∗, and
surface temperature T∗, the model calculates the temperature and
radiation energy density profiles of a 2D vertical slice of the disk.
The simulation domain is bound by an inner and outer radius and
an upper and lower polar angle. First the surface density is de-
termined by the steady state accretion solution. From this the
gas density is found through hydrostatic equilibrium. Third the
radiative transfer equations are implicitly solved to determine
temperature and radiation energy density in the disk. Finally the
dust density is found in accordance with the temperature and the
process is iterated until equilibrium. For brevity only the changes
compared to (Schobert & Peeters 2021) are outlined in this sec-
tion.

2.1. Stellar flux

The stellar flux is the main heat source of the disk, it is absorbed
by the disk proportional to the local opacity. Rather than numer-
ically calculating the divergence of the stellar flux F∗, by taking
the difference of flux through the surfaces of a finite volume,
the divergence can be evaluated analytically, improving the pre-
cision. The temperature equation in (Schobert & Peeters 2021)
was of the form:

cvρ∆T
∆t

= ρQ̇cond + ρQ̇exchange − ∇ · F∗, (1)

where cv is the specific heat capacity, ρ is the density, T the
temperature, t the time, Q̇cond the heating rate through thermal
conduction and Q̇exchange the heating rate through absorption of
radiation within the disk combined with the cooling rate through
emission by radiative cooling. By the definition of the stellar
flux:

F∗(r) =

(R∗
r

)2

σBT 4
∗ e
−τ∗ (2)

τ∗ =

r∫

R∗

σ∗ dr (3)

σ∗ = ρgasκgas + ρgas fd2gκdust(ν∗) , (4)

this can be evaluated in spherical coordinates and both sides nor-
malized with respect to the density to yield:

cv∆T
∆t

= Q̇cond + Q̇exchange + F∗[κgas + fd2gκdust(ν∗)], (5)

where fd2g is the dust-to-gas ratio, κgas is the opacity of the gas
and κdust(ν∗) is the opacity of the dust at the characteristic fre-
quency of the stellar light ν∗. This simplification, i.e. replacing
equation (1) with equation (5), improves both runtime and pre-
cision of the code.

2.2. Companion stars

As will be shown in Sect. 3.1 the issue of boundary conditions
needs to be treated with special care. Especially the boundary
that is facing away from the central star is interesting, because
it receives no direct stellar radiation as it is shadowed by the
disk itself. Further it is the coldest part of the disk, acting as its
heat sink. Using the same approach for the boundary as on the
three other bounding surfaces is in this case possible, because
the closest stars in the environment of the disk are known: the
binary of HD144432B and HD14432C orbiting the central star.
The projected distance between the central star and the binary is
1.47′′ (Müller et al. 2011) at a distance of 154.1 pc (Bailer-Jones
et al. 2021):

rAB = 154.1 pc × 1.47′′ = 226.5 AU (6)

The presence of CO in the proto-planetary disk surrounding
HD144432 was detected by Dent et al. (2005) up to a projected
outer diameter of 0.6′′, i.e. a radius of 46 AU using the same
distance to earth as above. Additionally Monnier et al. (2017)
found that beyond a projected radius of 0.3′′ the maximum sur-
face brightness of the disk stays below 20 mag arcsec−2, one of
the smallest far-IR excess from their sample. This suggests that
the disk is truncated around 46 AU. Therefore, one can confi-
dently assume the temperature at 100 AU from the central star
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towards the binary to be dominated by the optically thin approx-
imation:

T 4
thin(r = 100 AU) =

1
ε∗,B

(
R∗,B

2(rAB − 100 AU)

)2

T 4
∗,B+ (7)

1
ε∗,C

(
R∗,C

2(rAB − 100 AU)

)2

T 4
∗,C (8)

Tthin(r = 100 AU) = 31.9 K, (9)

where ε∗,B = 0.32 and ε∗,C = 0.35 are the ratios of the Planck
mean opacity at the characteristic wavelength of the disk and
the Planck mean opacity at the characteristic wavelength of the
two companion stars. These opacities are calculated from the
frequency dependent opacity given by Draine & Lee (1984).
They were calculated for a typical sublimation temperature of
the dust, Tsubl = 1350 K similar to (Flock et al. 2016), and the
effective temperatures of the companion stars, T∗,B = 4000 K
and T∗,C = 3750 K (Müller et al. 2011). The stellar parameters
of the binary as given by Müller et al. (2011) are for the radii
R∗,B = R∗,C = 1.5 ± 0.7 R� and for the effective temperatures
T∗,B = 4000±250 K and T∗,C = 3750±250 K. These parameters
lead to an estimate of 31.9 K for a distance of 100 AU from the
central star towards the binary, which can be used as the bound-
ary condition facing away from the central star. Because the disk
is rotating and will receive less radiation from the other side, that
is not facing HD 144432 B and C, 31.9 K can be seen as an upper
bound on the boundary condition. Section 3.1 provides simula-
tions that proof a convergence of the temperature profile for the
disk beyond 8 AU if the boundary condition at 100 AU is chosen
to be 40 K or lower.

2.3. Surface denstiy

The surface density Σ is calculated assuming a steady state thin
disk approximation (Clarke & Carswell 2009):

Σ =
Ṁ

3πνt

[
1 −

(Rmax

r

)0.5]
, (10)

where Ṁ is the accretion rate, νt is the turbulent viscosity and
Rmax is the point at which the angular velocity has its maximum.
This is somewhere close to the star but not closer than its mag-
netic truncation radius. In Schobert et al. (2019) the second term
in the square brackets was neglected, because the simulation do-
main was sufficiently far removed from the star. This work re-
quires boxes closer to the star and the correction term could no
longer be neglected, therefore Rmax = 5R∗ was chosen (Calvet
& Gullbring 1998), a point that lies around the magnetic trunca-
tion radius of the star. This will prevent the surface density from
becoming unphysically high close to the star.

2.4. IR interferometric measurements

The visibilty data used in this work has been observed by
VLTI/MATISSE (Varga, J. et al. 2024). The measurements have
been shifted with regard to the inclination so that minor and ma-
jor axis would be identical and the disk would appear circular.
The visibility can be calculated from the mutual coherence func-
tion:

Γ12(u, v) =

∫ ∫

source
I(l,m) exp(−2πi(ul − vm)) dl dm, (11)

Table 1. General model setup parameters, which are from top to bottom
the radial and polar number of grid cells, inner and outer box radius, the
upper and lower polar box angle, stellar surface temperature, radius and
mass in solar equivalent and the mass density ratio of dust and gas in
the disk.

Parameter Value

Nr × Nθ 3840 × 257
[rmin, rmax] [0.052 AU, 8 AU]
[θmin, θmax] [π/2 − 0.36, π/2 + 0.36]
Stellar parameter T∗ = 7 750 K, R∗ = 2.23R�, M∗ = 1.82M�
Dust-to-gas ratio f0 = 0.01

that is defined as the Fourier transform of the intensity by the van
Cittert–Zernike theorem (van Cittert 1934; Zernike 1938). The
complex visibility µ(u, v) is the normalization of the coherence
function:

µ(u, v) =
Γ12(u, v)
Γ12(0, 0)

(12)

But the complex visibility cannot be measured for near- and mid-
infrared, only the absolute value and under the assumption of
cylindrical symmetry it is convenient to use the radial distance
in phase space, or baseline, B =

√
u2 + v2:

V(B) =
∥∥∥∥µ(
√

u2 + v2)
∥∥∥∥ (13)

The baseline is basically the distance of the two measuring tele-
scopes. The numerical process to obtain the intensity maps and
calculate the visibility curve is outlined in Sect. 3.2.

3. Numerical implementation

This section describes the creation of synthetic images and SEDs
from the simulations and the calculation of the visibility curve as
well as a study of the influence of the outer rim boundary condi-
tion on the temperature profile of the disk. The model parameters
used are listed in table 1. The surface density is calculated using
a steady state assumption for different accretion rates that are
stated for each individual case.

3.1. Convergence with the outer rim boundary condition

In this section, the convergence of the simulations with respect
to the outer boundary condition is investigated. The simulation
implicitly solves a system of equations for the temperature and
the radiation energy density, which are coupled through emis-
sion and absorption (Schobert et al. 2019). The boundary condi-
tion for the temperature is zero gradient and for the radiation en-
ergy density ER fixed boundary conditions are employed. On the
outer edge of the simulation box, the side facing away from the
star, a single value is assumed for the radiation energy density,
which for ease of understanding is converted to a temperature in
the following text with T = a−0.25

R E0.25
R , where aR is the radiation

constant.
As can be seen in Fig. 1 boundary temperatures below 40 K align
very well for even for large radii, the discrepancy between 40
K and 10 K is less than 1 K at 40 AU distance. However, for
a radiation energy density at the boundary, that corresponds to
70 K, which would be the case if HD 144432 had a companion
star of about equal surface temperature, the temperature profile
is affected by more than 10 K discrepancy for radii up to 10
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Fig. 1. Midplane temperature profile from 8 to 100 AU for three dif-
ferent outer boundary conditions, specifically radiation energy densities
equivalent to 70 K (blue line), 40 K (orange line) and 10 K (green line).

AU towards the central star. A Temperature of this magnitude
is excluded with respect to the calculations presented in Sect.
2.2, which means the results shown in the following are robust
towards the specific choice of outer boundary condition.

3.2. SED and visibility

In order to produce visibility curves of an object an intensity map
is necessary. This can be produced using the ray-tracing code
RADMC3D (Dullemond et al. 2012). Images were produced for
3 µm and 9 µm wavelength, respectively, using 0◦ inclination.
The observational data from Varga, J. et al. (2024) compensates
the baselines towards the major axis. Therefore, artificially intro-
ducing an inclination in the synthetic image, only to compensate
for it in the calculation of the visibility curve, would be futile.
The temperature profile and dust density profile were produced
with the code described in Sect. 2. RADMC3D was used only
for the intensity map since the effect of accretion heating is not
included in its code. The synthetic intensity map is then Fourier-
transformed using an explicit Fourier-series and normalized to
the total intensity according to eqs. (12) and (13).
The SED also includes the light coming from the central star, HD
144432A, which is modeled as a black body with surface tem-
perature 7750 K, stellar mass M∗ = 1.82 M� and stellar radius
R∗ = 2.23 R� (Guzmán-Díaz et al. 2021). The frequency depen-
dent opacity of the dust is taken from (Draine & Lee 1984).
The synthetic image in the top of Fig. 2 shows, what the disk
around HD 144432A looks like at 3 µm wavelength. For illus-
trative purposes these two images do include an 48◦ inclination
(Dent et al. 2005). In order to clearer show more of the structure
of the disk the maximum surface brightness has been capped
in both images in Fig. 2. The radiation is localized to a small
ring around the inner edge of the dust disk, most of the radiation
comes from the annulus between 0.31 AU and 0.34 AU, like the
analytic approximation in Sect. A suggests. The lower image is
the same view for 9µm wavelength. In this regime the radiation
is more spread out and a significant portion can still be observed
around 1.25 AU. The apparent vertical asymmetry is due to the
inclination. The flaring disk shows more of its hot surface to the
observer above the star than below. The star itself is suppressed
in these images, again to make the structure visible, for the cal-
culation of the visibility however the star is included.

Fig. 2. Synthetic images of the disk, viewed at 48◦ inclination (Dent
et al. 2005) from face-on at 3 µm (top) and 9 µm (bottom) wavelength.
The surface brightness is capped at 10−8 erg s−1cm−2Hz−1ster−1 to better
see the structure. The inclination is for illustrative purpose.

4. Results

This section presents the best set of parameters to model the ob-
servational data of HD 144432 as well as a general connection
between the 3 µm visibility curve and the inner rim radius rin
where the dust begins to form and the disk becomes optically
thick radially outwards from the star. Further the connection be-
tween the amount of accretion heating and and its influence on
the visibility curve at 9 µm are discussed and finally different
dust compositions and their SEDs are shown.

4.1. Best set of model parameters for HD 144432

The leading idea of this work is to present a simple physically
coherent model of an accretion disk that reproduces the observa-
tional data for HD 144432 to the models best ability. This means
the simulation has only a small amount of free parameters, so
that these are well constrained by the data. These three parame-
ters are: the accretion rate Ṁ, the viscosity parameter α and the
ratio of the mean Planck opacities for the characteristic wave-
length of the star and the dust sublimation front ε. As shown in
the following Sects. the 3 µm visibility curve is strongly con-
nected to the inner radius of the sublimation front of the disk,
which itself is function of all three parameters. Thus one degree
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Table 2. Best set of model parameters for HD 144432. Accretion rate
in M�yr−1, viscosity α and ratio of mean Planck opacities ε.

Parameter Value

Ṁ in M�yr−1 1.6 · 10−8

α 4.0 · 10−2

ε 0.11

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

B [Mλ]

V

accretion heating 3 µm
accretion heating 9 µm
no accr. heating 3 µm
no accr. heating 9 µm
3 µm observation
9 µm observation

Fig. 3. Visibilities as measured by Varga, J. et al. (2024) for 3 µm (blue
crosses) and 9 µm (red crosses) and simulated visibilities for 3 µm (blue
lines) and 9 µm (red lines) using the parameters from Table 2. The solid
lines show the model including accretion heating and the dashed lines
show the same model without accretion heating.

of freedom is removed. Secondly the 9 µm line sets the amount
of accretion heating which is connected to α, therefore removing
a second degree of freedom. Lastly the SED and especially the
shape of the silicate feature informs the dust composition, or at
least the ratio of mean Planck absorption and emission efficien-
cies, determining the final fit parameter.
The final values used for the run presented in figs. 3, 8 and 9 are
listed in table 2. The accretion rate lies within the range provided
in (Donehew & Brittain 2011), which is (1.8±0.4) ·10−8M�yr−1.
The α-viscosity α = 4.0 · 10−2 lies within numerical predic-
tions for MRI α values, which can range from 0.01 to 0.1 (Flock
et al. 2017) depending on the magnetic field configuration. Fi-
nally the ε value is within the range of the four opacity models
investigated and corresponds to the dust composition presented
in Draine & Lee (1984).
This best fit can be seen in Fig. 3. The figure shows how the
observational data compares to the simulated intensity found
through RADMC3D as described in Sect. 3.2. The 3 µm curve
and especially the 9 µm curve fit the data well. The solid lines
show the model including accretion heating, whereas the dashed
lines represent the same model without the effect. The conclu-
sions that can be drawn from the shape of the 9 µm curve are
outlined in Sect. 4.3 and the implications of the 3 µm curve are
explained in the following Sect.
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1
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rin, sim = 0.07 AU

rin, sim = 0.23 AU

rin, sim = 0.31 AU

rin, calc = 0.08 AU

rin, calc = 0.17 AU

rin, calc = 0.33 AU

Fig. 4. 3 µm visibilities for different inner rim simulations (solid lines)
and corresponding analytic visibilities calculated with eq. (A.2) (dashed
lines) using C∗ = 0.2 (red dashed line), C∗ = 0.55 (green dashed line)
and C∗ = 0.05 (black dashed line). B0.5,3µm is measured as 95, 43 and 23
Mλ respectively. The corresponding inner rim radii are listed in Table
3.

4.2. 3 µm visibility curve and inner rim position

The visibility at short baselines can be used as a measure for the
disk radius (Dullemond & Monnier 2010). Evaluation of simu-
lations with different inner rim positions shows a strong connec-
tion between the inner rim position rin and the half-width base-
line B0.5,3µm of the 3 µm visibility curve. The inner rim position
rin is determined as the point where the vertical optical depth
reaches unity integrated from the midplane upwards at the opac-
ity of 3 µm wavelength. This correlation can be used in conjunc-
tion with the analytic model proposed in the Appendix to suggest
a simple equation for the inner rim position:

rin[AU] = 0.9
1.65
2π

d[AU]
106 B0.5,3µm[Mλ]

(14)

= 0.236
d[AU]

106 B0.5,3µm[Mλ]
, (15)

where d[AU] is the distance of the system to earth in astronomi-
cal units and B0.5,3µm[Mλ] is the half-width of the 3 µm visibility
curve in units of one million wavelengths.
To test eq. (15) and compare it to simulations, three exemplary
cases with different surface densities and, therefore, different
inner rim radii, were evaluated. The approximation holds true
over a wide range of inner radii, as can be seen in Fig. 4 and
table 3. Simulations with an inner rim radius from 0.07 AU to
0.31 AU, which is the value predicted for HD 144432 in this
work, were tested. The simple analytic approximation derived
from a ring model can be used to make a meaningful prediction
about the inner rim position of such disks. The only assumption
that this approximation needs is that most of the irradiation of
the disk at 3 µm is emitted from an annulus, that has a ratio
of radii rin/rout = 0.9. This value has been derived from the
simulation that best agrees with the data from (Varga, J. et al.
2024) for HD 144432.
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Table 3. Simulated and analytic inner radii for cases with different
surface densities and, therefore, different inner rim radii, for validation
of the analytic relation eq. (15).

# rin, sim rin, calc

1 0.067 AU 0.079 AU
2 0.226 AU 0.174 AU
3 0.314 AU 0.326 AU

4.3. Accretion heating and 9 µm visibility curve

Similar to the influence of the inner rim position on the 3 µm
visibility profile, the amount of accretion heat through viscous
dissipation Qheat affects the outer rim position, especially for the
9 µm curve. More viscous dissipation means that the area be-
hind the inner rim has a lower temperature gradient, than a less
viscous disk. This effect was already studied in Schobert et al.
(2019) (see Sect. 4.2 and Fig. 4 therein). The accretion heat is
included in the calculation of the internal energy of the disk:

∂tρu = −σc(aRT 4 − ER) − ∇ · F∗ + Qheat (16)

Qheat = ρνt [r ∂r Ω]2 , (17)

where ρ is the density of the gas, u is the internal energy density,
σ is the mean opacity, aR is the radiation constant, F∗ is the
stellar flux, νt is the turbulent viscosity and Ω the angular rota-
tion frequency. It is therefore possible to estimate the turbulent
viscosity of the disk through the shape of the 9 µm visibility
curve. Fig. 5 shows the visibility profiles for four different cases
with varying α parameters. These cases use surface density
profiles that ensure the same inner rim radius, which is already
constrained from the 3 µm visibility curve, but they differ in
the amount of accretion heat they experience. This keeps their
temperature high to larger radii. Keeping the analytic ring model
in mind it is possible to predict how this should influence the
visibility curve. If the outer radius, meaning the radius where the
brightness drops below a relevant threshold, increases, while the
inner radius stays the same, then their ratio ε shrinks. Lowering
ε makes the visibility curve decrease slower, but increasing rout
leads to a steeper decent, and this effect wins out analytically
as well as in the simulations. Bigger α values lead to a better
agreement with the observational data. This means the region
behind the inner rim of the disk must have a sufficient high
viscosity and, consequently, be significantly heated, to produce
the necessary amount of 9 µm radiation, that is measured. The
simulations show improved agreement with the measured data
up to an α = 4 · 10−2 after which the improvement saturates.
Therefore this value was chosen in the final simulation of HD
144432.

The code used for the simulations in this paper is able to
incorporate temperature dependent viscosity. So the α parame-
ter, using the α prescription for turbulent viscosities (Shakura &
Sunyaev 1973), can change at a temperature where MRI is no
longer possible. The simulations have shown, that the α parame-
ter for the MRI inactive regions further out can not be determined
from the 9 µm profile, since these regions are too cold the mean-
ingfully contribute to the 9 µm radiation. Therefore, only a single
α parameter is chosen and determined, which is set constant in
the simulation box.
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α = 4 · 10−2

Fig. 5. Visibility curves for 9 µm for different viscosities.

Table 4. Mean Planck opacities for different data sets at 7750 K and
1350 K and their absorption to emission ratio ε.

κν data set κdust, star

[
cm2

g

]
κdust, rim

[
cm2

g

]
ε

Preibisch et al. 1993 12258.74 644.34 0.053
Draine & Lee 1984 3817.20 420.40 0.11
Varga et al. 2024 7714.29 1484.22 0.19
Henning et al. 1999 11435.47 317.73 0.028

4.4. Dust composition and the SED silicate feature

The dust composition influences the simulations in two major
ways: first the ratio of the mean Planck opacities for the
characteristic wavelength of the star and the dust sublimation
front ε effects the inner rim position. But the inner rim position
is already determined by the 3 µm curve and the viscosity is
already determined by the 9 µm visibility curve, so the possible
value for ε is within a tight range. Second the shape of the
wavelength dependent opacity will influence the shape of the
SED. So especially the shape of the silicate feature around
10 µm, that is present in HD144432 observations, needs to be
modeled correctly by the dust composition.

This work looks at four previously published dust com-
positions and their corresponding opacity curves: A model by
Preibisch et al. (1993) with amorphous carbon and ice-coated
silicate grains, a model by Draine & Lee (1984) with graphite
and silicate particles with sizes in the range of 0.003-1 µm, a
composition from Varga, J. et al. (2024) for the middle zone
of the disk with grain sizes of 0.1, 2.0 and 5 µm of several
species and finally a curve produced from data from Henning
et al. (1999) with 0.1 µm grains made of olivine. All the opacity
curves can be seen in Fig. 6. They are generally similar but
differ in how pronounced the jump at the 10 µm point is.

Like mentioned above the first way the opacity influences
the disk is through the ratio of absorption to emission efficiency.
These values are listed in table 4. Analytically one can determine
the inner rim position using equations (5) and (6) from (Ueda
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Fig. 6. A selection of wavelength dependent opacities from different
works: Preibisch et al. (1993) (black solid line), Draine & Lee (1984)
(red dashed line), correspondence with Varga, J. et al. (2024) κ for the
middle zone of the disk (green dotted line), compiled from database
from Henning et al. (1999) (blue dashed and dotted line).

et al. 2017):

RAB =
1
2

(
T∗
Tev

)2

R∗ (18)

RBC =
1
2

(
1
ε

)0.5 (
T∗
Tev

)2

R∗ , (19)

with Tev = 1470 K and ε = 0.11. These boundaries for the
inner rim position compute to RAB = 0.14 AU, which is the
boundary between the dust free region and the dust halo, and
RBC = 0.51 AU, which is the boundary between the dust halo
and the condensation front. The value that was determined in
Sect. 4.2, which is 0.31 AU lies between these two values as
expected, because the dust gradually forms between these two
boundaries and the optically thick transition happens closer to
the end of the range. Because of this analytical compatibility,
and also because of the fit of the SED as described in the follow-
ing the opacity curve of Draine & Lee (1984) was chosen for the
final simulation for HD 144432.

The second way the observables are influenced by the opac-
ity curves is visible in the SED, especially around the silicate
feature. The simulated SEDs for all for dust compositions are
shown in Fig. 7. Only two of the four opacity curves display
a prominent silicate feature, namely the opacity model from
Draine & Lee (1984) and Henning et al. (1999), but again the
opacity model from Draine & Lee (1984) is the best fit, because
it has lower intensity at longer wavelengths than 10 µm and
better reproduces the data of Varga, J. et al. (2024) in the rage
of 1 to 5 µm. The prominence of the silicate peak at 10 µm
is influenced by the value of the opacity at 10 µm. Draine &
Lee (1984) and Henning et al. (1999) have opacity values at 10
µm, that are about twice those from Varga, J. et al. (2024) and
Preibisch et al. (1993), thus the corresponding SED values at 10
µm are also about double.

For both reasons outlined above the opacity curve chosen
to simulate HD 144432 is the one provided by Draine & Lee
(1984). The final SED for the best set of parameters can be seen
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Varga et al. 2024

Henning et al. 1999

Fig. 7. A selection of SEDs computed from the opacities from Fig.
6: Preibisch et al. (1993) (black solid line), Draine & Lee (1984) (red
dashed line), correspondence with Varga, J. et al. (2024) κ for the mid-
dle zone of the disk (green dotted line), compiled from database from
Henning et al. (1999) (blue dashed and dotted line).
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Fig. 8. SED for HD 144432 as measured by MATISSE in the LM-band
(green crosses with vertical error bars) (Varga, J. et al. 2024), photomet-
ric data (black circles) and simulated SED from this work (blue crosses).

in Fig. 8. It reproduces the photometry data for the star below
1 µm very well and even aligns at 100 µm. The peak of the
silicate feature is captured but the flanks do not fall of as steeply
as observed.

5. Discussion

This section discusses the properties of the disk found to be the
best model for the observational data of HD 144432 and what
can be derived for the inner structure of the disk.
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Fig. 9. Logarithm to the base 10 of the dust density (top) and temperature (bottom), the y-axis it the angle measured from the midplane, the x-axis
is the distance to the central star in logarithmic scaling. The blue line depicts the optical depth of unity for 9 µm (dashed line) and 3 µm (solid
line). The green lines show the dust evaporation temperature (solid line) and a dust-to-gas ratio of 5 · 10−7 (dashed line).

5.1. Structure of the disk

Fig. 9 depicts the logarithm of the dust density as well as dif-
ferent dust formation thresholds. The y-axis shows the angle to-
ward the midplane and the x-axis is the logarithmic distance to
the central star. The area that emits the 3 µm radiation can be
seen in the lower image starting behind the blue lines at the in-
ner rim of the disk, where there is a small lens shaped area in
bright red, that is hot enough to be significant. The temperature
then continues to fall as the distance to the star increases but with
a lower gradient.
The results gained from evaluating the visibility curves allow for
an analysis of the structure of the disk. The inner rim becomes
optically thick for 3 and 9 µm radiation at 0.31 AU and the tem-
perature falls rapidly beyond that. Radiation in the 3 µm band
is not emitted in a significant amount beyond 0.34 AU and the
9 µm radiation falls below the threshold around 1.25 AU. The 9
µm area is in fact located in a similar area to a zone 1 in (Varga,
J. et al. 2024), where they find that their zone 2 starts at 1.3 AU,
or more precisely the gap dividing zone 1 and 2 ends at 1.26 AU.
In Fig. 2 (bottom) a second ring starting around 1 AU is visible,
this is connected to the flaring of the dust-to-gas ratio as can be
seen in Fig. 9.

5.2. Puffed-up rim and shadowing

A puffed up inner rim with a shadowed region behind has been
part of previous theoretical models (Dullemond et al. 2001). The
model presented in this work shows multiple brightness rings in
Fig. 2, specifically for 9 µm. Comparing to Fig. 9 we find that

position of the rings aligns with a puffed up region of dust den-
sity. The model presented in this work uses a formula for the
dust to gas ratio that adapted from Flock et al. (2016), has been
simplified in Schobert & Peeters (2021) and now additionally
simplified by dropping the optical depth dependency:

fd2g =
f0
2

1 − tanh


(

T − Tev

∆Tdust

)3

 , (20)

with the dust evaporation temperature Tev, evaporation temper-
ature range ∆Tdust = 100 K and the reference dust-to-gas ratio
f0 = 10−2. For the dust evaporation temperature the fitting model
proposed by Isella & Natta (2005)

Tev = 2000 K
(

ρ

1 g cm−3

)0.0195

(21)

was used.
Using Eq. (20) one can understand the green lines in Fig. 9.

The solid one is the equilibrium point fd2g =
f0
2 or T = Tev. It

corresponds to an almost conical rim with a wall-like inner sur-
face and also shows a small puffed-up rim, leading to a shadowed
region between ∼ 0.35 AU and ∼ 0.9 AU. This is even better vis-
ible in the dashed line, where fd2g = 5 · 10−7 or T ≈ Tev + 170 K;
it does show a higher polar angle at the rim and drops to lower
angles behind, before the disk begins to flare, at ca. 0.6 AU. This
dust density profile translates to the two brightness rings seen in
Fig. 2, meaning a shadowed disk. At even lower dust thresholds
the characteristic rounded of rim, that is connected to a density
dependent evaporation temperature can be seen.
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6. Summary

This paper presents the best set of model parameters to align with
data measured for HD 144432 and explains how the observa-
tional data can be interpreted prima face with a simple analytical
model as well as in depth with a numerical 2D model for proto-
planetary disks that self-consistently includes radiative transfer
and dust sublimation. The model builds upon earlier work (Flock
et al. 2016; Schobert et al. 2019; Schobert & Peeters 2021) and
measurement data (Varga et al. 2018; Varga, J. et al. 2024) to
produce the following results:

1. The 3 µm visibility curve is strongly connected to the inner
rim position. There is an easy analytical equation connecting
the half-width of the visibility to the inner rim position.

2. The 9 µm visibility curve is indicative of the amount of ac-
cretion heating within the disk, HD 144432 has a high tur-
bulent viscosity, with α = 0.04 and an accretion rate of
Ṁ = 1.6 · 10−8M�yr−1.

3. The SED is best reproduced with graphite and silicate parti-
cles with sizes in the range of 0.003-1 µm and an absorption
to emission ratio of ε = 0.11.

The code used to produce these results can be found at
bitbucket.org/astro_bayreuth/rmhdcode.
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Appendix A: Analytic ring model

The disk, as it is seen by telescopes, can be approximated as a
bright ring. The central star is perceived as a point source by
the telescopes, so it only adds a constant to the Fourier trans-
form. Going outward from the star the disk begins to radiate at
the sublimation front, which forms the inner boundary rin of the
visible annulus. Then further from the star, the temperature de-
creases and with it the amount of radiation emitted by the disk.
At a certain outer radius rout it falls below a point where it con-
tributes a meaningful part to the ring.
The Fourier transform of such a ring is well known as the ob-
scured Airy pattern (Rivolta 1986; Mahajan 1986) and its for-
mula is:

V(B) =
1

1 − ε2

∣∣∣∣∣
2J1(x)

x
− 2εJ1(εx)

x

∣∣∣∣∣ , (A.1)

where x =
2πrout

d
B
λ

, with baseline B, wavelength λ and distance
between observer and star system d, ε = rin

rout
is the annular aper-

ture obscuration ratio and J1 is the Bessel function of the first
kind of order one.
Adding the constant contribution of the central star C∗ the for-
mula becomes

V(B) =
1

1 + C∗

∣∣∣∣∣∣
1

1 − ε2

(
2J1(x)

x
− 2εJ1(εx)

x

)
+ C∗

∣∣∣∣∣∣ . (A.2)

So the visibility curve can be understood as a combination of
two Bessel functions and a constant offset for the star.
Using the point from the simulation, where the visibility first
falls below 0.5 as shown in Fig. 4, x0.5,ε can be determined for
any ratio ε. Knowing the inner rim radius is 0.31 AU, as seen in
Fig. 9, it is possible to calculate the outer radii using an iterative
procedure, where ε and rout are determined simultaneously. After
ε is set, x0.5,ε can be found numerically and the following simple
equation for the inner rim becomes available:

rin[AU] = ε
x0.5,ε

2π
d[AU]

106 B[Mλ]
(A.3)

The self-consistent values, found for the case presented in this
paper, are x0.5(ε = 0.9) = 1.65 and rout = 0.34 AU for the 3 µm
curve, and x0.5(ε = 0.25) = 2.20 and rout = 1.25 AU for the 9 µm
curve. For these pairs the product of both ε and rout calculates
to an inner rim radius of 0.31 AU, as found in the simulation.
This analytic model can be seen in Fig. A.1 and the ε value for
the 3 µm curve can be used to find a more general equation to
calculate the inner rim from the half-width baseline B(V = 0.5)
of the 3 µm visibility, as will be shown in Sect. 4.2.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

B [Mλ]

V

3 µm analytic
9 µm analytic
3 µm data
9 µm data

Fig. A.1. Visibilities as measured by Varga, J. et al. (2024) for 3 µm
(blue crosses) and 9 µm (red crosses) and analytic ring model visibilities
for 3 µm (blue line) and 9 µm (red line). C∗ = 0.05 for 3 µm and C∗ = 0
for 9 µm.
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