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This article deals with the efficient numerical treatment of the Lamé equations. The equations 
of linear elasticity are considered as boundary integral equations and solved in the setting of 
the boundary element method (BEM). Using BEM, one is faced with the solution of a system 
of equations with a fully populated system matrix, which is in general very costly. In order to 
overcome this difficulty, adaptive and approximate algorithms based on hierarchical matrices 
and the adaptive cross approximation are proposed. These new methods rely on error estimators 
and refinement techniques known from adaptivity but are not used here to improve the mesh. 
We apply these new techniques to both, the efficient solution of Lamé equations and to the 
multiplication with given data.

1. Introduction

The scope of the algorithms presented in this article is the adaptive numerical treatment of the Lamé equations

−𝜇Δ𝑢(𝑥) − (𝜆+ 𝜇)grad div 𝑢(𝑥) = 𝑓 (𝑥) for 𝑥 ∈Ω (1)

describing linear elasticity on a bounded domain Ω ⊂ ℝ3, where 𝜆 and 𝜇 denote the Lamé constants. As boundary values, both 
Dirichlet conditions (fixed restraints)

𝛾 int
0 𝑢(𝑥) = 𝑔𝐷(𝑥) for 𝑥 ∈ Γ𝐷 (2)

as well as Neumann conditions (free bearings)

𝛾 int
1 𝑢(𝑥) = 𝑔𝑁 (𝑥) for 𝑥 ∈ Γ𝑁 (3)

are specified, where 𝛾 int
0 , 𝛾 int

1 denote the Dirichlet and the Neumann trace operator and 𝜕Ω = Γ𝐷∪Γ𝑁 with Γ𝐷∩Γ𝑁 = ∅. Additionally, 
we assume a positive measure of the Dirichlet part, i.e. ∫Γ𝐷 d𝑠 > 0, in order to guarantee the existence of a unique solution of the 
considered problem; see [20,24,25].

The method of choice for the numerical solution of the problem described above is the Finite Element Method (FEM). The 
resulting stiffness matrix is sparse. However, depending on the underlying grid, the matrices can quickly become very large. In order 
to overcome this problem, sophisticated multigrid methods are frequently used nowadays. Nevertheless, the general problem remains 
that there are many elements and volume grids are not very easy to handle.
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Another method reformulates the Lamé equations in the volume Ω as an integral equation on the boundary 𝜕Ω is the Boundary 
Element Method (BEM). Initially, BEM was not a real alternative to FEM as the former requires the discretization of a non-local 
operator and thus leads to fully populated matrices. Nevertheless, depending on the situation, BEM offers many advantages. In 
addition to the reduction of the spatial dimension of the problem and thus of the number of degrees of freedom, in contact problems, 
for instance, it is usually sufficient to compute the stresses on the boundary, which can be accessed from the BEM relatively easily 
and usually more accurately than from FEM. Furthermore, with the advent of fast boundary element methods, the computational 
complexity of BEM has significantly improved.

Methods such as fast multipole method or hierarchical matrices (-matrices) reduce the complexity by approximating the dis-

cretized operator to such an extent that BEM represents an alternative to FEM. While the fast multipole method [16,22] was physically 
motivated and designed for specific problems, hierarchical matrices could be kept more general; see [17,18]. As the name hierarchi-

cal matrix suggests, this technique is based on a hierarchical partitioning of the discrete operator into suitable blocks. Each of these 
blocks contains a low-rank approximation to the original block entry, with the whole matrix having only a logarithmic-linear stor-

age requirement. The re-presentations are further advantageous in connection with iterative solution methods, which involve many 
matrix-vector multiplications. Hierarchical matrices offer the possibility to perform fast matrix-vector multiplications of logarithmic-

linear complexity. Employing only a few of the original matrix entries, the adaptive cross approximation (ACA) [4] has become 
quite popular to construct the low-rank approximation on suitable blocks. The number of matrix entries was further reduced by 
adding another level of adaptivity to ACA; see [2]. With the so-called block-adaptive cross approximation (BACA), not every block 
is approximated in the same way and to the same accuracy as in ACA, but only those blocks are more accurately approximated 
that lead to the greatest gain in accuracy of the solution. Keeping in mind that the number of degrees of freedom of BEM is usually 
significantly smaller than in FEM, with modern techniques a logarithmic-linear complexity can be achieved for BEM, whereas a 
super-linear complexity of the commonly used LU factorization applied to FEM problems cannot be avoided. Hence, at least from the 
complexity point of view BEM together with fast methods for non-local operators is well-suited for the efficient numerical treatment 
of Lamé equations for increasingly complex problems in the future.

The aim of this article is to adapt the ideas of BACA to the construction of an adaptive version of the matrix-vector multiplication. 
As an application one could think about the multiplication of given data with an operator as it might occur on the right hand side of 
a given problem.

When multiplying a partitioned matrix with a vector 𝑥, not every approximated block has the same effect on the accuracy of the 
result, especially if the vector to be multiplied contains large clusters of zeros. Such a situation can for instance occur when zero 
Dirichlet or Neumann boundary values are applied on large parts of the boundary. In order to exploit the structural differences in 
the vector 𝑥 and to detect the best blocks, error estimators and techniques known from adaptivity are used. Note that the block-wise 
low-rank approximations will be successively improved without changing the hierarchical block structure or the grid.

The paper is organized as follows. Section 2 presents basic techniques for approximation using low-rank matrices. In more 
detail, partitioning, cluster trees, hierarchical matrices and adaptive cross approximation are briefly discussed. In Section 3 we 
introduce an adaptive scheme for an approximate computation of the matrix-vector multiplication. Furthermore, the convergence of 
the investigated method and some properties of the proposed error estimator are analyzed. Since the techniques in Sections 2 and 3

can be applied in many situations, we will first discuss a general case before moving on to the boundary integral approximation of 
the equations of linear elasticity in Section 4. Adapting the ideas of BACA to the case of linear elasticity, i.e. the Lamé equations, 
in Section 5, we are able to compute linear elasticity in a fully adaptive manner with -matrices. Finally, numerical examples 
presented in Section 6 show a performance acceleration and a storage reduction for the numerical computation of the boundary 
integral formulation of linear elasticity.

2. Approximation with low-rank matrices

We consider matrix blocks 𝐴 ∈ℝ𝑀×𝑁 corresponding to suitable subdomains 𝑋, 𝑌 ⊂Ω having the representation

𝐴 =Λ1Λ∗
2

with a non-local linear operator  which depends linearly on the bivariate kernel function 𝜅 ∶ℝ𝑑 ×ℝ𝑑 →ℝ. The prototype for such 
an operator is

(𝑣)(𝑥) = ∫
Ω

𝜅(𝑥, 𝑦)𝑣(𝑦)d𝜇𝑦, 𝑥 ∈Ω,

where 𝜇 denotes the corresponding measure. The operators Λ1 ∶ 𝐿2(𝑋) →ℝ𝑀 and Λ2 ∶ 𝐿2(𝑌 ) →ℝ𝑁 are assumed to be linear. The 
adjoint operator Λ∗

2 ∶ℝ
𝑁 →𝐿2(𝑌 ) is defined as

(Λ∗
2𝑧,𝑓 )𝐿2(𝑌 ) = 𝑧𝑇 (Λ2𝑓 ), 𝑧 ∈ℝ𝑁, 𝑓 ∈𝐿2(𝑌 ).

These two operators are used to restrict 𝜅 to 𝑋 × 𝑌 and apply (possibly different) discretizations. Two examples are:

1. Petrov-Galerkin method: Choosing functions 𝜓𝑖, 𝑖 = 1, … , 𝑀 , and 𝜑𝑗 , 𝑗 = 1, … , 𝑁 , with supp𝜓𝑖 ⊂ 𝑋 and supp𝜑𝑗 ⊂ 𝑌 results in 
2

the discretization
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(Λ1𝑓 )𝑖 = ∫
𝑋

𝑓 (𝑥)𝜓𝑖(𝑥)d𝜇𝑥 and (Λ2𝑓 )𝑗 = ∫
𝑌

𝑓 (𝑦)𝜑𝑗 (𝑦)d𝜇𝑦.

2. Collocation method: Choosing points 𝑥𝑖 ∈𝑋, 𝑖 = 1, … , 𝑀 , and functions 𝜑𝑗 , 𝑗 = 1, … , 𝑁 , with supp𝜑𝑗 ⊂ 𝑌 leads to

(Λ1𝑓 )𝑖 = 𝑓 (𝑦𝑖) and (Λ2𝑓 )𝑗 = ∫
𝑌

𝑓 (𝑦)𝜑𝑗 (𝑦)d𝜇𝑦

provided that 𝑓 can be evaluated pointwise in 𝑌 .

The approximation of 𝐴 with low-rank matrices can be done by approximating the bivariate function 𝜅 with a degenerate 
function 𝜅̃, i.e. there are functions 𝑢𝑙 ∶𝑋 →ℝ and 𝑣𝑙 ∶ 𝑌 →ℝ, 𝑙 = 1, … , 𝑘, such that

𝜅(𝑥, 𝑦) ≈ 𝜅̃(𝑥, 𝑦) ∶=
𝑘∑
𝑙=1

𝑢𝑙(𝑥)𝑣𝑙(𝑦), 𝑥 ∈𝑋, 𝑦 ∈ 𝑌 . (4)

Such an approximation automatically leads to a matrix 𝐴̃ of rank at most 𝑘, since with

𝑎𝑙 ∶= Λ1𝑢𝑙 ∈ℝ𝑀 and 𝑏𝑙 ∶= Λ2𝑣𝑙 ∈ℝ𝑁, 𝑙 = 1,… , 𝑘,

it follows

𝐴̃ =Λ1̃Λ∗
2 = Λ1

𝑘∑
𝑙=1

𝑢𝑙𝑏
𝑇
𝑙
=

𝑘∑
𝑙=1

(Λ1𝑢𝑙)𝑏𝑇𝑙 =
𝑘∑
𝑙=1

𝑎𝑙𝑏
𝑇
𝑙
,

where ̃ is defined by (̃𝑣)(𝑥) ∶= ∫Ω 𝜅̃(𝑥, 𝑦)𝑣(𝑦) d𝜇𝑦. The reversal of the statement is not true in general.

A matrix 𝐴̃ ∈ℝ𝑀×𝑁 having rank 𝑘 is called low- rank matrix if the condition

𝑘(𝑀 +𝑁) <𝑀 ⋅𝑁

is fulfilled. Using the outer product representation, i.e. 𝐴̃ = 𝑈𝑉 𝑇 with matrices 𝑈 ∈ ℝ𝑀×𝑘 and 𝑉 ∈ ℝ𝑁×𝑘, 𝐴̃ requires 𝑘(𝑀 +𝑁)
instead of 𝑀 ⋅𝑁 units of storage. Additionally, the multiplication of 𝐴̃ by a vector 𝑥 can be done with (𝑘(𝑀 +𝑁)) arithmetic 
operations instead of (𝑀 ⋅𝑁). The best rank-𝑘 approximation is given by the truncated singular value decomposition; see [12]. 
The advantage of the latter method over kernel approximation (4) is its black-box nature as it relies only on the entries of 𝐴. Since 
it has cubic complexity, the truncated singular value decomposition cannot be used in practice.

2.1. Partitions and cluster trees

Low-rank approximations are typically employed on suitable blocks and not for the whole matrix. In most cases the approximation 
of the entire matrix is not possible at all. Therefore, the matrix 𝐴 ∈ ℝ𝑀×𝑁 is decomposed into blocks 𝑡 × 𝑠, 𝑡 ⊂ 𝐼 ∶= {1, … , 𝑀} and 
𝑠 ⊂ 𝐽 ∶= {1, … , 𝑁} at first. After that each suitable block 𝐴𝑡𝑠 is approximated with a low-rank matrix

𝐴𝑡𝑠 ≈𝑈𝑉 𝑇 , 𝑈 ∈ℝ𝑡×𝑘, 𝑉 ∈ℝ𝑠×𝑘,

where the number 𝑘 is small compared to |𝑡| and |𝑠|. Let supp Λ1 =𝑋𝑡 and supp Λ2 =𝑋𝑠 be the part of the geometry that corresponds 
to the index sets 𝑡 and 𝑠, respectively. For example, in the case of Galerkin discretizations 𝑋𝑡 denotes the union of the supports 
𝑋𝑖 ∶= supp 𝜑𝑖, 𝑖 ∈ 𝑡.

A block is suitable or admissible for approximation if it satisfies the condition

min{diam 𝑋𝑡,diam 𝑋𝑠} < 𝛽 dist(𝑋𝑡,𝑋𝑠) (5)

for a given 𝛽 > 0. The expression

diam 𝑋 = sup
𝑥,𝑦∈𝑋

|𝑥− 𝑦| and dist(𝑋,𝑌 ) = inf
𝑥∈𝑋,𝑦∈𝑌

|𝑥− 𝑦|
are the diameter and the distance of two bounded sets 𝑋, 𝑌 ⊂Ω. Condition (5) guarantees the existence of low-rank approximations 
if 𝐴 discretizes an integral representation or the inverse of second-order elliptic partial differential operators; see [5].

Given two meshes represented by the index sets 𝐼 and 𝐽 , a partition 𝑃 of the matrix indices 𝐼 × 𝐽 consisting of admissible blocks 
or blocks which are small can be found as the leaves of a block-cluster tree 𝑇𝐼×𝐽 ; see [18,5]. This quad-tree can be constructed 
from two separate binary cluster trees 𝑇𝐼 and 𝑇𝐽 with roots 𝐼 and 𝐽 , respectively. The sons 𝑆𝐼 (𝑡) = {𝑡′, 𝑡′′} ⊂ 𝑇𝐼 of each node 𝑡 ∈ 𝑇𝐼
(or 𝑠 ∈ 𝑇𝐽 ), if they exist, satisfy 𝑡′ ∪ 𝑡′′ = 𝑡 and 𝑡′ ∩ 𝑡′′ = ∅. The leaves of 𝑇𝐼 are gathered in the set (𝑇𝐼 ) ∶= {𝑡 ∈ 𝑇𝐼 ∶ 𝑆𝐼 (𝑡) = ∅}. 
Applying the mapping 𝑆𝐼 recursively, a cluster tree 𝑇𝐼 can be constructed consisting of several levels 𝑇 (𝑙)

𝐼
, 𝑙 = 0, … , 𝐿, where 𝐿

denotes the depth of the tree. Once both cluster trees 𝑇𝐼 and 𝑇𝐽 have been generated, the block-cluster tree 𝑇𝐼×𝐽 can be constructed 
3

by recursively subdividing 𝐼 × 𝐽 by following the trees 𝑇𝐼 for the rows and 𝑇𝐽 for the columns until either (5) is satisfied or the 
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clusters cannot be subdivided further. As a result, the partition 𝑃 consists of admissible blocks 𝑃adm and non-admissible blocks 
𝑃non-adm, i.e.

𝑃 ∶= (𝑇𝐼×𝐽 ) = 𝑃adm ∪ 𝑃non-adm.

Note that this does not represent a refinement of the mesh. 𝑃 is just a partition of the matrix index set 𝐼 × 𝐽 representing the 
combination of two given meshes. The sparsity constant 𝑐sp (see [15]) is defined as

𝑐sp ∶= max
{
max
𝑡∈𝑇𝐼

𝑐sp,r(𝑡), max
𝑠∈𝑇𝐽

𝑐sp,c(𝑠)
}

,

where

𝑐sp,r(𝑡) ∶= |{𝑠 ⊂ 𝐽 ∶ 𝑡 × 𝑠 ∈ 𝑃 }|,
denotes the maximum number of blocks 𝑡 × 𝑠 contained in 𝑃 for a given cluster 𝑡 ∈ 𝑇𝐼 and

𝑐sp,c(𝑠) ∶= |{𝑡 ⊂ 𝐼 ∶ 𝑡 × 𝑠 ∈ 𝑃 }|
the maximum number of blocks 𝑡 × 𝑠 ∈ 𝑃 for a cluster 𝑠 ∈ 𝑇𝐽 . We refer the reader to [5] for more details on the construction of 
cluster trees.

2.2. Hierarchical matrices and adaptive cross approximation

In view of the construction of the partition 𝑃 , the set of -matrices with blockwise rank at most 𝑘 is defined by

(𝑃 ,𝑘) ∶= {𝑀 ∈ℝ𝐼×𝐽 ∶ rank 𝑀𝑏 ≤ 𝑘 for all 𝑏 ∈ 𝑃 },

see [17,18]. A great advantage of hierarchical matrices is the efficient matrix-vector multiplication. The product of an -matrix with 
a vector can be computed in logarithmic-linear time; see [17,18,5].

Many different methods have been developed to generate low-rank approximations on admissible matrix blocks. Replacing the 
kernel function of the integral operator by truncated kernel expansions as it is described in the beginning of Sect. 4 of this article is a 
common analytical approach. Examples for such expansions are the multipole expansion [22,16] or interpolating polynomials [8,9]. 
Other approaches such as the algebraic pseudo-skeleton method [14] work directly on the entries of the considered block. In this 
article we rely on the adaptive cross approximation (ACA) (see [4]) which requires only few of the original entries to construct the 
low-rank approximation. Non-admissible blocks cannot be approximated. However, they are small and can be computed entry by 
entry.

In the following we concentrate on a single admissible block 𝐴𝑡𝑠 ∈ℝ𝑡×𝑠 of 𝐴, where 𝑡 ⊂ 𝐼 ∶= {1, … , 𝑀} and 𝑠 ⊂ 𝐽 ∶= {1, … , 𝑁}. 
According to this notation 𝐴𝑖𝑘,𝑠

denotes the 𝑖𝑘-th row, 𝐴𝑡,𝑗𝑘
the 𝑗𝑘-th column and 𝐴𝑖𝑘,𝑗𝑘

the entry 𝑖𝑘, 𝑗𝑘. The following Algorithm 1

(see [4,7]) constructs two sequences {𝑢𝑘} ⊂ℝ𝑡 and {𝑣𝑘} ⊂ℝ𝑠. The matrix

𝑆𝑘 ∶=
𝑘∑
𝑙=1

𝑢𝑙𝑣
𝑇
𝑙

has rank equal at most 𝑘. Given 𝜀ACA > 0, the remainder 𝑅𝑘 ∶=𝐴𝑡𝑠 −𝑆𝑘 has relative accuracy

‖𝑅𝑘‖𝐹 ≤ 𝜀ACA‖𝐴𝑡𝑠‖𝐹 ,
where ‖ ⋅ ‖𝐹 denotes the Frobenius norm, such that 𝑆𝑘 can be used as an approximation of 𝐴𝑡𝑠.

It is easily seen that the vectors 𝑢𝑘 and 𝑣𝑘 have the representation

𝑢𝑘 = (𝑅𝑘−1)𝑡,𝑗𝑘 and 𝑣𝑘 =
1

(𝑅𝑘−1)𝑖𝑘,𝑗𝑘
(𝑅𝑘−1)𝑖𝑘,𝑠.

Remark 1. In the analysis of the error of the adaptive cross approximation, the remainder 𝑅𝑘 is associated with the best approxima-

tion error of a suitable system {𝜉1, ..., 𝜉𝑘} of functions. When selecting the row indices 𝑖𝑘, it must be ensured that the Vandermonde 
matrix [𝜉𝑗 (𝑥𝑖)]𝑖𝑗 ∈ ℝ𝑘×𝑘 corresponding to the system in which the approximation error is to be estimated is not singular; cf. [5]. 
In [5], also several rules are given on how to choose a pivot 𝑖𝑘.

In the case of kernel functions of the form 𝜅(𝑥, 𝑦) = 𝜎(𝑥)𝜁(𝑦)|𝑥 − 𝑦|−𝛼 with 𝛼 > 0 and 𝜎 and 𝜁 depending on only one of the 
variables 𝑥 and 𝑦, respectively, no attention has to be paid to the choice of the row indices, because in this case a system of functions 
can be specified which leads to a non-singular Vandermonde matrix with a bounded smallest eigenvalue; see [3].

The vanishing rows of the remainders 𝑅𝑘 are gathered in the set 𝑍 . If the 𝑖𝑘-th row of 𝑅𝑘 is nonzero and therefore used as 
4

𝑣𝑘, it is also included in 𝑍 as the 𝑖𝑘-th row of the next remainder 𝑅𝑘+1 vanishes. The number of elements of 𝑍 usually depends 
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Algorithm 1 Adaptive Cross Approximation (ACA).

Input: 𝐴𝑡𝑠 ∈ℝ𝑡×𝑠 , 𝜀ACA > 0
Output: two sequences 𝑢𝑘 ⊂ℝ𝑡 and 𝑣𝑘 ⊂ℝ𝑠

Let 𝑘 = 1; 𝑍 = ∅
repeat

find 𝑖𝑘 by an appropriate rule (more details in Remark 1)

𝑣̃𝑘 ∶=𝐴𝑖𝑘,𝑠

for 𝑙 = 1, … , 𝑘 − 1 do 𝑣̃𝑘 ∶= 𝑣̃𝑘 − (𝑢𝑙)𝑖𝑘 𝑣𝑙
end for

𝑍 ∶=𝑍 ∪ {𝑖𝑘}
if 𝑣̃𝑘 does not vanish then

𝑗𝑘 ∶= argmax𝑗∈𝑠|(𝑣̃𝑘)𝑗 |; 𝑣𝑘 ∶= (𝑣̃𝑘)−1𝑗𝑘 𝑣̃𝑘
𝑢𝑘 ∶=𝐴𝑡,𝑗𝑘

for 𝑙 = 1, … , 𝑘 − 1 do 𝑢𝑘 ∶= 𝑢𝑘 − (𝑣𝑙)𝑗𝑘 𝑢𝑙
end for

𝑘 ∶= 𝑘 + 1
end if

until ‖𝑢𝑘+1‖2‖𝑣𝑘+1‖2 ≤ 𝜀ACA (1−𝛽)
1+𝜀ACA

‖𝑆𝑘‖𝐹 or 𝑍 = 𝑡

logarithmically on the desired blockwise precision 𝜀ACA; see [5]. First, |𝑍| is to be managed for each block in the case of the matrix-

vector multiplication by an adaptive algorithm, where the quality of the approximation of the respective block of 𝐴 is adapted to the 
structure of the vector 𝑥 to be multiplied rather than to the blockwise accuracy 𝜀ACA.

3. The adaptive matrix-vector multiplication

The goal of this section is to introduce an approximate and adaptive algorithm for the multiplication of a matrix 𝐴 ∈ℝ𝑀×𝑁 by a 
vector 𝑥 ∈ℝ𝑁 , i.e.

𝑏 =𝐴𝑥,

where 𝐴 is the discretization of a non-local operator and 𝑏 denotes the resulting vector. Since 𝐴 is fully populated, the usual way 
of treating such problems in our case is to approximate the system matrix by hierarchical matrices at first and then to multiply 
the approximation of 𝐴 by the vector 𝑥. As a result of the construction of the approximation by ACA, redundant and unnecessary 
information can arise for the simple reason that ACA treats each matrix block independently such that a prescribed accuracy is 
guaranteed. In order to avoid the generation of such information, we follow an adaptive strategy. Instead of the previous approach 
of generating a single hierarchical matrix approximation of 𝐴, we construct a sequence of approximations 𝐴𝑘 and the resulting 
vectors 𝑏𝑘 ∶= 𝐴𝑘𝑥. The individual approximations are steered using a residual error estimator based on the ℎ–ℎ∕2 strategy [13]

and the Dörfler marking technique [11]. Note that in contrast to the conventional field of application of such error estimators, no 
refinement of the geometry or the grid is considered here. While the low-rank approximations of the individual blocks are successively 
improved, the underlying grid structure and the underlying block-cluster tree are not changed at any time.

Of course the above procedure looks much more complex than multiplying a single approximation of 𝐴 by the vector 𝑥. The 
approach here aims to exploit properties of the vector 𝑥 in combination with properties of 𝐴. As an example, consider the case 
that 𝑥 = 𝑒𝑖, 𝑖 ∈ {1, ..., 𝑁}, is one of the canonical unit vectors of ℝ𝑁 . Then, the adaptive approach detects that there is no use in 
computing an approximation of 𝐴 with accuracy 𝜀ACA for blocks not containing parts of column 𝑖, while the usual approach would 
first approximate every block with this accuracy and then perform the multiplication. Depending on the combination of 𝐴 and 𝑥, we 
expect improved memory requirements and computational time.

A reliable estimate of the error requires the existence of a more accurate approximation 𝐴̂𝑘 of 𝐴 than 𝐴𝑘, i.e., we assume that 
the saturation assumption

‖𝑏̂𝑘 − 𝑏‖2 ≤ 𝑐sat‖𝑏𝑘 − 𝑏‖2 (6)

for some 0 < 𝑐sat < 1 is fulfilled, where 𝑏̂𝑘 ∶= 𝐴̂𝑘𝑥. This kind of assumption is quite common in the area of adaptive finite element 
methods. Notice that in our setting a strategy for approaching (6) is to perform sufficiently many additional ACA steps, which can 
be observed in the numerical examples for the block-adaptive ACA for linear elasticity. This way of dealing with the saturation 
assumption is motivated by the exponential convergence of ACA, see [5].

A natural choice (so-called look-ahead approximation) for 𝐴̂𝑘 is the improved approximation that results from 𝐴𝑘 by applying 
a fixed number of additional ACA steps to each admissible block and by setting (𝐴̂𝑘)𝑡𝑠 = 𝐴𝑡𝑠 for all other non-admissible blocks 
𝑡 × 𝑠 ∈ 𝑃non-adm. Using the error estimator

𝛾𝑘 ∶= ‖𝑏𝑘 − 𝑏̂𝑘‖2 = ‖ ∑
𝑡×𝑠∈𝑃

(𝐴𝑘 − 𝐴̂𝑘)𝑡𝑠𝑥𝑠‖2,
which is localized with respect to blocks in 𝑃 , the algorithm for the adaptive matrix-vector multiplication is summarized in Al-

gorithm 2. Following the ideas above, we thus combine the assembly of the discretized non-local operator with the simultaneous 
5

computation of the matrix-vector multiplication. Fig. 1 shows a schematic illustration of the procedure.
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Fig. 1. Schematic illustration of the procedure.

Algorithm 2 Adaptive matrix-vector multiplication (AMVM).

Input: System matrix 𝐴 ∈ℝ𝑀×𝑁 , vector 𝑥 ∈ℝ𝑁 , partition 𝑃 , 0 < 𝜃 < 1, 𝜀AMVM > 0
Output: approximation 𝑏𝑘 =𝐴𝑘𝑥 of 𝑏 =𝐴𝑥

1. Start with a coarse -matrix approximation 𝐴0 of 𝐴 and set 𝑘 = 0.

2. Compute 𝑏𝑘 =𝐴𝑘𝑥 and 𝑏̂𝑘 = 𝐴̂𝑘𝑥, where 𝐴̂𝑘 is a more accurate approximation of 𝐴 than 𝐴𝑘 , i.e., we assume that the saturation assumption (6) holds.

3. a) Given 0 < 𝜃 < 1, find a set of marked blocks 𝑃𝑘 ⊂ 𝑃 with minimal cardinality such that

𝛾𝑘 − 𝛾𝑘(𝑃𝑘) ≥ 𝜃𝛾𝑘, (7)

where 𝛾𝑘(𝑄) ∶= ‖ ∑𝑡×𝑠∈𝑃⧵𝑄(𝐴𝑘 − 𝐴̂𝑘)𝑡𝑠𝑥𝑠‖2 and 𝛾𝑘 = 𝛾𝑘(∅) = ‖𝑏𝑘 − 𝑏̂𝑘‖2 .

b) Use the following strategy to construct 𝑃𝑘:

(i) Sort the errors |(𝑏𝑘 − 𝑏̂𝑘)𝑖|, 𝑖 = 1, … , 𝑀 , in decreasing order.

(ii) Go through the ordered errors step by step starting from the top and detect the corresponding blocks in the considered row 𝑖.
(iii) Add every block 𝑡 × 𝑠 to 𝑃𝑘 for which |[(𝐴𝑘 − 𝐴̂𝑘)𝑡𝑠𝑥𝑠]𝑖| ≥ (1 − 𝜃)(𝑐sp𝑀𝑁𝐿)−1∕2𝛾𝑘 holds.

(iv) Extend 𝑃𝑘 according to (ii) and (iii) as long as condition (7) is not fulfilled.

4. Let

𝐴𝑘+1 =

{
(𝐴̂𝑘)𝑏, 𝑏 ∈ 𝑃𝑘,

(𝐴𝑘)𝑏, 𝑏 ∈ 𝑃 ⧵ 𝑃𝑘.

5. If 𝛾𝑘+1 > 𝜀AMVM increment 𝑘 and go to 2.

At first glance Algorithm 2 uses two -matrices 𝐴𝑘 and 𝐴̂𝑘. Since they are strongly related to each other, it is actually sufficient 
to store only the more accurate approximation 𝐴̂𝑘 . Due to the selection criteria of 𝑃𝑘 in Algorithm 2, clusters of zero entries in the 
vector 𝑥 have the consequence that the associated blocks do not have to be approximated at all. Hence, this approach allows to take 
into account the structure of the vector 𝑥 when approximating 𝐴. In order to do this we will have to take the depth 𝐿 of the cluster 
tree into consideration.

Remark 2. Notice that the Algorithm 2 terminates either if in step 3 b) (iv) condition (7) is satisfied or if the list of blocks has come 
to its end. In this case also (7) is valid, because the condition used in step 3 b) iii) implies |[(𝐴𝑘− 𝐴̂𝑘)𝑡𝑠𝑥𝑠]𝑖| ≤ (1 −𝜃)(𝑐sp𝑀𝑁𝐿)−1∕2𝛾𝑘
for all blocks 𝑡 × 𝑠 ∈ 𝑃 ⧵ 𝑃𝑘 and thus

𝛾𝑘(𝑃𝑘) = ‖ ∑
𝑡×𝑠∈𝑃⧵𝑃𝑘

(𝐴𝑘 − 𝐴̂𝑘)𝑡𝑠𝑥𝑠‖2 = ⎛⎜⎜⎝
𝑀∑
𝑖=1
|[ ∑

𝑡×𝑠∈𝑃⧵𝑃𝑘

(𝐴𝑘 − 𝐴̂𝑘)𝑡𝑠𝑥𝑠

]
𝑖

|2⎞⎟⎟⎠
1∕2

≤
(

𝑀∑
𝑖=1

𝑐sp𝐿
∑

𝑡×𝑠∈𝑃⧵𝑃𝑘

|[(𝐴𝑘 − 𝐴̂𝑘)𝑡𝑠𝑥𝑠
]
𝑖
|2)1∕2

≤
(

𝑀∑
𝑖=1

∑
𝑡×𝑠∈𝑃⧵𝑃𝑘, 𝑖∈𝑡

(1 − 𝜃)2(𝑀𝑁)−1𝛾2
𝑘

)1∕2

≤ (1 − 𝜃)𝛾𝑘.

The newly introduced algorithm will be examined in more detail in the next steps. First, we consider the reliability and the 
efficiency as two basic characteristics of the error estimator.

Lemma 1. Let assumption (6) be valid. Then 𝛾𝑘 is efficient and reliable, i.e., it holds

𝑐eff𝛾𝑘 ≤ ‖𝑏𝑘 − 𝑏‖2 ≤ 𝑐rel𝛾𝑘,
6

where 𝑐eff ∶= 1∕(1 + 𝑐sat) and 𝑐rel ∶= 1∕(1 − 𝑐sat).
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Proof. With the saturation assumption it follows

‖𝑏𝑘 − 𝑏‖2 ≤ ‖𝑏𝑘 − 𝑏̂𝑘‖2 + ‖𝑏̂𝑘−𝑏‖2 ≤ 𝛾𝑘 + 𝑐sat‖𝑏𝑘 − 𝑏‖2
and thus

‖𝑏𝑘 − 𝑏‖2 ≤ 𝑐rel𝛾𝑘,

which proves the reliability of the estimator 𝛾𝑘 . Using again the saturation assumption, we obtain

𝛾𝑘 = ‖𝑏𝑘 − 𝑏̂𝑘‖2 ≤ ‖𝑏𝑘 − 𝑏‖2 + ‖𝑏− 𝑏̂𝑘‖2 ≤ (1 + 𝑐sat)‖𝑏𝑘 − 𝑏‖2
and thus

𝑐eff𝛾𝑘 ≤ ‖𝑏𝑘 − 𝑏‖2. □

The next property of the estimator 𝛾𝑘 which has to be investigated is the estimator convergence. In order to do this, we must first 
examine the behavior of the error 𝑒𝑘 ∶= ‖𝑏̂𝑘 − 𝑏̂𝑘+1‖2, where 𝑏̂𝑘 = 𝐴̂𝑘𝑥.

Lemma 2. The error 𝑒𝑘 converges to zero for 𝑘 →∞.

Proof. For 𝑒𝑘 we observe

𝑒2
𝑘
= ‖𝐴̂𝑘𝑥− 𝐴̂𝑘+1𝑥‖22 ≤ ‖𝐴̂𝑘 − 𝐴̂𝑘+1‖22‖𝑥‖22.

Notice that each block 𝑡 × 𝑠 ∈ 𝑃 is either not chosen in Algorithm 2 from some index 𝑘0 ∈ ℕ on, i.e. (𝐴𝑘)𝑡𝑠 = (𝐴𝑘0
)𝑡𝑠 for 𝑘 ≥ 𝑘0 or 

lim𝑘→∞(𝐴𝑘)𝑡𝑠 = 𝐴𝑡𝑠, which follows from the fact that ACA reproduces the original matrix after at most min{|𝑡|, |𝑠|} steps, see [5]. 
Hence, we have

lim
𝑘→∞

𝐴𝑘 =𝐴∗

with some matrix 𝐴∗ ∈ℝ𝑁×𝑁 and thus lim𝑘→∞ ‖𝐴̂𝑘+1 − 𝐴̂𝑘‖ = 0. □

The convergence of the error estimator 𝛾𝑘 can be proven via an estimator reduction principle, which was originally introduced 
in [1] in the context of the adaptive boundary element method.

Lemma 3 (Estimator reduction). Let 𝑠 > 1 and 1 − 1√
𝑠
< 𝜃 < 1 be given. Then it holds that

𝛾2
𝑘+1 ≤ 𝑐1𝛾

2
𝑘
+ 𝑐2𝑒

2
𝑘
,

where 𝑐1 = 1∕𝑠 < 1 and 𝑐2 = [1 − 𝑠(1 − 𝜃)2]−1. Furthermore, lim𝑘→∞ 𝛾𝑘 = 0.

Proof. We have a closer look at the error estimator 𝛾𝑘+1 . With 𝛿 > 0 and Young’s inequality it follows

𝛾2
𝑘+1 = ‖𝑏𝑘+1 − 𝑏̂𝑘+1‖22 = ‖𝑏𝑘+1 − 𝑏̂𝑘 + 𝑏̂𝑘 − 𝑏̂𝑘+1‖22

≤ (‖𝑏𝑘+1 − 𝑏̂𝑘‖2 + ‖𝑏̂𝑘 − 𝑏̂𝑘+1‖2)2
≤ (1 + 𝛿)‖𝑏𝑘+1 − 𝑏̂𝑘‖22

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
=∶𝑒2

+(1 + 1∕𝛿)𝑒2
𝑘
.

If we split up 𝑒 into the marked and non-marked blocks, from (7) we obtain the following estimator reduction:

𝑒 = ‖𝑏𝑘+1 − 𝑏̂𝑘‖2 = ‖ ∑
𝑡×𝑠∈𝑃

(𝐴𝑘+1 − 𝐴̂𝑘)𝑡𝑠𝑥𝑠‖2
= ‖ ∑

𝑡×𝑠∈𝑃𝑘

(𝐴𝑘+1 − 𝐴̂𝑘)𝑡𝑠𝑥𝑠 +
∑

𝑡×𝑠∈𝑃⧵𝑃𝑘

(𝐴𝑘+1 − 𝐴̂𝑘)𝑡𝑠𝑥𝑠‖2
= ‖ ∑

𝑡×𝑠∈𝑃⧵𝑃𝑘

(𝐴𝑘 − 𝐴̂𝑘)𝑡𝑠𝑥𝑠‖2 = 𝛾𝑘(𝑃𝑘) ≤ (1 − 𝜃)𝛾𝑘.

With the choice 𝛿 = 1−𝑠(1−𝜃)2
𝑠(1−𝜃)2 we get
7

𝛾2
𝑘+1 ≤ (1 + 𝛿)(1 − 𝜃)2𝛾2

𝑘
+ (1 + 1∕𝛿)𝑒2

𝑘
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=
(
1 + 1 − 𝑠(1 − 𝜃)2

𝑠(1 − 𝜃)2

)
(1 − 𝜃)2𝛾2

𝑘
+
(
1 + 𝑠(1 − 𝜃)2

1 − 𝑠(1 − 𝜃)2

)
𝑒2
𝑘

= 1
𝑠
𝛾2
𝑘
+ 1

1 − 𝑠(1 − 𝜃)2
𝑒2
𝑘
.

The second part of the assertion is proved with Lemma 2 and the error estimator reduction principle introduced in [1]. Let 𝐸̂ > 0
be a number satisfying 𝑒𝑘 ≤ 𝐸̂ for all 𝑘. The estimator reduction principle leads to

𝛾2
𝑘+1 ≤ 𝑐1𝛾

2
𝑘
+ 𝑐2𝑒

2
𝑘
≤ 𝑐1(𝑐1𝛾2𝑘−1 + 𝑐2𝑒

2
𝑘−1) + 𝑐2𝑒

2
𝑘

= 𝑐21𝛾
2
𝑘−1 + 𝑐1𝑐2𝑒

2
𝑘−1 + 𝑐2𝑒

2
𝑘

≤… ≤ 𝑐𝑘+11 𝛾20 + 𝑐2

𝑘∑
𝑖=0

𝑐𝑘−𝑖1 𝑒2
𝑘

≤ 𝑐𝑘+11 𝛾20 + 𝑐2𝐸̂

𝑘∑
𝑙=0

𝑐𝑙1 ≤ 𝛾20 +
𝑐2𝐸̂

1 − 𝑐1
.

Accordingly, the sequence {𝛾𝑘}𝑘∈ℕ0
is bounded and we are able to define Γ ∶= limsup𝑘→∞ 𝛾2

𝑘
. Using the estimator reduction principle 

once more yields

Γ = limsup
𝑘→∞

𝛾2
𝑘+1 ≤ 𝑐1 limsup

𝑘→∞
𝛾2
𝑘
+ 𝑐2 limsup

𝑘→∞
𝑒2
𝑘

⏟⏞⏞⏟⏞⏞⏟
=0

= 𝑐1Γ.

Thus Γ = 0 and it follows

0 ≤ lim inf
𝑘→∞

𝛾𝑘 ≤ lim sup
𝑘→∞

𝛾𝑘 = Γ = 0,

which shows

lim
𝑘→∞

𝛾𝑘 = 0. □

Exploiting the reliability of the error estimator, the convergence of the adaptive matrix-vector multiplication can also be shown.

Lemma 4 (Estimator convergence). Let the requirements of Lemma 1 and Lemma 3 be valid. Then, the error ‖𝑏𝑘 − 𝑏‖2 of the sequence 
{𝑏𝑘}𝑘∈ℕ constructed by Algorithm 2 converges to zero.

Proof. Using the reliability of the estimator and the reduction principle leads to

‖𝑏𝑘 − 𝑏‖2 ≤ 𝑐rel𝛾𝑘 → 0 for 𝑘→∞. □

4. Boundary integral approximation of linear elasticity

4.1. Integral formulation of linear elasticity

We assume that Ω ⊂ ℝ3 is a Lipschitz domain and its boundary 𝜕Ω = Γ𝐷 ∪ Γ𝑁 , Γ𝐷 ∩ Γ𝑁 = ∅, is partitioned into a Dirichlet 
boundary Γ𝐷 and a Neumann boundary Γ𝑁 .

The solution of the equations of linear elasticity, see for instance [24], can be written as

𝑢(𝑥) = 𝑉 𝛾 int
1 𝑢− 𝑊̃ 𝛾 int

0 𝑢,

where

𝑉 𝑓 (𝑥) ∶= ∫
𝜕Ω

𝑆(𝑥, 𝑦)𝑓 (𝑦)d𝑠𝑦, 𝑓 ∈ [𝐻−1∕2(𝜕Ω)]3,

denotes the single-layer potential and

𝑊̃ 𝑔(𝑥) ∶= ∫
𝜕Ω

𝛾 int
1,𝑦𝑆(𝑥, 𝑦)𝑔(𝑦)d𝑠𝑦, 𝑔 ∈ [𝐻1∕2(𝜕Ω)]3,

denotes the double-layer potential and 𝛾 int
1 𝑢 the conormal derivative. In the case of linear elasticity, the conormal derivative takes 
8

the form
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𝛾 int
1 𝑢 = 𝜆div 𝑢 ⋅ 𝑛+ 2𝜇 𝑛 ⋅∇𝑢+ 𝜇 𝑛 × curl 𝑢

with the normal vector 𝑛. The fundamental solution 𝑆(𝑥, 𝑦) ∶= 𝑆𝐾 (𝑥 − 𝑦) of linear elasticity is given by Kelvin’s solution tensor

𝑆𝐾 (𝑥) ∶=
(

1
8𝜋

1
𝐸

1 + 𝜈

1 − 𝜈

[
3 − 4𝜈|𝑥| 𝛿𝑖𝑗 +

𝑥𝑖𝑥𝑗|𝑥|3
])

𝑖𝑗

∈ℝ3×3

for 𝑥 ∈ ℝ3 ⧵ {0}. Using the trace operators 𝛾 int
0 and 𝛾 int

1 , we define the single-layer operator 𝑉 ∶= 𝛾 int
0 𝑉 and the hyper-singular 

operator 𝐷 ∶= −𝛾 int
1 𝑊̃ . Furthermore, we are going to use the double-layer operator

(𝐾𝑔)(𝑥) = lim
𝜀→0 ∫

𝜕Ω⧵𝐵𝜀(𝑥)

𝛾 int
1,𝑦𝑆(𝑥, 𝑦)𝑔(𝑦)d𝑠𝑦, 𝑥 ∈ 𝜕Ω, 𝑔 ∈ [𝐻1∕2(𝜕Ω)]3

and its adjoint

(𝐾 ′𝑓 )(𝑥) = lim
𝜀→0 ∫

𝜕Ω⧵𝐵𝜀(𝑥)

𝛾 int
1,𝑥𝑆(𝑥, 𝑦)𝑓 (𝑦)d𝑠𝑦, 𝑥 ∈ 𝜕Ω, 𝑓 ∈ [𝐻−1∕2(𝜕Ω)]3.

In order to solve mixed boundary value problems (cf. Sect. 1), boundary integral operators have to be defined on the respective part 
of the boundary. On the Dirichlet boundary Γ𝐷 we set

𝑉𝐷𝐷 ∶ [𝐻̃−1∕2(Γ𝐷)]3 → [𝐻1∕2(Γ𝐷)]3, 𝑉𝐷𝐷𝑓 ∶= (𝑉 𝑓 )|Γ𝐷 ,
where 𝐻̃−1∕2(Γ𝐷) = [𝐻1∕2(Γ𝐷)]′ and 𝑓 = 𝑓 |Γ𝐷 with 𝑓 ∈ [𝐻−1∕2(𝜕Ω)]3 and supp 𝑓 ⊂ Γ𝐷 . Using the extension 𝑔̃ ∈ [𝐻1∕2(𝜕Ω)]3 of a 
function 𝑔 ∈ [𝐻̃1∕2(Γ𝑁 )]3, where

𝐻̃1∕2(Γ𝑁 ) ∶= {𝑣 = 𝑣̃|Γ𝑁 ∶ 𝑣̃ ∈𝐻1∕2(𝜕Ω), supp 𝑣̃ ⊂ Γ𝑁},

we define

𝐷𝑁𝑁 ∶ [𝐻̃1∕2(Γ𝑁 )]3 → [𝐻−1∕2(Γ𝑁 )]3, 𝐷𝑁𝑁𝑔 ∶= (𝐷𝑔̃)|Γ𝑁
with 𝐻−1∕2(Γ𝑁 ) = [𝐻̃1∕2(Γ𝑁 )]′. The following two operators describe the interaction between the Dirichlet and the Neumann data. 
We define the double-layer operator of the Neumann boundary

𝐾𝑁𝐷 ∶ [𝐻̃1∕2(Γ𝑁 )]3 → [𝐻1∕2(Γ𝐷)]3, 𝐾𝑁𝐷𝑔 ∶= (𝐾𝑔̃)|Γ𝐷
and the adjoint double-layer operator of the Dirichlet boundary

𝐾 ′
𝐷𝑁

∶ [𝐻̃−1∕2(Γ𝐷)]3 → [𝐻−1∕2(Γ𝑁 )]3, 𝐾 ′
𝐷𝑁

𝑓 ∶= (𝐾 ′𝑓 )|Γ𝑁 .

Then, the boundary value problem (1) with the boundary conditions (2) and (3) has the solution

𝑣 = 𝑉 (𝑔̃𝑁 + 𝑡) − 𝑊̃ (𝑔̃𝐷 + 𝑢̃), (8)

where 𝑢̃ ∈ [𝐻1∕2(𝜕Ω)]3 and 𝑡 ∈ [𝐻−1∕2(𝜕Ω)]3 denote the extensions by zero of the functions 𝑢 ∈ [𝐻̃1∕2(Γ𝑁 )]3 and 𝑡 ∈ [𝐻̃−1∕2(Γ𝐷)]3, 
which are the solutions of the integral equations

𝑉𝐷𝐷𝑡−𝐾𝑁𝐷𝑢 =
(1
2
𝐼 +𝐾

)
𝑔̃𝐷|Γ𝐷 − 𝑉 𝑔̃𝑁 |Γ𝐷 ,

𝐾 ′
𝐷𝑁

𝑡+𝐷𝑁𝑁𝑢 = −𝐷𝑔̃𝐷|Γ𝑁 +
(1
2
𝐼 −𝐾 ′

)
𝑔̃𝑁 |Γ𝑁 .

In (8) the given Dirichlet data 𝑔𝐷 ∈ [𝐻1∕2(Γ𝐷)]3 and Neumann data 𝑔𝑁 ∈ [𝐻−1∕2(Γ𝑁 )]3 are extended to the functions 𝑔̃𝐷 ∈
[𝐻1∕2(𝜕Ω)]3 and 𝑔̃𝑁 ∈ [𝐻−1∕2(𝜕Ω)]3; see [24].

A stable numerical treatment of the above operators is only possible if the singularities are not too strong. Since 𝑉 is weakly 
singular, we do not expect any numerical problems. For 𝐷 and 𝐾 weakly singular representations have to be found. Using the 
boundary differential operators

𝑇𝑖𝑗 (𝑥) ∶= 𝑛𝑗 (𝑥)
𝜕

𝜕𝑥𝑗
− 𝑛𝑖(𝑥)

𝜕

𝜕𝑥𝑖
, 𝑖, 𝑗 = 1,2,3, 𝑥 ∈ 𝜕Ω,

and

𝜕

𝜕𝑆1
(𝑥) ∶= 𝑇32(𝑥),

𝜕

𝜕𝑆2
(𝑥) ∶= 𝑇13(𝑥),

𝜕

𝜕𝑆3
(𝑥) ∶= 𝑇12(𝑥),
9

the double-layer operator 𝐾 can be rewritten as
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𝐾𝑢̃(𝑥) = 1
4𝜋 ∫

𝜕Ω

𝜕

𝜕𝑛𝑦

1|𝑥− 𝑦| 𝑢̃(𝑦)d𝑠𝑦 −
1
4𝜋 ∫

𝜕Ω

1|𝑥− 𝑦|𝑇 𝑢̃(𝑦)d𝑠𝑦 + 2𝜇𝑉 𝑇 𝑢̃(𝑥)

for 𝑢̃ ∈ [𝐻1∕2(𝜕Ω)]3. The operator 𝐷 in terms of weakly singular integrals has the representation

⟨𝐷𝑢̃, 𝑣̃⟩𝜕Ω = 𝜇

4𝜋 ∫
𝜕Ω

∫
𝜕Ω

1|𝑥− 𝑦|
( 3∑

𝑘=1

𝜕

𝜕𝑆𝑘

𝑢̃(𝑦) ⋅ 𝜕

𝜕𝑆𝑘

𝑣̃(𝑥)

)
d𝑠𝑥 d𝑠𝑦

+ 𝜇

2𝜋 ∫
𝜕Ω

∫
𝜕Ω

(𝑇 (𝑥)𝑣̃(𝑥))𝑇 𝐼|𝑥− 𝑦| (𝑇 (𝑦)𝑢̃(𝑦))𝑇 d𝑠𝑥 d𝑠𝑦 − 4𝜇2⟨𝑉 𝑇 𝑢̃, 𝑇 𝑣̃⟩𝜕Ω
+ 𝜇

4𝜋 ∫
𝜕Ω

∫
𝜕Ω

3∑
𝑖,𝑗,𝑘=1

𝑇𝑘𝑗 (𝑥)𝑣̃𝑖(𝑥)
1|𝑥− 𝑦|𝑇𝑘𝑖(𝑦))𝑣̃𝑗 (𝑦)d𝑠𝑥 d𝑠𝑦;

see [19].

4.2. Discretization techniques

Our goal is the computation of a numerical solution of the integral equations for linear elasticity via the boundary element 
method (BEM). The starting point is an admissible triangulation ℎ of the surface of the computational domain Ω in regular triangles 
𝜏𝑖, 𝑖 = 1, … , 𝑀 , and nodes 𝑝𝑗 , 𝑗 = 1, … , 𝑁 . Here a triangulation is called admissible, if neighboring triangles have only one common 
edge or node; see [23].

On the triangulation ℎ the space of piecewise constant functions 0
ℎ

is given by its basis

𝜑𝑖(𝑥) =

{
1, 𝑥 ∈ 𝜏𝑖,

0, else,
𝑖 = 1,… ,𝑀,

which is used for the discretization of the operator 𝑉 . The operator 𝐾 and parts of 𝐷 are discretized using functions

𝜓𝑗 (𝑥) ∶=
⎧⎪⎨⎪⎩
1, 𝑥 = 𝑝𝑗 ,

0, 𝑥 = 𝑝𝑙 for 𝑙 ∈ {1,… ,𝑁} ⧵ {𝑗},
linear, else,

𝑗 = 1,… ,𝑁,

defining a basis of the space 1
ℎ
(Γ) of continuous and piecewise linear functions. We find solutions of the form

𝑡ℎ(𝑥) =
𝑀∑
𝑖=1

⎡⎢⎢⎢⎣
𝑡
(1)
𝑖

𝑡
(2)
𝑖

𝑡
(3)
𝑖

⎤⎥⎥⎥⎦𝜑𝑖(𝑥) and 𝑢̃ℎ(𝑥) =
𝑁∑
𝑗=1

⎡⎢⎢⎢⎣
𝑢̃
(1)
𝑗

𝑢̃
(2)
𝑗

𝑢̃
(3)
𝑗

⎤⎥⎥⎥⎦𝜓𝑗 (𝑥).

The coefficient vectors 𝑡 = [𝑡(1)
𝑖
, 𝑡
(2)
𝑖
, 𝑡
(3)
𝑖
]𝑀
𝑖=1 and 𝑢̃ = [𝑢̃(1)

𝑗
, 𝑢̃

(2)
𝑗
, 𝑢̃

(3)
𝑗
]𝑁
𝑗=1 are the solution of the linear system of equations[

𝑉𝐷𝐷,ℎ −𝐾𝑁𝐷,ℎ

𝐾𝑇
𝑁𝐷,ℎ

𝐷𝑁𝑁,ℎ

][
𝑡

𝑢̃

]
=

[
−𝑉 1

2𝑀 +𝐾
1
2𝑀

𝑇 −𝐾𝑇 −𝐷

][
𝑔̃𝑁
𝑔̃𝐷

]
=∶

[
𝑓𝐷
𝑓𝑁

]
(9)

𝑉𝐷𝐷,ℎ[𝑖𝑗] = ⟨𝑉𝐷𝐷𝜑𝑗,𝜑𝑖⟩Γ𝐷 , 𝐾𝑁𝐷,ℎ[𝑗𝑘] = ⟨𝐾𝑁𝐷𝜓𝑘,𝜑𝑗⟩Γ𝐷 ,
𝐷𝑁𝑁,ℎ[𝑘𝑙] = ⟨𝐷𝑁𝑁𝜓𝑙,𝜓𝑘⟩Γ𝑁

for 𝑖, 𝑗 = 1, … , 𝑀 and 𝑘, 𝑙 = 1, … , 𝑁 .

At the end of this section we want to state representations for the operators 𝑉𝐷𝐷,ℎ, 𝐾𝑁𝐷,ℎ, and 𝐷𝑁𝑁,ℎ, which are more advan-

tageous for numerical calculations. Using Kelvin’s solution tensor and a suitable space for the discretization of the operators like the 
space [0(Γ)]3, the stiffness matrix 𝑉ℎ ∈ℝ3𝑀×3𝑀 of the single-layer potential has the representation

𝑉ℎ =
1
2
1
𝐸

1 + 𝜈

1 − 𝜈

⎛⎜⎜⎝(3 − 4𝜈)
⎡⎢⎢⎣
𝑉Δ,ℎ 0 0
0 𝑉Δ,ℎ 0
0 0 𝑉Δ,ℎ

⎤⎥⎥⎦+
⎡⎢⎢⎣
𝑉11 𝑉12 𝑉13
𝑉12 𝑉22 𝑉23
𝑉13 𝑉23 𝑉33

⎤⎥⎥⎦
⎞⎟⎟⎠ , (10)

where

𝑉Δ,ℎ[𝑖𝑗] =
1
4 ∫
𝜏𝑗

∫
𝜏𝑖

1|𝑥− 𝑦| d𝑠𝑦 d𝑠𝑥
10

and
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𝑉𝑘𝑙[𝑖𝑗] =
1
4 ∫
𝜏𝑗

∫
𝜏𝑖

(𝑥𝑘 − 𝑦𝑘)(𝑥𝑙 − 𝑦𝑙)|𝑥− 𝑦|3 d𝑠𝑦 d𝑠𝑥

are 𝑀 ×𝑀 sub-matrices for 𝑘, 𝑙 = 1, 2, 3. Together with the space [1(Γ)]3, the operator 𝐾ℎ can be represented as

𝐾ℎ =
⎡⎢⎢⎣
𝐾Δ,ℎ 0 0
0 𝐾Δ,ℎ 0
0 0 𝐾Δ,ℎ

⎤⎥⎥⎦−
⎡⎢⎢⎣
𝑉Δ,ℎ 0 0
0 𝑉Δ,ℎ 0
0 0 𝑉Δ,ℎ

⎤⎥⎥⎦𝑇ℎ + 𝐸

1 + 𝜈
𝑉ℎ𝑇ℎ, (11)

where

𝐾Δ,ℎ[𝑖𝑗] =
1
4𝜋

∑
𝜏 ∈ supp 𝜓𝑗

∫
𝜏

∫
𝜏𝑖

(𝑥− 𝑦)𝑇 𝑛(𝑦)|𝑥− 𝑦|3 𝜓𝑗 (𝑦)d𝑠𝑦 d𝑠𝑥,

𝑖 = 1, … , 𝑀, 𝑗 = 1, … , 𝑁 , and

𝑇ℎ ∶=
⎡⎢⎢⎣

0 𝑇12,ℎ 𝑇13,ℎ
−𝑇12,ℎ 0 𝑇23,ℎ
−𝑇13,ℎ −𝑇23,ℎ 0

⎤⎥⎥⎦ , 𝑇𝑘𝑙,ℎ[𝑖𝑗] ∶= 𝑇𝑘𝑙(𝑥̂)𝜓𝑗 (𝑥̂), 𝑥̂ ∈ 𝜏𝑖,

for 𝑘, 𝑙 ∈ {1, 2, 3}, 𝑖 = 1, … , 𝑀 , 𝑗 = 1, … , 𝑁 . Finally, the matrix 𝐷ℎ is given by

𝐷ℎ =
3∑

𝑘=1

𝜇

4𝜋
𝑆𝑇
𝑘,ℎ

⎡⎢⎢⎣
𝑉Δ,ℎ 0 0
0 𝑉Δ,ℎ 0
0 0 𝑉Δ,ℎ

⎤⎥⎥⎦𝑆𝑘,ℎ +
𝜇

2𝜋
𝑇 𝑇
ℎ

⎡⎢⎢⎣
𝑉Δ,ℎ 0 0
0 𝑉Δ,ℎ 0
0 0 𝑉Δ,ℎ

⎤⎥⎥⎦𝑇ℎ
+ 4𝜇2𝑇 𝑇

ℎ
𝑉ℎ𝑇ℎ +

𝜇

4𝜋
𝐷′

ℎ

(12)

with

𝐷′
ℎ
∶=

⎡⎢⎢⎢⎣
𝐷′

11,ℎ 𝐷′
12,ℎ 𝐷′

13,ℎ
𝐷′

21,ℎ 𝐷′
22,ℎ 𝐷′

23,ℎ
𝐷′

31,ℎ 𝐷′
32,ℎ 𝐷′

33,ℎ

⎤⎥⎥⎥⎦ , 𝐷′
𝑖𝑗,ℎ

∶=
3∑

𝑘=1
𝑇 𝑇
𝑘𝑗,ℎ

𝑉Δ,ℎ𝑇𝑘𝑖,ℎ

and

𝑆1,ℎ ∶=
⎡⎢⎢⎣
𝑇32,ℎ 0 0
0 𝑇32,ℎ 0
0 0 𝑇32,ℎ

⎤⎥⎥⎦ , 𝑆2,ℎ ∶=
⎡⎢⎢⎣
𝑇13,ℎ 0 0
0 𝑇13,ℎ 0
0 0 𝑇13,ℎ

⎤⎥⎥⎦ ,
𝑆3,ℎ ∶=

⎡⎢⎢⎣
𝑇21,ℎ 0 0
0 𝑇21,ℎ 0
0 0 𝑇21,ℎ

⎤⎥⎥⎦ ,
see [21]. Using specific restriction operators defined in [21] allows the re-presentation of the discretized operators 𝑉ℎ, 𝐾ℎ, and 𝐷ℎ

with respect to the corresponding boundaries, resulting in the operators 𝑉𝐷𝐷,ℎ, 𝐾𝑁𝐷,ℎ, and 𝐷𝑁𝑁,ℎ.

Remark 3. Instead of the componentwise representation of the previous discrete operators, a common alternative is a blockwise 
approach. The advantage of the latter is that the 3 × 3 matrix blocks can basically be computed at the costs of a single entry. The 
downside of this approach is that for applying ACA the invertibility of pivot blocks has to be guaranteed. Hence, we decided to use 
the componentwise approach although the method introduced in this article also can be applied to the blockwise representation.

5. The adaptive solution of Lamé equations

The adaptive matrix-vector multiplication introduced in Sect. 3 can be applied in the context of boundary element methods 
when the given data vectors are multiplied by discrete integral operators on the right-hand side of the discretized integral equation. 
If also the solution of the latter is to be computed, then the BACA method introduced in [2] can be employed. It combines the 
adaptive construction of the -matrix approximation of the system matrix with the simultaneous iterative solution of the system. 
The individual blocks are approximated only as accurate as necessary for the prescribed accuracy and the given right-hand side 
vector. The BACA was developed for the Laplace equation and is thus not adapted to the structure of the Lamé equations. In this 
section, BACA will be modified to allow its application to problems from linear elasticity.

We consider the numerical solution of the linear system 𝐴𝑥 = 𝑏 from (9) with[
𝑉𝐷𝐷,ℎ −𝐾𝑁𝐷,ℎ

] [
𝑓𝐷

] [
𝑡
]

11

𝐴 =
𝐾𝑇

𝑁𝐷,ℎ
𝐷𝑁𝑁,ℎ

, 𝑏 =
𝑓𝑁

, and 𝑥 =
𝑢̃

.



Applied Numerical Mathematics 201 (2024) 1–19M. Bauer and M. Bebendorf

Each of the four sub-matrices of 𝐴 consists again of nine sub-matrices with an associated block-cluster tree. Let 𝑃 be the union of all 
admissible partitions concerning the boundaries and the different operators, i.e.,

𝑃 ∶= 𝑃𝑉 ∪ 𝑃𝐾 ∪ 𝑃𝐷,

where 𝑃𝑉 , 𝑃𝐾 , and 𝑃𝐷 consist of all blocks of the discretized single-layer operator 𝑉ℎ, the discretized double-layer operator 𝐾ℎ and 
the discretized hyper-singular operator 𝐷ℎ and denote by 𝑃adm the admissible blocks contained in 𝑃 . Accordingly, 𝑐sp,𝑉 , 𝑐sp,𝐾 , and 
𝑐sp,𝐷 are the sparsity constants associated with the block-cluster trees for the operators 𝑉ℎ, 𝐾ℎ, and 𝐷ℎ. The constructed matrix 
approximation is denoted by

𝐴𝑘 =
[
𝑉𝐷𝐷,𝑘 −𝐾𝑁𝐷,𝑘

𝐾𝑇
𝑁𝐷,𝑘

𝐷𝑁𝑁,𝑘

]
,

where the sub-matrices 𝑉𝐷𝐷,ℎ, 𝐾𝑁𝐷,ℎ, and 𝐷𝑁𝑁,ℎ are approximated individually. Moreover, let

𝐴̂𝑘 =
[
𝑉𝐷𝐷,𝑘 −𝐾̂𝑁𝐷,𝑘

𝐾̂𝑇
𝑁𝐷,𝑘

𝐷̂𝑁𝑁,𝑘

]
be a more accurate approximation of 𝐴 than 𝐴𝑘. We assume that the saturation condition

‖𝐴̂𝑘𝑥𝑘 −𝐴𝑥𝑘‖2 ≤ 𝑐sat‖𝐴𝑘𝑥𝑘 −𝐴𝑥𝑘‖2 (13)

is fulfilled for some 0 < 𝑐sat < 1, where 𝑥𝑘 denotes the solution of the linear system 𝐴𝑘𝑥𝑘 = 𝑏. Again, a possible strategy for choosing 
𝐴̂𝑘 is to add a fixed number of additional ACA steps for each admissible block of 𝐴𝑘 (look-ahead approximation) and to set (𝐴̂𝑘)𝑡𝑠 =
𝐴𝑡𝑠 for all other blocks 𝑡 × 𝑠 ∈ 𝑃non-adm.

In order to obtain some information about the error of the approximation, we use the error estimator

2
𝑘
∶=

∑
𝑡×𝑠∈𝑃

‖(𝐴𝑘 − 𝐴̂𝑘)𝑡𝑠(𝑥𝑘)𝑠‖22.
If BACA is to be applied to the saddle-point problem (9), we first have to employ the Bramble-Pasciak conjugate gradient method [10]

as the iterative solver. The difference to the case of the Laplace equation lies in the selection of the blocks to be refined. We use the 
following strategy based on the representations (10), (11), and (12) of the discretized operators 𝑉ℎ, 𝐾ℎ, and 𝐷ℎ, where we leave 
the fixed matrices 𝑇ℎ, 𝑆1,ℎ, 𝑆2,ℎ and 𝑆3,ℎ unchanged during the whole procedure. Since the sub-matrix 𝑉Δ,ℎ is contained in all the 
operators 𝑉ℎ, 𝐾ℎ, and 𝐷ℎ, the refinement of 𝑉Δ,ℎ is implemented at first. Afterwards the refinements of 𝑉𝑖𝑗 , 𝑖, 𝑗 = 1, 2, 3, 𝐾Δ,ℎ, 𝐷′

ℎ
and 𝐷ℎ follow. The approximation of a block is improved only if it has been selected. This leads to the following Algorithm 3.

Algorithm 3 Block-adaptive ACA for linear elasticity.

Input: System matrix 𝐴, right-hand side 𝑏, partition 𝑃adm, 0 < 𝜃 < 1, 𝛼 ≥ 0, 𝜀BACA > 0
Output: approximation 𝑥𝑘 of the solution 𝑥 of 𝐴𝑥 = 𝑏

1. Start with a coarse -matrix approximation 𝐴0 of 𝐴 and set 𝑘 = 0.

2. Given 𝛼 ≥ 0, apply the Bramble-Pasciak-CG to the linear system 𝐴𝑘𝑥𝑘 = 𝑏 until the residual error satisfies

‖𝑏−𝐴𝑘𝑥𝑘‖2 ≤ 𝛼‖(𝐴𝑘 − 𝐴̂𝑘)𝑥𝑘‖2 (14)

(use 𝑥𝑘−1 as a starting vector; 𝑥−1 ∶= 0).

3. Given 0 < 𝜃 < 1, find a set of marked blocks 𝑀𝑘 ⊂ 𝑃adm with minimal cardinality such that

𝑘(𝑀𝑘) ≥ 𝜃 𝑘, (15)

where 2
𝑘
(𝑀) ∶=∑𝑡×𝑠∈𝑀 ‖(𝐴𝑘 − 𝐴̂𝑘)𝑡𝑠(𝑥𝑘)𝑠‖22 and 𝑘 ∶= 𝑘(𝑃adm).

4. Consider the following cases for all 𝑡 × 𝑠 ∈𝑀𝑘 :

(i) If 𝑡 × 𝑠 belongs to 𝑉𝐷𝐷 , set (𝑉Δ,ℎ,𝑘+1)𝑡𝑠 = (𝑉Δ,ℎ,𝑘)𝑡𝑠 and (𝑉𝑖𝑗 )𝑡𝑠 = (𝑉𝑖𝑗 )𝑡𝑠 , 𝑖, 𝑗 = 1, 2, 3.

(ii) If 𝑡 × 𝑠 belongs to 𝐾𝑁𝐷 , set (𝐾Δ,ℎ,𝑘+1)𝑡𝑠 = (𝐾̂Δ,ℎ,𝑘)𝑡𝑠 and (𝑉Δ,ℎ,𝑘+1)𝑏 = (𝑉Δ,ℎ,𝑘)𝑏 , (𝑉𝑖𝑗 )𝑏 = (𝑉𝑖𝑗 )𝑏 , 𝑖, 𝑗 = 1, 2, 3, for all blocks 𝑏 having rows associated with 𝑡.
(iii) If 𝑡 × 𝑠 belongs to 𝐷𝑁𝑁 , set 𝑉Δ,ℎ,𝑘+1 = 𝑉Δ,ℎ,𝑘 and 𝑉𝑖𝑗 = 𝑉𝑖𝑗 , 𝑖, 𝑗 = 1, 2, 3.

All blocks not selected remain at the current stage of approximation.

5. If 𝑘+1 > 𝜀BACA increment 𝑘 and go to 2.

Due to the structure of the discrete operators (see Section 4.2), the selection strategy in Algorithm 3 is such that the individual 
blocks do not need to be approximated independently by ACA. For the part 𝑉𝐷𝐷 the refinement of a block can directly be carried 
over to the corresponding block in 𝑉Δ,ℎ and 𝑉𝑖𝑗 . Since the operator 𝐷𝑁𝑁 contains the operator 𝑉ℎ in the form of a multiplication 
with the matrices 𝑇ℎ, blocks can no longer be selected directly. In this case, 𝑉ℎ (or at least the restriction of 𝑉ℎ to the Neumann part) 
must be completely refined.

In the following we adapt the convergence analysis (presented in [2]) to the previous method. For the efficiency of the error 
estimator or at least a lower bound on the expression ‖𝑏 −𝐴𝑥𝑘‖2, we refer to [2]. The reliability of the estimator follows from the 
12

saturation assumption.
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Lemma 5. Let the saturation assumption (13) be valid. Then 𝑘 is reliable, i.e. it holds

‖𝑏−𝐴𝑥𝑘‖2 ≤ 1 + 𝛼(1 + 𝑐sat)
1 − 𝑐sat

‖(𝐴𝑘 − 𝐴̂𝑘)𝑥𝑘‖2 ≤√27𝐶sp𝐿
1 + 𝛼(1 + 𝑐sat)

1 − 𝑐sat

𝑘,
where 𝐿 is the maximum depth of the used cluster trees and 𝐶sp ∶= max{𝑐sp𝑉 , 𝑐sp,𝐾 , 𝑐sp,𝐷}.

Proof. The first assertion follows with condition (14) and the saturation assumption from

‖𝑏−𝐴𝑥𝑘‖2 ≤ ‖𝑏−𝐴𝑘𝑥𝑘‖2 + ‖(𝐴𝑘 − 𝐴̂𝑘)𝑥𝑘‖2 + ‖𝐴̂𝑘𝑥𝑘 −𝐴𝑥𝑘‖2
≤ (𝛼 + 1)‖(𝐴𝑘 − 𝐴̂𝑘)𝑥𝑘‖2 + 𝑐sat‖𝐴𝑘𝑥𝑘 −𝐴𝑥𝑘‖2
≤ (𝛼 + 1 + 𝑐sat𝛼)‖(𝐴𝑘 − 𝐴̂𝑘)𝑥𝑘‖2 + 𝑐sat‖𝑏−𝐴𝑥𝑘‖2.

The second inequality is a result of the decomposition of the sub-matrices of 𝐴 =
∑𝐿

𝑙=1𝐴
(𝑙) into a sum of level matrices 𝐴(𝑙). Due to 

the fact that the different operators have different cluster trees, a maximum level 𝐿 will be chosen among these cluster trees. Then, 
no more further sub-matrices will exist at a certain level. In this case, use the zero sub-matrix for the remaining levels. We observe

‖(𝐴𝑘 − 𝐴̂𝑘)𝑥𝑘‖22 ≤
(

𝐿∑
𝑙=1

‖(𝐴𝑘 − 𝐴̂𝑘)(𝑙)𝑥𝑘‖2)2

≤𝐿

𝐿∑
𝑙=1

‖(𝐴𝑘 − 𝐴̂𝑘)(𝑙)𝑥𝑘‖22
=𝐿

𝐿∑
𝑙=1

∑
𝑡∈𝑇 (𝑙)

𝐼

‖ ∑
𝑠∶𝑡×𝑠∈𝑃

(𝐴𝑘 − 𝐴̂𝑘)𝑡𝑠(𝑥𝑘)𝑠‖22
≤𝐿

𝐿∑
𝑙=1

∑
𝑡∈𝑇 (𝑙)

𝐼

( ∑
𝑠∶𝑡×𝑠∈𝑃

‖(𝐴𝑘 − 𝐴̂𝑘)𝑡𝑠(𝑥𝑘)𝑠‖2)2

≤ 27𝐶sp𝐿

𝐿∑
𝑙=1

∑
𝑡∈𝑇 (𝑙)

𝐼

∑
𝑠∶𝑡×𝑠∈𝑃

‖(𝐴𝑘 − 𝐴̂𝑘)𝑡𝑠(𝑥𝑘)𝑠‖22
= 27𝐶sp𝐿

∑
𝑡×𝑠∈𝑃

‖(𝐴𝑘 − 𝐴̂𝑘)𝑡𝑠(𝑥𝑘)𝑠‖22
= 27𝐶sp𝐿2

𝑘
,

since each of the three discretized operators consists of nine sub-operators, which explains the factor 27 at the end. □

Except for the inclusion of different sparsity constants and tree depths, there are no other differences in the convergence proof of 
the adapted BACA method compared to BACA for the Laplace equation. For this reason, we refer to the proofs in [2] for the rest of 
the convergence analysis and only state the convergence results here.

Lemma 6. Assume that 𝐴∗ ∶= lim𝑘→∞𝐴𝑘 is invertible and 𝛼 is sufficiently small. Then it holds that

2
𝑘+1 ≤ 𝑞 2

𝑘
+ 𝑧𝑘,

where 𝑧𝑘 converges to zero and 𝑞 < 1. Furthermore, lim𝑘→∞ 𝑘 = 0.

Lemma 7. The residuals 𝑟𝑘 ∶= 𝑏 −𝐴𝑥𝑘 of the sequence {𝑥𝑘}𝑘∈ℕ constructed by Algorithm 3 converge to zero.

At the end of this section, another field of application for AMVM will be briefly discussed. Let (𝑌ℎ, 𝑍ℎ) =
(
𝑔̃𝑁,ℎ + 𝑡ℎ, 𝑔̃𝐷,ℎ + 𝑢̃ℎ

)
denote the whole approximated Dirichlet and Neumann data after having calculated the missing data (𝑡ℎ, ̃𝑢ℎ), i.e.

𝑌ℎ =
𝑀∑
𝑖=1

𝑦𝑖𝜑𝑖 and 𝑍ℎ =
𝑁∑
𝑗=1

𝑧𝑗𝜓𝑗

with coefficient vectors 𝑦, 𝑧 ∈ℝ3, the solution 𝑢ℎ in Ω can be evaluated by

𝑢ℎ(𝑥) =
𝑀∑
𝑗=1

𝑦𝑗 ∫
𝜕Ω

𝑆(𝑥, 𝑦)𝜑𝑗 (𝑦)d𝑠𝑦 −
𝑁∑
𝑘=1

𝑧𝑘 ∫
𝜕Ω

𝛾 int
1,𝑦𝑆(𝑥, 𝑦)𝜓𝑘(𝑦)d𝑠𝑦,
13

for 𝑥 ∈Ω, and the stresses 𝜎(𝑢ℎ, 𝑥) can be computed using the derivatives
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Table 1

Error and time required to compute right-hand side of (9) via ACA.

𝑁 𝑀 𝑏min ‖𝑏− 𝑏ACA‖2 time approximation

972 488 15 3.45 ⋅ 10−7 6.9 s

3 888 1 946 20 4.43 ⋅ 10−7 39.6 s

15 552 7 778 30 2.53 ⋅ 10−7 235.7 s

62 208 31 106 40 2.17 ⋅ 10−7 1428.6 s

𝜕𝑥𝑖 𝑢ℎ(𝑥) =
𝑀∑
𝑗=1

𝑦𝑗 ∫
𝜕Ω

𝜕𝑥𝑖𝑆(𝑥, 𝑦)𝜑𝑗 (𝑦)d𝑠𝑦 −
𝑁∑
𝑘=1

𝑧𝑘 ∫
𝜕Ω

𝜕𝑥𝑖 (𝛾
int
1,𝑦𝑆(𝑥, 𝑦))𝜓𝑘(𝑦)d𝑠𝑦, (16)

for 𝑖 = 1, 2, 3 together with Hooke’s law. If, for instance, the deformations are to be analyzed at several points 𝑥1, … , 𝑥𝑙 , 𝑙 ∈ ℕ, this 
can be understood as the computation of a vector

𝑣 ∶= 𝑉ℎ𝑦− 𝑊̃ℎ𝑧 (17)

with 𝑣 = [𝑢ℎ(𝑥𝑖)]𝑖=1,…,𝑙 . Since the two discrete operators

𝑉ℎ ∶=
⎡⎢⎢⎣ ∫𝜕Ω 𝑆(𝑥𝑖, 𝑦)𝜑𝑗 (𝑦)d𝑠𝑦

⎤⎥⎥⎦
𝑖𝑗

and 𝑊̃ℎ ∶=
⎡⎢⎢⎣ ∫𝜕Ω 𝛾 int

1,𝑦𝑆(𝑥𝑖, 𝑦)𝜓𝑘(𝑦)d𝑠𝑦

⎤⎥⎥⎦
𝑖𝑘

,

with 𝑖 = 1, … , 𝑙, 𝑗 = 1, … , 𝑀 , and 𝑘 = 1, … , 𝑁 are of collocation type, we are able to accelerate the evaluation of the deformations 
and stresses with the introduced AMVM. The evaluation of the stresses using the derivatives 𝜕𝑥𝑖𝑢ℎ 𝑖 = 1, 2, 3, can be done in a similar 
way using (16).

6. Numerical results

The numerical experiments are divided into two parts. In both cases the numerical solution of the Lamé equations

−𝜇Δ𝑢(𝑥) − (𝜆+ 𝜇)grad div 𝑢(𝑥) = 0, 𝑥 ∈Ω, (18)

with the Lamé constants and 𝐸 = 1.0 (𝑁∕𝑚𝑚2), 𝜈 = 0.3 is computed. The first part deals with the quality of the error estimator in 
AMVM and the numerical performance of AMVM compared to the multiplication by an approximation obtained from ACA. Then, the 
numerical performance of the combination of AMVM and BACA adapted to linear elasticity (see Sect. 5) is investigated in comparison 
with ACA. First calculations of linear elasticity using the ACA were carried out in [6].

The computations in this article were performed on a computer with an Intel(R) Core(TM) i7-6700HQ CPU at 2.60 GHz. All 
approximation steps in the procedures are performed without parallelization. Furthermore, recompression and agglomeration tech-

niques are applied in the numerical investigations neither to ACA nor to the new methods. Recompression based on QR decomposition 
as described in [5] can be applied directly for both methods resulting in lower storage requirements. However, a more detailed in-

vestigation of how agglomeration can be applied efficiently together with the new methods is required.

In the following tests, the look-ahead approximation 𝐴̂𝑘 is two steps of ACA ahead of the current approximation 𝐴𝑘, which turned 
out to be enough. Notice that this number has to be adapted to the problem in general.

6.1. Quality of AMVM for linear elasticity

The qualitative investigations of AMVM are carried out on four different discretizations of the cube Ω = [−1, 1]3 consisting of 
488, 1 946, 7 778, and 31 106 points. The following boundary conditions are chosen

𝛾 int
0 𝑢(𝑥) = 𝑔𝐷(𝑥) ∶= 𝑆(𝑥− 𝑝)

for 𝑥 ∈ Γ𝐷 = {𝑥 ∈Ω ∶ 𝑥1 = 1 or 𝑥2 = −1 or 𝑥3 = 1} and

𝛾 int
1 𝑢(𝑥) = 𝑔𝑁 (𝑥) ∶= 𝛾 int

1 𝑆(𝑥− 𝑝)

for 𝑥 ∈ Γ𝑁 = {𝑥 ∈ Ω ∶ 𝑥1 = −1 or 𝑥2 = 1 or 𝑥3 = −1} with 𝑝 = (5.0, 5.0, 5.0)𝑇 . We compare the computational time and the storage 
requirements of AMVM and ACA when computing the right-hand side of (9). The approximation of the latter will be denoted 
by 𝑏AMVM and 𝑏ACA, respectively. The blockwise accuracy of ACA is chosen to be 𝜀ACA = 10−6 and the admissibility parameter is 
𝛽 = 0.8. The parameter 𝑏min, which is a parameter of the used cluster tree, denotes the minimal size of a matrix block. The results of 
ACA are presented in Tables 1 and 2.

Applying the adaptive matrix-vector multiplication (AMVM) to the linear elasticity problem described in the beginning of Sect. 6

provides for 𝜃 = 0.7 the results shown in Tables 3 and 4. The error ‖𝑏 − 𝑏AMVM‖2 was kept at the same order of magnitude as ‖𝑏 −

14

𝑏ACA‖2 in the previous tests. On all four discretizations of the cube Ω a reduction of the computational time could be achieved. The 
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Table 2

Storage requirements for the approximations constructed by ACA.

𝑁 𝑀 𝑉Δ,ℎ 𝑉11 𝑉12 𝑉13 𝑉22

MB % MB % MB % MB % MB %

972 488 3.0 83.5 3.5 95.6 3.5 96.5 3.5 96.4 3.4 95.5

3 888 1 946 19.7 34.1 23.9 41.4 23.4 40.5 23.3 40.4 23.8 41.3

15 552 7 778 115.6 12.5 137.6 14.9 132.7 14.4 131.3 14.2 137.7 14.9

62 208 31 106 870.0 5.9 993.6 6.7 930.1 6.3 900.5 6.1 974.3 6.6

𝑁 𝑀 𝑉23 𝑉33 𝐾Δ,ℎ
MB % MB % MB %

972 488 3.5 96.1 3.5 95.6 3.6 99.6

3 888 1 946 23.3 40.4 23.8 41.3 31.1 53.9

15 552 7 778 131.4 14.2 136.2 14.8 201.1 21.8

62 208 31 106 911.7 6.1 970.1 6.6 1328.9 9.3

Table 3

Error and time required to compute right-hand side of (9) via AMVM.

𝑁 𝑀 𝑏min ‖𝑏− 𝑏AMVM‖2 time approximation

972 488 15 4.69 ⋅ 10−7 5.5 s

3 888 1 946 20 3.49 ⋅ 10−7 29.9 s

15 552 7 778 30 2.81 ⋅ 10−7 179.6 s

62 208 31 106 40 3.35 ⋅ 10−7 1 097.1 s

Table 4

Storage requirements for the approximations constructed by AMVM.

𝑁 𝑀 𝑉Δ,ℎ 𝑉11 𝑉12 𝑉13 𝑉22

MB % MB % MB % MB % MB %

972 488 2.9 79.1 3.0 84.2 3.0 84.2 3.0 84.4 3.0 84.2

3888 1 946 19.3 33.5 21.3 37.0 20.9 36.2 20.8 36.1 21.3 36.9

15 552 7 778 114.5 12.4 124.7 13.5 120.5 13.0 119.5 12.9 124.9 13.5

62 208 31 106 838.6 5.7 919.5 6.2 836.8 5.7 811.9 5.5 915.2 6.2

𝑁 𝑀 𝑉23 𝑉33 𝐾Δ,ℎ

MB % MB % MB %

972 488 3.0 84.3 3.0 84.2 2.4 68.0

3888 1 946 20.8 36.1 21.3 36.9 17.2 29.9

15 552 7 778 119.6 12.9 119.4 14.8 116.1 12.6

62 208 31 106 822.1 5.5 902.5 6.1 803.3 5.6

Table 5

Required time to compute right-hand side of (9) via ACA and AMVM using 𝑏min =
40.

𝑁 𝑀 time approximation ACA time approximation AMVM

972 488 5.4 s 5.1 s

3 888 1 946 36.9 s 29.4 s

15 552 7 778 232.9 s 181.9 s

62 208 31 106 1428.6 s 1 097.1 s

storage requirements of the operators 𝑉Δ,ℎ, 𝑉11, 𝑉12, 𝑉13, 𝑉22, 𝑉23, and 𝑉33 turn out to be slightly lower than the corresponding 
approximations obtained via ACA. The main benefit is obtained for the operator 𝐾Δ,ℎ.

Tables 1 and 3 give the impression that the logarithmic-linear complexity is not fulfilled. This can be explained by the different 
parameters 𝑏min. Table 5 shows the approximation times for a constant 𝑏min and a comparable error ‖𝑏 − 𝑏AMVM‖2, where we can 
observe that the runtime approaches logarithmic-linear complexity.

Before moving on to a more realistic problem, we take a closer look at the reliability and efficiency of the error estimator. We 
present the results obtained in the case of the discretization consisting of 488 points and 972 mesh elements and 7 778 points and 
15

15 552 mesh elements. We employ a rank-2 approximation to start the iterative approximation process. Fig. 2 shows that the error 
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Fig. 2. Quality of the error estimator 𝛾𝑘 in the case of AMVM (top: 488 points, bottom 7 778 points). (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

estimator 𝛾𝑘 estimates the error ‖𝑏 − 𝑏𝑘‖2 of the right-hand side reliably and efficiently, which confirms the theoretical results of the 
adaptive matrix-vector multiplication presented in Sect. 3.

6.2. Beam with double-T shape: load in 𝑧-direction

The following experiments focus on the numerical solution of the Lamé equations on three discretizations of the geometry 
shown in Fig. 3. The beam has a length, height and width of 2 with a central part having height and width of 1. Fig. 4 shows the 
assignment of the boundary elements to Dirichlet and Neumann part. On the blue area the beam is loaded with a force of 0.1 N, 
while the Dirichlet boundary is illustrated by the green area. On the remaining part of the boundary, i.e. on the gray area in Fig. 4, 
homogeneous Neumann boundary conditions (𝛾 int

1 𝑢(𝑥) = 0) are prescribed. The right-hand side of the system of equations which has 
to be computed is obtained by multiplying the given boundary data by the respective discretized operators 𝑉ℎ , 𝐾ℎ and 𝐷ℎ; cf. (9).

We compare the approximate solution obtained from approximating the coefficient matrix via BACA and ACA, respectively.

The deformations of the beam under load in 𝑧-direction are shown in Fig. 5. The maximum absolute differences between the 
deformations generated via ACA and BACA in 𝑥-, 𝑦- and 𝑧-direction are 1.2 ⋅ 10−4, 2.4 ⋅ 10−4 and 3.3 ⋅ 10−4. So, both methods ACA 
and BACA give similar results.

The parameters used for ACA in Sect. 6.1 remain unchanged. Additionally, we use 𝜀BPCG = 10−5 which denotes the accuracy of the 
Bramble-Pasciak conjugate gradient method [10] during the iterative solution procedure. The results for ACA are shown in Table 6.

For BACA other parameters have to be chosen. The adaptive adjustment of the error tolerance in the Bramble-Pasciak CG is done 
according to condition (14) with 𝛼 = 10, see 2. of Algorithm 3. The initial value of the accuracy in Bramble-Pasciak CG is 10−1. The 
tolerance 𝜀BACA is 10−4 and 𝜃 = 0.8. The starting approximations of the respective 𝑉 operators are obtained by applying 8 (for the 
two coarsest grids) and 10 (for the finest grid) ACA steps. For the operator 𝐾 the respective number of steps are 4 and 6. Solving the 
Lamé equations via BACA with these parameters leads after four iteration steps to the values shown in Table 7.

Compared to the results obtained from ACA, no significant differences can be observed when applying BACA to the operator 𝑉Δ,ℎ. 
16

The 𝑉 operators require only about 70–80% of the storage needed for the approximations generated via ACA. Stronger benefits can 
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Fig. 3. Discretization of double T-beam.

Fig. 4. Dirichlet boundary green and loaded Neumann boundary part blue.
17

Fig. 5. Deformation under loading in 𝑧-direction for ACA using a mesh with 3330 nodes and 6656 elements.
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Table 6

Storage requirements of the approximations constructed via ACA and time consumption of solving the 
problem.

𝑁 𝑀 𝑉Δ,ℎ 𝑉11 𝑉12 𝑉13 𝑉22

MB % MB % MB % MB % MB

1 664 834 6.9 65.2 8.3 78.3 8.4 79.8 8.3 78.7 8.4

6 656 3 330 44.4 26.2 56.3 33.3 56.5 33.4 54.6 32.3 56.3

26 624 13 314 238.7 8.8 306.5 11.3 300.8 11.1 285.3 10.6 305.1

𝑁 𝑀 𝑉22 𝑉23 𝑉33 𝐾Δ,ℎ approximation

% MB % MB % MB % time

1 664 834 79.7 8.4 79.4 8.2 77.2 9.5 90.1 15.1 s

6 656 3 330 33.3 54.6 32.3 54.0 31.9 75.2 44.9 91.2 s

26 624 13 314 11.3 283.7 10.5 287.2 10.6 497.3 18.4 546.4 s

Table 7

Storage, relative storage for the approximations constructed by BACA and time consumption of solving the 
problem after applying BACA in the case of Lamé equations.

𝑁 𝑀 𝑉Δ,ℎ 𝑉11 𝑉12 𝑉13 𝑉22

MB % MB % MB % MB % MB

1 664 834 6.5 61.0 6.8 64.2 6.8 64.4 6.8 63.9 6.8

6 656 3 330 40.1 23.7 41.5 24.5 41.2 24.4 40.2 23.8 41.5

26 624 13 314 220.3 8.1 228.9 8.5 223.8 8.3 213.2 7.9 228.8

𝑁 𝑀 𝑉22 𝑉23 𝑉33 𝐾Δ,ℎ approximation

% MB % MB % MB % time

1 664 834 64.5 6.8 64.0 6.8 63.9 4.7 44.4 10.1 s

6 656 3 330 24.6 40.2 23.8 40.5 24.0 27.3 16.1 48.1 s

26 624 13 314 8.5 212.7 7.9 218.3 8.1 180.4 6.7 287.6 s

be achieved for the 𝐾Δ operator. Here, the approximation using BACA requires only 50% (for the coarsest grid) and 36% (for the 
two finest grids) of the storage needed in the case of ACA. Table 7 also shows advantages of BACA with respect to the approximation 
time. While on the coarsest grid 67% of the time needed by ACA is consumed, for the second and third finest grid the time can be 
reduced to 53%. Note that this is a reduction in computation time and storage requirements compared to those methods that already 
have linear-logarithmic complexity.

The previous numerical example with the used parameters is still a rather academic example. Using the parameters of steel, i.e. 
𝐸 = 210 000 𝑁∕𝑚𝑚2, 𝜈 = 0.28, and a load of 10 𝑘𝑁 leads to a maximum deformation of the beam in 𝑧-direction of 0.072 𝑚𝑚 for 
both methods on the grid with 𝑁 = 6 656 and 𝑀 = 3 330. The computation time of 261 seconds for BACA is significantly reduced 
compared to ACA, which required 453 seconds.

Since the saturation assumption (13) is required for the reliability of the error estimator 𝑘, this assumption is checked for the 
above numerical example. Denoting

𝑐𝑘 =
‖𝐴̂𝑘𝑥𝑘 −𝐴𝑥𝑘‖2‖𝐴𝑘𝑥𝑘 −𝐴𝑥𝑘‖2 ,

for the performed iteration steps we get 𝑐1 = 0.48, 𝑐2 = 0.61, and 𝑐3 = 0.64 for the smallest grid in the case of rank-1 updates. For 
rank-2 updates these values become 𝑐1 = 0.19, 𝑐2 = 0.36 and 𝑐1 = 0.1, 𝑐2 = 0.23 in the case of rank-3 updates.

7. Conclusion

In this article, a new method for an adaptive and approximate computation of a matrix-vector multiplication was presented for the 
case of discretizations of integral operators. The goal was to adapt the approximation to the structure of the vector to be multiplied 
in order to reduce the storage requirements of the matrix as well as the computational time. Techniques known from adaptive mesh 
refinement were used in order to identify those blocks which are important for the error of the multiplication.

After analyzing the convergence of the adaptive method, we focused on the Lamé equations as an application example. Therefore, 
the adaptation of the new method in the case of linear elasticity was discussed and performed for both approximating the system 
matrix on the left-hand side and approximating the action of operators on the right-hand side. In the numerical examples, the quality 
18

of the employed estimator, i.e. its reliability and efficiency, could be observed.
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The application of the new methods in case of a loaded beam with double-T shape resulted in less storage requirements and a 
significant reduction of the computation time compared to solving the considered problem using ACA.
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