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H I G H L I G H T S

A novel method for full OCV curve re-
construction is introduced.
Method utilizes captured relaxed voltage
points within the last month.
Method works with only three relaxed
voltage points within a SOC window of
30% to 75%.
Method is validated with real-world ve-
hicle data from the BMW i3.
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A B S T R A C T

Lithium-ion batteries exhibit path-dependent aging behavior. Degradation mode (DM) estimation is a first step
towards accurate state of health (SOH) representations by clustering degradation mechanisms. Mechanistic
models shift and scale pristine half-cell open circuit potential (OCP) curves of both electrodes to reconstruct
the open circuit voltage (OCV) curve by minimizing the difference between measured and reconstructed OCV.
Alignment parameters describe the shift and scaling of the OCPs and can be used to estimate SOH and DMs.
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Mechanistic model
Relaxed voltage points
Battery electric vehicle
Partial charging

This study introduces the 𝛥𝑄-method, which relies on relaxed voltage points and accumulated charge between
these points. It is independent of current rates and applicable after almost every event. The optimization
problem minimizes deviation between measured and reconstructed 𝛥𝑄. The method is developed with an
automotive cell dataset and validated with real-world vehicle data from the BMW i3. The 𝛥𝑄-method achieves
a mean absolute SOH estimation error of 2.52% and a mean absolute OCV reconstruction error of 7.19mV.
Reliable estimations are ensured by predefined filters. The method remains effective with restricted state of
charge (SOC) windows or limited data points. It is robust against variations in input data, solver choice, and
optimization settings. Convergence is improved by constraining the solution space.
Nomenclature

List of Symbols

𝛼 Scaling parameter
𝛽 Shifting parameter
𝛥𝑄 Charge difference between two relaxed

voltage points
𝛥𝑡 Time horizon of data acquisition in one

data sample
𝛥𝑉 Voltage difference in one data sample
LAM Loss of active material
LLI Loss of lithium inventory
MAE Mean absolute error
OCP Open circuit potential
OCV Open circuit voltage
SOC State of charge
SOH State of health
𝜗 Alignment parameter set
𝐶 Capacity
𝑁Points Number of points in one data sample
𝑉 Voltage
𝑉end Highest voltage in one data sample
𝑉start Lowest voltage in one data sample

Subscripts

est Estimated
FC Full cell
interpolated Interpolated
max Maximum
meas Measured
NE Negative electrode
N Nominal
OCV Open circuit voltage
PE Positive electrode
reco Reconstructed
SOH State of health
true True value

Superscripts

aged Aged
pr Pristine

1. Introduction

With the rapid advent of battery electric vehicles (BEVs), modern
battery management systems must be able to estimate internal states
with high accuracy and robustness. Especially the SOH, which is com-
monly defined as the actual capacity in relation to the capacity at
BOL, is crucial for optimal and safe operation, and prolonged battery
2

life. Notice about the SOH, however, does not ensure knowledge about
the aging path. Lithium-ion batteries age particularly path-dependent
and have strong nonlinear dependencies on their operational strat-
egy [1–3]. Two cells with the same SOH but a different history can
behave completely different in future operation. A first step towards
understanding path-dependent aging are the DMs [4,5]. These modes
cluster the electrochemical degradation mechanisms into loss of active
material at the negative electrode (NE) (LAMNE), loss of active material
at the positive electrode (PE) (LAMPE) and loss of lithium inventory
(LLI). These modes not only allow current characterization of the cell
but also a more precise future prediction and strategies to mitigate
degradation [6]. The DMs are connected to the change of the OCV over
lifetime and hence existing DM estimation models output the OCV as
well [4,5,7]. The updated OCV is beneficial for accurate SOC estima-
tion [8] and optimal charging strategies over lifetime. Consequently,
understanding the DMs provides valuable information for accurate SOH
estimation and enables proactive maintenance and control strategies.

While DM estimation models rise in popularity, numerous other
SOH estimation models exist which vary in complexity and accuracy:
The most common electrochemical battery model is the Newman type
pseudo-two dimensional model [9–11] which needs to be modified in
order to add the SOH as a solution variable. It is usually reduced in
order to decrease the computational complexity. Recent reduced order
models [12–14] implement the SEI-growth into an aging-dependent
voltage loss equation. Other approaches [15] implement the DMs di-
rectly by adapting the stoichiometries. Either way, the parameters of
interest are updated by a comparison of the modeled and measured
voltage response.

With the constant rise of machine learning, it is more and more used
for battery state estimation [16]. Machine learning utilizes the hidden
features in measurable signals like current, voltage and temperature
to exploit the correlation between these features and the SOH. Within
machine learning, deep-learning gains significant attention. Especially
decision-tree models, convolutional and recurrent neural networks are
eligible for processing time-series data and estimating the SOH [17].
Promising publications [16,18–20] reach root-mean squared errors
below 2.5% with neural networks that process time-series data from
partial charging segments. The availability of more comprehensive
input data, such as electrochemical impedance spectra, has enabled
even greater accuracy in estimation. For instance, Luo et al. [21]
achieve a mean absolute percentage error of 1.63% using transformer-
based neural networks that leverage the electrochemical impedance
spectrum. Their study demonstrates the superiority of transformer-
based neural networks over recurrent neural networks in effectively
processing information from complete input data or long-term data
sequences.

Similar to machine learning, empirical fits use the correlation be-
tween measurable features and the SOH [22,23]. In contrast to neural
networks and other ML approaches, empirical fits are designed by the
engineer. These methods allow to describe the SOH as a function of
multiple input signals including the operational history.

All of the aforementioned methods require data from costly and long
aging studies. This major drawback makes the application of these mod-
els to new generation of cells extremely challenging, especially for fast
development sequences. The mechanistic model approach, introduced
by Dubarry et al. [4], however, avoids this limitation by solely relying
on pristine measurement data. Hence the mechanistic model is an
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efficient, cheap and non-invasive diagnostic tool. The model describes
the OCV over degradation as the difference of the half-cell potentials
and assumes that the OCV only changes relative to the shifting and
scaling of the OCPs. How the OCPs shift and scale further determines
the DMs and the SOH which allows more knowledge about the aging
path.

Since the first publication of the mechanistic model approach [4],
numerous papers [5,7,24–35] were published which evaluate the
method for different cells including electrode composites [7,28,29]
and other cost functions depending on the differential voltage anal-
ysis (DVA) or incremental capacity analysis (ICA) [26,27,30,31,33].
Schmidt et al. [7] were the first to validate the mechanistic model
approach with laboratory measurements. They disassembled cells to
set specific rates of LLI and LAMPE. For six different cells and a C-rate
below C/20, the deviation between measured and reconstructed OCPs
or OCV was always below 0.5%.

There is a noticeable increase in scientific publications [36–41]
exploring the application, extension and utilization of the method
at higher C-rates and during partial charging segments, making the
method applicable to real-world conditions. In their study, Schindler
et al. [36] demonstrated the applicability of the model to higher C-rates
and varying temperatures by incorporating the Arrhenius-dependent
ohmic resistance increase and rate degradation factor as additional
factors. The researchers assessed the performance of the model at
different C-rates (C/35, C/5, C/3) and temperatures (10 °C, 25 °C, 45 °C)
and observed that the residual error in OCV reconstruction remained
below 2%. This indicates that the model provides accurate predic-
tions even under these challenging conditions. Progress has also been
made by Yang et al. [37] in the application of the method to partial
charging segments from a NMC–graphite cell, even when subjected
to higher C-rates. Their investigation revealed that, for a C-rate of
C/3, a SOC window spanning from 20% to 70% is essential to achieve
accurate results for various aging paths. These findings were corrobo-
rated by Chen et al. [38]: By employing DVA and ICA on C/3 partial
charging segments from a NMC/LCO–graphite cell within the range
of 40% to 100% SOC, they also successfully determined the SOH and
estimated the DMs with a root mean squared error below 3.5%. In a
ecent study, Schmitt et al. [39] conducted a comprehensive sensitivity
nalysis of the method, considering higher C-rates and varying SOC
indows for a NMC–Si/graphite cell. They addressed the issue of over-
otentials at higher C-rates by introducing a correction method based
n subtracting constant overpotential offsets. These offsets were com-
uted by multiplying the applied current with the measured internal
esistance. Interestingly, their results diverged from those of Yang et al.
37], as they revealed that achieving accurate DM estimation requires
ower C-rates (≤ C/15). Furthermore, the study demonstrated that
or sufficiently low C-rates (≤ C/30), even partial charging segments

covering the SOC range of 20% to 70% are adequate. For precise SOH
estimation, C-rates up to C/4, and partial charging segments spanning
at least the SOC window of 10% to 80%, were shown to be feasible [39].

Mainly due to the availability of public battery aging data and the
introduction of the alawa toolbox [42,43] for big data generation, vari-
ous machine learning approaches [44–47] using the mechanistic model
approach were published. Similar to existing methods [38], these mod-
els interpret the hidden features of raw [45,47] or postprocessed [44,
46] charging curves.

The major drawback of existing methods, which rely on time-series
data, is the dependency on wide SOC ranges and low C-rates. Hence,
the application to real-world data is severely limited by the operational
strategy of the customer.

In contrast to available methods, our novel 𝛥𝑄-method solely relies
on a small number of relaxed voltage points and the accumulated
charge between these points which are normally stored for BEVs. It is
thus applicable to relaxed voltage points after almost every charging
or driving event, independent of the applied current. This makes the
3

𝛥𝑄-method a promising algorithm for existing vehicle fleets.
The study at hand presents a novel algorithm for OCV reconstruc-
tion, SOH and DM estimation based on relaxed voltage points and the
accumulated charge between these points. The 𝛥𝑄-method is evaluated
with laboratory data from an automotive cell. The method is validated
with real-world vehicle data from the BMW i3 fleet and its sensitivity
to specific data filters is accessed. The influence of specific solvers and
their settings is evaluated in terms of SOH error. We further highlight
the advantages over conventional methods by evaluating the minimum
requirements. The 𝛥𝑄-method is applicable to data from vehicles in
operation with at least three measured relaxed voltage points, collected
over a time-horizon up to six months. To the best of the authors
knowledge, this is the first publication to design a mechanistic model
approach using relaxed voltage points and accumulated charge for SOH
and DM estimation.

2. Method

Knowledge about the DMs gives insight about the path-dependent
aging behavior of lithium-ion batteries because the DMs correlate with
the knee-point in battery aging trajectories [6]. Roeder and Ramasubra-
manian [48] suggested to define path dependence in three levels. While
in level one, the aging path solely depends on the usage schedule, we
refer in this work to level two: The current battery SOH depends on
the order of usage conditions and not just their cumulative influence.
As introduced by Dubarry et al. [49], extending the SOH definition with
DMs helps to incorporate path-dependent battery degradation into the
current state itself.

Conventional methods utilize the OCPs of the electrodes to recon-
struct the full cell (FC) OCV by shifting and scaling the respective
curves. Hence, it is assumed that the OCV is a function of the half cell
potentials and these will only change in relation to each other which
can be described by the alignment parameter set 𝜗 = [𝛼NE, 𝛼PE, 𝛽NE, 𝛽PE].
The 𝛼-parameters specify the squeezing and the 𝛽-parameters describe
the shifting of the OCPs. If the OCPs or the OCV are captured at very
low C-rates, they are pseudo-OCP/OCV because even at low C-rates
the measured values will deviate from the truly relaxed voltage. For
simplicity, in the following the terms pseudo-OCP/OCV and OCP/OCV
will be used as synonyms.

2.1. Method description

Along a battery’s lifetime its OCPs can be described with respect to
the electrode SOC (SOCNE and SOCPE) or charge amount

OCPNE = 𝑓NE(SOCNE) (1)

OCPPE = 𝑓PE(SOCPE). (2)

Fig. 1 summarizes the steps to set up the algorithm: First, the OCV and
OCPs must be captured in either charge or discharge direction. The
direction of charge should be kept constant throughout the application
of the algorithm to reduce the influence of hysteresis. All curves are
normalized to their respective SOC. The C-rate is usually set below C∕20
to decrease the influence of overpotentials. All inputs are transformed
into the coordinate system of the full cell, i.e., the full cell SOC (SOCFC),
by scaling the specific electrode SOCs by the 𝛼-parameter and finally
shifting them by the 𝛽-parameter.

SOCFC = 𝛼NE ⋅ SOCNE + 𝛽NE (3)

SOCFC = 𝛼PE ⋅ SOCPE + 𝛽PE (4)

Hence, Eqs. (1) and (2) transform to

OCPNE = 𝑓NE((SOCFC − 𝛽NE)∕𝛼NE) = 𝑓NE(SOCFC, 𝜗) (5)

OCPPE = 𝑓PE((SOCFC − 𝛽PE)∕𝛼PE) = 𝑓PE(SOCFC, 𝜗). (6)

The full mathematical derivation of the coordinate transformation can

be found in the publication by Schmitt et al. [39].
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Fig. 1. Initialization process of conventional OCV reconstruction models. The OCV
a) together with the positive (b) and negative (c) electrode OCPs in the pristine
tate are captured at the same C-rate. In this example, all curves are measured in
harge direction. (d) The pristine alignment parameters are fitted to minimize the error
etween the pristine OCV measurement and the reconstructed curve. (e) The resulting
ristine alignment parameters are later mandatory to derive the SOH and DMs.

Finally, the OCV can be described with the help of the OCPs and
he alignment parameters

CV(SOCFC) = 𝑓FC(OCPNE, OCPPE, 𝜗, SOCFC). (7)

Second, the pristine (pr) alignment parameters are fitted to minimize
the error between the measured (meas) and reconstructed (reco) OCV
curve OCVmeas and OCVreco. The cell’s BOL capacity is defined as the
accumulated charge between the minimum and maximum cell voltage.
Per definition, the SOH is always 100% for this scenario. Last, the
pristine alignment parameter set 𝜗pr must be stored in order to calculate
the DMs in the application phase. In Fig. 2 the application phase is visu-
alized for the conventional but also the 𝛥𝑄-method. The conventional
algorithm, illustrated in Figs. 1 and 2, takes the raw OCV measure-
ment OCVmeas (Fig. 1a) and the pristine OCPs: OCPpr

PE,meas, OCPpr
NE,meas

Fig. 1b and c) as an input. By shifting and scaling the OCPs in relation
o each other, the OCV reconstruction error is minimized (Fig. 1d) to
inally yield the alignment parameters (Fig. 1e) and hence the SOH and
Ms. Advances are made to use DVA and ICA for optimization [36–38].
he optimization happens in the coordinate system of the pristine full
ell SOC (SOCpr

FC) or the absolute Ah-space. If a local optimum is found
nd no further feasible direction is detectable, the algorithm stops and
eturns the aged alignment parameter set
aged = argmin

𝜗
‖OCVmeas(SOCFC) − OCVreco(𝜗, SOCFC)‖2. (8)

The choice of optimization algorithm, i.e., gradient descent, particle
swarm or genetic algorithm, can influence the final parameter solution.

In contrast to conventional methods, the 𝛥𝑄-method requires only
three measured relaxed voltage points 𝑉1, 𝑉2, 𝑉3 and the accumulated
charge between these points 𝛥𝑄1, 𝛥𝑄2. By definition, the 𝛥𝑄 is positive
for charging events. For negative 𝛥𝑄s and consequently discharge
events, the 𝛥𝑄 is inverted and the order of the voltage pair is reversed
to meet the requirements. The algorithm minimizes the objective func-
tion 𝑓 (𝜗), which is the vector of accumulated charge between adjacent
points, and fixates the OCV points

𝜗aged = argmin
𝜗

‖𝑓 (𝜗)‖2

= argmin ‖𝛥𝑄 (𝑉 ) − 𝛥𝑄 (𝜗, 𝑉 )‖ , (9)
4

𝜗 meas reco 2
where 𝛥𝑄meas is the vector of measured 𝛥𝑄s and 𝛥𝑄reco is the vector
of the reconstructed 𝛥𝑄s.

Instead of optimizing with respect to the 𝑦-axis, the 𝛥𝑄-method uses
the 𝑥-axis. One of its advantages lies in the fact that no fixed reference
voltage is required. Hence, every voltage pair is fitted individually.
The alignment parameters not only yield the aged OCV-curve (Eq. (7))
but are further used to calculate the DMs. Because the aged OCV
is reconstructed in the charge coordinate system, the SOH is easily
derived by Eq. (10). The capacity of the pristine cell 𝐶pr is simply the
accumulated charge between the voltage limits for the pristine fit in
Fig. 1d. The same applies for the estimated capacity of the aged cell
𝐶aged

est .

SOH =
𝐶aged

est
𝐶pr =

𝑄aged(𝑉 aged
max )

𝑄pr(𝑉 pr
max)

(10)

In Eq. (10), 𝑄aged and 𝑄pr are the aged and the pristine charge vector,
while 𝑉 aged

max and 𝑉 pr
max are the maximum voltage values of the aged and

pristine voltage curves.
Loss of active material describes the available electrode capacity

with respect to the pristine state. For both electrodes, the definition
is similar:

LAMNE =
𝛼pr

NE − 𝛼aged
NE

𝛼pr
NE

(11)

LAMPE =
𝛼pr

PE − 𝛼aged
PE

𝛼pr
PE

(12)

Lithium inventory 𝐶lit is the available lithium for cycling in both
electrodes, i.e. the superposition of both OCPs. The loss of lithium
inventory is defined with respect to the pristine amount of available
lithium inventory 𝐶pr

lit .

LLI =
𝐶pr

lit − 𝐶lit

𝐶pr
lit

(13)

hen examining both OCPs across the entire delithiation and lithiation
ange, it is observed that the cathode builds a capacity overhang
uring discharge, while the anode exhibits a capacity overhang during
harge [5], as depicted in Fig. 1. This remains generally true throughout
he lifespan, leading to the definition of lithium inventory primarily
s

lit = (𝛼PE + 𝛽PE − 𝛽NE) ⋅ 𝐶N. (14)

here are instances, however, where the minimum or maximum lithi-
tion degree for the initial measurement deviates from the standard
efinition due to varied measurement settings. This results in the
ossibility of mathematically determining an overhang in the discharge
irection for the anode or an overhang in the charge direction for the
athode. In Fig. 4(a) for example, the cathode is limiting in charge
nd discharge direction. Besides the deviations in initial measurement
ettings, even if the pristine alignment parameters are set as in Fig. 1,

rapid LAMNE, without LAMPE and LLI, may lead to the need for
new lithium inventory definition. Hence, it becomes necessary to

ntroduce a case-sensitive definition for the lithium inventory, as shown
n Eq. (15).

lit =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

(𝛼PE − 𝛽NE + 𝛽PE) ⋅ 𝐶N , for (𝛼PE + 𝛽NE − 𝛽PE) < 𝛼NE

∧ (𝛽PE − 𝛽NE) ≤ 0

(𝛼NE − 𝛽NE) ⋅ 𝐶N , for (𝛼PE + 𝛽NE − 𝛽PE) > 𝛼NE

∧ (𝛽PE − 𝛽NE) ≤ 0

(𝛼NE + 𝛽NE − 𝛽PE) ⋅ 𝐶N , for (𝛼NE + 𝛽NE − 𝛽PE) < 𝛼PE

∧ (𝛽PE − 𝛽NE) ≥ 0

(𝛼PE − 𝛽PE) ⋅ 𝐶N , for (𝛼NE + 𝛽NE − 𝛽PE) > 𝛼PE

∧ (𝛽PE − 𝛽NE) ≥ 0

(15)
⎩
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Fig. 2. Description of conventional OCV reconstruction methods and the novel 𝛥𝑄-method. For both algorithms the pristine OCPs are mandatory. While conventional methods
use time-series measurements of the OCV, the 𝛥𝑄-method solely requires relaxed voltage points and the accumulated charge between those points. Conventional methods fit the
pristine OCPs to the measured OCV by shifting and scaling the curve to minimize the OCV reconstruction error. The 𝛥𝑄-method, however, pursues the same target by minimizing
n respect to the 𝑥-axis, i.e., the accumulated charge between two relaxed voltage points. The optimization argument yields the optimal alignment parameters which are used to
stimate the SOH and DM.
.2. Dataset

This paper introduces the basic idea of the 𝛥𝑄-method. First, the
ethod is developed with measurements under laboratory conditions

rom a cyclic aging study of an automotive cell. The used automotive
ell has a NMC811-cathode, a graphite-anode and a nominal capacity
f 116Ah [50]. Second, the developed algorithm is applied to real-
orld vehicle field data from the BMW i3, which was captured over
ight years, not relying on accelerated aging tests. The BMW i3 uses
different cell with a NCA/NMC/LMO-blended-cathode, a graphite-

node and a nominal capacity of 60Ah measured by a constant-current
onstant-voltage (CCCV) charge with C∕3 at 25 °C.

The cell dataset comprises of twelve samples with 27 relaxed voltage
oints, the accumulated charge between these points and the respective
OHtrue label. All points were measured at 25 °C in charge direction.

Half of the samples were taken at BOL, while the remaining samples
are distributed between 77% to 93% SOH after performing 500 to 1000
continuous cycles with C/3 charge and C/2 discharge at 10 °C and 35 °C.
The pristine, true alignment parameter set is known from a previous
publication [50] investigating the same cell.

In contrast to the standardized cell dataset, the vehicle dataset is
captured at various conditions for 574 vehicles. The vehicle dataset
is visualized in Fig. 3 with special focus on the variables of interest:
5

SOH, number of relaxed voltage points, voltage level and accumulated
charge between two adjacent voltage points. While the signals voltage
and charge were captured on pack level, they are transformed to cell-
level by multiplication by a fixed scaling factor. All vehicles in this
dataset have undergone at least one and a maximum of eight testbench
capacity measurements to create the SOHtrue label. The testbench ca-
pacity measurement consists of a CCCV charge with C∕3 at the service.
The capacity is defined as the full accumulated charge throughput
during this service. The dataset is categorized into three degradation
states based on mileage: BOL for vehicles with mileage below 25 000 km,
MOL for vehicles with mileage between 25 000 km and 100 000 km, and
EOL for vehicles with mileage exceeding 100 000 km. The total mileage
correlates with the aging state of the high voltage storage system.
The SOH remains above 75% even for vehicles with over 100 000 km
and a vehicle age above eight years. While all BOL vehicles have a
SOH above 90% and all EOL vehicles have a SOH below 85%, the
MOL vehicles show ranges over the entire extreme, where one can
see more clearly the influence of other factors on the vehicle SOH.
The dataset was recorded within a time window of eight years. As
a result, not every historical relaxed voltage point is included in the
dataset. For this dataset, BOL vehicles are operated more frequently
than MOL or EOL vehicles and inhibit more data points. Regarding
voltage levels and SOC, the majority of data points in the entire dataset
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Fig. 3. Visualization of the validation dataset gathered from aged vehicles in the field. The upper diagonal figures show the scatter plot and the lower diagonal figures visualize
the kernel densities. Both refer to the first 𝑦-axis on the left. The second 𝑦-axis on the right side refers to the cumulative distribution plots in the diagonal, in golden color. The
hue indicates the milage of the investigated vehicles, which shows good agreement with the SOH.
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are distributed at higher voltage levels. This observation is reasonable
since there is high probability that a relaxed voltage point is recorded
after a charging event. Due to the relatively small capacity of the first
BMW i3, customers tended to show high frequent charging behavior.
Additionally, the OCV increases with degradation, leading to even more
data points at higher voltage levels. The accumulated charge between
two adjacent points provides insights into user behavior. A higher
value indicates longer charging events or that the vehicle is operated
for a longer duration between stops. Comparing these key charging
features, the cumulative distribution exhibits remarkable similarity for
all three datasets, implying that user behavior remains consistent over
the lifetime of the vehicles.

The dataset does not include the history between two points,
i.e., current profile or the temperature, but makes sure that between
two points charging events are not mixed with driving events. The
combination of OCV points derived from both charging and discharging
events, irrespective of their prior history, may be achieved under
negligible hysteresis assumptions for the given cell. This objective can
6

b

be realized by assigning a positive 𝛥𝑄 value to a charging event, and
multiplying the discharge event, which yields a negative 𝛥𝑄, by −1. To
his end, the order of the measured voltage pair needs to be reversed.

. Results

The proposed method is first implemented on cell data. The devel-
ped method is validated with actual field data from the BMW i3, which
ses a different cell.

.1. Application of the method to laboratory cell data

Fig. 4 provides a comprehensive visualization of the complete ap-
lication of the 𝛥𝑄-method. In Fig. 4(a), the pristine OCPs, OCV,
nd measurement results are depicted. Additionally, the interpolation
f the OCV voltage points is included to enhance the visualization
f the actual OCV trajectory. The OCPs are appropriately adjusted
ased on their corresponding pristine alignment parameters, which are
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Fig. 4. Application of the algorithm to a single sample at an aged state from the standardized cell dataset. (a) Pristine Fit for investigated cell. (b) Input for 𝛥𝑄-algorithm: aged
relaxed OCV points with accumulated charge between points. (c) Optimization result for aged cell. For this cell: MAESOH = 1.05% and OCV reconstruction error: MAEOCV = 12.4mV.
d) Result for all samples: MAESOH = 1.11% and OCV reconstruction error: MAEOCV = 9.09mV.
iven in Table 1. In this paper all alignment parameters refer to a
ormalized SOC-axis between zero and one. It is worth noting that
he observed anode-overhang in the discharge direction, as discussed
arlier, is a result of the high cutoff voltage set to 1.5V during the
CPNE measurement.

Fig. 4(b) illustrates the relaxed voltage measurements obtained from
n aged cell. Again, an interpolation of the voltage points is visualized.

In order to apply the algorithm, the data needs to undergo prepro-
essing and to be organized into a matrix where the columns contain a
ector with the voltage and charge difference value pairs, with each
ow representing a complete set for a sample at a consistent SOH.
pecifically, the voltage points 𝑉1 and 𝑉2 are set in the first column,
long with the corresponding charge difference 𝛥𝑄1 = 𝑄(𝑉2) − 𝑄(𝑉1).
ubsequently, the second column is filled with 𝑉3, 𝑉4, and 𝛥𝑄2 =
(𝑉4) −𝑄(𝑉3), as shown in Eq. (16).

𝑉1 𝑉2 𝛥𝑄1

𝑉3 𝑉4 𝛥𝑄2

…

⎤

⎥

⎥

⎥

⎦

(16)

gain, if for example 𝛥𝑄1 is negative due to a driving event, Eq. (16)
hanges, as in Eq. (17).

𝑉2 𝑉1 −𝛥𝑄1

𝑉3 𝑉4 𝛥𝑄2

…

⎤

⎥

⎥

⎥

⎦

(17)

or the cell laboratory measurements 𝑉3 equals 𝑉2 and so forth. Along
ith the measured data, the pristine OCPs are normalized to equal

ength and stored to be used within the optimization process.
7

a

Table 1
Alignment parameter for the pristine state (SOH=100%) and the estimation for an aged
cell (SOH=93%) (sample from Fig. 4(c)).

𝛼NE 𝛼PE 𝛽NE 𝛽PE

Pristine 1.26 1.02 −0.05 −0.02
Aged Estimation 1.07 0.99 −0.05 −0.07

The optimization problem is formulated within MATLAB and the
built-in nonlinear least-squares solver lsqnonlin() [51]. Instead of min-
imizing a scalar value, the nonlinear least-squares solver minimizes
the vector of differences, as in Eq. (9). The default algorithm trust-
region-reflective and all default settings from MATLAB are used for the
solver [51]. The settings must be further redefined for more challenging
datasets, i.e., the BMW i3 dataset in the consecutive subsection.

The optimization constraints and initial start points are set accord-
ing to Table 2, which were found to be the best fit for pristine state and
reflect most of the battery degradation. The algorithm does not rely on
any additional constraints except the lower and upper boundaries.

Defining broader boundaries which make up to the full SOH-range
lead to several local optima and the high risk of returning a result with
an optimal solution with respect to the loss function but unreasonable
alignment parameters. This means that for a specific set of voltage
points several combinations of parameters exist which lead to equally
low cost values of the objective function. Nevertheless, just a single
combination yields the correct result. Limiting the solution space with
adequate constraints helps to marginalize unwanted local optima.

The objective function 𝑓 (𝜗), as it appears in Eq. (9), is defined

s the vectorized difference between the measured 𝛥𝑄meas(𝑉 ) and the
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Table 2
Optimization constraints and initial values of the lsqnonlin() solver for the cell dataset

Parameter 𝛼NE 𝛼PE 𝛽NE 𝛽PE

BOL
Initial Value 1.23 1.00 −0.05 −0.04
Lower Bound 1.21 0.99 −0.05 −0.04
Upper Bound 1.26 1.02 −0.05 −0.02

MOL
Initial Value 1.13 0.92 −0.05 −0.04
Lower Bound 1.07 0.87 −0.07 −0.07
Upper Bound 1.22 0.99 −0.05 −0.02

EOL
Initial Value 0.98 0.80 −0.05 −0.02
Lower Bound 0.94 0.76 −0.07 −0.07
Upper Bound 1.02 0.83 −0.05 −0.02

BOL: SOH ≥ 95%, MOL: 80% ≤ SOH < 95%,EOL: SOH < 80%.

econstructed 𝛥𝑄reco(𝜗, 𝑉 ). Because all charge vectors are consecutive,
.e., in Eq. (16) 𝑉3 equals 𝑉2 and so forth, the optimization problem can

be further simplified.

𝑓 (𝜗) = 𝛥𝑄meas(𝑉 ) − 𝛥𝑄reco(𝜗, 𝑉 )

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑓1(𝜗)

𝑓2(𝜗)

…

𝑓𝑁−1(𝜗)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝛥𝑄meas,1 − 𝛥𝑄reco,1

𝛥𝑄meas,2 − 𝛥𝑄reco,2

…

𝛥𝑄meas,𝑁−1 − 𝛥𝑄reco,𝑁−1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

(𝑄meas,2 −𝑄meas,1) − (𝑄reco(𝑉2, 𝜗) −𝑄reco(𝑉1, 𝜗))

(𝑄meas,3 −𝑄meas,3) − (𝑄reco(𝑉3, 𝜗) −𝑄reco(𝑉2, 𝜗))

…

(𝑄meas,𝑁 −𝑄meas,𝑁−1) − (𝑄reco(𝑉𝑁 , 𝜗) −𝑄reco(𝑉𝑁−1, 𝜗))

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(18)

The nonlinear least-squares problem is

𝜗est = arg min
𝜗

‖𝑓 (𝜗)‖22

= arg min
𝜗

(𝑓1(𝜗)2 + 𝑓2(𝜗)2 +⋯ + 𝑓𝑁−1(𝜗)2) s.t.

𝜗 ≥ lb
𝜗 ≤ ub

(19)

where lb is the lower and ub is the upper boundary, according to
Table 2.

Fig. 4(c) shows the optimization result for the sample in Fig. 4(b).
The alignment parameters change according to Table 1.

With Eqs. (10), (11), (12) and (15) the SOH and DMs can be
calculated. According to Table 2 the highest reachable DMs are 25.4%
for LAMNE, 25.5% for LAMPE and 27.9% for LLI. For the sample in
Fig. 4(c) the estimated SOH is 92.1%, which underestimates the actual
SOH by absolute 1.05%. LAMNE, est is 20.6%, LAMPE, est is 16.7% and
LLI, est is 19.1%. Mainly LAMPE is responsible for LLI due to the anode
overhang and the negligible relative shift of the OCPs. Further, LLI
highly correlates with the SOH fade once the capacity overhangs of
the anode is consumed, i.e., LAMNE exceeds 16.7%. If the cathode OCP
does not shift, every LAMPE directly leads to LLI and consequently to a
decreasing SOH. The OCV reconstruction error is 12.4mV. While SOH
and OCV estimation is validated with the true value, it is not evaluated
for the DMs. A detailed validation of the DM estimation exceeds the
scope of this publication.

Fig. 4(d) presents the final result for all eleven samples of the cell
dataset. All results are evaluate in terms of the mean absolute error
(MAE). The MAE is defined as

MAE = 1
𝑁

𝑁
∑

𝑖=1

|

|

|

𝑌 − 𝑌 ||
|

(20)

where 𝑌 is the true value, 𝑌 is the estimate and 𝑁 is the total number
8

of samples.
The MAE of SOH estimation is 1.11% and the OCV MAE is 9.09mV.
The green squares show the estimated versus the true SOH. Due to
the small amount of samples per SOH-value and the similar estimation
result of those samples, the standard deviation is too small to be visible.
The light blue bars indicate the OCV reconstruction error. While the
estimation accuracy of SOH and OCV is very high for samples above
90%, it decreases for higher degraded cells. The OCV error seems
to directly correlate with the SOH error. Although this trend can be
generally observed in Fig. 4(d), the samples with a true SOH of 88%
show the highest OCV error, while the SOH error is smaller than
average.

For the laboratory dataset, one set of boundary conditions and a
fixed initial start point, i.e., using the BOL upper boundary, EOL lower
boundary, and MOL initial point, leads to accurate results. The recon-
struction algorithm achieves a SOH MAE of 1.29% (+0.18% compared
to clustered conditions, Fig. 4(d)) and an OCV reconstruction MAE of
9.70mV(+0.61mV compared to clustered conditions, Fig. 4(d)).

3.2. Validation of the method with vehicle field data

To evaluate the commercial viability, the proposed algorithm is
validated with actual field data from the BMW i3. This dataset, on the
one side, includes more samples and increases statistical significance.
On the other side, the more challenging boundary conditions prove the
real-world applicability of the 𝛥𝑄-method.

Fig. 5 gives a brief summary of the algorithm workflow, the dataset
and the final result. As shown in Fig. 5(a), the method starts with an
existing testbench capacity measurement as a reference. For this spe-
cific vehicle, a set of relaxed voltage points and the accumulated charge
information are accessed. This dataset is preliminary checked and fil-
tered to align with the requirements. The preset filters are a result of an
availability-accuracy tradeoff, which is discussed in detail in Section 4.
At least 10 data points, captured within the last 25 to 40 days before the
testbench capacity measurement, must be available. The time horizon
extends with higher vehicle age, i.e., older vehicles are closer to 40
on average. Additionally, the vehicle must be above 75% SOH to
align with the preset alignment parameter boundaries in Table 3. This
criterion is simply checked by assessing the previous testbench capacity
measurement. If no earlier measurement is available, the criterion is
always fulfilled. For the investigated vehicle dataset, however, barely
any samples below 75% are available (see Fig. 3). Hence, this filter
xcludes a negligible amount of EOL vehicles. If all criteria are met, the
oundary conditions of the algorithm are set according to Table 3. To
refilter the boundary conditions, the last maximum onboard (ob) SOH
stimation max (SOHob) is used as a criterion. This values is generally
vailable and accurate enough to distinguish between BOL, MOL and
OL, but limited due to computing resources. The 𝛥𝑄-method processes

this information and increases the quality and reliability of estimation.
The 𝛥𝑄-method is validated against testbench capacity measurements
instead of the onboard estimation.

The boundary conditions per degradation state are set such that they
have an overlap with the other degradation states. This means, even if
the latest maximum SOH onboard estimate implies that the boundary
conditions are set according to BOL-conditions, the final estimate can
still lay in the MOL-range. Hence, rough preliminary knowledge about
the vehicle age is enough to run the algorithm. As shown with Eq. (19),
the optimization uses the pristine OCPs to reconstruct the most accurate
voltage curve. The optimization returns the adopted OCV, which is
essential to estimate the SOH (Eq. (10)). In combination with the
pristine parameter set, the estimated parameter set yields the DMs (Eqs.
(11), (12), (15)).

In comparison to the cell dataset, the vehicle data demand tuned
settings, as given in Table 3. The specific settings are a result of a
detailed sensitivity analysis, which is further discussed in Section 4.

The maximum function evaluations (MaxFunEvals) are reduced to

100 from the default value of 400 to decrease the time-effort but
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Fig. 5. Application of the algorithm to the vehicle dataset. (a) Workflow of the 𝛥𝑄-method. Input fields are colored in dark blue. (b) Input samples and optimization results for
BOL and EOL measurement. The arrows indicate the shift of the half cell potentials due to LAM and LLI. It must be noted that the cathode OCP was measured within a narrow

oltage range leading to the appearance of a limiting cathode in discharge direction for the EOL sample. (c) Result for all samples: MAESOH = 2.52% and OCV reconstruction error:
MAEOCV = 7.19mV. The OCV reconstruction error is solely calculated in respect to the measured points which are used for the fitting process.
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Table 3
Optimization settings, constraints and initial values of the lsqnonlin() solver for the
BMW i3 vehicle dataset. The criteria for the BOL, MOL and EOL condition is realized
by accessing the latest maximum SOH onboard estimation.

Setting Value

MaxFunEvals 100
DiffMaxChange 1 × 10−5

DiffMinChange 1 × 10−5

FinDiffType central

Parameter 𝛼NE 𝛼PE 𝛽NE 𝛽PE

BOL
Initial Value 1.29 1.01 −0.10 0.00
Lower Bound 1.16 0.96 −0.16 −0.02
Upper Bound 1.29 1.01 0.00 0.00

MOL
Initial Value 1.23 0.91 −0.15 0.00
Lower Bound 1.16 0.77 −0.19 0.00
Upper Bound 1.25 0.96 −0.06 0.00

EOL
Initial Value 1.16 0.81 −0.16 0.00
Lower Bound 0.97 0.76 −0.20 0.00
Upper Bound 1.23 0.91 −0.08 0.00

BOL: max (SOHob) ≥ 95%, MOL: 80% ≤ max (SOHob) < 95%,
OL: max (SOHob) < 80%.

till allow convergence. The minimum change in finite-difference for
he variables (DiffMinChange) increases from zero to 1 × 10−5. The
aximum change (DiffMaxChange) is reduced from infinity to the same

alue as DiffMinChange, 1 × 10−5. These settings allow fast computation
hile significant optimization steps are performed. It further hinders

he algorithm from taking too large steps and potential skipping of op-
ima. The finite difference type (FinDiffType) is switched from forward
9

o centered, which doubles function evaluations but increases accuracy. O
Table 4
Alignment parameter for the pristine state (SOH=100%) and the estimation for an aged
storage (SOH=80%, sample from Fig. 5(b)).

𝛼NE 𝛼PE 𝛽NE 𝛽PE

Pristine 1.29 1.02 0.00 −0.02
Aged Estimation 1.15 0.79 −0.12 0.00

While these tuned settings lead to a marginal SOH-estimation ac-
curacy increase, they drastically reduce runtime: The MAESOH reduces
from 2.57% to 2.52% and the computation time decrease by 41.5%, on
verage.

As can be seen, the boundaries of the degradation states overlap, to
ake up for imprecise classification by the latest maximum SOH on-

oard estimation. The maximum reachable DMs are 24.8% for LAMNE,
25.5% for LAMPE and 26.9% for LLI. The pristine alignment parameter
set is given in Table 4. It further includes the parameter estimation
result for the aged sample of Fig. 5(b).

Fig. 5(b) reveals the optimization result for a BOL and EOL sample.
The BOL sample is estimated with an absolute SOH error of 1.82%
nd underestimates the value to be at 97.2%. Nevertheless, the OCV
econstruction error stays below 5.62mV which indicates an accurate
it. The EOL sample reaches an absolute SOH error of 0.13% and
he OCV reconstruction error is 8.21mV. The alignment parameters in
able 4 yield the DMs: The LAMNE, est is 11.2%, the LAMPE, est is 22.4%
nd the LLIest adds up to 22.4%. Due to the oversized anode, the LLIest
pproximately equals LAMPE, est and leads to the estimated SOH of
0%, which is further visible in Fig. 5(b). It must be noted that the
node overhang in discharge direction for the EOL sample may appear
ue to the limited voltage range for the cathode OCP measurement.
n the contrary, this type of degradation is possible, following the
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Fig. 6. Evolution of the DMs and their standard deviation, clustered per 2% SOH range, for the (a) cell dataset and the (b) vehicle dataset. The markers for the LAM modes are
slightly shifted to the left and right of the true SOH value in order to increase visibility.
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explanations by Birkl et al. [5], who contribute this type of electrode
shifting to delithiated LAMPE.

The evaluation for the full dataset is presented in Fig. 5(c). The 𝛥𝑄-
method achieves reasonable results with an MAESOH of 2.52% against
the testbench capacity measurements and an MAEOCV of 7.19mV. The
standard deviation implies high estimation confidence for a broad
spectrum of vehicles. For the larger and more diverse i3 dataset, the
correlation of SOH and OCV accuracy is less prominent.

4. Discussion

One big advantage of the proposed method (or in general, the mech-
anistic model approach [43]) lies in the reconstructed OCV which is
used to not only estimate the SOH but also the DMs. The OCV further is
an important input for other vehicle functions, i.e., SOC estimation [8]
or the fast charging strategy [52]. The studied datasets do not include
a validated DM label due to the missing full OCV readouts for every
SOH and the further challenging DM estimation, usually based on DVA
and ICA [5]. It is possible, however, to evaluate the accuracy of the
estimation by the OCV reconstruction error and the SOH estimation
error. With these metrics, the 𝛥𝑄-method is further analyzed in terms
of sensitivity to input data and solver settings.

4.1. Degradation mode estimation

Fig. 6 illustrates the trajectory of the estimated DMs for the cell
dataset (Fig. 6(a)) and the vehicle dataset 6(b).

As expected, the DMs of the cell dataset in Fig. 6(a) generally
increase with higher age. While the LAMPE shows a reasonable con-
tinuous rise, LAMNE and LLI increase rapidly after the first check-up
t approximately 97%. Moreover, LAMNE stays constant for the con-

secutive two checkups. It is suspicious that the LLI decreases again.
This, however, is not physically but mathematically possible if the 𝛽-
arameters get closer to zero and their offset ‖𝛽PE ∣ − ∣ 𝛽NE‖ decreases.
ence, mathematically more lithium inventory is available for cycling
gain. Measured by the SOH and OCV error, the first two checkups
100% to 97% SOH) are estimated with high accuracy, making the
M estimation feasible. The third and fourth check-up (87% to 84%),
owever, underestimate the SOH and contain a relatively high OCV
rror. This makes an underestimation of the LAMPE very likely. In this
egraded state, LLI shows high correlation to both types of LAM due
o the consumed capacity overhang. Hence, the underestimated LAMPE
robably leads to an underestimation of LLI and consequently the lower
OH estimate. The last check-up overestimates the SOH and shows an
cceptable OCV error. The most viable option is an underestimated 𝛽PE
hich further increases LLI.

For more samples, as visualized in Fig. 6(b) for the i3 vehicle
ataset, the consistent trend of the DMs is more visible. The LAM
10

NE b
Fig. 7. Fictional sample as an example for the evaluation of applied data filters. This
sample includes six data points, which were captured within a time-window of 11 days.
The data points span a charge section of 25Ah and a voltage window of 0.3V. The
minimum voltage is 3.7V and the maximum voltage is 4.0V.

ontains the highest fluctuation, especially with the underestimation
t 92% SOH. At BOL the LLI is a result of LAM at both electrodes
nce the electrode capacity overhangs are consumed. Below 90% SOH
he LAMPE exceeds the LAMNE and LLI matches LAMPE due to the
versized anode. This is reasonable due to the restricted search space
f 𝛽PE (Table 3) which results from the narrow voltage range of the
athode OCP measurement. This yields the fact that a decreasing 𝛼PE
irectly influences the LLI. A strong anomaly for LAMPE is visible at
2% SOH with a decreasing slope. Analyzing Fig. 5(c) makes clear
hat the SOH is overestimated and hence it is reasonable that LAMPE
ight be underestimated. Besides that, the highest SOC and OCV errors

re located at 92%, 82% and especially 75%. All these samples lead
o anomalies in the course of the DMs. Hence, this strengthens the
revious assumption of the correlation of SOH and OCV reconstruction
ith the DM estimation accuracy.

.2. Sensitivity of the method to input data

In comparison to the cell dataset, the i3 vehicle dataset has rela-
ively sparse information included. The dataset was captured from the
ield without focus on the 𝛥𝑄-method and hence does not include the
ull operational strategy between the captured points. Nevertheless, it
s insightful to explore the sensitivity of the method to the initially
efined settings and further to understand why the filters are set as
epicted in Fig. 5(a).

To better understand the applied filters and their impact, the process
f dataset filtering is explored for an example sample, as depicted in
ig. 7. The filters always refer to the full input dataset per vehicle.
ence, the 𝛥𝑡, max(𝛥𝑄) and 𝛥𝑉 relate to several relaxed voltage points
etween multiple charging and driving events.
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Table 5
Applied filters, their criteria and the final evaluation for the random sample in Fig. 7.
For this specific example all example filters hold true and the sample could be further
processed in the algorithm. The default filters do not hold true and the sample would
be excluded.

Filter Criterion Check Result

Example
𝑁Points 𝑁 ≥ 5 6 ≥ 5 ✓

𝛥𝑡 𝛥𝑡 ≤ 20 d 11 d ≤ 20 d ✓

max(𝛥𝑄) max(𝛥𝑄) ≤ 30Ah 25Ah ≤ 30Ah ✓

𝛥𝑉 𝛥𝑉 ≤ 0.5V 0.3V ≤ 0.5V ✓

𝑉start 𝑉start ≥ 3.5V 3.7V ≥ 3.5V ✓

𝑉end 𝑉end ≤ 4.1V 4.0V ≤ 4.1V ✓

Default
𝑁Points 𝑁 ≥ 10 6 ≱ 10 ✗

𝛥𝑡 𝛥𝑡 ≤ 25 d 𝑡𝑜 40 d 11 d ≤ 25 d ✓

Table 5 evaluates the example sample for the randomly set and the
efault filters. With this background knowledge, it should be straight-
orward to interpret the following discussion.

The possible filter variations and resulting SOH and OCV errors are
isualized in Fig. 8. The default number of required points is set to 10.

In contrast to the absolute variation in Fig. 8(b), the default value of
the time threshold is set relative to the age (time since delivery) of the
vehicle. Per default, for a BOL vehicle the last 25 days, while for an
EOL vehicle up to 40 days, are used. Similar to the mileage feature, the
age highly correlates with the SOH. These filters are mainly set due
to the smaller number of available points for older vehicles (compare
Fig. 3). Hence, increasing the time threshold for older vehicles, allows
more samples with a higher number of points which cancels out the
negative effect of itself. For the proposed algorithm, no filters are set
regarding available voltage window, minimum and maximum voltage
or maximum 𝛥𝑄. For every subfigure in Fig. 8, one variable is varied
while all others are fixated to the default value. All used default settings
are listed in the bottom section of Table 5. In Fig. 8 the rate of use
is normalized to the number of investigated vehicles (574) and gives
the number of available samples after the filtering. A small fraction
(< 10%) is initially unavailable due to the preset filters in Fig. 5(a)
checking for feasible SOH values between 75% to 100%.

In practice, the algorithm already works with at least three points.
As can be seen in Fig. 8(a), more sample points lead to higher accuracy.
On the contrary, by requiring more points less samples fulfill these con-
ditions. The amount of usable samples in relation to the total number
of samples is referred to as rate of use. A sample size of 10 points
allows high accuracy and a high rate of use. On the contrary, more
points continuously lead to slightly higher OCV reconstruction errors
because more points increase the complexity of the fitting process.
It must be noted that the statistical significance decreases with more
required points due to the smaller rate of use.

For every sample, the date of the testbench capacity measurement
is not only the reference for the SOH but also to select past relaxed
voltage and 𝛥𝑄 pairs. In Fig. 8(b) an upwards trend in the SOH error
is detectable for a longer allowed data acquisition time. This behavior
is reasonable due to the continuous nature of battery aging. The OCV
error slightly decreases continuously. With a looser time-threshold
more points over a broader SOC range and hence more samples are
available for estimation. The voltage and 𝛥𝑄 information provided by
additional points seems to counteract the error from increasing time
windows between points. This is especially the case for MOL and EOL
vehicles which have a lower frequency of recordings within specific
time periods (see Fig. 3).

Fig. 8(c) shows the influence of the accumulated charge amount
between relaxed voltage points. Starting with a 𝛥𝑄 of 8Ah, enough
points for some samples are available to pass the prefilter. The SOH
error increases over 4% with a max(𝛥𝑄) of approximately 12Ah. The
error continuously decreases for higher 𝛥𝑄 constraints, making clear
11
that with 50Ah all possible samples are available. The OCV error fol-
lows the slope of the SOH error. This again, gives rise to the assumption
of an existing correlation between the OCV reconstruction accuracy and
the SOH error. The interpretation, however, must be seen in the context
of the error, which fluctuates between low values of 6.6mV to 8.0mV.

The voltage window is analyzed in Fig. 8(d). The voltage boundaries
are set according to Fig. 3. For BOL vehicles this voltage window of
0.9V equals the SOC width from 4% to 100%. The correct SOC value
is unknown for aged vehicles because the full and validated OCV is
only known for pristine state. Hence an estimation aided by a look-up
table is only possible for BOL vehicles. Due to the shifting of the OCV
with degradation, huge errors are possible if the pristine OCV curves
is used for a look-up table based SOC estimation. Consequently, the
accuracy of the method is evaluated against varying available voltage
windows instead of SOC windows. Fig. 8(d) shows the big advantage
of the 𝛥𝑄-method. Accurate results are already feasible with small
voltage windows, starting at 0.3V, which equals approximately 60%
SOC for BOL vehicles if the start SOC is set to 40%, or 45% if the
start SOC is set to 30%, as can be seen in Fig. 5(b). The SOH error
decreases with broader voltage windows and the rate of use increases.
The OCV reconstruction error shows an upwards trend for broader
voltage windows, giving more support to the following interpretation: It
is most probable that broader voltage windows allow more uncertainty
in the exact position of the relaxed voltage points which, as a result,
yields a more inaccurate reconstruction.

In Figs. 8(e) and 8(f) the accuracy in dependence of the minimum
and maximum voltage is depicted. With a higher minimum voltage a
smaller voltage window and hence less points per sample are available.
This leads to not only a lower rate of use but also a higher SOH
estimation error. The dependence of the OCV reconstruction error on
the minimum voltage strengthens the previously made interpretation: A
smaller available voltage and charge window leads to less uncertainty
and hence more precise reconstruction. In summary, a preset minimum
voltage below 3.8V is sufficient for an adequate OCV reconstruction
and SOH estimation. Due to mostly present relaxation voltages at
higher SOCs in all samples, the maximum voltage must be set relatively
high. As can be seen in Fig. 3 most of the data is distributed at
high voltage values because of many charging events. The minimum
maximum voltage allowing for an adequate rate of use is 4.10V. The
error behaves mostly as expected: With a higher allowed maximum
voltage more samples and points are included in the reconstruction and
the SOH and OCV error decreases. Both errors inhibit a minimum for
an allowed maximum voltage of 4.09V. This, however, lacks statistical
ignificance due to an rate of use below 20%.

.3. Sensitivity of the method to different solvers and settings

The solver choice and algorithm settings are evaluated. Table 6
hows the SOH error for five solvers in dependence to two varied
etting: maximum evaluations or generations and function tolerance.
or all solvers except lsqnonlin() the cost function is modified to return
scalar value.

As can be seen in Table 6, the solver choice has marginal impact
n performance. The nonlinear least squares solver lsqnonlin() shows
he best performance. The pattern search algorithm with five evalu-
tions has the second highest accuracy but is computationally more
omplex [53]. The chosen maximum function tolerance of 100 assures
o find the optimum without wasting computational effort and could
e reduced even further. On the other side, the function tolerance does
ot seem to influence the accuracy at all, see Table 6. The termination
olerance on the objective function has no influence until it reaches rel-
tively high values of almost 1 × 10−1. Consequently, the optima in the
bjective functions are reached early within the optimization process,
.e., the higher function tolerance and possibly slower convergence do
ot hinder the algorithm to find the lowest cost function value. Starting
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Fig. 8. Sensitivity of the 𝛥𝑄-method to specific input data filters and the resulting rate of use for the vehicle dataset. (a) Number of data points. (b) Data acquisition time horizon.
c) Maximum allowed amount of charge between two consecutive points. (d) Available voltage window in sample, where 0.9V equals the SOC range from 4% to 100% for BOL
atteries. (e) Minimum voltage threshold. (f) Maximum voltage threshold.
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ith function tolerances of 1 × 10−1 the optimization eventually stops
oo early and might miss the local optimum.

In summary, the designed cost function (Eq. (9)) is mathematically
ell-designed and robust against varying solvers and their settings. The

hosen settings, as shown in Table 3, assure to find the local optimum
ith lowest SOH estimation and OCV reconstruction error.

.4. Comprehensive analysis and discussion

The present study introduces a novel method for OCV reconstruction
nd subsequent SOH and DM estimation. The main research question
t hand was whether the method is applicable to real-world data and
ow robust the algorithm is against varying input data and optimization
12

ettings. The application to real-world vehicle data from the BMW i3 w
ould quantify the uncertainty of the method for the SOH estimation
nd demonstrate the robustness of the algorithm with respect to filter
arameters and solver settings. As can be seen in Fig. 8(a), with already
hree relaxed voltage points and two 𝛥𝑄 values, the method reaches an
OH error below 3% and reconstructs the OCV with an average error
elow 10mV. In contrast to conventional methods, the 𝛥𝑄-method does

not require a fixed reference voltage for the fitting process but rather
fits every voltage pair individually.

Established methods for OCV reconstruction [5,7,24–35] demand
the full SOC range with relatively low C-rates to yield accurate results
for DM estimation. Improved studies [37–39] established the possibility
to reduce the SOC window and further increase the C-rate. Yang et al.
[37] managed to use partial charging segments from 20% to 70% SOC
ith a C-rate of C/3. Similar, Chen et al. [38] reconstructed the OCV



Journal of Power Sources 596 (2024) 234107T. Hofmann et al.

T

t
w
e
v
e
8

Table 6
Sensitivity of the 𝛥𝑄-method’s SOH estimation accuracy to the selected solver and
specific algorithm settings, i.e., maximum function evaluations and function tolerance
for termination. In the case of the genetic algorithm, the maximum function evaluations
refer to the maximum number of generations and for the particle swarm it is the
maximum number of iterations. The OCV fitting accuracy is almost independent
(sensitivity below ±1mV) of the investigated settings and hence not included in this

able.
Maximum Evaluations/Generations

Solver 5 50 100 200

lsqnonlin 3.76% 2.46% 2.52% 2.54%
fmincon 3.34% 2.91% 2.88% 2.89%
Genetic Algorithm 2.79% 2.96% 2.92% 2.86%
Particle Swarm 2.88% 2.88% 2.90% 2.90%
Pattern Search 2.69% 2.94% 3.01% 3.01%

Function Tolerance
Solver 10−10 10−8 10−4 10−1

lsqnonlin 2.53% 2.53% 2.52% 2.40%
fmincon 2.88% 2.88% 2.88% 2.88%
Genetic Algorithm 2.94% 2.88% 2.88% 2.91%
Particle Swarm 2.90% 2.90% 2.97% 2.96%
Pattern Search 3.01% 3.01% 3.01% 3.01%

with partial charging segment from 40% to 100% SOC and a C-rate
of C/3. Schmitt et al. [39] raised the applicable C-rate up to C/4 by
introducing a constant overpotential offset to reconstruct the partial
OCV. The offset is calculated by repetitive pulse measurements to make
up for the increasing internal resistance due to aging. Nevertheless, for
a C-rate of C/4 a SOC window of at least 10% to 80% is mandatory to
create accurate capacity estimations. Accurate DM estimation is feasible
for C-rates below C/15 and a maximum SOC of at least 70%. For
lower C-rates of C/30 a smaller window of 20% to 70% is sufficient
o yield an SOH error below 2%. The 𝛥𝑄-method, however, works
ithout any preprocessing because the relaxed voltage points, which
qual the actual OCV, are utilized in the first place. These relaxed
oltage points are gathered after almost every charging or driving
vent, independent of the applied current and history. Figs. 8(d),
(e) and 8(f) prove that a voltage window of at least 300mV and a

starting voltage below 3.8V suffice to reconstruct the OCV with an
error below 7mV and estimate the SOH with an error ≤ 3%. For the
pristine battery, these values correspond to a SOC window from 40%
to 100%. For a lower starting voltage of 3.7V the required SOC window
spans from 30% to 75% which reduces the minimum required SOC
range in comparison to known studies [37–39]. In contrast to existing
methods [4,5,7,24–41], the 𝛥𝑄-method is independent of any reference
charging process. It utilizes existing data from any vehicle fleet with
very low sample rate and thus also low requirements with respect to
bandwidth and/or storage capabilities that could be easily implemented
in existing architectures. As there are no available data sources suitable
for both the mechanistic model approach involving higher C-rates and
partial charging segments, as well as the 𝛥𝑄-method, a comparison is
performed using individual aging datasets.

The proposed method proves its suitability for given vehicle
datasets, as in Fig. 5(c). With the default filters of at least 10 data points
per sample, a maximum time-horizon of 25 to 40 days and the depen-
dence on the last maximum SOH onboard estimation, a big fraction
of over 59% of the investigated vehicles with an existing testbench
capacity measurement can be evaluated. The data is stored without
any limitation on the operation between relaxed voltage points or
temperature. It further shows in Figs. 8(b) and 8(c), that the algorithm
is only slightly influenced by the time-horizon of data acquisition or the
maximum allowed accumulated charge in-between voltage points, once
max(𝛥𝑄) ≥ 20Ah. These dependencies are further canceled out by the
large benefit of more sample points distributed between a large voltage
window which have the biggest influence on SOH and OCV error, as
Figs. 8(a), 8(d), 8(e) and 8(f) show.

Existing methods [37] usually set the constraints and boundary
conditions in respect to the last evaluation. Because this method is
13
proposed for a vehicle fleet with at least one testbench capacity mea-
surement during its lifetime, the boundary conditions must be set
initially. The solution space, however, must be limited to reduce the
risk of reaching the wrong local optimum. For this matter, the upper
and lower boundaries of the 𝛼- and 𝛽-parameter are set according to
the last maximum SOH onboard estimation which divides the storage
into BOL, MOL and EOL, as in Table 3. Although this seems to bias
the estimation towards the onboard estimation values, it must be kept
in mind, that the onboard estimation is limited by the computation
resources. The alignment parameter boundaries are defined loosely, to
even allow out-of-bound estimations if the onboard value is completely
off. Fig. 3 visualizes the strong correlation of mileage with the true
SOH. It is thus possible to exchange the condition variable with either
mileage or total time since production.

The total time since production is already used for setting the time-
horizon filters as proposed in Fig. 5(a). Depending on this value, older
vehicles use more of their history than new vehicles. While this filter
hardly influences accuracy, it helps to increase the rate of use as
Fig. 8(b) shows.

In comparison to the cell data results (Fig. 4(d)), the vehicle data
OCV is reconstructed with similar precision over all samples (Fig. 5(c)).
The OCV is only evaluated at its measured points. The reconstructed
OCV is interpolated and evaluated at the respective measured charge
points to calculate the OCV reconstruction error. The average num-
ber of available points for optimization, however, is 70 for the i3
dataset, assuring higher OCV reconstruction accuracy with statistical
significance.

The proposed dataset is not applicable to verify the DM estimation
because no full OCV measurement in aged state is available. It is only
possible to evaluate the accuracy in dependence of their plausibility
over SOH (Fig. 6(b)) and in terms of OCV error (Fig. 5(c)). With this
mitigated criteria, the DM estimation shows reasonable trajectories.

In contrast to known methods for OCV reconstruction [4,5,7,24–
41], the 𝛥𝑄-algorithm collects data from a broader time-horizon in-
stead of relying on continuous measurements. The results in Fig. 8(b)
give strong evidence that the influence of aging in data acquisition
windows up to half a year is negligible. This further gives rise to the
possibility to exploit this data collection scheme for time-series based
algorithms, i.e., collection of several partial charging segments at a
specific C-rate and subsequent reassembly.

5. Conclusion

In this work, the novel 𝛥𝑄-method was introduced and validated
with real-world vehicle data gathered from more than 8 years of
customer operation. The analysis showed that the method is robust to
input data, solver choice and optimization settings. For the BMW i3,
a minimum number of three relaxed voltage points, at least a voltage
point below 3.8V, and a minimum voltage window of 0.3V – which
combined equals a SOC window of 40% to 100% – were sufficient to
yield SOH estimation errors below 3%.

The algorithm is an adoption of the known mechanistic modeling
approach [4] and eases the utilization for existing BEV fleets. The
method does not require explicit charging segments with low C-rates
but rather is applicable to relaxed voltage points and the accumulated
charge between these points. No fixed reference voltage is required
for the optimization process and rather every voltage pair is fitted
individually during the minimization task. Analysis of the BMW i3
dataset shows that a large fraction of the studied vehicles (≥ 59%) are
enabled for application.

The proposed method shows its suitability for existing BEV fleets.
Most monitoring systems collect the relaxed voltage points and track
the accumulated charge. Hence, it is straightforward to use these exist-
ing datasets for OCV reconstruction if the pristine OCPs and parameter
sets are known. Updated OCVs further allow calibrated SOC estimation
and improved charging strategies.
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The algorithm requires the latest SOH onboard estimation to con-
strain the solution space which is usually available for modern BEV
fleets. This dependence is solvable with exchanging the criteria with
aging-correlating variables, i.e., time or mileage. The method can be
further enhanced by leveraging the remaining available vehicle aging
data to restrict the solution space using machine learning techniques.
Alternatively, combining existing methods for OCV reconstruction with
the 𝛥𝑄-method can reduce uncertainty. The method’s validity for DM
estimation remains unconfirmed and exceeds the scope of this publica-
tion. Therefore, further evaluation of this aspect is imperative in future
research endeavors. It stays an open research question whether the
proposed 𝛥𝑄-method is suitable to estimate the DMs, even with narrow
SOC windows of 50%. It is therefore desired to prove this assumption

ith an extended measurement series with full OCV measurements in
he checkups, to derive the DVA and ICA which can be used to create
omparable DM labels.
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