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Abstract
We first state a condition ensuring that having a birational map onto the image is an open
property for families of irreducible normal non uniruled varieties. We give then some criteria
to ensure general birationality for a family of rational maps, via specializations. Among the
applications is a new proof of the main result of Catanese and Cesarano (Electron Res Arch
29(6):4315–4325, 2021) that, for a general pair (A, X) of an (ample) Hypersurface X in an
Abelian Variety A, the canonical map �X of X is birational onto its image if the polarization
given by X is not principal. The proof is also based on a careful study of the Theta divisors
of the Jacobians of Hyperelliptic curves, and some related geometrical constructions. We
investigate these here also in view of their beauty and of their independent interest, as they
lead to a description of the rings of Hyperelliptic theta functions.
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F. Catanese

1 Introduction

One of the main general problems in algebraic geometry is the study of the canonical and
pluricanonical maps of varieties of general type, especially the problem of establishing their
birationality, see for instance [3, 11–13], just to name a few items.

We describe here a simple and relatively general method for establishing birationality of
a rational map for the general variety in a family, via specializations, see Theorems 2.4 and
2.7.

The applications can be many (see [6] in the case of surfaces), but we focus here on the
use of this method for the problem which was our original motivation, and we exhibit a new
self-contained proof (Theorem 6.2) of the main result of [7]. The present proof couples this
method with an interesting study, of the geometry of Hyperelliptic Jacobians and of some of
their unramified cyclic coverings.

In the course of doing this we establish some general results on the graded rings of Theta
Functions on Hyperelliptic Jacobians, see Theorems 4.3 and 4.6.

2 Openness of birationality and general birationality

As already mentioned, our present main problem is: given a family of varieties {Xt }t∈T , and
a family of morphisms ft : Xt → Yt (respectively, rational maps), when can we conclude,
from the fact that f0 is birational onto its image Y0, that, for general t , ft is birational onto
Yt?

Let us start with a negative example: let X be a hypersurface in P
N of degree d , let P be

a point, P ∈ P
N , and consider the projection with centre P , πP : P

N \ P → P
N−1.

If the hypersurface X0 has multiplicity d − 1 at the point P , then πP induces a birational
map between X0 and P

N−1, but for a general X the projection is not birational, having degree
equal to d − multP (X), which is ≥ 2 as soon as multP (X) < d − 1.

The important feature of this example, which motivates the assumption in the following
theorems, is that X0 is a uniruled variety, indeed it is a rational variety: and this must be
avoided.

The next example, instead, clarifies the hypotheses needed for the validity of an assertion
made in the first version of this paper (see for instance the next Proposition 2.2).

Example 2.1 Consider in P
N × P

1 the following family

X := {(x, (λ0, λ1))|λm0 f (x) + λm1 g(x) = 0},
where the Hypersurfaces X0 := { f (x) = 0} and X∞ := {g(x) = 0} intersect transversally,
X∞ is smooth, while X0 has only one isolated singular point P of multiplicity m, and is of
general type if d := deg( f ) = deg(g) ≥ N + 2 + m.

An elementary calculation shows that Sing(X ) = {(P, (1, 0)}, a point of multiplicity
equal to m.

Hence X0,X are normal (being hypersurfaces in a smooth manifold).
Blowing up the only singular point, we get

Z → X ⊂ P
N × P

1, p : Z → P
1,

and the fibre Z0 consists of the union of the blow up X ′
0 of X0 in P , together with the

hypersurface Z ′
0 in the exceptional P

N ,

Z ′
0 := {φm(x1, . . . , xn) + λmg(P) = 0},
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General birationality and hyperelliptic theta divisors

where we assume that P = (1, 0, . . . , 0) and that φ is the leading term of the Taylor devel-
opment of f at P .

For m ≥ N + 2 and φ general, Z ′
0 is a smooth variety with ample canonical system, and

X ′
0 ∩ Z ′

0 = {φm(x1, . . . , xn) = 0}, the exceptional divisor of π : X ′
0 → X0.

The following Proposition is a direct consequence of Hironaka’s II Main Theorem in [15]

Proposition 2.2 Assume that we have a 1-dimensional projective family p : S → T where S
is smooth of dimension n+ 1, T is a smooth connected curve, 0 ∈ T , and we have a rational
map

f : S ��� P
N .

Then there exists a modification π : Z → S such that, setting

F := f × p : S ��� P
N × T ,

and denoting by Y the closure of the image of F,

(i) Z is smooth,
(ii) F ′ := F ◦ π becomes a morphism F ′ : Z → Y ,
(iii) all the fibres of p′ := p ◦ π : Z → T consist of the union of the strict transform S′

t
of St := p−1(t) with other ruled components.

(iv) In particular, if the indeterminacy locus of f is contained in S0, then S′
t = St for

t 
= 0.
(v) It follows that, if � → S × P

N × T is the normalization of the graph of F, then the
fibres �t consist of the strict transform of St plus some uniruled components.

(vi) Shrinking T , we may assume that in (iii) and (v) other uniruled components only
occur for t = 0.

Proof A preliminary observation is that, since dim(S) = n + 1, the indeterminacy locus of
F does not contain any fibre St .

Assertions (i) and (ii) follow from Hironaka’s II Main Theorem of [15] (see especially
page 140, and the affirmative answer to Question (F), (iii), the assertion that fr is a morphism,
and that the centres Di are smooth and contained in the indeterminacy locus of fi ) ensuring
that, via a sequence of blow ups with smooth centres, we get π : Z → S such that the
rational map F ′ := F ◦ π becomes a morphism on Z.

For (iii) we just need to observe that, if we blow up a submanifold W of a manifold M ,
then the blow up M̃ contains as exceptional divisor the ruled manifold P(NW |M ). Hence the
exceptional divisors are all ruled, hence so are the new irreducible components of the fibres
of p′ (as they are divisors in Z by our assumptions).

(iv) follows since the centres of the blow up are contained in the inverse image of the
indeterminacy locus in S.

(v): since Zt surjects onto �t , the other components of �t are images of a ruled manifold,
hence they are uniruled.

(vi) first of all, the set of t ∈ T such that St is not irreducible is closed; furthermore, since
there is only a finite number of exceptional divisors, there is only a finite number of t such
that the fibres Zt and �t are not irreducible. So we omit these two finite subsets of T . ��
Remark 2.3 In view of Hironaka’s extension [16] of the resolution results to complex spaces,
one can replace the hypothesis that we have a projective family by the hypothesis that we
have a proper family.
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Theorem 2.4 (Openness of birationality) Let p : X → T be a 1-dimensional (flat) family
of reduced projective subschemes of dimension n (i.e., X is irreducible and T is a smooth
connected curve, 0 ∈ T ) such that X0 = p−1(0) contains a unique irreducible component
X ′′
0 which is not uniruled.
Let f : X ��� P

N be a rational map such that f0 : X ′′
0 ��� Y ′

0 is birational to its image.
Assume moreover
(**) setting F := f × p : X ��� P

N × T , letting Y be the closure of the image of F, and
letting � be the normalization of the graph of F, then the fibres �t are irreducible for t 
= 0,
while �0 consists of the strict transform of X0 plus some uniruled components.

Then ft : Xt → Yt is birational to its image for all t in a neighbourhood of 0 ∈ T .

Proof Clearly Y is irreducible and it has dimension n + 1 since its fibre Y0 over 0 contains
Y ′
0 which has dimension n; the fibre Yt over t 
= 0 contains the image Y ′

t of Xt which by
assumption is irreducible.

The rational map F induces a surjective morphism F ′ : � → Y .
� is irreducible of dimension n + 1, and the central image Y0 is the image of �0 under

a proper map, and contains Y ′
0 as a component, since the strict transform X ′

0 of X ′′
0 is a

component of �0.
The other components of �0 are uniruled, hence they cannot dominate the component Y ′

0,
which is not uniruled.

Hence the general point y ∈ Y ′
0 is in the image of only one point x , this point x lies in X ′

0,
and the map F ′ is of maximal rank in x , hence a formal isomorphism with its image: because
f0 is a local isomorphism and p is a submersion at x (in particular there is no ramification
of F ′ at x).

Consider now a local holomorphic section � of Y → T passing through y (which is a
smooth point of Y and of the fibre Y0, since F ′ and p are local submersions at x).

If the map ft were non birational for all t , then f ′
t : X ′

t → Y ′
t would have positive degree,

and would be étale outside of a branch locus Bt ⊂ Y ′
t .

We have seen that if y ∈ Y ′
0 is chosen general, it is not contained in the closure B of the

branch loci: since there is no ramification at x .
Therefore the inverse image of� consists of holomorphic arcs, in a number strictly greater

than one, of which only one contains x in its closure, while the other arcs tend to a point z in
�0 different from x .

The conclusion is that F ′(z) = y, z 
= x , and we have reached the desired contradiction:
hence we have proven that ft is birational. ��
Remark 2.5 The above Theorem and the following ones can be stated in more general situ-
ations.

(i) We can consider more generally1 a family X → T of compact complex spaces, and
a meromorphic map f : X ��� M , where M is a complex manifold: the above proof
works without any change.

(ii) The same theorem is true for a projective family over an algebraically closed field of any
characteristic, if we assume that f0 is separable and birational on X ′′

0 .
We have in fact that F ′ : � → Y proper, hence there is a closed set B ⊂ Y with nontrivial
complement
Y \ B, such that, over Y \ B, F ′ is finite with all the fibres of cardinality d . If ft is not
birational, then d ≥ 2. Since we have shown that y /∈ B, and that F ′−1(y) is a single
point with multiplicity 1, it follows then that d = 1, a contradiction.

1 Thanks to Thomas Peternell for asking this question.
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(ii) The theorem was applied as self evident in the case of canonical maps of algebraic
surfaces in [6], but its use was criticized as non self evident in [18]. All details of the proof
are now following from Proposition 2.2, (v), applied to the family of smooth minimal
models of surfaces of general type, and from Theorem 2.4.

Before moving to a more general Theorem, we need to state a simple group theoretical
result.

Lemma 2.6 Given finite groups �X < �′ < M0, where the maximal normal subgroup of
M0 contained in �X is the identity, let us set:

(1) Mν
0 := M0/K, where K is the maximal normal subgroup contained in �′, so that

(2) M0 acts faithfully on the coset space FX := M0/�X , whose cardinality will be denoted
by d,

(3) Mν
0 acts on the coset space Fν := M0/�′, whose cardinality will be denoted by m,

(4) Mt := �′/Kt acts on Ft := �′/�X , where Kt is the largest normal subgroup of �′
contained in �X .
Then d = δm, where δ is the cardinality of the set Ft = �′/�X .
And the action of M0 preserves the blocks corresponding to the m elements of Fν ,

FX = ∪[c]∈Fν c�′/�X .

Hence we have exact sequences

1 → K → M0 → Mν
0 → 1,

1 → Kt → �′ → Mt → 1,

and, setting G := �′/K,

G < Mν
0 .

.
With a similar proof to Theorem 2.4, we obtain the following more general result which

is useful for applications.

Theorem 2.7 Let p : X → T be a 1-dimensional (flat) family of projective varieties of
dimension n, withX irreducible, T a smooth connected curve, 0 ∈ T , such that X0 = p−1(0)
is irreducible normal.

Let f : X ��� P
N be a rational map such that f0 : X0 ��� Y ′

0 is of degree d to its image
Y ′
0, which is not uniruled.
Assume moreover
(**) setting F := f × p : X ��� P

N × T , letting Y be the closure of the image of F, and
letting � be the normalization of the graph of F, then the fibres �t are irreducible for t 
= 0,
while �0 consists of the strict transform of X0 plus some uniruled components.

Then

(i) ft : Xt → Yt has degree δ onto its image for all t in a neighbourhood of 0 ∈ T , with δ

dividing d, so that we may write d = mδ.
More precisely, f0 : X0 ��� Y ′

0 admits a factorization as ν0 ◦ F ′′
0 , where ν0 has degree

m, and the monodromy group M0 ⊂ Sd of f0 is thus related to the monodromy group of
ft , Mt ⊂ Sδ , and the monodromy group Mν

0 ⊂ Sm of ν0, as in the statement of Lemma
2.6.
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(ii) In particular, if themonodromy group M0 ⊂ Sd is primitive (that is, there is no nontrivial
partition of {1, . . . , d} which is M0-invariant) then either the general ft is birational
(m = d) or it has degree δ = d (m = 1).

Proof Using the same notation as in the proof of Theorem 2.4, we are then in a similar
situation.

The general point y ∈ Y0 is in the image of exactly d smooth points x1, . . . , xd of� which
lie in X ′

0, and the map F ′ is of maximal rank in each xi .
What may now change is that y could be contained in the singular locus of Y , and there

may be m smooth branches of Y passing through y.
Therefore, we take the normalization ν : Yn → Y , and notice that we have a factorization

of F ′ as ν ◦ F ′′, where F ′′ : � → Yn . We observe then that the morphism F ′′|X ′
0 will have

degree δ onto its image, where d = δm.
Hence the d points are grouped in m subsets, corresponding to the inverse images of the

points y1, . . . , ym lying over y in Yn , and the previous argument using the local holomorphic
sections �i of Yn → T passing through yi for i = 1, . . . ,m shows that the degree of
ft : Xt → Yt equals δ.
Assertion ii) follows right away because, ifm 
= 1, d , then there is a partition of {1, . . . , d}

in m subsets which are permuted by M0.
Now, the monodromy of ft : Xt ��� Yt will be the same as the one of F ′′ : X ′

0 → Yn
0 , and

since f0 : X ′
0 ��� Y0 is a composition, it follows that the monodromy of f0 is as claimed, in

view of the previous Lemma 2.6, where we divide the respective fundamental groups by the
largest normal subgroup of the fundamental group of the open set of X ′

0 where all coverings
are unramified, so that M0 and Mt are the monodromy groups we are talking about. ��
Corollary 2.8 Let p : X → T be a family of projective varieties of dimension n, where T is
smooth and connected. Assume moreover that we are given a rational map f : X ��� P

N

which is a morphism for t ∈ V , where V is an open set V ⊂ T .

(I) Assume that for a general point t ∈ T there are several 1-parameter specializations, for
j = 1, . . . , r , with base Tj containing t and t j ∈ T , of the fibre Xt = p−1(t) to the fibre
Xt j . Assume that these are, as in Theorem 2.7, such that Xt j is irreducible and normal
with monodromy in Sd(t j ), and that moreover, writing d j := d(t j ), we have

GCD{d j | j = 1, . . . , r} = 1.

Then, for general t , ft is birational.
(II) The same conclusion holds if there are two 1-parameter specializations, one such that

the monodromy group M0 ⊂ Sd1 is primitive, the other such that d1 does not divide d2.

Proof We denote as above by δ the degree of ft for general t .
Our claim(I), in the notation of Theorem 2.7, is that δ = 1, which is obvious since, by (i)

of theorem 2.7, d j = δm(t j ) therefore δ divides all the integers d j , hence their GCD.
To show (II), simply apply (i) and (ii) of Theorem 2.7: in fact the general degree δ is either

1 or d1 by virtue of (ii), while (i) implies that δ|d2. ��
Remark 2.9 One can obtain other more complicated criteria using the above exact sequences
of groups.

But, if M0 is Abelian, then �X = 0, K = �′, Kt = 0, hence Mt = �′.
If all specializations found yield a group Mt0( j) which is Abelian, then a criterion of

triviality of Mt follows from a criterion similar to the above Corollary, analyzing the primary
decompositions of all the groups Mt0( j).
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If we get one specialization such that one Mt0 is Abelian, then Mt is Abelian, and is, for
any other specialization, a quotient of the Abelianization of �′ by the image of �X .

Remark 2.10 The main conjecture raised in [7] is that the canonical map of a general pair
(A, X) of an ample hypersurface in an Abelian variety is an embedding if the Pfaffian of the
Polarization given by X is at least dim(X) + 2.

Also for this purpose it would be useful to establish in a similar way some criteria guar-
anteeing ‘general embedding’, that is, embedding for a general variety in a family.

3 Theta divisors of Hyperelliptic curves

We begin with a quite elementary result in group theory.

Lemma 3.1 Consider theGroupG of theHypercube, namely the natural semidirect product
(induced by coordinates permutation)

G := (Z/2)n � Sn =: K � H .

Then

(i) the only intermediate subgroups H ′, with H < H ′ < G, and different from H, G, are
just two subgroups H1, H2, of respective indices

[H1 : H ] = 2, [G : H2] = 2.

(ii) the largest subgroup H ′′ < H which is normal in G is the identity subgroup.

Proof For v ∈ K , σ ∈ H , we write σ(v) := σvσ−1.
For instance, σ(ei ) = eσ(i).
If H ′ is as in (i) and H ′ 
= H , then H ′ ∩ K =: V is then an H -invariant subspace. And

conversely, if V is H -invariant, then V H is a subgroup, because

v1σv2τ = v1σ(v2)στ.

Then assertion (i) follows from the
Claim: The only Sn-invariant subspaces of K are:

{0}, K , (Z/2)e, e⊥,where e :=
n∑

1

ei .

Proof of the claim: it is obvious that the four above subspaces are invariant.
For such an invariant subspace V , assuming that V 
= 0, consider a vector v of minimal

weight w(v) := |{i |vi 
= 0}|. Denote by w the minimal weight: if w = 1, then ∃i such that
ei ∈ V ⇒ V = K .

Otherwise, we may assume, after a basis change, that v = e1 + · · · + ew .
If w = n, we get that V = (Z/2)e. If instead w < n, then there is a σ such that

σ(v) = e2 + · · · + ew+1, hence v + σ(v) = e1 + ew+1, hence w = 2.
Then e1 + e2, e2 + e3, . . . , en−1 + en ∈ V , hence V is an invariant hyperplane. Hence V

is orthogonal to a projectively invariant vector, and we see that V = e⊥.
Passing to (ii),

H ′′ = ∩v∈K vHv−1 = ∩v∈K [H ∩ vHv−1].
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Now,

σ ∈ H ∩ vHv−1 ⇔ ∃τ ∈ H , σ = vτv−1 ⇔ ∃τ ∈ H , σ τ−1 = vτ(v−1).

Since the last equality is between an element of H and one of K , this means that σ = τ

and v = σ(v); if this is to hold for each v ∈ K , then σ is the identity. ��
We now come to an important geometrical occurrence of the group G of the Hypercube.
Let C be a Hyperelliptic curve of genus g, and let ψ : C → P

1 be the canonical double
cover (such that the canonical map φ of C is the composition φ = vg−1 ◦ ψ , where vg−1 :
P
1 → P

g−1 is the Veronese embedding of P
1 as a rational normal curve of degree g − 1).

Then, setting Y := Cn , the group G acts on Y = Cn , and we have the following commu-
tative diagrams:

Cn = Y Y/K = Cn/(Z/2)n = (P1)n

C (n) := Cn/Sn = Y/H Y/G = (P1)n/Sn = P
n

p

�

π

ν

It is well known that for n = g we have Jacobi inversion, that is, C (g) has a surjective
birational morphism (the Abel Jacobi map) to the Jacobi variety Jac(C) ∼= Picg(C), while
for n = g − 1, again via the Abel Jacobi map, C (g−1) has a birational morphism onto the
Theta divisor�C ⊂ Jac(C).We shall need tomake these birational statementsmore precise.

We have the following classical result, due to Andreotti [1].

Theorem 3.2 If C is a Hyperelliptic curve, then ν : C (g−1) → P
g−1 is the composition of

the birational Abel-Jacobi map αg−1 : C (g−1) → �C with the Gauss map μC of �C , and
p : Cg−1 → C (g−1) yields the Galois closure of the Gauss map.

For a non hyperelliptic curve C, letting φ be the canonical map φ : C → P
g−1, the

composition μC ◦ αg−1 is the g − 1 secant map of φ(C), and the branch locus of the Gauss
map is the dual variety φ(C)∨ of the canonical curve in (Pg−1)∨.

The monodromy group of the Gauss map equals the monodromy group of the canonical
curve φ(C), the symmetric group S2g−2.

Proof As shown by Andreotti, the map π ◦ � is given as follows:

(P1, . . . , Pg−1) �→ φ(P1) ∧ · · · ∧ φ(Pg−1) ∈ (Pg−1)∨,

where φ is the canonical map φ : C → P
g−1, which is indeed the projective derivative D(φ)

of the Albanese map= first Abel Jacobi map α : C → Jac(C).
On the other hand, the Gauss map associates to a point x ∈ �C ,

x = αg−1(P1 + · · · + Pg−1) = α(P1) + · · · + α(Pg−1)

the Hyperplane spanned by φ(P1), . . . , φ(Pg−1) since φ is the projective derivative of α.
This shows that ν factors as claimed through the Gauss map μC .

The assertion on the Galois closure follows now from Lemma 3.1.
See [1] and [2] page 111 for the last assertions. ��
The fact that the degree ofμC equals to 2g−1 follows algebraically sinceπ ◦� = ν◦ p, but

also geometrically since each hyperplane intersects φ(C), image of P
1 through the Veronese

map of degree (g − 1), in exactly (g − 1) points.
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For a non hyperelliptic curve the degree equals
(2g−2
g−1

)
.

For a general Theta divisor in a principally polarized Abelian variety the degree of the
Gauss map is instead equal to g!.

For more general Jacobians, the Gauss map of the Theta divisor is a rational map whose
degree was studied in [14].

Proposition 3.3 If C is a Hyperelliptic curve the map ν : C (n) → P := P
g−1 has a branch

locus B which set theoretically equals the union of �, the Discriminant Hypersurface for
divisors in P

1 of degree n (the dual variety of the rational normal curve � = �n), with 2g+2
Hyperplanes H1, . . . , H2g+2, where, if zi is a branch point of C → P

1, then Hi corresponds
to the divisors containing zi . Moreover � occurs with multiplicity 2n−1 in the branch locus,
while the divisors Hj occur with multiplicity 2n−2.

The map ν factors exactly through two intermediate coverings:

i) C (n) → Zn := C (n)/ι, where ι is the hyperelliptic involution;
ii) Zn → Z̃n , where Z̃n → P is the double cover branched on the union H of the hyper-

planes H1, . . . , H2g+2.

Proof In view of Lemma 3.1 the main remaining point to show is that the branch locus is as
stated.

The ramification locus of � : Cn → (P1)n equals the union of the divisors

RC (i) := {(y1, . . . , yn)|yi ∈ RC },
where RC = {p1, . . . , p2g+2} is the ramification divisor of ψ : C → P

1. These divisors are
permuted by Sn , and their image in (P1)n equals

BC (i) := {(x1, . . . , xn)|xi ∈ BC },
where BC = {z1, . . . , z2g+2} is the branch divisor of ψ .

Whereas the ramification of π : (P1)n → P
n consists of the fixpoints for some nontrivial

element ofSn , and its image is the discriminant hypersurface� consisting of the nonreduced
divisors on P

1, that is, the divisors x1 + · · · + xn where the points xi are not distinct. � is
irreducible, being the image of

P
1 × (P1)n−2 ∼= {(x1, x1, x3, . . . , xn)}.

Hence the branch locus of ν ◦ p = π ◦ � is equal to the union of � and of hyperplanes
H1, . . . , H2g+2, where Hi consists of the effective divisors in P

1 containing zi .
Hi intersects � in the linear space of codimension 2 consisting of the divisors which are

≥ 2zi , and in a smaller discriminant �′
i consisting of divisors which are the sum of zi with

a nonreduced divisor.
On the other hand, the branch locus of p : Cn → C (n) equals the discriminant �C ,

consisting of nonreduced effective divisors of degree n on C .
�C maps then to � with degree 2n−1, since for general x1 and general x3, . . . , xn the

inverse image of 2x1 + x3 + · · · + xn consists of 2n−1 divisors.
While the inverse image of the ramification of π contains the Sn-orbit of the divisors

y′
1 + y′′

1 + y3 + · · · + yn , where y′
1 + y′′

1 is the inverse image of x1, and y j �→ x j .
Therefore the branch locus of ν consists of � with multiplicity 2n−1, and, since for j ≥ 3

there are two choices for y j , of the hyperplanes H1, . . . , H2g+2 with multiplicity 2n−2.
Concerning assertion i), observe that the element e = ∑

ei ∈ V acts on Cn via the
hyperelliptic involution ι acting on each coordinate, hence the intermediate quotient is the
quotient of the symmetric product C (n) via the action of ι.
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For assertion ii), we notice that the quotient of Cn by the subgroup of K orthogonal to e
is the double covering of (P1)n branched on the union of the branch divisors BC (i), whose
image in P

n is the union of the hyperplanes Hj . ��
We can rephrase the previous result in the special case n = g − 1:

Proposition 3.4 If C is a Hyperelliptic curve the Gauss map μC : �C → P := P
g−1 has a

branch locus B which set theoretically equals the union of�, the Discriminant Hypersurface
for divisors in P

1 of degree g − 1 (the dual variety of the rational normal curve � = �g−1),
with 2g + 2 Hyperplanes H1, . . . , H2g+2, where, if zi is a branch point of C → P

1, then Hi

corresponds to the divisors containing zi . Moreover � occurs with multiplicity 2g−2 in the
branch locus and the Hyperplanes Hj occur with multiplicity 2g−3.

The Gauss map μC factors exactly through two intermediate coverings:

i) �C → Z := �C/ ± 1
ii) �C → Z̃ , where Z̃ → P is the double cover branched on the union of the hyperplanes

Hi .

Proof We just need to observe that the hyperelliptic involution ι acts on the Jacobian Jac(C)

as multiplication by −1, for a suitable choice of the origin as a thetacharacteristic.
The conclusion is that a hyperplane H is in the branch locus if H intersects � in a divisor

which is the image of a canonical divisor of C which contains a ramification point pi , or
contains a divisor of the form x ′ + x ′′, the inverse image of a point x ∈ P

1: this amounts to
saying that H intersects � in a divisor containing a branch point zi or containing a point x
with multiplicity at least 2. ��

For further purposes, we must clarify the different roles played by the discriminant � and
the union of Hyperplanes H1 ∪ · · · ∪ H2g+2 in the branch locus.

To quickly get an understanding of this issue, let us consider the case g = n: then the
double covering Z̃g is a variety with trivial canonical divisor, while Z is birational to the
Kummer variety of the Jacobian. Hence the map Z → Z̃g is unramifed in codimension 1.
Themain point is, as we are now going to explain, that� contributes to an exceptional divisor
on the symmetric product of the curve.

4 Theta functions on Hyperelliptic Jacobians

Let C be a curve of genus g, and let

A := Jac(C) = Pic0(C).

Indeed, every divisor of degree g is effective, and, if we fix a point y0 ∈ C , we have the
Abel Jacobi maps

α : C → Jac(C), α(y) :=
∫ y

y0
, and αn : Cn → Jac(C), αn(y1, . . . , yn) :=

n∑

1

∫ yi

y0
.

The Abel-Jacobi maps factor through the symmetric products C (n) = Cn/Sn , and to
simplify notation we shall use the same symbol for all of them. We denote also as usual

Wn := α(C (n)), n ≤ g,
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recalling once more that Wg = A = Jac(C).
For many assertions we are going to make, see [2] pages 250 and around it.
By Riemann’s singularity Theorem, if u0 = α(D), D ∈ C (g−1), then there is a thetachar-

acteristic K such that
Multu0(�C − K) = h0(OC (D)).

Up to a translation, we may assume

(A,�C ) = (A,Wg−1), Wg−1 = α(y0 + C (g−1)) ⊂ α(C (g)) = A.

Hence the classical result that
α : C (g) → A

is surjective, birational and locally invertible outside

{α(D′)| deg(D′) = g, h0(OC (D′)) ≥ 2} ⊂ Wg−1 :
in fact for such divisors D′ there exists D′′ ∈ |D′| with D′′ ≥ y0.

Corollary 4.1 The graded ring of Hyperelliptic Jacobian Theta Functions

R(A,�C ) := ⊕m≥0H
0(A,OA(m�C ))

equals the graded ring
R(C (g), α−1(Wg−1)).

Hence in this approach it is necessary to study the divisor α−1(Wg−1), which contains the
divisor y0 + C (g−1).

Remark 4.2 (1) α−1(u), for u = α(D), and D an effective divisor of degree g − 1, is the
linear system |D|, whose dimension is classically denoted by r .

Since D is a special divisor, it follows by Clifford’s Theorem that r ≤ g−1
2 , equality

holding if and only if C is hyperelliptic and D is a multiple of the hyperelliptic divisor H.
(2) If C is hyperelliptic, then |H| + C (g−2) ⊂ C (g) is a divisor whose image under α has

dimension g − 2.
Its intersection with Wg−1 has dimension equal to g − 3 and is contained in the singular

locus Sing(Wg−1).

Theorem 4.3 If C is a hyperelliptic curve, then

α−1(Wg−1) = (y0 + C (g−1)) ∪ (|H| + C (g−2)) =: C̃ (g−1) ∪ E ⊂ C (g),

where the divisor E is exceptional for α.

Proof Assume that there is a divisor D inside Cg which is contracted under the Abel Jacobi
map α to a lower dimensional variety.

This means that, for all (y1, . . . , yg) ∈ D, the canonical images φ(y1), . . . , φ(yg) are
linearly dependent.

After possibly reordering, D maps onto Cg−1, and for each y1, . . . , yg−1 there is a point
y such that (y1, . . . , yg−1, y) ∈ D.

For a general choice of (y1, . . . , yg−1),φ(y1), . . . , φ(yg−1) are linearly independent, span
a Hyperplane H , and

H ∩ φ(C) = {φ(y1), . . . , φ(yg−1)};
therefore there exists j such that φ(y) = φ(y j ), hence the corresponding divisor on C is in
|H| + C (g−2). ��
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Definition 4.4 We let

Ĉ(g−1) := {(y1, . . . , yg) ∈ Cg|∃ 1 ≤ j ≤ g, y j = y0},
Ê := {(y1, . . . , yg) ∈ Cg|∃ j < h, y j = ι(yh)}.

Here ι is the hyperelliptic involution; note that Ĉ(g−1) maps onto C̃ (g−1), Ê maps onto E .

For convenience, we choose now the base point y0 ∈ C to be a Weierstrass point, that is,
a fixpoint for ι: this means that 2y0 ∈ |H|, 2y0 = ψ−1(x0).

Remark 4.5 (a) The divisor Ĉ(g−1) is invariant for the Hypercube group G, actually

2Ĉ(g−1) = �−1(H ′
0) := �−1{(x1, . . . , xg)|∃ j, x j = x0} = (π ◦ �)−1(H0),

where H0 is the hyperplane in P
g of divisors containing x0.

(b) We observe here that the divisor E maps onto the discriminant � ⊂ P
g−1 under the map

ν.
(c) The big diagonal �′ ⊂ (P1)g , the inverse image of the Discriminant Hypersurface, has

the property that �−1(�′) = Ê ∪ �′
C , where �′

C is the big diagonal in Cg . Ê and �′
C

alone are not G-invariant.

Theorem 4.6 The graded ring of Hyperelliptic Jacobian Theta Functions is a subring of
invariants as follows:

R := R(A,�C ) = R(C (g), C̃ (g−1) + E) = R(Cg, Ĉ (g−1) + Ê)Sg ⊂

⊂ R(Cg, Ĉ (g−1) + �−1(�′)) =: A.

Proof The first equality is the same equality stated in Corollary 4.1, in view of Theorem 4.3.
For the second equality we need to observe that Ĉ (g−1) + Ê is the pull back of the divisor

C̃ (g−1) + E , and that the ramification divisor ofCg → C (g) is the big diagonal�′
C , mapping

to the irreducible discriminant divisor �C which is not contained in the divisor C̃ (g−1) + E .
Holomorphic sections downstairs (onC (g)) clearly lift to invariant (holomorphic) sections

upstairs (on Cg); conversely, we claim that invariant sections upstairs descend on the com-
plement of a Zariski closed set of codimension 2 in C (g), and then they extend throughout
by virtue of Hartogs’ Theorem.

Our claim follows because on an open set of the ramification locus the pull back divisor
is trivial, and invariant functions are pull-backs of functions on the quotient.

For the last inclusion, we simply use that �−1(�′) = Ê + �′
C . ��

Remark 4.7 The graded ring A has the property that its subring Aeven is the graded ring
associated to the pull-back

�−1(2�′ + H ′
0) = (π ◦ �)−1(H + 2�).

The ring A = R(Cg, Ĉ (g−1) + Ê + �′
C ) is a representation of the group G of the

Hypercube, hence R is a subring of ASg , and it can be detected by considering the subring
of sections of degree n vanishing of order n on the Diagonal �′

C , as done for instance by
Canonaco in small genus [4].

The best way to describeAeven is to write its direct image on (P1)g , but we do not pursue
this further here.
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5 Étale double covers of Hyperelliptic curves and Jacobians

Let ϕ : C ′ → C be an étale double covering of a Hyperelliptic curve C of genus g, so that

ϕ∗(OC ′) = OC ⊕ η.

Since the hyperelliptic involution ι acts trivially on Pic(C)[2], ι lifts to C ′ and we have an
action of (Z/2)2 on C ′ with quotient P

1, that is, a bidouble cover of P
1.

Hence (see [5]) there is a factorization of the homogeneous polynomial f of degree 2g+2
whose equation is the equation for the branch locus of ψ ,

f (x) = f1(x) f2(x) ∈ C[x0, x1],
with factors of respective degrees 2d1, 2d2, with d1 + d2 = g + 1, and such that

C ′ = {v21 = f1(x), v
2
2 = f2(x)}, C = {v2 = f (x)}.

Moreover,

C = C ′/ j, j(v1) = −v1, j(v2) = −v2, ϕ(x, v1, v2) = (x, v),withv = v1v2.

H0(C ′, KC ′) = v2H
0(OP1(d1 − 2)) ⊕ H0(OP1(g − 1)) ⊕ v1H

0(OP1(d2 − 2)).

This is the Eigenspace decomposition according to the (nontrivial) characters of (Z/2)2,
and we identify H0(OP1(d)) to its pull-back under ϕ. The formula clearly shows that C ′ is
hyperelliptic if and only if some di = 1.

We run now for C ′ a similar game to the one we played for C :

(C ′)n → Cn = (C ′)n/(Z/2)n → (P1)n = (C ′)n/((Z/2)2)n .

The first quotient is étale, while if we divide by the Symmetric groupSn , we get

(C ′)(n) → C (n) → (P1)(n) = P
n .

The map (C ′)(n) → C (n) above is no longer étale, since its degree equals 2n , but the fibre
cardinality drops over the discriminant hypersurface (for instance, if y′, y′′ �→ y, then only
three divisors 2y′, 2y′′, y′ + y′′ map to the divisor 2y).

Proposition 5.1 Consider the subgroup � ⊂ (Z/2)n ⊂ Aut((C ′)n → Cn), defined as

� := e⊥ = {(σi )|
∑

i

σi = 0}.

Then � is normalized bySn, and defining

X̂n := (C ′)n/(� � Sn),

X̂n dominates C (n) via an étale double covering.

Proof By the factorization

(C ′)n → X̂n → C (n) = (C ′)n/((Z/2)n � Sn),

X̂n → C (n) is étale outside of the discriminant �C , and since C (n) is smooth, it suffices to
show that the covering is quasi-étale, that is, étale outside of codimension 2.
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Given an effective divisor
∑

i mi yi , where y′
i , y

′′
i �→ yi , we have as inverse images the

effective divisors
∑

i m
′
i y

′
i+m′′

i y
′′
i withmi = m′

i+m′′
i . Formi = 1, there are twopossibilities,

for mi = 2, as already observed, we have three possibilities:

2y′
i , 2y

′′
i , y′

i + y′′
i .

Assume thatm1 = 2, and all othersmi = 1: thenwe simply observe, that, writing the divisors
as images of the n-tuples

(y′
1, y

′
1, . . . ), (y

′′
1 , y′′

1 , . . . ), (y′
1, y

′′
1 , . . . ),

there is an element of�, namely the involution j1× j2×identi t ywhich sends the first element
to the second, and the third to (y′′

1 , y′
1, . . . ), which is equivalent modulo the action of Sn .

Hence, over the set of divisors with
∑

i (mi − 1) = 1 (whose complement has codimension
2), the inverse image consists of two distinct points of X̂n . ��

The previous construction is especially useful in two cases: n = g, where it provides an
étale double covering of Jac(C), which is birational to C (g), and for n = g − 1, where it
provides the corresponding étale double covering of the Theta divisor�C , which is birational
to C (g−1).

In order to simplify the exposition, we recall the following Lemma, whose proof can be
found in [1] (Proposition 3, page 806).

Lemma 5.2 There is a natural isomorphism between the canonical system on the symmetric
product of a curve and the exterior product of the canonical system of the curve C

�n(H0(�1
C )

) ∼= H0(�n
C(n)

) = H0(�n
Cn

)Sn ,

associating to η1 ∧ · · · ∧ ηn the symmetrization of η1(x1) ∧ · · · ∧ ηn(xn).

Proposition 5.3 Let X̂ := X̂g−1 be as in Proposition 5.1 the étale double covering of C (g−1):
then the canonical image of X̂ ⊂ P

g is a finite covering Ŵ of P
g−1 via a linear projection

P
g ��� P

g−1.
In terms of the two integers d1, d2 ≥ 1 such that d1 + d2 = g + 1, if d1 = 1, d2 = g, then

the canonical image Ŵ of X̂ is birational to the double covering of P
g−1 branched on the

union of two hyperplanes H := H1 + H2.
When d1, d2 ≥ 2, Ŵ is not a double covering of P

g−1.

Proof The canonical system of X̂n pulls back to the � � Sn-invariant part of the canonical
system of (C ′)n , which is

H0(O(C ′)n (K )) = ⊗n
1H

0(OC ′(KC ′)).

By Andreotti’s Lemma 5.2 the Sn-invariance determines a subspace isomorphic to
�n(H0(�1

C ′)).
We use now the formula

H0(C ′, KC ′) = v2H
0(OP1(d1 − 2)) ⊕ H0(OP1(g − 1)) ⊕ v1H

0(OP1(d2 − 2)),

and replace v1 by u, v2 by w, so that uw = v, and denoting u(i) for the section u on the i-th
copy of C ′, and similarly for the other variables,

H0(O(C ′)n (K )) = ⊗n
1{w(i)Qi (x(i)) + Pi (x(i)) + u(i)Mi (x(i))}.
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Set now n = g−1, and observe that, taking Qi = Mi = 0, that is, taking the invariants for
(Z/2)g−1, we get the canonical system ofCn . Taking the further subring ofSg−1-invariants,
we get

�g−1(H0(�1
C )

) ∼= H0(�g−1
C(g−1)

)

and this linear system, by Theorem 3.2 corresponds to the morphism C (g−1) → P
g−1.

The other sections s for which we are looking for must be eigenvectors for the group
Z/2 = (Z/2)g−1/�, and with nontrivial eigenvalue, hence they must be left invariant by
Sg−1 and each σi should send them to −s.

The second property implies that for them Pi ≡ 0, for all i .
Hence we get exactly one new element v∗, corresponding to the symmetrization of

w1 . . . wd1−1�
d1−1H0(OP1(d1 − 2))ud1 . . . ug−1�

d2−1H0(OP1(d2 − 2)),

where we let wi := w(i) . . . .
Observe now that, if d1, d2 ≥ 2, then Qi , Mi 
≡ 0, and it is complicated to calculate v2∗ .
We can however say that v∗ is not an eigenvector for ((Z/2)2)g−1, and v2∗ as well, hence

v2∗ is not a section of a line bundle on P
g−1.

If instead d1 = 1, then Qi ≡ 0, then d2 = g, and v∗ equals the symmetrization of

u1 . . . ug−1�
g−1H0(OP1(g − 2)),

and is a multiple of u∗ := u1 . . . ug−1.
Hence the canonical map of X̂ factors through the double covering given by

u2∗ = f1(x(1)) · · · · · f1(x(g − 1)).

Then we see that, setting z1, z2 to be the roots of f1, and z3, . . . z2g+2 to be the roots of
f2, then

u2∗ = h1 · h2,
where hi is the linear form on P

g−1 whose zero set is the hyperplane Hi corresponding to
the symmetrization of the divisor {zi } × (P1)g−2. ��

6 Application to canonical maps of hypersurfaces in Abelian Varieties

Let A be an Abelian variety of dimension g, and let X ⊂ A be a smooth ample hyper-
surface in A such that the Chern class c1(X) of the divisor X is a polarization of type
d := (d1, d2, . . . , dg), so that the vector space H0(A,OA(X)) has dimension equal to the
Pfaffian d := d1 · · · · · dg of c1(X).

The classical results ofLefschetz [17] say that the rationalmapassociated toH0(A,OA(X))

is a morphism if d1 ≥ 2, and is an embedding of A if d1 ≥ 3.
By adjunction, the canonical sheaf of X is the restriction OX (X), so a natural general-

ization of Lefschetz’ theorems is to ask about the behaviour of the canonical systems of
such hypersurfaces X . This behaviour depends on the hypersurface X and not just on the
polarization type only, as shown in [8]: if we have a polarization of type (1, 1, 2) then the
image � of the canonical map �X is in general a surface of degree 12 in P

3, birational to X ,
while for the special case where X is the pull-back of the Theta divisor of a curve of genus
3, then the canonical map has degree 2, and � has degree 6.
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The canonical map of such a hypersurface X is, via the following folklore Lemma, a
mixture of the restriction of the Lefschetzmapwith the Gaussmap of X , which is amorphism
for X smooth by a theorem of Ziv Ran [21].

Lemma 6.1 Let X be an ample hypersurface of dimension n in an Abelian variety A, such
that the class of X is a polarization of type d := (d1, d2, . . . , dn+1).

Let θ1, . . . , θd be a basis of H0(A,OA(X)) such that X = {θ1 = 0}.
Then, if z1, . . . , zg are linear coordinates on the complex vector space V such that A is

the quotient of V by a lattice �, A = V /�, then the canonical map �X is given by
(

θ2, . . . , θd ,
∂θ1

∂z1
, . . . ,

∂θ1

∂zg

)
.

Hence first of all the canonical map is an embedding if H0(A,OA(X)) yields an embed-
ding of A; secondly, since a projection of�X is the Gauss map of X , given by ( ∂θ1

∂z1
, . . . , ∂θ1

∂zg
),

follows that the canonical system |KX | is base-point-free and �X a finite morphism.
This is the main Theorem of [7]:

Theorem 6.2 Let (A, X) be a general pair, consisting of a hypersurface X of dimension
n = g − 1 in an Abelian variety A, such that the class of X is a polarization of type
d := (d1, d2, . . . , dg) with Pfaffian d = d1 . . . dg > 1.

Then the canonical map �X of X is birational onto its image �.

6.1 A new proof of theorem 6.2

For the reader’s convenience we borrow now a simple argument contained in [7], yielding
first a reduction step:

Step I: It suffices to prove the Theorem in the case of a polarization of type
(1, . . . , 1, p), with p a prime number, and assuming g ≥ 2.

We deal then with the following specializations:
Step II: Consider the cases where X is an étale pull-back of a Theta divisor �.
Here, we shall assume that X is a polarization of type (1, . . . , 1, p), and that X is the

pull-back of a Theta divisor� ⊂ A′ (that is,� yields a principal polarization) via an isogeny
β : A → A′ with kernel ∼= Z/p.

We define
Z := �/ ± 1, (6.1)

and observe that Z is a dihedral quotient of X , Z = X/Dp .
In this situation, 4.7 of [7] uses that the canonical system is a representation of the group

Dp to show that the canonical map of X separates the general fibres of X → Z for p > 2,
and that we may assume this also for p = 2 after a deformation of X (this argument shall be
recalled in the final step).

Step III: First we shall assume that � = �C is the Theta divisor of a hyperelliptic curve,
hence we have β : A → Jac(C) =: A′.

Here, there is a dihedral covering of P
1 with group Dp yielding an unramified Z/p

covering C ′ → C , and Dg−1
p � Sg−1 acts on (C ′)g−1.

Observe that Z/p acts also on the canonical image, non trivially as we saw.
Assume that the canonical map�X : X ��� � is not birational, and that it factors through

a normal variety W which is birational to �; set then

W̃ := W/
(
Z/p

)
. (6.2)
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We have a factorization of

f ◦ �X : X → � → W̃ → P
g−1,

where f : � ��� P
g−1 is the projection corresponding to the Gauss map of X , which equals

the Gauss map of �C .
By Lemma 3.1 there are four cases possible:

(1) W̃ = �;
(2) � → W̃ has degree 2, and W̃ = Z = �/ ± 1;
(3) W̃ = P := P

g−1.
(1) W̃ → P has degree 2 and W̃ = Z̃ .

Cases (1) and (2) are eliminated by virtue of Step II, as follows.
In case (1) we would have either W = X , hence birationality holds, or W = �, contra-

dicting Step II.
In case (2) the general fibres of X → W would be contained in the fibres of X → Z =

X/Dp , again contradicting Step II for p 
= 2.
For p = 2, either W = Z , and we are done by Step II, or we have a double covering, and

by Step II a general deformation becomes birational.
In cases (3) and (4) W̃ → P := P

g−1 is either the identity or a double covering. But, in
any case, since Z/p acts faithfully on the fibres of � ��� W̃ , it follows that the degree m of
the covering � ��� P (hence of W → P) is either 2p or p.

We have two factorizations of the Gauss map f :

X → Z → P, X → W → P.

Consider now the respective ramification divisors R f ,R = RZ ,RW of the respective
maps f : X → P , � : Z → P , W → P .

Since X → Z is quasi-étale (unramified in codimension 1), R f is the inverse image of
R, hence R f maps to R with mapping degree 2p.

We use now the notation and the results of Proposition 3.3. It turns out that all the com-
ponents of R f have multiplicity 1, since the same happens for the components of R.

This excludes right away the case p ≥ 3, since a cyclic covering of degree p has a
ramification divisor occurring with multiplicity (p−1), and moreover P and Z̃ do not admit
unramified coverings.

Moreover, by Step II, we may assume that Z 
= Z̃ , hence that g ≥ 4.
We are then left with the case where p = 2.
Herewe can use Proposition 5.1, first under the assumption thatwe choose d1 = 1, d2 = g.
The image of X , which equals the one of X̂ , is the double cover Ŵ of P with branch locus

H1 + H2, the union of 2 Hyperplanes.
Since W = Ŵ case (4) is clearly excluded, since Ŵ is not a double covering of Z̃ .
Use now Proposition 5.1 under the assumption that d1, d2 ≥ 2. Then case (3), where W

would be the double covering of P = P
g−1 branched on a branch divisor B′ ⊂ � ∪ H, is

also excluded.
Step IV: To finish the proof, consider the more general case where X is a double étale

covering of a smooth Theta divisor �.
As observed in [8], we have a basis θ1, θ2 of even functions, i.e., such that θi (−z) = θi (z),

and Z := �/ ± 1 = X/(Z/2)2, where (Z/2)2 acts sending z �→ ±z + η, where η is
a 2-torsion point on A. Then the canonical map �X , since the partial derivatives of θ1 are
invariant for z �→ z+η, while θ2(z+η) = −θ2(z), factors through the involution ι : X → X
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such that
ι(z) = −z + η.

Assume that we have a further factorization X → X/ι → � of the canonical map, and recall
that X/ι is a double covering of Z .

Then, specializing to the case where we have the double étale covering X0 of the Theta
divisor of a hyperelliptic curve, we see by Theorem 2.7 that we have a further factorization
of the canonical map of X0, X0 → �0 → Ŵ .

Indeed, Hypothesis (**) can be seen to hold using Theorem 4.3 and assertion (v) of
Proposition 2.2.

As we argued before, �0 is a double cover of �0/(Z/2), which is therefore either Z or Z̃ .
Accordingly, either � = X/ι or �0/(Z/2) = Z̃ , hence �0 is a degree four covering of

P .
In the latter case, if we take the degrees d1, d2 ≥ 2, it would follow that �0 = Ŵ .
Hence the monodromy of � → P would land in S4.
However, if we specialize to the Theta divisor of a non hyperelliptic curve, theMonodromy

group of the covering C (g−1) ∼ �C → P is equal to S2g−2, acting on the subsets of
cardinality (g − 1).

Since g ≥ 4, 2g − 2 ≥ 6 and the group A2g−2 is simple: hence the monodromy image in
S4 has order 2, and cannot be transitive, whence a contradiction.

6.2 Final step

We repeat here the final argument which takes care of the case � = X/ι, as in [8]: if for
a general deformation of X as a symmetric divisor the canonical map would factor through
ι, then X would be ι-invariant; being symmetric, it would be (Z/2)2-invariant, hence for all
deformations X would remain the pull-back of a Theta divisor. This is a contradiction, since
the Kuranishi family of X has higher dimension than the Kuranishi family of a Theta divisor
� (see [8]).
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