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Abstract

This article introduces neural graph distance embedding (nGDE), a method for gener-

ating 3D molecular geometries. Leveraging a graph neural network trained on the

OE62 dataset of molecular geometries, nGDE predicts interatomic distances based

on molecular graphs. These distances are then used in multidimensional scaling to

produce 3D geometries, subsequently refined with standard bioorganic forcefields.

The machine learning-based graph distance introduced herein is found to be an

improvement over the conventional shortest path distances used in graph drawing.

Comparative analysis with a state-of-the-art distance geometry method demon-

strates nGDE's competitive performance, particularly showcasing robustness in han-

dling polycyclic molecules—a challenge for existing methods.
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1 | INTRODUCTION

The generation of the three-dimensional geometries of molecules

from connectivity information (e.g., based on molecular graphs or

SMILES strings) is a ubiquitous task in computational chemistry.1,2

This has gained additional relevance in recent years as generative

machine learning (ML) models for molecular and materials discovery

often work based on graphs and strings.3–5 To evaluate the properties

of thus generated molecules with electronic structure calculations,

they obviously must be converted to Cartesian coordinates. Relatedly,

state-of-the-art atomistic machine learning models (e.g., equivariant/

directional neural networks or neighborhood density representations)

also rely on the full geometrical information.6–9 If they are to be used

for predicting the properties of candidate molecules proposed by a

chemical language model (e.g., in conditional or guided generation set-

tings), realistic cartesian coordinates must be obtained.

Arguably, the most commonly used approach for the generation of

molecular geometries is based on the distance geometry

(DG) approach.10–12 Simply put, DG based conformer generators sample

conformational space in a random manner. This entails defining matrices

of (smoothened) upper and lower bounds for interatomic distances,

sampling random distance matrices from these and finally embedding

(and refining) 3D geometries based on these distance matrices. In the

most commonly used DG approach, the refinement step includes

torsion-angle preferences obtained from experimental small-molecule

crystallographic data and additional chemical knowledge, for example,

regarding the structure of aromatic rings. This method is known as

Experimental Torsion and Knowledge Distance Geometry (ETKDG).11

ETKDG and related approaches are thus generally well suited for

generating conformer ensembles of small molecules. This focus on

small drug-like molecules also means that the method is not applicable

to general chemical systems with equal accuracy, however. Further-

more DG embedding may fail in some cases (e.g., for certain polycyclic

molecules) or require many attempts to find a useful embedding.

Consequently, it is challenging to build robust workflows around

ETKDG in highly explorative settings.

To overcome this limitation, there has been significant interest in

developing ML models for this task. The most prominent example
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here is the AlphaFold2 model, which has become the de facto stan-

dard for protein geometry generation.13 Similar to ETKDG, Alpha-

Fold2 leverages domain knowledge and is limited to a well defined

(and highly important) use case, namely protein structure generation.

Other models have been reported for small molecule geometry gener-

ation, for example, trained on the QM9 database.14 Overall such ML

models show promising accuracy, but lack general applicability in

terms of elements and molecule sizes.

In this work, a new approach termed neural graph distance

embedding (nGDE) is presented, in order to obtain a robust and gen-

erally applicable model for molecular geometry generation. This is

achieved by combining traditional concepts from force directed graph

drawing with a graph neural network (GNN) trained on a highly

diverse database of reference geometries.

2 | THEORY

2.1 | Force directed graph drawing

The graph drawing (or layout) problem has a long tradition in graph the-

ory and data visualization.15 Given a graph with a set of nodes vi con-

nected by a set of edges eij, the question is how to embed the nodes

in a two-dimensional space, so that the relationships between them

(as encoded by the edges) are visually best represented. Clearly there

is some ambiguity in what should be considered the best representa-

tion, so that a large number of graph drawing methods exist, for exam-

ple, based on spectral, tree or circular layouts. Similarly, the quality of

a layout can be measured in different ways, for example, via edge

lengths, the number of edge crossing or the angles between edges.

From a chemical perspective, force-directed layouts are particularly

appealing.16 Here, edges are interpreted as harmonic bonds and the

graph drawing problem becomes an energy minimization task. In order

to avoid clashes, force directed layouts typically define repulsive forces

between unconnected nodes, for example, emulating electrostatic inter-

actions. Such a graph layout is thus quite similar to a molecular forcefield,

although a forcefield based solely on harmonic bonds and pairwise repul-

sion would of course not be useful for molecular structure prediction.

The current work is instead based on the force-directed graph draw-

ing method of Kamada and Kawai.17 Here, harmonic bonds are placed

between all nodes (connected or not), with the corresponding equilibrium

bond distances defined via a graph distance measure Dij. The nature of

this measure will be discussed in more detail below, but it is often

defined such that connected nodes have a distance of unity, whereas

unconnected nodes have larger distances. Additionally, the spring

constant wij for each bond is chosen to be inversely proportional to

Dij (i.e., as 1
D2
ij
), so that close and connected nodes have a stronger

influence in the energy function. Note that for dense three dimen-

sional systems, the number of pairs grows cubically with the distance.

Here higher exponents in the damping would likely be warranted.

Overall, the Kamada-Kawai layout minimizes the function:

LðrÞ¼
X
i, j

wij jjri� rjjj�Dij

� �2
, ð1Þ

where r is the matrix of node positions in the layout and ri is the posi-

tion vector of node i.

Interestingly, this form of the graph layout problem is equivalent

to multidimensional scaling (MDS), a popular dimensionality reduction

method.18 As such, MDS is by construction agnostic towards the

number of target dimensions (e.g., two for a graph layout or three for

a molecule). Furthermore, Equation (1) is typically minimized via a

stress majorization algorithm in this context, which is monotonically

convergent and therefore highly robust.

In the following a molecular geometry prediction method that

uses a graph distance matrix and MDS to obtain 3D coordinates will

be referred to as a graph distance embedding (GDE). This leaves the

question, whether a useful graph distance can be found, which yields

realistic molecular geometries upon minimization of Equation (1).

2.2 | Graph distances

In graph theory, a number of measures exist to quantify the distance

between two nodes in a graph. The simplest and most commonly used

is the length of the shortest path connecting the nodes (DðsÞ
ij ), where

the shortest path can be found with established methods such as

Dijkstra's algorithm.19 Assigning a length of unity to each edge, the

graph distance then measures the minimum number of hops required

to get from one node to another. Alternative definitions of graph dis-

tance also exist, such as the resistance distance,20 and the personal-

ized PageRank,9 which both take into account the number of paths

connecting the nodes, as well as their length.

In the context of molecular geometry prediction, it makes sense

to define the edge lengths in terms of the sum of covalent radii of the

respective elements. Based on this definition, DðsÞ
ij turns out to be a

robust upper bound for the true distance between two atoms in a

molecule. Specifically, DðsÞ
ij corresponds to the distance between two

atoms in a completely linear geometry of all connecting atoms (e.g., in

a cumulene). The presence of non-linear bonding geometries will lead

to interatomic distances smaller than Dij.

To illustrate this, Figure 1 shows a density plot of DðsÞ
ij versus the

true interatomic distance for the OE62 dataset of molecular geome-

tries.21 The OE62 set contains ca. 62k DFT optimized molecular

geometries taken from the Cambridge Crystal Structure Database,

covering a wide range of molecular sizes and chemical elements (up to

92 non-hydrogen atoms and 16 different elements). It thus represents

an important and challenging benchmark, both in terms of the quality

of the geometries and the diversity of the molecules it covers. As can

be seen, the true interatomic distances are consistently below the par-

ity line in Figure 1. Additionally, the sum of vdW-Radii (illustrated for

H-H) can be used as a lower bound for disconnected atoms.

This upper bound property of DðsÞ
ij is useful, but it leads to a bias

towards extended molecular geometries in a GDE scheme (see below).

While scaling the shortest path distance may help in this regard, one

should not expect a single scaling factor to be appropriate for all atom

pairs. For example, two oppositely charged functional groups will tend

to favor smaller interatomic distances, other things being equal. Simi-

larly, the bonding topology around a given atom (e.g., whether it is part
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of an aromatic ring or in an alkyl chain) contains information about how

flexible its environment is. In the next section a learnable graph distance

function that takes these factors into account is therefore defined.

2.3 | Neural graph distance embedding

The proposed nGDE method uses a GNN to encode the chemical

environment of each atom in a given molecule into a vector.22 In order

to ensure transferability to diverse chemistries, a very basic graph rep-

resentation of molecules is used. Specifically, each covalent bond is

represented by an edge between two atoms and each atom type

is represented by its atomic number. Additional information like spin

states, partial charges, bond orders and so forth are not required.

In a first step, a learnable embedding is used to assign an

H-dimensional vector to each atomic number Z (with H being the

number of hidden nodes in each layer of the network). This vector

forms the initial node representation xð0Þi of each atom.

This representation is then updated via T message passing steps,

using a simple graph convolutional operator23:

xðtþ1Þ
i ¼ReLU W1x

ðtÞ
i þW2

X
j �NðiÞ

xðtÞj

0
@

1
A: ð2Þ

Here, ReLU is the rectified linear unit activation function, W1 and W2

are learnable weight matrices, t< T indicates the current message

passing step and NðiÞ denotes the set of nodes connected to i.

After message passing, the final node representation is obtained

by feeding xðTÞi through a small multi-layer perceptron (MLP) ϕ with

one hidden layer:

xðfÞi ¼ϕðxðTÞi Þ: ð3Þ

At this point a flexible, trainable representation of the chemical envi-

ronment of each atom in a molecule is defined. In order to obtain the

graph distance between two atoms, a second MLP γ is used, which

predicts the distance based on the node representations of i and j, as

well as the shortest path distance DðsÞ
ij :

DðnGDEÞ
ij ¼1

2
γ xðfÞi ,xðfÞj ,DðsÞ

ij

� �
þ γ xðfÞj ,xðfÞi ,DðsÞ

ij

� �h i
: ð4Þ

Note that by averaging over the outputs of γ with reversed argu-

ments, permutational invariance between atom pairs ij and ji is

ensured. The corresponding distance matrix DðnGDEÞ can then directly

be used to set up an MDS problem according to Equation (1).

A common problem of the current method and other geometry

generation approaches (such as DG or generative models) is that small

but important structural details (particular regarding angles) are often

incorrect, while the broad structure is captured well. In the case of

organic molecules, this issue can easily be addressed by using classical

forcefields for structural refinement. In the following, all embedded

geometries are therefore relaxed in a two step procedure, first using

the Merck molecular force field (MMFF) and subsequently using the

universal GFN forcefield of Spicher and Grimme.24,25 For consistency,

the same refinement is also used for ETKDG in all comparisons.

With this, the nGDE procedure can now be fully described: For a

given molecular graph (including hydrogen atoms), first a distance

matrix DðnGDEÞ is predicted. Then cartesian atomic positions are ran-

domly initialized and optimized via MDS. Finally, the geometries are

refined using classical force fields. For comparison, GDE using the

shortest path distance is referred to as sGDE.

3 | METHODS

The nGDE model discussed in the following was trained on 10,000

molecules randomly drawn from the OE62 database. As a loss func-

tion, the mean squared difference between predicted and observed

interatomic distances was used. Model dimensions were defined as

H¼128 nodes per hidden layer and T¼4 message passing iterations.

Weights were optimized using the ADAM minimizer with a learning

rate of 1�10�3, a weight decay constant of 5�10�4, and a batch size

of 32.

The numpy/pyTorch/PyG implementation and the trained nGDE

model are available at https://gitlab.com/jmargraf/ngde/. rdKit26

and the Atomic Simulation Environment (ase)27 were used for pre-

and post-processing. ETKDG conformers were generated using

rdKit, with the latest ETKDG variant.12 No stereochemical informa-

tion was used for conformer generation.

F IGURE 1 Density plot of shortest path graph distances versus
reference interatomic distances from the OE62 dataset. Colors
indicate logarithmic density from low (purple) to high (yellow). The
parity line is shown in blue, indicating that the graph distance is an
upper bound on the interatomic distance. The dotted line indicates
twice the van-der-Waals radius of hydrogen, as a lower distance
bound for non-covalently bound atoms.
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4 | RESULTS AND DISCUSSION

The nGDE model predicts interatomic distances for an unseen test set

of 50,485 OE62 molecules with a root mean square error (RMSE) of

1.4 Å. In relative terms, real and predicted distances differ on average

by 16.5%. The fact that some error remains in the predictions is of

course not unexpected. For one, the molecular graph simply does not

contain all information necessary to reproduce the 3D geometry. A

given graph in principle maps to a plethora of conformers and rota-

mers. The most important question therefore is: does the improved

distance prediction of nGDE over sGDE map to better predicted

geometries?

To illustrate this, consider the alanine hexamer. This is a simple

model peptide that displays a large number conformers in different

states of folding.28 Figure 2 shows an overlay of 500 conformers gener-

ated via ETKDG, sGDE, nGDE. Visually, the sGDE ensemble is signifi-

cantly more elongated than the nGDE or ETKDG ones. The figure also

displays GFN-FF energy distributions for all three ensembles. This

reveals that the sGDE ensembles contains the highest energy struc-

tures. Indeed, the sGDE distribution barely overlaps with the ETKDG

distribution, which is both narrower and significantly lower in energy.

Meanwhile, the nGDE ensemble yields a broader distribution, covering

the main energy range of both other methods. Importantly, however,

the spurious high energy conformers produced by the sGDE method

are missing. The improved distance estimates of nGDE thus indeed

yield a method that is more effective at generating stable geometries.

When contrasting ETKDG and nGDE, it is notable that the former

distribution is rather unsymmetrical. This is likely due to the inclusion

of experimental information on torsional angle distributions (i.e., the

ET in ETKDG). While both methods sample a similar space of intera-

tomic distances, ETKDG removes unlikely torsional angles and is thus

more effective in generating low energy conformations. Meanwhile,

the nGDE ensemble is more unbiased. This can be seen as a downside

in terms of the relative stability of the conformers. It can also be use-

ful, however, for example, for the generation of training data for ML

interatomic potentials. In this case, a fuller exploration of torsional

space will lead to more robust potentials.8

To further compare ETKDG and nGDE, 5369 randomly drawn

drug-like molecules from the ZINC database were considered.29 For

each, five conformers were embedded using ETKDG and nGDE.

Figure 3 shows the means and standard deviations of the energy dif-

ferences between the lowest energy conformers (according to GFN-

FF), where a negative value indicates a higher stability of the nGDE

conformer, binned according to the number of atoms. This reveals

two trends. First, the mean difference is close to zero for the smallest

molecules and gradually becomes more negative as the molecules

increase. For the largest molecules (70–80 atoms), the most stable

nGDE conformer is on average 0.045 eV (≈1 kcal/mol) lower in

energy than the most stable ETKDG conformer. Second, the standard

deviation of the energy differences increases with the size of the mol-

ecules. This is expected, since the conformational space of a molecule

(i.e., the number of local minima) becomes larger with more degrees of

F IGURE 2 Left: Overlay of
500 conformers of hexaalanine in
the gas-phase, generated with the
ETKDG, sGDE, and nGDE
methods. Right: Histograms
showing the distribution of GFN-
FF forcefield energies for each
conformer ensemble.

F IGURE 3 Means and standard deviations of energy differences
between nGDE and ETKDG conformers of 5369 randomly selected
drug-like molecules from the ZINC database, binned according to the
number of atoms. Negative values indicate higher stability of the
nGDE conformer. Fifteen molecules with particularly large conformer
energy differences are displayed in Figure 4.
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freedom. Here, the rather small number of 5 conformers that are gen-

erated for each system inevitably leads to a larger spread in energies.

Beyond the mean and standard deviation, it is also instructive to

consider the tails of this distribution. Here, several outliers display

energy differences of several eV in magnitude. Specifically, there are

eleven molecules where the best nGDE conformer is more than 2 eV

lower in energy than the best ETKDG one. Conversely, in four cases

the best ETKDG molecule was more than 2 eV lower in energy. These

structures are shown in Figure 4.

Here, it is interesting to note that the failure modes for these

edge cases are quite distinct. ETKDG mainly struggles with saturated

polycyclic compounds. Indeed, for these it sometimes fails to generate

embeddings at all. On the other hand, the failures of nGDE are not

related to particular structural motifs. Instead, in all cases they are

caused by misassignments of the GFN forcefield topology. In three of

these cases, the initial geometries generated by nGDE contains bad

contacts, which are translated to additional bonds by GFN. This leads

to highly strained geometries with overcoordinated hydrogen atoms.

Conversely, one case features a missing bond. Again, this is due to a

poor initial geometry leading to a wrong force field topology.

On a positive note, the fact that these failure modes are

clearly understood also opens a pathway towards improving both

the nGDE and ETKDG approaches. In nGDE, additional postpro-

cessing would be a viable route, for example by enforcing a

F IGURE 4 Structures of fifteen outlier molecules with conformer energy differences beyond the range of Figure 3. The top three rows show
systems that are problematic for ETKDG, the bottom row shows systems that are problematic for nGDE.
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predefined force-field topology during refinement, or by check-

ing for close contacts. In the case of ETKDG, improvements for

certain molecule classes (e.g., aromatic systems or macrocycles)

have previously been implemented.12 Similar fixes could also be

developed for polycyclic molecules, such as the ones shown in

Figure 4.

5 | CONCLUSIONS

Herein a new approach for generating 3D molecular geometries

termed nGDE was presented. nGDE uses a GNN trained on the

extensive OE62 set to predict interatomic distances based on

the molecular graph. The resulting distance matrices are then

used in MDS to produce viable 3D geometries, which are subse-

quently refined with standard bioorganic forcefields. In this con-

text, the ML-based graph distance introduced herein is shown to

be a significant improvement over the conventional shortest

path distance used in graph drawing. The nGDE approach is

found to be competitive with the state-of-the-art ETKDG

method for generating geometries of drug-like molecules. In par-

ticular, it is highly robust for polycyclic molecules, which are

challenging for ETKDG.

One of the main advantages of nGDE is its conceptual simplicity,

which allows it to be modified or extended as necessary. In particular,

we aim to translate this approach to the prediction of crystal struc-

tures in future work.30,31 Another possible research direction is the

development of a fully end-to-end structure prediction model based

on nGDE. Currently, the training only optimizes the prediction of

interatomic distances, while the structure prediction itself is per-

formed via conventional MDS. A fully trainable workflow would likely

allow for more accurate structure generation.

It should be stressed that the molecular structures considered

herein are limited to conventional covalently bonded, charge neutral

organic molecules. While nGDE makes no strong assumptions about

the bonds (e.g., regarding bond order, aromaticity or atom types),

some definition of the bond topology is required, as well as character-

istic lengths for each bond. This means that non-covalent systems

(including host-guest or mechanically interlocked compounds) cannot

be treated by the method out of the box. Such systems can however

be described in principle, if the graph is expanded by additional edges

corresponding to non-covalent contacts (such as hydrogen bonds).

The same is true for coordination compounds.
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