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Abstract

Aligned with the prevailing sustainability paradigm, the imperative adoption

of bio-based substitutes for constituents within petroleum-derived epoxy resin

becomes evident. Blending bio-based and petroleum-based epoxy resins and

curing agents, establishes a synergistic compromise addressing both sustain-

ability imperatives and the mechanical efficacy of thermosets. The conven-

tional approach to discovering optimal compositions for multi-component

mixtures under specific boundary conditions includes empirical trial and error

and is seen as a protracted and inefficient endeavor. Conversely, leveraging

machine learning might afford a streamlined and confident resolution to this

challenge. This investigation elucidates the requisite strategies for maximizing

the efficiency of material property optimization through the application of

Bayesian optimization and active learning. Illustratively, the study demon-

strates the proficient optimization of the glass transition temperature within a

four-component epoxy resin system. This optimization is conducted across

varying ranges of bio-content and cost considerations. The study underscores

the utility of machine learning in achieving this task with notable efficiency.

The efficacy of least squares, kernel ridge regression, Gaussian process regres-

sion, and artificial neural networks, is meticulously evaluated through compre-

hensive seven-fold cross-validation and validated against experimental data.
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1 | INTRODUCTION

Epoxy resins play a pivotal role in various industrial
applications due to their remarkable mechanical prop-
erties and thermal stability.1,2 As the demand for
advanced materials continues to rise, there is an

increasing urgency to explore sustainable alternatives
to traditional epoxy resins.3 The imperative to find
greener alternatives is driven not only by environmen-
tal concerns but also by the necessity to reduce reliance
on petroleum-based resources in the manufacturing
process.4
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In the realm of bio-based epoxy resins and curing
agents, chemically modified vegetable oils have risen in
importance as commercially viable components.5,6 How-
ever, the long carbon chains in vegetable oils contribute
to low glass transition temperatures Tg

� �
in resulting

thermosets compared to their petroleum-based counter-
parts, due to limited steric hindrance.7 To address this
limitation, researchers have investigated alternative com-
pounds such as cardanol, extracted from cashew nut shell
liquid, which incorporates a phenyl group, offering
enhanced steric hindrance.8 Despite these efforts,
substituting conventional epoxy resins with epoxidized
vegetable oils (EVO) typically results in thermosets with
lower performance.9 Consequently, only a fraction of
petroleum-based components is usually replaced with
EVO to strike a balance between mechanical properties,
cost-effectiveness, and environmental impact reduction.10

Nevertheless, integrating bio-based components into
epoxy resins represents a promising avenue toward sus-
tainability. Balancing the bio-based content in epoxy
resin formulations with petroleum-based constituents
presents a critical challenge. This challenge arises from
the need to maintain mechanical performance while
adhering to specific bio-content and price constraints.
Achieving this delicate equilibrium demands a multidi-
mensional approach, integrating sustainable practices
with cost-effectiveness and performance metrics. How-
ever, this pursuit is intricate, requiring meticulous
exploration of various compositions to optimize critical
material properties.11

In tackling this intricate optimization task, machine
learning and Bayesian optimization (BO) emerge as
powerful tools.12–14 The complexity of the composition
optimization problem, coupled with the myriad factors
influencing Tg, necessitates sophisticated techniques for
efficient exploration of the compositional space. Tg is a
key property strongly correlated with the mechanical and
thermal performance of epoxy resins, making its optimi-
zation crucial for ensuring the viability of sustainable
alternatives.15 BO, with its ability to model complex, non-
linear relationships and make informed decisions with
limited experimental data, becomes instrumental in navi-
gating the vast design space of epoxy resin formula-
tions.16 While many studies have employed machine
learning to achieve desired results, there have been fewer
efforts focused on creating viable strategies for the opti-
mization of resin system formulations, emphasizing the
need for a comprehensive framework for the optimiza-
tion process itself.

This paper aims to contribute to this growing body of
knowledge by investigating strategies for the fast optimi-
zation of the Tg in epoxy resin systems. The focus will
be on a mixture of petroleum-based and bio-based

components, exploring different minimum bio-contents
within specified price ranges. Subsequently, the data will
be utilized to model the epoxy resin system using least
squares (LS), kernel ridge regression (KRR), Gaussian
process regression (GPR), and artificial neural networks
(ANN). The models' predictions will be validated through
a seven-fold cross-validation (CV) and experimental vali-
dation, culminating in a robust understanding of the
intricate relationship between composition and Tg. This
research paves the way for the development of sustain-
able and economically viable epoxy resin formulations in
the future.

2 | EXPERIMENTAL

2.1 | Key strategies

Prior to delving into the specifics of the experimental
procedures, it is imperative to explain the foundational
strategies implemented in this study. As previously
underscored, the principal objective is to elucidate the
framework essential for the fast optimization of resin
systems, employing the Tg as an exemplar. Such an
ambitious goal necessitates an interdisciplinary approach,
seamlessly integrating the domains of materials science
and data science.

Firstly, the composition of the epoxy resin system
demands meticulous consideration. An optimal and prag-
matic approach involves the selection of one bio-based
and one petroleum-based component for both the epoxy
resin and the curing agent. The decision-making process
is contingent upon factors such as cost, bio-content of the
bio-based constituents, as well as the viscosity and reac-
tivity of each component.15 Moreover, the molecular
structure of the bio-based components should ideally lead
to a heightened cross-link density and the formation of
rigid network segments.

The number of dimensions of the feature vector is
crucial.17 Analogous to the exclusion of superfluous com-
ponents from the resin system, diminishing the number
of feature variables expedites the optimization procedure.
Components that remain constant, such as a fixed per-
centage of an accelerator, need not be incorporated into
the feature space, given their unchanging nature during
optimization. Alternatively, the normalization of specific
features with respect to one another serves to reduce the
feature space. Furthermore, normalized and standardized
properties prove advantageous for algorithms employing
gradient descent methodologies.18

The ensuing consideration pertains to the experimen-
tal protocol itself, wherein the determination of Tg can
be accomplished through various methods, including

ROTHENHÄUSLER and RUCKDAESCHEL 2 of 12

 10974628, 2024, 21, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/app.55422 by U

niversitaet B
ayreuth, W

iley O
nline L

ibrary on [02/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



differential scanning calorimetry (DSC), dynamic
mechanical analysis (DMA), and thermal mechanical
analysis (TMA).19–21 However, both DMA and TMA
necessitate cured specimens, implying additional steps
encompassing the curing of mixtures in molds and subse-
quent cutting into specific dimensions. In stark contrast,
the utilization of DSC mitigates this process intricacy by
eliminating the need for molding and sawing, thereby
facilitating the measurement of up to 12 data points per
day, with each formulation tested in duplicate. These
measures collectively serve to drastically reduce the opti-
mization iteration cycle time, ensuring expeditious
results.

The ultimate consideration mandates expertise from
both polymer materials science and data science, specifi-
cally in the judicious selection of the kernel function and
acquisition function. The kernel function, elucidating the
covariance matrix, assumes a pivotal role in determining
the mean and standard deviation calculated by GPR of
the virtual experiments. While the knowledge of the pre-
cise equation underlying the data set is not obligatory
during BO, making informed assumptions about antici-
pated trends when varying features remains advanta-
geous.22 The rationale behind the advantageous selection
of a specific kernel function in the present study is expli-
cated in the experimental design (see Section 2.5.1).

It is important to note that these considerations are
universally applicable, extending beyond the optimiza-
tion of Tg to encompass diverse research inquiries,
including the optimization of polymer processing param-
eters and other material properties. The crux lies in a
continual evaluation of whether all avenues for enhanc-
ing workflow efficiency have been exhaustively explored,
thereby potentially uncovering untapped opportunities
for reducing research time and costs.

2.2 | Materials

Diglycidyl ether of bisphenol A (DGEBA) resin with an
epoxide equivalent weight (EEW) of 187 gmol�1 was
obtained from Blue Cube Assets GmbH & Co. KG, Olin
Epoxy (Stade, Germany). The cardanol-based epoxy resin
NC-514 (EEW= 425 gmol�1) was provided by Cardolite

Corporation (Pennsylvania, USA). Isophorone diamine
(IPDA) with an active hydrogen equivalent weight
(AHEW) of 42.58 gmol�1 was bought as Aradur®42 BD
from Huntsman Corporation (Texas, USA). The vegetable
oil based amine curing agent Mergamid L450 with an
AHEW of 90 gmol�1 was provided by HOBUM Oleo-
chemicals GmbH (Hamburg, Germany). The selected
bio-based epoxy resin and curing agent have a similar
reactivity as their petroleum-based counterparts, thereby
avoiding a delayed curing of the bio-based components
and formation of inhomogeneities. The epoxy resins'
EEW, the curing agents' AHEW, the bio-contents and
prices of all components are shown in Table 1.

2.3 | Resin formulation

The components constituting the resin system are
employed in their as-received state. Usually, the weight
percentages of all components of a system are used as
features for the optimization. Typically, the sum of all
components in such systems equals 100% or 1, leading to
high-dimensional feature spaces that pose challenges in
terms of comprehension and visualization. To mitigate
the complexity associated with the high-dimensional fea-
ture spaces, a normalization strategy is implemented.
Specifically, the number of epoxy groups from the
petroleum-based epoxy resin nepoxy,petro

� �
is normalized

to the total number of epoxy groups in the resin system
nepoxy,petroþnepoxy,bio
� �

. This normalization yields a molar
ratio XR ranging from 0 to 1, where 0 signifies that no
epoxy groups originate from the petroleum-based resin,
and 1 indicates that all epoxy groups are derived from the
petroleum-based resin (see Equation (1)).

XR ¼ nepoxy,petro
nepoxy,petroþnepoxy,bio

: ð1Þ

A parallel approach is adopted for the curing agents,
normalizing the number of active hydrogen atoms from
the petroleum-based curing agent nH,petro

� �
to the total

number of active hydrogen atoms in the curing agents
nH,petroþnH,bio
� �

, resulting in a molar ratio XCA (see
Equation (2)).

TABLE 1 EEW, AHEW, bio-contents and prices of the epoxy resins and curing agents comprising the four-component system.

Label Name EEW AHEW Bio-content (%) Price (Euro/kg)

R1 DGEBA 187 gmol�1 – 0 3

R2 NC-514 425 gmol�1 – 65 8

CA1 IPDA – 42.58 gmol�1 0 8

CA2 Mergamid L450 – 90 gmol�1 73 5.5
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XCA ¼ nH,petro

nH,petroþnH,bio
: ð2Þ

By transitioning from the conventional optimization
of weight percentages to the normalized approach, the
dimensionality of the feature vector to be optimized is
effectively reduced from four to two, encapsulated by the
vector (see Equation (3)):

X¼ XR XCA½ �: ð3Þ

For simplicity, the stoichiometric ratio Rð Þ between
the active hydrogen atoms of the curing agents and the
epoxy groups of the resins is maintained at a fixed value
of R¼ 1. Weight ratios for each component are then com-
puted, taking into account their EEW and AHEW (see
Table 1). Subsequently, the mixtures are homogenized
using a centrifuge speed mixer from Hauschild Engineer-
ing (Hamm, Germany) operating at 3000 min�1 for 60 s.

2.4 | Differential scanning calorimetry

The analysis of the Tg for the cured resin formulations was
conducted using a Mettler Toledo DSC 1 instrument
(Columbus, Ohio, USA). The resin mixtures underwent cur-
ing in a dynamic DSC measurement spanning from 25�C to
200�C, with a heating rate of 10 K min�1. The upper tem-
perature limit ensures complete curing of the resin system,
while maintaining a sufficiently low temperature to pre-
vent thermal degradation of the aliphatic, bio-based com-
ponents. Following curing, the specimens were cooled
below their Tg with a cooling rate of �20 K min�1. To
ascertain Tg, the specimens were subsequently heated to
200�C. The determination of Tg for machine learning
(ML) models utilized the inflection point of the DSC ther-
mograms during the second heating cycle. The nitrogen
flow rate was maintained at 50 mL min�1, and the sam-
ple mass was controlled at 10 � 2.5mg. Each curing cycle
involved testing two specimens for robust analysis.

2.5 | Modeling

2.5.1 | Experimental design

Procedure
The initial optimization series aims to assess the efficacy of
various kernels and acquisition functions in optimizing the
Tg of the resin system without imposing a minimum bio-
content constraint. Three random data points, featuring
bio-contents between 35% and 57.5%, serve as the starting
point for this series. Kernels (radial basis function (RBF),
Matérn, and dot product (DP)) are individually paired
with two acquisition functions: upper confidence bound
(UCB) and maximum expected improvement (EI) (see
Figure 1).

The second optimization series extends the task by
seeking the highest Tg for mixtures with a minimum 5%
bio-content, employing the DP kernel in conjunction
with both acquisition functions (UCB and EI). The DP
UCB and DP EI approaches utilize the initial three ran-
dom data points along with the data points proposed by
themselves in the first optimization series.

This process is replicated in the third optimization
series, with a minimum bio-content requirement
increased to 10%. Given the higher number of mixtures
feasible with close to 10% bio-content, and the likelihood
of data points proposed by BO being clustered in the fea-
ture space with low bio-content, AL is introduced to
enhance the data set and predictive capabilities of the
final models. The results of AL and BO are included in
the prediction of the next AL and BO experiments.

In the industrial context, product price is a critical
factor. Therefore, the final round of virtual experiments
focuses on mixtures with a minimum bio-content of 25%
and a maximum price of 5.5Euro/kg. The data points
obtained from all kernel functions and acquisition func-
tions, including AL, serve as input (n = 29). An addi-
tional five random data points are introduced to diversify
the dataset, resulting in a total of 35 data points for
modeling and experimental validation. Subsequently, five

FIGURE 1 Procedure of this study. [Color figure can be viewed at wileyonlinelibrary.com]
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unrelated random data points are selected from the vir-
tual experiments as a validation set. Least squares, kernel
ridge regression, Gaussian process regression, and artifi-
cial neural networks are then employed to predict the Tg

of the validation set.

Virtual experiments
To explore the independent variations of XR and XCA

between 0 and 1, a grid approach with a step size of 0.01
was adopted for the virtual experiments. This step size
balances the need for small expected differences
between neighboring points and the desire to induce
notable changes in Tg. Consequently, a grid of 10,201
(101 by 101) virtual experiments was established (see
Figure 2).

Boundary conditions
From a materials science standpoint, it is clear that the
aromatic or cyclic structures of DGEBA and IPDA
result in stiff network segments. In contrast, the ali-
phatic structures of the bio-based components, lead to
network segments with a high mobility, which
decreases the Tg. Furthermore, the lower equivalent
weights of the petroleum-based components compared to
that of their bio-based counterparts result in an increased
cross-link density. Both factors, network segment stiff-
ness and cross-link density correlate well with the Tg. In
conclusion, it is to be expected that the mixture with
XR ¼XCA ¼ 1 has the highest Tg and that the addition of
bio-based components decreases Tg in a non-linear way.
Given the lower temperature limit of the DSC for mea-
suring Tg and the inverse relationship between Tg and
bio-content, a boundary condition was imposed to
exclude mixtures with a bio-content higher than 57.5%.
This resulted in the elimination of 1978 virtual experi-
ments with a foreseeable very low Tg, leaving 8223 vir-
tual experiments in the data set. Subsequent optimization
series focusing on a minimum bio-content of 5% and 10%
further reduced the number of virtual experiments by an
additional 71 and 195, respectively. The series optimizing

for a minimum bio-content of 25% and a maximum
price of 5.5Euro/kg considered 1325 virtual experiments.

2.5.2 | Bayesian optimization

Gaussian processes serve as surrogate models to approxi-
mate the Tg of the resin mixtures.23 These GP models
predict both the mean and standard deviation of virtual
experiments through the application of a kernel function.
The choice of acquisition function determines the utility
for all virtual experiments. Subsequently, the mixture
with the highest utility is recommended as the next sam-
ple to be measured and incorporated into the data set.
The BO process is realized through the implementation
of the BAYESIANOPTIMIZER class within ModAL.24

Kernel functions
Several kernel functions were employed in this study:

1. The RBF kernel with a length scale of 0.2 and length
scale boundaries ranging from 10�12 to 1015 was utilized.
It is multiplied with a constant kernel having a constant
value of 103 and constant boundaries from 10�3 to 104.

2. The Matérn kernel with a length scale of 0.2, length
scale boundaries from 10�12 to 1015, and ν set to 1.5
was employed. Similar to the RBF kernel, it is multi-
plied with a constant kernel having a constant value
of 103 and constant boundaries from 10�3 to 104.

3. One DP kernel with a sigma value of 1.0 and sigma
boundaries ranging from 10�4 to 102 is squared and
multiplied by another DP kernel with the same
parameters raised to the power of four. This product is
further multiplied by a constant kernel with a con-
stant value of 0.1 and constant boundaries from 10�4

to 102. This configuration is designed to mimic a
higher-order polynomial

Acquisition functions
Two acquisition functions were employed:

FIGURE 2 Left: bio-content

of all the possible mixtures in

the resin system. Right: price of

the mixtures. [Color figure can

be viewed at

wileyonlinelibrary.com]
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1. The UCB is defined as follows

UCB Xð Þ¼ μ Xð Þþβσ Xð Þ, ð4Þ

where μ Xð Þ is the predicted mean of the GP for the vir-
tual experiments X, β is a hyperparameter controlling the
trade-off between exploitation and exploration (set to 1 in
this study), and σ Xð Þ represents the predictive standard
deviation of the GP model.

2. The EI is defined as follows

EI Xð Þ¼ μ Xð Þ� f Xþð Þ�ξð Þ �Φ Zð Þþσ Xð Þ �ϕ Zð Þ if σ Xð Þ>0

0 if σ Xð Þ¼ 0

�
,

ð5Þ

where

Z¼
μ Xð Þ� f Xþð Þ�ξ

σ Xð Þ if σ Xð Þ>0

0 if σ Xð Þ¼ 0

8><
>: , ð6Þ

where μ Xð Þ is the predictive mean of the GP model,
f Xþð Þ is the best observed function value so far, ξ is the
exploration-exploitation trade-off (set to 0), Φ Zð Þ is
the cumulative distribution function of the standard nor-
mal distribution evaluated at Z, ϕ Zð Þ is the probability
distribution function of the standard normal distribution
evaluated at Z and σ Xð Þ is the predictive standard devia-
tion of the GP model at input X.

2.5.3 | Active learning

Active Learning (AL) was integrated using the ACTIVE-

LEARNER class from ModAL, employing GPR as the esti-
mator.24 In each iteration cycle, the virtual experiment
with the highest standard deviation was identified and
selected for inclusion in the next iteration. This
approach aimed to prioritize data points with higher
uncertainty, contributing to the enhancement of the
model's predictive capabilities.

2.5.4 | Models

Least squares
LS modeling was performed using SCIKIT-LEARN 1.3.2.25

The Tg was represented by a second-order polynomial
incorporating terms such as 1, XR, XCA, X2

R, XRXCA

and X2
CA.

Kernel ridge regression
KRR was implemented using SCIKIT-LEARN 1.3.2.25 The Tg

was modeled using a polynomial kernel, and α was set to
0.1, determined through grid search and CV.

Gaussian process regression
GPR was implemented using the BAYESIANOPTIMIZER

module from ModAL and two kernel functions were
employed:

1. The first RBF kernel had a length scale of 0.1 and
length scale boundaries ranging from 10�5 to 105. It
was multiplied with a constant kernel having a con-
stant value of 102 and constant boundaries from 10�3

to 104. Additionally, another RBF kernel with a length
scale of 0.2 and similar boundaries was used, multi-
plied by a constant kernel with a constant value of 103

and constant boundaries from 10�3 to 104.
2. The second set of kernels included one DP kernel with

a sigma value of 1.0 and sigma boundaries ranging
from 10�6 to 106, squared, and multiplied by a con-
stant kernel with a constant value of 10 and constant
boundaries from 10�6 to 106. Another DP kernel with
a sigma value of 2.0 and similar boundaries was used,
squared, and multiplied by a constant kernel with a
constant value of 10 and constant boundaries from
10�6 to 106.

Artificial neural network
The ANN was implemented using PYTORCH 2.1. The
normalized properties XR and XCA served as inputs. The
ANN comprised five hidden layers, each with 256 neurons
and using the ReLU activation function. The output of
the ANN was the predicted Tg of the resin mixtures. The
ANN was trained on the training set via the Adam algo-
rithm using the mean squared error (MSE) as the loss
function, with a learning rate of 0.001 until the MSE
fell below 0.025. For the evaluation of the validation
set, the model was then trained on the 35 data
points with a learning rate of 0.0005 until MSE was smal-
ler than 0.001.

Cross validation
For a more accurate estimate of each model's accuracy,
seven-fold CV was performed 100 times. The coeffi-
cient of determination for the Tg of the training set
R2
train

� �
, along with the corresponding mean average error

MAEtrainð Þ, were determined. Similarly, the models
were used to predict the Tg of the test set, and R2

test and
MAEtest were calculated. Finally, the models trained on
the initial 35 data points were used to predict the Tg of
the validation set, determining R2

val and MAEval.
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3 | RESULTS AND DISCUSSION

3.1 | Performance of different kernels
and acquisition functions

In the initial optimization series, the objective is to opti-
mize Tg without imposing a minimum bio-content (0%).
Considering the aliphatic structures of the bio-based
components, it is reasonable to expect a non-linear
decrease in Tg concerning decreasing XR and XCA. Thus,
all kernels and acquisition functions are tasked with
finding the mixture with the maximum Tg which
has XR ¼XCA ¼ 1.

The top row of Figure 3 illustrates BO using the RBF
kernel. Both acquisition functions, UCB and EI, require
three BO rounds to find the fully petroleum-based mix-
ture with XR ¼XCA ¼ 1 and the maximum Tg. The RBF
kernel initially proposes [1 0] and continues its search
along the 1XCA½ � line. Interestingly, the data points pro-
posed by both RBF UCB and RBF EI are identical.

The maximum Tg is about 145�C which is in range of
literature values for Tg (144�C–153�C).26,27 This as well
as the absence of any exothermal heat flow during the
second heating show that the resin mixtures are suffi-
ciently cured. Note that the contour plot in Figure 3 is
fitted using a second-order polynomial using all 40 points

FIGURE 3 BO of Tg

without a minimum bio-content

using RBF (top), Matérn (center)

and DP (bottom) kernel

functions, in combination with

UCB (left) and EI (right).

Random data points are marked

as squares ■ð Þ while data
points proposed by the BO are

marked as circles •ð Þ. The
champions are marked as gold

circles ( ). [Color figure can be

viewed at

wileyonlinelibrary.com]
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of the data set. However, this was only available after the
different optimization runs were finished and the model-
ing done. It is only included for visual guidance.

The center row of Figure 3 displays BO using the
Matérn kernel, which takes four rounds to find the opti-
mum composition ([1 1]). Similar to the RBF kernel, the
search initiates at [1 0], proceeding along the 1XCA½ � line.

In contrast, the DP kernel in the bottom row requires
only one BO round to discover the maximum Tg. This
underscores the importance of selecting kernel functions
aligned with the assumed trends in the data based on
materials science. As already mentioned, it was assumed
that the decrease in Tg can be modeled with an nth-order
polynomial and that Tg decreases monotonously for an
increasing bio-content. This assumption is confirmed by
the modeling and experimental validation in Section 3.3.
The efficient optimization is facilitated by reducing the
feature space dimensions through normalization and
informed consideration of the epoxy resin system's mate-
rials science.

Remarkably, all proposed mixtures have the form of
XR 1½ �or 1XCA½ �, avoiding the simultaneous presence of
both bio-based components in the resin system. Rather,
the bio-content is maximized in either the epoxy resin or
the curing agent while it is minimized in the other. The
same trend will be shown for the champions of
the optimization series with minimum bio-contents of 5%
and 10%, respectively.

The materials science explanation lies in the fact that
the Tg depends on the network segment stiffness and
cross-link density. Epoxy resins may only react with
amine curing agents and vice versa, thereby linking
resins to only curing agents and curing agents to only
epoxy resins. Introducing one bio-based component
weakens the network around that segment, limiting its
influence because the bio-based network segment is con-
nected to a petroleum-based component. On the other
hand, introducing bio-based components into both the

epoxy resin and curing agent allows the formation of con-
nected bio-based network segments, decreasing local
cross-link density and Tg. These findings emphasize the
significance of informed choices in the optimization pro-
cess, incorporating both materials science and data sci-
ence for efficient and meaningful results.

3.2 | Optimizing for different boundary
conditions

The second optimization series focuses on a resin system
with a maximum Tg and a minimum bio-content of 5%.
Continuing with the DP kernel function, as it proved effi-
cient in the first series, the data points selected by each
optimization approach in the initial series are utilized as
inputs for the second series. The contour plot in Figure 4
is fitted using a second-order polynomial based on all
40 data points, offering visual guidance.

In this series, DP UCB, being more deterministic,
identifies the maximum Tg in the first BO round, while
DP EI, with a more exploratory approach, scans the
extremes of the feature space and finds it in the second
BO round. After five rounds of BO, the optimization is
halted, as no additional high Tg mixtures are proposed.
The final prediction, using all 40 data points, confirms
that no mixture in the virtual experiments surpasses the
identified maximum Tg.

High Tg mixtures in this dataset are predominantly
close to 5% bio-content, supporting the assumption that
the addition of aliphatic, bio-based components decreases
Tg. The proposed mixtures continue to follow the pattern
of XR 1½ �or 1XCA½ �. The maximum Tg is approximately
128�C, achieved by [0.95 1], followed closely by [0.96
0.98] with a Tg of 126�C. Notably, the antagonism of
interconnected bio-based network segments is evident,
with [0.95 1] having a higher bio-content (5.7%) yet exhi-
biting a higher Tg than [0.96 0.98] (5.2% bio-content).

FIGURE 4 BO of Tg with a

minimum bio-content of 5%

using DP kernel functions, in

combination with UCB (left) and

EI (right). Random data points

are marked as squares ■ð Þ
while data points proposed by

the BO are marked as circles

•ð Þ. The champions are marked

as gold circles ( ). [Color figure

can be viewed at

wileyonlinelibrary.com]
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This emphasizes the strategy of maximizing bio-content
in the epoxy resin while minimizing it in the curing
agent, maintaining an overall bio-content close to the
minimum threshold of 5%.

The third optimization series follows a similar
approach to the second one. However, due to the larger
number of virtual experiments with a bio-content close
to 10%, there are more possible champions, making it
more challenging. To address this, AL is combined
with BO in each optimization cycle, with one mixture
proposed by BO and one by AL. Both mixtures are pre-
pared and tested, with their Tg values used as inputs for
BO and AL, respectively. The datasets of DP UCB and DP
EI are treated separately. The contour plot in Figure 5 is
fitted using a second-order polynomial based on all
40 data points, offering visual guidance.

DP UCB identifies the champion of the dataset with a
Tg of 114.7�C at [0.91 0.99] (bio-content 10.2%). The mix-
ture [0.90 1] (bio-content 10.9%) has a slightly lower Tg

(113�C), approximately one standard deviation lower
than that of [0.91 0.99]. The strategy of maximizing bio-
content in one part of the resin system while minimizing
it in the other, maintaining bio-content close to the mini-
mum threshold of 10%, remains consistent.

In contrast, the EI acquisition function does not iden-
tify the same champion as DP UCB. Instead, it proposes
[1 0.6] with a Tg of 101�C. Concluding from the results of
the second and third optimization series, investing bio-
content in the bio-based resin component instead of
investing it in the curing agent is more effective and
decreases Tg less severely. An examination of the chemi-
cal structure of the bio-based components reveals that
the phenolic moiety in the bio-based epoxy resin NC-514
introduces steric hindrance, leading to stiffer network
segments compared to the aliphatic bio-based curing
agent Mergamid L450.

AL scans the feature space for virtual experiments with
a high standard deviation resulting from the GPR. Typi-
cally, data points proposed by AL are far away in the fea-
ture space from already investigated points, focusing on

the extremes of the feature space. This proves optimal for
enhancing the dataset and exploring the feature space.
After five rounds of BO, the optimization of this series is
halted. The final prediction, using all 40 data points, con-
firms that no mixture in the virtual experiments surpasses
the identified maximum Tg (Figure 5).

The last optimization series demonstrates how the
investigated data points can efficiently design resin mix-
tures, considering realistic limitations on bio-content and
price. For instance, the minimum bio-content is set to
25%, while the maximum price of the mixtures is set to
5.5Euro/kg. To expedite the process, the previously inves-
tigated data points of all kernel functions and acquisition
functions are used as input (n = 29).

Figure 6 shows that DP UCB proposes the mixture
[0.76 0.9] as the champion, which is closest to the [1 1]
data point. This mixture has a Tg of 81.15�C and a bio-
content of 25%. Notably, the GPR model predicts a Tg of
80.2�C for the mixture [0.76 0.9] which is about only 1�C
off of its true Tg, showing the predictive capabilities of
GPR models. Once again, the same trends regarding the
composition of the mixture apply as for the optimization
of mixtures with 5% and 10% bio-content. The bio-
content is not evenly split between the epoxy resin and
the curing agent; rather, it is minimized in the curing
agent and maximized in the epoxy resin. Simultaneously,
the total bio-content remains close to the minimum of
25% (see Figure 6).

After adding the [0.76 0.9] mixture to the dataset, BO
proposes it as the mixture with the highest Tg. Conse-
quently, BO cannot find a mixture with a higher Tg

under the given criteria, indicating that the highest Tg in
the dataset has already been identified.

3.3 | Modeling & experimental
validation

The dataset, comprising 35 points, is modeled using dif-
ferent regression techniques, including LS, KRR, GPR

FIGURE 5 BO of Tg with a

minimum bio-content of 10%

using DP kernel functions in

combination with UCB (left) and

EI (right). Random data points

are marked as squares ■ð Þ, data
points proposed by BO and AL

are marked as circles •ð Þ and
▼ð Þ, respectively. The

champions are marked as gold

circles ( ). [Color figure can be

viewed at

wileyonlinelibrary.com]
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with RBF and DP kernels, and ANN. The models' predic-
tive capabilities are evaluated based on their coefficient
of determination R2ð Þ and mean average error (MAE) on
the training, testing, and validation sets. Objective assess-
ments of model accuracy involve seven-fold CV for each
model, repeated 100 times. Figure 7 illustrates the loca-
tion of the validation set in the feature space along with
the dataset obtained from previous optimization series.
While the validation set's points are randomly selected in
the feature space, some points are relatively close to exist-
ing dataset points. However, selecting five points out of
8223 that are entirely distant from the initial 35 is
improbable. Despite the apparent proximity, the gradi-
ents between the validation set points and the nearest
dataset points may be substantial. The Tg of the investi-
gated mixtures spans from 11.7�C ([0.33 0]) to
144.5�C ([1 1]).

Figure 8 shows the R2 and MAE of the train, test and
validation sets after 100 rounds of seven-fold CV using
LS, KRR, GPR with RBF and DP kernels, and ANN. This
breakdown provides a structured analysis of each model's
performance, allowing for a clear comparison and discus-
sion of strengths and weaknesses. The LS model exhibits
outstanding performance on the training and validation
sets, as evidenced by high R2

train and R2
val of 0.989 each.

However, a noticeable drop in R2
test (0.960) raises con-

cerns about potential overfitting or a lack of generaliza-
tion. Similarly, MAEtrain is only about 2.64�C, while
MAEtest is roughly 3.68�C. Despite the potential overfit-
ting indicated by the test set, the relatively low MAE
values, particularly on the validation set (1.39�C), suggest

good predictive accuracy. Overall, the R2 and MAE dem-
onstrate a strong fit to the data, indicating that the Tg of
mixtures not included in the dataset can be reliably pre-
dicted by the second-order polynomial. It's noteworthy
that increasing the order of the polynomial from two to
three or four improved the metrics for the training set
but led to worse performance on the test and validation
sets. This clear indication of overfitting underscores the
justification for choosing a second-order polynomial.

The KRR model demonstrates high R2 values on all
sets, indicating a good fit to the data. The reduction in R2

from R2
train (0.986) to R2

test (0.967) is smaller than with the
LS model, suggesting that regularization has mitigated
the risk of overfitting. The MAE values for the KRR
model MAEval ¼ 2:68

�
C

� �
are higher compared to the LS

model, indicating slightly lower predictive accuracy.
However, the KRR model generalizes better to unseen
data compared to the LS model, as evidenced by the
smaller drop in R2 between training and test sets.

The GPR RBF model exhibits a perfect R2
train and

MAEtrain, indicating overfitting. GPR is highly flexible
and can fit complex patterns in the training data. How-
ever, there is a noticeable drop in performance on the test
and validation sets, suggesting challenges in generalizing
to new data. The relatively higher MAE on the test and
validation sets compared to LS suggests some limitations.
The reason is likely that the bell shape of the RBF kernel
function does not align with the expected trend (second-
order polynomial) of the function underlying the data.

The GPR DP model exhibits high R2 values across all
sets, indicating a good fit to the data. Similar to the RBF
kernel, this model performs well on the training set but

FIGURE 6 BO of Tg with a minimum bio-content of 25% and

maximum price of 5.5 Euro/kg using DP UCB. Random data points

are marked as squares ■ð Þ, data points resulting from BO and AL

are marked as circles •ð Þ. The champion is marked as gold circle

( ). [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 7 The 40 data points of the entire dataset from which

35 •ð Þ were determined via random selection, BO or AL, while the

remaining five data points belong to the validation set ( ). [Color

figure can be viewed at wileyonlinelibrary.com]
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faces a drop in performance on the test set R2
test ¼ 0:956

� �
.

The slight drop in R2 on the test set indicates some poten-
tial overfitting, although it's not as pronounced as in
other models. The MAE values are comparable to the LS
model MAEval ¼ 1:4

�
C

� �
, suggesting good predictive

accuracy.
The ANN shows exceptional performance on the train-

ing set with a near-perfect R2
train of 1. ANN, especially with

extensive layers, can capture intricate patterns in the
training data. However, there is a drop in performance
on the test and validation sets, indicating potential chal-
lenges in generalization R2

val ¼ 0:956
� �

. The model dem-
onstrates generally low MAE values MAEval ¼ 2:82

�
C

� �
,

indicating good predictive accuracy, but there is an
increase on the test and validation sets compared to the
training set.

All models show strong performance on the training
set, suggesting they can capture the training data well.
However, there are signs of overfitting in some models,
as evidenced by the decrease in performance on the test
and validation sets. The LS model and GPR DP model
have relatively lower MAEval values, suggesting better
predictive accuracy. Still, model selection remains
context-dependent, considering trade-offs between over-
fitting and predictive accuracy.

The nature of the dataset, including its size and com-
plexity, influences the model performance. The observed
overfitting tendencies in some models may be attributed,
in part, to the restricted data size, impacting the general-
izability of the models. More complex models, like ANN,
have a higher capacity to fit the training data but are
prone to overfitting. To address potential overfitting, fur-
ther exploration of techniques such as regularization or
increasing the dataset size could be beneficial. Addition-
ally, fine-tuning hyperparameters for models showing
promise but exhibiting overfitting tendencies might
enhance overall performance in future studies.

4 | CONCLUSION AND OUTLOOK

In summary, this investigation exemplifies an effective
methodology for optimizing resin mixture formulations
within the constraints of bio-content and cost consider-
ations. Key strategies, such as utilizing DSC for character-
ization, a parsimonious selection of components, and the
application of normalized features, contribute to the suc-
cess of the optimization process. The incorporation of
specific kernel functions aligned with principles from
materials science further bolster efficiency. The optimiza-
tion of a four-component epoxy resin system is success-
fully achieved with a modest investment of 5 days in
measurement time and a mere 30 data points. Notably,
the optimization series reveals a trend where champions
sought to maximize bio-content in either the resin or cur-
ing agent while adhering to the minimum bio-content
criteria. This phenomenon is explicated by the intercon-
nection of compliant network segments formed by the
bio-based components, exerting an influence on the Tg.
This observation prompts inquiry into the necessity of
multiple bio-based components in both epoxy resins and
curing agents. While such complexity does not confer an
advantage in maximizing Tg, it may prove beneficial
for optimizing other mechanical or thermal properties.
Modeling the dataset using various regression techniques
and ANN provides valuable insights, with LS and GPR
DP demonstrating robust performance with the limited
dataset. However, continuous improvement is possible
with the addition of more data points and fine-tuning of
hyperparameters. The study concludes by highlighting
the potential application of proposed strategies to
optimize other key properties or consider additional
boundary conditions, such as CO2 footprint or ecological
impact. Future studies may focus on aspects not exten-
sively addressed in this investigation, paving the way for
further advancements in resin mixture optimization.

FIGURE 8 R2 and MAE of

the train, test and evaluation

sets after 100 rounds of seven-

fold CV using LS, KRR, GPR

with RBF and DP kernels,

and ANN. [Color figure can be

viewed at

wileyonlinelibrary.com]
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