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Abstract

In this paper, we investigate the ability of neural networks to provide curse-of-dimensionality-free approximations of control
Lyapunov functions. To achieve this, we first prove an error bound for the approximation of separable functions with neural
networks. Subsequently, we discuss conditions on the existence of separable control Lyapunov functions, drawing upon tools
from nonlinear control theory. This enables us to bridge the gap between neural networks and the approximation of control
Lyapunov functions as we identify conditions that allow neural networks to effectively mitigate the curse of dimensionality
when approximating control Lyapunov functions. Moreover, we present a network architecture and a training algorithm to
illustrate the theoretical findings on a 10-dimensional control system.

Key words: control Lyapunov functions; neural networks; curse of dimensionality.

1 Introduction

Control Lyapunov functions (clfs) are a well-established
tool in nonlinear control theory. They serve as a certifi-
cate of asymptotic null-controllability and can also be
used to examine robustness against uncertainties and
disturbances or to study performance criteria. However,
their most common application lies in designing stabiliz-
ing feedback laws using the clf as guidance towards the
equilibrium [5]. Given some asymptotically controllable
system, we are thus interested in finding a corresponding
clf. Since, in general, it is quite hard to compute clfs an-
alytically, we rely on numerical methods. However, tra-
ditional numerical methods, which rely on a grid-based
approach for the computation of the derivative of the
clf, suffer from the curse of dimensionality. This means
that, to achieve a certain accuracy, the number of re-
quired grid points and, thus, the numerical effort grows
exponentially in the dimension of the state space. Con-
sequently, such approaches become impractical in high
dimensions.

This paper concerns the use of neural networks (NNs)
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to circumvent the curse of dimensionality for approxi-
mating clfs. Our approach is related to the work [39],
which investigates structural properties on control sys-
tems that allow for an exact representation of a (possi-
bly discontinuous) stabilizing feedback by NNs. Further,
there exist several papers that present algorithms for the
computation of clfs by NNs; see, e.g. [26,30]. However,
while the algorithms therein have similarities with our
numerical approach, none of them provides a complex-
ity analysis regarding the curse of dimensionality. Estab-
lishing conditions for a curse-of-dimensionality-free ap-
proximation of clfs is the main contribution of this work.
Addressing this challenge requires the identification of a
suitable class of functions that can be approximated by
NNs without suffering from the curse of dimensionality.

There exist various recent papers that discuss results re-
garding a curse-of-dimensionality-free approximation of
solutions of particular kinds of partial differential equa-
tions, see, e.g., [4,13,17,21]. In particular, some of these
references exploit the smoothness of solutions of 2nd or-
der Hamilton-Jacobi-Bellman equations for a curse-of-
dimensionality-free approximation to solve optimal con-
trol problems. However, when it comes to computing a
clf for a deterministic system, which can be character-
ized as a solution of a particular first-order Hamilton-
Jacobi-Bellman equation, we cannot expect such a level
of smoothness. Thus, we rely on a different structural as-
sumption that allows NNs to mitigate the curse of dimen-
sionality. To this end, we consider so-called separable
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functions. Informally speaking, a mapping is called sep-
arable if it can be written as a sum of functions that are
each defined on some lower-dimensional domain. Sepa-
rable functions fall into the class of compositional func-
tions. The ability of NNs to avoid the curse of dimen-
sionality for compositional functions has been discussed
for instance in [11,23,35]. Compared to general compo-
sitional functions, separable functions have a simpler
structure that allows for more precise estimates, while
the classes of control systems admitting separable clfs
are still non-trivial.

Contribution

In this paper, we bridge the gap between NN approxima-
tion theory and the computation of clfs via NNs. Based
on [18], we provide complexity results regarding the ap-
proximation of separable functions. Next, we extend the
results for Lyapunov functions in [18] to clfs. Specifically,
we use methods from nonlinear control theory to iden-
tify conditions on the control system such that a separa-
ble clf exists. Additionally, we expand upon the discus-
sions in [19] to explore achieving separability through a
state space transformation. Overall, we identify scenar-
ios where NNs can provably avoid the curse of dimen-
sionality in the computation of clfs. Finally, we propose
a network architecture and training algorithm. In this
context, we would also like to mention those topics that
are not part of this paper. While this paper provides an
expressivity result and proposes a training algorithm, it
does not delve into the analysis of the convergence of
the training algorithm or the generalization properties
of the NN. Regarding the last point, which is of high
importance for practical usage, we would like to refer
to the works [12,27,28], where methods to verify that
the NN output satisfies the Lyapunov conditions have
been developed, thus providing a tool to verify general-
ization properties. In particular, we would like to point
out that [28] leverages a compositional structure of the
control system for verification, aligning well with the use
of separability for efficient representation discussed in
this paper. Moreover, we only consider the case in which
smooth clfs exist, which allows us to better focus on the
main results of this paper. Non-smooth clfs will be ad-
dressed in future research.

Outline

The remainder of this paper is organized as follows: The
problem formulation is introduced in the next section.
Afterwards, we provide a complexity analysis regarding
the approximation of separable functions with NNs. In
Section 4 we focus on the existence of separable clfs.
To this end, we first discuss the use of techniques from
nonlinear control theory that lead to separability and
then consider the existence of separable clfs after suitable
state space transformations. In Section 5 we illustrate

the theoretical findings on a 10-dimensional test case.
Finally, Section 6 concludes the paper.

Notation

For n € Nweset [n] := {1,...,n} and define I,, € R™*"
to be the identity matrix. Let K C R"™ be some com-
pact set. Then we denote the infinity norm for contin-
uous functions f on K via ||f|co,x = supex |l f(2)]-
The symbol D is used to denote the classic differential
operator. Moreover, for some multi-index a € N™ we use
D, to denote the higher-order partial derivative with re-
spect to a. We make use of the comparison functions
and K, where K denotes all continuous and strictly in-
creasing functions y: R>g — R>¢ withy(0) = 0 and Koo
comprises all C-functions that satisfy lim,_, o (1) = co.

2 Problem formulation

We consider a control system of the form

j::f(x’u)v (1)

where the right-hand side f: R™ x U — R" is continu-
ous, locally Lipschitz in x, and has an equilibrium at 0,
i.e.,, f(0,0) = 0. The input set is denoted as U C R™
and the admissible control functions are given as the set
of measurable and locally essentially bounded functions
u: R>9 — U. In order to avoid technicalities, we assume
our system (1) to be defined on the whole domain R"™.
We are interested in stabilizing the system towards the
origin. To this end, we assume the control system (1) to
be asymptotically controllable. In [38, Theorem 2.5] it
has been shown that asymptotic controllability is equiv-
alent to the existence of a clf in the sense of Dini. How-
ever, in the scope of this paper, we will only consider
the case where our control system (1) admits a contin-
uously differentiable clf, where the Dini derivate equals
the gradient. This allows us to ensure compatibility with
some theorems from the literature cited in the subse-
quent sections and avoids distracting technical difficul-
ties. The important case that no smooth clf exists will
be investigated in future research, cf. Section 6.

Definition 1 A continuously differentiable function
V:R™ — R is called (smooth) control Lyapunov func-
tion (clf) for (1) if there exist ay, a9 € Koo and az € K
such that for x € R™

ar(zl) S V(@) < aa(flzl),  (2a)
inf DV(2)f(z,u) < —as(lel).  (2b)

Note that the existence of a1, ag € K such that the two
inequalities in (2a) hold is equivalent to the fact that V'
is positive-definite and radially unbounded, cf. Lemma



4.3 in [25]. The reason for our preference of using the K
functions «a; and «s is due to our numerical algorithm,
see Section 5. Given the existence of a smooth clf, it is
our objective to numerically compute an approximation
thereof on a compact set K C R™ via NNs.

3 Neural networks approximating separable
functions

8.1 Preliminaries on neural networks

From a mathematical point of view, a neural network
(NN) is a mapping x — W (x;6) that takes some input
vector x € R™ and processes it according to its parame-
ters # in order to return some output. In case of a feed-
forward network, the value of a neuron y} in layer [ with
number k is determined via

Ni—a

vh =o' (D2 whavt ™ k), (3)
=1

where u)fm € R, 1 <i < N;_1, are weight parameters,
bl € R constitutes a bias term and ¢! : R — R is the acti-
vation function of layer [. Throughout this work we solely
consider feedforward networks with a one-dimensional
output W(x;0) € R and the identity as activation func-
tion in the last layer. It has been shown in [10] that the
set of functions given by a NN with one hidden layer and
a continuous sigmoidal activation function is dense in
C(]0,1]™). Since we are interested in the numerical effort
needed for approximating a clf, we need a quantitative
version of an approximation theorem. To this end, we
characterize the complexity of a NN by the number of
neurons in its hidden layers. Further, for p € N, r € Ry,
and a compact set K C R™ we introduce the Sobolev-
like space

Wy (K) :={F € C*(K,R) | [|Fllw,x) <7},
where || Fllw, (k) 1= > o< |a|<pll Dol o, k-

Theorem 2 Let R € Ry and 0 € C®(R,R) be not a
polynomial. Then for everyn € N there exists a constant
tn > 0 such that for all M € N a NN W(x;0) with
one hidden layer consisting of M neurons and activation
function o' = o satisfies for all F € CP(K,R)

i%f”W('?G) — F()|loo,x < MnM_%EHFHWp(K),

where K := [-R, R|", R := max {R, 1}.

Note that the constant p,, depends on n but is indepen-
dent of F and M. Theorem 2 has been derived in [31,
Theorem 2.1] for the case R = 1 and its extension to
R € Ry is proven in [22, Corollary 1]. The theorem has

originally been stated for o € C*°(R, R) such that there
exists b € R with ¢ (b) # 0 for all i € N. Tt has been
discussed in [35] that this condition is equivalent to o
not being a polynomial. We can conclude from Theo-
rem 2 that the number of neurons needed to provide an
approximation up to some accuracy € > 0 is given by
M = O(¢~ %), which has been shown in [31] to be best
possible. Thus, in general, NNs also suffer from the curse
of dimensionality.

3.2  Mitigating the curse of dimensionality with neural
networks

The central part of this section is a result showing that
NNs are capable of mitigating the curse of dimensional-
ity for so-called separable functions.

Definition 3 Let F € C'(R™,R) and d € [n]. Then F
is called (strictly) d-separable if for some s € [n] there
existdy,...,ds € [d| and functions Fi, ..., Fs with F; €
CY(R%,R), 1 < j < s, such that for all z € R™ it holds

F@) = 3" Fi(z) a

where zj = (Tp,_,,...,Tk;—1) with ko := 1 and k; =
kj1+dj, j€ls].

In other words, if F' is a d-separable function, its do-
main can be split into s subspaces, having the form
R™ = R% x ... x R%_ such that F' can be written as a
sum of s functions, which are defined on the respective
subspaces. For the purpose of this paper it is sufficient
to consider strictly separable functions, which means
that the intersection of two such subspaces is always the
origin, i.e., the domains are not overlapping. Construc-
tions with overlapping regions have been pursued, e.g.,
in [33,42]. For simplicity, we will omit the term “strictly”
in what follows. The benefit of a separable structure can
be exploited by a NN as shown in Figure 1. It consists of
two hidden layers, where the first one has a linear acti-
vation o! = I;, and the second one uses some nonlinear
activation function o2. The sublayers of the second hid-
den layer can be used to learn the functions F} in (4).

Fig. 1. Architecture of the NN with « = (n — 1)d + 1,
+=Mm—-1)M+1, and W = W(z;6).



Theorem 4 Letd € N, r, R € Ry, and 0 € C*(R,R)
be not a polynomial. Define for n € N the sets K, :=
[-R,R]" and

]:75,7;) = {F € W1 ,(Ky) | F is d-separable, F(0) = 0},

Then there exists a constant ug > 0 such that for all
n € N and M € N the NN W (x;0) depicted in Figure 1
with n(d + M) neurons and activation functions o' = T

and 0 = o satisfies for all F € F")

nf|| F() = W(0)llc s, < nrpgmax{R, 1}M~ .

PROOF. By virtue of Theorem 2 there exists a con-

stant g > 0 such that for all M € N and Fe Wi (Kq)
it holds that

inf [ F () = W (50) .rc, < rpraM~ max {R, 1}, (5)
%

where W(m, 0) is a single-layer NN with activation func-
tion ! = ¢ and M neurons in its hidden layer. Now fix
n,M € N and some F € fff}. Since F is d-separable
(see Definition 3), we can write Fi(z) = Y77, Fi(z;)
for some s € [n] and F; € C}(R%,R). As F(0) = 0,
we have ijl F;(0) = 0. Thus, by defining Fj(z;) :=
Fj(2j) — Fj(0), we can assume that F};(0) = 0 for j € [s].
This yields for z; € R%

Fy(z) = Fi(z) + Y _ F:(0) = F(0,...,0,2,0,...,0).
i#]
(6)
Further, observe that for z € R"

DF(z) = [DFl(zl) DFy(z) -+ DFy(z)|. (7)

Consequently, we obtain from (6) and (7) for j € [s]

1Fllwi (rea) = Z [ DaFj |l oo, k.
0<|al<1

< Z HDaFHoo,Kn <
0<]al<1

whence F; € W1 ,.(Kq). Now we want to set the weights
and biases corresponding to the first hidden layer of the
network depicted in Figure 1 such that its first s sub-
layers contain the vectors zj, j € [s], respectively. To
this end, we set b), = 0 for k € [nd] and define w;j; =1
for ¢ € [dy] in order to obtain the vector z; in the first
sublayer, cf. (3). Next, we set w}, ; 4 ,;, = 1 for i € [da]
to get z9 in the second sublayer. We continue this pro-
cedure until the s-th sublayer. All remaining weights in

the first hidden layer are set to 0. Furthermore, for the
output layer we choose w?; = 1 for i € [dM], w}, = 0
for i > dM, and b3 = 0. Observe that the output of the
NN is now given as

S

n M M
W(x;0) = Z Zy(Qj—l)M-i-i = Z Zy(Zj—l)M+i7 (8)

j=11i=1 Jj=114=1

where for each j € [s] the output Zi\il y(2j71)M+z‘ of
the j-th sublayer can be interpreted as the output of
a NN with input z; and one hidden layer consisting of
M neurons, cf. Figure 1. Let us denote the respective
subnetwork by W;(z;;6;). By applying (5) we obtain for
j € [s]

inf|F5() = W(:6)lloo. sy < rpal ™% max {R, 1} =: p

J
Finally, invoking (8) gives us for z € K,

inf||F(z) — W(a:0)]| = inf | Y- Fi(z) - W;(z:0))|

j=1
S
< ZingFj(Zj) = W;j(25505)| < sp.
j=1 "

Since s < n, this shows the claim. O

In the proof of Theorem 4, we have used the first (linear)
layer of the network displayed in Figure 1 to compute the
decomposition of the state x into vectors z;, 1 < j <'s,
according to Definition 3. We can thus identify the first
layer with the mapping = — W'z, where W' € R74xn
denotes the matrix that represents the corresponding
decomposition of . However, since the weights w,i’i, ke
[nd], i € [n], can take on any real value, the first layer
of the NN depicted in Figure 1 can in fact express any
matrix W' € R™>*"  This observation motivates the
following definition.

Definition 5 Let d € [n], F € C}(R",R), and T €
R™ ™ be invertible. Then F' is called linearly d-separable
with respect to T if the mapping x — F(Tx) is (strictly)
d-separable. Further, a function G € C(R™,R!) is called
linearly d-separable if each of its | component functions
is linearly d-separable.

Definition 5 extends the class of separable functions to
all functions that are separable after a suitable linear
transformation of the state space. The following corol-
lary generalizes Theorem 4 to the case of linearly d-
separable functions. To this end, for ¢ € Ry we define
GL¢ as the space of invertible matrices T € R™*"™ such
that || T]|oo < cand ||[T7!||o < c. Note that after rescal-
ing with ¢/||T |00, every T € R™*™ with condition num-
ber < ¢? lies in GLE.



Corollary 6 Let d € N, ¢,r,R € Rsg, and o €
C>®(R,R) be not a polynomial. Define for n € N the sets
K, :=[-R,R]" and

]-"T(,:;)’C ::{F € Wi (Ky) | F is linearly d-separable

w.r.t. some T € GL;,, F(0) = O}.

Then there exists a constant pug > 0 such that for all
n € N and M € N the NN W (x;0) depicted in Figure 1
with n(d+ M) neurons and activation functions o' = I

and 0 = o satisfies for all F € Fin

r,d,c

irelfHF(-) —W(50)||oo,x < enrugmax{cR, 1}M_%.

PROOF. Let F € fﬁﬁl{c. Consider the mapping

G: T 'K, - R,z — F(Tx). By assumption, G is a
d-separable function. Further, note that G(0) = 0 and
T7'K, C cK, = [—cR,cR]". Moreover, it holds that

IClwy -1k = D IDaF(T) o1k,
0<[al<1

n
0
= |F(T)loo, 711, + ZH%F(T-)IIOO,TAKH
j=1
"0
S Pl €l Flloc s, < ell Fllwa ).
j=1 "

Hence, applying Theorem 4 yields for M € N
inf|G() — W(:0)llooirssc, < merpgmax{eR, 1},

where W (z;0) is the NN constructed in the proof of
Theorem 4. Recall that the output of the first hidden
layer is obtained as W'x for some matrix W' € R™¥x",
Hence, having T~ 'K,, as input space and the matrix
W1 representing the first hidden layer can equivalently
be replaced by using K as input space and redefining
W' .= W!'T~!. With this, we obtain an approximation
of F'on K. Since the linear transformation of the weights
in the first layer is already included in the infimum over
all parameters 6, we obtain the claim. O

We would like to point out that Corollary 6 can also be
proven by leveraging Theorem 4.10 in [23]. To this end,
one represents the given separable function as a partic-
ular instance of a compositional function as defined in
[23, Definition 3.1] and estimates the constants appear-
ing in [23, Remark 4.12]. This approach results in esti-
mates that are similar to the argumentation presented
in the proofs of Theorem 4 and Corollary 6. As an im-
mediate consequence of Corollary 6 we obtain that the

number of neurons needed to approximate linearly d-
separable functions grows only polynomially in the state
dimension n.

Corollary 7 Let € > 0 and consider the setting from
Corollary 6. Then for n € N the number of neurons N €
N needed to ensure

sup inf|[F(-) = W(50)|oo,(-rRn < €
FeFr™ o

rd,c

is given by N = O(nd + %)

PROOF. Applying Corollary 6 yields
M > (nerpgmax{cR,1})%e~%

The claim is obtained by counting the total number of
neurons in the hidden layers in Figure 1. O

Remark 8 In the setting of Theorem 4 as well as in the
corollaries 6 and 7 we have worked with C' target func-
tions and thus applied Theorem 2 for the case p = 1. If
one is in a position to apply Theorem 2 for higher values
of p, one still obtains a number of neurons that is poly-
nomially increasing in n, albeit with the lower exponent
d/p+ 1 in place of d + 1.

4 Existence of separable control Lyapunov func-
tions

In this section, we use of methods from nonlinear sys-
tems theory for providing conditions for the existence of
(linearly) separable clfs. Thus, by invoking the results
from Section 3 we can identify classes of systems that al-
low for a curse-of-dimensionality-free approximation of
clfs by NNs.

4.1 Separability via small-gain theory and active nodes

This subsection proves the existence of separable clfs
based on small gain theory, leveraging the notion of ac-
tive nodes from [8,9]. We consider a control system (1)
and assume that it can be decomposed into s € N sub-
systems denoted by

Sjc A= fi(wuy) = fi(z5,2-5,95), j€ls], (9)
where
2 iy fi(z, )
= e iis o= fo(z, u2)
2 s fs(, )



Wichj ERdj,U:U1><U2X“-XU5,ﬁj EUj,fJ‘ZRnX
U; — R%, and

T
— n—d;
Z_j = (217~-~,Zj—1,2j+1,---,Zs) e R"™%.

We explicitly allow for the case that some subsystems
Y; are independent of the control w, which corresponds
to the case U; = {0}. In the following, we investigate
whether there exist functions V; defined on the respec-
tive subspaces R% such that their sum constitutes a clf
for the whole system. To this end, in addition to a sta-
bility property for each subsystem, one needs to impose
a condition on the coupling of the subsystems. For this
purpose, we represent the decomposition as a directed
graph that consists of s nodes. Each node belongs to one
subsystem and there exists an edge from node ¢ to node
j, j # 1, if the subsystem ¢ influences the subsystem 7,
i.e., if the function f; depends on the vector z;. Figure 2
illustrates the graph corresponding to a decomposition
into 1-dimensional subsystems of the control system (10)
from Section 4 in [8].

@ i1:x3+u,

/ iy =1x1 — 22 + 23, (10)
@ .’kg = T2 — I3.

Fig. 2. A control system and its corresponding graph.

The following assumption imposes a stability condition
on each subsystem:

Assumption 9 For each j € [s] there exists a feedback
function F : R% — U;, comparison functions o; € K,
Vi,j € Koo, © # 7, as well as a positive-definite and radi-
ally unbounded function V; € C*(R%,R) such that

DV;j(zj) fi (25, 2—5, Fj(25))
< —a(Vi(z)) + 3 7ii (Vilzi)). (11)

i#j

Note that for a subsystem X; that is not influenced by
the control, the left-hand side in (11) does not depend
on any feedback function Fj. In particular, Assumption
9 states that for all j € [s], the function V; is an ISS-
Lyapunov function (see [41]) for the system

2y = [z, 25, Fj(z))), (12)

where z_; is seen as the external input. Given such a
stability assumption on each of the subsystems, small-
gain theory can be used to obtain a stability property
of the overall system, see, for instance, [14,29,36]. In the
following, we focus on the theory developed in [9] that
allows us to formulate a graph-based criterion regarding
the existence of a separable clf. Note that we do not

impose regularity conditions on F}; in Assumption 9 since
this is not necessary in order to apply the results from
[9], whereas regularity of F} is of course required for the
existence of solutions of the control system (12).

Definition 10 (cf. Definition 4 in [9]) Let j € [s]
and consider a subsystem ¥; as in (9). The subsystem
is called active if there exist &, vi; € Koo, © # 7, and a
function V; € C1(R% | R) such that for all a; > &; there
exists Fj: R% — U; such that (11) holds.

Intuitively, Definition 10 implies that, for given gain
functions +; ;, the rate of decrease of V; along the direc-
tion of the vector field can be made as steep as desired
by applying an appropriate feedback F}. Using this no-
tion of active subsystems (or active nodes) in the graph,
the results of [9] yield the following proposition, where
we call a tuple of nodes (vq,va,...,v;), I > 3, cycle if
there exists an edge from v; to v;41 for all ¢ € [[—1], and
v1 = vy, that is, the starting node equals the last node.

Proposition 11 Consider a control system of the form
(1) given through subsystems of the form (9) and let As-
sumption 9 hold. Moreover, assume that in each cycle of
the directed graph corresponding to the decomposition (9)
there is at least one active subsystem. Then there exists
a d-separable clf for the system (1).

PROOF. Let V}, j € [s], denote the ISS-Lyapunov
functions obtained from Assumption 9. Applying The-
orem 4 and Theorem 5 in [9], respectively, yields the
existence of continuous, positive definite functions
Aj: R>g = Rxg, j € [s], such that

s Vi)
V()= ;)/0 Aj(s)ds

is a Lyapunov function for

Zj = fi(z5,2-5, Fj(2)), J € [s]-

This implies that V satisfies condition (2b), whence V'
is a clf for (1). This gives us the decomposition of V as
d-separable function as in Definition 3. O

Revisiting the control system in (10), we can check that
V;(z;) = x? is an ISS-Lyapunov function for each sub-
system and that the first subsystem is active. Thus,
Proposition 11 yields the existence of a 1-separable clf
for Example 10. Overall, by invoking Corollary 7 we can
conclude that Proposition 11 identifies a class of con-
trol systems, where a clf can be approximated by a NN
without the curse of dimensionality.



4.2 Linear separability via linearization

In this subsection, the discussion of Subsection 4.1 is
extended to the existence of linearly d-separable clfs ac-
cording to Definition 5. We motivate this extension by
considering a variation of (10), namely the control sys-
tem

T, = x3 + u,

. 2

To = X1 — T2 + T3, (13)
T3 = X2 + x3.

Applying the backstepping procedure (cf. Section 6.1 in
[37]) yields the existence of a clf for the system (13).
However, the obtained clf is not 1-separable. In fact, it
follows from Lemma 5 in [19] that there does not exist a
1-separable clf for (13). However, one can show that the
control system falls into a class of systems that possess
a linearly 1-separable clf, at least on some neighborhood
of the origin. In order to formulate the corresponding
assertion, we first show that stabilizable linear systems
always admit a linearly 1-separable clf.

Proposition 12 Consider a linear control system of the
form

& = Ax + Bu, (14)
where A € R™"™ and B € R™*™. Assume that (A, B)
is stabilizable. Then there exists a linearly 1-separable clf
V' for the system (14). The function V is quadratic, i.e.,
V(z) = 2T Px for some P € R™" and satisfies

inf DV (z)(Az 4+ Bu) < DV (2)(A+ BF)x < —c||z||3

u€R™m
(15)
for a suitable feedback matriz F € R™*™ and a constant

c>0.

PROOF. It is known that for a linear and stabilizable
system, there always exists a clf of the form V(z) =
2T Pz for a suitable symmetric and positive definite ma-
trix P € R™*™. The inequality (15) then follows from
the usual matrix Lyapunov inequality. As P is symmet-
ric and positive-definite, there exists an orthogonal ma-
trix T" € R™*™ such that

P :=T7'PT =TT PT = diag(p1, ..., pn)
is a diagonal matrix. Thus,
V(Tz) = (Tz)" P(Tz) = 27 Pz = Z}%I?
i=1
is a 1-separable function. O

Proposition 12 implies that linearizable control systems
locally possess linearly 1-separable clfs.

Corollary 13 Consider a control system (1) with a C-
function f and assume that its linearization at the origin
is stabilizable. Then the control system (1) possesses a
linearly 1-separable clf on some neighborhood of the ori-
gin.

PROOF. Write f(z,u) = Az + Bu + g(x,u) with

N CAD] 0.
I(zw)ll=0 || (2, )]

Since (A, B) is stabilizable, Proposition 12 yields the ex-
istence of ¢ € R>p, F' € R"*™, and a linearly 1-separable
function V(x) = 27 Pz such that (15) holds. Following
the proof of [40, Theorem 19], we obtain

inf DV (2)f (2, u) < —cllz][3 + 20Pg(x, F(x)) <0

22 Pg(z,F(x))]

for x sufficiently small, since ToT2 — 0 for z —

0. Hence, V is a clf for the nonlinear system (1) in a
suitable neighborhood of the origin. O

4.8 Linear separability via feedback linearization

Next we explore a class of systems for which Proposi-
tion 12 can be employed to achieve linear separability
through a potential nonlinear transformation. To this
end, we extend the definition of feedback linearizability
from [40, Section 5.3| to multi-input systems.

Definition 14 An affine control system
&= f@)+ ) gy
j=1

with control input u = (uy,...,um)’ € R™ is called
feedback linearizable, if there exists a diffeomorphism S €
CY(R™,R") as well as maps a;,bj: R" — R, j € [m],
such that the transformed control system

i = f@)+ Y @

with transformed state & = S(x), new control input v =
(v1y. ., om)T € R™ and

f(#) = DS(@)(f(x) + i a;(2)g5() )

9;(2) = bj(x)DS(2)g; (),

is a linear control system, i.e., if there exist matrices
A € R"™™ agnd B € R™™™ such that f(Z) = AZ and
(1(Z),...,gm(Z)) = B holds for all z € R™.



Theorem 15 Consider a feedback linearizable affine
control system with transformation map S satisfy-
ing S(0) = 0, for which the pair (A, B) is stabiliz-
able. Then the control system has a clf V' of the form
V(z) = V(S(x)) with a linearly 1-separable function
V. :R" - R.

PROOF. According to Proposition 12, we have

inf DV (#)(AZ+ Bv) < DV (%)(Ai+ BFi) < —c||||?

vER™

for suitable ¢ € R>g, F' € R"™*™, and some linearly
1-separable mapping V. For V(z) = V(S(z)) and u; =
a;(z) + bj(x)v; we then obtain

DV(@)(f(x) + 3 g(x)u;)

= DV(S(x))DS(x)(f(x) + Z 9;(%)(a;(z) + bj(x)vy))

= DV(&)(f(@) +3_4;(#);) = DV(7)(AZ + Bv).

This implies

ueR™

inf DV (2)(f() + 305 (@);) < —elS@3

Since S is a diffeomorphism with S(0) = 0, there exist
ar, a2 € Koo with an(([z]l2) < ([5(2)]2) < cx(llz]l2),
see Lemma 1 in [24]. Thus, V satisfies all inequalities in
(2), whence it is a clf. O

Corollary 16 Consider the setting of Theorem 15 and
assume that the transformation map S is linearly k-
separable for some k € [n]. Then the control system has
a clf V that is a composition of a linearly 1-separable
function with a linearly k-separable function.

Note that Corollary 16 in particular applies to linear
mappings S, as linear mappings are always 1-separable.
We can conclude that for control systems that satisfy
the requirements in Corollary 16 there exists a curse-
of-dimensionality-free approximation with a NN that
is built as in Figure 1, but has one additional hidden
layer at the beginning, which is used to represent the
k-separable transformation S.

5 Numerical illustration
5.1 Network structure and training algorithm

The structure of the NN that we use for the computation
of a linearly separable clf is exactly the one depicted in

Figure 1 with the modification of introducing a hyper-
parameter s for the number of sublayers, i.e., replacing
the n sublayers in Figure 1 by s sublayers. An important
feature of this network architecture is the fact that the
decomposition of the state vector x into the vectors z;,
1 < j < s, is determined by the first hidden layer. Thus,
the detection of a suitable splitting of the state space (see
Definition 3) is part of the training process. This means
that the numerical algorithm presented in this section
does not need to know the splitting or coordinate trans-
formation discussed in Section 4. Rather, this structure
will be “learned” by the network in the training process.

It is possible to incorporate the linear transformation
computed by the first hidden layer in Figure 1 into the
second hidden layer, that is, to merge the two hidden
layers into one hidden fully-connected layer. Since the
NN in Figure 1 can be viewed as a fully-connected NN
with some particular weights set to 0, a fully connected
NN still preserves the property of mitigating the curse
of dimensionality for separable clfs. However, in our nu-
merical test cases, the NN with two hidden layers as de-
picted in Figure 1 frequently demonstrated an improved
numerical performance. On the other hand, if no a priori
estimates of the hyperparameters d and s are possible,
the usage of a fully connected NN is more practical. A
detailed comparison of these NN architectures, includ-
ing different numbers of hidden layers, is of high impor-
tance but is deferred to future research due to space lim-
itations.

In order to train the NN z — W(z;60) towards a clf,
we define a loss-function L that penalizes the violation
of any of the three inequalities defining a smooth clf in
Definition 1. For any point € K we set

L(z,W(z;6), DW(x;0)) :=
(W (2;0) — aa(llz])]-)* + (W (2;6) — aa(|z])]+)*

o [astlel) + inf WG OS] ) G6)

where a1, € Koo, as € K, []+ := max(-,0), []- :=
min(-,0), and n > 0 is a weighting factor. Note that
the functions aq, as, and ag, as well as the parameter
1 are hyperparameters of the algorithm. Their choice
can significantly affect the training process, whence a
system approach for selecting these hyperparameters is
important and will be investigated in future research.

Note that L depends on the point x, the evaluation
W (z;0) and the orbital derivative DW (x; 0) f(x,u). We
calculate this orbital derivative alongside the evalua-
tion of W (z; #) via automatic differentiation. This means
that the orbital derivative is computed on the fly from
the separable network, using the built-in differentiation
via backpropagation in Tensorflow. Thus, the derivate
does not need to be stored separately, whence separa-
bility of the orbital derivate, which cannot be expected



since f is not separable, is not needed. Moreover, we
need to evaluate the expression inf, ey DW (x;0) f(z, u).
This expression can be simplified for systems with U =
[-C, C]™ for some C' > 0 and an affine linear control in-
put of the form & = f(z,u) = h(x) + g(x)u, since then
we have

irelfU DW (x;0)f(x,u) (17)
=DW (z;0)h(x) — C|DW (z;0)g(z) |1,

cf. [19, Lemma 6]. The training process of the NN is then
performed by minimizing the value of the loss function
(16) over a finite set of training data Dy C K.

Remark 17 Clifs can be characterized as solutions of
Zubov’s equation [6,20], i.e., as optimal value functions
for suitable optimal control problems. For such problems,
NN approaches have been proposed in the literature, see
e.g. [3,27,34,44]. However, they are difficult to apply in
our setting, because while we assume that a separable clf
exists, we do not know its precise form and thus also not
the corresponding optimal control problem.

Furthermore, in our numerical tests it has turned out
that the most significant error usually lies around the
origin. We tackle this by adding the term W (0;6)? +
| DW (0; 6)||? to the loss-function used for the training of
the network, cf. [7]. Adding these terms to the loss func-
tion encourages the used optimization routine to stay
at W(0;0) = 0 and DW(0;0) = 0 during the training.
While this approach produced the best results for us,
different ways to address issues at the origin have suc-
cessfully been implemented in the literature, for instance
by transforming the NN output, cf. [15,32].

5.2  Numerical test case

Finally, we illustrate the presented algorithm on the fol-
lowing 10-dimensional control system

—T1 + 129 — 0.1x3
—ToUp
—x3 + T3Ty — 0.1x%
—T4U2
b= fou) = —T5 + T5T6 + 0.1x$ (18)
—TgUs3
—x7 + T7x8
—x3Uy

—X9 + T9T10

—Z1oUs + 01.73%

with U = [—1,1]°. It consists of 5 two-dimensional bi-
linear subsystems of the form y = —y + 2y, 2 = —uz

coupled with small non-linearities. For v = 1 this re-
covers the ODE presented in [2], where it is shown that
there does not exist a polynomial Lyapunov function for
this system on R2. While there still exists a quadratic clf
with appropriate coefficients on compact sets, enlarging
the training domain makes it more difficult to recover it.
This can cause the NN to defer from a quadratic influ-
ence of the variables, cf. Figure 3.

To illustrate the ability of our approach to deter-
mine subspaces that lead to separability, we consider
the transformed system @ = T~ !f(Twx,u), where
T = Ip + P € R0 with P being normally dis-
tributed around 0 with scale 0.1 leading to a condition
number of |T]|||T1|| =~ 2 in the presented test case.
Note that the subsystem that are computed during
the training process are typically not the original sub-
systems from (18). We employed the hyperparameters
ai(r) = 0572, as(r) = 1012, az(r) = 0.01r2, as well as
d=2,s=25,and M = 64 in a training process with
2¢5 training data, a batch size of 64, and the softplus-
function o(-) = In(1 + exp(-)) as activation function in
the second hidden layer. The training process was con-
ducted to compute a clf on the domain [—4,4]1%, where
we beforehand transformed z — ix and performed
the training on [—1,1]'° for numerical reasons. Our
computations are carried out with Python 3.10.6 and
Tensorflow 2.11.0 (see [1]) on an NVIDIA GeForce RTX
3070 GPU. The optimization has been performed with
the ADAM stochastic gradient descent method. After
30 epochs and a training time of 380 seconds, the algo-
rithm reached an £; error of 4.4e~° in the training data.
An evaluation at independently chosen 2e° test data
showed an £; error of 1.1e7% and an L error of 8.9¢2.

Fig. 3. Approximate clf (solid) and its corresponding orbital
derivative (mesh) on the (z1,z3)-plane.

Figure 3 shows the computed NN output W(z;0)
as surface plot. Further, the directional derivative
DW (x;0) f(x,u*) with

u*(x) = argmin DW (x; 0) f(x, u) (19)
is calculated according to (17) and depicted as wireframe

plot. Figure 4 depicts the evaluation of W (x;0) along-
side 10 trajectories with initial values randomly sampled
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W(x(t); 8)

Fig. 4. Evaluation of W (z;0) along trajectories.

in [-0.5,0.5]'° and control u*(z) as in (19). Note that
the convergence of the trajectories in Figure 4 towards
0 as well as the plots in Figure 3 provide empirical evi-
dence that the computed NN output might indeed by a
clf. However, there is no formal guarantee that the Lya-
punov conditions are met at every point. For verifica-
tion techniques, we refer to the corresponding discussion
in the introduction. Our Tensorflow code is available on
https://github.com/MarioSperl/SeparableCLF-NN.

6 Conclusion

In this paper, we have discussed the capability of NNs
to approximate clfs in high space dimensions. To this
end, we have shown that NNs can mitigate the curse
of dimensionality for approximating (linearly) separable
functions and provided conditions for the existence of
(linearly) separable clfs. Thus, we have identified con-
trol systems that allow for a curse-of-dimensionality-free
approximation of clfs with NNs. Moreover, a numeri-
cal algorithm was presented and illustrated on two ten-
dimensional control systems. For future research, we in-
tend to systematically study the influence of the hyper-
parameters determining the NN architecture and the loss
function. Afterwards, a comparison to other numerical
methods is of interest, as it was for example done in [44].
Moreover, we aim to investigate the approximation of
non-smooth clfs with NNs. A possible basis for this may
be recent results on curse-of-dimensionality-free approx-
imations of non-smooth compositional functions with
ReLU NN, see [16], which rely on the approximation
result in [43].
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