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Chapter 1

Introduction and Overview

Biological cells are apart from highly specialized biological units like the cell nucleus,
mitochondria and other organelles made of a complex fluid, the so-called cytosol. Its
main constituents are the cytoskeletal proteins which are met mainly in its polymerized
form as actin filaments and microtubules. These are major parts of the cytoskeleton
building the scaffold of most eukaryotic cells, stabilizing the cell morphology and thus
determining predominantly the mechanical properties of the cell [1, 2, 3, 4]. Apart from this
obvious importance for the overall cell structure the cell is organized vastly by an efficient
machinery which involves in addition to the cytoskeletal proteins also different kinds of
filament-associated proteins like motor proteins [5], crosslinkers [1], capping proteins etc..
Motors are specialized proteins that can move on the cytoskeletal polymer scaffold either
to perform intracellular transport or to reorganize the cytoskeleton itself if in contact
with several filaments. Vesicles for instance are transported across a cell by motors mo-
ving along the tracks defined by microtubules, or – which is the scope of part II of this
work – oligomeric motor proteins that attach to two or more filaments induce relative
motion between neighboring filaments and cause dynamical networks. The latter process
is vitally important in cells, since the cytoskeleton constituted of the filaments has to be
self-organized and even actively reorganized during cell locomotion [6, 7] and in order to
react to outer stimuli. During mitosis, microtubules attach to the chromosomes, which
are then divided and the two halves finally are transported by the motor-induced filament
sliding into the two evolving daughter cells [8, 9].

The detailed regulation of the above mentioned processes naturally is rather complex
and still a huge field of research in molecular cell biology. However, many properties of the
cytoskeleton are based on purely physical mechanisms [10]. Looking at such diverse fields
like cell mechanics and cell rheology, complex fluid behavior and the statistical physics of
polymer solutions or nonequilibrium states and pattern forming processes, all of these are
fields of growing interest among physicists.

To apply a physical description to such a complex problem as cytoskeletal dynamics,
one is obliged to first identify smaller subproblems that can be easier investigated. In the
present work I will study two inherent aspects of the cytoskeleton, inherent meaning that
these processes are caused by the nonequilibrium state of the cell and therefore are not met
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2 CHAPTER 1. INTRODUCTION AND OVERVIEW

in systems that might look similar but are in equilibrium like usual polymers or colloids.
Both the polymerization and depolymerization process of the cytoskeletal filaments and
the motor-mediated transport need a chemical fuel which is delivered abundantly by the
cell’s metabolism keeping the cell in a highly nonequilibrium state. In most cases, this
biological fuel is Adenosine-triphosphate (ATP) and for both the polymerization of one
monomer onto a filament and for one step of a motor protein on such a filament, one
molecule of ATP is needed.

The constituents of the cytoskeletal system will be introduced and their properties, as
far as they are relevant to my work, will be discussed in chapter 2.

Pattern formation in self-assembling nematic biopolymers

The ongoing polymerization and depolymerization of actin filaments and microtubules
are important for many different purposes, such as cell motility [7, 11, 12], cell division
[8, 13] or morphogenesis [14]. Due to the nonequilibrium character of the polymerization
both cytoskeletal filaments show new states like oscillatory polymerization [15, 16] and
active phenomena like treadmilling [17]. On the other hand, being quite stiff polymers
like the famous example for rod-like particles, the Tobacco Mosaic Virus [18], also actin
and microtubule filaments undergo with increasing density a transition to an orientational
order [19, 20, 21, 22, 23, 24]. This so-called nematic order [25] has been traced back to
the excluded volume interaction between the filaments [26, 27], which is lowered by the
ordering and compensates the loss of entropy due to the ordering. This remains to be
true for semiflexible polymers, albeit at a slightly higher filament density [28], as has been
observed for actin in vitro [21].

Part I of this work is devoted to investigate the interplay of the above processes, namely
the influence of the self-assembly of the cytoskeletal filaments on the nematic order. We
predict a new pattern forming mechanism which is based on the following idea: Onsager’s
theory [26] of the isotropic-nematic (I-N) transition, which is valid for long filaments of fixed
shape and infinite lifetime τ , predicts near the I-N ordering transition a phase separation
into domains of isotropically oriented rods at low density and nematic domains of higher
rod density, a process which has been observed also for actin filaments with an almost
vanishing kinetics [24]. For a finite lifetime τ of actin and microtubule filaments however, as
usually the case due to the nonequilibrium polymerization kinetics, Onsager’s equilibrium
theory for the nematic order does not apply. Moreover, this finite τ limits the diffusive
transport distance and the coarsening during the phase separation close to the orientational
transition to a length scale of about lD =

√
Dτ , with the filament diffusion coefficient D.

Accordingly we expect a kinetically induced periodic pattern of alternating isotropic and
nematic regions, with a wavelength that can be estimated to be in the order of 10µm.

The generic scenario near the ordering transition is investigated in chapter 4 in terms of
a phenomenological model which is minimal in the sense that it catches all the features of
the Onsager theory. The model is introduced and analyzed at first without the polymeriza-
tion kinetics of the filaments and compared extensively with the predictions of Onsager’s
theory. In chapter 5 it is extended by the essential reaction steps as motivated by actin
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and microtubule polymerization and the predicted pattern formation is investigated. Part
of these results have been published in Ref. [29]. Before, in chapter 3, I will introduce how
the I-N transition can be described and quantified and review the Onsager theory and the
Doi equation for rigid rods which will also be the starting point of the investigations in
part II of this work.

Pattern formation in filament-motor solutions

In the second part of this work, I consider the nonequilibrium motor-mediated interaction
of the cytoskeletal filaments. To circumvent having to deal with two dissipative processes
simultaneously, in contrast to the first part we will consider a state without polymerization.
This can be achieved both in vivo and in vitro by the use of capping proteins, which
attach to the filament ends and by this way hinder further polymerization and stabilize
the filaments. The interaction of filaments with motors as well as motor-mediated filament-
filament interactions play a crucial role in eukaryotic cells. Most prominently, microtubules
and associated motors like kinesin are involved in highly connected dynamical structures,
such as the mitotic spindle in cell division [14, 8], while the motility of the cell as a whole
is also partly governed by acto-myosin complexes [7, 30]. Due to the nonequilibrium state
of high ATP supply, filament-motor solutions may display dissipative patterns and self-
organized structures like asters, bundles and vortices, [31, 32, 33] and active phenomena
like active response to stresses [34, 35] and fluidization [36].

Since the situation again is very complex in a living cell, well designed in vitro exper-
iments are the agent of choice for controlled explorations of prominent aspects of cellular
systems. Recent experimental progress yielded indeed important insights into organization
and dynamical properties of the cell, which in turn call for modeling activities to foster
their deeper understanding. These experiments comprise investigations of self-organization
in filament-motor mixtures of microtubules in the presence of a single type of motor protein
[37, 31, 32] and more recently also in actin-myosin networks [36, 38] as well as assays where
two types of motors interact with microtubules [33]. Even in such model systems, simple
compared to a living cell, there has been found a great variety of different two-dimensional
patterns, such as stripe patterns, asters, vortices and irregular arrangements. I shortly
review the experiments we want to describe in section 6.1.

To model pattern formation in filament-motor systems, in part II we follow a mesoscopic
approach starting from the Smoluchowski equation for rigid rods or Doi equation [39]
introduced in section 3.2.2. This is an equation for the spatial and angular distribution
of rigid rods, the latter approximating the stiff microtubules and with limitations also the
actin filaments. Such an approach is widely used in polymer and colloidal science and
recently has been supplemented by active currents to describe filament-motor systems [40]
in a way inspired by a model for filament bundling in one spatial dimension [41]. In this
approach one makes use of the fact that the small motor proteins diffuse much faster than
the filaments. Hence the density of the motors can be assumed to be homogeneous and – as
well as properties like the mean velocity and the duty ratio of the motors – enters into the
model only via the coefficients. The phenomenological description of the active currents
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can be derived by symmetry considerations. The filament-filament interactions induced
by the motors as well as by excluded volume effects are generically nonlocal, but they can
be approximated by a gradient expansion. Most of the experimental assays are quasi two-
dimensional, thus we restrict our analysis also to two spatial dimensions. Moreover, since in
vitro aster-like patterns evolve at much lower filament density than the isotropic-nematic
transition, a moment expansion of the probability density function can be truncated to
derive a closed set of equations for the physical observables, which are the density and the
orientation field of the filaments. The details of the mesoscopic model and the derivation
of the coarse-grained equations for the density and the orientation field can be found in
chapters 7 and 8.

In the framework of the derived coarse-grained model, a detailed linear stability ana-
lysis of the homogeneous and isotropic filament distribution as carried out in chapter 9
reveals a rich variety of instabilities in an infinite two-dimensional system: homogeneous
isotropic-nematic, stationary and oscillatory finite wavelength instabilities as well as a
motor-mediated demixing instability. It follows a detailed characterization of the weakly
nonlinear behavior of the patterns beyond their threshold. For this purpose we employ
on the one hand numerical simulations of the coupled equations for the filament density
and the orientational field. On the other hand we use the method of amplitude expansion,
where equations of motion for the amplitudes of the spatially periodic pattern are derived
close to the pattern forming instability [42, 43, 44]. By a linear analysis of the stationary
solutions of the amplitude equations one can also calculate the stability regions of the
respective patterns.

Chapter 10 is devoted to the stationary finite wavelength instability, which near the
threshold of pattern formation allows for stripes, squares or hexagonal patterns in a two-di-
mensional system. However, hexagons can be ruled out both analytically and numerically.
The remaining square and stripe patterns can be related to the aster-like and bundle-
like patterns observed in experiments. The linear analysis and the investigation of the
stationary finite wavelength instability have been published in [45]. Since the filament-
filament interactions are nonlocal, a gradient expansion of the interaction kernel has to
be used, which has to be continued up to fourth order to describe the pattern forming
instabilities in a reasonable manner, cf. Ref. [46]. Chapter 11 is devoted to the oscillatory
finite wavelength instability, which is first investigated in one dimension yielding coupled
density-orientation waves, either traveling or standing ones. In two dimensions one can
derive four coupled amplitude equations for right- and left-traveling waves in the two
orthogonal directions of a square. From the diverse solution space however, only traveling
and alternating waves are found to be stable. An alternating wave is a four mode solution
which is composed of two standing waves in perpendicular directions with a π/2 phase
shift in time. The demixing instability is investigated in chapter 12. Here the linearly
most unstable mode determines the initial stage of the patterns, followed by a coarsening
process that involves aster-like patterns whose wavelengths are growing in time.

Eventually, in chapter 13 an interpretation of the model to account for actomyosin is
proposed, which tries to explain and has triggered recent experimental results [38]. In
contrast to the dissipative patterns in microtubule-motor solutions, the myosin motors
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maintain disorder in solutions of actin filaments when active and induce patterns when the
ATP concentration is depleted. We propose that these patterns are caused by a crosslink-
ing process due to motors running out of ATP, which are known to attach rigidly to the
actin filaments. These clusters can be still transported and may drive the system into
the unstable region of phase space, where patterns form quickly through one of the linear
instabilities discussed above. Ultimately the patterns are frozen in due to total ATP deple-
tion. Second, the influence of permanent crosslinking proteins like streptavidin is discussed
and exemplified within the existing model. We argue that the permanent crosslinkers can
be interpreted as a disorder in the pattern forming problem, which reduces the instability
threshold. Thus a filament-motor system shows a higher propensity for pattern formation
in the presence of a small fraction of crosslinkers, in agreement with the experimental
results [38].
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Chapter 2

Biological components: filaments and
motors

Presumably, everybody knows the pictures of a biological cell from schoolbooks, where the
cell membrane separates the inside containing the nucleus and specialized organelles like
the endoplasmatic reticulum or the mitochondria from the cells’ surroundings. In recent
times, after the functions of these organelles - which for obvious reasons attracted the
interest of biologists since their discovery by light microscopy - have been to some extent
understood, also the complex fluid in which these are embedded has become a growing
field of research.

The main constituent of this so-called cytosol are the cytoskeletal proteins. These
proteins in their polymerized form build up the cytoskeleton which is the scaffold used
in most eukaryotic cells to stabilize the cell morphology and determines to a major part
the cell mechanics. Apart from this obvious importance for the overall cell structure
already clear from the notion ”skeleton”, also the inside of the cell is vastly organized by
a clever machinery which involves the cytoskeletal polymers, as well as different proteins
associated to these like motor proteins, crosslinkers, capping proteins etc. Motor proteins,
often also called molecular motors, are specialized proteins that can walk on the polymer
scaffold either to perform intracellular transport or to organize actively the cytoskeleton if
in contact with several filaments.

What makes the cytoskeleton and their associated proteins not only interesting for
biologists but also for physicists is the fact that a living cell inherently is a nonequlibrium
system. Indeed, in both fundamental processes mentioned above, the polymerization of the
cytoskeletal filaments and the motor-mediated transport, a chemical fuel is needed that is
delivered by the cell metabolism. Nonequilibrium polymer physics as well as irreversible
transport processes in a complex fluid are answers physics should give in the future to the
above biological questions, both topics being also of a more general interest.

Since physicists usually are not familiar with cell biology, I introduce in the following
section the constituents of the cytoskeletal system and discuss their nonequilibrium prop-
erties. This chapter is a synopsis mainly from the textbook [5], but also from [1, 2, 6, 3]
as well as from several review articles [47, 48, 8, 7, 49, 50, 51].
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8 CHAPTER 2. BIOLOGICAL COMPONENTS

2.1 Cytoskeletal polymers

To distinguish the nonequilibrium cytoskeletal polymers from usual equilibrium polymers,
they are often called biopolymers. There are three main types, actin filaments, microtubules
and so-called intermediate filaments, the latter ones being not well understood (even their
structure is still subject to dicussions) and therefore not considered in this work.

2.1.1 Structure

Figure 2.1: A) The structure of an actin monomer. B) The structure of filamentous actin.
C) Electron micrographs of actin filaments. The picture is taken from [2].

Let’s look at first at the biopolymers from a polymer physicists point of view. Actin
filaments, which are also called microfilaments, a notion which is not used here to prevent
confusion with the microtubules, are shown in Fig. 2.1C. They have a diameter of 6nm
and a persistence length1 of about Lp = 15µm. In total length they range from very short
aggregates of ∼ 35nm in the cortex just underneath the cell membrane of erythrocytes (red
blood cells) to very long structures of 10 − 100µm in stereocilia, the sensory receptors of
the vertebrate inner ear [5]. The usual length in the cytosol however is several µm meaning
that cytoskeletal actin is a so-called semiflexible polymer since the filament length is of the
order of the persistence length.

1The persistence length of a polymer can be defined as the decay length of the tangent-tangent cor-
relation function, i.e. if s is the contour parameter and t the tangent on the filament, the relation
〈t(x + s) · t(x)〉 ∼ e−s/Lp holds.
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Figure 2.2: A) The structure of a tubulin dimer comprising one α- and one β-tubulin.
B) The dimers form a linear protofilament. C) The structure of a microtubule containing
thirteen protofilaments. D) An electron micrograph of a microtubule. The picture is taken
from [2].

Microtubules (MTs) as shown in Fig. 2.2D have a diameter of 25nm and a persistence
length of about Lp = 6mm, implying that they are much stiffer than actin filaments. In
the cytoskeleton, likewise the actin filaments MTs have lengths of the order of µm and
thus are nearly rigid rods since their length is small compared to the persistence length.
Nevertheless, lengths can reach up to 1mm in insect sperm [5] then implying semiflexibility.

Structure of the subunits

Both biopolymers are build up of subunits, namely actin monomers in the case of actin
filaments and tubulin dimers in the case of microtubules. The protein structures2 of both

2Some words on protein families [5]: the proteins which we refer to as just actin or tubulin however can
differ (since their aminoacid sequences differ) due to the following reasons: first by genetic polymorphism
inside a species (where different proteins in most cases are functionally identical, if not this often leads
to genetic diseases). Second by genetic variations between species, where however both actin and tubulin
are very conserved protein structures: as examples, skeletal muscle actin of humans is identical with that
of mice and chickens and even the β-tubulin of the beer yeast has 72% identity to that of humans. A
third possibility of protein diversity is the fact that in higher animals proteins are encoded in the genes
more often than once, which is supposed to be used to generate slightly different proteins for differentiated
tasks. For our purposes however, since actin and tubulin are such conserved structures we discard these
variations and treat different actins as identical, as well as different MTs.
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has been resolved by X-ray diffraction on crystallized proteins and they are displayed
in Figs. 2.1A and 2.2A respectively. Both subunit proteins have in common that they
exhibit a cleft where a nucleotide and a Mg2+ ion is bound. In the case of actin, the
nucleotide is ATP or ADP (Adenosine triphosphate or adenosine diphosphate respectively)
while for microtubules it is GTP or GDP (Guanosine triphosphate or guanosine diphosphate
respectively). These bound nucleotides are essential for the nonequilibrium polymerization
process as explained in section 2.1.2 below.

The tubulin dimer consists of two similar structured tubulin monomers, called α- and β-
tubulin, which are joined together in a head-to-tail fashion, the nucleotide of the α-tubulin
being trapped in between, cf. Fig. 2.2A. Thus the α-tubulin can almost not exchange
its nucleotide (it is also called N site for nonexchangeable), while the nucleotide of the
β-tubulin is in contact with the solvent and can be more easily exchanged (E site for
exchangeable). When I refer in the following to the hydrolysis of the subunits’ nucleotides,
in the case of tubulin this means the one of the β-tubulin. To summarize, although the
subunits of MTs are dimers, for our purposes they can be treated in quite the same way
as the actin monomers.

Filament structure and polarity

The structures of the polymerized forms of actin and tubulin differ largely and can easily
explain the differences in their rigidity. As can be seen in Fig. 2.1B, the actin filament is a
two-stranded and right-handed helix with a period of 72nm. Because the actin monomers
are asymmetrical (most importantly the cleft, which is crucial for the nucleotide exchange
during polymerization is showing in a specified direction) the whole actin filament is polar
with structurally different ends, which are therefore called plus end and minus end.

The structure of a microtubule is even more complex: the dimers are polymerized
head-to-tail to form a so-called protofilament displayed in Fig. 2.2B, which are themselves
associated laterally to form a hollow cylinder as can be seen in Fig. 2.2C. Since there is a
small offset of ∼ 0.92nm between dimers in neighboring protofilaments the most common
number of protofilaments in a microtubule is 13, leading to a total offset of 12nm meaning
exactly three monomer sizes3. The most common MT can therefore be seen as a so-
called three-start helix. From the stiff hollow cylindrical structure of MTs and their larger
diameter as compared to the two-stranded actin filament, the difference in the rigidities is
quite obvious. From the helical structure and the head-to-tail arrangement of the dimers,
the MT is again a polar structure and one can define a plus end (being the direction of the
β-tubulins) and a minus end.

Properties from the structure

Three key features are important for the processes under consideration in this work: First,
the fact that both actin filaments and microtubules are multistranded with extensive con-

3There exist also MTs with protofilament numbers ranging from 9−17, which however have in common
that they require the protofilaments not to be parallel to the MT axis.
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tacts between the strands lead to a high stability of the filamentous structure. Therefore
the polymerization and depolymerization processes occur by monomer addition and sub-
straction on the filament ends, while addition and substraction of short filaments as well
as filament breaking effects are negligible [5]. Experiments verify this both in vitro and
in vivo [52, 53]. Breaking events have only finite probability when catalyzed by so-called
severing proteins, gelsolin for actin and katanin for MTs [54, 55].

Second, the polarity of both filaments has important consequences: the polymerization
and depolymerization rates are different on both ends, the faster polymerizing one defining
the plus end. In addition, also the surfaces of both filaments are asymmetrical which is
important for the interaction of proteins with the filaments, especially for the motor protein
interaction modelled in part II of this work. As will be discussed in Section 2.2, a species
of motor proteins can move on a filament only in a specified direction. Therefore one can
discriminate plus and minus end-directed motor species.

Third, both filaments are stiff objects (for actin filaments this is only true for not too
long filament lengths, cf. above) and they can therefore be approximated for our purposes
by rigid rods, a fact that simplifies theory considerably. An additional consequence of the
rod-like shape is that biopolymer solutions can display orientational i.e. liquid crystalline
order, which is a main topic of part I of this work and also involved in part II where polar
orientational order in the presence of motor proteins is investigated. An introduction to
liquid crystals and their statistical description follows in chapter 3.

2.1.2 Polymerization

Evidences for nonequilibrium

There are many evidences for polymerization and depolymerization of the cytoskeletal
filaments being a nonequilibrium process: First, the time scales are much faster than for
processes at or close to thermal equilibrium. Both actin monomers and tubulin dimers can
be fluorescently labeled and followed to build up filaments in a microscope. For actin in
stress fibers this happens in several minutes and for MTs in interphase cells the time scale is
about an hour [56, 57]. For an equilibrium polymer however, where one has approximately
an exponential length distribution and diffusive growth, one can estimate the standard
deviation for length changes to be in the order of only a few tens of nanometers per minute
[5], far to slow to account for the above processes.

Second, a state called dynamic instability has been observed in microtubules both in
vivo and in vitro [15, 16], which takes place only in the presence of the biological fuel GTP.
In this state, there are random transitions of individual MTs between a growing and a
shrinking state with different rates (1µm/min and 10µm/min respectively). The switching
happens on a time scale of minutes and the fact that nearby MTs can be in opposite states
indicates that it cannot be explained just by fluctuations in the monomer density. This
nonequilibrium state has attracted already several physical modeling efforts [13, 58, 59].

Third, in specialized cells, filaments can be generated with well defined lengths, e.g.
the actin filaments in muscle cells have fixed lengths with a deviation in the nanometer
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Figure 2.3: The involvement of the hydrolysis cycle in the nonequilibrium polymerization
process is sketched. The top row applies to the growing state due to polymerization and the
bottom row to the shrinking due to depolymerization. Subunits carrying an ATP (actin) or
a GTP (MTs) are marked with T and those with ADP and GDP respectively are marked
with D. While becoming a part of the filaments’ interior by subsequent polymerization, T
becomes hydrolyzed to D. If the T-’cap’, here sketched only as a single T unit, gets lost,
the growing state switches to the shrinking one. The picture is taken from [5].

(i.e. monomer) range, and this state is maintained over the half-life time of actin, which is
about a week. This is also a state which is hard to maintain in an equilibrium situation.

Coupling to hydrolysis

These unexpected properties are made possible, as will be explained below, by the coupling
of nucleotide hydrolysis to the polymerization process. Actin is called a polymerization-
catalyzed ATPase, i.e. while actin monomers carry ATP, in the polymerized state they
carry ADP, implying that ATP hydrolysis,

ATP + H2O ⇋ ADP + Pi + ∆E , (2.1)

with Pi a phosphate ion, has happened in the course of the polymerization of each subunit.
If depolymerizing however, the process does not run backwards: only ADP-monomers
are released and the ”recycling” of ADP to ATP happens on the free monomers driven
by metabolic processes through ATP-synthase. So depolymerization is not the chemical
reverse of polymerization anymore as is the case in an equilibrium situation. Apart from
its involvement in actin polymerization, ATP hydrolysis is even more important as it is
used to drive many reactions including the motion of molecular motors, and it is discussed
in more detail in section 2.2.3. For microtubules the hydrolysis scenario is similar, but
with ATP and ADP being replaced by GTP and GDP.

The detailed structure of a polymerizing filament is as follows, cf. also Fig. 2.3. During
polymerization, a monomer carrying a nucleotide triphosphate (NTP, i.e. either ATP or
GTP for actin and MTs respectively) is added to the filament. While becoming a part
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of the filaments’ interior by subsequent polymerization, its NTP becomes hydrolyzed to
NDP. However, there is a certain time lag between polymerization and hydrolysis, leading
to a cap structure at the filament end containing some NTP subunits, while the interior
filament only comprises NDP subunits. The hydrolysis of the NTPs in this cap leads to a
destabilization of the whole filament, which switches then to the shrinking state. This is (in
short words) the dynamic instability mentioned above. Whilst well established for MTs,
since the rate difference at the two ends for actin are smaller than for MTs, a dynamic
instability has not been found for actin so far.

A novel nonequilibrium state is the so-called treadmilling state [17], where one of the
filament ends has a cap while the other has not, thus the one polymerizes and the other
depolymerizes. It can be achieved that the total filament length is nearly a constant and
thus the filament appears to move in space into the plus end direction. This state is not
yet fully understood since it exists in vivo in a much wider concentration regime than in
in vitro (implying that additional regulatory proteins are involved). However it may be of
high relevance since it is a quite fast (some µm/min) and directed motion compared to the
slow and undirected filament diffusion.

Simplified kinetics; critical monomer concentration

As already mentioned in section 2.1.1, a multistranded filament like actin and MT elongates
by addition and substraction of subunits at the filament ends, implying

dn

dt
= konm0 − koff (2.2)

for the temporal change of the mean number of subunits per filament. Here m0 means the
monomer (or dimer in the case of MTs) concentration and kon, koff are the on- and off-
rates, here assumed equal on both ends for simplicity. From Eq. (2.2) follows the existence

of a critical monomer concentration, mc =
koff

kon
, for which the elongation rate equals zero.

From a simple model of a two-stranded polymer [5], it follows that for concentrations larger
than mc, the polymers grow and at steady state the polymerized monomer concentration
equals the total monomer (or dimer in the case of MTs) concentration minus mc, while
for concentrations less than mc polymers will shrink and finally disappear. Second, the
mean filament length increases very steeply for concentrations larger than mc. Thus slight
changes in monomer concentration, e.g. regulated by proteins, can have large effects on
the filament length and therefore on the cytoskeletal structure4.

Due to the polarity of the filaments, the rates kon and koff are usually different for
the two distinct filament ends (the plus end has been defined as the faster growing one).
Moreover, also the critical concentrations can differ since the nonequilibrium character
of the polymerization (due to the coupling to the hydrolysis) breaks the requirement of

4A second consequence of the multistrandedness being beneficial for the cell is that the number of
spontaneous nuclei is smaller than in the singlestranded case, it can be estimated to be in the nM range.
If the cell can supply more nuclei than this, by regulatory proteins like e.g. the Arp2/3 complex, it can
govern efficiently where the filament growth should start.
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microscopic reversibility,5 making the treadmilling state with ends in different states pos-
sible. For example, for actin in vivo, the critical concentrations are mA+

c = 0.1µM and
mA−

c = 0.8M [1] for the plus and the minus end respectively.

Some words on concentrations6: Total densities (i.e. polymerized and free monomers
together) range for actin from 200µM for non-muscle cells to 0.5mM in blood platelets and
5mM in microvilli, total tubulin concentrations in cells are about 20µM. ATP and GTP
have typical cytoplasmic concentrations of 1mM, while ADP and GDP concentrations are
about 10µM. Since the affinities of the polymer subunits to the tri- and diphosphate
nucleotides are similar, this leads to the fact that most free subunits carry ATP or GTP
in the case of actin and MTs respectively. Inside the cell, there is thus strong tendency
to filament polymerization, since the free subunit concentrations carrying ATP/GTP and
thus being able to polymerize exceed the critical concentrations by orders of magnitude:
the cytoplasmic ATP-actin-monomer concentration is about 30µM ≫ mA+

c = 0.1µM while
for MTs the GTP-tubulin-dimer concentration is about 10µM ≫ mM+

c = 0.03µM.

Functional aspects

The biological advantage of the nonequilibrium polymerization is quite obvious: The cell
can reorganize its cytoskeleton more quickly and more well defined without having to
synthesize new or degrade old protein. The dynamic instability is used as an efficient way
to search in space during mitosis [13]. In addition, the polymerization can even be used to
do mechanical work (with forces in the pN range, i.e. comparable to molecular motors), if
the monomer concentration differs from the stationary concentration. This is again faster
and more effective using the hydrolysis energy as compared to the equilibrium case. It is
used in cells during mitosis and also as a mechanism for locomotion e.g. in the bacterium
Listeria monocytogenes [60].

2.2 Motor proteins

Motor proteins, also referred to as molecular motors, convert the chemical energy delivered
by the cell in the form of ATP into mechanical work. This is again done by the hydrolysis
reaction, Eq. (2.1), we have already encountered in the nonequilibrium polymerization
process. The mechanical work is most often a translation of the motor potein relative to
a filament, which is used for many purposes: in cell locomotion, in intracellular transport
like the movement of organelles or the segregation of chromosomes, in force generation and

5In an equilibrium system, if going from a n−mer to a (n + 1)−mer by polymerization, it is indistin-
guishable on which end the monomer has been added, Boltzmann’s law thus implying equal equilibrium
constants and therefore equal critical concentrations. The on- and off-rates can however differ if only mc

does not change [17].
6It should be mentioned that critical concentrations depend highly on ionic strength and also on tem-

perature, the given numbers being measured at physiological conditions: a higher temperature enhances
the polymerization as does a higher cation concentration.
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Figure 2.4: Sketch of the motor cycle for
myosin. A) If the motor binds to the actin,
the phosphate is released and the motor is
strained. B) The strain drives a conforma-
tional change which is amplified by the lever
region and moves the load. C) After re-
lease of ADP and binding of ATP, the mo-
tor leaves the filament. D) Being unbound
the motor recovers its initial conformation
which leads to a movement of the motor to-
wards the next binding site on the filament.
D, T and P indicate that the motor carries
ADP, ATP or Pi respectively. The picture
is taken from [5].

in the beating of cilia and flagella. The first motor protein, myosin, has been discovered
by Huxley in 1957 during investigations of muscle contraction [61].

2.2.1 Structure and properties

The most widely accepted model that accounts for the structural, biochemical and me-
chanical properties of motor proteins is the rotating crossbridge model which involves three
main steps: first, the nucleotide carried by the motor regulates the affinity of the motor
to the filament. Thus the motor cycles between attached and detached states. Second,
small changes in the order of angstroms in the nucleotide binding pocket of the motor must
be amplified to changes of the whole protein domain in the order of nm which is called
the swinging lever arm hypothesis. Third, an elastic element is assumed in the motor
which is strained upon the conformational change and moves the load-bearing region of
the motor along the filament, which is called powerstroke model. A cartoon of the rotating
crossbridge model is shown in Fig. 2.4. Accordingly in a motor protein one should be able
to discriminate three distinct regions: a motor region with a nucleotide binding pocket
that creates the conformational change, a converter region that converts this change to
directional motion and a lever region that amplifies it.

Myosin and Kinesin

The myosin II motors are associated to the actin filaments with which they build the
sarcomere structure being the force generators of muscle cells. Apart from being responsible
for macroscopic movement, myosins are also present in many non-muscle eukaryotic cells
to organize actin networks. The structure of an individual motor as shown in Fig. 2.5 can
be investigated by electron microscopy and stepwise proteolysis of the protein: by cutting
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Figure 2.5: Micrographs and sketched
structure of myosin II. Picture from [5].

Figure 2.6: Micrographs and sketched
structure of kinesin. Picture from [5].

the protein down to the head domain it has been shown that only this globular domain
of 16.5 × 6.5 × 4nm binds to the actin filament. The head domain is an actin-activated
ATPase, i.e. the ATP hydrolysis rate is accelerated in the presence of actin.

The microtubule associated motor protein kinesin, shown in Fig. 2.6, is used in the
intracellular transport of vesicles and involved in the chromosome separation during cell
mitosis. It has a size of 7 × 4.5 × 4.5nm and binds specifically to MTs. Analogously as
in the actin-myosin case, here the presence of a MT catalyzes the ATPase activity, so in
both cases, myosin and kinesin, the presence of the associated filament accelerates the ATP
hydrolysis and therefore switches between attachment and detachment of the motor to the
filament. For all motors studied so far, removing the nucleotides from the solution results
in a very strong and rigor attachment of the motor to the filament.

In a so-called motility assay experiment [62, 63], where motor heads are attached to a
substrate and exposed to a filament solution, one can watch fluorescently marked filaments
being transported in specific directions. It has been established that due to the interplay of
the polar structure of the filament with the molecular structure of the motor - motors are
said to bind stereospecifically to their associated filaments, i.e. at a unique location on the
filament and in a specific orientation - motors can walk on their associated filaments only
in one direction. Skeletal muscle myosin and conventional kinesin both proceed towards
the plus end7.

Besides the head domain, both myosin and kinesin also have a tail region consisting
of a coiled-coil structure which acts as an association domain. In muscle cells, thousands
of myosins are oligomerized at the tails to form the so-called thick filament, which can be
µm long and moves along the actin (thin) filament. In contrast, kinesin ”works alone”
with its tail attaching to the desired cargo, e.g. a vesicle. Thus in spite of structural
similarities, there however is a crucial difference between the two motors: While skeletal
muscle myosin acts as a one-headed motor and therefore forms oligomers to transport actin

7The polarity can also be shown in so-called decoration experiments, where the myosin motors are
fluorescently labeled and attach to the actin filament in such way that the filament looks like an arrow.
Therefore one defines a barbed and a pointed end, the barbed end being identical with the fast-polymerizing
plus end. Recently, fluorescence techniques improved so much, especially by better removing the back-
ground light, that one can even watch single motors moving on a filament [64].
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filaments, for kinesin a cooperative effect of the two heads of a single motor, cf. Fig. 2.6,
leads to a continuous motion on a MT. This will become clear in sections 2.2.2 and 2.2.3.
Additionally, there are also differences inside the protein families8.

Step sizes and forces

Step sizes and forces can be measured in single-molecule experiments using AFM or laser
tweezers. For conventional kinesin, the step size is 8nm which fits nicely the distance
between two tubulin dimers on the same protofilament. That kinesin follows the paths
parallel to the protofilaments has been established in motility assay experiments where
13 protofilament MTs transported by a kinesin-coated surface did not rotate while MTs
consisting of 12 and 14 protofilaments did [65]. The maximum force that kinesin can work
against is 6pN, which can be measured with an optical tweezer where a kinesin is allowed
to walk away from the center of the trap: as the distance increases, the load increases and
finally the motor stalls.

Myosin only interacts transiently with an actin filament and does not step continuously
along it, cf. section 2.2.2. As for kinesin, myosin II follows a path that is parallel to the
axis of the filament, since the latter does not rotate in a gliding assay, demonstrating that
the motor does not follow the two-stranded actin helix which would imply one rotation per
pitch. In an experiment where an actin filament was ”bowed” quickly past a fixed myosin
head, so that there was not enough time for the bead and the filament to rotate, binding
was only observed at multiples of 36nm, which is interpreted as the step size [66]. The
force per head at zero velocity is about 1.5pN for myosin.

2.2.2 Processivity and duty ratio

While myosin in a muscle oligomerizes in huge arrays, kinesin ”walks alone”. The speeds
are also very different, velocities vary from nm/s to µm/s depending on motor type and
external conditions, e.g. the load. This can be understood using the concept of duty ratio.

One distinguishes between processive and nonprocessive motors. Conventional kinesin
is processive, i.e. a single motor moves continuously on the surface of a MT for up to several
microns, corresponding to hundreds of steps with the step size of 8nm. Biochemical exper-
iments showed that kinesin hydrolyzes more than 100 ATP molecules before dissociating,
consistent with one step per ATP molecule.

In contrast, muscle myosin II is nonprocessive and a threshold density of myosin at-
tached to the substrate surface is needed for a continuous transport of actin filaments.

8Apart from myosin II and conventional kinesin, there are many motors related to these two families.
Interestingly, there exist proteins, namely myosin VI and the kinesin-related Ncd, which have similar
protein sequences as compared to myosin II and kinesin respectively, but are both minus end-directed.
This led to the assumption of the converter domain between motor and lever domain which directs the
motion like a gearbox. Also the motor velocities range from 0.1 − 60µm/s for different myosin-related
proteins and from 0.02 − 2µm/s for kinesin-related proteins. Additionally there are other families of
motors, e.g. the MT-associated dynein, which however are poorly understood up to now.
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Below this threshold, myosins attach to the filaments too short a time to produce effi-
cient filament sliding. The threshold density varies with the length of the filaments from
some hundreds to thousands of motor molecules/µm2 corresponding to about 50 myosins
interacting in average with one actin filament to get continuous sliding.

Motor proteins move along their filaments through distances large compared to molecu-
lar dimensions, (a thick filament in a muscle can slide up to 0.7µm as the muscle contracts
and a MT can slide over a kinesin-coated surface for microns) therefore the motor is sup-
posed to work in a cyclic fashion, cf. section 2.2.3. Actually there are two cycles: a
mechanical cycle, i.e. alternating attached and detached states, and a chemical cycle re-
lated to the ATP hydrolysis. During each cycle, a motor domain spends an average time
τon attached to the filament and performing its working stroke and an average time τoff

detached from the filament in which it makes the recovery stroke returning to the initial
conformation, cf. the scheme in Fig. 2.4. One therefore defines the duty ratio as the fraction
of time a head domain spends in the attached phase,

r =
τon

τon + τoff
=

τon

τtotal
≃ 1

Nmin
, (2.3)

which is related to one over the minimum number of motors Nmin needed for a continuous
sliding as this guarantees that there will be on average at least one head bound to the
filament. Because the two-headed kinesin is processive, its duty ratio is r ≥ 0.5, while for
muscle myosin being able to perform continuous motion only in large aggregates of at least
50 to 100 motors, the duty ratio is small, about 0.01-0.02.

If there is a one-to-one coupling between the mechanical cycle (binding, working stroke,
unbinding, recovery stroke) and the chemical cycle (ATP hydrolysis) one expects the motor
speed to be equal to

v = kATPase∆ , (2.4)

with ∆ as the distance traveled by each head relative to the filament per mechanical cycle
and kATPase as the rate at which each head hydrolyzes a molecule of ATP. Such a coupling
of the chemical to the mechanical cycle is clear9 from the fact that the presence of the as-
sociated filaments increases the ATPase rate. Conversely, the speed of movement increases
with the ATP concentration, showing that the mechanics couples back to chemistry. The
ATPase rate saturates as a function of the filament density and the maximum value kmax

9A somehow unexpected finding from the point of view of strong coupling is the fact that in a thick
filament myosin can move a very large distance during the time it takes to hydrolyze a molecule of ATP.
Dividing the speed by the ATPase rate gives a distance of about 400nm per myosin. This was called the
step-size paradox and it was argued that myosin performs many steps with only one molecule of ATP. It
can however be explained by the low duty ratio of myosin: each of the hundred or so motors needed to
perform a continuous motion contributes only one step size 5nm to the distance the filament moves and
hydrolyzes one ATP molecule. While this motor is detached, the other myosins sweep the filament along
the rest of the way. Additionally single-molecule experiments recently confirmed that there is a one-to-one
coupling between the mechanical and chemical cycle, i.e. one ATP is needed for one step.
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is assumed to correspond to the ATPase rate during motility. Values are kmax = 20s−1 for
fast skeletal muscle myosin, 1s−1 for smooth muscle myosin and 44s−1 for kinesin.

The biological reasons for an organism having motors with low and others with high
duty ratios are quite obvious: the low duty ratio, nonprocessive motor myosin is fast, since
many motors act collectively while the ATPase rate has not to be very high. In contrast,
the high-duty ratio, processive motor kinesin acts alone and is quite slow, since for each
single step an ATP is needed meaning only very high ATPase rates would speed up the
motor. But nevertheless, the motion is continuous for a single motor, important for secure
transportation of loads through the cell. So while the first kind of motor can be used for
fast motion and reaction, the second kind can perform slow but reliable transport.

2.2.3 The motor cycle: chemistry vs. mechanics

ATP hydrolysis and nonequilibrium

Hydrolysis of nucleotides, ATP or GTP for actin and MTs respectively, is not only respon-
sible for the nonequilibrium polymerization discussed in section 2.1.2. The much more
central role of ATP as the dominant energy currency of cells was realized first in 1941
by Lipmann [67]. ATP is involved in many biochemical reactions including the motion of
motor proteins.

The hydrolysis reaction, Eq. (2.1), which can be summarized by ATP ⇋ ADP + Pi

has an equilibrium constant of

Keq =
[ADP ]eq[Pi]eq

[ATP ]eq
= 4.9 × 105M (2.5)

at cytoplasmic conditions of vertebrate cells, i.e. [Mg2+]free = 1mM, pH = 7, ionic strength
250mM and temperature 25◦C. Although the products, ADP and Pi, are highly favored,
equilibration is extremely slow, the time scale being weeks. This stability is the reason that
the gamma phosphate bond is such an ideal high-energy intermediate. The free energy of
the hydrolysis reaction reads

∆G = ∆G0 − kBT ln
[ATP ]cell

[ADP ]cell[Pi]cell
, (2.6)

with the standard free energy ∆G0 = −54 × 10−21J = −kBT ln(4.9 × 105) leading to
∆G = 0 at equilibrium and ∆G = ∆G0 at standard chemical state, i.e. all reagents at 1M.

In cells, the concentrations of ATP, ADP and phosphates are ≃ 1mM, ≃ 10µM and
≃ 1mM respectively. Thus the cellular free energy is about −100× 10−21J , corresponding
to −25kBT , and much higher in absolute value than the standard free energy. So the
metabolic processes within the cell maintain the concentrations very far from equilibrium.

The mechano-chemical cycle

In the case of myosin, the main features of the chemical cycle, i.e. of the hydrolysis, follow
from the fact that myosin binds strongly to actin and to the gamma phosphate, but not
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Figure 2.7: The mechanochemical cycle of kinesin and the hand-over-hand mechanism, cf.
the text below. The picture is taken from [5].

to both simultaneously. By measuring rates, one can establish the following connection:
The release of phosphate is catalyzed by the binding of myosin to the actin filament, i.e.
actin accelerates the ATPase rate, whereas the release of myosin from the actin filament
is catalyzed by the binding of ATP. Thus a mechanical step (the binding of myosin to the
actin filament) is required to catalyze a chemical step (the release of phosphate), then a
second chemical step (the binding of ATP) is required to catalyze a second mechanical
step (dissociation of myosin from the filament). The release of phosphate in the attached
state is thought to produce a highly strained state, the relaxation of this strain being the
driving force for the working stroke and the sliding of the filaments. The interconnected
mechano-chemical cycle for myosin has already been sketched in Fig. 2.4.

Kinesin’s hydrolysis reaction is also tightly coupled to the binding and unbinding of
kinesin to the MT. However, the phases between the mechanical and the chemical cycle
are sort of shifted by 90 degrees: in the presence of ATP, kinesin binds tightly to the
MT - in the case of myosin, ATP was needed for the unbinding - and in the absence of
the associated filament, kinesin releases phosphate quickly while myosin releases it slowly.
Moreover, the hydrolysis cycles of the two heads of kinesin are highly coordinated, leading
to the picture of a hand-over-hand mechanism [68] as depicted in Fig. 2.7: a chemical step
(ATP binds to head 1) catalyzes a mechanical step (head 2 attaches to the MT), which in
turn catalyzes a chemical step (head 2 releases ADP), which in turn catalyzes a mechanical
step (head 1 detaches from the MT). The release of phosphate from head 1 then completes
the cycle.



Chapter 3

Prerequisites

The aim of this work is to better understand the physical aspects of the biopolymers
that build up the cytoskeleton. One of these purely physical aspects is the excluded
volume interaction of polymers which can lead to orientational ordering accompanied by
demixing phenomena. Indeed, in the beginning of the nineties it has been found that both
microtubules [19] and actin filaments [20, 21, 22, 23, 24], when extracted from cells, purified
and concentrated display in vitro lyotropic liquid crystalline phases, i.e. the polymer
solution gains orientational order if the filament density exceeds a certain threshold. This
was not so surprising, because since the observations for Tobacco Mosaic Viruses [18] and
the theoretical work of Onsager [26], it was clear that for long rod-like objects which
cannot overlap, i.e. which interact by excluded volume or steric effects, it is favorable to
order if the density is high enough. Nevertheless the polymers are not always in stable
conditions, and the interplay between the polymerization process, which is the usual state
inside a living cell, and the ordering may lead to something new, namely to a pattern of
alternating isotropic and nematic ranges which is the topic of part I of this work.

In this chapter, after a summary of a few elementary notions for liquid crystals in
section 3.1, the statistical model of Onsager is reviewed in section 3.2.1, which acts as a
reference model for the model proposed in part I. Then the Doi equation is derived and
shortly discussed in sections 3.2.2 to 3.2.4, which will be used to formulate a minimal
model for the isotropic-nematic transition in part I and which is the starting point for
the investigation of filament-motor systems in part II. Section 3.2.5 is devoted to the mo-
ment expansion technique, which will be used to derive equations for observable physical
quantities, namely the moments with respect to the orientation, from the Doi equation,
which is an equation for the probability distribution function. Finally, section 3.3 intro-
duces the phenomenon of phase separation and its phenomenological description by the
Cahn-Hilliard model, which is the second ingredient to formulate the model proposed in
part I.

21
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3.1 Liquid crystals (LCs)

Liquid crystalline (LC) phases are also called mesophases, after the greek word for middle,
because they lie in a certain sense in the middle between a homogeneous isotropic liquid and
a perfect crystalline solid. On the one side, the homogeneous isotropic liquid is invariant
under arbitrary translations and rotations, so it is the state of matter with the highest
symmetry, and it has only short-range but no long-range order. On the other side, a perfect
crystal is the opposite limit, where there is long-range positional and orientational order
but the symmetry is reduced to discrete translations and point group operations depending
on the structure of the bravais lattice. Liquid crystals have orientational long-range order,
not perfectly as in a crystal but nevertheless present, and no positional order (nematic
phase) or positional order in one (smectic phases) or two dimensions (hexatic phases).
According to the relevant control parameter which drives the liquid crystalline order, one
distinguishes thermotropic LCs that undergo transitions by varying the temperature, i.e.
by cooling, and lyotropic LCs which display the LC phases due to excluded volume and
as a function of the density. In the cell biology context investigated here, for physiological
reasons (e.g. protein stability) the temperature is not a relevant parameter. However, the
cytoskeletal polymers display lyotropic LC order.

Although also cholesteric, i.e. nematic phases with an internal twist, and smectic phases
have been observed in actin filaments [69], they appear at such high filament densities, that
we restrict ourselves to the nematic phase. This is the simplest LC phase with orientational
order but no long-range positional order. In the case of the cytoskeletal filaments actin
and microtubules, the constituents have rod-like shape. In the nematic phase these rods
point on average in a preferred direction, while the centers of mass of the molecules show
liquid-like behavior, i.e. only some short-range order exists which decays rapidly after a
few filament lengths.

The preferred direction in the nematic phase can be described by a unit vector n̂(r),
which has a ±n̂-symmetry and is thus called director [25]. This symmetry is due to the
fact that the two ends of a rod can in general not be distinguished1. The scalar order
parameter describing the amount of ordering in the preferred direction specified by n̂(r) is
usually defined as

S = 〈P2(u · n̂)〉 =
1

2
〈3(u · n̂)2 − 1〉 , (3.1)

which is the orientational average of the second Legendre polynomial, or more formally the
second moment of the orientational distribution with respect to the orientational degree
of freedom u. The second polynomial or moment has to be used, since the first moment
vanishes due to the ±n̂-symmetry. By the same symmetry reason, the full order parameter

1In part II of this work, it is a crucial point that for cytoskeletal polymers this symmetry is broken due
to the presence of molecular motors, which walk on the filaments in a specified direction and thus making
the filament’s head and tail distinguishable, cf. chapter 2. A consequence of this is the possibility of a
finite first moment with respect to orientation. Such a phase could be called a polar nematic.
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is not a vector, but a symmetric traceless tensor, which can be defined microscopically as

Qij =
V

N

N
∑

n=1

(un
i un

j − 1

3
δij)δ(r− rn) , (3.2)

in a situation where in a certain volume V one has N rod-like particles at places rn and in
orientation un. The mean value 〈Qij〉 is zero in the isotropic, i.e. non-ordered, phase and

〈Qij〉 = S(n̂in̂j −
1

3
δij) =

S

3





−1 0 0
0 −1 0
0 0 2



 (3.3)

in the nematic phase, where in the last expression we have chosen n̂ ‖ ẑ.
The Onsager model of the lyotropic isotropic-nematic (I-N) transition will be reviewed

in the next section in some detail since cytoskeletal polymers display this transition and we
want to investigate it in the presence of polymerization kinetics in part I of this work. Here
I only shortly describe the Landau-DeGennes theory [25] usually applied to thermotropics.
This theory gives the important insight that the I-N transition must be first order in three
dimensions and can be second order in two dimensions, simply due to the fact that the
order parameter is a symmetric traceless tensor. As usual for a Landau theory of phase
transitions, the free energy of the considered system is expanded formally with respect to
powers of the order parameter. For a nematic liquid crystal, in the spatially homogeneous
case one gets

F = r̃Tr〈Q〉2 − w̃Tr〈Q〉3 + ũ(Tr〈Q〉2)2 . (3.4)

Since the free energy must be rotationally invariant but the order parameter transforms
like a tensor, only the scalar contributions Tr〈Q〉n can occur and as furthermore 〈Qij〉 is

traceless, n ≥ 2 holds. Inserting Eq. (3.3) into the free energy yields a simple expression
in terms of the scalar order parameter,

F =
r

2
S2 − wS3 + uS4 , (3.5)

with some renormalized coefficients r, w, u. Assuming for a thermotropic LC a temperature
dependent r = r(T − T ∗) and constant w, u clearly leads to a temperature-driven phase
transition which is of first order, i.e. discontinuous, due to the non-vanishing cubic term.

In two dimensions however, the order parameter tensor, defined in Eq. (3.3), has to be
adopted to

〈Qij〉 = S(n̂in̂j −
1

2
δij) =

S

2

(

−1 0
0 1

)

. (3.6)

This implies that Tr〈Q〉n vanishes for all odd n and the free energy, Eq. (3.5), is changed

to

F =
r

2
S2 + uS4 , (3.7)
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which describes a phase transition of second order for r = r(T − T ∗).
Since this argument is based solely on the tensor character of the order parameter in a

nematic liquid crystal, it also holds in the lyotropic case, which is reviewed in some detail
in the next section. For more information on LC phases and their theoretical description
I refer to the literature [25, 70].

3.2 The rod liquid as a model for lyotropic LCs

3.2.1 The model of Onsager

In 1949 Lars Onsager introduced a model for a lyotropic liquid crystal [26]. He wrote down
the free energy for a solution of infinite long rods which is in the spirit of a virial expansion
with respect to the filament density. This free energy is functionally dependent on the
probability distribution function (pdf) Ψ(u) of the rods with respect to the orientation u.

To have a reference, for a dilute gas of N hard spheres of density ρ = N/V , the virial
expansion can be found in textbooks [71] and reads

F
NkBT

=
µ0(T, µ0)

kBT
− 1 + ln ρ +

1

2
ρB2 + O(ρ2) . (3.8)

There is an entropic contribution ln ρ and an excluded volume contribution proportional
to the second virial coefficient which for spheres is just B2 = 4

3
π (2r)3. µ0(T, µ0) is the

chemical potential of the spheres at the temperature T in a solvent with the chemical
potential µ0.

Onsager generalized this expansion for a liquid of rod-like particles to

F
NkBT

=
µ0(T, µ0)

kBT
− 1 + ln ρ − Sor +

1

2
ρB2 + O(ρ2) , (3.9)

where an additional entropic contribution occurs due to the orientational degree of freedom,
namely the ordering entropy

Sor = −
∫

duΨ(u) ln (4πΨ(u)) = −σ . (3.10)

The second virial coefficient is now also orientation dependent and reads

B2 =

∫

du

∫

du′ β(u,u′)Ψ(u)Ψ(u′) (3.11)

with
β(u,u′) = 2L2b |u× u′| = 2L2b | sin γ| (3.12)

reflecting the excluded volume, namely the volume spanned by two rods of length L and
diameter b that have directions u and u′ respectively.
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Defining the excluded volume integral

ω =
4

π

∫

du

∫

du′ |u× u′|Ψ(u)Ψ(u′) (3.13)

and scaling the density by

ρ′ = vρ =
π

4
L2b

N

V
, v =

π

4
L2b , (3.14)

one gets (omitting the primes) the compact formulation

F [Ψ]

NkBT
= f(T, µ0, ρ) + σ[Ψ] + ρω[Ψ] . (3.15)

Minimizing this free energy functional with respect to the orientational pdf, i.e. performing
δF [Ψ]

δΨ
, leads to the following nonlinear integral equation

ln(4πΨ(u)) = C − 8ρ

π

∫

du′ |u× u′|Ψ(u′) , (3.16)

where C is a constant determined by the normalization condition

∫

duΨ(u) = 1 . (3.17)

Eq. (3.16) can be analyzed by means of approximative methods [72] or numerically [73]
and yields a first-order transition to a nematic state at a critical density ρ > ρc = 4 in
scaled units or

ρc =
16

πbL2
(3.18)

in unscaled units. This threshold can also be calculated from the Doi equation, cf. sec-
tion 3.2.5. Onsager attacked the problem with a symmetry adopted test function, namely

Ψ(u, α) = Ψ(θ, α) =
α

4π sinh α
cosh(α cos θ) , (3.19)

which allows for capturing all the physics qualitatively. It makes use of the uniaxial sym-
metry around the axis of preferred orientation, i.e. if u is expressed in spherical coordinates
there is no dependence on ϕ and cos θ = u · n̂ is the angle with respect to the director n̂.
Additionally it interpolates between the isotropic state, Ψ(u, α → 0) = Ψiso(u) = 1

4π
, and

the nematic state as Ψ(u, α ≫ 1) is sharply peaked around θ = 0.
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Phase separation near the I-N transition

Since the lyotropic I-N transition described by the Onsager model is of first order in three
dimensions, cf. section 3.1, there is a density range where the nematic and the isotropic
phase coexist and where the system thus phase separates into nematic and isotropic regions.
For solutions of rod-like particles this was discovered first by Zocher in 1925 [74], whose
experiments inspired Onsager to his theoretical work. However, phase separation takes
place in many systems either when a first order transition occurs or when an interacting
mixture is present. It has been investigated extensively since decades, mainly due to its
broad industrial relevance, e.g. in alloys, emulsions etc.. The temporal evolution of phase
separation towards a thermal equilibrium state will be reviewed in section 3.3.

The equilibrium densities of the isotropic and nematic phases in coexistence near the
I-N transition can be determined by the coexistence conditions, i.e. the equality of osmotic
pressure and chemical potential in the two coexisting phases at equilibrium. The osmotic
pressure and the chemical potential are easily calculated with Eq. (3.15) to be

Π = −∂F
∂V

= −NkBT

(

1

ρ

∂ρ

∂V
+

∂ρ

∂V
ω

)

,

µ =
∂F
∂N

= µ0 − kBT + kBT (ln ρ + σ + ρω) + NkBT

(

1

ρ

∂ρ

∂N
+

∂ρ

∂N
ω

)

,

and eventually yield

Π = kBTρ(1 + ρω) , (3.20a)

µ = µ0 + kBT (ln ρ + σ + 2ρω) . (3.20b)

In the isotropic phase, by using Ψ(u) = Ψiso(u) = 1
4π

, one can easily calculate that σ = 0
and ω = 1. Finally, the coexistence conditions of equal osmotic pressure and chemical
potential in both phases read

ρi(1 + ρi) = ρn(1 + ρnω) , (3.21a)

ln ρi + 2ρi = ln ρn + σ + 2ρnω , (3.21b)

which can be solved numerically2 to determine the density ρi in the isotropic and ρn in the
nematic phase [72]. We will use the argument of coexistence equations as an additional
test for the model proposed in part I.

Polydispersity

An additional complication in lyotropic LC systems is polydispersity. While most ther-
motropic LCs are made of small identical molecules which are mesogenic (i.e. able to display

2σ and ω are functionals of ρn since via the minimization of the free energy the distribution Ψ(u)
depends now on ρn. One can make again use of Eq. (3.19) to approximate these functionals [72] and then
calculate ρi and ρn.
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LC phases) due to rigid subunits like aromatic rings, lyotropic LCs like the cytoskeletal
polymers, Tobacco Mosaic Viruses (TMV) [18, 75] or other colloidal systems often have a
distribution of rod lengths. For a recent general review we refer to [76], whereas for rod
systems the problem has been investigated e.g. in Refs. [72, 77]. What happens in brief
is that first the phase diagram becomes richer and richer with the appearance of various
different nematic phases and second that the longer rods enrich in the nematic phases
and the smaller ones in the isotropic phase, which was already guessed by Onsager in his
original work [26]. For our modeling in part I we neglect polydispersity, as discussed and
partly justified in section 5.2.

Onsager model in two dimensions

The rod liquid and the Onsager model can also be investigated in two dimensions (2D),
meaning that the orientation u of the rods is now restricted to the unit circle instead of the
unit sphere. From the Landau-DeGennes argument of section 3.1 it is already clear that
the I-N transition is usually of second order, i.e. continuous, in 2D so there is no phase
coexistence and no phase separation anymore.

In part II we investigate a filament-motor system in two dimensions. Since the filament
densities in the experiments are far below the density of the I-N transition, we will neglect
the nematic order parameter in our description. To have an upper bound for the density,
the critical density of the I-N transition is calculated in the framework of the Doi equation
in section 3.2.5 yielding ρc = 3π

2
or 3π

2L2 in scaled and unscaled units respectively.
LCs in two dimensions however are a subtle topic: Although the 2D-Onsager model

predicts a I-N transition [78], numerical simulations yield long-range [79] or only quasi-long-
range orientational order (i.e. algebraically decaying correlation functions) [80], depending
on the detailed system. Additionally, the Onsager approximation of considering only the
second virial coefficient is problematic in 2D. While in 3D the third virial term ρ2B3 is of
the order b/L, the ratio between the diameter and the length of the rods, and therefore
small in the limit of long rods, in 2D this is no longer the case [78, 81]. The reason for this
is simply that the third order virial term only contributes if the three rods are nearly in
the same plane, which has a very tiny probability in 3D but is guaranteed in 2D. Since the
third virial coefficient for rods is a highly complicated object, cf. Ref. [27], an analytical
treatment in the framework of the Onsager theory has not been done yet. Simulations as
reported in Refs. [79, 80] however imply that the I-N transition should occur at a higher
density of about ρc ≃ 7 > 3π

2
.

3.2.2 The Doi equation

In part II of this work, the starting point of our description of a filament-motor system
is the Doi theory of a rigid rod liquid [39]. It is a well studied approach in polymer and
colloid science and is based on the Smoluchowski equation for rigid rods interacting by
excluded volume. In the long time limit and for a system assumed spatially homogeneous
one recovers the Onsager model as the stationary solution of the Doi equation. Thus the
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latter can be considered as a generalization of the equilibrium Onsager theory to situations
out of equilibrium. In addition, it comprises also the spatial dependence during that
evolution and a microscopic treatment of the phase separation near the I-N transition in
the framework of the Doi model is still ongoing research, cf. e.g. Ref. [82]. In this chapter
I will motivate the Doi equation and review some useful results needed later on.

As in Onsager theory, in the Doi model one investigates a solution of rigid rods of fixed
length L which are described by a probability distribution function (pdf). The probability
of finding a rod at the position r with the orientation u (which is the unit vector along
the rod, |u| = 1) at time t is described now by the pdf Ψ(r,u, t)3, instead of a time- and
space-independent Ψ(u). Its temporal evolution is governed by a Smoluchowski equation
[39] which is basically just the continuity equation for the probability

∂tΨ + ∇ · Jt + R · Jr = 0 . (3.22)

For a rod, there are two kinds of (Brownian) motion, translational and rotational. There-
fore not only the divergence of the translational current Jt is entering Eq. (3.22), as one is
familiar with from the description of Brownian point-like particles, but also the rotational
degrees of freedom of the rods have to be accounted for. The orientation vector u also
undergoes a Brownian motion restricted to the unit sphere spanned by |u| = 1, which can
be described by the rotational current Jr entering Eq. (3.22) through the dot product with
the so-called rotational operator

R = u× ∂u . (3.23)

In section 3.2.3, I will motivate and explain the rotational contributions as well as the
detailed form of the translational and rotational currents which read

Jt,i = −Dij [∂jΨ + Ψ∂jVex] , (3.24a)

Jr,i = −Dr [RiΨ + ΨRiVex] . (3.24b)

The first term of the translational contribution is just diffusion, which is anisotropic since in
the surrounding fluid a rod can diffuse easier parallel to its orientation than perpendicular.
The translational diffusion matrix therefore reads

Dij = D‖uiuj + D⊥ (δij − uiuj) , (3.25)

with two different diffusion coefficients, D‖ and D⊥, for parallel and perpendicular diffusion
with respect to the rod axis respectively. The second term in Eq. (3.24a) is due to the
excluded volume interaction

Vex(r,u) =

∫

du′

∫

dr′ W (r−r′,u,u′)Ψ(r′,u′) (3.26)

3In the following I will write Ψ(r,u) for reasons of brevity and Ψ(r,u, t) only if we want to emphasize
the time dependence.
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ξ

Figure 3.1: The geometry of
intersecting rods in three spa-
tial dimensions. As expressed
by Eq. (3.27), an overlap cor-
responds to the connection vec-
tor r − r′ of the mass centers of
the rods being constructable by
a linear combination uζ + u′η +
(u× u′) |u × u′|−1ξ. The picture
has been taken from Ref. [83].

between two rods. The interaction kernel W (r−r′,u,u′) is defined as 1 if there is overlap
of the rods at (r,u) and (r′,u′) and zero if there is no overlap.

The rotational current, Eq. (3.24b), has the same structure as the translational one,
but with the spatial derivative replaced by the rotational operator R and with Dr as the
rotational diffusion coefficient.

The excluded volume overlap function

The excluded volume interaction, Eq. (3.26), is expressed most conveniently in terms of
the so-called Straley coordinates [83] shown in Fig. 3.1. In three spatial dimensions they
read

r− r′ = uζ + u′η +
u× u′

|u× u′|ξ , (3.27)

with the volume element dr′ = |u × u′|dζdηdξ. Overlap happens in the range |ζ | < L
2
,

|η| < L
2

and |ξ| < b, where L is the length and b the diameter of the rods. In a coarse-
grained model, it is only sensible to take into account spatial modulations of wavelengths
much longer than the rod diameter, i.e. |kb| ≪ 1. In this limit one can suppress the term
proportional to ξ in Eq. (3.27) and the ξ-integration trivially yields a factor of 2b leaving
us with

W (r−r′,u,u′) = 2b|u×u′|
L/2
∫

−L/2

dζ

L/2
∫

−L/2

dη δ (r−r′+uζ+u′η) . (3.28)

In two spatial dimensions where the coordinates read

r − r′ = uζ + u′η (3.29)
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one gets directly

W (r−r′,u,u′) = |u×u′|
L/2
∫

−L/2

dζ

L/2
∫

−L/2

dη δ (r−r′+uζ+u′η) . (3.30)

The meaning of the Straley coordinates can be easier seen in the 2D version: an overlap of
the rods at (r,u) and (r′,u′) is equal to the possibility that the connection vector r− r′ of
the mass centers can be constructed by a linear combination uζ+u′η of the rod orientations
with −L/2 < ζ, η < L/2, which is nothing but Eq. (3.29). In 3D, one has also to take into
account the dimension orthogonal to both filament orientations leading to Eq. (3.27). The
prefactor |u×u′|, which reflected the excluded volume in the second virial coefficient of the
Onsager model, cf. Eq. (3.12), here comes into play automatically as the Jacobian of the
transformation.

3.2.3 Physical motivation of the Doi equation

Point-like particles in a potential

To motivate Eqs. (3.22) and (3.24), we follow [39] and start with the well known diffusion
of point-like particles with density ρ(r, t), where Fick’s law relating the current to density
gradients, j(r, t) = −D∇ρ(r, t), together with the continuity equation (or mass conserva-
tion) yields the diffusion equation ∂tρ = −∇ · j = D∆ρ. Considering an external potential
V (r) exerting a force F(r) = −∇V (r) on the particles, leads for the overdamped motion
in a surrounding fluid to an average velocity v, which for small forces is linear in F, so

v(r) =
1

ζ
F = −1

ζ
∇V (r) (3.31)

holds, with the friction coefficient ζ of the surrounding fluid. This average velocity gives
an additional current ρv, so that Fick’s law has to be generalized to j = −D∇ρ − ρ

ζ
∇V .

The friction coefficient ζ and the diffusion coefficient D are related through the famous
Einstein relation

D =
kBT

ζ
. (3.32)

In the context of the Smoluchowski equation, it can be easily derived by the demand that
in equilibrium, the density should be given by the Boltzmann distribution ρ = ρeq ∼
exp

(

− V
kBT

)

and that the current has to vanish.

Since the particle density ρ(r, t) and the pdf Ψ(r, t) differ only by a normalization
factor, with the help of Eq. (3.32) the current in Fick’s law can be cast in the equivalent
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forms (with J now describing a probability current)

J(r, t) = −D

(

∇Ψ +
Ψ

kBT
∇V

)

= −1

ζ

(

kBT∇Ψ + Ψ∇V

)

= −Ψ(r, t)
1

ζ
∇
(

kBT ln Ψ + V

)

. (3.33)

Via J(r, t) = Ψ(r, t)v(r, t), the latter form defines the total velocity for the motion of a
particle in the effective potential

Veff(r, t) = kBT lnΨ(r, t) + V (r) . (3.34)

This identification allows for the following formal argument: If one wants to describe
Brownian motion in a potential V (r), to get the probability current one has just to add the
so-called Brownian potential, kBT ln Ψ(r, t), to the external potential V (r), use the linear
force-velocity relation Eq. (3.31) to get the velocity and multiply by the pdf, Ψ(r, t). We
will benefit from this reasoning in the next two sections where we derive the translational
and rotational currents for the diffusion of a rod-shaped particle.

Using the continuity equation of probability,

∂tΨ + ∇ · J = 0 , (3.35)

together with the probability current in its first version of Eq. (3.33),

J(r, t) = −D

(

∇Ψ +
Ψ

kBT
∇V

)

, (3.36)

one gets the Smoluchowski equation for point-like particles, which has exactly the structure
of Eqs. (3.22) and (3.24a)4.

Translational motion of rod-like particles

In the limit of overdamped motion, or hydrodynamically speaking in the Stokes limit, the
friction force on a moving particle is parallel to the velocity and linear. So for a rod-like
particle one can decompose the velocity parallel and perpendicular to the rod orientation
u by writing

F = ζ‖v‖ + ζ⊥v⊥ , (3.37)

4In the definition of the Doi model, Eqs. (3.22) and (3.24), we have set kBT = 1 for convenience. The
temperature window is rather small for most biological systems. Especially for the lyotropic or motor-
induced ordering mechanisms under consideration, the system can be regarded as athermal.
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with two generally different friction coefficients ζ‖ and ζ⊥. Solving for v by introducing
v‖ = u(u · v) and v⊥ = v − v‖ = (I − uu) · v yields

v =

[

1

ζ‖
uu +

1

ζ⊥
(I − uu)

]

F . (3.38)

This is the velocity that defines the translational probability current for a rod-like particle,
Jt = Ψv.

Rotational motion of rod-like particles

A torque M acting on a rod in a surrounding quiescent liquid leads to an angular velocity
ω. Neglecting rotations around the rod axis u, one can assume that both M and ω are
perpendicular to u. If the motion is again overdamped and the torque is small, analogously
to Eq. (3.31), there should be a linear relation

ω =
1

ζr
M , (3.39)

with a rotational friction coefficient ζr. In formal equivalence to the translational case,
we want now to express the torque in terms of a potential which is now orientationally
dependent, V (u). Considering a small rotation δφ, which leads to a change in orientation
from u to u+ δφ×u, then the work needed for this change has to equal the change in the
potential, namely

−M · δφ = V (u + δφ × u) − V (u) = (∂uV ) · (δφ × u) = (u× ∂uV ) · δφ (3.40)

has to hold. Together with the rotational operator already introduced in Eq. (3.23), R =
u × ∂u, we have found the torque as a formal derivative of a potential, M = −RV , and
Eq. (3.39) becomes

ω = − 1

ζr

RV . (3.41)

Conservation of probability demands ∂tΨ = −∂u · (Ψu̇), which can be rewritten in terms
of the angular velocity by using u̇ = ω×u and ∂u · (Ψω × u) = (u× ∂u) · (Ψω) leading to

∂tΨ = −R · Jr = −R · (Ψω) , (3.42)

which defines the rotational probability current Jr.

Smoluchowski equation for rod-like particles - the Doi equation

Considering now both translational and orientational degrees of freedom, the continuity of
probability can be written as

∂tΨ + ∇ · Jt + R · Jr = 0 , (3.43)
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with the translational current

Jt = Ψv, v = −
[

1

ζ‖
uu +

1

ζ⊥
(I − uu)

]

∇V (3.44)

and the rotational current

Jr = Ψω, ω = − 1

ζr
RV . (3.45)

Using the formal argument of the effective potential introduced above, the potential we
have to consider to describe a solution of rod-like particles is the sum of the Brownian
potential and the excluded volume potential Vex(r,u) defined in Eq. (3.26), namely

Veff (r,u, t) = kBT ln Ψ(r,u, t) + Vex(r,u) . (3.46)

Implying kBT = 1 again, the Einstein relation leads to D∗ = 1
ζ∗

for ∗ =‖,⊥, r, where I
have introduced the rotational diffusion coefficient Dr. Finally we have arrived at the Doi
model, Eqs. (3.22), (3.24) and (3.26).

3.2.4 Analyzing the Doi equation

Inserting the currents given by Eqs. (3.24) into the conservation of probability, Eq. (3.22),
one explicitly gets the following partial differential equation

∂tΨ = ∂iDij [∂jΨ + Ψ∂jVex] + DrRi [RiΨ + ΨRiVex] (3.47)

for the pdf Ψ(r,u, t). The latter pdf additionally has to fulfill the normalization condition

∫

dr

∫

du Ψ(r,u) =

∫

dr ρ(r) = N = ρV , (3.48)

where N is the number of rods, V the sample volume and ρ the mean rod density. Due to the
excluded volume interaction Vex defined in Eq. (3.26), the Doi equation is both nonlinear
and nonlocal in Ψ and therefore hard to deal with in the most general case. However, a
stationary solution can simply be found and identified with the Onsager solution, as shown
in this section. In the subsequent section I exemplify how equations for the moments of a
pdf can be derived from an equation for the pdf like Eq. (3.47), which often are sufficient
to describe the qualitative physics. Especially in part II of this work, such a moment
expansion method is applied to derive a continuum model from Eq. (3.47), which can
then be analyzed in more detail than the underlying pdf equation. As an example I also
calculate the threshold densities of the I-N transition in 2D, which we need in part II as
an upper density bound, from the moment equation for the nematic order parameter.
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From Doi back to Onsager

Both ∂r and R being differential operators, from the structure of both the translational
and the rotational part of Eq. (3.47) one can read the stationary solution Ψ ∼ exp[−Vex],
or explicitly

Ψ(r,u) ∼ exp

[

−
∫

du′

∫

dr′ W (r−r′,u,u′)Ψ(r′,u′)

]

. (3.49)

Redefining the normalization by introducing Ψ = ρΨ̃, multiplying by 4π and taking the
logarithm yields

ln(4πΨ̃(r,u)) = const − ρ

∫

du′

∫

dr′ W (r − r′,u,u′)Ψ̃(r′,u′) . (3.50)

After transforming to the Straley coordinates, cf. Eq. (3.27), and assuming spatial homo-
geneity one finally gets

ln(4πΨ̃(u)) = const − 2bL2ρ

∫

du′|u × u′|Ψ̃(u′) , (3.51)

which is nothing but Eq. (3.16) in unscaled units. So one can conclude that the stationary
solution of the Doi equation is the equilibrium distribution minimizing the free energy of
the Onsager model.

3.2.5 Moment equations

Moments of a pdf

It is a well known fact from statistical mechanics, that the entire pdf is not needed for a
qualitative or semi-quantitative description and that often the first few moments of the
pdf catch the essential physics. As an example, we have already made use of this in
the definition of the nematic order parameter as the second moment of the orientational
distribution in Eq. (3.1) - higher moments are not needed to describe the I-N transition
qualitatively.

Having the pdf Ψ(r,u, t), one can define the moments with respect to the orientation
vector u. The zeroth moment integrates out the orientational degree of freedom and is
therefore just the rod density

ρ(r, t) =

∫

du Ψ(r,u, t) . (3.52)

The first moment vanishes in the framework of the Doi equation, since from the ±u-
symmetry directly follows

∫

du u Ψ(r,u, t) = 0. However, this is no longer the case in
a filament solution interacting with motors, as investigated in part II of this work. The
second moment with respect to the orientation contains the information of the nematic
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order parameter tensor, which can be defined in 3D either by5

S̃ij(r, t) =

∫

du

(

uiuj −
1

3
δij

)

Ψ(r,u, t) (3.54)

or by

Sij(r, t) =

∫

du uiuj Ψ(r,u, t) . (3.55)

The former definition is analogous to Eq. (3.2) and has the advantage of being traceless,
S̃ii = 0, while the latter, for which Sii = ρ holds, is sometimes more convenient for
expansions and therefore used in section 4.1.1 of part I.

Moment expansion technique

Since the moment expansion technique is extensively used in part II for a 2D system, I
restrict myself here to the 2D versions of the moment expansion and the isotropic averages
needed therein. The 3D case is fully analogous and has been investigated in the framework
of the I-N phase separation e.g. in [84, 85]. We will also need some 3D averages in part I,
where a different kind of moment expansion based on a closure relation is applied. Useful
formulas for the isotropic averages can be found in appendix A.

The simple idea behind a moment expansion is to write the pdf in terms of the moments
in a self-consistent way. For a 2D system with ±u-symmetry, this expansion reads

Ψ(r,u, t) ≃ 1

2π

{

ρ(r, t) + 4uµuνS̃µν(r, t)
}

, (3.56)

while in a 2D system lacking this symmetry the first moment comes into play, as shown in
detail in chapter 8 of part II. The validity of the representation, Eq. (3.56), can be checked
immediately by using it to evaluate the moments again. For subsequent calculations it is
convenient to define the two-dimensional orientational average, cf. Eq. (A.7), by

〈A(u)〉 =

∫

du

2π
A(u) =

∫ 2π

0

dθ

2π
A(θ) , (3.57)

where θ parameterizes the unit vector u in two dimensions. Using some of the isotropic
averaging formulas collected in appendix A.2, Eq. (3.56) correctly yields

∫

du Ψ =

∫

du

2π

{

ρ + 4uµuνS̃µν

}

= ρ + 4〈uµuν〉S̃µν = ρ , (3.58)

5In two spatial dimensions, instead of Eq. (3.54) one has to use the definition

S̃ij(r, t) =

∫

du

(

uiuj −
1

2
δij

)

Ψ(r,u, t) (3.53)

for the nematic order parameter to ensure the tracelessness.



36 CHAPTER 3. PREREQUISITES

due to 〈uµuν〉 = δµν/2 and S̃νν = 0. Analogously

∫

du

(

uαuβ − 1

2
δαβ

)

Ψ =

∫

du

2π

(

uαuβ − 1

2
δαβ

)

{

ρ + 4uµuνS̃µν

}

= S̃µν (3.59)

holds, since the term ∝ ρ vanishes due to 〈uαuβ〉 = δαβ/2 and the prefactor of S̃µν evaluates
to one, using the above properties as well as Eq. (A.9).

Homogeneous I-N transition - 2D and 3D thresholds

Since the Onsager model is contained in the Doi equation, both models should have the
same threshold density for the homogeneous I-N transition, namely ρc = 16

πbL2 in 3D. Here
we determine the threshold for a 2D system by starting from the homogeneous part of the
Doi equation,

∂tΨ = −DrR [RΨ + ΨRVex] , (3.60)

and investigating the linear stability of the homogeneous and isotropic solution ρ = ρ0 and
S̃ = 0. Integrating Eq. (3.60) over

∫

du(uαuβ − 1
2
δαβ) yields the following equation for the

nematic order parameter tensor

∂tS̃αβ = −Dr

∫

du

(

uαuβ − 1

2
δαβ

)

R [RΨ + ΨRVex] . (3.61)

Using the moment approximation, Eq. (3.56), for the pdf’s on the right hand side, one can
linearize the equation by writing R [ΨRVex] = ρ0R2Vex. Twofold integration by parts with
respect to u, cf. Eq. (A.15), leads to

∂tS̃αβ = −Dr

〈

R2 (uαuβ)Ψ
〉

− Dr

〈

R2 (uαuβ) ρ0Vex

〉

. (3.62)

The rotational operator terms can be evaluated by use of Eq. (A.14),

R2uαuβ = −4

(

uαuβ − 1

2
δαβ

)

, (3.63)

and the remaining isotropic averages from Eqs. (A.12) and (A.9). Making again use of
S̃ii = 0, one ends up with

∂tS̃αβ = −4Dr

(

1 − 2

3π
ρ0L

2

)

S̃αβ , (3.64)

leading to an instability of S̃αβ = 0 at
(

1 − 2
3π

ρ0L
2
)

< 0 or

ρ0 > ρ2D
IN =

3π

2L2
. (3.65)



3.3. PHASE SEPARATION AND CAHN-HILLIARD THEORY 37

The factor L2 comes in from the explicit form of Vex. For completeness, in the 3D case
where the isotropic averages are slightly different, cf. appendix A.1, the analog of Eq. (3.64)
reads

∂tS̃αβ = −6Dr

(

1 − π

32
ρ02bL

2
)

S̃αβ , (3.66)

yielding

ρ0 > ρ3D
IN =

16

πbL2
, (3.67)

in agreement with the Onsager result [26, 73].

3.3 Phase separation and Cahn-Hilliard theory

As we have already encountered in section 3.2.1 in the context of the I-N transition, near
first order transitions a region of coexistence appears. If one quenches the system into that
region, i.e. if one suddenly changes the external conditions like the mean density in the
lyotropic case or the temperature in the thermotropic case, then the system will evolve
towards the equilibrium state, i.e. to the density and order parameter values given by the
coexistence conditions.

The simplest system illustrating the phenomenon of phase separation is a A-B binary
mixture, where the free energy density can be written as

f = xAµA + xBµB + kBTxA ln xA + kBTxB ln xB + uxAxB , (3.68)

with the volume fractions xA, xB, the chemical potentials µA, µB and an interaction poten-
tial u. Due to mass conservation, xA + xB = 1 holds, and thus one can express Eq. (3.68)
in terms of the volume fraction of a single species, e.g. xA. By a simple calculation one can
show that for u positive (meaning repelling interaction) and large enough, the free energy
density has a double well form as shown in Fig. 3.2. The minima reflect that the repelling
interaction is stronger than the thermal mixing and the system favors a separation in a
phase that is rich in A and in one that is rich in B.

In principle there are two mechanisms for the homogeneous state to develop into the
inhomogeneous phase separated state, nucleation and growth and spinodal decomposition.
I give a short introduction to this topic here, based loosely on Refs. [70, 86], to establish
technical terms like spinodal decomposition and coarsening and to motivate the Cahn-
Hilliard equation used in the phenomenological model in part I of this work.

Nucleation and growth

Nucleation and growth appears for points in the phase diagram that correspond to meta-
stable states which lie inside but not too far from the boundary of the two-phase region.
To be more exact, these points lie between the coexistence curve, given by the minima of
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xAxA

Tf

spinodal
region

Figure 3.2: Free energy density and phase diagram of a binary mixture. The coexistence
or binodal curve is defined by the minima of the free energy and shown as the solid
line in the phase diagram. The spinodal line defined by the inflection points of the free
energy is the dashed line. In the shaded regions between these two curves, the mixture
is metastable and nucleation occurs for large enough fluctuations. In the spinodal region,
spinodal decomposition takes place.

the free energy, and the spinodal curve, given by the inflection points of the free energy,
as shown as the shaded region in the phase diagram in Fig. 3.2. Although the state is
metastable, thermal fluctuations will create small droplets of the lower energy equilibrium
phase inside the initially dominating metastable phase. One can show that there exists a
critical droplet radius, which governs the behavior. It is given by

Rc =
2σ

∆f
, (3.69)

where ∆f > 0 is the free energy density difference of the metastable and equilibrium phases
and σ is the energy (per area) it costs the system to create a phase boundary between the
two phases. For R < Rc it is too costly for the system to generate a boundary wall and
the droplet shrinks. Only for R > Rc the total energy can be lowered by creating an
inhomogeneity, droplets spontaneously grow and create the favored equilibrium phase.

One should note that Eq. (3.69) is the most simple case that holds for a nonconserved
order parameter with discrete symmetry (as in the Ising model). For a continuous sym-
metry, like in the I-N transition case, there are additional, e.g. elastic, contributions. For
a conserved order parameter Φ, the conservation restriction

∫

dr Φ = const has to be ac-
counted for via a Lagrangian multiplier and ∆f in Eq. (3.69) is no more the usual Free
energy. In addition, the conservation restriction limits the accessible points in the phase
diagram.

To characterize phase separation processes, the temporal behavior of the typical domain
size R(t) is an important measure. If one considers for simplicity a symmetric quench from
Φ = 0 to a parameter range where ±Φ0 are coexisting and unstable (e.g. in an Ising
model without magnetic field), then both phases are equally probable and initially will
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arise on short length scales separated by long domain walls. As the system evolves the
characteristic domain size will grow with time, a process which is called coarsening and is
inherent to phase separation processes. For a symmetric quench, one can derive a simple
scaling behavior, the Allen-Cahn-Equation

∂tR ∝ 1

R
, (3.70)

which implies R(t) ∼ t
1

2 .

Spinodal decomposition

As already mentioned above, spinodal decomposition appears below the spinodal curve,
where the system is globally unstable due to the curvature of the free energy. However,
one should not take this curve as a sharp border since it is based on a mean field concept
and in real, i.e. fluctuating, systems it can become quite blurred. For a A-B mixture, the
order parameter can be defined by the difference in the volume fractions of the two species,
Φ = xB − xA, which in total has to be conserved, i.e.

∫

dx(Φ(x) − Φ0) = 0 with Φ0 the
homogeneous value in the one-phase region. Expanding the free energy around Φ0

f = f(Φ0) +
1

2

∂2f

∂Φ2

∣

∣

∣

∣

Φ0

(Φ − Φ0)
2 + . . . , (3.71)

where the first derivative term vanishes since Φ0 has to be an extremum, and adding a
term c

2
(∇Φ)2 that accounts for the fact that variations in composition cost energy due to

the formation of interfaces, one ends up with the Cahn-Hilliard (CH) model [87]

∂tΦ = λ∇2 δf

δΦ
= λ∇2

[

∂2f

∂Φ2

∣

∣

∣

∣

Φ0

Φ − c∇2Φ

]

. (3.72)

The term λ∇2 (with λ being a mobility coefficient) in front of the variational derivative
guarantees the conservation of the overall composition.

The simplest form of the Cahn-Hilliard model is gained using a symmetric free energy
quartic in Φ and reads

∂tΦ = λ∇2
[

DΦ − c∇2Φ + gΦ3
]

. (3.73)

Performing a linear stability analysis and calculating the growth rate σ(q) of inhomogeneous
modes with wave number q by the ansatz Φ ∼ eσt+iqx one gets

σ(q) = λ
[

−Dq2 − cq4
]

. (3.74)

Thus the homogeneous state Φ = 0 is unstable for D < 0 (reflecting that one is in the

region of spinodal decomposition, where ∂2f
∂Φ2 < 0 holds) in a wavenumber range [0, qmax]

with qmax =
√

−D
c

. The fastest growing mode qfg will dominate the early stage, thus in
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contrast to the nucleation and growth process where localized droplets of inhomogeneities
appeared, spinodal decomposition leads to a composition modulation throughout the sam-
ple. However, due to the nonlinearity in Eq. (3.73), qfg will not prevail and the system
coarsens to larger length scales in the late stages of spinodal decomposition.

To conclude, the various terms in Eq. (3.73) can be interpreted as follows: first a linear
term ∝ D which destabilizes long wavelength modes if one is in the region of spinodal
instability, i.e. for D < 0, second a fourth derivative term ∝ c which restricts the unstable
modes and is motivated by the energy costs of interfaces and third a nonlinear term ∝ g
which limits the amplitudes of the unstable modes and is responsible for the coarsening
process. These ingredients will be used in the phenomenological modeling in part I of this
work.

Langer has shown [86] that Eq. (3.73) can also be derived from a microscopic Fokker-
Planck equation approach, and that the coarsening process can be described by a mapping
of Eq. (3.73) to the ”motion” not in time but in the space variable x in a double well
potential. By this procedure one can describe the late stage evolution of the phase domains
by a scaling law for the size of these domains. For a review of phase ordering dynamics we
refer to [88].

From the viewpoint of pattern formation, the Cahn-Hilliard dynamics is not a real pat-
tern forming instability, since there is only a fastest growing mode but not a preferred qc

at finite amplitude modulation. However, as shown in part I of this work, due to the poly-
merization kinetics of biopolymers during the I-N spinodal decomposition, long wavelength
modulations are suppressed transforming the unstable wavenumber range [0, qmax] of the
linear Cahn-Hilliard dynamics into a window [q1, q2] with only finite wavelengths. This
mechanism has been recognized recently in a model system with a simple A-B reaction
kinetics in Refs. [89, 90]. In the nonlinear regime, a wavenumber within this finite window
prevails, and in the biopolymer model a critical wavenumber qc can also be defined, cf.
chapter 5.



Part I

Pattern formation in self-assembling
nematic biopolymers
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Chapter 4

A minimal model for the I-N phase
separation

This part of my work is devoted to studying the interplay of the phase separation during
the lyotropic isotropic-nematic (I-N) transition in biopolymers like actin and microtubules
[19, 20, 21, 22, 23, 24] with the polymerization and depolymerization kinetics which these
polymers can undergo.

The phase separation process taking place at the I-N transition is an interesting phe-
nomenon. Previously, appropriate microscopic models have been investigated in the linear
regime, e.g. in [84, 82], which however only capture the early stages of the temporal
evolution. Other models are based on free energy arguments, e.g. [91], which can not
unambiguously be generalized to nonequilibrium situations as for instance the polymer-
ization kinetics present in the biopolymer systems. Therefore the aim of this chapter is
to formulate a minimal nonlinear model with as few parameters as possible that describes
both the I-N transition and the phase separation near that transition, which will then be
generalized to take also reaction kinetics into account. The homogeneous I-N part of the
model is derived from the Smoluchowski equation for rigid rods or Doi equation [39] as
introduced in section 3.2.2, and the phase separation is modeled in a phenomenological way
by partial differential equations similar to the Cahn-Hilliard model [87], cf. section 3.3.
To secure that the model is not oversimplified, we test and compare it quite extensively to
the known results from Onsager theory [26, 27, 25, 92], as reviewed in section 3.2.1.

In the following chapter we will analyze this minimal model in the presence of a very
simple reaction kinetics that mimics the polymerization kinetics of the cytoskeletal biopoly-
mers. The model presented here should however also be able to be generalized to account
for other nonequilibrium situations like e.g. shear flow or molecular motors.

43
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4.1 The I-N part of the model

4.1.1 Derivation of an order parameter equation

In this section a minimal model for the lyotropic isotropic-nematic (I-N) transition in a
system of rod-like particles is presented and analyzed, which can be derived from the Doi
equation reviewed in Sec. 3.2.2. The resulting evolution equation for the nematic order
parameter resembles that derived by a Landau-DeGennes expansion of the free energy in
terms of the order parameter. Nevertheless, our derivation has the conceptual advantage
that it does not rely on arguments needing the assumption of thermal equilibrium. So in
spite of similarities in the resulting equations, the derivation based on a kinetic equation
like the Smoluchowski equation for rigid rods is better justified in the face of nonequilibrium
situations than formulating a free energy functional, adding nonequilibrium processes and
assuming that the free energy still gives a good description. In addition, by the mesoscopic
treatment as used here no extra parameters in front of the nonlinear terms have to be
introduced, as would be the case for the Landau-deGennes approach.

Our starting point is the Doi equation for a spatially homogeneous situation, so from
Eqs. (3.22) and (3.24b) we can read

∂tΨ = DrRi

[

RiΨ + ΨRiV̄ex

]

(4.1)

with R = u× ∂u. The excluded volume contribution, cf. Eq. (3.26),

Vex(r,u) =

∫

du′

∫

dr′ W (r−r′,u,u′)Ψ(r′,u′) (4.2)

with the overlap kernel

W (r−r′,u,u′) = 2b|u×u′|
L/2
∫

−L/2

dζ

L/2
∫

−L/2

dη δ (r−r′+uζ+u′η) (4.3)

can be simplified in the spatially homogenous case to Onsager’s excluded volume, cf.
Eq. (3.12),

V̄ex(r,u) = 2bL2

∫

du′|u× u′|Ψ(u′) . (4.4)

Thus Eq. (4.1) becomes explicitly

∂tΨ = DrRi

[

RiΨ + 2bL2ΨRi

∫

du′|u× u′|Ψ(u′)

]

, (4.5)

whose stationary solution is identical with the one predicted by the Onsager model, as has
been shown in Sec. 3.2.4.
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Since we are interested in a simple model, we should extract from Eq. (4.5), which
governs the evolution of the whole pdf, an equation for the nematic order parameter which
describes the I-N transition. For this purpose the moments of the pdf are used, as already
exemplified in section 3.2.5. We define the orientational moment of order p as the following
tensorial quantity of rank p

S(p)
n1..np

(t) =

∫

du un1
..unp

Ψ(u, t) . (4.6)

Due to the ±u-symmetry of the rods, all odd moments of Ψ vanish. Normalization implies
that the zeroth moment is the number of particles or the homogeneous particle density,
depending on the chosen normalization1

S(0) =

∫

du Ψ(u) = ρ . (4.7)

The second moment describes the degree of orientation, cf. Eq. (3.55),

S(2)
nm =

∫

du unumΨ(u) =: Snm . (4.8)

This definition differs slightly from the standard version given in Ref. [25] and by Eq. (3.54).
However both variants obviously provide the same information and can be transformed into
each other. The definition of Eq. (4.8) is just more convenient here as will become clear
later on.

To make the orientational integral feasible in Eq. (4.5), the Jacobi determinant in the
overlap integral is approximated as follows

|u× u′| ≃ 5π

16

[

1 − 3

5
(u · u′)2

]

. (4.9)

This approximation, as given in Refs. [93, 94], is similar to the Taylor expansion of |u×u′|
in terms of bilinear products of u and u′, |u×u′| = 1− 1

2
(u ·u′)2, which we could have also

used yielding slightly more complicated prefactors. With the use of this approximation, an
integration

∫

du unum on both sides of Eq. (4.5) finally yields an equation for the order
parameter Snm

2 (summation convention is implied)

∂tSnm = −6Dr

(

Snm − 1

3
ρδnm

)

+ Dr
3

2
πbL2

(

SniSim − S
(4)
nmijSij

)

. (4.11)

1In the inhomogeneous case
∫

drS(0)(r, t) =
∫

dr
∫

duΨ(r,u, t) =
∫

drρ(r, t) = N , with N the number
of particles, holds. Thus the zeroth moment with respect to orientation is the density ρ(r, t), cf. Eq. (3.52).
Therefore I have chosen here also for the homogeneous case the normalization to the density.

2It should be mentioned that by performing the integration
∫

du′, the excluded volume term can be
cast into an effective potential of the Maier-Saupe form [95] with no parameters to be adjusted (as it is
the case in Doi theory cf. [39, 96])

Veff =
5π

8
bL2

[

1 − 3

5
Sijuiuj

]

. (4.10)
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Here we have made use of the integration by parts rule, cf. Eq. (A.5),
∫

duA(u)R [B(u)] = −
∫

duR [A(u)] B(u) (4.12)

and of Eq. (A.6),

R2uαuβ = −6

(

uαuβ − 1

3
δαβ

)

, (4.13)

for the action of the rotational operator R defined in Eq. (3.23).
The appearance of an unknown higher moment in Eq. (4.11), here of the fourth moment

S
(4)
nmij , is a problem typical for procedures trying to extract equations for the moments from

an equation of the respective pdf. One could derive by the same procedure an equation
for S(4), but this will contain the unknown moment S(6), and so on. A similar problem
appears in deriving correlation functions from pdf equations, e.g. in the BBGKY hierarchy
in statistical mechanics or Ornstein-Zernike theory, cf. e.g. Ref. [97].

What has to be done to solve the dilemma is to use a suitable ”closure relation”. This
is an empirical or physically sensible relation that approximately expresses the unknown
higher moment by means of the known moments. Such procedures have been studied e.g.
for a hydrodynamic theory of colloids in Ref. [98]. If one does not know better, one can
apply the so-called ”decoupling approximation”, i.e.

S
(4)
nmij = SnmSij. (4.14)

This is already enough for a qualitative description of the I-N transition, cf. Ref. [39],
but it is an unnecessarily bad approximation. For the investigation of phase separation
during I-N transition in shear flow, in Ref. [94] there has been proposed a more accurate
approximation of the fourth order moment, as described in the next section, which will
lead us to the following evolution equation for the order parameter

∂tSnm = −6Dr

(

Snm − 1

3
ρδnm

)

+ Dr
18

20
πbL2

(

SniSim − 1

ρ
SnmSijSji

)

. (4.15)

4.1.2 The closure relation method

For evaluating Eq. (4.11), we do not really need an approximation for S
(4)
nmij , but rather

one for S
(4)
nmijSij (with summation), in terms of Sij. In a work on the influence of shear flow

on the phase separation near the I-N transition [94], a rather accurate closure relation was
presented which expresses the contraction of the fourth order orientational moment S(4)

with a second rank tensor M in terms of powers of the second moment S and this tensor
M by interpolating between the perfectly isotropic and the perfectly aligned state.

First we introduce the three-dimensional isotropic orientational average, cf. Eq. (A.1),

〈A(u)〉 =

∫

du

4π
A(u) =

∫ 2π

0

dϕ

2π

∫ π

0

dθ

2
sin(θ)A(θ, ϕ) , (4.16)
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where in the second step spherical coordinates (θ, ϕ) have been introduced.
In the isotropic state, all moments can be calculated exactly, since they are just isotropic

averages. For the fourth moment one gets

S
(4)
ijkl = 〈uiujukul〉 =

1

15
(δijδkl + δikδjl + δilδjk) . (4.17)

In the opposite limit, in the perfectly aligned state, one can express S(4) simply by the
nematic director n̂,

S
(4)
ijkl = n̂in̂jn̂kn̂l . (4.18)

For the product S
(4)
nmijMij of the fourth order moment with a symmetric tensor M , one

can make an ansatz which is linear in M and up to second order in powers of the nematic
order parameter tensor S,

S
(4)
ijklMkl = c1SinMnj + c2MinSnj + c3δijSnmMmn + c4SijMnn

+c5SinSnmMmj + c6SinMnmSmj + c7MinSnmSmj

+c8SijSnmMmn + c9MijSnmSmn . (4.19)

By using the symmetries of S(4) and S, the consistency condition

S
(4)
iiklMkl = 〈uiuiukul〉Mkl = 〈ukul〉Mkl = SklMkl (4.20)

and the two analytically known values for the fully isotropic and nematic states one obtains
exactly the number of conditions to fix all expansion coefficients. By this procedure one
has interpolated the desired contraction of the fourth moment between the isotropic and
the fully nematic state, yielding

S
(4)
ijklMkl =

1

5

[

SikMkj + MikSkj − SikSklMlj − MikSklSlj

+2SikMklSlj + 3SijSklSkl

]

. (4.21)

If we use explicitly Sij in place of Mij , one gets

S
(4)
ijklSkl =

1

5

[

2SikSkj + 3SijSklSkl

]

, (4.22)

which has been used in the last section en route from Eq. (4.11) to Eq. (4.15).

4.1.3 Homogeneous bifurcation analysis

In the last two sections we have derived an evolution equation for the order parameter
tensor, Eq. (4.15),

∂tSnm = −6Dr

(

Snm − 1

3
ρδnm

)

+ Dr
18

20
πbL2

(

SniSim − 1

ρ
SnmSijSji

)

. (4.23)
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In a uniaxial nematic phase, the orientational order can be more easily described by a scalar
order parameter, which accounts for the degree of orientation, and by the director, which
specifies the direction of the preferred orientation. If one chooses this mean orientation of
the rods to be the x-axis of the cartesian coordinate system3, the order parameter tensor
as defined in Eq. (4.8) becomes diagonal,

Snm = ρ diag

(

λ̄,
1

2
(1 − λ̄),

1

2
(1 − λ̄)

)

, (4.24)

with λ̄ being the largest eigenvalue. The two other eigenvalues must be equal due to the
cylindrical symmetry around the director. Their values as well as the fact that S ∝ ρ are
due to the following relation for the trace of S (remember that u is a unit vector)

Snn =

∫

du ununΨ(u) =

∫

du Ψ(u) = ρ . (4.25)

From Eq. (4.24) one can read that in the perfectly nematic phase λ̄ = 1 holds, while
in the isotropic phase Siso

nm = 1
3
ρδnm implies that λ̄ = 1/3. It is convenient to separate

the isotropic contribution to the order parameter from the orientational contribution via
λ̄ = 1

3
+ λ and to introduce a dimensionless rod density

ρ̃ = ρ
πbL2

20
, (4.26)

with L and b the length and the diameter of the rods respectively. Then one gets from
Eq. (4.23) the following nonlinear equation for λ (omitting the tilde on the density)

λ̇ = −6Dr

[

(1 − ρ)λ − 3

2
ρλ2 +

9

2
ρλ3

]

. (4.27)

Linearizing Eq. (4.27) around λ = 0, one obtains

λ̇ = −6Dr(1 − ρ)λ , (4.28)

and by a Fourier ansatz λ ∼ eσt one finds that beyond a critical density4 of

ρc = 1 , (4.29)

the growth rate σ of the homogeneous orientation mode becomes positive, the homoge-
neous isotropic state λ = 0 loses its stability and the nematic phase starts to form. This

3In the nematic state this is of course legitimate but since we are dealing with the I-N transition this is
only an approximation. In the isotropic phase, the preferred direction of orientation is not yet given and
one should use the full order parameter tensor instead, cf. [99]. Nevertheless we are looking for a minimal
model and neglect these complications here.

4The critical value ρc = 1 corresponds to the critical rod density 20
πbL2 in unscaled units. This deviation

from the critical density 16
πbL2 as calculated by the Onsager theory is a result of the expansion in Eq. (4.9).
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Figure 4.1: The bifurcation diagram ac-
cording to Eq. (4.32) as a minimal de-
scription of the homogeneous lyotropic I-
N transition. The largest eigenvalue λ of
the orientational order parameter Snm is
shown as a function of the rod density ρ in
units of 20

πbL2 . Stable branches are drawn
as solid lines, while unstable branches are
dotted. At ρ = ρc = 1 a first order transi-
tion to the nematic state takes place. The
unstable branch λ− and the stable branch
λ+ meet at a saddle node at ρsn = 8/9.

bifurcation to a homogeneous nematic state with λ 6= 0 is discontinuous (subcritical) and
the stationary values of the largest eigenvalue of the nematic order parameter tensor can
be determined by the stationary solutions of Eq. (4.27) to be

λ±(ρ) =
1

6
± 1

6

√

9 − 8

ρ
. (4.30)

Both solution branches emerge as a saddle node at ρsn = 8/9. The λ+-branch exists
for all values larger than ρsn and tends in the limit ρ → ∞ to 2/3 (λ̄+ tends to 1), whilst
the λ−-branch ceases to exist at ρ = ρc = 1, the threshold of the I-N transition. λ+ is a
stable and λ− an unstable branch, as is easily established: linearizing Eq. (4.27) around a
homogeneous λ0 by writing λ = λ0 + λ̃ with a small homogeneous deviation λ̃ one gets

˙̃
λ = −6Dr

[

1 − ρ

(

1 + 3λ0 −
27

2
λ2

0

)]

λ̃ (4.31)

Inserting λ+ one calculates that this branch is marginally stable at ρsn and stable for
ρ > ρsn. λ− however is unstable in its whole existence region, which is also clear from the
topology of a backward bifurcation. The full homogeneous bifurcation diagram5 is shown
in Fig. 4.1.

For our qualitative considerations we can absorb the factor 6 in Eq. (4.27) into the rota-
tional diffusion coefficient, which is the only free model parameter. Thus as the description
of the I-N transition, in the following we will use

λ̇ = −Dr

[

(1 − ρ)λ − 3

2
ρλ2 +

9

2
ρλ3

]

. (4.32)

with λ the largest eigenvalue of the order parameter tensor and ρ the dimensionless rod
density in units of 20

πbL2 .

5One should note that, the model having only a third order polynomial in λ, the detailed structure of
the unstable branch near the bifurcation point is wrong. However, here we are mainly interested in the
influence of the reaction kinetics on the stable nematic branch.
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4.2 The phenomenological model

After the preparations of the last sections, we are now able to formulate our minimal
model that describes both the lyotropic isotropic-nematic (I-N) transition and the phase
separation into isotropic and nematic domains in the coexistence region of the both phases.
To keep in mind our aim again, the model described here will be generalized in the next
chapter to the nonequilibrium state of polymerization kinetics in biopolymers and thus we
will not rely on arguments based on equilibrium statistical physics.

As we have seen in the last section, the largest eigenvalue λ of the nematic order
parameter tensor is sufficient to describe the strength of the orientational order. For a
constant director orientation n̂ throughout the sample, which neglects director distortions
and defects, spatial variations of ρ and λ however allow for spatially alternating isotropic
and nematic ranges. Since it is known for long rods that the preferred director orientation
is parallel to the isotropic–nematic interface [91], we assume spatial variations only in
the direction perpendicular to n̂, which we will call the x–direction. Therefore in a first
approach we can concentrate on an effectively one-dimensional model.

For the I-N transition, with Eq. (4.32) we have already a homogeneous equation for the
order parameter. However, the phase separation of the order parameter is reflected also in
the density, as can be seen from the coexistence equations (3.21) in the framework of the
Onsager model. Therefore we need in total two equations, one for the rod density and one
for the largest eigenvalue of the order parameter. The phase separation should be accounted
for by Cahn-Hilliard terms, cf. section 3.3, in both the density and the order parameter
equation, which are driven, i.e. acquire a positive effective diffusion coefficient, in a mutual
way: in case of the density equation by the order parameter, reflecting the starting of phase
separation for the density if the I-N transition starts and λ becomes nonzero, and in case of
the order parameter equation by the density, since the I-N transition for lyotropic systems
is driven by the density, this transition and the phase separation occurring at the same
threshold density ρc [84].

In summary, we choose the following phenomenological model for the conserved rod
density ρ(x, t) and for the nonconserved order parameter field λ(x, t)

∂tρ = Dρ∂
2
x

[

−λρ − δρ∂
2
xρ + aρρ

3
]

, (4.33a)

∂tλ = −Dr

[

(1 − ρ)λ − 3

2
ρλ2 +

9

2
ρλ3

]

+Dλ∂
2
x

[

(1 − ρ)λ − δλ∂
2
xλ + aλλ

3
]

. (4.33b)

The spatially homogeneous part of the order parameter equation (4.33b) is just Eq. (4.32)
which has been derived in the last section, with ρ the filament density. The factor ρ in front
of the nonlinear terms reflects the fact that the orientational order is driven by excluded
volume interaction. Since the rod density is a conserved quantity, the homogeneous solution
of Eq. (4.33a) is just ρ = ρ0 = const, while the homogeneous solutions of Eq. (4.33b) are
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given as in the last section by

λ0 = 0, λ± =
1

6
± 1

6

√

9 − 8

ρ0

. (4.34)

As before λ0 = 0 corresponds to the isotropic rod distribution that becomes linearly
unstable with respect to homogeneous nematic fluctuations beyond the critical density
ρ > ρc = 1. The homogeneous orientational order fluctuations grow up to the homoge-
neously stable upper nematic branch λ+. Since the I-N transition is of first order, both the
isotropic and the nematic state coexist in a range 8

9
≤ ρ ≤ 1 where additionally a second

but unstable nematic branch λ− exists. This has already been displayed in Fig. 4.1.
Eq. (4.33a) is of the Cahn-Hilliard type [87] as introduced in Section 3.3. Expressing

its right hand side by the divergence of a current density

jρ(x) = −Dρ∂xµ(x) with µ(x) = −λρ − δρ∂
2
xρ + aρρ

3 , (4.35)

it takes the form of a conservation law for the density of the rod-like particles. The first
term in Eq. (4.33a), i.e. −Dρ∂

2
x(λρ), destabilizes the spatially homogeneous particle density

for any finite value of λ (λ is always positive). This mimics Onsagers prediction [26, 92]
that the free energy can be reduced by separating the system into isotropic ranges of low
rod density ρi and nematic regions of high density ρn. The second term describes an
isotropic-nematic interface energy that suppresses high wavenumber modes and the third
term limits the modulation amplitudes of the density. So the density equation (4.33a)
is a straightforward application of Cahn-Hilliard theory, where the effective diffusion is
governed by the nematic order parameter λ as implied by empiricism.

As can be seen in the framework of the Doi equation [84], beyond a critical density,
which coincides with the threshold for the I-N transition, i.e. ρc = 1, an instability of the
isotropic distribution against inhomogeneous order parameter fluctuations occurs. In the
order parameter equation (4.33b) this is taken into account by the term ∂2

x((1−ρ)λ), which
leads to a negative effective diffusion coefficient for ρ > ρc = 1. The successional two terms
again limit the high wavenumbers and the amplitudes of the nonlinear modulations of λ
as usual in Cahn-Hilliard theory.

It should be noted that Eqs. (4.33) are intended to be a minimal model. Additional
nonlinearities which cannot be ruled out, e.g. by symmetry reasons, are not crucial for
our qualitative reasoning, neither for the I-N transition nor for the occurrence of phase
separation. Nevertheless, the details of the nonlinear dynamics would of course be changed
by additional terms.

4.2.1 Linear stability analysis

In this section we answer the question how the model defined by Eqs. (4.33) allows for
instabilities of the homogeneous solutions ρ0 and λ0 = 0, λ−, λ+, cf. Eq. (4.34), towards
inhomogeneous solutions as should be expected from the phase separation within the co-
existence region.



52 CHAPTER 4. A MINIMAL MODEL FOR THE I-N PHASE SEPARATION

With the ansatz ρ(x, t) = ρ0 + ρ̃(x, t) and λ(x, t) = λ0 + λ̃(x, t) we separate the homo-
geneous parts of the filament density and the order parameter from the spatially inhomo-
geneous parts and linearize Eqs. (4.33) with respect to the assumed small inhomogeneous
contributions ρ̃(x, t) and λ̃(x, t). By this procedure, a set of two coupled linear equations
is obtained that can be written in matrix form

∂tw(x, t) = L0w(x, t) =

(

L(0)
11 L(0)

12

L(0)
21 L(0)

22

)

w(x, t) , (4.36)

for the two-component vector

w(x, t) =

(

ρ(x, t)
λ(x, t)

)

, (4.37)

where the tildes have been omitted once again. The components of the linear operator L0

read explicitly

L(0)
11 = Dρ

[

−λ0 − δρ∂
2
x + 3aρρ

2
0

]

∂2
x ,

L(0)
12 = −Dρρ0∂

2
x ,

L(0)
21 = −Dr

[

−λ0 −
3

2
λ2

0 +
9

2
λ3

0

]

− Dλλ0∂
2
x ,

L(0)
22 = −Dr

[

1 − ρ0

(

1 + 3λ0 −
27

2
λ2

0

)]

+ Dλ

[

1 − ρ0 − δλ∂
2
x + 3aλλ

2
0

]

∂2
x . (4.38)

Since only linearizations performed around homogeneously stationary states make sense,
the entry L(0)

21 can be simplified by using the stationary solutions of Eq. (4.32),

λ̇ = 0 = −Dr

[

(1 − ρ)λ − 3

2
ρλ2 +

9

2
ρλ3

]

, (4.39)

implying

λ0 = ρ0

(

λ0 +
3

2
λ2

0 −
9

2
λ3

0

)

. (4.40)

One therefore gets

L(0)
21 = Dr

λ0

ρ0
− Dλλ0∂

2
x (4.41)

for linearizations around ρ0 and λ0 that are stationary concerning homogeneous fluctua-
tions.
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Linear analysis, isotropic state

Let’s at first consider the homogeneous isotropic state, i.e. ρ0 is finite and λ0 = 0. By
Fourier transforming the linear operator by the ansatz eσt+iqx, L0 becomes

L0 =

(

−Dρ (δρq
2 + 3aρρ

2
0) q2 Dρρ0q

2

0 −Dr (1 − ρ0) − Dλ (1 − ρ0 + δλq
2) q2

)

. (4.42)

The eigenvalues can be read directly from the diagonal elements to be

σρ(q) = −Dρ

(

δρq
2 + 3aρρ

2
0

)

q2 ,

σλ(q) = −Dr (1 − ρ0) − Dλ

(

1 − ρ0 + δλq
2
)

q2 . (4.43)

The homogeneous density is conserved, σρ(0) = 0, and stable since σρ < 0 holds for all
finite wavenumbers (δρ, aρ > 0 are assumed). Thus inhomogeneous density fluctuations are
always damped if there is no nematic order. In contrast, orientational fluctuations grow
for ρ0 > ρc = 1 both homogeneously through the term ∝ Dr and inhomogeneously through
the contribution ∝ Dλ. Thus an initially homogeneous nematic state is built up by the
Dr-contribution and simultaneously the phase separation starts due to the Cahn-Hilliard
term ∝ Dλ. Orientational fluctuations grow in the range [0, qmax[ wherein σλ > 0 holds.
The upper border of the unstable wavenumbers can be calculated to be

qmax =

√

√

√

√

ε

2δλ

(

1 +

√

1 + 4
Drδλ

Dλε

)

, (4.44)

with ε being the relative distance from the threshold

ε =
ρ0 − ρc

ρc
= ρ0 − 1 > 0 . (4.45)

The fastest growing rate defined by the maximum of the growth rate σλ reads

qfg =

√

ε

2δλ

. (4.46)

As established above, for vanishing nematic order the two modes are decoupled and
the density mode is stable. For the slightest finite value of λ0 however, the modes become
coupled and a coupled density-orientation mode arises which is unstable against inhomoge-
neous perturbations. This can be seen in the next section, when the linear stability around
the homogeneous nematic state is calculated.

The wavenumber dependent growth rates are shown for a typical set of parameters in
Fig. 4.2a). The shape of σλ(q) (solid line) around the isotropic state is in good agreement
with calculations from the linearized Doi equation [84]: the positive value at q = 0 is
due to the building up of the homogeneous nematic phase. However simultaneously phase
separation occurs, the finite wavenumber modes having a larger growth rate than the q = 0
mode, and therefore inhomogeneous solutions will develop which are dominated by qfg.
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Figure 4.2: In part a) the growth rates σ(q) are shown for periodic perturbations of the
isotropic state with ρ0 > ρc = 1. The damped mode (dotted line) is the conserved density
mode and the solid line is the unstable orientational mode, which reflects the build-up of
the nematic state by the finite value at q = 0 and the phase separation by the maximum
at the finite wavenumber qfg. Part b) displays the growth rates for perturbations of the
homogeneously stable nematic state at the inhomogenously unstable branch in Fig. 4.6b).
Now the dotted line is a damped orientation mode and the solid line displays a coupled
density-orientation mode with a Cahn-Hilliard-like behavior. Besides ρ0 = 1.05 we chose
the parameters of the model to be Dr = 0.1, Dρ = Dλ = 0.3, aρ = 0.25, aλ = 2.0, δρ =
δλ = 0.1.

Nevertheless I should mention that the presented linearization around the homogeneous
isotropic state has limitations for the following reasons: In general, both the scalar order
parameter (related to λ in our formulation) and the director n̂ are fluctuating at the I-N
transition, the latter being neglected in our treatment to get a simple, one-dimensional
model. Moreover, if one wants to calculate the instability of the isotropic state, usually
there is not yet a predefined director. Thus one has to consider the full order parameter
tensor Qij , as defined in Eq. (3.2), which can be rather intricate. However, we constructed
our model mainly to address the question of how reaction kinetics can interplay with the
I-N phase separation and how the homogeneous nematic state is changed in the presence
of polymerization kinetics. For these questions our simplifications are appropriate.

Linear analysis, nematic state

A linear stability analysis of the homogeneously stable nematic state (λ+ in our model)
in terms of microscopic models is rather involved, since already the exact homogeneous
nematic state can only be obtained numerically [73]. For our phenomenological model
however, the determination of σ(q) on the homogeneous nematic branch is a straightforward
task.

We now have to deal with the full linear operator L0 with the matrix elements as defined
in Eqs. (4.38) and λ = λ+ from Eq. (4.34). One gets two real eigenvalues σ1 and σ2 as the
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Figure 4.3: The growth rates σ(q) along the branch λ+ for different values of the mean
density: at the saddle node, ρ0 = ρsn = 8/9, where a nematic state is possible for the first
time, and at ρ0 = 0.9, 1.05, 1.1 from a) to d). From a) to d) one can see that the dotted
mode becomes more and more damped while the mean density is increased. In d) ρ0 > ρh

holds for the parameters used here and therefore the homogeneous nematic state is linearly
stable. The parameters are as in Fig. 4.2.

solutions of the determinant equation

σ2 −
(

L(0)
11 + L(0)

22

)

σ + L(0)
11 L(0)

22 − L(0)
12 L(0)

21 = 0 , (4.47)

with L(0)
ij = L(0)

ij (q) in Fourier space.
By applying q = 0 to the eigenvalues, one can identify a conserved coupled density-

orientation mode with σc(q = 0) = 0 and a pure orientation mode σo(q = 0) < 0 that is
damped. While explicit formulas are quite lengthy, the typical shape of σc(q) and σo(q)
near the I-N transition density and on the homogeneously stable nematic branch are shown
in Fig. 4.2b) as the solid and dotted lines respectively. σo is damped for all wavenumbers,
while σc is of the typical Cahn-Hilliard form.

In Fig. 4.3, the growth rates are shown along the homogeneously stable branch λ+ for
different values of the mean density ρ0. At the saddle node, the growth rate is for small



56 CHAPTER 4. A MINIMAL MODEL FOR THE I-N PHASE SEPARATION

0

0.2

0.4

0.6

0.8

1.0

1.2

0.90 0.95 1.00 1.05

q

ρ0

Figure 4.4: The wavenumber of the fastest
growing mode qfg (solid line) and the max-
imal unstable wavenumber qmax (dashed
line) are shown as a function of the mean
density ρ0 on the homogeneously stable but
inhomogeneously unstable nematic branch
λ+. The range of existence of unstable
modes starts at the saddle node ρ0 = ρsn =
8/9 and ends at ρ0 = ρh. Parameters as in
Fig. 4.2.
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Figure 4.5: The threshold density ρh be-
tween the region on the nematic branch that
is unstable against inhomogeneous pertur-
bations (for ρ < ρh) and the linearly stable
homogeneous nematic state (for ρ > ρh) is
solely determined by the parameter aρ. The
dependence is shown in this figure. In the
test simulations we have chosen aρ = 0.25
leading to ρh ≃ 1.0768 > ρc.

q linear in q, which is somewhat singular. For all other densities it goes like q2: either
with a positive coefficient in the density range ]ρsn, ρh[, reflecting the instability towards
phase separation, or with a negative coefficient for ρ0 > ρh, reflecting the linear stability
of the nematic state. One can conclude from this that for high enough mean densities,
the homogeneous nematic state should again be preferred at least in the linear regime, in
agreement with the predictions from Onsager theory.

From the growth rates on the homogeneously stable nematic branch one can also obtain
the fastest growing wavenumber qfg and the maximal unstable wavenumber qmax as a
function of the mean density ρ0, which are displayed in Fig. 4.4.

The upper border ρh, where the nematic λ+-branch becomes linearly stable again
against inhomogeneous fluctuations, is solely determined by aρ in the way as displayed
in Fig. 4.5. For aρ = 1/3, ρh coincides with the density of the I-N transition, ρc = 1 = ρh.
Because of experimental evidence - the I-N transition and the phase separation take place
simultaneously while increasing the density on the homogeneous and isotropic branch above
ρc = 1 - in our model one should choose aρ in such a way that ρh > ρc holds.

Comparing this overall analysis to Fig. 4.1, where the homogeneous nematic branch
λ+ was displayed as stable against homogeneous fluctuations, we are now able to draw a
more detailed picture. Along the dashed part of the curve in Fig. 4.6b) the homogeneous
nematic state is - from the saddle node up to the upper border ρh - linearly unstable against
inhomogeneous fluctuations. This is in agreement with the prediction of phase separation
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Figure 4.6: Part b) shows the stable (solid) and the unstable branch (dashed) of the
nematic order parameter λ± as a function of the rod density ρ, cf. Eq. (4.34). Part c)
shows stable kink solutions of Eqs. (4.33) interpolating between the nematic (ρ = ρn) and
the isotropic range (ρ = ρi). The x-axis has been scaled with the system length Ls. The
nematic volume fraction Vn as a function of ρ is given in a). For the used parameter set
(as in Fig. 4.2), the whole system is in the homogeneous nematic state (i.e Vn = 1) for
ρ0 > 1.367.

in the region of coexistence, e.g. from Onsager theory, so ρh should be compared to ρn,
the nematic density derived from the coexistence equations.

4.2.2 Phase separated solutions

Apart from the linear stability of the nematic branch being easily to establish, our model
gives a second insight as compared to calculations based on the entire Doi equation, e.g.
the linear stability analysis around the isotropic state as described in [84]: In both the Doi
equation and our minimal model, the growth rate σ(q) for perturbations of the isotropic
state takes its maximum at a finite value of q and has positive values for any ρ > ρc. This
has to be contrasted to Onsager’s statistical theory, where inhomogeneous phase separated
states are only energetically preferred for a rod density below a maximum value ρ < ρn

determined by the coexistence equations (3.21). The mere linear analysis around the
homogeneous isotropic state thus gives a misleading picture, since the nonlinearities are
responsible for the stabilization of the homogeneous nematic state for high densities. In
our model - without having this explicitly implemented - the homogeneous nematic state
(whose linear stability already involves nonlinearities of course) is linearly unstable against
inhomogeneous fluctuations only up to a mean density ρh, as established in the last section.
The question is now what happens in the nonlinear regime.

In order to check in which density range phase separated states are stable - we are not
interested in the detailed dynamics - we performed the most simple numerical simulation
of our model with an Euler step in time and a finite difference scheme with a discretization
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Figure 4.7: Numerically obtained kink solutions of ρ(x) and λ(x) are displayed in a) and
b) respectively. Away from the interface, the density and order parameter values in the
isotropic and nematic regions are almost perfectly constant. The x-axis has been scaled
with the system length Ls. Parameters as in Fig. 4.2.

of 128 in space. As boundary conditions we chose that both ρ and λ have vanishing first
and third order derivatives at the boundaries, to allow for states with different density and
orientation on both sides but still allowing for periodic states.

Such simulations of Eqs. (4.33) confirm that inhomogeneous solutions λ(x) and ρ(x)
only occur for a mean density ρ0 below a value ρn > ρh as shown in Fig. 4.6b). The
inhomogeneous solutions for ρ(x) and the volume fraction of the nematic region, which
depends linearly on the mean density ρ0, are displayed in Fig. 4.6c) and a) respectively
and discussed in the next section.

The behavior on the homogenous nematic branch can thus be summarized: for mean
densities ρ0 from ρsn (first vertical dotted line in Fig. 4.6b)) to ρh (second vertical dotted
line), the homogeneously stable nematic branch is linearly unstable against inhomogeneous
perturbations. From ρh up to ρn (third vertical dotted line) it is linearly stable but inho-
mogeneous states are still possible in the nonlinear regime and could be excited by large
fluctuations. For ρ > ρn the nonlinear terms stabilize the uniform nematic state.

Comparison to the Onsager model

Here we want to investigate if one can interprete the numerically obtained inhomogeneous
solutions as phase separated states. Then we will compare features of these inhomogeneous
solutions to the predictions from Onsager theory, which again confirms that the model is
sound and also allows us to fix some free model parameters.

In a certain density interval ρ1 < ρ < ρ2 around the critical density ρc = 1 of the I-N
transition, Eqs. (4.33) have stationary kink solutions that can be obtained numerically and
are displayed in Fig. 4.7a) and b) for ρ(x) and λ(x) respectively. These solutions interpolate
between a region of high density ρn and order parameter λn and a region with low density ρi

and zero order parameter. Since in addition both the densities and the order parameters in
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Figure 4.8: The solutions ρn, ρi (solid
lines, ρn > ρi) of the ”coexistence equa-
tions”, Eqs. (4.48) and (4.50), are shown
in dependence of aλ and for fixed parame-
ter aρ = 0.25. For the chosen parameters,
since ρi should be positive and smaller
than ρsn (dash-dotted line), the range of
sensible values for aλ is about [1.68, 2.29].
The dashed line marks ρc.

the two regions are almost perfectly constant, these regions can unambiguously be identified
as the nematic and isotropic domains and the respective inhomogeneous solutions as the
late stages of phase separation. The existence region of these solutions, [ρ1, ρ2], should
therefore be regarded as the I-N coexistence region [ρi, ρn].

The densities ρi and ρn, in the isotropic and the nematic regions respectively, can be
determined for an infinitely large system by the two nonlinear coefficients aρ and aλ, as
described in the following. For stationary kinks as in Fig. 4.7, the system can be assumed
to be totally phase separated and therefore to be in equilibrium. Thus the total particle
current introduced in Eq. (4.35) vanishes, jρ(x) = 0, implying that µ(x) = µi = µn is
a constant. Sufficiently far away from the kink, the density is constant too, ρi or ρn

respectively, and one obtains the equation

aρρ
3
i = −λnρn + aρρ

3
n , (4.48)

where λn = λ+(ρn) = 1/6 + 1/6
√

9 − 8/ρn is the order parameter in the nematic region
of homogeneous density ρn, which we have chosen as the usual homogeneous value, cf.
Eq. (4.34). The rotational contribution to the order parameter equation, i.e. the term ∝ Dr

in Eq. (4.33b), vanishes in the nematic range for λn as well as trivially in the isotropic range.
By inspection of the remaining inhomogeneous part of Eq. (4.33b), we define analogously
as was done for jρ in Eq. (4.35) a translational current for the orientational order

jλ(x) = −Dλ∂xν(x) , ν(x) = (1 − ρ)λ − δλ∂
2
xλ + aλλ

3 . (4.49)

Since λi vanishes in the isotropic range, νi is zero as well. To prevent a current through
the interface, the total current jλ in the nematic region has to vanish as well and it follows
νn = νi = 0 leading to a second equation

(1 − ρn)λn + aλλ
3
n = 0 . (4.50)

As λn is known, or approximated in a finite system by λ0(ρn), from Eq. (4.50) the
anisotropic density ρn follows as a function of aλ (or vice versa). ρi can then be cal-
culated for ρn with Eq. (4.48) as a function of aρ (or vice versa). In this spirit, Eqs. (4.48)
and (4.50) may be considered as the ”coexistence equations” within the framework of our
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minimal model, since they uniquely determine the homogeneous densities ρi and ρn in the
isotropic and nematic domains respectively. The other way round, the two densities ρi and
ρn may also be considered as input parameters that are obtained from different approaches
as for instance from coexistence equations or possibly also from experiments, and the two
parameters aρ and aλ of our phenomenological model could thus be fixed. The region of
sensible values of these two parameters is not large, as can be seen in Fig. 4.8. There the
values of ρi and ρn are shown in dependence of aλ for a fixed value of aρ = 0.25 (which
was chosen to respect ρh > ρc = 1). Since 0 < ρi < ρsn should hold, aλ should evaluate to
about aλ ≃ 2 as chosen by us throughout this chapter.

Since ρi and ρn do not depend on the system size Ls, the position of the kink-like
interface is determined by the mean density ρ0 as can be seen from Fig. 4.7. If one
measures the fraction of the system that is nematic, Vn, one gets an almost perfectly linear
dependence from the mean density ρ0, as shown in Fig. 4.6a) and again in agreement with
the results expected from Onsager theory.

4.3 Conclusions

So we can conclude that our model reflects all the properties known from the Onsager
model: first, it describes the homogeneous I-N transition for ρ > ρc = 1 via the spatially
homogeneous part of Eq. (4.33b). Second, the late stage phase separation into an isotropic
phase with a density ρi and a nematic phase with a different and higher density ρn and
an order parameter λn is contained in the model. Both densities are independent of the
system size (or volume) thus leading to the correct linear behavior of the fraction of the
nematic volume as shown in Fig. 4.6a). Moreover, with ρi and ρn as input from a free
energy approach or from experiments, the two nonlinear parameter aρ and aλ can be fixed
to reduce the parameter space of the model. It is also straightforward to perform a linear
stability analysis on the homogeneously stable nematic branch. This branch is unstable
against inhomogeneous perturbations, i.e. against phase separation, from the saddle node
up to a density ρh. Suitable parameters can be found for whom ρh > ρc and ρh < ρn hold.
In addition, our model not only reformulates the predictions of Onsager but is also able to
repair the ostensible contradiction discussed in the last section, that the isotropic state is
unstable against phase separation for all densities ρ > ρc, while phase separation should
only occur for ρ < ρn.

Nevertheless there are still things to improve: first, simulations around the isotropic
state cannot be taken too seriously, as already mentioned above. Second, in a naive
deterministic implementation of the model, the simulation can become stuck in a situation
with small parts of the simulated region remaining in a different state. These should,
however, be destabilized if fluctuations are taken into account, i.e. if noise is added in a
way that the density equation is still conserved. This is called model C dynamics, cf. [100],
where one has a nonconserved order parameter coupled to a conserved field.



Chapter 5

Reaction kinetics drives pattern
formation

In a living cell, the cytoskeletal polymers, namely actin filaments and microtubules, are
usually met in a nonequilibrium state with a finite lifetime. If the filaments are not stabi-
lized by additional proteins, they are continuously assembled and disassembled, where the
polymerization process is coupled to the hydrolysis of ATP as discussed in section 2.1.2.
Such a state can also be reproduced in vitro, cf. e.g. Ref. [53].

Such a nonequilibrium state enables the cell to reorganize its cytoskeleton quickly and
effectively for many vital purposes, predominantly during cell movement, but also e.g. in
vesicle transport, cell division, etc.. There are at least two ways the cell can actively
regulate its cytoskeleton: by delivering nucleation sites it can polymerize the filaments
where it needs them, e.g. during cell locomotion at the moving front, and depolymerize
them where they are no more useful - a state which sounds simple but of course is a
very complex and highly biochemically regulated one. It is also rather costly, i.e. energy
consuming, since huge amounts of ATP are needed for the polymerization. Nevertheless
there is strong evidence for this state [1, 7]. A second way of reorganization is to transport
the existing filaments to places where they are needed. This can be done by motor proteins,
and this process is investigated in part II of this work. Both states are supposed to be
of high importance for bacteria propulsion and cell locomotion [60, 101, 7, 102, 51, 11],
different cell types using both of them simultaneously or only one of them.

As has been shortly reviewed in section 2.1.2, the polymerization processes can be rather
complex. The polymerization and depolymerization rates on the two distinct filament ends
are different and additionally there can be statistical switching between catastrophe and
rescue in the case of microtubules. Apart from leading to a stationary length distribution
of the filaments [24, 103] as may be expected, the reaction kinetics can also introduce states
of polymerization that are not possible in usual, i.e. equilibrium, polymers and which are
inherent to the nonequilibrium character of the assembly, like the treadmilling state [17],
or the state called dynamic instability where oscillatory polymerization arises [15, 58, 59].

In this part of my work, I am interested in the interplay between the nematic ordering
and the accompanied phase separation, as modeled and investigated in the last chapter,
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with a simple polymerization kinetics. We predict here that this interplay results in a
new pattern forming process, leading to a pattern of alternating isotropic and nematic
regions. For this pattern forming process, we want to consider a quite simple state of
polymerization, as compared to the possible complex processes mentioned above, where
the main consequence of the ongoing polymerization and depolymerization process is that
the filaments have only a finite lifetime τ . Such a state is surely possible for actin and
presumably also for microtubules if the probability of the rescue phenomenon is small.

The aim of this chapter is therefore to exemplify by means of the addition of a very
simple reaction kinetics to the phenomenological model of the last chapter, how a finite
lifetime of the rods can introduce a pattern forming process in the vicinity of the isotropic-
nematic transition.

5.1 The underlying idea

As we have reviewed in Section 3.2.1, the phase separation at the I-N transition leads
in the ideal case and in the long time limit to the building up of a nematic region with
high density ρn and an isotropic region with a low density ρi. This long time limit of
course assumes that the idealized rod liquid comprises filaments with infinite lifetime. In
the state considered here however, where the filaments have only a finite (mean) lifetime
τ , they can still phase separate, but not throughout the whole sample but only over a
lifetime-dependent maximum distance which is in the order of

lD =
√

Dρτ , (5.1)

where Dρ is the effective diffusion coefficient of the filaments. What one should therefore
expect is a stationary and approximately periodic pattern with alternating isotropic and
nematic regions. Using a typical diffusion coefficient for actin filaments with a length of
some microns, Dρ ≃ 10−13m2s−1 [24], and a typical lifetime of tens of minutes, τ = 1000s,
one expects the wavelength of the pattern to be around 10µm, meaning a few filament
lengths.

Apart from this scaling argument, one can also consider the following more illustrative
picture: Since the lifetime of the filaments is approximately a constant, much more polymer
subunits (monomers in the case of actin and dimers in the case of microtubules) are released
in the nematic range, where the density ρn is high, than in the isotropic range with a low
density ρi. However, due to the much larger diffusion coefficient of the subunits as compared
to the filaments (two to three orders of magnitude), the former are redistributed quickly,
leading to a nearly homogeneous subunit density m(x). Thus the number of nucleated
filaments per unit time, which depends only on m(x) and not on the filament density ρ(x),
is weakly varying too. By this qualitative reasoning one expects a steady net transport of
subunits from the nematic to the isotropic range and in the opposite direction a transport
of filaments, whereby the latter one is limited to distances of the order of lD or smaller.
This length restriction causes, instead of a large scale phase separation, a spatially periodic
pattern with a wavelength in the order of lD as already argued above.
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5.2 Simple reaction kinetics in the model

Since we are looking for a simple model to exemplify that the pattern forming process
proposed above is possible, one should identify the most important consequence of the
reaction kinetics for the problem we want to describe. The simple qualitative picture
of the finite lifetime of the filaments interplaying with the phase separation process and
introducing a length scale into the system shows that the complexity of the biochemical
reaction steps, involved during the assembly and disassembly of actin or microtubules,
should not be crucial. Let’s consider for example the polydispersity of the filaments - as
already mentioned above, actin and microtubules are usually met with a distribution of
lengths. As the slowest kinetic step and the smallest diffusion coefficient - since diffusion
scales with mass namely the one of the longest filaments - will govern the length scale
limitation, one can in a first approach discard polydispersity and assume for the sake of
simplicity that all filaments are of the same length.

Therefore we can use just the model introduced in the last chapter, with ρ(x) and
λ(x) interpreted as the density and orientation of the longest filaments. Additionally the
minimal model, Eqs. (4.33), has to be adjusted to account for the reaction kinetics process:
at first we have to add a new balance equation for the subunit density m(x). m stands
here for ’monomers’ as would be the case in an actin solution. However, regarding the
level of simplicity of our model, it likewise refers to the tubulin dimers in the case of
polymerizing microtubules. The subunits are able to diffuse with a diffusion coefficient
for which Dm ≫ Dρ should hold. Since the polymerization and depolymerization process
is fast compared to filament diffusion (timescales are minutes versus several hours), the
complex filament assembly is mimicked just by transitions between the subunits and the
(longest) filaments. Thus we introduce a decay rate Σ = τ−1 and a nucleation rate s of
the filaments. The total amount of free subunits and subunits contained in the filaments
being a conserved quantity, the reaction terms in the filament density equations have to
appear also in the subunit density equation but with opposite sign. Additionally a factor
γ has to be introduced which is a measure for the number of subunits in one filament of
fixed length.

Finally we end up with the following model equations

∂tρ = Dρ∂
2
x

[

−λρ − δρ∂
2
xρ + aρρ

3
]

+ sm − Σρ, (5.2a)

∂tλ = −Dr

[

(1 − ρ)λ − 3

2
ρλ2 +

9

2
ρλ3

]

+Dλ∂
2
x

[

(1 − ρ)λ − δλ∂
2
xλ + aλλ

3
]

− Σλ , (5.2b)

∂tm = Dm∂2
xm − γsm + γΣρ . (5.2c)

In Eq. (5.2a) the subunit density comes in with positive sign, implying that subunits
are a source of filaments, while the filament density is a sink since they depolymerize to
monomers (Σ and s are assumed positive). As already mentioned above, in the subunit
equation (5.2c), the same terms enter but with opposite sign and with the factor γ counting
the amount of subunits in one filament. One can directly check that the total amount of
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subunits mtot, i.e. both polymerized and free subunits, is conserved: it is sufficient to look
at the homogeneous equations, implying

∂tmtot = ∂t (γρ + m) = 0 . (5.3)

In the order parameter equation, Eq. (5.2b), there is a decay term −Σλ, since in the
nematic range oriented filaments are lost. However, new ones are nucleated everywhere
with an arbitrary orientation1 and have to relax to the local mean orientation by rotational
diffusion, i.e. the homogeneous part of Eq. (5.2b) proportional to Dr. Accordingly, there is
no source term in Eq. (5.2b), the orientational order has to form just as in the nonreactive
case.

5.3 Analysis of the reactive model

We can now look if our prediction is correct and periodic patterns can be found within
this simple model. First we have to check whether an isotropic-nematic transition is still
possible. If so we can investigate the effect of the reaction kinetics on the linear stability
of the nematic branch and search for periodic density and orientation states.

5.3.1 The spatially homogeneous case

At first we investigate again the spatially homogeneous case to answer the question whether
the I-N transition is still possible in a system undergoing reaction kinetics. In the presence
of the reactive steps the nucleation and decay rates s and Σ determine the mean filament
density ρ0 in terms of the mean monomer density m0 in the following way

ρ0 = sΣ−1m0 . (5.4)

Assuming that one is in the state where this homogeneous filament density is already
established, we linearize the spatially homogeneous part of Eq. (5.2b) and arrive at

λ̇ = −Dr

(

1 +
Σ

Dr

− ρc

)

λ. (5.5)

One can thus conclude that a I-N transition remains possible and that the reaction kinet-
ically caused partial loss of the orientational order, i.e. the existence of a sink −Σλ but
the absence of a source term in Eq. (5.2b), leads to an increase of the critical density for
the transition,

ρc = 1 + Σ/Dr , (5.6)

1This should be true if the filament density is not as high that polymerization in the nematic phase is
only possible parallel to the mean orientation. For such high densities however, there should be no phase
separation anymore, so this case is irrelevant for the problem under consideration.
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as compared to the equilibrium case, where ρc = 1 held. This is physically intuitive, since
the decay of filaments should hinder the build-up of the nematic state, thus a higher mean
filament density should be needed for the nematic phase to be formed. Second, that the
effect is smaller if the effective rotational diffusion constant is larger also fits the intuition,
since then the nematic phase is formed more effectively. One should however take in mind
that we are dealing with a mean field theory, and that if fluctuations (which could be
important in a reaction kinetics) dominate, our model will break down.

The spatially homogeneous part of Eq. (5.2b) can again be solved for stationary values
of the order parameter,

0 = −Dr

[

(1 − ρ0)λ0 −
3

2
ρ0λ

2
0 +

9

2
ρ0λ

3
0

]

− Σλ0 , (5.7)

and the spatially homogeneous stationary solutions of Eqs. (5.2) accordingly are

ρ = ρ0 , m = m0 ,

λ0 = 0 , λ± =
1

6
± 1

6

√

9 − 8

ρ0

(

1 +
Σ

Dr

)

, (5.8)

I will not show the homogeneous bifurcation diagram here, since it is just Fig. 4.1 again
with the threshold shifted by Σ/Dr to the right. It can also be seen from Fig. 5.5d), which
contains already the stability against inhomogeneous perturbations.

5.3.2 Linear stability analysis of the nematic state

We perform again a linear stability analysis by the ansatz ρ(x, t) = ρ0 + ρ̃(x, t), λ(x, t) =
λ0 + λ̃(x, t) and additionally m(x, t) = m0 + m̃(x, t) for the monomer density, yielding the
linear system

∂tw(x, t) = L0w(x, t) =







L(0)
11 L(0)

12 L(0)
13

L(0)
21 L(0)

22 L(0)
23

L(0)
31 L(0)

32 L(0)
33






w(x, t) , (5.9)

for the three-component vector

w(x, t) =





ρ(x, t)
λ(x, t)
m(x, t)



 , (5.10)

where the tildes have been omitted again. The components of the linear operator L0 can
be read directly from Eq. (4.38) with the addition of the homogeneous reaction kinetics
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Figure 5.1: The growth rates σ(q) for spatial perturbations of the nematic state are shown.
The left part again displays the case without reaction kinetics, cf. Fig. 4.2b), with a
damped orientation mode and an unstable and conserved Cahn-Hilliard-like mode. To
the right are the modes in the presence of reaction kinetics and in the region where the
homogeneously stable λ+ branch is inhomogeneously unstable, cf. Fig. 5.5d). Now one
can distinguish three modes: a damped orientational mode (dotted line) and two coupled
modes, one damped (dashed line) and a pattern forming mode (solid line) which is linked to
the total density, but also coupled to the orientation. Parameters are ρ0 = 1.05 , Σ = 0.003,
s = 0.01Σ, Dm = 100, γ = 100 and the others as in Fig. 4.2.

terms and the diffusive term in the monomer density. One gets

L(0)
11 = −Σ + Dρ

[

−λ0 − δρ∂
2
x + 3aρρ

2
0

]

∂2
x ,

L(0)
12 = −Dρρ0∂

2
x ,

L(0)
13 = s ,

L(0)
21 = −Dr

[

−λ0 −
3

2
λ2

0 +
9

2
λ3

0

]

− Dλλ0∂
2
x = Dr

λ0

ρ0

− Dλλ0∂
2
x ,

L(0)
22 = −Dr

[

1 − ρ0

(

1 + 3λ0 −
27

2
λ2

0

)]

− Σ + Dλ

[

1 − ρ0 − δλ∂
2
x + 3aλλ

2
0

]

∂2
x ,

L(0)
23 = 0 ,

L(0)
31 = γΣ ,

L(0)
32 = 0 ,

L(0)
33 = −γs − Dm∂2

x . (5.11)

Determining the growth rates σ(q) of modes with wavenumber q on the homogeneously
stable nematic branch λ+ from Eq. (5.8) by the ansatz λ1, ρ1, m1 ∝ exp(σt ± iqx), the
eigenvalues of L0 have the typical form as depicted in Fig. 5.1b). The modes can be
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identified by setting q = 0. Eqs. (5.9) then yield three eigenvalues

σ1 = 0, σ2 = −Σ − γs, σ3 = −Dr

[

1 − ρ0

(

1 + 3λ0 −
27

2
λ2

0

)]

− Σ . (5.12)

σ1 is connected to the conserved mode of the total monomer density mtot = γρ + m, since
σ1(q = 0) = 0 holds. The eigenvector contains all three fields meaning that the orientation
is coupling to the total density. σ3 is at q = 0 a pure orientational mode and σ2 again a
mode coupling the three fields, both however are dampened since σ2, σ3 < 0 holds.

This behavior of the modes, as displayed in Fig. 5.1b), has now to be compared
to the case without reaction kinetics as shown again for comparison in Fig. 5.1a). In
both cases, one can identify a damped orientational mode starting at q = 0 from σo =
−Dr

[

1 − ρ0

(

1 + 3λ0 − 27
2
λ2

0

)]

or from σ3 = σo − Σ respectively. In the non-reactive case,
if the homogeneous nematic branch is inhomogeneously unstable, the second conserved
mode displays a Cahn-Hilliard-like behavior, meaning it starts from q = 0 like ∝ q2 with
a positive coefficient and then decays with higher powers of the wavenumber, displaying
a fastest growing mode qfg and instability in a range q ∈ [0, qmax] that contains the long
wavelength modes. In the presence of reaction kinetics however, a third mode naturally
emerges due to the additional equation for the monomer density and the interaction of
the filament density with the monomers by the homogeneous reaction kinetics together
with the conservation of the total monomer density mtot is reflected in the modes by a
long wavelength coupling of the new mode with the unstable conserved mode. By this
mechanism, the long wavelength part of the conserved mode is damped and instead of an
unstable range q ∈ [0, qmax], the system displays a pattern forming instability in a finite
wavenumber window [qmin, qmax] not containing the long wavelength modes.

Fig. 5.2 displays the fastest growing wavenumber qfg and the minimal and maximal
unstable wavenumbers qmin and qmax in dependence of the mean density ρ0. The critical
wavenumber qc of the pattern forming instability can be identified at the point where these
three wavenumbers coincide, the density at this point defining also the threshold density
ρp. From the viewpoint of pattern formation, we have found a stationary finite wavelength
instability if one moves on the homogeneous nematic branch in the direction of decreasing
density and crosses ρp. If one walks on the homogeneous isotropic state towards higher
densities, the I-N transition starts at ρc = 1 + Σ/Dr, as discussed in the last section.
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Figure 5.3: The threshold density ρp and
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Figure 5.4: The critical wavenumber qc is
shown as a function of the decay rate Σ.
Parameters are s = 0.01Σ, Dm = 100, γ =
100 and the others as in Fig. 4.2.

However, since ρp > ρc holds, at ρc one is already in the highly nonlinear regime of pattern
formation, namely a distance ρp − ρc away from the threshold, and things already can
be complicated. Fig. 5.2 should also be compared to the case without reaction kinetics,
namely Fig. 4.4, where the fastest growing mode tends to zero at ρh.

The density range where the homogeneous branch λ+ is unstable against the stationary
finite wavelength instability, i.e. [ρsn, ρp], is indicated by the dashed line in the bifurcation
diagram Fig. 5.5d). For ρ0 > ρp the nematic branch is linearly stable. The dependence
of the pattern formation threshold density ρp on the decay rate Σ (with a nucleation rate
s = 0.01Σ) is shown in Fig. 5.3. Surprisingly, the behavior of ρp(Σ) is nonmonotonous
with a minimum threshold at approximately Σ = 0.006. However, since the density ρsn of
the saddle node increases with Σ, cf. Eq. (5.8), the density range of the pattern forming
instability is largest for small values of Σ. Fig. 5.4 shows the critical wavenumber qc at
ρ0 = ρp in dependence of Σ. The wavenumber increases with the decay rate, since a
higher value of Σ broadens the wavenumber region where the mode interaction through
the reaction kinetics leads to a damping of the modes, cf. the discussion of the growth
rates and Fig. 5.1.

5.3.3 Numerical analysis

We performed again some numerical simulations of the model in the presence of the reaction
kinetics. We used both the finite difference scheme mentioned already above and a Fourier
Galerkin spectral code, both with periodic boundary conditions. It turns out that periodic
patterns bifurcate subcritically at ρp, i.e. at ρp there is already a finite amplitude of the
pattern. Additionally, the periodic states have a broad existence region, persisting even to
densities smaller than ρsn. The inhomogeneous bifurcation diagram is displayed in Fig. 5.5:
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Figure 5.5: Part a) and b) show periodic solutions ρ(x) and λ(x) of Eqs. (5.2) for ρ0 = 0.8
(dotted), ρ0 = 0.95 (dashed) and ρ0 = 1.056 (solid), respectively. Part d) displays the
stable homogeneous nematic branch (solid) and the unstable ones (dashed). In part c)
the existence range of the stable (solid) and unstable (dashed) periodic patterns with the
modulation amplitude A of λ(x) are given. Parameters are as in Fig. 4.6 with Dm =
10, γ = 100, Σ = 0.003, s = 0.01Σ.

part d) shows the homogeneously stable nematic branch and its region of linear instability
towards the pattern forming instability as the dashed region on the upper branch. Part c)
displays the amplitude A of the orientation field λ(x) of the periodic solutions in the range
where the nonlinear periodic state is in coexistence with the homogeneous states. One can
clearly see that A is already finite at ρ0 = ρp and persists nearly down to ρ0 ≃ 0.76 < ρsn.

Numerically obtained periodic states at the unstable nematic branch are shown in
Figs. 5.6-5.8 for three different mean densities: at ρ0 = 0.8 < ρsn, ρ0 = 0.95 and ρ0 =
1.056, the latter being very close to ρp. The figures display the rod density ρ(x), the
orientation field λ(x) and the deviation of the subunit density from the homogeneous value
δm(x) = m(x) − m0 to make these visible since δm ≪ m0. As compared to the case
without reaction kinetics, where the coexistence conditions determine the isotropic and
nematic densities ρi and ρn, cf. Fig. 4.6, the maxima of ρ(x) come now close to ρn while
the minima of ρ(x) are considerably larger than ρi. However, the anharmonic shape of
Fig. 5.6 as compared to Fig. 5.8 seems to imply that in the former case the system tends
to the isotropic state, as can be judged from the narrow maxima of the periodic solutions,
while in the latter case the maxima are pronounced implying a tendency to the nematic
state.

In the region of Fig. 5.5c), where the amplitude A is drawn as the dashed line, the
periodic patterns become increasingly anharmonic, plateaus ρ ∼ ρn spread out and the
valleys of low filament density in between become less and narrower by approaching the
upper end of the dashed curve in Fig. 5.5c), a behavior implying that in this density region,
the reaction kinetics is not sufficiently effective to prevent the system from coarsening. At
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Figure 5.6: Periodic patterns for a mean density ρ0 = 0.8. Displayed are the rod density
ρ(x), the orientation field λ(x) and the deviation of the subunit density from the homoge-
neous value δm(x) = m(x) − m0 respectively. The system size Ls has been chosen so that
three pattern wavelengths fit into the system at ρ0 = ρp. Apart from the mean density,
parameters are as in Fig. 5.1.
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Figure 5.7: Periodic patterns for a mean density ρ0 = 0.95. For details cf. Fig. 5.6.



5.3. ANALYSIS OF THE REACTIVE MODEL 71

0.6

0.8

1.0

1.2

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.2 0.4 0.6 0.8

−0.04

−0.02

0

0.02

0.04

0.2 0.4 0.6 0.8

ρ

λ

δm

x/Ls

Figure 5.8: Periodic patterns for a mean density ρ0 = 1.056. For details cf. Fig. 5.6.

the left end of this curve, as can be seen e.g. in Fig. 5.6, the state remains periodic without
a tendency to coarsen, until for a too small mean density the valleys spread out and the
system becomes homogeneous.

5.3.4 Robustness of the pattern forming mechanism

One can now ask the question, how much the emergence of periodic patterns depends on
parameter variations. As was already mentioned in the investigation of the model without
reaction kinetics, some of the parameters must be chosen in a sensible way. So aρ and aλ

should be chosen such that the isotropic and nematic densities are sensible. If one adds the
reaction kinetics, it makes not much sense to investigate the patterns as a function of these
two parameters, since they do not allow for large variations and determine the behavior of
a nonreactive system. In the case without reaction kinetics, δρ and δλ only determine the
maximum unstable wavenumbers and can more or less be chosen ad lib. In the presence
of reaction kinetics however, since the growth rates of modes on the homogeneously stable
nematic branch are first damped for small wavenumbers and then have to become positive
again, δρ and δλ are now also involved in determining the instability threshold ρp. However,
the influence is not surprising, as shown in Figs. 5.9 and 5.10. The threshold density ρp

is lowered with increasing δρ = δλ, since then I-N interfaces are energetically more costly,
while the critical wavenumber qc decreases for the same reason. The diffusion coefficients
Dρ, Dλ and Dm are not very important, however Dm ≫ Dρ ≃ Dλ should be fulfilled.
The rotational diffusion coefficient Dr determines the time scale of the formation of the
homogeneous nematic phase and more important, in the reactive case, its ratio with the
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Figure 5.9: The threshold density ρp is
shown in dependence of the interfacial en-
ergy parameter δ = δρ = δλ. Parameters
are as in Fig. 5.2.
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Figure 5.10: The critical wavenumber qc is
shown as a function of the interfacial energy
parameter δ = δρ = δλ. Parameters are as
in Fig. 5.2.

decay rate Σ fixes the threshold of the I-N transition.

The influence of the decay rate Σ has already been discussed in Sec. 5.3.2 for a fixed
ratio of Σ : s. In all the figures shown up to now we used the following parameter set for the
reaction kinetics: γ, the number of subunits that build up one filament, has been chosen to
be 100. In reality this value should be higher, but we wanted to avoid numerical difficulties
because of too different time scales and suppose that Dm = 100 ≫ 0.3 = Dρ, Dλ should
already lead to sufficiently different scales. In addition, we used Σ = 0.003 and s = 0.01Σ,
leading according to Eq. (5.4) to

ρ0 = sΣ−1m0 = 0.01m0 = γ−1m0 . (5.13)

Together with γ = 100 this implies that the amount of polymerized monomers γρ0 equals
the amount of free monomers. This means that one is near the critical monomer concentra-
tion for the polymerization, cf. section 2.1.2. In a real self-assembling biopolymer system,
the filament density at the critical monomer density is lower than the one needed for the
I-N transition. However, using s = 0.1Σ, meaning the ratio of polymerized monomers
to free monomers is 10 : 1, does not lead to a qualitative change for the pattern forma-
tion, as can be seen from Fig. 5.11. The damping of the small wavenumbers is not so
pronounced, but one has still a pattern forming instability instead of a Cahn-Hilliard-like
instability without the reaction kinetics, and the wavenumber window of unstable modes is
only slightly changed. The case with a polymerized monomer number smaller than the free
monomer number seems not sensible with respect to actin and microtubule polymerization.
To conclude, the pattern forming mechanism proposed by us is very robust.
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Figure 5.11: The growth rates σ1(q) and σ2(q) of the reactive modes are shown for two
parameter sets. The solid lines correspond to the parameters already used in Fig. 5.2,
especially s = 0.01Σ and γ = 100 leading to a 1 : 1 ratio of monomers in polymerized
and nonpolymerized form. The dotted lines correspond to the same parameters apart from
s = 0.1Σ, together with γ = 100 implying a state where this ratio is 10 : 1, i.e. most
subunits are polymerized. In the latter case, since σ2(q = 0) decreases with increasing s,
cf. Eq. (5.12), the coupling is less pronounced but nevertheless, the long wavelength modes
are damped and nothing changes qualitatively.

5.4 Conclusions

In part I of my work, a reaction kinetically driven pattern forming process has been pre-
dicted near the isotropic–nematic (I-N) transition of biopolymers like actin and micro-
tubules. In Chapter 4, a phenomenological continuum model has been introduced and
motivated that reproduces the first order I-N transition in lyotropic liquid crystals, includ-
ing the phase separation in its neighborhood and being in agreement with the statistical
theory of Onsager. As compared to prior formulations in the literature, it enables to inves-
tigate quite easily the linear stability of the homogeneously stable nematic branch and it
establishes that the nonlinearities suppress the phase separation for high filament densities.

The pattern forming mechanism proposed in this chapter uses only one main ingredient
of the polymerization kinetics of biopolymers, namely the occurrence of a finite lifetime
τ = Σ−1 and a nucleation rate of the filaments. Beyond the critical density ρc for the
I-N transition the isotropic orientation of the filaments and below a certain density ρp

the uniform nematic state become unstable against inhomogeneous perturbations. Hence,
moving on the homogeneous nematic branch in the direction of decreasing mean density,
one crosses at ρp a stationary finite wavelength instability with critical wavenumber qc,
while coming along on the isotropic branch, one usually is already in the nonlinear regime
of pattern formation. The bifurcation diagram in the presence of reaction kinetics is
summarized in Fig. 5.5.

The pattern formation process investigated here has been established to be robust and
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is expected to be quite generic. The correlation between a finite lifetime τ of a unstable
field and the occurrence of periodic patterns is quite independent of details. It has been
investigated for the first time in a simple reactive A-B mixture [89, 90] and should apply
to all kind of systems that are both unstable against long wavelength inhomogeneous
perturbations and reactive. A further biological example is the interplay between a different
transport and filament accumulation mechanism, namely motor-induced filament bundling
[104, 105], with the polymerization kinetics. It has been investigated recently after this
work, [106].

Even though our description is very simplified we expect that the basic physical mech-
anism survives in situations with broad polydisperse filament distributions [15, 24, 76],
including living cells. Polydispersity favors periodic patterns and together with a formula-
tion of our model in more than one dimension, this should give rise to a larger variety of
phenomena. As an example it should be expected that having a polydisperse filament dis-
tribution, the longer filaments will gather in the nematic regions while the shorter filaments
enrich in the isotropic regions.

Recently, there has also been experimental effort to discover the periodic patterns in a
solution of polymerizing actin. Periodic patterns with a wavelength of about 10µm have
indeed been found [107], although their interpretation remains doubtful. Their formation
may be due to our mechanism, but they remain stable if the chemical fuel needed for the
active polymerization, namely ATP, is used up. Probably this is due to contaminations
with inactive motors or crosslinkers, which stabilize bundle-like structures, since in the
mechanism proposed by us, if the kinetics is switched off again one expects a coarsening
of the small wavelength pattern to larger domains of isotropic and nematic regions again.
As far as our mechanism is concerned, the ideal experimental realization would be the
preparation of a quite homogeneous nematic phase of actin with fixed filament lengths,
which could be obtained using the stabilization effects of capping proteins, followed by a
washing out of the capping proteins and the addition of ATP. This situation would most
easily compare to the investigation of the stability of the homogeneous nematic branch as
calculated in the framework of the phenomenological model.
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Chapter 6

Introduction

6.1 The experiments we want to describe

As shortly reviewed in chapter 2, the combined dynamics of cytoskeletal filaments and
motor proteins is of crucial importance for the cell. As a prominent example, microtubules
and molecular motors participate in the formation of the mitotic spindle [14]. Such a spindle
has two organizing centers, the so-called centrosomes, from where MTs are nucleating and
radially growing towards the chromosomes. Both polymerization and active transport by
motors are used to segregate the duplicated chromosomes during the cell division process.
In such microbiological studies in vivo, hitherto one is yet far from understanding the
complicated processes and it is often unknown which regulatory proteins and even more
which signal and regulation pathways are present and of importance.

However, well designed in vitro experiments where carried out recently: it has been
reported [37] that in a simple model system, namely a solution of purified MTs and motors,
in the presence of ATP aster patterns very similar to the dynamic aster structure in the
spindle apparatus can be found in vitro, i.e. without the organizing centrosomes and
without the extensive regulation by the cell. Also, in experiments with Xenopus laevis egg
extract, asters and even a stable bipolar spindle have been reported to form in the absence of
centrosomes [108]. In Ref. [31], experiments either with stabilized MTs (i.e. MTs with fixed
length) or with a certain amount of tubulin able to polymerize dynamically, together with
artificial multi-headed constructs of kinesin showed patterns in both cases. The time scale
of the formation are several minutes, the steady states then being stable for about one hour,
and the length scale of an aster is about 50µm. In addition, a rough description of the phase
space of a filament-motor system could be given. As a function of the kinesin concentration,
varying from 15µg/ml to 55µg/ml, and for a tubulin concentration of 5mg/ml in the case
of polymerizing MTs or 0.2-0.3 mg/ml in the case of stabilized MTs, the following sequence
of patterns appeared with increasing motor concentration: a lattice of vortices, a mixture
of asters and vortices, a lattice of asters and finally bundle-like structures.

In subsequent experiments and molecular dynamics (MD) simulations, cf. Ref. [33] from
which Fig 6.1 gives an example of the aster formation, the influence of various variables on
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Figure 6.1: Patterns formed upon ATP and GTP consumption in a solution of tubulin
and artificial multimeric kinesin complexes. Upper row: dark-field microscopy pictures.
Lower row: Molecular dynamics simulation: MTs treated as flexible, polar rods, motors
are treated as highly processive with a linear force-velocity relation. The picture is taken
from [33].

the patterns has been addressed: there a multimeric minus end-directed motor based on
Ncd has been constructed which allowed to study the cooperation of plus and minus end-
directed motors together. While a system with kinesin alone showed isotropic to vortex to
aster transitions as a function of motor concentration, Ncd yielded a transition from the
isotropic filament distribution directly to the aster patterns, i.e. without the intermediate
formation of vortices. This could be explained in the MD simulations by means of the
time motors spend bound at the MTs end: upon reaching a MT end, motors detach with
a finite off-rate poff,end. Usually only asters formed, but if poff,end is increased (implying a
smaller residence time of the motors on a MT) this induced the formation of vortices. This
established that the residence time at MTs ends is important with regard to the capacity
of motors to focus MTs to a pole. Also the importance of processivity was established
in the MD simulation, since decreasing the processivity did destroy the patterns or led
to less pronounced asters, a tendency that could however be compensated partly upon
increasing the motor density. Furthermore, the MT’s orientations are opposite for the two
motor species: kinesin-asters have MTs with the plus end directing to the center, while
Ncd-asters point with the minus-end to the center. In both cases motors accumulate in the
aster centers. Mixing both kinds of motors together led to Ncd-asters and kinesin-vortices
becoming a network of interconnected poles for increasing motor-tubulin ratio and with a
fixed and moderate Ncd-kinesin ratio. Changing the Ncd-kinesin concentration ratio led
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to the winning of one kind of motors and to the formation of the respective kind of asters.

In Ref. [31], the authors for the first time made a comparison to classical pattern forming
systems, arguing that the dissipation in their system should be due to the consumption
of ATP by the motors and of GTP by the MT’s polymerization. They called for the
determination of the ”out-of-equilibrium phase diagram” of such a system, to which I want
to contribute in this second part of my work. However, to what extent such an in vitro
phase diagram can be related to situations in vivo is an open question, since inside a cell
variables like motor and tubulin densities are not absolute values and instead of changing
these concentrations, their activity could be changed by regulatory proteins. Hence the
understanding of the in vitro systems can only be considered as a first step in a reasonable
direction.

Recently also patterns in actin-myosin mixtures have been reported [38], which however
are not dissipative ones. They emerge upon ATP depletion and are frozen-in patterns. We
review the experiments and propose a possible mechanism of how these patterns form in
chapter 13.

6.2 Modeling

In the two original works [31, 33], the experiments have been supplemented by molecular
dynamics simulations which displayed asters and vortex patterns and also gave insight
to the importance of processivity and residence time at the ends of the filaments for the
pattern formation process. Nevertheless in the simulations about 20 parameters had to be
specified, luckily most of them being known for kinesin from measurements, however imply-
ing a high-dimensional parameter space. A continuum formulation with fewer parameters
is thus desirable and would also have the advantage that the whole repertoire of nonlinear
pattern formation theory as developed since decades from hydrodynamic instabilities and
other model systems, cf. Ref. [42] for a review, could then be used to explore such a model.

As a first trial of a continuum description, mean field approximations for spin models
have been investigated which displayed stripe-like patterns [109]. More recently a phe-
nomenological model of a motor density interacting with a phenomenological vector field
has been considered, which is able to reproduce asters and vortex-like solutions [110] and
has been generalized to account for two distinct states of the motors, either bound to the fil-
ament and performing directed movement or unbound and diffusing freely [111, 112]. A sec-
ond class of more microscopic models are inspired by experiments on filament-motor bundle
contraction [104, 113] and are formulated in one spatial dimension [114, 41, 105, 115, 116].
They are able to display bundling instabilities and self-propagating patterns. A further
approach is a formulation coming from theories for flocking birds and bacterial colonies
which describes active or self-propelled particles [117, 118]. However, it has never been
applied directly to filament-motor systems and only linear investigations have been carried
out so far since such an approach has to account for all nonlinearities allowed by symmetry
which makes an analysis very intricate. Very recently a model has been proposed where
the motor-mediated filament-filament interaction is described by collision rules [119].
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I have chosen here an approach based on the Smoluchowski equation for rigid rods,
namely the Doi equation already introduced in section 3.2.2. It accounts for the spatial
and angular distribution of the filaments which are approximated by rigid rods and assumes
that the motors are practically homogeneously distributed and come into the model only
via active currents in the filaments’ equation. The latter approximation has been proposed
in a one-dimensional theory for filament bundling [41] and has been generalized for a two-
and three-dimensional filament-motor solution in [40]. The detailed structure of the active
currents can be obtained in two-particle approximation by considering the symmetries of
the system and imposing vanishing momentum and angular momentum of a filament pair
in the absence of external forces and torques [40]. In part II of this work I will review
the model for a two-dimensional filament-motor solution and perform a corrected linear
analysis [46] as compared to [40]. Subsequently I study all the instabilities in the weakly
nonlinear regime. Here the above mentioned techniques from nonlinear pattern formation
theory can be effectively used, namely I will derive amplitude equations for stationary
[45] and oscillatory patterns and establish their ranges of stability, part of the ”out-of-
equilibrium phase diagram” as demanded in Ref. [31].

The filament-motor model in part II of this work applies more directly to processive
motors, cf. section 2.2.2, as is however the case for the systems investigated in [31, 33],
namely mixtures of microtubules and kinesin or Ncd. In chapter 13 I propose how the
model should be interpreted and modified to account also for the nonprocessive myosin-
actin system [38].



Chapter 7

The filament-motor model

7.1 Motivation

The cytoskeletal filaments being rather stiff and elongated objects - at least in the case of
microtubules - the Smoluchowski equation for rigid rods or Doi equation, cf. section 3.2.2
and [39], should be apt to describe their passive behavior, i.e. in the absence of polymer-
ization and motors. Then the probability distribution function (pdf) Ψ(r,u, t) of finding a
microtubule of fixed length L at position r with orientation u at time t obeys, cf. Eq. (3.22),
just the conservation of probability,

∂tΨ + ∇ · Jt + R · Jr = 0 , (7.1)

with a translational current Jt and a rotational current Jr. Recently, it has been proposed
[40] that the influence of the motors could be enclosed by additional active currents Ja

t

and Ja
r . These are supposed to be caused by relative translations and rotations of a

filament pair through the movement of a motor attached to both filaments, cf. the sketch
in Fig. 7.1. A similar approach has been applied to the one-dimensional situation of a
filament bundle in the presence of motors in Ref. [41]. Although the motor density could
be treated as an additional field in both models, it was suggested to assume that the motors
are homogeneously distributed with a sufficiently high concentration in order to an overlap
of two filaments immediately leading to an active transport. This can be motivated by the
much higher diffusion coefficient of a motor protein as compared to microtubules, namely
by 2 to 3 orders of magnitude. It has proven to be a sufficiently good approximation
and instabilities have been found in both models. In subsequent publications of both
groups [120, 116], the motor density has been accounted for in more detail, but to keep
the modeling simple I refrain here from treating the motors explicitly.

Hence the density of the (active and attached) motors as well as properties like the
mean velocity on a filament and the duty ratio of the motors enter into the model only via
coefficients of the additional active currents. The phenomenological part of these currents
can be derived in two-particle approximation by symmetry considerations of a filament
pair and includes three leading order contributions, two active translational and one active
rotational ones, as discussed in section 7.3.
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Figure 7.1: Sketch of motor oligomers interacting with
filaments. The most important process is (1.) where an
oligomer of motors attaches to a filament pair (overlap
W = 1) exerting a force that results in relative trans-
lations v and rotations ω of the filament pair. In our
approach we assume that the motors are homogeneously
distributed due to their very fast diffusion (3.) compared
to the filaments. Second, the motor density is assumed
to be sufficiently high that if an overlap of filaments hap-
pens, there is a motor nearby leading immediately to the
process described in (1.). A motor oligomer moving on
a single filament as depicted in (2.) does not have an
effect. The picture has been taken from Ref. [121].

To motivate the active currents for the motor-induced relative filament displacements
and for the change in the relative orientations as sketched in Fig. 7.1, we start with a closer
look at the excluded volume interaction. Since both the excluded volume and the motor-
induced transport need an overlap of at least two filaments1 the resulting currents should
be of second order in the pdf Ψ and are nonlocal functions of it. The currents resulting
from the excluded volume defined already in section 3.2.2 can be read from Eqs. (3.24) to
be

Jex
t,i = −DijΨ(r,u)∂jVex(r,u) , (7.2)

Jex
r,i = −DrΨ(r,u)RiVex(r,u) , (7.3)

having the form Ψ times the derivative of a Ψ-dependent potential, namely the excluded
volume potential

Vex(r,u) =

∫

du′

∫

dr′ W (r−r′,u,u′)Ψ(r′,u′) . (7.4)

In case of the motor-mediated current, the process is an active, dissipative one, thus
there does not exist a potential. Instead of a force expressed by the derivative of a potential
as in the passive, excluded volume case, there should be an actively generated force provided
there is an overlap. Since the motion is overdamped in a filament-motor solution, this force
can be represented by a velocity. Considering the translational current, in contrast to the
passive contribution where

Jex
t ∼ Ψ(r,u) ∂r

∫

du′

∫

dr′ W (r−r′,u,u′)Ψ(r′,u′) (7.5)

1For reasons of feasibility we restrict our model to the overlap of exactly two filaments. In principle
one should investigate a virial or cluster expansion of Ψ. While in three spatial dimensions higher order
terms are quickly decreasing due to the scaling with b/L, the ratio of rod diameter and rod length, this
is not the case in two dimensions, cf. Ref. [81]. The effects of the passive excluded volume interaction is
considered in third order in Ψ in section 11.2.
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holds, for the additional active contribution one can write

Ja
t ∼ Ψ(r,u)

∫

du′

∫

dr′ v(r−r′,u,u′) W (r−r′,u,u′)Ψ(r′,u′) . (7.6)

The actively generated relative translational velocity in principle depends on both the
relative separation of the rods’ centers of masses as well as on the rod orientations,

v = v(r−r′,u,u′) . (7.7)

Analogously one can introduce an active relative angular velocity

ω = ω(r−r′,u,u′) , (7.8)

which enters into the active rotational current

Ja
r ∼ Ψ(r,u)

∫

du′

∫

dr′ ω(r−r′,u,u′) W (r−r′,u,u′)Ψ(r′,u′) . (7.9)

Now one has to specify the detailed structure of the velocity v and the angular velocity
ω. In Ref. [40] this has been achieved in leading order by considering the symmetries and
conservation laws of a filament pair. This will be critically reviewed in section 7.3. At
first I will write down the entire model for the active filament-motor solution, i.e. with the
velocities resulting from [40], in the next section.

7.2 The model

We can now formulate the generalization of the Doi model to active filament-motor solu-
tions: the total translational and rotational currents entering the conservation of proba-
bility,

∂tΨ + ∇ · Jt + R · Jr = 0 , (7.10)

can be written as

Jt,i = −Dij [∂jΨ + Ψ∂jVex] + Ja
t,i , (7.11a)

Jr,i = −Dr [RiΨ + ΨRiVex] + Ja
r,i , (7.11b)

the terms with an upper index a being the motor-mediated active currents. As already in-
troduced in section 3.2.2 for a solution of passive rods, translational diffusion is anisotropic,
namely uniaxial with two coefficients D‖ and D⊥,

Dij = D‖uiuj + D⊥ (δij − uiuj) , (7.12)

and the rotational diffusion, proportional to the rotational diffusion coefficient Dr, is me-
diated by the rotational operator

R = u× ∂u . (7.13)
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The active currents induced by the motors are of the form

Ja
t = Ψ(r,u)

∫

du′

∫

dr′v(r−r′,u,u′)W (r−r′,u,u′)Ψ(r′,u′) , (7.14)

Ja
r= Ψ(r,u)

∫

du′

∫

dr′ω(r−r′,u,u′)W (r−r′,u,u′)Ψ(r′,u′) . (7.15)

The interaction kernel W is the same as in the excluded volume potential already intro-
duced in section 3.2.2,

Vex(r,u) =

∫

du′

∫

dr′ W (r−r′,u,u′)Ψ(r′,u′) , (7.16)

with W = 1 in the case of an overlap and W = 0 else, guaranteeing that active transport
is only possible for overlapping filaments. Since our assumed homogeneously distributed
motor density is also supposed to be sufficiently high, at any position of overlap there will
always be a motor complex nearby inducing active transport, i.e. a relative velocity v and
an angular velocity ω.

Following Ref. [40] and as will be explained in the next section, the translational and
rotational velocities, v and ω respectively, can be written in leading order as

v(r−r′,u,u′) =
α

2

r′ − r

L

1 + u · u′

|u× u′| +
β

2

u′ − u

|u× u′| , (7.17)

ω(u,u′) = γ(u · u′)
u× u′

|u× u′| . (7.18)

The active currents have been normalized to the excluded volume |u× u′| and they fulfill
both the conservation of translational and rotational momentum in the absence of external
forces and torques, as well as translational and rotational invariance, cf. the next section.
The coefficients α and β have the units of a velocity, while γ has like the rotational diffusion
coefficient Dr the unit s−1.

To get a first impression for the active translational velocity, let’s consider a one-
dimensional arrangement of filaments2, like in a bundle. Then the term proportional
to α takes its maximum, namely 1 + u · u′ = 2, for parallel filaments and vanishes for
antiparallel filaments where u · u′ = −1 holds. Conversely, the contribution proportional
to β is maximum for antiparallel alignment and vanishes in the parallel case. Thus in
one dimension, the two terms perfectly separate, the α-contribution describing interaction
of parallel filaments and the β-contribution interaction of antiparallel filaments. In two
dimensions, this separation does not hold anymore and the interaction becomes more
involved. In this sense, the two-dimensional model is a generalization of the one considered
by Kruse et al. to describe filament bundling in Ref. [41].

One may ask how the interaction of parallel filaments via motors leads to a relative
filament displacement, since the motor then should proceed on both filaments with the

2The factor |u× u
′|−1 cancels upon performing the orientational integrals and is not a problem here.
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same speed. However, it is known that there is a difference in motor activity along the
filament. Moreover, motors stall at the endpoints for some finite time, which has been
recognized as a crucial condition for aster formation [122]. Thus if a motor interacting
with two parallel filaments reaches the end of one filament before the one of the other,
it stalls there and pulls the second filament. This happens until the end of this second
filament is reached or the motor detaches. The need for the difference in the places where
the motor attaches to the two filaments is reflected by the (r′ − r)-dependence of the
α-contribution.

The angular velocity ω is proportional to u×u′ and therefore associated to a rotation
in the plane defined by the two orientation vectors u and u′.

7.3 Symmetries of the motor-mediated velocities

The explicit form of the motor-mediated translational and angular velocities, namely
Eqs. (7.17) and (7.18), can be obtained by writing down the simplest terms fulfilling the
conservation laws and symmetries of the system.

First of all, only relative positions of the rods play a role. Translational invariance
therefore implies

f(r, r′,u,u′) = f(r − r′,u,u′) (7.19)

for f = v, ω. If one considers an interacting filament pair in the absence of external
forces and torques, both momentum and angular momentum of the pair have to be con-
served. Hence the motor-mediated translational and angular velocities have to be odd
under exchange of particles (r,u; r′,u′) → (r′,u′; r,u), or together with Eq. (7.19) under
the transformation (r − r′;u,u′) → (r′ − r;u′,u), leading to the conditions

v(r − r′,u,u′) = −v(r′ − r,u′,u) , (7.20)

ω(r − r′,u,u′) = −ω(r′ − r,u′,u) . (7.21)

Finally, due to rotational invariance, v has to be odd and ω even under the transformation
(r − r′;u,u′) → (r′ − r;−u,−u′), or explicitly

v(r− r′,u,u′) = −v(r′ − r,−u,−u′) , (7.22)

ω(r− r′,u,u′) = ω(r′ − r,−u,−u′) . (7.23)

Let’s at first have a look at the active translational velocity v. It has to fulfill

v(r − r′,u,u′) = −v(r′ − r,u′,u) , (7.24)

v(r − r′,u,u′) = −v(r′ − r,−u,−u′) . (7.25)

The simplest terms fulfilling both conditions are ξ = r′ − r and u′−u. On the other hand,
both ξ2 and u · u′ are even under the transformations (r − r′;u,u′) → (r′ − r;u′,u) and
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(r − r′;u,u′) → (r′ − r;−u,−u′), namely fulfilling both conservation of momentum and
angular momentum as well as rotational invariance. Thus one can write

v(ξ,u,u′) = ξ
(

vξ1 + vξ2u · u′ + vξ3ξ
2 + vξ4(u · u′)2 + . . .

)

(7.26)

+(u′ − u)
(

vu1 + vu2u · u′ + vu3ξ
2 + vu4(u · u′)2 + . . .

)

, (7.27)

with some coefficients vξi and vui, i = 1, 2, etc..
Since ξ = |ξ| < 1 holds in units of the rod length L due to the overlap condition, an

expansion in powers of ξ seems adequate. Additionally, upon deriving continuum equations
isotropic averaging has to be applied to the model equations as worked out in some detail
in chapter 8. As can be seen already from appendix A, formulas (A.8)-(A.10), isotropic
averages of powers of u decrease quite rapidly with the powers. Consequently, one can
assume that leading order terms in ξ and u′ − u already describe the qualitative features
of the motor-induced relative displacement. Liverpool et al. proposed in Ref. [40] the
following simplified form

v(r−r′,u,u′) =
α

2

r′ − r

L

1 + u · u′

|u× u′| +
β

2

u′ − u

|u× u′| , (7.28)

i.e. with vξ1 = α
2L
|u × u′|−1 = vξ2 and vu1 = β

2
|u × u′|−1. In principle, vξ1 and vξ2

could be chosen differently. However, with the above choice, especially with vξ1 = vξ2, one
regains the one-dimensional model of Ref. [41], where the α-contribution corresponds to
the interaction of parallel filaments and the β-contribution to the interaction of antiparallel
filaments, cf. the discussion in the last section. Thus this choice is sensible and additionally
it guarantees that the orientational part of the α-term always has a positive sign. The
common factor |u × u′|−1 is just a normalization to the excluded volume and vanishes
upon orientational integration.

In the case of the angular velocity ω, the symmetry requirements are

ω(r − r′,u,u′) = −ω(r′ − r,u′,u) , (7.29)

ω(r − r′,u,u′) = ω(r′ − r,−u,−u′) . (7.30)

Both conditions can be fulfilled by a term u×u′ and analogously to the translational case
one can write

ω(ξ,u,u′) = (u × u′)
(

ω1 + ω2u · u′ + ω3ξ
2 + ω4(u · u′)2 + . . .

)

. (7.31)

Liverpool et al. chose ω1 = 0 and ω2 = γ|u× u′|−1, namely

ω(u,u′) = γ(u · u′)
u× u′

|u× u′| . (7.32)

The first order term is neglected compared to the second order term, since the factor u ·u′

in the latter accounts for the tendency of motors to bind on two filaments sharing an angle
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smaller than π
2

[40]. As will become clearer in the next chapter, a consequence of the above
choice is that the active rotational contribution is purely nonlinear and inhomogeneous.

One can also consider the model with nonzero ω1. Then a linear and homogeneous
contribution from the active rotations makes a homogeneously polarized state possible, as
has been started to be investigated recently [123, 124].

As an additional remark, the above choices fulfill the symmetries and conservation
laws of a filament pair in the absence of external forces and torques. This however does
not imply that all these contributions that fulfill the symmetry conditions are obligatorily
present in a filament-motor solution, a point which is discussed in Ref. [120].
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Chapter 8

Derivation of continuum equations

8.1 Two approximations on the way to a continuum

model

The model defined in section 7.2 is a nonlinear and nonlocal integro-differential equation
for the probability distribution function (pdf) Ψ(r,u, t). Both the excluded volume inter-
action defined by Eq. (7.16) and the filament-filament interactions induced by the motors,
Eqs. (7.14), (7.15), (7.17) and (7.18), are nonlocal, which makes the model hard to solve
both analytically and numerically. However, if one is interested in the formation of patterns
whose wavelength is large in comparison to the filament length L, a gradient expansion of
the interaction kernel is a suitable approximation. Integrations

∫

dr can then be carried
out, but the model still remains a nonlinear integro-differential equation with respect to
the orientation variable u.

As already discussed in section 3.2.5, the complete information provided by the pdf
Ψ(r,u, t), which in two spatial dimensions is a four-dimensional function (two spatial coor-
dinates, one orientational1 coordinate and time), is often not needed to describe the basic
physics of a system. In a usual liquid crystal for example, cf. section 3.1 and [26, 25], since
the first moment with respect to the orientational degree of freedom vanishes due to the
±u-symmetry of the molecules, one can describe the isotropic-nematic (I-N) transition in
such a system in good approximation by the second moment with respect to orientation,
Sij =

∫

du uiuj Ψ(u), which defines the nematic order parameter tensor. As has already
been exemplified in section 3.2.5, where the threshold of the I-N transition has been cal-
culated by performing a moment expansion, one can derive an equation of motion for the
nematic order parameter, which is much easier to analyze than the pdf equation. In a
similar manner, to investigate the filament-motor model one should extract from the pdf
equation equations of motion for the moments that are relevant for the description of the
basic physics.

In part I of this work, there has been already discussed that both kind of filaments under

1The unit vector u can be expressed in two spatial dimensions by a single angle variable θ. In three
dimensions one needs two angles (θ, ϕ), the problem then being even 3 + 2 + 1 = 6-dimensional.
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consideration here, namely microtubules and actin, can display lyotropic liquid crystalline
phases, i.e. Sij can become relevant for densities near or above the I-N threshold density
ρIN . In filament-motor systems however, an important difference to usual liquid crystalline
behavior arises: the molecular motors interacting with the filaments and influencing their
order when in contact with more than one of them walk on the filaments only in a specified
direction, which is defined by the underlying protein structures of both the motor and the
helical filaments. By this mechanism the presence of the motors breaks the ±u-symmetry of
the rod liquid. Thus the first moment of the pdf, namely the vectorial quantity

∫

du u Ψ(u),
may become nonvanishing in a filament-motor solution and has to be accounted for.

In the model defined in section 7.2, one has assumed that the motor density is homo-
geneous, whereas the filaments are allowed to become inhomogeneously distributed. The
relevant moments with respect to the orientation are thus the zeroth, first and second
moment of the pdf describing the filaments, corresponding to the filament density ρ(r, t),
the polar orientation t(r, t) and the nematic order parameter Sij(r, t) respectively. These
are defined by the following expressions, cf. also section 3.2.5,

ρ(r, t) =

∫

du Ψ(r,u, t) ,

t(r, t) =

∫

du u Ψ(r,u, t) ,

Sij(r, t) =

∫

du uiuj Ψ(r,u, t) . (8.1)

The density for the isotropic-nematic transition in the framework of the Doi model has
already been obtained in section 3.2.5 and evaluates for a two-dimensional system to 3π/2
in dimensionless units. However, in the experiments of Refs. [31, 33] we want to describe,
the aster patterns evolve at a much lower filament density than the critical density of the
isotropic-nematic transition, namely at concentrations of about 0.2-0.3 mg/ml as compared
to the experimental value of the transition density for microtubules of 2.5 mg/ml [19]. Thus
it appears to be a suitable approximation to truncate the moment expansion for the pdf
already at the first moment to derive a closed set of equations. Instead of Eq. (3.56), which
has to be used in a usual nematic, now the distribution function should be represented in
terms of ρ(r, t) and t(r, t) (for more details we refer to section 8.2.2)

Ψ(r,u, t) ≃ 1

2π

{

ρ(r, t) + 2u · t(r, t)
}

. (8.2)

If we consider now the filament-motor model, governed by Eq. (7.10),

∂tΨ + ∇ · Jt + R · Jr = 0 , (8.3)

an integration of this equation over
∫

du leads to an evolution equation for the macro-
scopic density ρ(r, t), while integration over

∫

duu yields a dynamical equation for the
macroscopic filament orientation field t(r, t). The integrals on the right hand sides of the
evolution equations can be carried out analytically if the currents are gradient expanded,
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as mentioned above and described in more detail in section 8.2.1, and the pdfs in the cur-
rents are replaced by the moment approximation of Eq. (8.2). One finally gets a system of
nonlinear partial differential equations that can now be dealt with, at least to some extent,
both analytically and numerically.

8.1.1 The continuum model

In two spatial dimensions, the equations for the filament density and the two components
of the filament orientation field ti (i = 1, 2 or x, y) read as follows:

∂tρ =
1 + D

2
∆ρ +

(

1 + D

π
− α

24

)

∂j (ρ∂jρ) − α

48
∂i

[

ti∂jtj + tj∂itj + tj∂jti

]

− α

C1

[

38∂j (ρ∂j∆ρ) + 11∂i (tj∂i∆tj) + 16∂i

(

ti∆∂jtj + 2tj∂j∂i∂ltl + tj∂j∆ti

)

]

− β

96
∂i

[

ρ∂i∂jtj − tj∂j∂iρ +
3

2

(

ρ∆ti − ti∆ρ
)

]

, (8.4a)

∂tti = −Drti +
3D + 1

4
∆ti +

1 − D

2
∂i∂jtj

+
3D + 1

2π
∂j (ti∂jρ) +

1 − D

2π

[

∂j(tj∂iρ) + ∂i(tj∂jρ)

]

− α

96
∂j

[

3ti∂jρ + tj∂iρ + δijtl∂lρ + ρ
(

∂itj + ∂jti + δij∂ltl

)

]

− α

2C1

∂j

[

ρ
(

11∂j∆ti + 16∂i∆tj + 32∂j∂i∂ltl + 16δij∆∂ltl

)

+ 16tj∂i∆ρ + 32tl∂l∂i∂jρ + 44ti∂j∆ρ + 16δijtl∂l∆ρ

]

+
β

2
∂j

[

1

2
δijρ

2 − titj

]

+
β

96
∂j

[

3

4
δijρ∆ρ +

1

2
ρ∂i∂jρ − tl∂l∂itj − ti∂j∂ltl − ti∆tj

]

+
1

48

(

γ

4
− 4

π
Dr

)[

tj∂j∂iρ − 1

2
ti∆ρ

]

, (8.4b)

with the abbreviation C1 = 23040. The equations have been made dimensionless by the
following rescaling of variables

t′ =
D‖

L2
t , x′ =

1

L
x , ρ′ = L2ρ , t′ = L2t ,

D′
r =

L2

D‖

Dr , D =
D⊥

D‖

, α′ =
L

D‖

α , β ′ =
L

D‖

β , γ′ =
L2

D‖

γ . (8.5)

Here the ratio D of the translational diffusion coefficients in perpendicular and parallel
direction has been introduced. One can again see by the rescaling that while α and β
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have the units of a velocity, γ has the same unit as the rotational diffusion coefficient Dr,
namely s−1.

Details of the derivation are postponed to the next sections: in section 8.2.1 the gradient
expansion of the nonlocal integrals is carried out and in sections 8.2.2 and 8.2.3 the moment
expansion and the structure of the resulting equations is shown and discussed in some
detail.

One can see from Eqs. (8.4) that the contributions from the diffusion as well as the terms
proportional to α and γ have ±t symmetry, whereas the β-contributions break this sym-
metry. Additionally, Eqs. (8.4) are unchanged by the transformations (t, r) → (−t,−r),
(t, β) → (−t,−β) and (r, β) → (−r,−β). This emphasizes that the β-contributions play
a special role2. Consequently, the linear analysis carried out in chapter 9 predicts, apart
from a long wavelength demixing instability, a finite wavenumber instability which is sta-
tionary in the case β = 0 but becomes oscillatory in the case β 6= 0. The symmetries
(t, β) → (−t,−β) and (r, β) → (−r,−β) then imply that waves traveling to the right and
left can be transformed into each other by a change of sign in β.

Nevertheless the α-contribution has to be considered the most important one, since it
is responsible for inducing the instabilities in the system, while the β-contribution changes
the quality of the instability from stationary to oscillatory. Consequently, I first investigate
the stationary instability in detail in chapter 10, followed by the oscillatory instability in
chapter 11. The active rotational current proportional to γ is purely nonlinear and therefore
influences only the pattern selection beyond threshold, as will also be addressed briefly in
chapter 10.

Considering the demixing instability mentioned above, while the density and the ori-
entation are decoupled in the linear regime in the case β = 0, the presence of the β-
contributions leads to a linear coupling. This allows for the aster-like structures formed
during the demixing to discriminate asters with the filaments pointing outwards from those
with the filaments pointing inwards. This instability is investigated in chapter 12.

The contributions to Eqs. (8.4) that have fourth order derivatives are indispensable for
the determination of the instabilities evolving from the homogeneous filament distribution,
as will become clear during the linear stability analysis in chapter 9. They were not
taken into account in the original work, Ref. [40], which has been criticized by us and
their importance pointed out in Ref. [46]. Contributions with fourth order derivatives
caused by excluded volume induced translational diffusion have however been neglected in
Eqs. (8.4). First they are overcompensated by the included fourth derivative terms resulting
from the active current and therefore influence the presented results only quantitatively
by a small amount (but considerably complicate the equations). Second they have the
same symmetries as the terms discussed above and therefore should not lead to additional
insight.

2One should keep in mind that we have allowed t to become nonzero, i.e. we have allowed the breaking
of the ±u-symmetry of the microscopic model, Eq. (3.22). The continuum equations (8.4) nevertheless
have a ±t-symmetry in the case β = 0.



8.2. DETAILS OF THE DERIVATION 93

8.2 Details of the derivation

8.2.1 The gradient expansion of the interaction integrals

The excluded volume interaction, Eq. (7.16), as well as the motor induced filament-filament
interactions, Eqs. (7.14), (7.15), (7.17) and (7.18), are defined by overlap integrals. Hence
the equation of motion (7.10) for the pdf Ψ(r,u, t) is nonlocal and its solution is exceedingly
difficult. Assuming that spatial variations are small on the length scale L of a filament,
in order to get a local equation one performs a systematic expansion of the integrals with
respect to gradients of the pdf.

The potential of the excluded volume interaction, Eq. (7.16), is defined by

Vex(r,u) =

∫

du′

∫

dr′ W (r−r′,u,u′)Ψ(r′,u′) , (8.6)

wherein W (r−r′,u,u′) = 1 if there is overlap of two rods at (r,u) and (r′,u′) and W = 0
else. As already discussed in section 3.2.2, this overlap integral is best expressed in (two-
dimensional) Straley coordinates, cf. Eq. (3.29), which are defined by

r − r′ = uζ + u′η , (8.7)

with the parameter constraint −L/2 < ζ, η < L/2 and the Jacobian |u × u′|. In these
coordinates overlap is conveniently described by the possibility that a linear combination
uζ +u′η of the rod orientations with −L/2 < ζ, η < L/2 yields the difference vector of the
center of masses of the two rods r− r′. The integral kernel expressed in these coordinates
reads, cf. Eq. (3.30),

W (r−r′,u,u′) = |u×u′|
L/2
∫

−L/2

dζ

L/2
∫

−L/2

dη δ (r−r′+uζ+u′η) (8.8)

and the excluded volume interaction explicitly becomes the multidimensional integral

Vex(r,u) =

∫

du′

∫

dr′
L/2
∫

−L/2

dζ

L/2
∫

−L/2

dη |u× u′| δ (r−r′+uζ+u′η) Ψ(r′,u′) . (8.9)

Performing now the r′-integration and expanding the obtained pdf, Ψ (r + uζ + u′η), in
powers of ũ = uζ + u′η one gets

Vex(r,u) =

∫

du′ |u× u′|
L/2
∫

−L/2

dζ

L/2
∫

−L/2

dη

[

1 + (ũ · ∂r) +
1

2
(ũ · ∂r)

2 + . . .

]

Ψ(r,u′) . (8.10)

As the η- and ζ-integrations are on a symmetric interval, [−L/2, L/2], odd powers in one
of the two variables vanish. So does the term linear in ũ, as well as the mixed term ∝ ηζ
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from the quadratic contribution. The purely quadratic terms being trivially integrable,
e.g.

L/2
∫

−L/2

dη

L/2
∫

−L/2

dζ ζ2(u · ∂r)
2 =

L4

12
(u · ∂r)

2,

one finally obtains

Vex(r,u) = L2

∫

du′|u× u′|
[

1 +
L2

24

{

(u · ∂r)
2 + (u′ · ∂r)

2
}

]

Ψ(r,u′) , (8.11)

which holds up to an error of O(∂4
r
). The prefactor L2 in this expression reflects the

two-dimensional excluded volume.
By the same procedure, we have to evaluate the contributions of the active translational

and rotational currents, following from Eqs. (7.14), (7.15), (7.17) and (7.18),

Ja
t = Ψ(r,u)

∫

du′

∫

dr′ v(r−r′,u,u′) W (r−r′,u,u′) Ψ(r′,u′) , (8.12)

Ja
r = Ψ(r,u)

∫

du′

∫

dr′ ω(r−r′,u,u′) W (r−r′,u,u′) Ψ(r′,u′) , (8.13)

with the relative translational and angular velocities

v(r−r′,u,u′) =
α

2

r′ − r

L

1 + u · u′

|u× u′| +
β

2

u′ − u

|u× u′| , (8.14)

ω(u,u′) = γ(u · u′)
u× u′

|u× u′| . (8.15)

Let’s at first consider the active translational term proportional to α, which explicitly
reads

Jα
t =

α

2L
Ψ(r,u)

∫

du′

∫

dr′(r′ − r)(1 + u · u′) δ (r−r′+uζ+u′η) Ψ(r′,u′) , (8.16)

where we have used Eq. (8.8) to express W . The Jacobian |u × u′| cancels due to the
normalization of the velocities to the excluded volume. Performing again the r′-integration
transforms the factor (r′ − r) into ũ and the pdf can again be expanded. Due to the
additional factor ũ from the velocity, now the linear and cubic powers in the expansion
survive the symmetric integrations. In total one gets

Jα
t =

αL3

24
Ψ(r,u)

∫

du′ (1 + u · u′)

·
{

u (u · ∂r)

[

1 +
L2

8

(

1

5
(u · ∂r)

2+
1

3
(u′· ∂r)

2

)]

+ u′ (u′· ∂r)

[

1 +
L2

8

(

1

5
(u′· ∂r)

2
+

1

3
(u · ∂r)

2

)]}

Ψ(r,u′) . (8.17)
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Since there is no factor (r′ − r) and consequently no additional ζ, η-dependence in the
translational velocity ∝ β, as well as in the angular velocity contribution ∝ γ, the procedure
is entirely analogous to the evaluation of the excluded volume contribution and yields

Jβ
t =

βL2

2
Ψ(r,u)

∫

du′ (u′ − u)

[

1 +
L2

24

{

(u · ∂r)
2 + (u′ · ∂r)

2
}

]

Ψ(r,u′) (8.18)

and

Jγ
r = γL2 Ψ(r,u)

∫

du′(u · u′)(u× u′)

[

1 +
L2

24

{

(u · ∂r)
2 + (u′ · ∂r)

2
}

]

Ψ(r,u′) , (8.19)

respectively.

One should note that due to the ζ, η-integrations, odd powers of ∂r vanish in the expres-
sions for the excluded volume and the α- and γ-contributions, which is the mathematical
reason underlying the rotational symmetry of Eqs. (8.4) for β = 0.

The gradient expanded expressions are still integrals over the orientational degree of
freedom u′, which can be carried out analytically after having performed the moment
expansion described in the next section.

8.2.2 The moment expansion method

As already discussed in section 8.1, we use a moment expansion to extract from the model
equation for the pdf, Eq. (7.10), equations of motion for the relevant moments of the pdf
with respect to orientation. These have already been identified as the density ρ(r, t) and
the orientation field t(r, t), cf. Eqs. (8.1). Due to the low filament densities both in cells
and in in vitro experiments, we opt for neglecting the second moment, i.e. the nematic
order parameter. Therefore one can write

Ψ(r,u, t) ≃ 1

2π

{

ρ(r, t) + 2u · t(r, t)
}

. (8.20)

The validity of this representation can be seen immediately by using it to evaluate the
first moments, analogously to the procedure in section 3.2.5. Defining the two-dimensional
orientational average, cf. Eq. (A.7), by

〈A(u)〉 =

∫

du

2π
A(u) =

∫ 2π

0

dθ

2π
A(θ) , (8.21)

with θ parameterizing the unit vector u, making use of Eq. (8.20) correctly yields

∫

du Ψ(r,u, t) =

∫

du

2π

{

ρ(r, t) + 2u · t(r, t)
}

= ρ(r, t) + 2〈uj〉tj(r, t) = ρ(r, t) , (8.22)



96 CHAPTER 8. DERIVATION OF CONTINUUM EQUATIONS

since odd powers of u vanish upon orientational averaging. Analogously,
∫

du ui Ψ(r,u, t) =

∫

du

2π
ui

{

ρ(r, t) + 2u · t(r, t)
}

= 〈ui〉ρ(r, t) + 2〈uiuj〉tj(r, t) = ti(r, t) (8.23)

holds, since again 〈ui〉 = 0 and 〈uiuj〉 = δij/2.
The way of deriving Eqs. (8.4) is now the following: Integration of Eq. (7.10),

∂tΨ + ∇ · Jt + R · Jr = 0 , (8.24)

by
∫

du and
∫

du u yields evolution equations for ρ(r, t) and t(r, t) respectively,

∂tρ = −
∫

du
(

∇ · Jt + R · Jr

)

,

∂tti = −
∫

du ui

(

∇ · Jt + R · Jr

)

. (8.25)

Inserting the gradient expanded expressions for the excluded volume, Eq. (8.11), and the
active translational, Eqs. (8.17), (8.18), and rotational currents, Eq. (8.19), on the right
hand sides of Eqs. (8.25) leads to integrals

∫

du
∫

du′ over Ψ(u) and Ψ(u′). However,
if we now express the pdfs by its moments using Eq. (8.20), the integrands are reduced
to powers in both u and u′ and the integrals can be carried out analytically using the
averaging formulas given in appendix A.2.

The detailed structure and symmetries of Eqs. (8.4) can be traced back to the different
structures concerning powers of u and u′ of the nonlinear filament-filament interactions.
The structure of the different contributions will be derived in the next section, neglecting
however the detailed numerical coefficients. The derivation of the latter is quite cumber-
some and gives no additional insight.

8.2.3 Structure of the equations

The specific prefactors of the continuum equations, Eqs. (8.4), need the correct evaluation
of quite elaborate isotropic averages. Simple characteristics of these averages however
give already deep insight into the structure and symmetry of the equations. Inserting
the gradient expanded expressions for the excluded volume and the active currents, cf.
section 8.2.1, into the conservation law for the probability, Eq. (7.10), one gets the following
contributions for the evolution of Ψ(r,u, t):

∂tΨ = Dij∂i∂jΨ translational diffusion (8.26a)

+ Dij∂i (Ψ∂jVex) translational excluded volume interaction (8.26b)

− ∂iJ
α
t,i − ∂iJ

β
t,i active translations by the motors (8.26c)

+ DrR2Ψ rotational diffusion (8.26d)

+ DrRi (ΨRiVex) rotational excluded volume interaction (8.26e)

− RiJ
γ
r,i active rotations by the motors (8.26f)
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As can be seen, the contributions taken into account in the model are translational and
rotational diffusion, (8.26a) and (8.26d), translational and rotational excluded volume con-
tributions, (8.26b) and (8.26e), and active translational and rotational motor transport,
(8.26c) and (8.26f), respectively. As already explained in the last section, continuum equa-
tions for the filament density ρ(r, t) and the filament orientation field t(r, t) are obtained
by expressing the pdfs on the right hand side of Eq. (8.26) by its first two moments, cf.
Eq. (8.20),

Ψ(r,u, t) ≃ 1

2π

{

ρ(r, t) + 2u · t(r, t)
}

, (8.27)

and performing integrations
∫

du and
∫

du u.
The structure of these continuum equations can already be determined by using a simple

property of the isotropic averages, namely the fact that isotropic averages of odd powers
of u or u′ vanish. For simplicity we do not care about prefactors here and will not write
down all indices. The aim of this section is just to establish where density and orientation
or gradients thereof couple and in which powers. Thus when I write e.g. a term ∂(t∂t) this
should be read as some components or contractions of ∂i(tj∂ktl).

The equation for the density

Let’s first have a look at the density equation, i.e. which contributions the right hand side
of Eq. (8.26) yields to

∫

du ∂tΨ = ∂tρ. The translational diffusion contribution, (8.26a),
reads

∫

du Dij∂i∂j
1

2π

{

ρ + 2u · t
}

=
〈

Dij∂i∂j

{

ρ + 2u · t
}〉

. (8.28)

Since the anisotropic diffusion coefficient Dij = D‖uiuj + D⊥ (δij − uiuj) is even in u and
odd powers vanish upon isotropic averaging, the term ∝ t vanishes. Thus one gets just
an anisotropic diffusion term in the density ∼ 〈Dij〉∂i∂jρ and no linear coupling to the
orientation.

The translational excluded volume contribution, (8.26b), reads explicitly

〈

Dij∂i

(

{

ρ + 2u · t
}

∂j

〈

|u× u′|
[

1 +
L2

24

{

(u · ∂r)
2 + (u′ · ∂r)

2
}

]

{

ρ + 2u′ · t
}

)〉′〉

, (8.29)

where the primed averaging brackets imply averaging upon u′. Since Dij , |u×u′| and the
gradient expansion term in the squared brackets are even in u and u′, the orientation field
t entering with an odd factor of u or u′ respectively does not survive. I have calculated
the excluded volume contribution up to the order O(∂4

r
). However, the active motor

contribution ∝ α wins over the excluded volume and leads to the needed high wavenumber
restriction, cf. chapter 9. For this reason and to make the coarse grained equations not
unnecessarily complicated, we omit the O(∂4

r
)-term in the excluded volume and end up

with a diffusion term that is nonlinear in the density and ∝ ∂i (ρ∂jρ).
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From the last calculation we have learned that terms even in u and u′ play not a
decisive role for the structure of the equations (they determine however which vectorial
components of ∂r and t enter into the equations). Therefore we will abbreviate such terms
in the following. For the active translational motor transport, (8.26c), we have to deal
with the term ∝ α,

−α∂i

〈

{

ρ + 2u · t
}

〈

(1 + u · u′)
[

∂r + ∂3
r

]

i

{

ρ + 2u′ · t
}

〉′〉

, (8.30)

where the abbreviation [∂r + ∂3
r
]i has been introduced for the squared bracketed term in

Eq. (8.17) resulting from the gradient expansion and containing only even powers of u
and u′. The decisive factor in the α-contribution is (1 + u · u′), leading to contributions
−α∂(ρ∂ρ) and −α∂(ρ∂3ρ) from the constant term and to contributions −α∂(t∂t) and
−α∂(t∂3t) from the part u · u′. Here the orientation field enters for the first time into the
evolution equation for the density.

The contribution ∝ β reads

−β∂i

〈

{

ρ + 2u · t
}

〈

(u′
i − ui)

[

1 + ∂2
r

]

{

ρ + 2u′ · t
}

〉′〉

, (8.31)

where [1+∂2
r
] abbreviates the gradient expanded excluded volume, having only even powers

of u and u′. From the factor (u′
i − ui) one would expect coupled terms like −β∂(ρt − tρ)

and −β∂(ρ∂2t− t∂2ρ). However, while the third order derivative term is present, the term
linear in ∂r vanishes from

−β∂i

〈

{

ρ + 2u · t
}

〈

(u′
i − ui)

{

ρ + 2u′ · t
}

〉′〉

= −β∂i

(

ρ 〈u′
iu

′
k〉′2tk − 2tk〈ukui〉ρ

)

= 0 , (8.32)

where the bracket cancels due to 〈uiuk〉 = δik/2.

In the density equation, the rotational diffusion, (8.26d), the rotational excluded vol-
ume contributions, (8.26e), as well as the rotational motor transport term, (8.26f), all
vanish. This is clear from intuition, since the density (as the zeroth order moment of the
orientation) should not depend on rotational degrees of freedom. The mathematical reason
is that in the density equation, i.e. upon integration over

∫

du, all these contributions have
the form

∫

duR · (...), which is zero due to the Stokes’s theorem on the unit sphere3.

3Stokes’s theorem for a vector field f(r) with a surface A and ∂A its boundary, reads
∫

A dA ·∇r×f(r) =
∫

∂A
dl ·f(r). Considering now a vector field f(u), the unit sphere defined by |u| = 1 is a closed surface, thus

there is no boundary and the left hand side is zero in this case. The surface element can be parameterized
by dA = u du and together with the identity u · (∇u × f(u)) = (u × ∇u) · f(u) = R · f(u) one obtains
∫

duR · f(u) = 0. From Ref. [93].
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The equation for the orientation field

The equation for the orientation field, i.e. the contributions from the right hand side of
Eq. (8.26) to

∫

du ui∂tΨ = ∂tti, can be discussed analogously.
In the translational contributions, (8.26a) again yields a diffusive contribution, ∂i∂jt,

but no linear coupling to the density. The excluded volume contribution however, (8.26b),
now leads to a coupling ∂i(t∂jρ), in contrary to the case of the density equation, where
only a self-coupling arose. Concerning the active motor transport, (8.26c) yields −α∂(ρ∂t)
and −α∂(ρ∂3t), as well as −α∂(t∂ρ) and −α∂(t∂3ρ), and for the β-term −β∂(−ρ2 + t2)
and −β∂(−ρ ∂2ρ + t∂2t). Here the terms of order O(∂r) obviously do not cancel.

The rotational contributions, (8.26d), (8.26e) and (8.26f), are a bit more involved to
evaluate because the rotational operator, defined as R = u × ∂u or explicitly as

Ri = [u× ∂u]i = δi3 (u1∂u2
− u2∂u1

) (8.33)

in two dimensions, comes into play upon averaging. For the rotational diffusion term,
(8.26d), we have to calculate

Dr

〈

uiR2
{

ρ + 2u · t
}

〉

= Dr

〈

ui

(

R2uj

)

2tj

〉

= −Dr〈uiuj〉2tj = −Drti , (8.34)

where in the second step we have made use of

R2uj = (u1∂u2
− u2∂u1

) (u1∂u2
− u2∂u1

)uj

= u2
1∂

2
u2

uj − u1∂u2
(u2∂u1

uj) − u2∂u1
(u1∂u2

uj) + u2
2∂

2
u1

uj

= −u1∂u2
(u2δj1) − u2∂u1

(u1δj2) = −u1δj1 − u2δj2 = −ulδjl = −uj . (8.35)

For the rotational excluded volume contribution, (8.26e), which reads explicitly

Dr

〈

uiRj

(

{

ρ + 2u · t
}

Rj

〈

|u× u′|[1 + ∂2
r
]
{

ρ + 2u′ · t
}

〉′)〉

, (8.36)

the homogeneous contribution from [1 + ∂2
r
] vanishes, since 〈|u × u′|{ρ + 2u′ · t}〉′ ∝ ρ

vanishes when the rotational operator is applied on it. Twofold integration by part yields
for the inhomogeneous part

Dr

〈

Rj

[

(Rjui)
{

ρ + 2u · t
}]

〈

|u× u′|
{

(u · ∂r)
2 + (u′ · ∂r)

2
}{

ρ + 2u′ · t
}

〉′〉

. (8.37)

One can calculate

Rj

[

(Rjui)
{

ρ + 2u · t
}]

= R2uiρ + 2Rj [(Rjui) ul] tl

= −uiρ + 2 [(u1∂u2
− u2∂u1

) (u1δi2 − u2δi1)ul] tl

= −uiρ + 2
[

u2
1δi2t2 + u2

2δi1t1 − u1u2(t1δi2 + t2δi1) − uiultl
]

= −uiρ + 2 (ti − 2uiultl) , (8.38)
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where in the last step we have used u2
1 = 1 − u2

2 twice to rearrange the first two terms in
the squared brackets. Neglecting the vanishing odd contributions one gets

Dr

〈

(2ti − 4uiultl)

〈

|u× u′|
{

(u · ∂r)
2 + (u′ · ∂r)

2
}

ρ

〉′〉

. (8.39)

which leads to a term ∝ Drt∂
2ρ in the continuum equations.

In the active rotational current, (8.26f), one has to deal with

γ

〈

uiRj

(

{

ρ + 2u · t
}

〈

(u · u′) [u× u′]j [1 + ∂2
r
]
{

ρ + 2u′ · t
}

〉′)〉

= −γ

〈

(Rjui)
{

ρ + 2u · t
}

〈

(u · u′) [u× u′]j [1 + ∂2
r
]
{

ρ + 2u′ · t
}

〉′〉

, (8.40)

where we have used the integration by parts rule Eq. (A.15). Since the orientation depen-
dence coming from the active angular velocity, namely (u · u′) [u × u′]j , is even in both u
and u′ while Rjui is odd, only the following contribution survives

−γ

〈

(Rjui) 2u · t
〈

(u · u′) [u × u′]j [1 + ∂2
r
] ρ

〉′〉

. (8.41)

Having again a look at the homogeneous contribution from [1 + ∂2
r
], one calculates

−γ 2tk

〈

(u1δi2 − u2δi1) uk

〈

ulu
′
l [u1u

′
2 − u2u

′
1]

〉′〉

ρ

= −γ 2tk ǫ3ji ǫ3mn

〈

ujukulum〈u′
lu

′
n〉′
〉

ρ

= −γ tk ǫ3ji ǫ3mn 〈ujukunum〉 ρ = 0 , (8.42)

where 〈u′
lu

′
n〉′ = 1

2
δln has been used again and the last term vanishes since the Levi-Civita

tensor ǫ3mn is antisymmetric in (n, m) while 〈ujukunum〉 is symmetric in (n, m). Thus,
as has been the case for the rotational excluded volume interaction, the homogeneous
contribution of the active rotations vanishes and only an inhomogeneous contribution of
the form ∝ γt∂2ρ does exist.

To conclude, we have established the form of Eqs. (8.4) whereby the differences between
the structure of the equation for the filament density and the one for the filament orientation
field have been traced back to the different coupling of the nonlinear interactions with the
additional power of u which is present in the equation for the orientation field. The
rotational contributions are quite complicated to evaluate, but apart from the trivial (but
important) linear rotational diffusion, −Drti, they play only a minor role. Due to their
structure ∝ t∂2ρ, they vanish upon linearization with respect to the homogeneous and
isotropic basic state ρ = ρ0 and t = 0, cf. chapter 9. Thus they are purely nonlinear
contributions not involved in the instability mechanisms and only contribute to pattern
selection processes.



Chapter 9

Linear analysis and possible
instabilities

In this chapter we want to start our analysis of the continuum equations, Eqs. (8.4), that
have been extracted in chapter 8 from the underlying microscopic filament-motor model,
Eq. (7.10), introduced in chapter 7. In total we have to deal with three coupled nonlinear
equations, one for the filament density ρ and two for the components of the polar orientation
field ti (i = 1, 2 or x, y) of the filaments in two spatial dimensions,

∂tρ =
1 + D

2
∆ρ +

(

1 + D

π
− α

24

)

∂j (ρ∂jρ) − α

48
∂i

[

ti∂jtj + tj∂itj + tj∂jti

]

− α

C1

[

38∂j (ρ∂j∆ρ) + 11∂i (tj∂i∆tj) + 16∂i

(

ti∆∂jtj + 2tj∂j∂i∂ltl + tj∂j∆ti

)

]

− β

96
∂i

[

ρ∂i∂jtj − tj∂j∂iρ +
3

2

(

ρ∆ti − ti∆ρ
)

]

, (9.1a)

∂tti = −Drti +
3D + 1

4
∆ti +

1 − D

2
∂i∂jtj

+
3D + 1

2π
∂j (ti∂jρ) +

1 − D

2π

[

∂j(tj∂iρ) + ∂i(tj∂jρ)

]

− α

96
∂j

[

3ti∂jρ + tj∂iρ + δijtl∂lρ + ρ
(

∂itj + ∂jti + δij∂ltl

)

]

− α

2C1
∂j

[

ρ
(

11∂j∆ti + 16∂i∆tj + 32∂j∂i∂ltl + 16δij∆∂ltl

)

+ 16tj∂i∆ρ + 32tl∂l∂i∂jρ + 44ti∂j∆ρ + 16δijtl∂l∆ρ

]

+
β

2
∂j

[

1

2
δijρ

2 − titj

]

+
β

96
∂j

[

3

4
δijρ∆ρ +

1

2
ρ∂i∂jρ − tl∂l∂itj − ti∂j∂ltl − ti∆tj

]

+
1

48

(

γ

4
− 4

π
Dr

)[

tj∂j∂iρ − 1

2
ti∆ρ

]

. (9.1b)
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Again the abbreviation C1 = 23040 is used and we have introduced the ratio of perpen-
dicular to parallel diffusion D = D⊥/D‖, which we will choose later on to be 1/2, a value
suitable for dilute solutions of rigid rods as can be derived from hydrodynamic calculations
[39, 125, 126], cf. the discussion in section 9.5.2.

The only free parameters of the above model are the rescaled rotational diffusion co-
efficient Dr, and the coefficients α and β of the leading order translational and γ of the
rotational motor contributions. Naturally, the mean filament density ρ0 is an additional
free variable. As compared to purely phenomenological models inherently having many
parameters, e.g. the ones proposed in [115, 127, 128], to analyze our model we have to
explore only a quite decent parameter space.

In this chapter, I perform a thorough linear analysis correcting the predictions from the
original reference, Ref. [40], that were based on insufficient conditions [46]. The analysis
reveals three different instabilities which will be investigated subsequently in the weakly
nonlinear regime in the following three chapters. This work is the first investigation of a
filament-motor model in two dimensions that comprises the whole parameter space in the
linear and weakly nonlinear regime.

9.1 Linear operator and general discussion

Having defined the model, the first issue in the field of pattern formation is the determina-
tion of possible instabilities. From the experiments we want to describe, we are interested
especially in instabilities of the orientational field t that lead to spatially inhomogeneous
orientation patterns like the asters displayed in Fig. 6.1.

As already encountered in part I of this work, the possible linear instabilities can be
determined by a linear stability analysis of the homogeneously stationary basic state. The
latter one can be obtained trivially from the homogeneous limit of Eqs. (9.1), namely

∂tρ = 0 , ∂tt = −Drt . (9.2)

This implies a constant filament density ρ0 and a vanishing polar orientation t0 = 0 as the
homogeneous basic state.

To investigate the stability of this state with respect to inhomogeneous perturbations
ρ̃(r, t) and t(r, t), by the ansatz ρ(r, t) = ρ0 + ρ̃(r, t) we separate the constant part ρ0 of
the filament density from the spatially inhomogeneous one, ρ̃(r, t). Linearizing Eqs. (9.1)
with respect to small inhomogeneous contributions ρ̃(r, t) and t(r, t), one obtains a set of
three coupled linear equations which by use of the three component vector

w(r, t) =





ρ̃(r, t)
tx(r, t)
ty(r, t)



 (9.3)
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can be conveniently written in the form

∂tw(r, t) = L0w(r, t) =







L(0)
11 L(0)

12 L(0)
13

L(0)
21 L(0)

22 L(0)
23

L(0)
31 L(0)

32 L(0)
33






w(r, t) . (9.4)

The components of the linear operator L0 are given by the expressions

L(0)
11 =

[

1 + D

2

(

1 +
2

π
ρ0

)

− αρ0

24

]

∆ − 19 αρ0

11520
∆2 ,

L(0)
12 = − β

96

5

2
ρ0∆∂x ,

L(0)
13 = − β

96

5

2
ρ0∆∂y ,

L(0)
21 =

{

βρ0

2
+

β

96

5

4
ρ0∆

}

∂x ,

L(0)
22 = −Dr +

3D + 1

4
∆ +

1 − D

2
∂2

x − αρ0

96
(∆ + 2∂2

x)

− αρ0

46080

(

11∆2 + 64∆∂2
x

)

,

L(0)
23 =

(

1 − D

2
− αρ0

48

)

∂x∂y −
αρ0

720
∆∂x∂y ,

L(0)
31 =

{

βρ0

2
+

β

96

5

4
ρ0∆

}

∂y ,

L(0)
32 = L(0)

23 ,

L(0)
33 = −Dr +

3D + 1

4
∆ +

1 − D

2
∂2

y − αρ0

96
(∆ + 2∂2

y)

− αρ0

46080

(

11∆2 + 64∆∂2
y

)

. (9.5)

First of all one can directly see the following symmetry: the components L(0)
13 , L(0)

31 , L(0)
32

and L(0)
33 can be obtained by permuting ∂x and ∂y in L(0)

12 , L(0)
21 , L(0)

23 and L(0)
22 , respectively.

This is due to the (tx, x) ↔ (ty, y)-symmetry of Eqs. (9.1).
Second, L0 is independent of rotational contributions apart from the (important) linear

contribution −Dr in L(0)
22 and L(0)

33 , respectively. As already discussed in the last chapter,
the rotational excluded volume contributions as well as the active rotational contributions
proportional to γ are purely nonlinear and thus are only relevant for the issue of pattern
selection, i.e. stability of patterns, but not for the emergence of patterns through linear
instabilities.

Now let’s determine which active motor-induced contribution is the most important one.
As has already been used extensively in part I of this work, an instability is equivalent to
an eigenvalue σ = λ + iω of the linear operator L0 with a positive real part λ > 0.



104 CHAPTER 9. LINEAR ANALYSIS

In the inactive case, i.e. for α = 0 = β, the homogeneous solution ρ = ρ0 and t = 0
should be stable, since only diffusive, i.e. damping, terms are present. The growth rates
for this case can be obtained most easily by letting the motor terms vanish in the growth
rates calculated in the next two sections. As expected, one gets three real growth rates
σ(k) that are damped, namely

σ1 = −1 + D

2

(

1 +
2

π
ρ0

)

k2 ,

σ2 = −Dr −
D + 3

4
k2 ,

σ3 = −Dr −
3D + 1

4
k2 . (9.6)

If we consider next the case α = 0, β 6= 0, the mode structure is similar to the one
depicted in Fig. 9.3a): while σ3 is unchanged, the two other modes are coupled implying

σ1,2 =
1

2

(

L̄(0)
11 + L̄(0)

22 ±
√

(L̄(0)
11 − L̄(0)

22 )2 + 4L̄(0)
12 L̄(0)

21

)

(9.7)

in the notation for L̄0 of section 9.3. Both growth rates start as real modes, σ1 from zero
and ∝ −k2 while σ2 from −Dr and ∝ +k2 and meet at a certain k∗, cf. Fig. 9.4, where
the argument of the square root crosses zero thus becoming a complex conjugated pair.
However there do not exist values of β and ρ0, for which σ1 could become positive for
intermediate values of k, while for k > k∗ the complex mode is damped since λ = Re(σ) =
1
2

(

L̄(0)
11 + L̄(0)

22

)

with L̄(0)
11 and L̄(0)

22 both damped.

Thus we have identified the essential motor parameter to be the α-contribution, which
indeed leeds for large enough values of α to instabilities, even in the case β = 0. However,
the presence of a nonvanishing β-contribution leads to a qualitative change in the insta-
bilities: from a stationary instability with ω = 0 for the eigenvalue with the largest real
part (which holds for β = 0) to the possibility of an oscillatory instability with ω 6= 0, cf.
Eq. (9.7).

Polarity sorting

As has been already discussed at the end of section 7.2, in the one-dimensional limit
of our model, the α-contribution reflects interaction of parallel filaments whereas the β-
contribution accounts for the interaction of anti-parallel filaments. The latter contribution
is responsible for a process called polarity sorting [104, 114, 129]: the β-contribution induces
a maximum filament separation and thus favors an arrangement with regions of alternating
local polarities, i.e. directions of the filaments. Thus I will refer to the case β = 0 as the
case without polarity sorting, which will be discussed in the next section, and to the case
β 6= 0 as the one with polarity sorting, which is postponed to section 9.4.
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9.2 Without polarity sorting

In the case β = 0, the linear problem simplifies to

∂tw(r, t) = L0w(r, t) =







L(0)
11 0 0

0 L(0)
22 L(0)

23

0 L(0)
32 L(0)

33






w(r, t) , (9.8)

with the components of the linear operator L0 reading

L(0)
11 =

[

1 + D

2

(

1 +
2

π
ρ0

)

− αρ0

24

]

∆ − 19 αρ0

11520
∆2 ,

L(0)
22 = −Dr +

3D + 1

4
∆ +

1 − D

2
∂2

x − αρ0

96
(∆ + 2∂2

x)

− αρ0

46080

(

11∆2 + 64∆∂2
x

)

,

L(0)
23 =

(

1 − D

2
− αρ0

48

)

∂x∂y −
αρ0

720
∆∂x∂y (9.9)

and the two further components L(0)
32 and L(0)

33 again obtained by permuting ∂x and ∂y in

L(0)
23 and L(0)

22 , respectively.
Naturally the mode ansatz

w(r, t) = E exp (σt + ik · r) (9.10)

with r = (x, y), the wave vector k = (q, p) and the eigenvector E solves the linear homoge-
neous set of equations (9.8). The solvability condition provides a third order polynomial for
the eigenvalues σ, which factorizes here into a linear and a quadratic polynomial describ-
ing different types of instabilities: considering moderate filament densities, for intermediate
values of α an orientational instability with a finite wavelength occurs first, whereas the
density mode, which does not couple to the orientation on the level of the linear equa-
tions, is damped. For large values of α however, the density mode becomes unstable first,
their growth rate resembling the one typical for spinodal decomposition or demixing of the
filament density which is however actively driven by the motors via the α-contribution.

The instability with respect to density fluctuations is governed solely by L(0)
11 and the

respective eigenvalue is

σd = −
[

1 + D

2

(

1 +
2

π
ρ0

)

− αρ0

24

]

k2 − 19 αρ0

11520
k4 (9.11)

with k2 = q2 + p2. The term ∝ k4 is always stabilizing, but the homogeneous basic
state becomes unstable with respect to density modulations for a positive coefficient of k2,
leading to the corresponding critical filament density

ρd =
1

α
12(1+D)

− 2
π

, (9.12)
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Figure 9.1: The real parts λ(k) = Re[σ(k)] of the eigenvalue σd corresponding to the
instability with respect to density fluctuations (solid line) as well as the one possibly
unstable with respect to orientational fluctuations, σL (dashed line), are shown as a function
of the wavenumber k for Dr = 0.1. The third eigenvalue σT is damped as depicted by the
dotted line. Parameters are a) α = 25, ρ0 = 1.1 leading to a linearly stable state; b)
α = 35, ρ0 = 0.85 leading to a density instability; c) α = 20, ρ0 = 1.7 leading to an
orientational instability; d) α = 28, ρ0 = 1.185 both density and orientational fluctuations
are unstable (see also Fig. 9.2).

provided that this value is positive, i.e. if α > 24
π

(1 + D) holds. The corresponding
eigenvector is Ed = (1, 0, 0)T , meaning that this mode is a pure density mode that does
not couple to the orientation field in the linear regime. The dispersion, i.e. the wavenumber
dependence of the eigenvalue’s real part λ, is shown as the solid lines in Fig. 9.1. The fact
that the growth rate starts from λ = 0 at k = 0 reflects the conservation of the filament
density, since from the latter it follows that

ρ(k = 0) =

∫

drρ(r) = ρ0 (9.13)

has to be a constant in time. One should also recognize that since σd is a pure density
mode, there is no dependence on Dr in this instability.
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The two remaining eigenvalues read

σL = −Dr −
1

4
k2

(

3 + D − αρ0

8
+

5

768
αρ0k

2

)

, (9.14)

σT = −Dr −
1

4
k2

(

1 + 3D − αρ0

24
+

11

11520
αρ0k

2

)

, (9.15)

with the corresponding eigenvectors

EL =





0
q
p



 , ET =





0
q
−p



 . (9.16)

As can be judged from Eqs. (9.14) and (9.15), both growth rates may become positive
for high enough motor activity, i.e. for large enough values of α. However, σL is always the
first one due to the larger coefficient in front of the term ∝ αk2. The terms ∝ k4 always
stabilize the high wavenumber modes, thus σL can become positive only in a finite range
of k as indicated by the dashed lines in Fig. 9.1. It describes an instability with respect
to longitudinal orientational fluctuations, while σT , shown as the dotted lines in Fig. 9.1,
is usually damped and dominated by diffusion of transverse orientational modes. Only
for very high values of α and/or ρ0, also σT becomes positive, the different prefactors in
front of the destabilizing terms proportional to αk2 thus favoring longitudinal fluctuations.
The identification of σL and σT as longitudinal and transverse modes is made explicit in
the next section. Fig. 9.1 displays the dispersions, i.e. the wavenumber dependent growth
rates, σd(k), σL(k) and σT (k) as solid, dashed and dotted lines respectively.

It should be mentioned that in the case we are presently discussing, i.e. β = 0, the
eigenvalues σd(k), σL(k) and σT (k) depend only on even powers of the wavenumber modulus
reflecting the rotational symmetry, i.e. isotropy.

The restabilizing k4-terms, especially the one in Eq. (9.14), were missing in the original
reference, Ref. [40], where the model has been proposed. Although the unstable mode
starts from −Dr < 0 (or in the case with β present from a value σ(k∗) < 0) and a positive
curvature at such a point is not a sufficient criterion since it does not lead automatically
to a positive real part of the growth rate, an instability has been claimed by the authors.
However, only the interplay between the k2 and the k4 contribution as in Eq. (9.14) allows
the identification of a finite wavenumber instability as pointed out by us in [46].

Also the critical value of the control parameter and the critical wavenumber of the oc-
curring pattern cannot be calculated without the fourth order contributions in k. Choosing
the filament density as the control parameter, the critical filament density ρc, above which
the orientational instability takes place, and the critical wavenumber kc of the pattern at
threshold have to be obtained by solving simultaneously the extremum condition

dσL

dk

∣

∣

∣

∣

kc

= 0 (9.17)
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and the neutral stability condition

σL(k = kc) = 0 . (9.18)

The first condition can be used to get an expression for kc in terms of ρc, namely

k2
c =

768

10

[

αρc

8
− (3 + D)

]

αρc
, (9.19)

which can then be inserted into the second one to yield a quadratic equation for ρc,

0 = −Dr +
48

5αρc

[αρc

8
− (3 + D)

]2

. (9.20)

Finally one gets

ρc =
8

α



(3 + D) +
5

12
Dr



1 +

√

1 +
24 (3 + D)

5Dr







 (9.21)

and

kc = 4

(

12Dr

5αρc

)1/4

. (9.22)

One should note that the critical density ρc is proportional to α−1. This implies that
only the product of ρ and α determines the instability and that we could have also used α
as the control parameter. In the case β = 0 it makes no difference whether one considers
a system with a high filament density and slow or ineffective or few motors or a system
with low filament density but fast, effective or many motors. This is a quite general result
that can also be found in different models [119], however it does not hold exactly anymore
in the case β 6= 0, cf. section 9.4.

Since again only the product of ρ and α enters into Eq. (9.22), kc = kc(ρcα, Dr) holds
while in the case β 6= 0 the dependence is more complex, namely kc = kc(ρc, α, Dr). As
ρcα is determined entirely by Dr for β = 0 and for a fixed diffusion ratio D, one even gets
kc = kc(Dr) in this case, cf. Fig. 9.6.

Finally, in Fig. 9.2, the critical density ρd (dashed line) for the instability with respect
to inhomogeneous density fluctuations ρ(r, t) and the critical density ρc (solid line) with
respect to inhomogeneous orientational fluctuations t(r, t) are shown as a function of the
motor activity α. The dash-dotted line describes the critical density ρIN (3.65) above which
the homogeneous isotropic-nematic transition takes place, cf. section 3.2.5, and above
which our assumption of negligibility of the nematic order parameter breaks down. We can
now specify the different α-regimes mentioned already at the beginning of this section: on
the left side of the vertical dotted line, orientational fluctuations have the lowest threshold,
while on the right side density fluctuations become unstable at first. For increasing values
of the rotational diffusion coefficient Dr, which determines the damping of the dispersions
σL(k) and σT (k) at k = 0, the solid line in Fig. 9.2 is shifted upwards, decreasing the
α-range wherein the orientational instability has lowest threshold with ρc < ρIN , cf. also
Fig. 9.5. As already mentioned above, the dashed line reflecting the density demixing
instability is independent of Dr.
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Figure 9.2: The critical densities ρc (solid line) and ρd (dashed line) for the orientational
and density demixing instability respectively are shown as a function of α for Dr = 0.15.
The dash-dotted horizontal line represents the critical density ρIN = 3

2
π, above which

the isotropic-nematic transition due to excluded volume interactions takes place and the
neglect of the nematic order parameter breaks down. The region S denotes the parameter
range where the homogeneous solution is stable. In the range referred to as N one has a
pure homogeneous transition to nematic order. For high enough motor activity, i.e. for
high enough values of α, one gets motor driven instabilities, in range O a spatially periodic
orientational order and in range D a demixing of the filament density. The vertical dotted
line separates the α-region where the orientational instability has lowest threshold from
the one where the density demixing instability happens first.

9.3 Separation of longitudinal and transverse modes

In this section we identify σL and σT as the longitudinal and transverse modes of the
orientation field. The respective form of the linear operator is also useful for the next
section where the case with polarity sorting is discussed.

By performing the scalar and vector product of the normalized wavenumber k̂ with the
orientational field in fourier space t(k), one can define the longitudinal

tL = k̂ · t (9.23)

and the transverse orientation field

tT = k̂ × t , (9.24)

where in two spatial dimensions one can suppress the vector character of the transverse
mode. Applying the two products to the Fourier transformed linear equations, Eqs. (9.4),
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one can reformulate the linear problem using

w̄(k, t) =





ρ̃(k, t)
tL(k, t)
tT (k, t)



 , (9.25)

leading to the system of equations

∂tw̄(k, t) = L̄0w̄(k, t) =







L̄(0)
11 L̄(0)

12 0

L̄(0)
21 L̄(0)

22 0

0 0 L̄(0)
33






w̄(k, t) . (9.26)

The components of the newly defined linear operator L̄0 now read

L̄(0)
11 = −

[

1 + D

2

(

1 +
2

π
ρ0

)

− αρ0

24

]

k2 − 19 αρ0

11520
k4,

L̄(0)
12 =

β

96

5

2
ρ0ik

3,

L̄(0)
21 =

β

2
ρ0ik − β

96

5

4
ρ0ik

3,

L̄(0)
22 = −Dr −

3 + D

4
k2 +

3

96
αρ0k

2 − 75

46080
αρ0k

4 ,

L̄(0)
33 = −Dr −

1 + 3D

4
k2 +

1

96
αρ0k

2 − 11

46080
αρ0k

4 . (9.27)

One should note that the transverse mode is now completely decoupled in the linear
regime, while the longitudinal orientation mode is coupled to the density. However, if we
consider the case β = 0 again, the matrix L̄0 becomes diagonal and one can identify by
comparison with Eqs. (9.11), (9.14) and (9.15)

L̄(0)
11 = σd, L̄(0)

22 = σL, L̄(0)
33 = σT . (9.28)

The separation of longitudinal and transverse modes is always useful for the linear
analysis. For the nonlinear analysis however it is not easily applicable since nonlinear
equations in real space become convolutions in fourier space. This is the reason why I first
discussed the problem with tx, ty instead of tL, tT .

9.4 With polarity sorting

In the last sections we have established, that the filament-motor model under consideration
already displays a rich variety of instabilities in the simple case β = 0 = γ, namely a
homogeneous nematic, a spatially periodic orientational and a density demixing instability.
Here we investigate the effect of the β-contributions, which describe the interaction of
oppositely oriented filaments and lead to the phenomenon of polarity sorting.
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These contributions should have a strong effect for the two following reasons: first,
the terms ∝ β couple the density to the longitudinal orientation mode, so density and
orientation are no longer decoupled in the linear regime. Second, the β-terms break the
±t symmetry which held for all other contributions, namely diffusion, excluded volume,
and the two other motor contributions proportional to α and γ.

Accordingly, we have to analyze the full linear problem, i.e. the linear operator defined
in Eqs. (9.4) and (9.5) or the equivalent problem of Eqs. (9.26) and (9.27). Looking at the
first formulation, one should notice that the components already present in the case β = 0,
namely L(0)

11 ,L(0)
22 , L(0)

33 ,L(0)
23 and L(0)

32 are not changed. However, the equations of ρ and t are
now coupled and one has to analyze a fully occupied matrix. In the second formulation,
the transverse mode is not changed at all and is still completely decoupled, cf. Eqs. (9.26),
and we have again, as in the case β = 0,

σT = −Dr −
1

4
k2

(

1 + 3D − αρ0

24
+

11

11520
αρ0k

2

)

. (9.29)

Thus the latter version of the equations is much easier to analyze here and we are left with
the reduced problem of

L̄0 =

(

L̄(0)
11 L̄(0)

12

L̄(0)
21 L̄(0)

22

)

, (9.30)

with the entries from Eqs. (9.27).
The eigenvalues are easily obtained to be

σ1,2 =
1

2

(

L̄(0)
11 + L̄(0)

22 ±
√

(L̄(0)
11 − L̄(0)

22 )2 + 4L̄(0)
12 L̄(0)

21

)

. (9.31)

However, it is useful to have at first a look at the growth rates depicted in Figs. 9.3 and
9.4. Generically, the density mode starts from zero at k = 0 due to the conservation law,
while the two orientational modes start at −Dr. Both the density and the longitudinal
orientation mode have real growth rates for small wavenumbers k - as in the case with
β = 0. For intermediate wavenumbers however, the two branches meet at a wavenumber
k∗, cf. Fig. 9.4, and the growth rate acquires an imaginary part.

If we look now closer at the limit of small k, from Eqs. (9.27) and (9.31) one can see
that the β-contribution to the growth rates is at least O(k4): first, Eq. (9.31) contains only

the product L̄(0)
12 L̄(0)

21 with L̄(0)
12 being O(k3) and L̄(0)

21 being O(k). Second in the argument
of the square root, terms of order O(1) and O(k2) are present, thus one may expand the
square root leading to a contribution ∝ −β2k4 in σ1 = σd and to a contribution ∝ +β2k4

in σ2 = σL. The density mode is therefore not changed up to order k2, the threshold for
the growth of density fluctuations thus being the same as in the case β = 0, cf. Eq. (9.12),
namely

ρβ
d = ρd =

1
α

12(1+D)
− 2

π

, (9.32)
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Figure 9.3: The growth rates λ(k) = Re[σ(k)] of the eigenvalues of the linear operator
are shown as a function of the wavenumber k for Dr = 0.4 and β = 5. The density and
longitudinal orientation fluctuations are now coupled via the β-contribution. When those
two eigenvalues meet at a finite k = k∗, the eigenvalues become a complex conjugated
pair, leading to an oscillatory instability if the real part becomes positive. The transverse
eigenvalue σT is again damped as depicted by the dotted line. Parameters are a) α = 25,
ρ0 = 1.2 linearly stable state; b) α = 50, ρ0 = 0.6 stationary density instability; c)
α = 17, ρ0 = 2.9 oscillatory orientational instability; d) α = 35, ρ0 = 1. both density and
orientational fluctuations are unstable.

provided that this value is positive. Nevertheless the growth rates differ compared to the
case β = 0, since the contributions ∝ βk4, and also higher order terms, strengthen the
damping of the conserved mode (the two modes have to meet at k∗) and restrict the window
of growing density modes to smaller k, i.e. larger wavelengths, cf. Figs. 9.3b) and d). I
should mention that I refer to this mode still as a density demixing mode although this is
true only at vanishing wavenumber, k = 0. Strictly speaking, for finite wavenumbers it is
a coupled density-orientation demixing mode.

Beyond the coincidence of the density and the longitudinal mode at a wavenumber k∗,
an oscillatory mode emerges, i.e. a complex conjugated pair of eigenvalues. The growth
rate of this mode is given by the dashed lines in Fig. 9.3. As can be seen in parts c) and
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Figure 9.4: The real part λ and the imag-
inary part ω of the eigenvalues σ1,2 are
shown in dependence of wavenumber k as
the dashed and dash-dotted line respec-
tively. At the point k = k∗ where the den-
sity and the longitudinal orientation branch
meet, the growth rate acquires a nonvanish-
ing imaginary part, implying σ1,2 = λ± iω.
Parameters are α = 17, β = 3, Dr = 0.4
and ρ = ρc.

d) of this figure, as well as in Fig. 9.4, also this mode can become unstable at a finite
wavenumber kc, as had been the case for β = 0. However, since the eigenvalue is complex,
σ1,2 = λ ± iω, in the case β 6= 0, the unstable mode has a finite frequency ωc = ω(kc), as
shown in Fig. 9.4.

We now determine the threshold, the critical wavenumber and the critical frequency
for this oscillatory, coupled density-orientation mode. For the eigenvalues σ = λ ± iω, the
root in Eq. (9.31) can be considered imaginary, since we are in the case k > k∗. Thus only
the term in front of the root determines the instability threshold, namely

λ =
1

2

(

L̄(0)
11 + L̄(0)

22

)

=
1

2

[

−Dr −
(

3D + 5

4
+

1 + D

π
ρ0 −

7

96
αρ0

)

k2 − 151

46080
αρ0k

4

]

. (9.33)

One should notice that again the terms proportional to β, namely L̄(0)
12 and L̄(0)

21 , do not
enter here. The conditions for ρc, kc are, analogously to the treatment of the case β = 0,

dλ

dk

∣

∣

∣

∣

kc

= 0 and λ(kc) = 0 . (9.34)

One gets

ρβ
c =

(Drd + ac)α − ab +
√

Drdα [(Drd + 2ac)α − 2ab]

b2 − 2bcα + c2α2
(9.35)

and

kβ
c =

(

2Dr

dαρc

)1/4

, (9.36)

where the abbreviations a = 3D+5
4

, b = 1+D
π

, c = 7
96

and d = 151
23040

have been introduced.
Eqs. (9.35) and (9.36) should be compared to the results for β = 0, cf. Eqs. (9.21)

and (9.22). Although the terms proportional to β do not enter the instability condition
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explicitly and ρβ
c and kβ

c are not functions of β, the threshold and the wavenumber are
different due to the coupling of ρ and tL. Additionally, the term 1+D

π
ρ0 in Eq. (9.33)

arising from the excluded volume contribution in the linear equation of the density is
responsible for the fact that not the product ρ0α renders the system unstable as in the
case β = 0 but that the dependence is more complicated, cf. Eq. (9.35). This is further
discussed in the next section.

The frequency of the unstable mode is given by the square root part of Eq. (9.31),

iωc =
1

2

√

(L̄(0)
11 − L̄(0)

22 )2 + 4L̄(0)
12 L̄(0)

21

∣

∣

∣

∣

ρc,kc

. (9.37)

Since at threshold

λ(ρc, kc) = 0 =
1

2

(

L̄(0)
11 + L̄(0)

22

)

∣

∣

∣

∣

ρc,kc

(9.38)

holds, one can simplify the above expression to

ωc =

√

−(L̄(0)
22 )2 − L̄(0)

12 L̄(0)
21

∣

∣

∣

∣

ρc,kc

. (9.39)

9.5 Discussion

We have performed a linear analysis of the continuum model, Eqs. (9.1), and obtained a
rich variety of instabilities of the homogeneous and isotropic filament-motor solution. The
contribution that renders the systems unstable has been identified as the active transla-
tional current proportional to α, which leads in the case β = 0 either to a long wavelength
density demixing instability or to a stationary finite wavelength orientational instability,
cf. Fig. 9.1. These instabilities remain present in principle also in the case with polarity
sorting, i.e. with β 6= 0, but they change their quality, cf. Fig. 9.3: The density demixing
mode becomes a coupled density-orientation demixing mode with the same threshold but
with different growth rates and restricted to larger wavelengths. The stationary orienta-
tional instability becomes oscillatory and corresponds now to a coupled density-orientation
mode.

9.5.1 Influence of polarity sorting

Fig. 9.5 compares the instability diagrams for the cases in absence and presence of polarity
sorting, i.e. with β = 0 (cf. Fig. 9.2) and β 6= 0 respectively, for different values of the
rotational diffusion coefficient Dr. In parts a) and c) of this figure, the case without polarity
sorting is shown for a low rotational diffusion coefficient Dr = 0.1 and for a high value
Dr = 2. One can clearly see from the dashed line representing ρc that the region, where
the orientational instability becomes unstable first, is shrinking with increasing rotational
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Figure 9.5: Instability diagrams: the critical density ρc and ρβ
c are shown in dependence of α

for the case β = 0 as the dashed and for the case β 6= 0 as the dash-dotted lines for different
values of Dr. The horizontal solid line at ρ = ρIN refers to the homogeneous isotropic-
nematic transition while the second solid curve describes the critical density ρd = ρβ

d for
the demixing instability, which is independent of Dr. Parameters are Dr = 0.1 in a), b)
and Dr = 2. in c) and d). One can see from part d) that for values larger than Dr ≃ 2.,
the oscillatory orientational instability is suppressed and either the nematic or the density
demixing instability always happen first.

diffusion coefficient and that the density demixing, represented by the solid curve, though
itself unchanged then occurs first for lower values of α. In parts b) and d) the threshold
for the oscillatory orientational instability is shown as the dash-dotted line for the same
two values of Dr. The oscillatory instability occurs for higher values of α compared to the
stationary instability for β = 0, which can be traced back to the linear coupling of the
density and the orientation by the β-contribution, which are responsible for the merging of
the modes. The region of this instability also shrinks with increasing Dr and for the large
value Dr = 2 the oscillatory instability never occurs first, either the homogeneous nematic
or the coupled density-orientation demixing mode always have a lower threshold.

It should be mentioned that the density demixing instabilities with ρd = ρβ
d , are possible

only for values of α > αmin
d = 24

π
(1+D). In contrast, the stationary orientational instability

is possible for every value of α if only the density is high enough, since the product αρ
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Figure 9.6: The critical wavenumber kc for
β = 0 is plotted in dependence of the rota-
tional diffusion coefficient Dr. In the inset,
kc is plotted for Dr = 1 as a function of α
for β = 0 and β 6= 0. While in the first case,
kc is independent of α as indicated by the
dashed line in the inset, in the second case
there is a quite strong dependence and the
wavenumber is always smaller as compared
to the former case.

renders the system unstable here. This is not the case anymore for β 6= 0 where αmin
c,β =

96(1+D)
7π

. In all the pictures of this chapter we have chosen the diffusion ratio D = D⊥/D⊥ =
1/2, implying αmin

d ≃ 11.459 and αmin
c,β ≃ 6.548. One should recognize that the stability

borders are of hyperbola type, which reflects the fact that an increase in the filament
density and an increase in motor transport have the same effect on the system. Recently,
a model for the MT-motor system based on a totally different interaction concept, namely
inelastic collisions [119, 130], also yielded hyperbolas as instability borders. Thus this
seems to be a quite generic result.

The behavior of the critical wavenumber kβ
c is also a bit more involved than in the case

without polarity sorting, as can be seen in Fig. 9.6. While kc is always depending on the
rotational diffusion coefficient Dr, since the latter determines from which negative value
the growth rate of the longitudinal mode has to start from at k = 0, it is independent of α
in the case β = 0. This is due to the fact that the product ρcα is a function solely of Dr,
cf. Eq. (9.21), thus implying that

kc = 4

(

12Dr

5αρc

)1/4

. (9.40)

is also solely determined by Dr. In the case β 6= 0 however, the more complicated functional
dependence of ρβ

c on α, cf. Eq. (9.35), leads to a quite strong dependence of kβ
c on α, as

can be seen in the inset of Fig. 9.6.
Moreover, one should note that ρβ

c and kβ
c are independent of β, but have different values

than ρc and kc in the case without polarity sorting. This implies that β → 0 is a singular
limit and that one cannot extrapolate behavior for the β 6= 0 case from the simpler case
β = 0. This is also reflected in the next two chapters, where a weakly nonlinear analysis
for the finite wavelength instabilities, with and without polarity sorting, is performed. The
underlying reason for this phenomenon is again the linear coupling of the density and
the longitudinal orientation mode in the case β 6= 0 and additionally the ±t-symmetry
breaking.

In the case of the finite wavelength instability without polarity sorting, only the lon-
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Figure 9.7: The relative phase shift between
filament orientation and filament density as
a function of the polarity sorting parameter
β. For small values of β the phase shift
is π/2 and approaches π for high values.
The dependence on the other parameters
is minute. The parameters all lie in the
region of stable traveling wave (TW) solu-
tions, cf. Fig. 11.2: α = 14, Dr = 0.8 (solid
line), α = 14.5, Dr = 1.2 (dashed line) and
α = 15, Dr = 1.6 (dotted line).
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Figure 9.8: The dependence of the critical
frequency ωc on the polarity sorting param-
eter β. The dependence on the other pa-
rameters is minute. The parameters all lie
in the region of stable traveling wave (TW)
solutions, cf. Fig. 11.2: α = 14, Dr = 0.8
(solid line), α = 14.5, Dr = 1.2 (dashed
line) and α = 15, Dr = 1.6 (dotted line).

gitudinal orientation mode gets unstable and the density is involved only in the nonlinear
regime. In contrast, in the case with polarity sorting, a coupled density orientation mode
becomes unstable and the parameter β is determining the relative phase shift φ between
filament density and filament orientation, as well as the frequency of the emerging wave
solution. However, the qualitative behavior, even in the nonlinear regime, cf. section 11.3,
is not much affected provided that β is not too small.

Fig. 9.7 shows the phase shift φ between the spatial periodicities of the filament density
and the filament orientation in dependence of the polarity sorting parameter β for three
different parameter sets. The phase starts at π/2 for small β and tends to π with increasing
β. One can see that β determines the angle while the other parameters have only small
effects. However, for large values of β the influence of this very parameter is also only
minute.

The critical frequency ωc is shown as a function of β in Fig. 9.8. One can see that again
mostly β determines the behavior: for not too small values of β the frequency increases
nearly linearly and the other parameters have only small effects. As can be seen from both
Figs. 9.7 and 9.8, the instability is oscillatory only if β exceeds some small critical value.
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9.5.2 Influence of the diffusion ratio

As reflected by the diffusion matrix defined in Eq. (7.12),

Dij = D‖uiuj + D⊥ (δij − uiuj) , (9.41)

translational diffusion of rods in general is anisotropic. Before going further to the nonlinear
analysis, I want to discuss briefly the influence of the ratio of perpendicular to parallel
diffusion, i.e. of the parameter D = D⊥

D‖
with 0 ≤ D ≤ 1, on the model behavior.

From the physical point of view, the value of D distinguishes different model regimes:
If the rods were diffusing isotropically, i.e. D⊥ = D‖, D equals one. However, in a viscous
solution, a rod can diffuse much easier in the direction parallel to its orientation than
perpendicular to it. A hydrodynamic calculation accounting for the rod-like shape [39]
yields D = 1/2, which is the value we have used for the figures throughout this chapter.
One could also consider the case D = 0 meaning that D⊥ = 0 which applies for semi-dilute
solutions, where the so-called tube approximation holds and D‖ dominates the diffusion
behavior [39, 126].

Very recently [120] a consideration of the molecular motors before coarse-graining im-
plied that in the case D 6= 1, i.e. for D⊥ 6= D‖, there is not only relative filament motion
as accounted for in the model under consideration, especially in Eqs. (7.14), but also a
net motion of the center of mass of the considered filament pair. Nevertheless, this result
has been obtained by neglecting any rotations of the filaments and it is not clear that it
prevails if rotational degrees of freedom are accounted for. Second, in the weakly nonlinear
and numerical calculations of the subsequent chapters, D from the mathematical viewpoint
appears just as a parameter, and we checked that the influence on the behavior was only
minute.

Hence for all the nonlinear calculations in the following chapters, I restrict myself to the
case D = 1/2, reflecting the anisotropic diffusion behavior of the rods in the dilute limit.
Center of mass motion may however be possible and could be interesting to investigate in
the future.



Chapter 10

Stationary patterns: competition
between asters and stripes

In the last section we have discussed the occurrence of instabilities in the filament-motor
model under investigation. There it has been shown that already in the case without
polarity sorting, β = 0, two inhomogeneous instabilities can take place, namely a long
wavelength density-demixing instability and a stationary finite wavelength orientational
instability. Since we are interested in patterns like the asters displayed in Fig. 6.1, that in-
volve inhomogeneous orientations of filaments, we are interested at first in the orientational
instability. Moreover, it is legitimate first to analyze the latter instability in the stationary
case, in spite of the fact that the case β = 0 is sort of special since the instability is ren-
dered oscillatory for β beyond some small critical value, cf. Fig. 9.8 and section 9.4. The
case of the oscillatory instability which is always a bit more involved than the stationary
case, is dealt with in the following chapter.

To characterize the behavior of a finite wavelength instability near threshold, we use the
amplitude expansion technique [42, 43, 44], where one derives by a multiscale analysis and
separation of time scales an equation of the amplitude of the critical mode with wavenumber
k = kc that covers the slow dynamics near threshold.

I will sketch the treatment in the next section while postponing the details to sec-
tion 10.1.2. Later on in section 10.2, we will use the derived amplitude equations to deter-
mine the existence and stability of the spatial patterns in our two-dimensional filament-
motor model. We confirm our analytical calculations by simulations of the underlying
model equations in section 10.3 and make a comparison to experiments in section 10.4.

119
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10.1 Weakly nonlinear analysis of the stationary ori-

entational instability

10.1.1 Amplitude equations

In section 9.2 we have investigated the linearization of Eqs. (8.4) around the homogeneously
stationary basic state ρ = ρ0 and t = 0 in the absence of polarity sorting, i.e. for β = 0.
We found a stationary finite wavelength instability in the orientation field that is governed
by the eigenvalue

σL = −Dr −
1

4
k2

(

3 + D − αρ0

8
+

5

768
αρ0k

2

)

(10.1)

of the linear operator defined in Eqs. (9.8) and (9.9), which acquires a positive growth rate
for modes around the critical wavenumber

kc = 4

(

12Dr

5αρc

)1/4

, (10.2)

provided that the control parameter chosen as the mean density ρ0 exceeds

ρc =
8

α



(3 + D) +
5

12
Dr



1 +

√

1 +
24 (3 + D)

5Dr







 . (10.3)

The amplitude of the linear solution ∝ exp (σLt + ikc · r) with associated eigenvector

EL =





0
q
p



 , (10.4)

with k = (q, p) is limited by the terms in the full Eqs. (8.4) that are nonlinear with respect
to density deviations ρ̃ and orientation deviations t from the basic state.

In this chapter I will investigate the weakly nonlinear behavior beyond this orientational
instability, i.e. in the region referred to as O in Fig. 9.2 where ρc < ρ0 < min(ρd, ρIN) holds,
with ρd and ρIN the threshold densities for the density demixing and the homogeneous
nematic transition respectively. Among the questions of interest for the pattern forming
instability which will be answered by our analysis are: which kinds of pattern are preferred
in which parameter range, what is the parameter dependence of the amplitudes of the
pattern forming modes and what is their stability behavior.

The analysis can be done by numerical simulation of the full nonlinear equations (8.4)
as exemplified in section 10.3, and analytically if first ρ0 is only slightly beyond ρc and
second the bifurcation is supercritical. Pattern forming instabilities can be either continu-
ous, i.e. the amplitude of the pattern increases continuously from zero upon crossing the
critical control parameter value, or discontinuous, i.e. there is a jump to a finite pattern
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amplitude upon crossing the threshold. The former class of instabilities is said to lead to a
forward or supercritical bifurcation, while the latter are called backward or subcritical [42].
For a supercritical bifurcation, the amplitude of the mode initially growing with σL(k) is
small immediately above threshold and may be determined in this range by a perturbative
analysis, the so-called amplitude expansion. The latter yields generic equations for the
spatiotemporal behavior of the amplitudes of the unstable fourier modes with |k| = kc

whose dynamics is slow near the threshold of a supercritical bifurcation.
The generic form of the so-called amplitude equations depends on the preferred pat-

tern beyond the stationary supercritical bifurcation. Since the underlying model equation
displaying the instability is nonlinear, the superposition principle does not hold and the
nonlinearities determine which (nonlinear) superpositions are possible. In a laterally infi-
nite system of two spatial dimensions, r = (x, y), a regular pattern usually can be spatially
periodic either in one, two or three directions [42]. The first case corresponds to a stripe
pattern,

w = X E exp(ikcx) (10.5)

where the coordinate frame has been chosen in such a way that the wavenumber of the
pattern coincides with the x-direction, E is the respective eigenvector of the linear operator
and X denotes the amplitude. The corresponding amplitude equation then reads

τ0∂tX = εX − g1|X|2X . (10.6)

Here τ0 is a relaxation time, ε denotes the relative deviation from the threshold of pattern
formation,

ε =
ρ0 − ρc

ρc
, (10.7)

and g1 is a nonlinear coefficient that limits the amplitude of the stripe pattern for g1 > 01.
A pattern that is spatially periodic in two perpendicular directions corresponds to a

square pattern,

w = X Ex exp(ikcx) + Y Ey exp(ikcy) , (10.8)

with the generic equations

τ0∂tX = εX − g1|X|2X − g2|Y |2X , (10.9a)

τ0∂tY = εY − g1|Y |2 Y − g2|X|2Y . (10.9b)

In this case a second nonlinear coefficient g2 arises that couples the two orthogonal modes.

1If g1 > 0 holds, the pattern amplitude is limited by the nonlinear term to a value |X | =
√

ε/g1, thus
evolving continuously upon crossing the threshold. Correspondingly this refers to the case of a supercritical
or forward bifurcation mentioned above. In the case g1 < 0, higher order terms like ∝ |X |4X have to
be incorporated to guarantee saturation and the amplitude can be nonzero for ε < 0, corresponding to a
subcritical or backward bifurcation.
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Periodicity in three directions leads to a hexagonal pattern

w = A1 E1 exp(ik1 · r) + A2 E2 exp(ik2 · r) + A3 E3 exp(ik3 · r) (10.10)

with three wavenumbers enclosing an angle of 120◦,

k1 = kc

(

1
0

)

, k2 =
1

2
kc

(−1√
3

)

, k3 = −1

2
kc

(

1√
3

)

. (10.11)

The respective generic amplitude equations now read

τ0∂tA1 = εA1 + gH
0 A∗

2A
∗
3 − g1|A1|2A1 − gH

2

(

|A2|2 + |A3|2
)

A1 , (10.12a)

τ0∂tA2 = εA2 + gH
0 A∗

1A
∗
3 − g1|A2|2A2 − gH

2

(

|A1|2 + |A3|2
)

A2 , (10.12b)

τ0∂tA3 = εA3 + gH
0 A∗

1A
∗
2 − g1|A3|2A3 − gH

2

(

|A1|2 + |A2|2
)

A3 . (10.12c)

Here g1 is again2 a nonlinear coefficient describing the self-coupling, while gH
0 and gH

2

describe the coupling to the other modes, the asterisk denoting complex conjugation. The
quadratic term ∝ gH

0 dominates the behavior near threshold and is mainly responsible for
the formation of hexagonal structures.

It should be noted that the description of the patterns by amplitude equations is
generic, since the specific system under consideration enters into the reduced description
only through the coefficients τ0, g1, and g2 or gH

0 , gH
2 respectively. The latter are functions

of the model parameters, in the case of the stationary finite wavelength instability these
are the rotational diffusion coefficient Dr, and the two motor contributions α and γ.

I have to mention also that I restrict myself in the present analysis to patterns with
exactly the critical wavenumber kc. Allowing for deviations of the pattern wavenumber
from the critical one leads to additional terms ∂tAi ∝ ξ2

0∂
2
xAi in the amplitude equations,

cf. [42]. ξ2
0 can be easily obtained from the linear spectrum of the unstable mode as the cur-

vature of the neutral curve and the stability with respect to inhomogeneous perturbations
can be calculated if the respective term is taken into account in the amplitude equations.
However, at the moment this seems not to be an urgent question for the model under con-
sideration since the experimental and theoretical understanding of filament-motor models
is far away from such accuracy.

10.1.2 Derivation of the amplitude equations

Numerical simulations of the basic equations (8.4), as described in section 10.3, indicate
that stripe and square patterns are favored immediately above threshold of the orientational
instability. Moreover, hexagonal structures are not driven in this system, which can be
seen below where details of the amplitude expansion are shown. Since the equation for
the square pattern already comprises the equation for stripes, it is thus sufficient for us to
derive Eqs. (10.9) from the filament-motor model Eq. (8.4), namely

τ0∂tX = εX − g1|X|2X − g2|Y |2X , (10.13a)

τ0∂tY = εY − g1|Y |2 Y − g2|X|2Y . (10.13b)

2One should note that τ0 and g1 are the same for all three patterns.



10.1. WEAKLY NONLINEAR ANALYSIS 123

In the following I describe the scheme for the derivation of the two coupled amplitude
equations (10.13) from the three underlying nonlinear equations (8.4). First of all one
assumes small values for the amplitudes X and Y of the spatially periodic deviations from
the homogeneous basic state ρ = ρ0 and t = 0. At threshold, i.e. at ρ0 = ρc and for
|k| = kc, these deviations are assumed either periodic in x- or in y-direction. Using the
eigenvectors defined in Eq. (9.16), the ansatz (10.8) explicity reads

w1 =





ρ1

t1x

t1y



 =





0
X
0



 eikcx +





0
0
Y



 eikcy + c.c. . (10.14)

with c.c. denoting the complex conjugate and the index 1 indicating that this is the starting
point of our perturbation analysis. Here we have again chosen, without restriction, that
the two orthogonal wave numbers lie parallel to the axes. One should note that the two
modes are decoupled and moreover do not couple to the density equation either.

Similarly as elaborated in section 9.2, the nonlinear equations (8.4) may be rewritten
in terms of the deviations w = (ρ̃, tx, ty) from the basic state w0 = (ρ0, 0, 0) as follows

∂tw = L0w + N (ρ, t) , (10.15)

with the linear operator as defined in Eqs. (9.8) and (9.9) and the nonlinear operator

N (ρ, t) =





Nρ (ρ, t)
Nx (ρ, t)
Ny (ρ, t)



 . (10.16)

The latter includes all the nonlinear terms with respect to ρ̃ and t on the right hand sides
of Eqs. (8.4).

Naturally, as the small expansion parameter the relative distance from threshold,

ε =
ρ0 − ρc

ρc

, (10.17)

is chosen. Close to threshold, i.e. for 0<ε≪1, the dynamics of the modes with amplitudes
X and Y as defined in Eq. (10.14) is slow due to their small linear growth rates and
accordingly a slow time scale

T = εt (10.18)

is introduced. This allows the time derivatives in Eqs. (10.15) to be replaced by

∂t → ε∂T . (10.19)

Now we expand the solution w of the nonlinear equations (10.15) with respect to powers
of ε1/2

w = ε1/2w1 + εw2 + ε3/2w3 + . . . , (10.20)
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with w1 as already defined in Eq. (10.14). The same is done for the nonlinearities

N = εN1 + ε3/2N2 + . . . , (10.21)

where there is no lowest order term since the nonlinearities have to be at least of the order
w2

1 ∝ ε. Sorting now the contributions to Eq. (10.15) with respect to powers of ε, one ends
up with the following hierarchy of equations

ε1/2 : L0w1 = 0 , (10.22a)

ε : L0w2 = −Nρ(t1)eρ , (10.22b)

ε3/2 : L0w3 = ∂T w1 − L2w1 −
∑

i=x,y

Ni(ρ2, t1)ei , (10.22c)

that has to be solved successively. Here we have introduced eρ = (1, 0, 0), ex = (0, 1, 0),
ey = (0, 0, 1) to address single components of w. The linear operator L2 introduced in
Eq. (10.22c) has the form

L2 =







L(2)
11 0 0

0 L(2)
22 L(2)

23

0 L(2)
32 L(2)

33






(10.23)

and comprises the terms of L0 that are of the order ε. It thus has the entries

1

ρ0
L(2)

11 =

(

1 + D

π
− α

24

)

∆ − 19 α

11520
∆2 ,

1

ρ0
L(2)

22 = − α

96
(∆ + 2∂2

x) −
α

46080

(

11∆2 + 64∆∂2
x

)

,

1

ρ0
L(2)

23 = − α

48
∂x∂y −

α

720
∆∂x∂y . (10.24)

The remaining two matrix elements L(2)
32 and L(2)

33 follow again from L(2)
23 and L(2)

22 by per-
muting ∂x and ∂y. The nonlinear operators read in detail

Nρ(t1) = − α

48
∂i

[

t1i∂jt1j + t1j∂it1j + t1j∂jt1i

]

− α

C1

[

11∂i (t1j∂i∆t1j) + 16∂i

(

t1i∆∂jt1j + 2t1j∂j∂i∂lt1l + tj1∂j∆t1i

)

]

(10.25)
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and (i = x, y)

Ni(ρ2, t1) =
3D + 1

2π
∂j (t1i∂jρ2) +

1 − D

2π

[

∂j(t1j∂iρ2) + ∂i(t1j∂jρ2)

]

− α

96
∂j

[

3t1i∂jρ2 + t1j∂iρ2 + δijt1l∂lρ2 + ρ2

(

∂it1j + ∂jt1i + δij∂lt1l

)

]

− α

2C1

∂j

[

ρ2

(

11∂j∆t1i + 16∂i∆t1j + 32∂j∂i∂lt1l + 16δij∆∂lt1l

)

+ 16t1j∂i∆ρ2 + 32t1l∂l∂i∂jρ2 + 44t1i∂j∆ρ2 + 16δijt1l∂l∆ρ2

]

+
1

48

(

γ

4
− 4

π
Dr

)[

t1j∂j∂iρ2 −
1

2
t1i∆ρ2

]

. (10.26)

Solving the hierarchy

Now we have to solve the hierarchy of equations (10.22) successively. The equation in
O(ε1/2) is just the linear eigenvalue problem already discussed in section 9.2, i.e. it is
solved already by our ansatz, ρ1 = 0 and

t1x = X(T )eikcx + c.c. , t1y = Y (T )eikcy + c.c. (10.27)

where we have made explicit that the two amplitudes X and Y are only functions of the
slow time scale T .

In the next order, O(ε), a nonlinearity is only present in the density equation. Since
density and orientation are completely decoupled in the linear operator, cf. Eqs. (9.8)
and (9.9), and L0 acting on the t-subspace is nonsingular, it follows that t2 = 0. The
nonlinearity in the density component of Eq. (10.22b), leads upon inserting t1 in Nρ(t1)
to an equation for ρ2, whose solution is of the following form

ρ2(X, Y ) = r1X
2e2ikcx + r2Y

2e2ikcy

+ r3XY ei(kcx+kcy) + r4XY ∗ei(kcx−kcy) + c.c. (10.28)

with ri = ri(Dr, α, γ) for i = 1, .., 4.
Instead of solving the Eq. (10.22c) at the order O(ε3/2), one can instead make use of

Fredholm’s alternative, which states that for Eq. (10.22c) having solutions, there must not
exist terms on its right hand side that lie in the kernel of L0. Physically this means that
there should be no contributions proportional to the critical modes exp(ikcx), exp(ikcy)
that would lead to resonant forcing. From the nonlinear contributions of Ni(ρ2, t1) one
gets such terms ∝ exp(ikcx) from the following combinations

r1X
2e2ikcxX∗e−ikcx , r3XY ei(kcx+kcy)Y ∗e−ikcy , r4XY ∗ei(kcx−kcy)Y eikcy (10.29)

leading to the desired nonlinear couplings |X|2X and |Y |2X in the equations for X and
analogously for the equation for Y . Collecting the prefactors of these respective modes in
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Eq. (10.22c), one gets the two equations (10.13), with analytical but lengthy expressions
for τ0, g1 and g2 as functions of Dr, α and γ.

From the analysis one can see that the nonlinear coupling of the orientational field to
the density in O(ε) is crucial for the physical stability of the system, since the density
contribution ρ2 is responsible for the saturation of the amplitudes in the equation of next
order O(ε3/2), cf. Eq. (10.22c), while t2 = 0 and thus t can not limit the amplitudes by
itself. One should also notice that ρ2 has twice the wavenumber of the orientation field.

Absence of hexagonal pattern

To obtain the amplitude equations for hexagons, Eqs. (10.12), the situation is a bit more
subtle [131]. Since the quadratic contributions like ∂tA1 ∝ A∗

2A
∗
3 have to be of the same

order of magnitude as the cubic contributions, one has to introduce a second slow time
scale into the problem, namely

∂t →
√

ε∂T1
+ ε∂T , (10.30)

which leads to the hierarchy of equations

ε1/2 : L0w1 = 0 , (10.31a)

ε : L0w2 = ∂T1
w1 −Nρ(t1)eρ , (10.31b)

ε3/2 : L0w3 = ∂T w1 + ∂T1
w2 − L2w1 −

∑

i=x,y

Ni(ρ2, t1)ei , (10.31c)

with the ansatz

w = A1 E1 exp(ik1 · r) + A2 E2 exp(ik2 · r) + A3 E3 exp(ik3 · r) (10.32)

and the wavenumbers ki as defined in Eqs. (10.11). If there would now be a quadratic
contribution in the equation for the unstable field, corresponding in our case to a term
quadratic in t1 in the ti components of Eq. (10.31b), one gets already a condition of
solvability in the order O(ε), namely

τ0∂tA1 = gH
0 A∗

2A
∗
3 (10.33)

and analogously for the other equations. Both terms arise from contributions ∝ exp(ik1 ·r),
the latter due to

−ik2 · r − ik3 · r = ik1 · r . (10.34)

The complete amplitude equations for the hexagons are then obtained by combining the
two solvability conditions in the orders O(ε) and O(ε3/2), i.e. by regarding the sum

∂tA1 =
√

ε∂T1
A1 + ε∂T A1 = . . . . (10.35)

In our case however, in Eq. (10.31b) there is only a quadratic contribution in the density
equation, and not one in the unstable orientational modes ti. Thus hexagonal structures
are not driven in our system immediately above threshold.
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10.2 Existence and stability of the nonlinear stripe

and square state

I will now analyze the amplitude equations

τ0∂tX = εX − g1|X|2X − g2|Y |2X , (10.36a)

τ0∂tY = εY − g1|Y |2 Y − g2|X|2Y , (10.36b)

derived from the filament-motor model Eq. (8.4) in the last two sections. First of all one
is interested in the stationary solutions and second in their regions of existence and their
regions of stability in the parameter space Dr, α and γ of the underlying model. The
diffusion ratio has been chosen to be D = D⊥

D‖
= 1/2, as discussed in section 9.5.2.

Apart from the trivial solution X0 = Y0 = 0, corresponding to the homogeneous and
isotropic basic state ρ = ρ0 and t = 0, the coupled amplitude equations (10.36) allow also
for stationary finite amplitude solutions. These are at first

X0 = ±
√

ε

g1

, Y0 = 0 , (10.37a)

X0 = 0 , Y0 = ±
√

ε

g1
, (10.37b)

which correspond according to Eq. (10.14) to stripes periodic either in x- or in y-direction.
Second, there is the stationary solution of equal amplitudes

X0 = Y0 = ±
√

ε

g1 + g2
, (10.38)

which constitutes a square pattern. In real space, this square pattern in terms of the com-
ponents of the vector field t(r, t) resembles the aster-structures found in the experiments
[31] as will become clear from the simulation pictures in Sec. 10.3.

The range of existence as well as the range of linear stability for the roll solutions and for
the squares can be easily investigated in terms of the amplitude equations. Stationary single
amplitude solutions as given in Eqs. (10.37), exist beyond threshold, i.e. for ε > 0, only
if g1 > 0 holds. Equally obviously, squares exist beyond threshold only in the parameter
range g1 + g2 > 0, cf. Eq. (10.38).

To investigate the stability of the two possible patterns, i.e. of the stripe and square
solutions with X0 and Y0 from Eq. (10.37) or (10.38) respectively, one uses the ansatz
X = X0 + δX and Y = Y0 + δY and linearizes Eqs. (10.36) with respect to the small
perturbations δX and δY to yield two coupled linear equations in both perturbations.
Those may be solved by the mode ansatz (δX, δY ) ∼ (δX̃, δỸ )eσt leading to a second
order polynomial in σ providing two eigenvalues. One of them is always negative, i.e.
damped, while the second is either

σr = ε
g1 − g2

g1

(10.39)
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Figure 10.1: The stability regions of stripes and asters are shown as calculated by the am-
plitude expansion method near threshold, i.e. for ρ0 & ρc(α, Dr). The two critical densities
ρc and ρd coincide along the solid line and beyond the instability with respect to density
modulations is present which is not included in our nonlinear analysis. The dotted line is
given by g1 = g2 and separates the range of stable square patterns (asters) from the range
of stable stripe patterns. Along the long-dashed line one has g1 = 0 and the bifurcation
to stripes changes from supercritical (below) to a subcritical one (beyond). Between the
short-dashed line, which is determined by g1 = −g2, and the long-dashed line asters can
still exist but are unstable while the amplitudes of stripes cannot be determined by our
lowest order expansion. Beyond the short-dashed line, also asters bifurcate subcritically.

for rolls or

σs = 2ε
g2 − g1

g1 + g2

(10.40)

for squares.
Thus stripes or squares are stable if σr or σs is negative, respectively. Accordingly

stripes are the preferred solution in the range of the nonlinear coefficients g2 > g1 > 0, while
in the parameter range |g2| < g1 the square patterns are preferred, cf. also Refs. [132, 42].
These criteria for g1 and g2 may be translated according to their parameter dependence
into the Dr-α plane, as shown for γ = 0 in Fig. 10.1, which is the central result of this
chapter. The analytic calculations presented here are valid only below the solid line in
Fig. 10.1, since above the density instability takes place which has not been accounted for
in the amplitude expansion. The dotted line corresponds to the condition g1 = g2 > 0
which separates the range of stable squares, i.e. asters, from stable stripe solutions. Along
the long-dashed line in Fig. 10.1, the bifurcation from the homogeneous basic state to
the stripe pattern changes its behavior from a supercritical (below) to a subcritical one
(above), where the expansion method is not effective anymore.
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Figure 10.2: The left picture is identical to Fig. 10.1, while at the right the nonlinear
contribution of the active rotational current, Eq. (7.18), is taken into account with γ =
α. The region of stable stripes considerably broadens while the regions of subcritical
bifurcations are moved to higher α and lower Dr values.

Taking the (nonlinear) effect of the active rotational current into account, the bifurca-
tion behavior from the homogeneous basic state is changed as shown in Fig. 10.2 for γ = α.
It can be seen that the range of stable stripe patterns in the Dr-α plane is enlarged, but
nothing changes qualitatively.

10.2.1 Scaling of the diffusion coefficients

One may complement this outline of the bifurcation behavior by a discussion of the two
decisive model parameters, namely α and Dr, and analytical estimates for them. Simple
models for motor proteins [5, 114, 41, 40] imply that the rate α of the translational active
transport grows linearly with the active motor density m and with the length of the fil-
aments, i.e. α ∝ mL. Hence this rate can be controlled by the cell in the most effective
way by the degree of motor activity (i.e. by regulating the ATP concentration) as well as
on a much larger timescale by the density of the motors and the filament length.

For the rotational and translational diffusion coefficients in a dilute solution, calcula-
tions taking the hydrodynamic interaction into account [39] propose the analytical expres-
sions

Dr =
3 ln(L/b)

πηL3
, D‖ =

ln(L/b)

2πηL
(10.41)

with b the rod diameter and η the solvent viscosity. In the rescaled units introduced in
Eqs. (8.5), this implies D′

r = L2

D‖
Dr = 6, lying far in the range of squares (asters).

For semi-dilute solutions one can estimate [39, 125, 126, 133] Dr = 6D‖/(L2(1 + crρ
′)2)
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Figure 10.3: A comparison of the ampli-
tudes of a stripe and a square solution as
obtained in numerical simulations (crosses)
with the analytical predictions, Eq. (10.37)
and (10.38), is shown. The solution with
the larger amplitude corresponds to the
stripes. The agreement remains well for
higher values of ε, but in the range be-
tween ε ≃ 0.006−0.007 a secondary bifurca-
tion takes place. Parameters are Dr = 0.5,
α = 21 and γ = 0.

or

D′
r =

L2

D‖

Dr =
6

(1 + crρ′)2
(10.42)

in rescaled units, where cr ≃ 1 is a geometry factor from a tube model calculation. Since
stripes or bundle-like structures are stable for D′

r < 0.3–0.4, cf. Figs. 10.1 and 10.2, one
needs a rather high (but possible) filament density for such a one-dimensional ordering.

According to these estimates the model suggests that asters are the most likely pat-
tern occurring above the stationary bifurcation in dilute or semi-dilute two-dimensional
filament-motor systems. For bundle-like structures to emerge rather high filament densi-
ties are needed, which is physically intuitive from the overlap nature of all the interactions,
namely the excluded volume and the motor-induced filament-filament interaction.

10.3 Results of numerical simulations

Besides the weakly nonlinear analysis described in the previous sections, the continuum
equations (8.4) have been solved numerically in order to check the validity range of the
perturbation analysis and to further explore the solution space. For this purpose the time
evolution has been integrated by a fourth order Runge-Kutta scheme and a Fourier Galerkin
pseudo-spectral method has been used in space, imposing periodic boundary conditions on
the system.

Since the validity range of the amplitude expansion with respect to the control pa-
rameter ε is not known a priori, in Fig. 10.3 we compare the amplitude of a stripe and a
square pattern as obtained by a numerical solution of the basic equations (8.4) with the
analytical results given by Eq. (10.37) and (10.38) respectively. Close to threshold there
is nearly perfect agreement between both approaches. However the validity range of the
amplitude equations is actually restricted to a range below ε ∼ 0.006 for the parameters
used in Fig. 10.3. Around this value a secondary instability takes place, which is not taken
into account in the perturbation expansion.
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Numerical simulations show that beyond this secondary instability a pronounced ac-
cumulation of the filaments to densities even higher than the density ρIN of the isotropic-
nematic transition appear accompanied with high, alternating orientations. These solu-
tions sometimes are numerically stable, depending on parameters. Nevertheless since the
maximum density values are larger than ρIN , these structures are in an invalid range of
our model since the nematic order parameter, cf. Eqs. (8.1), has been neglected in the
moment expansion. The secondary instability needs the spatial degrees of freedom, which
can be seen by the following investigation: if one restricts the numerics to just two modes,
namely to the critical wavenumber kc and to 2kc for reasons of amplitude saturation, the
instability is suppressed. A second observation is that the tendency of getting secondary
unstable is diminished, i.e. the amplitude expansion is valid for higher values of ε, if the
distance from the density demixing instability threshold ρd, cf. the solid line in Fig. 10.1,
is increased. Thus the instability may be caused by the conserved density mode which is
always present in the system and becomes only weakly damped near the demixing insta-
bility border ρd. The fact that conservation laws modify the stability of both stationary
and oscillatory patterns has been addressed quite recently [134, 135, 136, 137].

In addition to the validity range with respect to ε, one may also confirm numerically
the stability of the nonlinear solutions as predicted in Fig. 10.1 by the weakly nonlinear
analysis. As an example, we started with a square solution as shown in Fig. 10.4a) at the
point α = 21 and Dr = 0.15 in parameter space (and ε = 5 · 10−4) belonging according to
Fig. 10.1 to the region of stable stripe patterns. After a slight perturbation, the simulated
temporal evolution in Fig. 10.4c) shows that only one of the initially equal amplitudes
remains finite in the long time limit leading to the predicted stationary stripe pattern
displayed in Fig. 10.4b). By several numerical runs we confirmed the analytically predicted
stability diagrams in Figs. 10.1 and 10.2.

In the parameter range of stable asters, a vector plot of the orientation field superposed
on the color coded filament density is presented in Fig. 10.5. The filament orientation
is indicated by the arrows, the length being a measure of the degree of orientation. The
density is high in the bright regions and low in the dark ones. At the right hand side of the
simulation picture in Fig. 10.5, one can spot an aster with arrows pointing radially from
a center with lowered filament density opposing to an inverse aster top left with arrows
pointing radially into the center (we remind the reader that periodic boundary conditions
are imposed).

The fact that the centers of the asters have lowered filament densities can be explained
by the nonlinear analysis: in the derivation of the amplitude equations in section 10.1.2 one
can clearly see that the growing amplitudes of the orientation modulations excite higher
density modes - which then limit the orientation amplitudes to render the system stable
- and therefore in the center of an aster, where the orientation vanishes, there is no need
for a high density. Both the density and the degree of orientation reach their maximum
in between the asters and two saddle-like structures building up a square with the two
opposing aster centers complete the repetitive structure of this pattern near threshold
found in the filament-motor system.
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Figure 10.4: A simulation scenario is shown which numerically confirms the predictions of
our weakly nonlinear analysis. We started with the aster (square pattern) displayed in a)
with the analytically calculated amplitude described by Eq. (10.38) at a point in parameter
space where stripes should be preferred according to Fig. 10.1, namely at α = 21 and
Dr = 0.15 ( and ε = 5 · 10−4 ). Part c) shows the temporal evolution of the amplitudes
X and Y of the orientation components tx and ty as the dotted lines. One can clearly see
that one of the two modes building up the square pattern is damped and that the other
mode grows to the analytically predicted value described by Eq. (10.37) and displayed as
the upper solid line. Part b) shows the final stripe pattern.

10.4 Comparison to experiments

In this section we compare the results of our model analysis to the in vitro experiments.
Taking intermediate parameter values, namely α ≃ 20 and Dr ≃ 0.3, the critical wavenum-
ber of the periodic modulation in scaled units is kc ≃ 1.5 leading for filaments with a mean
length of 5µm to a wavelength of 20µm, which lies within the experimental range. The
motor contribution for a microtubule-kinesin mixture can be estimated [120] and lies about
αL ≃ 1.2 · 10−12m2s−1 , while filament diffusion is of the order 10−13 − 10−15 m2s−1, de-
pending on the filament length. Hence values of the scaled parameter α′ = αL

D‖
≈ 20 as used
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Figure 10.5: Left: A simulation of Eqs. (8.4) in the range of stable stationary asters is
shown as a superposed plot of the orientation field (arrows) and the filament density (dark
color coding low density, light color high density). Parameters are α = 21, Dr = 0.5,
ε = 5 · 10−5. Right: experimental pattern obtained in the presence of two motor species.
This lattice of interconnected poles resembles more the structures obtained by us than the
aster patterns shown in Fig. 6.1. Taken from Ref. [33].

by us are sensible. Since even higher values of α are possible, also the density instability,
which occurs for all Dr if α is large enough, may be relevant in experiments. It will be
discussed in chapter 12.

For any comparison between the weakly nonlinear behavior of the filament density and
orientational patterns as described in this work and the experimentally observed inhomoge-
neous filament distributions, one has to bear in mind the following fundamental difference.
In our work the modulation amplitudes around the homogeneous filament density as well as
the emerging modulation of orientation are small and periodic and the generic patterns in
this situation can only be stripes, squares or hexagons [42], leading to a discrete rotational
symmetry of the aster pattern. In the experiments however, the modulation amplitudes
are rather strong, the pattern is irregular and most structures have a local continuous rota-
tional symmetry. The reason for this is simply that our analysis corresponds to the weakly
nonlinear regime immediately above the threshold of the pattern forming instability, while
the experiments correspond to the strongly nonlinear regime far beyond threshold. For the
strong modulations as in the experiments, where both motors and filaments accumulate
in the aster centers and the regions in between the asters are nearly depleted, it is not
surprising that the pattern is not regular anymore and that the restriction to the simple
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patterns possible at threshold is not valid anymore. In spite of this however, from models
and experiments on pattern formation in driven fluid systems [42], there are well known
examples that the small amplitude expansion captures the qualitative behavior of patterns
in a considerable range beyond threshold.

With regard to this experience with other systems it is reasonable to compare the
stability trends suggested by the phase diagrams presented in Fig. 10.1 and Fig. 10.2 to
experimental results as described in Refs. [37, 31, 32]. The patterns occurring there in
unconfined geometries for increasing motor concentration, are vortices, mixtures of asters
and vortices, asters and finally bundles of microtubules for very high motor densities.
The last step, the transition from asters to bundles, is in agreement with our calculations
visualized in Fig. 10.1, where for increasing values of α, which is proportional to the
(homogeneous) density of motors, a transition from asters to stripes takes place.

The lattice of asters, as shown in the left part of Fig. 10.5, is however different from the
aster patterns found in the single-motor experiments [31] with microtubules and kinesin
oligomers. While in the experiments only asters with a defined direction occurred, namely
for a plus end-directed motor asters with the plus ends pointing inwards, the model predicts
a periodic lattice of asters which alternatingly have filament orientations pointing inwards
and outwards, cf. the discussion of Fig. 10.5 in the last section. The reason for this is that
we have omitted in the present analysis the polarity sorting contributions proportional
to β in Eqs. (8.4). Thus the model equations have ±t-symmetry and do not discern the
differently oriented asters. Though we have allowed for a nonvanishing orientation field t in
the coarse-graining process that resulted in Eqs. (8.4), the motor interaction proportional
to α is not polar. Thus one could imagine that one is in the case where both plus and minus
end directed motors are involved. Indeed such experiments in Ref. [33] yielded patterns of
interconnected poles that are highly reminiscent to the patterns obtained by the model,
cf. Fig. 10.5.

To describe asters of a single orientation in the presence of a single kind of motors, we
should analyze the model in the presence of the polarity sorting contributions. If these are
accounted for, the finite wavelength instability is rendered oscillatory, cf. the next chapter,
and is not a candidate for asters. However, the density demixing instability in the presence
of polarity sorting is still a stationary instability and also allows for aster-like patterns as
is analyzed in chapter 12.

We did not find vortices. This may be due to the fact that at lower motor concentra-
tion the spatial variations of the motor density may become a relevant dynamical degree
of freedom that has to be taken into account in the modeling, cf. Ref. [138]. A second pos-
sibility could be the inclusion of the first order term in the active angular velocity, namely
the one proportional to ω1 in Eq. (7.31). This term allows for a state of homogeneous
polar orientation [123, 124] wherein vortices and asters may be found as defect structures,
similar as in the model proposed in Ref. [128].



Chapter 11

Oscillatory patterns: coupled
density-orientation waves

The oscillatory orientational instability in the case with polarity sorting, i.e. with β 6= 0,
has already been discussed in section 9.4. The unstable modes correspond to a pair of
complex eigenvalues, σ = λ ± iω, with growth rate, cf. Eqs. (9.33) and (9.39),

λ =
1

2

[

−Dr −
(

3D + 5

4
+

1 + D

π
ρ0 −

7

96
αρ0

)

k2 − 151

46080
αρ0k

4

]

(11.1)

and frequency

ωc =

√

−(L̄(0)
22 )2 − L̄(0)

12 L̄(0)
21

∣

∣

∣

∣

ρc,kc

. (11.2)

The frequency ωc is finite if β exceeds some small critical value, cf. Fig. 9.8. In that case
the unstable modes give rise to a Hopf bifurcation.

Beyond an oscillatory instability it is well known from a number of physical, chemical
and biological systems that the nonlinear behavior is quite different from stationary pat-
terns [42, 139]. Thus in this chapter I will derive from the continuum equations (8.4) the
amplitude equations for the oscillatory case. In one spatial dimension this is known to be
the complex Ginzburg-Landau equation [139], describing a traveling wave (TW) solution.
The general case comprises two coupled equations for waves traveling to the right and to
the left respectively, which will also allow for a standing wave (SW) solution by nonlinear
superposition. I derive the respective equations in some detail in section 11.1.2 and discuss
the existence and stability of both types of solutions in section 11.1.3.

Since the oscillatory solution is more prone to subcritical bifurcations than had been the
case for the stationary instability, we briefly discuss the effects of higher order (namely third
order) excluded volume interaction in section 11.2. These contributions indeed increase
the region of supercritical bifurcations, where the Ginzburg-Landau description directly
applies. In section 11.3, the influence of the polarity sorting parameter β is discussed,
leading to the conclusion that for not too low values of this parameter, its influence on the

135
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nonlinear behavior is only minute. Again some numerical tests have been made to check
the validity of the amplitude expansion, as described in section 11.4.

In two spatial dimensions we derive in section 11.5.1 four coupled amplitude equa-
tions, for left and right TW solutions in two arbitrary perpendicular directions. The
detailed structure of the equations is motivated, but the derivation, made with the help
of a computer algebra system, is not shown in detail since the procedure is fully analo-
gous to the one-dimensional case and the technical details give no additional insights. The
stability diagrams obtained from the semianalytical treatment are shown and analyzed
in section 11.5.2. In the two-dimensional system, possible nonlinear superpositions like
standing waves (SW), standing squares (SSq) and traveling squares (TSq) are unstable.
There is however competition between traveling waves, i.e. one-dimensional waves propa-
gating through the two-dimensional system, and alternating waves (AW), which are truly
two-dimensional solutions, namely standing waves with a phase shift of π in the two per-
pendicular directions. The spatiotemporal behavior of the AW solution can be understood
best by the pictures shown in section 11.5.3, obtained by numerical simulation of the basic
equations (8.4).

11.1 Weakly nonlinear analysis in one dimension

If we project the orientation vector t on the x-axis this implies a vanishing ty and thus
t = |t| = tx. The orientation field can then point either in + or in −x-direction, whereby
the modulus may be spatially varying. The rotational diffusion contribution, −Drtx, may
be interpreted as spontaneous changes or ”flips” of the filament orientation from + to
−x-direction or vice versa at a rate Dr.

11.1.1 Amplitude equations

Instead of the stationary ansatz of Eq. (10.14), which in one dimension simply reads

w1 =

(

ρ1

t1

)

=

(

0
X

)

eikcx + c.c. , (11.3)

one has now to allow for waves traveling to the positive and negative x-direction

w1 =

(

ρ1

t1

)

=

(

E−

1

)

Xre
i(kβ

c x−ωct) +

(

E+

1

)

Xle
i(kβ

c x+ωct) + c.c. , (11.4)

with c.c. again denoting the complex conjugate and Xr and Xl the amplitudes of waves
traveling to the right and to the left respectively. In addition, the linear mode is not purely
orientational anymore, as has been the case in the stationary instability, but it is now a
coupled density-orientation mode. This is due to the β-contributions in the linear operator
and is reflected in Eq. (11.4) by the eigenvectors (E−, 1)T and (E+, 1)T of the unstable
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eigenvalue pair σ1,2 = λ ± iω. The critical wavenumber and frequency have been given in
Eq. (9.36),

kβ
c =

(

2Dr

dαρc

)1/4

, (11.5)

and in Eq. (11.2) and the threshold value of the filament density, ρβ
c , according to Eq. (9.35)

reads

ρβ
c =

(Drd + ac)α − ab +
√

Drdα [(Drd + 2ac)α − 2ab]

b2 − 2bcα + c2α2
, (11.6)

with the abbreviations a = 3D+5
4

, b = 1+D
π

, c = 7
96

and d = 151
23040

. In the following I will
omit the superscript β on kβ

c and ρβ
c to simplify notation.

If again a multiscale expansion is performed in the neighborhood of the threshold by
using the small parameter

ε =
ρ0 − ρc

ρc
, (11.7)

two generic amplitude equations for the two amplitudes Xr and Xl of the right- and left-
traveling waves respectively are obtained [43, 42], namely

τ0∂T Xr = ε(1 + ib)Xr − (g1 + ic1)|Xr|2Xr − (g2 + ic2)|Xl |2Xr , (11.8a)

τ0∂T Xl = ε(1 + ib)Xl − (g1 + ic1)|Xl |2Xl − (g2 + ic2)|Xr|2Xl . (11.8b)

In contrast to Eqs. (10.13), the coefficients are now complex. Thus Eqs. (11.8) are referred
to as a system of coupled Complex Ginzburg-Landau Equations.

Here I consider again only the simplest case, i.e. only traveling waves that are restricted
to the critical wavenumber kc. This neglects two terms usually encountered in Eqs. (11.8),
a linear group velocity term ±vg∂xXr/l and a term associated with a coherence length
(1 + ic0)ξ

2
0∂

2
xXr/l. These terms allow in some parameter range waves with wavenumbers

slightly different from kc to be stable, which is however a higher order problem if considering
the analysis of a complicated model like Eqs. (8.4). Both terms being linear, they can be
extracted from the linear instability spectrum [42].

11.1.2 Derivation of the amplitude equations

The procedure to obtain the coupled amplitude equations (11.8) is similar as in the sta-
tionary case, but slightly more involved due to the linear coupling of the density and the
orientation, as can be seen by the need for the eigenvectors in the ansatz, Eq. (11.4). To
obtain an equation for the amplitude of e.g. the right-traveling coupled density-orientation
mode, in the last step of the derivation the vectorial equation has to be projected on a
single equation by use of the left eigenvector corresponding to (E−, 1)T .
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The equation we have to solve is of the form

∂tw = L̄0w + N (ρ, tx) , (11.9)

with the nonlinear operator

N (ρ, tx) =

(

Nρ (ρ, tx)
Nt (ρ, tx)

)

. (11.10)

The linear operator is defined by the reduced Eqs. (9.30) and the nonlinear operator N
includes all the nonlinear terms with respect to ρ̃ and tx on the right hand sides of Eqs. (8.4)
where the contributions from both ty and ∂y have been omitted, cf. below.

While there are fast oscillations of the overall pattern with the critical frequency ωc,
the dynamics of the envelope of the linear solution in Eq. (9.33) is slow close to threshold
and accordingly a slow time scale

T = εt (11.11)

can again be introduced. However, the time derivatives can not be replaced like ∂t → ε∂T

as has been done in Eq. (10.19) for the stationary case, but the fast oscillations must be
accounted for by

∂t → ∂t + ε∂T , (11.12)

since they lead to terms ∝ iωc upon action on the ansatz, Eq. (11.4).
The solution w is again expanded with respect to powers of ε1/2

w = ε1/2w1 + εw2 + ε3/2w3 + . . . , (11.13)

with w1 as in Eq. (11.4), as are the nonlinearities

N = εN1 + ε3/2N2 + . . . . (11.14)

Sorting the contributions to Eq. (11.9) with respect to powers of ε, one gets the following
hierarchy of equations

ε1/2 : L̄tw1 = 0 , (11.15a)

ε : L̄tw2 =

(

N 1
ρ

N 1
t

)

, (11.15b)

ε3/2 : L̄tw3 = −∂T w1 + L̄2w1 +

(

N 2
ρ

N 2
t

)

, (11.15c)

where I have introduced the linear operator L̄t defined as

L̄t = I∂t − L̄0 . (11.16)
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I should mention that since L̄0 is contained in L̄t with a minus sign, the signs on the right
hand sides of Eqs. (11.15) are the opposite of those appearing in the stationary hierarchy,
Eqs. (10.22).

One should recognize two main differences between this hierarchy and Eqs. (10.22)
for the stationary case: first, instead of a stationary linear operator, L̄0, now one has to
deal with L̄t, which via the fast time derivative ∂t introduces the critical frequency iωc in
all orders of ε. This is the reason for the coefficients in the amplitude equations (11.8)
becoming complex valued. Second, since the unstable mode now is a coupled density-
orientation mode, nonlinearities come into play in both components of the vector equation
already in Eq.(11.15b), i.e. at the order ε.

As in the stationary case, the equation of order ε1/2, Eq. (11.15a), is solved already by
our ansatz Eq. (11.4). Thus one can proceed by solving the next order, the inhomogeneous
Eq. (11.15b), for w2. If this solution is obtained, upon insertion of w1 and w2 into the
right hand side of Eq. (11.15c), one has again an inhomogeneous equation to solve. As
before, to obtain an equation e.g. for Xr, one is not obliged to solve this equation, but
only has to collect all terms that are resonantly forcing the wave traveling to the right,
i.e. those ∝ ei(kcx−ωct), which have to vanish due to Fredholm’s alternative. The respective
vectorial equation has to be projected and one finally obtains a single equation for Xr. In
the next section I show how the left eigensystem of L̄t can be used for this purpose.

Right and left eigenvectors

We have now to consider the full, time-dependent linear operator

L̄t = I∂t − L̄0 , (11.17)

with I the identity, and to look for the zero-eigenvalues. At threshold, where the real part
λ of the growth rate vanishes, the stationary operator L̄0 has the eigenvalues ±iωc. Thus
we can construct two zero eigenvalues of L̄t with two different (right) eigenvectors, namely

(

E−

1

)

ei(kcx−ωct) and

(

E+

1

)

ei(kcx+ωct) , (11.18)

(11.19)

with the definitions

E− = − (L̄(0)
21 )−1

(

L̄(0)
22 + iωc

)∣

∣

∣

ρc,kc

, (11.20)

E+ = − (L̄(0)
21 )−1

(

L̄(0)
22 − iωc

)∣

∣

∣

ρc,kc

. (11.21)

To motivate this let’s consider the action of L̄t on a wave solution traveling to the right,
i.e. ∝ ei(kcx−ωct), which transforms the former operator into the matrix

(

−iωc − L̄(0)
11 −L̄(0)

12

−L̄(0)
21 −iωc − L̄(0)

22

)

, (11.22)



140 CHAPTER 11. OSCILLATORY PATTERNS

with the elements of the linear operator again evaluated at threshold, i.e. at (ρc, kc).
Multiplying this matrix from the right by a vector (E−, 1)T leads to the equations

(−iωc − L̄(0)
11 )E− − L̄(0)

12 = 0 ,

−L̄(0)
21 E− − iωc − L̄(0)

22 = 0 , (11.23)

where the latter has been used to define E− in Eq. (11.20). It can however easily be shown
that a definition arising from the first equation yields the same. Similarly, a left eigenvector
can be obtained by multiplying the matrix from the left by a vector (1, F−), leading e.g.

to (−iωc − L̄(0)
11 ) − L̄(0)

21 F− = 0 and implying

F− = − (L̄(0)
21 )−1

(

L̄(0)
11 + iωc

)∣

∣

∣

ρc,kc

. (11.24)

Fully analogously, by looking on the action of L̄t on a solution ∝ ei(kcx+ωct) one gets the
right-eigenvector (E+, 1)T with E+ as defined above and the left-eigenvector (1, F+) with

F+ = − (L̄(0)
21 )−1

(

L̄(0)
11 − iωc

)∣

∣

∣

ρc,kc

. (11.25)

I should also mention two useful relations. First, the diagonal elements of L̄(0), namely
L̄(0)

11 and L̄(0)
22 , are real since they arise from even spatial derivatives, while the outer diagonal

elements, L̄(0)
21 and L̄(0)

12 , are purely imaginary since they come from odd spatial derivatives,
cf. Eqs. (9.30) and (9.27). Thus for the special structure of our model follows that

(E−)∗ =

(

− (L̄(0)
21 )−1

(

L̄(0)
22 + iωc

)∣

∣

∣

ρc,kc

)∗

= (L̄(0)
21 )−1

(

L̄(0)
22 − iωc

)∣

∣

∣

ρc,kc

= −E+ (11.26)

holds. Second, it is a generic situation that the right and the left eigenvectors of the two
different eigenvalues are orthogonal. This can be easily seen, exemplarily

(1, F+)

(

E−

1

)

= E− + F+ (11.27)

= − (L̄(0)
21 )−1

(

L̄(0)
22 + iωc

)

− (L̄(0)
21 )−1

(

L̄(0)
11 − iωc

)∣

∣

∣

ρc,kc

= 0 , (11.28)

with use of the fact that at threshold λ = 1
2
(L̄(0)

11 + L̄(0)
22 ) = 0 holds, implying L̄(0)

11 = −L̄(0)
22 .

Solving the hierarchy

Now we are prepared to extract the amplitude equations (11.8) from the hierarchy given
by Eqs. (11.15). First we have to solve Eq. (11.15b),

L̄tw2 =

(

N 1
ρ (ρ1, t1x)

N 1
t (ρ1, t1x)

)

, (11.29)
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where

N 1
ρ (ρ, tx) =

(

1 + D

π
− α

24

)

∂x (ρ∂xρ) − 3α

48
∂x (tx∂xtx)

− α

C1

[

38∂x

(

ρ∂3
xρ
)

+ 75∂x

(

tx∂
3
xtx
)

]

− β

96

5

2
∂x

[

ρ∂2
xtx − tx∂

2
xρ
]

(11.30)

and

N 1
t (ρ, tx) =

3 − D

2π
∂x (tx∂xρ) − α

96
∂x

[

5tx∂xρ + 3ρ∂xtx

]

− α

2C1
∂x

[

75ρ∂3
xtx + 108tx∂

3
xρ

]

+
β

2
∂x

[

1

2
ρ2 − t2x

]

+
β

96
∂x

[

5

4
ρ∂2

xρ − 3tx∂
2
xtx

]

. (11.31)

These nonlinearities yield in the order O(ε) contributions of the form (with ∗ = ρ, tx)

N 1
∗ = N1

∗1X
2
r e

2i(kcx−ωct) + N1
∗2X

2
l e2i(kcx+ωct)

+N1
∗3XrXle

2ikcx + c.c. , (11.32)

which naturally leads us to the ansatz

w2 =

(

Aρ1

At1

)

X2
r e

2i(kcx−ωct) +

(

Aρ2

At2

)

X2
l e

2i(kcx+ωct)

+

(

Aρ3

At3

)

XrXle
2ikcx + c.c. . (11.33)

The various coefficients of w2 can be determined by inverting the linear operator in
Eq. (11.29) yielding

(

Aρ1

At1

)

=
(

L̄t

∣

∣

2kc,−2ωc

)−1
(

Nρ21

Nt21

)

,

(

Aρ2

At2

)

=
(

L̄t

∣

∣

2kc,+2ωc

)−1
(

Nρ22

Nt22

)

,

(

Aρ3

At3

)

=
(

L̄t

∣

∣

2kc,ω=0

)−1
(

Nρ23

Nt23

)

, (11.34)

where e.g. L̄t

∣

∣

2kc,−2ωc
has to be read as the Fourier transformed linear operator evaluated

at k = 2kc and ω = −2ωc.
Now we put w1 and w2 into Eq. (11.15c),

L̄tw3 = −∂T w1 + L̄2w1 +

(

N 2
ρ (ρ1, ρ2, t1x, t2x)

N 2
t (ρ1, ρ2, t1x, t2x)

)

, (11.35)
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where the components of the nonlinear operator read

N 2
ρ (ρ1, ρ2, t1x, t2x) = N 1

ρ (ρ2, t1x) + N 1
ρ (ρ1, t2x) ,

N 2
t (ρ1, ρ2, t1x, t2x) = N 1

t (ρ2, t1x) + N 1
t (ρ1, t2x) . (11.36)

As already discussed, it is sufficient to collect the resonantly forcing terms, namely
those ∝ ei(kcx−ωct) for the equation of Xr. Then we project on Xr by multiplying with
(1, F−) leading us to the solvability condition

0 = −(E− + F−)∂T Xr + (1, F−)L̄2

∣

∣

kc,−ωc

(

E−

1

)

Xr

+

∫

dx (1, F−)

(

N 2
ρ

N 2
t

)

e−i(kcx−ωct) , (11.37)

where the integral in the third term picks out the resonant contributions in the nonlinear
operators.

From the structure of w2, Eq. (11.33), which comprises terms proportional to

X2
r e2i(kcx−ωct) + c.c. , X2

l e2i(kcx+ωct) + c.c. and XrXle
2ikcx + c.c. ,

the nonlinearities in O(ε3/2), N 2
ρ and N 2

t , yield the two resonant contributions

X2
r e

2i(kcx−ωct)X∗
r e

−i(kcx−ωct) and XrXle
2ikcxX∗

l e−i(kcx+ωct) .

Thus the solvability condition has the form

τ ′∂T Xr = (a′ + ib′)Xr + (g′
1 + ic′1)|Xr|2Xr + (g′

2 + ic′2)|Xl|2Xr (11.38)

and we obtain the first amplitude equation of Eqs. (11.8),

τ0∂T Xr = ε(1 + ib)Xr − (g1 + ic1)|Xr|2Xr − (g2 + ic2)|Xl |2Xr ,

(11.39)

by replacing τ0 = τ ′/a′, b = b′/a′, gi = −g′
i/a

′, ci = −c′i/a
′ for i = 1, 2 and using Xr ∼ ε1/2.

The signs of the real parts of the nonlinear coefficients have been chosen in such a way
that g1 > 0 corresponds to a forward bifurcation of a traveling wave.

11.1.3 Existence and stability of the nonlinear waves

Similar as in the stationary case, one can read from the amplitude equations (11.8) the
existence and stability ranges for the patterns which are generic at threshold. Looking
for stationary solutions, we put a single wave traveling to the right, i.e. Xr = FeiΩT and
Xl = 0, into Eq. (11.8a) while Eq. (11.8b) is then trivially fulfilled. Separating

τ0iΩF = ε(1 + ib)F − (g1 + ic1)F
2F (11.40)
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into the real part and the imaginary part,

0 = ε − g1F
2 , (11.41)

τ0Ω = εb − c1F
2 = ε

(

b − c1

g1

)

, (11.42)

these two equations define the amplitude F =
√

ε/g1 and the frequency Ω of the nonlinear
solution. Again g1 > 0 is needed for the bifurcation to be supercritically or forward. Due to
symmetry, a wave traveling to the left with Xr = 0 and Xl = FeiΩT is a second stationary
oscillating solution.

Additionally a solution with equal amplitudes exists, corresponding to a standing wave
(SW). This case is treated fully analogously by inserting Xl = FeiΩT+φr and Xl = FeiΩT+φl

into Eqs. (11.8), leading to the amplitude and the frequency

F =

√

ε

g1 + g2
, Ω = τ−1

0 ε

(

b − c1 + c2

g1 + g2

)

. (11.43)

Obviously this solution exists for g1 + g2 > 0.
The stability of each solution in their respective regions of existence can again be easily

established by looking at the temporal evolution of small deviations of the stationary
oscillating solutions, e.g. for the case of the wave traveling to the right by Xr = FeiΩT +δxr

and Xl = δxl. From the real parts Re(σ) of the growth rates of δxr, δyr ∝ eσt one can then
decide the stability. One gets that TW are stable if g2 > g1 > 0 holds for the coefficients
of Eqs. (11.8) and that SW are stable in case of |g2| < g1.

As has been done in the stationary case, one can again relate the coefficients g1 and g2 of
the amplitude equations to the parameters of the underlying continuum model, Eqs. (8.4),
namely to Dr, α and β 1. The resulting stability diagram is shown in Fig. 11.1. Our
weakly nonlinear analysis is valid in the region between the two areas shaded in grey
and describing the occurrence of the density instability (dark grey) and the homogeneous
nematic transition (light grey). Traveling wave (TW) solutions exist to the right of the
solid line, defined by g1 = 0, while standing waves (SW) exist to the right of the dotted
line, where g1 + g2 = 0 holds. If SW exist they are also stable, the line of exchange of
stability, defined by g1 = g2 > 0, lying in the region where the nematic instability occurs.
To the left of the solid line, TW bifurcate subcritically.

As discussed in detail in section 9.5.1, the influence of the polarity sorting parameter β
on the nonlinear pattern selection is minute. Thus the stability borders in Fig. 11.1 change
only by very small amounts if this parameter is varied.

As can be seen from the solid line in Fig. 11.1, the existence range of supercritical
traveling waves is restricted to values of the rotational diffusion coefficient larger than
Dr ≃ 1. Thus comparing it to the stationary case, cf. Fig. 10.1, where stationary stripes
existed for values larger than Dr ∼ 0.15, in the presence of polarity sorting there is a
stronger tendency towards subcritical bifurcation behavior.

1We use again D = 1/2, as discussed in section 9.5.2.
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Figure 11.1: Stability diagram for the weakly nonlinear solutions of the oscillatory finite
wavelength instability. The regions in dark and light grey correspond to the density in-
stability and to the homogeneous nematic instability respectively, which are beyond the
validity range of our expansion. Traveling waves (TW) exist at the right side of the solid
line and standing waves (SW) to the right of the dotted one. If SW exist they are also
stable. To the left of the solid line, TW bifurcate subcritically. The polarity sorting pa-
rameter has been chosen to be β = 5, larger values leading only to very small changes in
the diagram, cf. Fig. 11.3.

11.2 Higher order excluded volume effects

In the mesoscopic filament-motor model, Eqs. (7.10 -7.18), that has been the starting point
to derive the continuum equations (8.4) now under investigation, all interactions have been
restricted to filament pairs. In three spatial dimensions this is a sensible approximation
for long rods, since contributions from higher order virials ∝ Ψ3, with Ψ the probability
distribution function of the filaments, decrease at least like b/L, the ratio between the rod
diameter and the rod length [81]. The main reason for this is that in three dimensions it
is quite unlikely for three or more rods to overlap simultaneously, since to do so they have
to be approximately in the same plane. Thus such higher order contributions are small,
since only a tiny part of the configuration space contributes to them.

In two dimensions however, as considered here, this is not the case anymore: the rods
are automatically in a planar configuration and thus three-particle contributions and even
higher orders are not negligible [27].

Moreover, a consequence of the restriction to two-particle interaction is the fact that
the continuum model has only quadratic nonlinear contributions, which is a case known to
lead not necessarily to a saturation of the amplitudes. In contrast, the presence of a third
order contribution with the right sign always restricts the amplitudes of patterns. Such
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a term, as we have already met in the Cahn-Hilliard model introduced in section 3.3, is
usually motivated by excluded volume interaction, i.e. high density deviations are punished
since the particles need space.

We restrict ourselves here to higher order contributions to the passive excluded volume
interaction, although accounting for higher order motor-mediated interactions could be
a very delicate problem. However, for a situation to be relevant where three filaments
intersect to form a triangle and motors are present in all intersection points one would
need a really high motor density. Already for the excluded volume contribution, i.e. the
third virial coefficient of a rod solution, the problem is very intricate, cf. Ref. [27]. However,
to account for the rod-like shape of the filaments, one can use an approximation proposed
in Ref. [81] which yields for the translational excluded volume part, cf. Eqs. (7.11a) and
(8.26b), the following third order contribution

∂tΨ ∼ crDij∂i

[

Ψ(u)∂j

∫

du′

∫

du′′
(

|u× u′| + |u′ × u′′| + |u′′ × u|
)

Ψ(u′)Ψ(u′′)

]

, (11.44)

with cr as a phenomenological coefficient and Dij the anisotropic diffusion matrix defined
in Eq. (7.12). Performing the moment expansion as explained in sections 8.2.2 and 8.2.3,
one gets the following additional contributions to the density and the orientation equation

∂tρ ∼ cr
3(1 + D)

π
∂i

(

δρ∂iδρ
2
)

,

∂tti ∼ cr
6(1 − D)

4π

[

∂i

(

tj∂jδρ
2
)

+ ∂j

(

tj∂iδρ
2 + ti∂jδρ

2
)

]

+ cr
6D

π
∂j

(

ti∂jδρ
2
)

. (11.45)

In the above expressions we have used density deviations from the mean value, δρ = ρ−ρ0,
instead of ρ. If not, these terms would lead to a linear contribution ∝ ρ2

0∂
2
xρ in the density

equation and to an increase of the threshold for the density demixing instability, which
makes no sense since Eq. (11.44) is assumed to be a higher order correction.

Looking at the weakly nonlinear analysis of the stationary orientational instability, the
contributions from Eqs. (11.45) have no effect at threshold. This is due to the fact that
the first order contribution in the density ∝ ε1/2 is zero, ρ1 = 0, while the nonvanishing
ρ2 6= 0 comes into play only in orders higher than those needed for the derivation of the
amplitude equations. In contrast, in case of the oscillatory orientational instability, ρ1 6= 0
holds due to the linear coupling of the density and the orientation, and thus one gets a
stabilizing effect.

However, the effect of the rod shape on the qualitative features of the higher order
excluded volume is small. If the excluded volume is incorporated by totally ignoring the
rod-like structure of the particles and adding the following contributions

∂tρ ∼ c(∂2
x + ∂2

y)(δρ
3) and ∂tti ∼ 0 , (11.46)

with c another phenomenological parameter, one gets a stability diagram as shown in
Fig. 11.2. There are no qualitative changes if one uses Eqs. (11.45) instead, if one adapts
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Figure 11.2: Stability diagram with third order excluded volume contributions taken into
account. Again the regions in dark and light grey denote the density and homogeneous
nematic instabilities. In between, traveling waves (TW, solid line) and standing waves
(SW, dotted line) exist now in a larger range of Dr compared to the case without higher
order excluded volume, cf. Fig. 11.1. The exchange of stability between TW and SW
is shifted to the accessible α-Dr-range as shown by the dashed line, which is defined by
g1 = g2 > 0. Parameters are β = 5, c = 0.5.

the values of c or cr properly. Thus to catch the effects of the third order excluded volume
interactions, we opt for the use of Eq. (11.46) to keep the description as simple as possible.

Fig. 11.2 can now be compared to the case without third order excluded volume as
shown in Fig. 11.1. In the latter case the line of exchange of stability between traveling
and standing waves, i.e. the line where g1 = g2 > 0 holds, lies deep in the region of the
homogeneous nematic instability, where our weakly nonlinear expansion does not apply,
and thus if SW exist, they are always stable. Taking the simple third order excluded
volume contribution from Eqs. (11.46) into account with a rather small value of c = 0.5 (or
the contribution approximately accounting for the rod-like shape from Eqs. (11.45) with
an even smaller cr) shifts the transition line, depicted as the dashed line in Fig. 11.2, into
the region where the analysis applies. An even higher value shifts the dashed line into
the region of the demixing instability, totally destabilizing the SW solutions, so that only
TW are stable in that case. As a second effect, the range of supercritical wave patterns is
slightly increased by the excluded volume term, as expected from the stabilizing effects of
such a third order contribution.

The discussion of the third order excluded volume term may seem kind of artificial,
however such a contribution is always present and most probably important in two dimen-
sions already for quite low densities, due to the poor convergence of the virial expansion
for rods [78, 81] in two dimensions. The following tendencies may therefore be important:
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Figure 11.3: The dependence of the
real parts of the nonlinear coefficients of
Eqs. (11.8), g1 (upper solid line) and g2

(dashed line), on the polarity sorting param-
eter β. For large β there is only minute
dependence. For small β however TW are
becoming unstable versus SW and for very
small β there are no stable solutions as g2

becomes smaller than −g1 (lower solid line).
The parameters are α = 14.5, Dr = 1.2 and
c = 0.5.

For the oscillatory instability investigated here the third order excluded volume leads to a
destabilization of SW in favor of TW. In the case of strong excluded volume effects, only
TW are stable.

A side effect of the third order term is the improvement of numerical stability of the
wave patterns, cf. section 11.4. Moreover, for the investigation of the demixing instability,
cf. section 12, a third order term is definitely needed to guarantee a saturation of the
pattern amplitudes, as usual for a Cahn-Hilliard-like instability, cf. section 3.3.

11.3 Nonlinear influence of the polarity sorting

Fig. 11.3 shows the influence of the polarity sorting parameter β on the nonlinear be-
havior, namely on the two nonlinear coefficients g1 and g2 occurring in the amplitude
equations (11.8). One can see that for intermediate and high values of the polarity sorting
parameter (for the parameters used to obtain the figure, approximately for β > 4), the
influence is quite minute and that TW are preferred at the chosen point in parameter
space. In contrast, for smaller β there is a dependence on β, namely with decreasing β
an exchange of stability from TW to SW and ultimately a total destabilization of wave
solutions, due to g2 < −g1.

One can estimate that β should be of the same order of magnitude as the instability-
causing motor parameter α [40], which roughly lies in between 10-20 in dimensionless units
and thus in the region where the detailed value of β is typically not important, cf. Fig. 11.3.
However, one has to make a compromise: a high value of β leads to ineffective numerics,
since one has to resolve the slow dynamics of the pattern, while ωc becomes very large for
large values of β, cf. Fig. 9.8, implying that one has to choose a high resolution in the time
discretization to account for these fast oscillations. With regard to the phase dependence
from section 9.5.1 and the nonlinear influence, i.e. from Figs. 9.7 and 11.3, we have chosen
β = 5 as a sensible value working also well with the numerics. The analytical stability
analysis pictures, cf. Figs. 11.1 and 11.2, have also been generated for this parameter value.
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Figure 11.5: A quarter period of a numerically obtained standing wave is shown. One can
see from the solid line that for the filament density the second harmonic has to be taken
into account. x-axis is scaled with the system length Ls. Parameters are α = 16, β = 5,
Dr = 1.1, c = 0.5 and ε = 10−4.

11.4 Results of numerical simulations

We have again tested the validity range of the amplitude expansion by performing numerical
simulations. In Fig. 11.4, a comparison between the analytical result |A| = F =

√

ε/g1

from Eq. (11.41) and a numerical simulation is shown for parameters leading to a stable
traveling wave solution.

In addition, we tested the standing wave solutions. Here it happens that a mode
∝ exp(2ikc) occurs in the density pattern already very near to the threshold as can be seen
in Fig 11.5. However, taking the next order correction, i.e w = ε1/2w1 + εw2 into account
with w2 given as a function of the amplitudes of w1 from the derivation of the amplitude
equation, cf. Eq. (11.33), one again gets nearly perfect agreement with the numerics.

For both kinds of solutions, TW and SW, we encountered numerical stability problems,
i.e. the amplitudes did reach the predicted values, stayed there for a while and then got
unstable against high amplitude oscillations. Accounting for the third order excluded vol-
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ume always stabilized the amplitudes and led to perfect agreement. Probably the problems
result from numerical artifacts due to the use of an explicit integration scheme (we again
used a fourth order Runge-Kutta scheme for the time evolution and a Fourier-Galerkin
pseudo spectral code in space).

11.5 Weakly nonlinear analysis in two dimensions

11.5.1 Amplitude equations

For two spatial dimensions, I only sketch the derivation of the amplitude equations since it
is completely analogous to the one-dimensional case and just involves more book keeping.
The ansatz of waves traveling in opposite directions, Eq. (11.4), has to be generalized for
w1 = (ρ1, t1x, t1y)

T and reads

w1 =





E−

1
0



Xre
i(kcx−ωct) +





E+

1
0



Xle
i(kcx+ωct)

+





E−

0
1



Yre
i(kcy−ωct) +





E+

0
1



Yle
i(kcy+ωct) + c.c. , (11.47)

with c.c. the complex conjugate. So one has to allow for traveling waves in opposite
directions (right and left) in two arbitrary perpendicular directions, chosen here without
restriction as the x- and y-directions. This is reflected by Xr and Xl as the amplitudes of
waves in x-direction and Yr and Yl in y-direction, respectively.

The generic structure of the amplitude equations can be motivated by the following
reasoning. First of all, the one-dimensional case, namely Eqs. (11.8), should be contained
as a special case. One further expects that the waves in orthogonal directions are coupled.
If we look exemplarily at the equation for Xr, one has to find couplings to Yr, Yl that
are proportional to exp(i(kcx − ωct)). This is due to the amplitude equation being the
solvability condition of the perturbation hierarchy and thus containing only the resonantly
forcing contributions in order O(ε3/2). Thus the y-dependence of the exponentials of the
orthogonal waves have to cancel, which is only possible in the combinations

|Y 2
r |Xre

i(kcx−ωct) , |Y 2
l |Xre

i(kcx−ωct) , Yre
i(kcy−ωct)Y ∗

l e−i(kcy+ωct)Xle
i(kcx+ωct) . (11.48)

The last contribution is perhaps slightly unexpected, but also interesting, since it couples
Xr with all three other amplitudes.

We can now write down the generalization of the amplitude equations (11.8) to two
spatial dimensions
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τ0∂T Xr = ε(1 + ib)Xr −z1|Xr|2Xr −z2|Xl|2Xr −z3(|Yr|2+|Yl|2)Xr −z5YrY
∗
l Xl , (11.49a)

τ0∂T Xl = ε(1 + ib)Xl −z1|Xl |2Xl −z2|Xr|2Xl−z3(|Yr|2+|Yl|2)Xl −z5YlY
∗
r Xr , (11.49b)

τ0∂T Yr = ε(1 + ib)Yr −z1|Yr|2Yr −z2|Yl|2Yr −z3(|Xr|2+|Xl|2)Yr −z5XrX
∗
l Yl , (11.49c)

τ0∂T Yl = ε(1 + ib)Yl −z1|Yl |2Yl −z2|Yr|2Yl −z3(|Xr|2+|Xl|2)Yl −z5XlX
∗
r Yr , (11.49d)

where the asterisk again denotes the complex conjugate and zn = gn + icn holds with gn

and cn real for n = 1, 2, 3, 5, and also b is real. The linear terms and the first two nonlinear
contributions coupling waves with the same or the opposite direction on the same axis
have already been present in the one-dimensional Eqs. (11.8). The third nonlinear term
represents the coupling to waves in perpendicular direction, and due to symmetry the
coefficient for the left and right traveling waves is the same, namely z3. The last term
couples together all modes and will be important for the four-mode solutions, cf. below.
One should also note that the coefficients τ0, b, g1, c1, g2 and c2 are identical with the ones
already obtained in the one-dimensional problem. Various problems related to Eqs. (11.49)
have been addressed to in Refs. [140, 141, 142, 143].

11.5.2 Existence and stability of two-dimensional waves

In Ref. [141], the stationary oscillating solutions of Eqs. (11.49) have been identified. The
solution space is now quite diverse allowing for one- and two-dimensional wave solutions,
namely traveling waves (TW) and standing waves (SW) as already treated in section 11.1.3,
and also traveling squares (TSq), standing square waves (SSq) and alternating waves (AW).
The traveling square solution corresponds to two waves traveling in perpendicular direction.
The standing square and the alternating wave solutions are nonlinear superpositions of two
perpendicular standing waves, either being in phase (SSq) or having a π/2 phase shift. Thus
only these two latter solutions involve all four modes.

The stationary oscillating solutions of Eqs. (11.49) can be obtained by the same proce-
dure as in section 11.1.3. The form and the existence range of the TW and SW solutions
are not changed as compared to the one-dimensional case, however their stability is affected
by the possibility of orthogonal waves as will be discussed below. They read explicitly

Xr = A1e
iΩ1t, Xl = 0, Yr = 0, Yl = 0 (11.50)

with

A1 =

√

ε

g1

and Ω1 = τ−1
0 ε

(

b − c1

g1

)

(11.51)

for the TW solution and

Xr,l = A2e
i(Ω2t+φx

r,l
), Yr = 0, Yl = 0 (11.52)
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with

A2 =

√

ε

g1 + g2

and Ω2 = τ−1
0 ε

(

b − c1 + c2

g1 + g2

)

(11.53)

for the SW solution. Solutions with waves in the other possible directions are fully analo-
gous and thus not explicitly mentioned in the following.

Instead of two traveling waves with equal amplitude in opposite directions on the same
axis leading upon superposition to a standing wave, in two dimensions there is a new two-
mode solution possible where the two waves travel in two perpendicular directions. Such
a traveling square (TSq) solution is described by

Xr, Yr = A3e
i(Ω3t+φx,y

r ), Xl = 0, Yl = 0 (11.54)

with

A3 =

√

ε

g1 + g3
and Ω3 = τ−1

0 ε

(

b − c1 + c3

g1 + g3

)

. (11.55)

Moreover, two stable four-mode solutions can be obtained: a standing square (SSq)
solution and an alternating wave (AW) solution. Both are built up of two standing waves
in x- and y-direction which have equal amplitudes and which are superimposed in phase
in the case of the SSq and with a phase shift of π/2 in the case of the AW. The standing
square solution thus reads

Xr,l, Yr,l = A4e
i(Ω4t+φx,y

r,l
)) (11.56)

with

A4 =

√

ε

g1 + g2 + 2g3 + g5

and Ω4 = τ−1
0 ε

(

b − c1 + c2 + 2c3 + g5

g1 + g2 + 2g3 + g5

)

(11.57)

and the phase condition

φx
r − (φy

r − φy
l + φx

l ) = 2nπ (11.58)

for integer valued n. The alternating wave solution is given by

Xr,l, Yr,l = A5e
i(Ω5t+φx,y

r,l
) (11.59)

with

A5 =

√

ε

g1 + g2 + 2g3 − g5
and Ω5 = τ−1

0 ε

(

b − c1 + c2 + 2c3 − g5

g1 + g2 + 2g3 − g5

)

(11.60)

and the respective phase condition

φx
r − (φy

r − φy
l + φx

l ) = (2n + 1)π , (11.61)
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Figure 11.6: The borders of existence for the various solution branches of Eqs. (11.49).
Again the dark and light grey regions correspond to the demixing and nematic instabilities,
where the amplitude expansion does not apply. In between these regions the various two-
dimensional wave solutions exist on the right sides of their respective borders: TW (solid
line), AW (dashed line), TSq (dotted line), SW (dashed-two-dots) and SSq (dash-dotted
line). Parameters are β = 5 and c = 4.

again for integer valued n.
As before, one can read from the amplitudes Ai with i = 1, . . . , 5 the existence ranges.

Assuming ǫ > 0, one obtains the following conditions for the various solutions to bifurcate
supercritically:

TW : g1 > 0 , (11.62a)

SW : g1 + g2 > 0 , (11.62b)

TSq : g1 + g3 > 0 , (11.62c)

SSq : g1 + g2 + 2g3 + g5 > 0 , (11.62d)

AW : g1 + g2 + 2g3 − g5 > 0 . (11.62e)

The respective existence ranges are shown in the α-Dr-plane in Fig. 11.6. Since the coeffi-
cients g1 and g2 are the same as for the one-dimensional equations, the regions of existence
for the one-dimensional patterns TW and SW are not changed when considering a two-
dimensional system.

The conditions of stability can be obtained by a similar analysis as exemplified in
section 11.1.3. However, due to the nonlinear coupling in Eqs. (11.49) proportional to
z5, also the complex conjugates of the small deviations δx∗

r , δx∗
l , etc. come into play and
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Figure 11.7: Stability diagrams for β = 5 and c = 4. For these parameters there exist two
regions of stable TW solutions, a region of stable AW and a region where both patterns
are in coexistence. The other existing patterns, namely SW, TSq and SSq are unstable.
Again the dark and light grey regions correspond to the demixing and nematic instabilities.
In the region denoted with ∗, between the stable TW and AW solutions and the density
demixing instability, TW bifurcate supercritically but are unstable, while AW bifurcate
subcritically. In this parameter range one numerically finds subcritical AW solutions, cf.
Fig. 11.11.

one thus has to discuss an eight-dimensional square matrix to obtain the growth rates of
these perturbations. Due to the high symmetry of the latter matrix, one can extract the
eigenvalues by means of a computer algebra system (Maple) and one gets the following
stability conditions:

TW : g2 > g1 > 0 and g3 > g1 > 0 , (11.63a)

SW : |g2| < g1 and g1 + g2 − 2g3 ± g5 < 0 , (11.63b)

TSq : |g3| < g1 and g1 − g2 ± g5 < 0 , (11.63c)

SSq : g2 − g1 + g5 < 0 , g1 + g2 − g5 − 2g3 > 0

and − g1 + g2 + 3g5 ±
√

(g1 − g2 + g5)2 + 8c5(c1 − c2 − c5) , (11.63d)

AW : g2 − g1 − g5 < 0 , g1 + g2 + g5 − 2g3 > 0

and − g1 + g2 − 3g5 ±
√

(g1 − g2 − g5)2 − 8c5(c1 − c2 + c5) . (11.63e)

The coefficients zn = gn + icn with n = 1, . . . , 5 can be obtained from the underlying
model equations (8.4) as functions of the model parameters α, β, Dr and the higher order
excluded volume parameter c. The value of β has only minor influence on the borders, as
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X 2 Figure 11.8: The oscillatory finite wave-
length instability in two spatial dimensions
allows for stable alternating wave (AW) so-
lutions. The squared amplitude of one of
the four modes of an AW observed numer-
ically is shown as crosses and is compared
to the analytical value from the amplitude
expansion, Eq. (11.60), drawn as the solid
line. The parameters are α = 12, β = 5,
Dr = 0.8 and c = 2.

already discussed, cf. Fig. 11.3.
For the filament-motor model under consideration, we find that the solution space is

quite reduced: SW, TSq and SSq solutions are unstable for all sensible parameter values
and only TW and AW have finite regions of stability, as shown exemplarily in Fig. 11.7
for an intermediate value of the third order excluded volume term. Especially, the SW
solution which had a finite stability range in one dimension now is destabilized due to the
second condition in Eq. (11.63b), g1 +g2−2g3±g5 < 0, which describes fluctuations in the
direction perpendicular to the wave and can practically never be fulfilled in our system.

As in the one-dimensional case, the higher order excluded volume term favors traveling
waves: the dashed lines in Fig. 11.7 are shifted in the upper right direction and for high
values of c only TW are stable.

SW, TSq and SSq solutions can however be seen in numerical simulations of Eqs. (8.4)
as long-time transient structures if one puts them in as a starting solution. This is due
to the extremely slow dynamics of the pattern compared to the propagation of the waves
that build the pattern.

11.5.3 Numerical simulations

We again tested the amplitudes of numerically obtained solutions. First we simulated
the two-dimensional traveling wave solution. Since the amplitudes obtained by numerical
and analytical calculations have already been compared in the one-dimensional case, only
the stability in the two-dimensional system has to be checked. We obtained stable TW
solutions in the predicted regions, cf. Fig. 11.7, but I do not show simulation pictures,
since it is clear how TW look like.

For the alternating wave solution a comparison between the analytically predicted am-
plitude from Eq. (11.60) and the numerical simulation of the underlying model Eqs. (8.4)
is shown in Fig. 11.8. By comparison with Fig. 11.4 one can see that the expansion is not
as good in this case, presumably due to the complicated interactions of all four modes that
build the AW pattern.

To get a feeling for the dynamics of an AW, Fig. 11.9 shows a combined density and
orientation plot of one period of such a pattern. One can see that alternatingly one wave
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Figure 11.9: A period of a numerically obtained alternating wave (AW) is shown. The
filament density is color-coded (bright and dark colors corresponding to high and low
density respectively) and the orientation field is shown as the arrows. One can clearly see
that alternatingly waves in one of the two perpendicular directions dominate the pattern.
So the AW pattern comprises two orthogonal standing waves having a π/2 phase shift.
Parameters are as in Fig. 11.8.

structure of the two perpendicular directions is dominating, namely the one in x-direction
in pictures 1 and 5 and the one in y-direction in pictures 3 and 7. In between aster-like
patterns emerge, cf. pictures 2, 4 etc.. The filament density is coupled to the oscillating
filament orientation and a region of high density, indicated by the bright color in Fig. 11.9,
is moving on a square defined by the stationary points in the orientation field, cf. also
Fig. 11.10. One could also refer to this pattern as an oscillating or breathing aster.

In Fig. 11.10 I concentrated on the behavior of the orientation field. The arrows de-
scribing the latter are shown for one period of the pattern and one can clearly distinguish
positions in space behaving differently: there are stationary points (e.g. the one referred
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Figure 11.10: Behavior of the orientation
field (solid arrows) of a numerically ob-
tained AW solution. There are stationary
points (1), points with orientation oscillat-
ing parallel to one of the perpendicular axes
(2 and 3) and points with rotating orienta-
tion (4 and 5, direction of rotation indicated
by the dashed arrow). Parameters are as in
Fig. 11.8.
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Figure 11.11: In the region denoted with
∗ in Fig. 11.7, the oscillatory finite wave-
length instability also favors alternating
wave (AW) solutions, which bifurcate sub-
critically. The amplitude X of such a sub-
critical AW observed numerically is shown
as the dashed line. The parameters are
α = 18, β = 5, Dr = 0.6 and c = 4.

to as 1 in Fig. 11.10), points where the orientation oscillates parallel to one of the two
perpendicular axes (points 2 and 3) and points with rotating orientation (points 4 and 5).
Due to symmetry, the orientation has to rotate in opposite senses in points 4 and 5.

In the region in Fig. 11.7 denoted with ∗, where TW are bifurcating supercritically
but are unstable and AW bifurcate subcritically, one numerically finds subcritical AW, as
shown in Fig. 11.11.

Additionally, when starting the numerical simulations from a random initial solution,
at least transiently always AW are formed. Thus one can conclude that in general the
alternating wave seems to be the dominating pattern (at least for small or moderate values
of the third order excluded volume parameter). This is analogous to the stationary case
without polarity sorting, where the aster pattern dominates, c.f. the last chapter.
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11.6 Discussion and conclusions

In this chapter, we have analyzed the oscillatory orientational instability predicted in sec-
tion 9.4 in the weakly nonlinear regime in both one and two spatial dimensions. The
orientational instability discussed in the last chapter is rendered oscillatory by the polar-
ity sorting contributions, i.e. those terms in Eqs. (8.4) that are proportional to β. In
addition, the ±t symmetry is broken by these terms. However, apart from the critical
frequency ωc, which increases almost linearly with increasing β, cf. Fig. 9.8, there is not
much dependence, neither in the linear nor in the nonlinear regime, on the distinct value
of β in the range β ≃ α, which is expected to be relevant [40]. Thus one can conclude
that the presence of the polarity sorting contributions changes the quality of the orienta-
tional instability from stationary to oscillatory, but that the patterns and their stability
are governed by the other parameters, namely by the instability-inducing α-contribution
of the motor-mediated translations and by the rotational diffusion coefficient Dr, as well as
by the third order excluded volume contribution introduced and discussed in section 11.2,
proportional to an additional phenomenological parameter c.

The existence and the stability ranges of the wave patterns in one and two dimensions
have been calculated analytically by means of amplitude expansions and have been con-
firmed by numerical simulations. In one spatial dimension, as could be expected, there is
competition between traveling waves (TW) and standing waves (SW). The system more
likely shows subcritical bifurcations than for the stationary instability discussed in the last
chapter. The third order excluded volume contribution, which may be relevant in a two-
dimensional rod system, increases the regions of supercritical bifurcation and favors TW
against SW solutions.

In two spatial dimensions, although there is quite a huge solution space comprising one-
mode solutions (TW), two-mode solutions (SW and traveling squares (TSq)), as well as
four-mode soultions (standing squares (SSq) and alternating waves (AW)), the dominating
patterns are TW and AW. Only for small values of β, also stable SW have been found in
a small region of the parameter space. The third order excluded volume again favors TW,
but the stability range of the alternating waves is quite large, comprising the high values
of Dr, cf. Fig. 11.7. Thus as in the stationary case, where the stationary two-dimensional
pattern, i.e. the asters, dominated the dilute limit of high Dr, also in the oscillatory case
the two-dimensional alternating waves dominate in this region.

The experimental observation of waves in active filament-motor systems is not yet in
the focus compared to the stationary patterns. Spontaneous oscillations in muscle bundles,
i.e. quasi one-dimensional filament structures, have been observed [104, 144, 145]. The
fact that they prevail in the absence of regulatory proteins implies that they are inherent
to the filament-motor interaction. In reconstructed, quasi-two-dimensional filament-motor
solutions, experiments are not available yet. However in two-dimensional microtubule
networks connected with the cell membrane, a special kind of kinesin causes surface con-
traction waves in vivo, known to be relevant in cell development of amphibian eggs [146].
In addition, actin-myosin waves are known to be involved in cell spreading [147, 148]. In
these two systems, however, one expects that the attachment to the membrane or to the
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surface the cell spreads on, respectively, are extremely important, i.e. complicated bound-
ary effects are involved. Moreover, the active polymerization of actin is also involved in
cell spreading, this process being a delicate balance between actomyosin-related forces that
contract the cell into a compact shape and forces associated with directed polymerization
that extends the boundaries of the cell [102]. However, from theoretical investigations,
which prior to this work have been carried out only in one-dimensional models concerning
filament bundling [114, 41, 105], patterns involving the density of the filaments have been
identified as connected to contraction of the filament-motor system. This implies that
density waves are related to contraction waves, which surely are of relevance concerning
cell spreading and cell motility.

To conclude, albeit definite experiments on oscillations in filament-motor solutions are
lacking, it is important to study the vocabulary of such systems. The general tendencies
as implied by the calculations in this chapter, i.e. the emergence of alternating waves in
the dilute limit and the favoring of traveling waves in the less dilute regime where higher
order excluded volume effects become relevant, should be testable and may guide new
experiments.



Chapter 12

Density instability

In this chapter I briefly address the density demixing instability encountered already in
chapter 9. I call it a demixing instability, since it is not a pattern forming instability
with a finite critical wave number kc, as has been the case for the orientational patterns
investigated in the last chapters, but rather shares similarities with dynamics involved in
early stage spinodal decomposition. The unstable mode has the structure of a linearized
Cahn-Hilliard (CH) equation, cf. section 3.3, with a fastest growing mode kfg dominating
the initial stages of the instability, while for late stages simulations of Eqs. (8.4) in the
density demixing region display coarsening processes that are a common feature of phase
separation kinetics. However, though sharing these similarities, while phase separating
systems usually are governed by a free energy and the systems gets unstable against density
modulations in the spinodal region, cf. Fig. 3.2, the filament-motor system is rendered
inhomogeneous due to the nonequilibrium motor activity.

12.1 Linear properties

Looking at the linear operator L̄0 of the continuum model equations (8.4) as defined by
Eqs. (9.27), the density demixing instability is governed by the eigenvalue

σd = −
[

1 + D

2

(

1 +
2

π
ρ0

)

− αρ0

24

]

k2 −
[

19 αρ0

11520
+

5

384

ρ2
0β

2

Dr

]

k4 (12.1)

up to fourth order in the wavenumber k. One can see from Eq. (12.1) that σd describes a
conserved mode, since σd(k = 0) = 0. Second, while the fourth order contributions in k are
always stabilizing, the contribution proportional to k2 (the effective diffusion coefficient in
the framework of Cahn-Hilliard theory) changes sign for a critical filament density

ρd =
1

α
12(1+D)

− 2
π

, (12.2)

provided that this value is positive, i.e. if α > 24
π

(1 + D) holds (independent of β). Thus
the unstable mode σd has exactly the linear behavior of the CH equation, cf. Eq. (3.74),

159
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Figure 12.1: A late stage so-
lution of the density instability.
The density is shown as the solid
line and the orientation field as
the dotted line. To make the
symmetry visible, also the abso-
lute value of the orientation field
is shown as the dashed line. Pa-
rameters are α = 30, β = 5,
Dr = 0.8, ρ0 = 1.2, c = 4.

whereby the motor contributions proportional to α render the effective diffusion coefficient
negative. For ρ0 > ρd, there exists an unstable wavenumber range [0, kmax] with a fastest
growing mode kfg having maximum growth rate and dominating the initial dynamics of
the instability.

From Eq. (12.1) one can read the following tendencies1: the leading order term propor-
tional to β implies that kfg and kmax are decreasing with β but growing with Dr. Second,
increasing either the relative distance from threshold, ε = ρ0−ρd

ρd
, or the parameter α,

increases kfg and kmax, since the k2-term proportional to αρ0 dominates over the k4-term.
The eigenvector of σd reads in leading order in the wavenumber k

Ed =

(

1 + f(ρ0.α, Dr)k
2 + O(k4)

β ρ0

2Dr
ik

)

, (12.3)

showing that the respective mode is purely related to the filament density at k = 0, but
coupled to the orientation field via the polarity sorting contributions2 proportional to β
for any finite wavenumber k. Moreover, the relative phase between filament density and
filament orientation is ±π/2 depending on the sign of β. This allows to distinguish asters
with different orientations, cf. the discussion below.

12.2 Numerical simulations

First I investigated the density demixing instability in a one-dimensional system to achieve
a high enough accuracy for the long wavelength modes. To obtain pictures like the one
displayed in Fig. 12.1 we used a spectral code with 64 modes. The system indeed showed the

1These tendencies remain valid using the full dispersion instead of the approximation up to fourth order
in the wavenumber k. However, the general case can not be as easily discussed.

2In case of β = 0, this instability is not really interesting since density and orientation are completely
decoupled.
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Figure 12.2: Simulation of the temporal evolution of the density instabilities. A aster-
like pattern arises but coarsens to lower wavelengths and ultimately leads (for periodic
boundary conditions) to a two-domain solution with high orientation in between the high
and low density regions. Elapsed times from a) to d): t = 1000, 1500, 2000 and 3000 in
dimensionless units. Parameters are α = 30, β = 5, Dr = 0.8, ρ0 = 1.2, c = 4.

typical behavior known from phase ordering dynamics: after a short time where the fastest
growing mode (the one with wavenumber kfg) dominated, the amplitudes saturated and
the dynamics became extremely slow. Then the system successively destroyed periodicities
and in this way increased the wavelength of the pattern, corresponding to a coarsening of
the structure.

A late stage solution of the one-dimensional equations is shown in Fig. 12.1. One can
clearly see that both the ±t- and the ±ρ-symmetry are broken through the presence of
the β-contributions. The density has the typical form known from Cahn-Hilliard theory
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Figure 12.3: Simulation of the temporal evolution of the density instabilities. A aster-
like pattern arises but coarsens to lower wavelengths and ultimately leads (for periodic
boundary conditions) to a two-domain solution with high orientation in between the high
and low density regions. Elapsed times from a) to d): t = 7000, 7500, 8500 and 9000 in
dimensionless units. Parameters as in Fig. 12.2.

with broken up-down symmetry, i.e. with a quadratic contribution added to Eq. (3.73),
interpolating quite anharmonically between states of high and low densities.

The orientation field vanishes in the regions where the density is nearly homogeneous
and shows sharp extrema at the interfaces between the high and low density states. The
direction of the orientation with respect to the density is governed by the sign of β. In
Fig. 12.1, where β is positive, the orientation is pointing away from the high density regions,
as shown by the dotted line (negative values of tx imply that the orientation vector points
in negative x-direction). If β is negative, the opposite is true, i.e. the orientation is pointing
inwards to the high density region. This is clear from the symmetry (t, β) → (−t,−β) of
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Eqs. (8.4). Also the eigenvector, cf. Eq. (12.3), reflects this governing the relative phase
between filament density and filament orientation of the spatially periodic modes growing
in the initial stage.

The experimental experience suggests that the density in the center of an aster is high.
Assuming that the high density region defines the center of an aster, which is better justified
in the two-dimensional pictures, Figs. 12.2 and 12.3, the above behavior can be interpreted
in the following way: positive values of the polarity sorting parameter imply asters with
the filaments pointing outwards, while negative values imply inward-directed asters.

Figs. 12.2 and 12.3 show a two-dimensional simulation, where the number of modes
had to be restricted to 16 in order to reduce the required integration time. In the first
few steps one can see that the aster-like structures coarsen, involving also some more
stripe-like configurations. One can see that the orientation field again is nonvanishing only
where a high density gradient occurs. Second, the orientation is always parallel to this
gradient, which is due to the linearly unstable mode involving (apart from the density)
only the longitudinal orientation mode, while the transverse orientation mode is damped.
The simulations show that this remains valid also in the nonlinear regime.

Finally, in the upper right part of Fig. 12.2 there remains a cluster in the middle. The
two following pictures are sort of an artifact from the periodic boundary conditions, the
cluster forming a stripe upon interacting with its own back. To study such late stage con-
figurations in a proper way, and also the interesting question of the influence of boundary
preparation of the orientation field (similar as planar and homeotropic3 anchoring in a
usual liquid crystal), one has to simulate the equations in a finite system, which is beyond
the scope of this work [124].

I also performed some simulations near the codimension-2 point, i.e. in a situation as
shown in Fig. 9.3d), where both the density demixing and the (oscillatory) orientational
instability are present. At the beginning of these simulations, traveling waves superposed
on the large scale demixing pattern could be obtained, however for large times the density
instability did win and the pattern finally became non-oscillatory, i.e. just demixing.

12.3 Discussion

The density demixing instability might be a better candidate for the explanation of aster
formation than the finite wavelength instability analyzed in chapter 10 for the following
reasons: First it solves the problem concerning the direction of the filament orientation
for the lattice of asters formed through the stationary finite wavelength instability, cf.
section 10.4. The predicted pattern consisted of asters of both orientations , i.e. the
filaments pointed inwards or outwords from the aster center respectively, and the density
was low in the aster center. This could be traced back to the ±t-symmetry of the model
in the absence of the polarity sorting contributions. For the density demixing instability,

3Planar anchoring means that the director of a nematic liquid crystal is preferentially aligned along a
direction parallel to the boundary, while for homeotropic anchoring it is perpendicularly aligned.
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the discrimination of asters with the filaments pointing inwards and outwards respectively
depending on the sign of β solves this problem.

Second, the coarsening dynamics occurring in the late stages of the temporal evolution
could be related to the merging of asters observed in experiments: e.g. from Fig. 6.1 one
can see that the length scale of the final pattern is larger than those in the former pictures,
implying that small asters can coalesce to larger ones.

A problem is however the fact that (at least with the periodic boundary conditions
investigated so far) asters are only intermediate states, while for the late stages a single
cluster is predicted by the numerics. However, experimental systems are large compared
to the small simulation box in the present numerical investigations and thus the late stages
might be beyond the possible observation times in the experiments.



Chapter 13

Patterns in actomyosin

As described in the previous chapters, pattern formation in filament-motor systems can be
explained in terms of bifurcations. All the primary instabilities of the homogeneous and
isotropic initial state and the pattern competition in the weakly nonlinear regime have been
investigated. However, the model applies more likely to systems with processive motors,
as is the case e.g. in the mixture of MTs and kinesin/Ncd-oligomers in the experiments of
Refs. [31, 33]. In these experiments dissipative patterns have been found, i.e. the formation
of stable patterns needed the presence of the fuel ATP that keeps the motors walking on
the filaments.

In the recent experiments of Smith et al. [38], however, a solution of actin interacting
via myosin oligomers has been investigated and this filament-motor system behaves quite
differently in spite of the apparent similarities of the constituents, cf. chapter 2. What
these experiments yield is in brief as follows: after introduction of a large amount of ATP
into the actomyosin solution, the solution remains homogeneous and isotropic for a time
lag of about half an hour, while then quite suddenly aster- and cluster-like patterns arise1

as shown in Fig. 13.1. However, if the amount of ATP is measured by means of a second
reference sample, one finds that after the lag time ATP is already nearly consumed and
that only an amount of about 10% remains at the time when the patterns start to form.

Thus it seems that the high ATP state of actomyosin has no propensity for pattern
formation, while the low ATP state has, in contrast to the MT-motor system, which showed
patterns upon increasing the density of active motors. To confirm this interpretation, in
a second experiment a 50 : 50 mixture of ATP and caged-ATP (ATP that has been made
inactive by caging the actin binding sites) has been introduced to the actomyosin. As in the
first experiment, patterns appeared after a time lag. Then the system was flashed by UV
light which destroys the cages and releases an amount of ATP as high as in the beginning
of the experiment. Within a few minutes, the patterns were dissolved completely and one

1Aster formation in actin-myosin systems has been first reported in Ref. [129] for cultured fibroblasts
that have been treated with the drug cytochalasin. This drug weakens the actin network without depoly-
merizing filaments, so that the actin can be effectively transported by myosin clusters. Asters formed
both by contraction of existing stress fibers and by recruiting loose actin from the lamella. However, these
experiments being in vivo, it is difficult to relate them directly to the model under consideration.
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Figure 13.1: Patterns in an actin-myosin
system with varying myosin density from
a) to f). The variety of patterns ranges
from bundle-like structures in a) to aster-
like structures in c)-e) to so-called super-
precipitates in f). In spite of the simi-
larities to MT-motor patterns, the pat-
terns in actomyosin are frozen-in struc-
tures since they form after ATP is nearly
completely depleted. We propose that the
patterns are also formed through an insta-
bility, where the stability border is crossed
upon the formation of small filament clus-
ters due to the rigor coupling of ADP-
myosin to the filaments. Such a clustering
is supported by the micrographs, where
one can see that not single filaments are
found in the structures, but that also the
aster-like patterns are formed by bundles,
cf. e.g. part d). The picture will be pub-
lished in [38].

gets again the initial state of a homogeneous and isotropic solution, which after a time lag
again starts to form patterns.

Our interpretation is as follows, cf. also part 1) and 4) of Fig. 13.2: In the presence
of ATP, due to the low processivity of the myosin oligomers, the motors act as stochastic
kicking forces on the filaments leading to disordered motion similar as in a simple fluid, but
not to a coordinated sliding motion as required for pattern formation. This state I will call
”dynamical disorder”. When the ATP concentration decreases during its consumption by
active motors, patterns are formed that have to be frozen-in structures, since they can not
be interpreted as dissipative patterns anymore: first the external driving, the fuel ATP, is
nearly completely consumed and second, if the driving is enhanced, as by the release of the
caged-ATP in the second experiment, the patterns dissolve. This state of frozen patterns
may be denoted as ”frozen-in order”.

In section 13.1 of this chapter we propose a mechanism that could lead from the dy-
namical disordered state to the frozen-in ordered state upon ATP depletion, namely a
clustering process due to the rigid coupling of myosin to the actin filament in the absence
of ATP. By a simple scaling argument we show that small clusters of filaments formed by
such rigidly coupling myosins can be transported more efficiently than single filaments and
that one of the instability borders of the model discussed so far in part II of this work
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Figure 13.2: A cartoon of the mechanism we propose for the frozen-in patterns in acto-
myosin. We claim that the situation where the experiment starts is a dynamically disor-
dered state as depicted in box 1). Here the transiently attached active motors do not lead
to efficient filament sliding. Upon ATP depletion, some motor complexes become inactive
and stick to the actin filaments as indicated in box 2). If such ADP-carrying motors are
attached to two filaments, they form small filament clusters like those sketched in box 3).
If the relative filament transport becomes more effective, cf. the discussion in section 13.1,
the system becomes unstable and forms patterns until ultimately all the ATP is consumed
and the system freezes, cf. box 4). If caged-ATP is released, one reaches again the starting
point. Thus the control of ATP can be considered as a switch between the dynamical
disordered state and the frozen-in ordered state.
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could be crossed through a change of cluster density and of cluster-related motor activity
with time. If the clusters become too large and ATP totally depleted, the system freezes
and also the patterns initiated by the instability are frozen in.

In section 13.2, we propose a second mechanism that is important in the context of
the experiments of Smith et al. [38]: after applying a more sophisticated purification
process than in the first experiments, myosin and actin alone seem not to be sufficient to
generate patterns. Only by the addition of crosslinking proteins, patterns do occur again.
This is however not in contradiction to our proposed mechanism, but can be traced back
to the fact that additional small clusters are caused by the non-moving crosslinkers from
the very beginning of the experiments which are inhomogeneously distributed. We argue
that these randomly distributed clusters can be interpreted as a disorder in the filament-
motor system. In the framework of pattern formation, it is known that disorder lowers the
threshold [149, 150] or renders the bifurcation imperfect [151]. Thus it could be the case
that the above-mentioned clustering process due to ATP depletion is not sufficient to cross
the stability border in a pure actomyosin solution, while in the presence of crosslinkers,
where the threshold is reduced, patterns can be formed. This is also exemplified for the
simplest case of the one-dimensional stationary instability in section 13.2.

13.1 ATP depletion and filament clustering

In fluorescence microscope pictures of the initial state, cf. Ref. [38], the system is quite
homogeneous and isotropic, implying that one is in a situation near the basic state of
homogeneous filament density ρ = ρ0 and isotropic filament orientation t = 0, which has
been the starting point of our analyses in the last chapters. Second, in the experiments
the actin filament density is very low, so one is most probably in a situation where the
demixing instability occurs well before the orientational instability. This is the case whether
one considers the system with or without polarity sorting (β = 0 or β 6= 0) and in both
situations also the threshold for the density demixing instability is the same, ρd = ρβ

d , cf.
the discussion in chapter 9.

At the beginning of the experiments, the system is homogeneous and isotropic, cor-
responding to parameters that belong to the linearly stable range in Fig. 13.3. In this
regime, the motors interact with the filaments, since ATP is continuously consumed, but
there is not efficient filament transport. Rather the motors act as stochastic kicking forces
on the filaments keeping the filament solution homogeneous and isotropic, cf. box 1) in
Fig. 13.2. Such a state is the consequence of the lower processivity of the myosin oligomers
compared to the microtubule-associated motors in the experiments of Refs. [31, 33]. Due
to the small processivity, the motors are attached only transiently and are not able to
effectively reorient filament pairs. We should mention that while a single myosin II has
a very low processivity of about r = 0.01-0.02, cf. section 2.2.2, the myosin oligomers or
minifilaments used in the experiments of Smith et al. [38, 36] are built of about 13 myosin
II heads and thus may reach a processivity of about r = 0.1, which is still much smaller
than r ≃ 2 × 0.5 for the two-headed kinesin.
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Figure 13.3: Schematic instability diagram,
cf. Fig. 9.5. Since the filament density
is extremely low in the experiments, one is
most probably in the region where the den-
sity demixing instability appears first. Both
the density ρcl and the motor coefficient αcl

have to be regarded as related to clusters of a
few filaments rather than to single filaments.
Then with ATP depletion (i.e. with elapsing
time from t0 to t1) the density decreases while
the motor transport coefficient increases and
thus the system may cross the instability bor-
der given by the solid line.

In the model investigated so far, which seems especially to be applicable to MT-motor
systems, the ATP supply has been assumed either to be held constant or to be abundantly
supplied externally, since the motor coefficients and therefore the density of active motors
have been considered as constants. In the actomyosin experiments of Smith et al. however,
in the course of time the motors consume ATP which leads to transitions from active to
nearly permanently inactive motors upon depletion of ATP. As has been mentioned in the
discussion of the motor cycles in section 2.2.3, a myosin head carrying ADP sticks to the
filament until it gets a new ATP. Thus upon ATP depletion, the actin filaments become
coated with inactive motor heads while however some other heads of the same oligomer still
may carry ATP. If the latter attach to other filaments they also hydrolyze their ATP and
stick. In this way the inactive motors tend to crosslink the actin filaments to form small
filament clusters or bundles as sketched in the boxes 2) and 3) of Fig. 13.2 and as confirmed
experimentally in Fig. 13.4. At the beginning of the experiment, this crosslinking effect
should be only temporary while later on it should be quite permanent since the free ATP
is depleted.

I propose here a simple scaling argument, why this clustering may render the system
unstable, i.e. crossing the instability border. As discussed above, in the initial stage the
local and temporary crosslinking by inactive motors should enhance the actin filament
concentration locally and induce bundling, similar to the so-called zipping effect proposed
in Ref. [153] near the point of gelation of actomyosin. Thus instead of the density of single
filaments, ρ, as before we introduce the density ρcl of clusters containing N filaments, where
N is assumed to be increasing with time due to the ATP depletion induced clustering.
The overall number of filaments, i.e. the total amount of single filaments and filaments
contained in clusters, is however a conserved quantity and thus the cluster density will
decrease with time upon the clustering.

Let’s have a look which consequences the clustering process has for the dynamics. First
of all, diffusion scales with mass, and therefore decreases like Dcl ∝ 1/N . For the active
motor transport however there is evidence that it has not to decrease at the beginning:
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Figure 13.4: Confirmation of the actin
bundling by inactive myosins: the myosin
has been treated with NEM that forces it
to the rigid coupling state [152]. One can
clearly see at least two distinct bundles.
No permanent crosslinkers are present.
The scale bar is 15µm, actin concentra-
tion is 2.4µM, and there are approxi-
mately 50 myosin oligomers per actin fil-
ament. The picture will be published in
[38].

First, in spite of myosin forming rigor bonds during depletion, a moderate increase of the
rigor bonds does not impede filament motion since ADP-HMM-actin bonds are strongly
weakened by tangential forces of the order of 10pN [154]. Second, it is known that the
motor force of both kinesin and myosin exceeds the force needed for transport. E.g. a
kinesin motor can move a small MT fragment as fast and efficiently as a MT of up to
50µm length [5]. Therefore as proposed for the zipping effect in Ref. [153], clusters of a
few filaments can still be transported.

Moreover, if one looks closer at the motor transport rate α, there is evidence that the
transport may even be more efficient in the case of clusters. This is due to the fact that
α contains also the probability that a motor attaches to a filament pair, i.e. the cross
section. It has been estimated [40, 120] that (in three dimensions and in the nomenclature
of section 2)

α ≃ β ≃ Lγ = (mrs/τtotal) × (Lb2) , (13.1)

where m is the (assumed homogeneously distributed) motor density, r the duty ratio, s
the step size of the motor and τtotal the time it needs for one motor cycle. L and b are the
length and the diameter of the filaments respectively. For the first part reflecting the motor
properties, it has been already argued above that it should not decrease in the beginning
of the crosslinking - of course at a certain degree of depletion the dependence on m will
finally lead to the freezing. The latter part however, governed by the filament properties,
can be interpreted as the cross section of two intersecting filaments. The probability of a
motor to attach to two filaments is larger if the filaments are thicker or longer. Thus the
crosslinking leads to an enhancement of the cross section, i.e. it is more probable for a
motor to hit a filament cluster than to hit a single filament. Together with the decreased
diffusion this leads to an increase of the cluster-related motor activity αcl.
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We conclude that the system should show the following tendency: The cluster density
ρcl decreases due to the conservation of mass and the diffusion coefficient Dcl also decreases.
However, at moderate depletion where there are still enough active motors to overcome
the bonds of the inactive ones, the cluster-related active motor transport αcl increases
since it is more probable to find and then transport another cluster as compared to single
filaments. In a linear instability diagram in the ρcl-αcl-plane2, cf. the ones in the ρ-α-plane
discussed in chapter 9, e.g. Fig. 9.5, this behavior translates into the tendency depicted
by the arrow in Fig. 13.3. Thus the clustering process due to ATP depletion may drive
the system into the unstable, i.e. pattern forming, range of the instability diagram. If the
depletion process proceeds, ultimately the factor m in Eq. (13.1), i.e. the density of the
active motors, goes down and leads to a freezing of the pattern.

One should notice that the process discussed above could be considered as a switching,
as suggested in Fig. 13.2: if the structure is frozen-in and ATP afresh is introduced into
the system, e.g. as in the experiments with the ATP/caged-ATP mixture, one gets very
quickly the dynamical disordered state again. This switching between dynamical disorder
and frozen-in order may be of use for the cell, especially since such a process is not possible
in the microtubule-motor system.

13.2 Permanent crosslinkers introduce disorder

Describing a complex fluid like the cytoskeleton by a mean field approach - as all theoretic
efforts do so far apart from the MD simulations in Refs. [31, 33] - neglects the inherent
presence of disorder in biological cells. Especially, besides the dynamic filament interaction
via the motor proteins, actin filaments may also be linked quasi-permanently by various
crosslinker proteins, e.g. streptavidin, α-actinin, filamin, fimbrin and others [2]. Such
crosslinkers are used by the cell in rather high concentrations to form gels and networks,
e.g. the cell cortex underneath the membrane. In vitro, these actin-linking proteins lead
in high concentrations to gels and networks of semiflexible polymers which are in the focus
of a number of mechanical investigations [155, 4].

Prior to the in vitro experiments, both the motors and the filaments are extracted
from cells and undergo several purification procedures. However, it is very likely that a
small amount of such linking proteins still remains in the solution. Such small fractions
of crosslinking proteins may cause small clusters of actin filaments. Since the oligomeric
motor proteins can still bind to such clusters, filaments may still undergo motor transport
relative to these clusters. Therefore the cross-linked clusters represent a realization of a
disorder in the cytoskeleton problem.

It is known in the framework of pattern formation, that the influence of disorder may
change a bifurcation from a spatially homogeneous state to a spatially periodic state con-
siderably, as has been studied and established for models of pattern formation in hydrody-

2In the case of the demixing instability, since ρβ
d is independent of both β and Dr, only α and ρ

determine the instability. However the dispersion, i.e. the growth rates of the unstable wavenumbers, is
changed also through varying β and Dr, which however is a higher order effect.
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namic [149, 156, 151, 150] and chemical systems [157, 158]. Especially, the onset of pattern
formation is reduced by the disorder, a mechanism which could explain the different be-
havior of the actomyosin in the presence and absence of crosslinking proteins.

Our modeling efforts so far were based on the assumption that filaments are only
temporarily and dynamically linked by motor proteins. The coarse-grained description
by Eqs. (8.4) led to ideal patterns like stripes or asters in the stationary case discussed in
chapter 10, traveling waves in the oscillatory case, cf. chapter 11, and to demixing patterns
as shortly addressed to in chapter 12. If there additionally is a small but finite amount of
crosslinkers in the solution, which is too small for the system to percolate and build up a
gel or a network structure like in the cortex, this should be captured in the modeling by
some noise contributions. As already mentioned above, the small amount of crosslinkers
may cause randomly distributed small clusters of several filaments. The motors still walk
on such clusters and transport the single filaments from the solution. Since the clusters
contain several filaments and diffusion scales with mass, these clusters diffuse much slower
than single filaments, if at all, and thus can be regarded in a first approach as a time
independent, frozen random contribution that effects both the mean filament density ρ0

and the motor transport parameters. The contribution to the density is clear since at the
place of a cluster the density is higher. Additionally there is a much higher probability that
an oligomeric motor protein hits a cluster than a single filament. Thus single filaments
may be transported with a higher efficiency with respect to clusters than with respect to
single filaments, similar as during the clustering process due to ADP-myosin in the last
section. Therefore the effective motor transport parameter α (and also β and γ) adapts
different values close to such a cluster than close to a single filament.

To conclude, a small amount of crosslinkers leads to randomly distributed clusters which
cause a frozen random contribution either to the mean density or to the motor parameters
(or to both in the general case). To catch the qualitative features, I will discuss here
only one of these possible contributions. As discussed in section 9.5.1, the instability
borders are of hyperbola type in the ρ-α-plane, thus both contributions should lead at
least qualitatively to the same effect. Moreover we can also decide to regard the motor
transport parameter α as being the control parameter instead of the filament density ρ0. We
will choose here the latter interpretation just for technical reasons: it is more convenient
to regard a parametric noise term α(x), which enters the equations as a multiplicative
parameter, instead of a noise in ρ which would appear in Eqs. (8.4) in the arguments of
spatial derivatives.

If we assume a small magnitude of the random contribution, the major effects of the
disorder should be taken into account close to the bifurcation point in the framework of the
respective amplitude equations. For simplicity, I discuss here only the case of a stationary
supercritical bifurcation to a pattern that is spatially periodic in one direction3, i.e. the
stripe solution.

3The same arguments hold also for the two-dimensional aster case as well as for the oscillatory case. The
demixing instability however can not be treated this way, since there is not a simple amplitude equation due
to the inherent coarsening. It should be investigated by a Cahn-Hilliard-like model with similar disorder
contributions.
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Performing the same analysis as discussed extensively in section 10.1.2, but with a
motor parameter that has small spatially randomly distributed contributions

α = α0 + α1(x)ε1/2 + α2(x)ε + . . . , (13.2)

where α0 corresponds to the homogeneous contribution discussed so far in this work, one
gets the hierarchy of equations, cf. Eqs.(10.22),

ε1/2 : L0w1 = 0 , (13.3a)

ε : L0w2 = −Lα
1w1 −Nρ(t1)eρ , (13.3b)

ε3/2 : L0w3 = ∂Tw1 −L2w1 − Lα
2w1 −Nx(ρ2, t1) . (13.3c)

Here the additional linear operators Lα
1 and Lα

2 contain the contributions of L0 proportional
to α with the latter parameter replaced by α1, α2 respectively.

In the order O(ε), the term Lα
1w1 is the only resonantly forcing one implying that

α1 = 0 must hold. In the next order O(ε3/2) however, the respective term Lα
2w1 yields

a contribution ∝ α2(x)X with X the pattern amplitude. Thus the respective amplitude
equation reads

τ0∂tX = (ε + ξ(x) + λ2∂2
x)X − g1|X|2X , (13.4)

with the random contribution ξ(x) ∝ α2(x). As compared to Eqs. (10.13) in their one-
dimensional limit, we have additionally allowed for slow spatial variations of the amplitude
with the coherence length λ, cf. e.g. [42], which can also be derived straightforwardly from
the underlying model.

In principle, the disorder may cause different contributions: it can enter additively or
multiplicatively. Additionally, a frozen randomness destroys the translational invariance
and therefore allows for quadratic contributions in the amplitude. In the simplified case
investigated here, the parametric noise term ξ(x) enters into Eq. (13.4) multiplicatively.

The effect of the multiplicative noise in this amplitude equation has been studied re-
cently [150, 159]. Assuming for the noise a vanishing mean value 〈ξ(x)〉 = 0 and correlation

〈ξ(x)ξ(x′)〉 = Bδ(x − x′) , (13.5)

one gets two main effects due to the noise. First, while in the absence of noise the solutions
A(x) are ideal patterns, i.e. spatially periodic functions, in the presence of noise, and
depending on the noise amplitude, A(x) becomes localized. This effect however is most
strongly pronounced at the threshold and becomes weaker for larger values of the control
parameter. Second, and more important for the actomyosin system under investigation, a
reduction of the threshold has been found. While in the case without noise the threshold
is simply εc = 0, the ensemble average of the threshold in the presence of noise decreases
like 〈εc〉 ∝ −B, as has been shown in Ref. [150].

We can conclude that the occurrence of disorder in the filament-motor system caused
by small amounts of permanent crosslinkers leads to a threshold reduction. Thus we expect
pattern formation in cytoskeletal solutions to be more likely in the presence of crosslinkers
than in a pure filament-motor solution, as reflected in the experiments in Ref. [38].
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13.3 Discussion

In this chapter we gave arguments how the model investigated so far should be interpreted
and generalized to account for the recent experiments with actomyosin in Ref. [38]. First,
we highlighted the importance of temporary clustering due to the ATP depletion. In the
continuum model, this could be caught by interpreting both density and orientation field as
related to such clusters, which are still growing in size. Thus the system should behave as
indicated by the arrow in Fig. 13.3, i.e. it may cross the instability border after some time
of depletion and clustering. Ultimately however, the system and the emerging patterns
will freeze. Further on we mentioned that the mechanism of ATP depletion could be used
as a switch between a dynamical disordered state and a frozen-in ordered state in the
actin-myosin system, which may be used by the cell. This mechanism is not possible in the
microtubule-kinesin system, since kinesin binds to the microtubule only in the presence of
ATP, i.e. upon depletion there is no more contact between the motors and the filaments
and the solution gets isotropic and homogeneous again.

In the second part of this chapter we discussed pattern formation in a cytoskeletal so-
lution consisting of filaments, motor proteins and crosslinkers, e.g. streptavidin as in the
experiments of Ref. [38]. Such an addition of crosslinkers introduces in the dilute case, due
to the formation of small filament clusters, an inherent parametric disorder into the pattern
formation problem. If this disorder is weak, its effects can be taken into account close to
the threshold by the amplitude equations, or in case of the demixing instability this should
be done by a reduced equation of Cahn-Hilliard form. For the stationary orientational
instability, we have exemplified that the disorder enters multiplicatively in the amplitude
equation and that it reduces the onset of pattern formation considerably. The multiplica-
tive noise in Eq. (13.4) is however only the simplest to achieve. Also additive noise can
be included if both ρ and t have disorder contributions. We expect that additional ran-
dom effects amplify the trend further and make pattern formation possible at even smaller
values of the control parameter. One could even imagine nonlinear multiplicative contri-
butions like ξ2(x)A2 and ξ3(x)|A|2, since the frozen randomness destroys the translational
invariance and therefore allows for quadratic contributions in the amplitude.

The recent experiments in actin-myosin systems with small fractions of streptavidin
crosslinkers [38] support the importance of the disorder-induced threshold lowering effect.
The inherent presence of disorder in biological systems should provide many other examples
rendering the general problem of the effects of disorder on pattern forming systems, which
has not been in the focus up to now, an interesting field of investigation.
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Summary/Zusammenfassung

14.1 Summary

In this work I have studied pattern formation in nonequilibrium biopolymer systems mo-
tivated from cell biology. The biopolymers actin and microtubules are met both in vivo
and in vitro either in a state with rather fixed lengths (regulated by proteins) or in a state
where they are continuously polymerized and depolymerized. In the latter case, which
is extensively used by the cell e.g. during cell locomotion, the system is in nonequilib-
rium since the polymerization is actively coupled to ATP or GTP hydrolysis. A second
interesting nonequilibrium state of highly biological relevance is caused by so-called motor
proteins. These are mobile crosslinkers that walk on the filaments whereby creating forces
and reorienting or transporting them if in contact with several biofilaments.

The cell displays manifold highly ordered structures related to filaments like aster pat-
terns in the mitotic spindle [8, 108], bundles in actin stress fibers [160], two-dimensional
networks in the actin cortex underneath the cell membrane [161], three-dimensional actin
gels [162], and also oscillating structures are known from skeletal muscle bundles [144, 145]
and during cell development of amphibian eggs [146]. It is an interesting question to what
extent these structures inside the cell are governed by biochemistry, i.e. regulation, and to
what extent the physics of active polymers contributes to its formation.

A living cell is a nonequilibrium system since the ATP hydrolysis reaction is kept far
on the side of ATP by means of metabolic reactions, and is highly regulated by complex
interaction of many proteins. However, recent experiments [30] are indicating that the
regulation pathways of the cell are not necessary for the above mentioned processes. Thus
the above mechanisms have been recently studied in reconstituted systems, like purified
actin and microtubule solutions for the polymerization effects [17, 15, 107] and microtubules
mixed with oligomeric kinesins [31, 33] as well as actin with myosin or myosin-minifilaments
[104, 38] for the motor-related transport effects. The conditions, i.e. temperature, ionic
strength etc., are kept similar as in a cell and the chemical fuel, namely ATP or GTP, can
be varied. In contrast to a living cell, such model systems can be controlled externally and
thus open the way for qualitative and in the future hopefully quantitative data, making
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also theoretical work necessary to which I want to contribute in this work.
In the first part of my work, I addressed the active polymerization state of both actin

filaments and microtubules and we proposed a pattern forming mechanism in a filament
solution at high density that is subject to such a polymerization. Since actin and mi-
crotubules are rather stiff rod-like objects, at high filament concentration a transition to
lyotropic nematic order occurs [19, 20, 21]. As known from both Onsager and Landau
theory, this transition is first order and thus accompanied by a phase separation process.
Thus a solution of high filament density in the absence of polymerization kinetics will
ultimately tend to decompose into an isotropic domain with low density and a second
domain of high density with nematic order, i.e. the filaments preferentially aligned in one
direction. The complex polymerization processes present in the biopolymers actin and
microtubules should interplay with this transition. To highlight this we chose the most
simple process, namely we assumed that filaments are generated and decaying with some
specific rates, implying that the filaments have a finite lifetime. Accordingly the filaments
can only diffuse a finite length during their lifetime, which competes with the tendency of
the system to phase separate. Both processes in sum give a finite wavelength instability
towards a pattern with alternating isotropic and nematic regions, as predicted by us in a
phenomenological model.

The phenomenological model that is developed and motivated by us is interesting for
several reasons. It is the first model that allows for a feasible linear stability analysis of the
homogeneous nematic branch with respect to inhomogeneous perturbations and has been
used by us to investigate the pattern forming instability in the presence of polymerization
kinetics. Second it corrects the contradiction between microscopic theories predicting that
the isotropic state is linearly unstable against phase separation for densities larger than
the density of the isotropic-nematic transition, while Onsager theory predicts phase sep-
aration only within the coexistence region, i.e. only up to an upper density border. In
our model the nonlinearities favor a homogeneous nematic phase for large enough filament
density, in agreement with the Onsager model, stressing that a linear analysis on its own
can give a misleading picture. Third, though the model is phenomenological and based
on the most simple ingredients like a Landau-deGennes-type contribution to model the
isotropic-nematic transition and Cahn-Hilliard-like contributions to implement the phase
separation, various parameters can be fixed by comparison with the Onsager model or with
experimental data.

The phenomenological model has been extended by a simplified polymerization/de-
polymerization kinetics and we could show that the pattern forming process results in a
pattern of alternating isotropic and nematic regions. This process is very robust against
parameter variations and the wavelength of the pattern can be estimated by the diffusion
coefficient and the lifetime of the filaments to be of the order of 10µm, implying a few
filament lengths. The periodic solutions also prevail in a quite large density range to be
observable.

In the second part of my work, the nonequilibrium interaction of motor proteins with
the filaments has been addressed. Various structures like asters, vortices and bundles have
been reported in microtubule-kinesin mixtures in Refs. [31, 33]. There it has also been
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argued that these patterns could be dissipative structures driven by ATP hydrolysis. This
chemical fuel is consumed by the motors which transport and reorient the filaments while
moving on several filaments simultaneously.

As the starting point of our modeling we chose a mesoscopic approach based on propo-
sitions for one-dimensional filament bundles in Refs. [114, 41] and applied to two- and
three-dimensional filament-motor solutions in Ref. [40]. I extensively review the statistical
basis of the model and how the Smoluchowski equation can be coarse-grained to obtain
equations for physical observables like the filament density and the filament orientation
field. The main ingredient that distinguishes the filament-motor model from a usual solu-
tion of rigid rods, as described e.g. by the Doi model, are active motor-mediated currents
which are assumed to be caused by a sufficiently high and homogeneously distributed mo-
tor density. These active contributions can be determined by considering two-filament
interaction mediated by molecular motors, which involve some phenomenological motor
transport rates containing details of the motors like active motor density, step size, duty
ratio, etc.

The coarse-grained model can be cast into a rescaled form, with very few and distinctive
parameters: first the overall filament density, which upon filament-filament interaction is
involved in any ordering process. Second the rescaled rotational diffusion coefficient, which
favors an isotropic solution (translational diffusion favoring a homogeneous solution is also
present in the model but the parameter can be rescaled) and third two parameters involved
in translational and one in rotational motor-induced transport.

In order to make an investigation of the coarse-grained equations with respect to its
propensity for pattern formation possible, it turned out that the gradient expansion of
the motor-mediated filament-filament interaction had to be continued up to fourth order,
which has been not recognized in Ref. [40] leaving that analysis questionable [46]. After a
thorough linear analysis we obtained a rich instability diagram with an orientational finite
wavelength instability which is either stationary or oscillatory and a demixing instability
similar in behavior to spinodal decomposition but also mediated actively by the motors.
In addition, a homogeneous nematic transition may take place, which is not of relevance in
the pattern forming experiments since the filament densities are by orders of magnitudes
lower than the density for the isotropic-nematic transition. The relevant motor parameter
rendering the system unstable could be identified as the one in front of the active motor-
mediated translational current that describes in the one-dimensional model the interaction
of parallel filaments. However, increasing the filament density equally leads to the crossing
of instability borders, a result which is robust and also found in different models [119].

With regard to the aster-like patterns seen in experiments in a quasi-two-dimensional
geometry, we first analyzed the stationary finite wavelength instability in detail, namely
by a weakly nonlinear perturbation analysis and by numerical simulation of the coarse-
grained model equations. In a two-dimensional system, at threshold either stripes, squares
or hexagonal patterns are preferred. In the model under consideration, hexagons could
be ruled out and we could calculate the existence and stability regions of stripes and
squares as functions of the relevant system parameters. Translating the critical eigenvector
back to the density and the orientation field of the filaments, the obtained stripe and
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square patterns can be identified with a bundle-like structure and with a regular lattice of
asters respectively. The tendency that upon increase of motor activity a transition from
asters to bundles takes place could be found in the model, however we did not obtain any
vortex patterns as found in the experiments. The wavelength of the aster patterns and the
phenomenological motor transport rates needed to obtain them can be estimated and lie
in the range suggested by the experiments.

We also studied the oscillatory finite wavelength instability both in one and two dimen-
sions, although concrete and detailed experiments are lacking. There is however evidence
for an oscillatory behavior in filament-motor systems both in one-dimensional structures
like in a muscle bundle [144, 145] as well as in two-dimensional networks connected with
the membrane as the surface contraction waves known to be relevant in cell development of
amphibian eggs [146]. The parameter that renders the finite wavelength instability oscil-
latory could be identified as the one in front of the so-called polarity sorting contribution,
which in the one-dimensional model describes interaction of oppositely oriented filaments.
Both the phase between the spatial periodicity of the density and the orientation of the
filaments and the critical frequency of the oscillatory pattern increase with the polarity
sorting, the relative phase approaching π for large values of it. In the weakly nonlinear
regime, there is competition between traveling and standing waves in one dimension and
between traveling and alternating waves in two dimensions. Alternating waves are four
mode solutions built from two standing waves in perpendicular directions with a phase
shift of π/2. The oscillatory bifurcation is subcritical in a larger fraction of the parameter
space as compared to the stationary bifurcation. We also investigated the influence of
a third order excluded volume term, which enlarges the supercritical region and in both
one and two dimensions favored traveling waves against two or four mode solutions re-
spectively. The nonlinear pattern competition is only slightly affected by variations of the
polarity sorting parameter.

The long-wavelength demixing instability has also been investigated. It is not a true
pattern forming instability with a definite critical wavenumber but rather has a fastest
growing mode governing the initial dynamics followed by a slow coarsening behavior similar
to spinodal decomposition and phase ordering dynamics [88]. However, it is also a good
candidate for the aster patterns seen in the experiments of Refs. [31, 33]. The presence of
the polarity sorting parameter breaks the ±-symmetry with respect to the orientation and
introduces a relative phase shift between density and orientation of ±π/2, depending on
the sign of the polarity sorting parameter. This allows to discriminate aster-like structures
with the filaments pointing outwards from those with the filaments pointing inwards. This
has not been the case for the asters formed trough the finite wavelength instability discussed
above, but is suggested from the experiments where plus end-directed motors favored asters
pointing inwards and minus end-directed motors those pointing outwards.

Recently performed experiments on mixtures of actin filaments and myosin minifila-
ments show a rather surprising pattern formation behavior [38]. Although this is a similar
system as the microtubule-kinesin mixture, its behavior is very different: In contrast to the
microtubule-motor solution which displays dissipative patterns in the nonequilibrium, high-
ATP state, in the case of actomyosin cluster-like patterns appear not until ATP is nearly
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fully depleted. We propose here two qualitative mechanisms which we believe are relevant
in causing these patterns. First, it is known that myosin in its inactive, ADP-carrying
state forms rigor bonds with actin and thus may induce small clusters or bundles of actin.
Due to a combination of reduced diffusivity and enhanced interaction cross-section, these
clusters can be transported more efficiently than single filaments and the system may cross
one of the instabilities as investigated above in the filament-motor model. If ATP becomes
more depleted, i.e. as more and more myosins are forming rigid bonds, the dependence
of the motor transport on the active motor density ultimately leads to a freezing of the
pattern.

A second important ingredient in actomyosin patterns is the presence of crosslinking
proteins, namely streptavidin, in the experiments in Ref. [38]. Such proteins permanently
(on the time scale of the experiments) link filaments in contrast to the motor proteins
which can be considered as mobile, temporary crosslinkers. The experiments show that
pattern formation is more likely and that patterns become more pronounced with increas-
ing crosslinker to actin filament ratio. Here we propose that as discussed before for the
actomyosin system, an instability could be crossed due to temporary clustering through
inactive motors. However, the permanent crosslinkers also lead to a formation of clusters
from the very beginning and the presence of the latter can be interpreted as a parametric
disorder in the problem. It is known from other pattern forming systems [149, 151] that
such a disorder lowers the threshold. Indeed, assuming a random contribution to the ac-
tive translational current in the filament-motor model, a Ginzburg-Landau equation with
multiplicative stationary noise term could be derived, for which the threshold lowering has
been established recently [150].

To conclude, inspired by the recent experimental investigations of the cytoskeleton
it seems to be fruitful to apply and combine methods from statistical physics such as
probability distribution functions and coarse-grained or macroscopic equations, as well
as methods inspired from pattern formation in e.g. hydrodynamic systems like stability
analysis and amplitude equations, to nonequilibrium problems in cell biology. One has
to keep in mind that such highly complicated processes like e.g. the formation of the
mitotic spindle are of course bioregulated and presumably cannot be explained within a
mathematical model that relies solely on physical arguments. Nevertheless it is crucial to
better understand the constituents like actively polymerizing filament and motor proteins
in their different nonequilibrium states to which this work is devoted.
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14.2 Zusammenfassung

In dieser Arbeit wurde die Musterbildung von Polymersystemen im Nichtgleichgewicht,
wie sie in der molekularen Zellbiologie auftreten, untersucht. Die Biopolymere Aktin und
Mikrotubuli können sowohl in vivo als auch in vitro entweder in einem Zustand fester Länge,
die durch zusätzliche Proteine reguliert wird, oder in einem Zustand der kontinuierlichen
Polymerisation und Depolymerisation vorliegen. Im letzteren Zustand, der essentiell z.B.
für die Zellbewegung ist, liegt ein Nichtgleichgewichtszustand vor, da die Polymerisation
an die Hydrolyse des Zelltreibstoffs ATP oder GTP gekoppelt ist. Ein zweiter interessanter
Nichtgleichgewichtszustand von großer biologischer Bedeutung wird durch sogenannte Mo-
torproteine verursacht. Das sind Proteine, die auf den Biopolymeren entlanglaufen, wobei
sie auf diese Kräfte ausüben und diese reorientieren und transportieren können, sofern sie
in Kontakt mit mehreren solcher Biofilamente sind.

Die Zelle weist mannigfaltige hochgeordnete Strukturen auf, die mit den Biofilamenten
zusammenhängen, wie z.B. sogenannte Astern in der mitotischen Zellspindel [8, 108],
Bündelstrukturen in Aktin-Streßfasern [160], zweidimensionale Netzwerke im Aktinkor-
tex unterhalb der Zellmembran [161] und dreidimensionale Aktin-Gele [162]. Auch oszil-
lierende Strukturen wurden gefunden, so z.B. in Muskelbündeln [144, 145] und im Laufe der
Zellentwicklung von Amphibieneiern [146]. Es stellt sich die interessante Frage, inwiefern
diese Strukturen in der Zelle von der Biochemie, etwa durch Regulierung durch zusätzliche
Proteine, und inwiefern von der Physik der aktiven Biopolymere bestimmt werden.

Eine lebende Zelle ist ein Nichtgleichgewichtssystem, da die ATP-Hydrolyse durch
den Zellstoffwechsel stark auf der Seite des hochenergetischen ATPs gehalten wird. Zur
Aufrechterhaltung dieses Zustands sind im Allgemeinen komplexe Regulierungsprozesse
nötig. Kürzlich haben jedoch Experimente aufgezeigt [30], daß diese Regulierung - zumin-
dest für die oben beschriebenen Prozesse - nicht unbedingt notwendig ist. Deshalb wurden
diese Prozesse anhand von einfacheren Modellsystemen experimentell untersucht, so z.B. in
zellextrahierten und gereinigten Lösungen von Aktinfilamenten und Mikrotubuli im Falle
der Polymerisationseffekte [17, 15, 107] und in Mischungen aus Mikrotubuli und oligomeren
Kinesin-Motoren [31, 33] sowie in solchen von Aktin und Myosin-Motoren [104, 38] im Falle
des von den Motoren verursachten Transports. Die äußeren Bedingungen, d.h. Tempe-
ratur, Ionenkonzentrationen etc. werden dabei ähnlich denen der Zelle gehalten und der
chemische Treibstoff, ATP oder GTP, kann variiert werden. Im Gegensatz zu einer leben-
den Zelle können solche Modellexperimente extern kontrolliert werden und eröffnen daher
Wege zu zunächst qualitativen und hoffentlich bald quantitativen Untersuchungen, die
wiederum theoretische Modellarbeit erfordern, zu der ich hier mit beitragen möchte.

Der erste Teil meiner Arbeit befasst sich mit dem Zustand der aktiven Polymerisa-
tion, wie er sowohl in Aktinfilamenten als auch in Mikrotubuli vorkommt. Für eine
hochkonzentrierte Biopolymerlösung, die solch eine Polymerisation durchläuft, schlagen
wir einen neuen Mechanismus der Musterbildung vor. Da Aktinfilamente und Mikrotubuli
recht steife, stäbchenförmige Objekte sind, kommt es für hohe Konzentrationen zur Ausbil-
dung einer lyotropen nematischen Phase [19, 20, 21]. Wie von der Onsager- und auch der
Landau-Theorie bekannt, ist dieser Phasenübergang von erster Ordnung und daher von
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einem Prozess der Phasentrennung begleitet. Eine hochkonzentrierte Biopolymerlösung
wird daher - in Abwesenheit der Polymerisationskinetik - schließlich separieren in eine
isotrope Domäne mit niedriger Filamentdichte und in eine nematisch orientierungsgeord-
nete Domäne mit hoher Dichte. Der komplexe Polymerisationsprozess der Biopolymere
sollte mit dieser Phasenseparation im Wechselspiel stehen. Um dies zu untersuchen, haben
wir den einfachstmöglichen Polymerisationsprozess betrachtet und angenommen, daß die
Filamente mit jeweils einer festen Rate generiert werden und wieder zerfallen. Dies führt
insbesondere dazu, daß die Filamente eine endliche Lebensdauer erhalten. Folglich können
die Filamente innerhalb ihrer Lebensdauer auch nur eine endliche Strecke durch Diffusion
zurücklegen. Diese Beschränkung steht im Wettbewerb mit dem Bestreben des Systems
zur Phasentrennung. Anhand eines phänomenologischen Modells sagen wir voraus, daß
dieses Wechselspiel eine Instabilität mit endlicher Wellenlänge ergibt, aus der sich ein al-
ternierendes Muster von isotropen und nematischen Bereichen ausbildet.

Das phänomenologische Modell, das von uns entwickelt wurde, um den neuen Muster-
bildungsprozess zu beschreiben, ist auch aus anderen Gründen interessant. Es ist das erste
Modell, an dem eine lineare Analyse des homogenen nematischen Astes gegenüber inho-
mogenen Störungen machbar ist, was von uns ausgenutzt wurde, um die Musterbildung
analytisch zu untersuchen. Zum Zweiten löst es den Widerspruch zwischen mikroskopi-
schen Theorien, die vorhersagen, daß der isotrope Zustand für alle Dichten, die größer
als die Dichte des isotrop-nematischen Überganges sind, linear instabil gegenüber einer
Phasenseparation ist, wohingegen die Onsager-Theorie, d.h. die Thermodynamik, eine
solche Phasentrennung nur im endlichen Dichteintervall des Koexistenzbereiches zulässt:
in unserem phänomenologischen Modell bevorzugen die Nichtlinearitäten für große Dichten
den homogenen nematischen Zustand, wie von der Thermodynamik gefordert und es zeigt
sich damit, daß eine lineare Analyse für sich genommen ein irreführendes Bild liefern kann.
Zum Dritten können, obwohl das Modell phänomenologisch und auf den einfachstmöglichen
Argumenten wie einem Landau-deGennes-Anteil, der den isotrop-nematischen Übergang
implementiert, und Cahn-Hilliard-Anteilen, die die Phasenseparation modellieren, aufge-
baut ist, mehrere Parameter durch Vergleich mit der Onsager-Theorie oder auch experi-
mentellen Daten festgelegt werden, was die Anzahl der freien Parameter einschränkt.

Das phänomenologische Modell wurde von uns um eine vereinfachte Polymerisations-
kinetik erweitert und wir konnten zeigen, daß der Musterbildungsprozess in einem al-
ternierenden Muster von isotropen und nematischen Bereichen resultiert. Es wurde gezeigt,
daß dieser Prozess robust gegenüber Parametervariationen ist, und die Wellenlänge konnte
über den Diffusionskoeffizienten und die Lebensdauer der Filamente abgeschätzt werden
und liegt in der Größenordung 10µm, also im Bereich weniger Filamentlängen. Zudem
existiert das Muster in einem recht großen Bereich der Filamentdichte und sollte also
beobachtbar sein.

Der zweite Teil meiner Arbeit ist der von den Motorproteinen verursachten Wechsel-
wirkung der Biofilamente gewidmet. In Experimenten an Mischungen von Mikrotubuli und
Kinesinmotoren wurden zahlreiche Strukturen wie Astern, Vortizes und Bündelstrukturen
beobachtet [31, 33]. Dort wurde auch erstmals argumentiert, daß diese Muster dissipa-
tive Strukturen sein könnten, die von der ATP-Hydrolyse aufrechterhalten werden. Dieser



182 CHAPTER 14. SUMMARY/ZUSAMMENFASSUNG

chemische Treibstoff ATP wird von den Motoren verbraucht, um die gerichtete Bewegung
längs der Filamente auszuführen bzw. um die Filamente zu transportieren und zu reorien-
tieren, wenn ein Motoroligomer mit mehreren Filamenten in Kontakt ist.

Als Ausgangspunkt unserer Modellierung wurde ein mesoskopischer Zugang gewählt,
der für eindimensionale Filamentbündel vorgeschlagen [114, 41] und auf Mischungen von
Motoren und Filamenten in mehreren Dimensionen verallgemeinert wurde [40]. Ich be-
spreche ausführlich die statistische Grundlage des Modells und wie die Smoluchowski-
Gleichung vergröbert werden kann, um Kontinuumsgleichungen für physikalische Observa-
blen wie die Filamentdichte und die Filamentorientierung zu erhalten. Der Hauptunter-
schied des Motor-Filament-Modells im Vergleich zu einer passiven Flüssigkeit von starren
Stäbchen, wie sie z.B. von der Doi-Gleichung beschrieben wird, sind aktive Ströme, die
von den Motoren verursacht werden, deren Konzentration als ausreichend hoch und na-
hezu homogen angenommen wird. Diese aktiven Beiträge der Gleichung können bestimmt
werden, indem die Wechselwirkung eines Filamentpaares betrachtet wird, und sie enthalten
phänomenologische Transportraten, die die Details der Motoren, wie z.B. die Motorkonzen-
tration, die Schrittweite, die Verweildauer auf dem Filament, etc. enthalten.

Die Kontinuumsgleichungen können in eine reskalierte Form gebracht werden, in der
nur sehr wenige freie Parameter übrig bleiben: zunächst natürlich die Dichte der Fila-
mente, die über die Filamentwechselwirkung an jedem Ordnungsprozess beteiligt ist. Zum
Zweiten der Koeffizient der Rotationsdiffusion, die eine isotrope Lösung bevorzugt (der
Parameter der Translationsdiffusion, die ein homogenes System bevorzugt, kann reskaliert
werden) und schließlich drei Motortransportraten, zwei für die Translations- und eine für
die Rotationsanteile des aktiven Transports.

Um das Kontinuumsmodell im Hinblick auf die Musterbildung analysieren zu können,
hat sich herausgestellt, daß die Gradientenentwicklung der von den Motoren verursachten
Filament-Filament-Wechselwirkungen bis zur vierten Ordnung durchgeführt werden muß.
Dies wurde in der Originalarbeit von Liverpool et al. [40] nicht realisiert und läßt die dortige
Analyse fragwürdig erscheinen [46]. Durch eine gründliche lineare Stabilitätsanalyse erhiel-
ten wir ein reichhaltiges Instabilitätsdiagramm, das eine Orientierungsinstabilität, die eine
endliche Wellenlänge hat und entweder stationär oder oszillatorisch sein kann und eine Ent-
mischungsinstabilität, die in ihrem Verhalten ähnlich der spinodalen Phasenseparation ist,
jedoch von den Motoren aktiv verursacht wird, aufweist. Zusätzlich kann auch ein homo-
gener isotrop-nematischer Phasenübergang stattfinden, der jedoch hier nicht von Relevanz
ist, da die Dichten der Filamente in den Strukturbildungsexperimenten sehr viel geringer
als die Übergangsdichte sind. Der Parameter der Motorraten, der die Instabilitäten verur-
sacht, konnte mit demjenigen Parameter identifiziert werden, der im Translationsbeitrag
in der eindimensionalen Version des Modells die Wechselwirkung parallel orientierter Fila-
mente beschreibt. Eine Erhöhung in der Filamentdichte führt ebenfalls zum Überqueren
der Stabilitätsgrenzen, ein Resultat das robust ist und auch in anderen Modellen gefunden
wurde [119].

In Hinblick auf die Astermuster, die in den Experimenten in quasi-zweidimensionalen
Geometrien gesehen wurden [31, 33], haben wir zuerst die stationäre Instabilität mit endli-
cher Wellenlänge genauer analysiert, und zwar sowohl analytisch mit einer schwach nicht-
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linearen Störungsrechnung als auch numerisch durch Simulation des Kontinuumsmodells.
In einem zweidimensionalen System werden nahe der Schwelle zur Musterbildung entweder
Streifen-, Quadrat- oder Hexagonmuster bevorzugt. In dem hier betrachteten Modell
können jedoch hexagonale Strukturen ausgeschlossen werden und wir konnten die Existenz-
und Stabilitätsbereiche der Streifen- und Quadratlösungen als Funktion der relevanten
Systemparameter berechnen. Übersetzt man den Eigenvektor der kritischen Mode zurück
in Dichte und Orientierung der Filamente, so können die erhaltenen Streifenmuster mit
Bündelstrukturen und das Quadratmuster mit einer regelmäßigen Anordnung von Astern
identifiziert werden. Die Tendenz, daß eine Erhöhung der Motordichte zu einem Übergang
der Astern zu Bündeln führt, wird im Modell korrekt wiedergegeben. Es konnten je-
doch keine Vortizes, wie in den Experimenten gesehen, gefunden werden. Die Wellenlänge
des Astermusters und die Größenordnung der phänomenologischen Motortransportraten
können abgeschätzt werden und liegen in der experimentell realisierten Größenordnung.

Die oszillatorische Instabilität mit endlicher Wellenlänge wurde ebenso untersucht,
sowohl in einer als auch in zwei Dimensionen. Es gibt zwar noch keine konkreten Experi-
mente, wohl aber Hinweise auf oszillatorisches Verhalten in Motor-Filament-Systemen wie
in Muskelbündeln [144, 145] und in zweidimensionalen Netzwerken in Verbindung mit der
Zellmembran [146]. Der Modellparameter, der die Instabilität mit endlicher Wellenlänge
oszillatorisch werden läßt, konnte identifiziert werden als derjenige im Translationsbeitrag
der Motoren, der in der eindimensionalen Version des Modells die Wechselwirkung anti-
parallel orientierter Filamente beschreibt. Diese Wechselwirkung bewirkt auch das soge-
nannte ”Sortieren nach Polaritäten”. Sowohl die relative Phase zwischen der Filament-
dichte und der Filamentorientierung als auch die kritische Frequenz des oszillatorischen
Musters wachsen mit diesem Parameter an, wobei die Phase für große Werte des Pa-
rameters gegen π geht. Im schwach nichtlinearen Regime wurde in einer Dimension der
Wettbewerb zwischen laufenden und stehenden und in zwei Dimensionen derjenige von
laufenden mit sogenannten alternierenden Wellen beschrieben. Alternierende Wellen sind
dabei Vier-Moden-Lösungen, die aus zwei stehenden Wellen in zueinander orthogonalen
Richtungen bestehen, die eine zeitliche Phasenverschiebung von π/2 haben. Die oszilla-
torische Verzweigung ist in einem größeren Parameterbereich subkritisch, d.h. unstetig,
als die stationäre Verzweigung. Der superkritische, d.h. stetige Bereich der Verzweigung
konnte vergrößert werden durch einen Volumenausschlußterm in dritter Ordnung in der
Filamentdichte - alle übrigen Terme des Modells sind höchstens von zweiter Ordnung, da
diese auf der Wechselwirkung von zwei Filamenten gründen. Dieser Zusatzterm favorisiert
sowohl in einer als auch in zwei Dimensionen die laufenden Wellen gegenüber den stehen-
den bzw. alternierenden. Der nichtlineare Wettbewerb der Muster wurde dagegen von
dem Parameter, der die Polaritäten sortiert, nur sehr wenig beinflußt.

Die langwellige Entmischungsinstabilität wurde ebenfalls untersucht. Dabei handelt es
sich nicht um eine Musterbildungsinstabilität im engeren Sinne, die eine definierte kritische
Wellenzahl aufweist und im Langzeitverhalten ein stationäres oder oszillatorisches Muster
ergibt, sondern um eine Instabilität, bei der die Mode mit der schnellsten Wachstumsrate
das Anfangsverhalten bestimmt und die für große Zeiten ein Vergröberungsverhalten hin zu
immer langwelligeren Mustern aufweist, wie man es von der spindodalen Entmischung her
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kennt [88]. Dennoch kommt auch diese Instabilität für die Ausbildung der experimentell ge-
fundenen Astermuster [31, 33] in Betracht. Die Anwesenheit des Parameters, der die Wech-
selwirkung der antiparallelen Filamente beschreibt, bricht die ±-Symmetrie bezüglich der
Filamentorientierung und bewirkt eine relative Phase von ±π/2 zwischen Filamentdichte
und Filamentorientierung, abhängig von dem Vorzeichen dieses Parameters. Dadurch wer-
den verschiedene Asterstrukturen unterscheidbar, in denen die Filamente entweder nach
außen oder ins Asterzentrum gerichtet sind. Dies war für die stationäre Instabilität mit
endlicher Wellenlänge nicht der Fall, wird aber von den Experimenten nahegelegt, in de-
nen Motoren, die zum Plusende des polaren Filaments wandern, Astern mit nach innen
gerichteten Filamenten erzeugen und Motoren, die zum Minusende wandern, Astern mit
nach außen gerichteten Filamenten.

Kürzlich wurde in Experimenten, die an Mischungen von Aktinfilamenten und Myosin-
Oligomeren durchgeführt wurden, ein überraschendes neues Musterbildungsverhalten ge-
funden [38]. Obwohl das untersuchte System dem Mikrotubuli-Kinesin-System sehr ähnlich
sieht, ist sein Verhalten völlig anders: Im Gegensatz zu der Mischung von Mikrotubuli mit
Kinesin, die dissipative Strukturen im Nichtgleichgewichtszustand hoher ATP-Konzentra-
tion zeigt, bildet das Aktin-Myosin-System erst Muster aus, wenn der Treibstoff ATP fast
gänzlich verbraucht ist. Wir haben hierzu zwei qualitative Mechanismen vorgeschlagen,
von denen wir glauben, daß sie diese Muster erklären können. Zum Einen ist bekannt,
daß der Myosinmotor in seinem inaktiven Zustand, in dem er an Stelle des Treibstoffs
ATP das Hydrolyseprodukt ADP mit sich führt, fest an das Aktinfilament bindet. Daher
können solche inaktiven Motoren durch Verarmungseffekte des zunehmend verbrauchten
ATPs kleine Aktinbündel ausbilden. Durch eine Kombination von verringerter Diffusivität
und einer erhöhten Transportwahrscheinlichkeit, können diese Bündel effizienter trans-
portiert werden und das System im Zuge der ATP-Verarmung eine der oben diskutierten
und analysierten Instabilitätsgrenzen überschreiten. Schließlich wird jedoch der Transport
durch die stark verminderte Anzahl von aktiven Motoren einbrechen, und das System und
die sich durch die Instabilitäten ausbildenden Muster ”frieren” ein.

Ein zweiter wichtiger Faktor für die Ausbildung der Muster in den Aktin-Myosin-
Systemen ist die Anwesenheit von Vernetzungsproteinen, im Falle der oben erwähnten
Experimente Streptavidin [38]. Solche Proteine vernetzten die Aktinfilamente permanent
(auf der Zeitskala der Experimente), im Gegensatz zu den Motorproteinen, die zwar, wenn
sie in Kontakt mit zwei Filamenten sind, diese auch vernetzen, aber auf ihnen entlang-
wandern und sich mit einer gewissen Wahrscheinlichkeit wieder von ihnen lösen. Die
Experimente zeigen, daß die Anwesenheit der permanenten Vernetzer die Musterbildung
wahrscheinlicher macht. Wie oben vorgeschlagen, kann durch das temporäre Bündeln der
Filamente durch die inaktiven Motoren eine der diskutierten Instabilitätsgrenzen überquert
werden. Zusätzlich führen die permanenten Vernetzer ebenfalls zu einer Bündelung, und
die Anwesenheit solcher Bündel von Beginn des Experiments an kann als eine inhärente
Unordnung in dem System interpretiert werden. Von anderen Strukturbildungssystemen
ist bekannt, daß solche Unordnungsbeiträge die Schwelle der Musterbildung absenken
[149, 151]. Tatsächlich konnte durch Annahme einer Zufallskomponente im aktiven Trans-
lationsbeitrag der Motoren ähnlich wie bei den obigen Untersuchungen der Instabilitäten,
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durch eine schwach nichtlineare Analyse eine Amplitudengleichung mit multiplikativem sta-
tionären Rauschen abgeleitet werden, für die kürzlich eine solche Absenkung der Schwelle
berechnet wurde [150].

Im Hinblick auf die wachsende Zahl der Experimente an zellbiologischen Systemen, ins-
besondere dem Zellskelett und seinen Bestandteilen, kann man abschließend sagen, daß
es sehr vielversprechend erscheint, Konzepte aus der statistischen Physik, der makro-
skopischen Beschreibung und der Strukturbildung auf diese Nichtgleichgewichtssysteme
anzuwenden und diese zu kombinieren. Ich möchte nicht den Eindruck erwecken, als könne
man ein solch komplexes Gebilde wie z.B. die mitotische Spindel, die durch eine kom-
plizierte Biochemie reguliert wird, durch ein mathematisches Modell beschreiben, das nur
auf physikalischen Prinzipien beruht. Dennoch ist es für das Verständnis dieser biologisch
relevanten Strukturen unerlässlich, die beteiligten zellulären Bestandteile, in diesem Falle
die aktiv polymerisierenden Biopolymere und die Motorproteine, in ihren unterschiedlichen
Nichtgleichgewichtszuständen und ihre physikalischen Selbstorganisationsprozesse besser
zu verstehen, wodurch ich hoffe durch diese Arbeit beigetragen zu haben.
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Appendix A

Isotropic averages

The Doi Equation for rigid rods explicitely contains the orientation vector u of the rods,
which is a unit vector, |u| = 1. To derive equations for the mean density or the mean
orientation of the rods by the moment expansion technique as carried out in sections 4.1,
8.2.2 and 8.2.3, the following definitions and formulas are useful.

A.1 Isotropic averages in three dimensions

The three-dimensional isotropic distribution function is Ψ(u) = 1
4π

and the isotropic aver-
age can be defined by

〈A(u)〉 =

∫

du

4π
A(u) =

∫ 2π

0

dϕ

2π

∫ π

0

dθ

2
sin(θ)A(θ, ϕ) . (A.1)

with θ and ϕ two angles parameterizing the vector u on the unit sphere. Averages of odd
powers of components of u vanish due to the ±u-symmetry, while

〈uαuβ〉 =
1

3
δαβ (A.2)

and

〈uαuβuµuν〉 =
1

15
(δαβδµν + δαµδβν + δανδβµ) (A.3)

hold. For the rotational contributions to the Doi equation, with the rotational operator as
defined in Eq. (3.23),

R = u× ∂u , (A.4)

one can use the integration by parts rule

〈A(u)R [B(u)]〉 = −〈R [A(u)] B(u)〉 (A.5)

and

R2uαuβ = −6

(

uαuβ − 1

3
δαβ

)

. (A.6)
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A.2 Isotropic averages in two dimensions

The two-dimensional isotropic distribution function is Ψ(u) = 1
2π

and the isotropic average
is defined as

〈A(u)〉 =

∫

du

2π
A(u) =

∫ 2π

0

dθ

2π
A(θ) , (A.7)

with θ the angle parameterizing the vector u on the unit circle.
As in the three dimensional case all mean values depending on odd powers of u vanish

due to the ±u-symmetry. The same is true for the mean values of any product of |u× u′|
and odd powers of u or u′, since |u × u′| =

√

1 − (u · u′)2 contains only even powers of
u,u′. For the even powers one gets

〈uαuβ〉 =
1

2
δαβ , (A.8)

〈uαuβuµuν〉 =
1

8
(δαβδµν + δαµδβν + δανδβµ) (A.9)

and

〈uαuβuµuνuσuτ 〉 =
1

48
{δαβδµνδστ + perm.} , (A.10)

perm. meaning that all permutations of {α, β, µ, ν, σ, τ} generating different index combi-
nations of the Kronecker delta products are present. Furthermore one needs

〈|u× u′|〉′ =

∫

dθ′

2π
| sin (θ − θ′) | =

2

π
= 〈|u× u′|〉 , (A.11)

where the brackets with ′ denote averaging over u′, and

〈|u× u′|u′
αu′

β〉′ = − 2

3π
(uαuβ − 2δαβ) . (A.12)

The operator of rotational diffusion can be expressed in two dimensions as

[R]i = [u× ∂u]i = δi3 (u1∂u2
− u2∂u1

) (A.13)

and one gets

R2uαuβ = −4

(

uαuβ − 1

2
δαβ

)

. (A.14)

Again an integration by parts formula can be established,

〈A(u)R [B(u)]〉 = −〈R [A(u)] B(u)〉. (A.15)
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