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Abstract
In this paper, we give a geometric construction of the three strong non-lifted (3 mod 5)-arcs
in PG(3, 5) of respective sizes 128, 143, and 168, and construct an infinite family of non-
lifted, strong (t mod q)-arcs in PG(r , q) with t = (q + 1)/2 for all r ≥ 3 and all odd prime
powers q .

Keywords (t mod q)-Arcs · Linear codes · Quadrics · Caps · Quasidivisible arcs · Sets of
type (m, n)

Mathematics Subject Classification 51E22 · 51E21 · 94B05

1 Introduction

An [n, k, d]q -code is a q-ary linear code with length n, dimension k, andminimumHamming
distance d . Given the field size q , a main problem in coding theory is to optimize the three
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remaining parameters. The minimal length of a linear code over Fq for fixed dimension k
and minimum distance d is bounded below by

∑k−1
i=0 � d

qi
�. Codes attaining this bound are

called Griesmer codes, see [3].
It is well known that classes of isomorphic [n, k, d]q -codes are in one-to-one correspon-

dence with classes of projectively equivalent multisets of points, called (n, n − d)-arcs in
PG(k − 1, q), see for instance [2]. An arc is called a Griesmer arc if the corresponding code
is a Griesmer code.

The strong (t mod q)-arcs were introduced and investigated in [5, 7, 9, 10] in connec-
tion with the extendability problem for Griesmer arcs. This problem is related in turn to
the problem of the existence and extendability of arcs associated with Griesmer codes. In
[5] the classification of the strong (3 mod 5)-arcs was used to rule out the existence of
the hypothetical Griesmer [104, 4, 82]5-code, one of the four undecided cases for codes of
dimension 4 over F5. It turns out that apart from the many strong (3 mod 5)-arcs obtained
from the canonical lifting construction, there exist three non-lifted strong (3 mod 5)-arcs of
respective sizes 128, 143, and 168. This is a counterexample to the conjectured impossibility
of strong (3 mod 5)-arcs in geometries over F5 in dimensions larger than 2 from Landjev
and Rousseva [8] and Rousseva [13]. The three arcs are found by a computer search, but
display regularities which suggest a nice geometric structure.

In this paper, we give a geometric, computer-free construction of the three non-lifted
strong (3 mod 5)-arcs in PG(3, 5). Two of them are related to the non-degenerate quadrics of
PG(3, 5). Their construction can be generalized further to larger fields and larger dimensions.

2 Preliminaries

Let P denote the set of points and H be the set of hyperplanes of PG(r , q). We have |P| =
|H| = (qr+1 − 1)/(q − 1). Every mapping K : P → N from P to the non-negative integers
is called a multiset (of points) in PG(r , q). We extend such a mapping additively to subsets
Q of P , i.e., K(Q) = ∑

P∈Q K(P). If S is an s-dimensional subspace, using the algebraic
dimension, we speak of an s-space, i.e., 1-spaces are points, 2-spaces are lines, and r -spaces
in PG(r , q) are hyperplanes. We also write K(S) associating an s-space S with the set of its
points. The integer K(P) is also called the multiplicity of a point P ∈ P and n := K(P)

the cardinality of K. For each integer i , an i-point is a point P with multiplicity K(P) = i ;
similarly, an i-line is a line � with multiplicity K(�) = i , and an i-hyperplane H is a
hyperplane with multiplicity K(H) = i . The support of K is given by supp(K) = {P ∈
P : K(P) > 0}. By ai we denote the number of hyperplanes H ∈ H withK(H) = i and call
the sequence (ai )i∈N the spectrum of K, whereas we denote by λi the number of i-points of
K.

A multiset K with cardinality n and satisfying K(H) ≤ s for all hyperplanes H ∈ H
is called an (n,≥ s)-arc or an (n, s)-arc if additionally there exists a hyperplane H with
K(H) = s. Similarly, a multiset K with cardinality n and K(H) ≥ s for all H ∈ H is called
an (n,≥ s)-blocking set with respect to hyperplanes.

An (n, s)-arc K in PG(r , q) is called t-extendable if there exists an (n + t, s)-arc K′ in
PG(r , q)withK′(P) ≥ K(P), for all P ∈ P . The arcK is said extendable, if it is t-extendable
for some t ≥ 1.

An arc K in PG(r , q) is called a (t mod q)-arc, if K(�) ≡ t (mod q), for every line �.
By double-counting it is immediate to see that also K(S) ≡ t (mod q) is satisfied for every
subspace S of larger dimension. Since increasing the point multiplicities of arbitrary points
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by multiples of q preserves the property of being a (t mod q)-arc, we can assume that the
point multiplicities are integers contained in the interval [0, q − 1]. If the maximum point
multiplicity of K is at most t , i.e., K(P) ≤ t for all P ∈ P , then K is said to be a strong (t
mod q)-arc.

The interest in (t mod q)-arcs arises in the context of Griesmer codes. Indeed, it is quite
common in coding theory that hypothetical Griesmer codes are associated with certain arcs,
that are called t-quasidivisible. Moreover, the extendability of these t-quasidivisible arcs is
related to the structure of particular strong (t mod q)-arcs associated with them, see [7,
10] for more details. Here, we focus on (t mod q)-arcs. There exist several straightforward
constructions of (t mod q)-arcs [7, 9, 10]. The first is the so-called sum-of-arcs construction.

Theorem 1 LetK andK′ be a (t1 mod q)- and a (t2 mod q)-arc in PG(r , q), respectively.
Then K + K′ : P ∈ P 
→ K(P) + K′(P) ∈ N is a (t mod q)-arc with t ≡ t1 + t2
(mod q). Similarly, αK : P ∈ P 
→ αK(P) ∈ N, where α ∈ {0, . . . , . . . , p − 1} and p is
the characteristic of Fq , is a (t mod q)-arc with t ≡ αt1 (mod q).

For the special case of t = 0, and q = p we have that the sum of two (0 mod p)-arcs
and the scalar multiple of a (0 mod p)-arc are again (0 mod p)-arcs. Hence the set of all
(0 mod p)-arcs is a vector space over Fp , cf. [9]. The second construction is the so-called
lifting construction, see [9, p. 230].

Theorem 2 LetK0 be a (strong) (t mod q)-arc in a projective s-spaceΣ of PG(r , q), where
1 ≤ s < r . For a fixed projective (r − s − 1)-space Γ of PG(r , q), disjoint from Σ , let K be
the arc in PG(r , q) defined as follows:

– For each point P of Γ , set K(P) = t;
– For each point Q ∈ PG(r , q) \ Γ , set K(Q) = K0(R), where R = 〈Γ , Q〉 ∩ Σ .

Then K is a (strong) (t mod q)-arc in PG(r , q) of cardinality qr−s · |K0| + t q
r−s−1
q−1 .

Arcs obtained by the lifting construction are called lifted arcs. If Σ is a point, then we
speak of a lifting point. The iterative application of the lifting constructions gives the more
general version stated above. In the other direction, in [9, Lemma 1] it has been shown that
the set of all lifting points forms a subspace. We shall find it helpful to use the following
result in the sequel.

Corollary 1 Let K be a (t mod q)-arc in PG(r , q). If for every point P there is a line �

through P such that the multiplicities of the q points of � distinct from P are not the same,
then such an arc is not lifted.

LetK be a (t mod q)-arc in PG(r , q), thenK⊥ : H ∈ H 
→ (K(H)− t)/q ∈ N is called
the dual arc of K. In the case when r = 2, then K⊥ is an ((m − t)q + m,m − t)-blocking
set in the dual plane, where K has cardinality mq + t . Therefore, the classification of strong
(t mod q) arcs in PG(2, q) is equivalent to that of certain plane blocking sets [8].

Theorem 3 A strong (t mod q)-arc K in PG(2, q) of cardinality mq + t exists if and only
if there exists an ((m − t)q + m,≥ m − t)-blocking set B with line multiplicities contained
in the set {m − t,m − t + 1, . . . ,m}.

The condition that the multiplicity of each point is at most t turns out to be very strong.
For t = 0, we have that the only strong (0 mod q)-arc is the trivial zero-arc. For t = 1
the strong (1 mod q)-arcs are the hyperplanes. For t = 2 all strong (2 mod q) arcs in
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PG(r , q), for r ≥ 3, q ≥ 5, turn out to be lifted [9]. In PG(2, q), all (2 mod q)-arcs are
also known (cf. [5, Lemma 3.7]). Apart from one sporadic example, all such arcs are again
lifted. It was conjectured in [8] that all strong (3 mod 5)-arcs in PG(r , 5), r ≥ 3, are lifted.
The computer classification reported in [5] shows that this conjecture is wrong: there exist
(3 mod 5)-arcs of respective sizes 128, 143, and 168 that are not lifted. In the next sections
we give a geometric (computer-free) description of these arcs and define an infinite class of
strong (t mod q)-arcs in PG(r , q), r ≥ 3, that are not lifted.

3 The arc of size 128

In order to explain the (3 mod 5)-arcs of size 128 in PG(3, 5), we need the geometric
description of all strong (3 mod 5)-arcs in PG(2, 5) of sizes 18, 23, 28, and 33. They are all
obtained from Theorem 3 and can be found in [5, 9].1

In their description we make use of notation for some of the points of PG(2, 5).
Let the points X1, X2, X3, X4 form a quadrangle and set:

Y1 = 〈X1, X2〉 ∩ 〈X3, X4〉, Y2 = 〈X1, X3〉 ∩ 〈X2, X4〉,
Y3 = 〈X1, X4〉 ∩ 〈X2, X3〉, Z1 = 〈Y1, Y2〉 ∩ 〈X1, X4〉,
Z2 = 〈Y1, Y2〉 ∩ 〈X2, X3〉, Z3 = 〈Y1, Y3〉 ∩ 〈X1, X3〉,
Z4 = 〈Y1, Y3〉 ∩ 〈X2, X4〉, Z5 = 〈Y2, Y3〉 ∩ 〈X1, X2〉,
Z6 = 〈Y2, Y3〉 ∩ 〈X3, X4〉.

Furthermore, let U1,U2 be the remaining two points on the line 〈Y1, Y2〉, i.e. the points on
this line are Y1, Y2, Z1, Z2,U1,U2. Similarly, denote byU3,U4 be the remaining two points
on the line 〈Y1, Y3〉, and by U5,U6 be the remaining two points on the line 〈Y2, Y3〉. The
points so defined are presented on the figure below.

Z3U3 U4Y1 Y3 Z4

X3

Z2 Z6

X2 X4

Z5 Z1

X1

Y2

U2 U5

U1 U6

Theorem 4 Let K be a strong (3 mod 5)-arc in PG(2, 5).

(a) If |K| = 18 then K is the sum of three lines.
(b) If |K| = 23 then it has λ3 = 3, λ2 = 4, λ1 = 6. The points Xi are 2-points, the points

Y j are 3-points and the points Zk are 1-points.
(c) If |K| = 28 then it has λ3 = 6, λ1 = 10. The 3-points form an oval, and the 1-points are

the internal points to this oval.
(d) If |K| = 33 there exist ten non-isomorphic arcs. These are:

1 For strong (3 mod 5)-arcs in PG(2, 5) of larger cardinalities the reader is referred to [5, Table 1].
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(d-i) The duals of the complements of the seven (10, 3)-arcs in PG(2, 5) (cf. [6]); the
possible λi ’s are:

λ3 = 3 + j, λ2 = 9 − 3 j, λ1 = 6 + 3 j, j = 0, 1, 2, 3;
(d-ii) The dual of the multiset which is complement of the (11, 3)-arc with four external

lines plus one point which is not on a 6-line (λ3 = 6, λ2 = 5, λ1 = 5);
(d-iii) The dual of a blocking set in which one double point forms an oval with five of the

0-points; the tangent to the oval in the 2-point is a 3-line (λ3 = 6, λ2 = 5, λ1 = 5);
(d-iv) The modulo 5 sum of three non-concurrent lines: two of them are lines of 3-points

and one is a line of 2-points (λ3 = 8, λ2 = 4, λ1 = 1).

Let us note that the strong (3 mod 5)-arcs have 13-lines in cases (d-ii), (d-iii), and (d-iv).
The seven arcs in (d-i) are obtained as duals of projective (21, 3)-blocking sets. These are
complements of (10, 3)-arcs. The types of all 8- and 3-lines are obtained from the types of
the 0- and 1-points of the corresponding (10, 3)-arc and are given in Table 4 in [6]. Of special
interest to us are the (3 mod 5)-arcs obtained from (10, 3)-arcs of types (B5) and (B7) (cf.
[6], Table 3). In the arcs of the first type have the points Xi are of multiplicity 3, the points
Uj—of multiplicity 2, and the points Yk and Zl—of multiplicity 1. In the arcs of the second
type, the 3-points form an oval, and the 1 points are the external points to this oval.

Lemma 1 Let K be a strong (3 mod 5)-arc in PG(3, 5) of cardinality 128. Then all lines
with a 0-point are of multiplicity 3 or 8. Furthermore, all 8-lines with a 0-point are of type
(3, 3, 1, 1, 0, 0, 0) or (3, 2, 2, 1, 0, 0).

Proof Assume there exists a 13-line. Then all planes through this line have multiplicity at
least 33 (Theorem 4) and hence |K| ≥ 6 · 33 − 5 · 13 = 133, a contradiction.

Similarly, if an 8-line L has a 0-point and is not of the type (3, 3, 1, 1, 0, 0) or
(3, 2, 2, 1, 0, 0) then it is incident with planes of multiplicity at least 33 (cf. Theorem 4).
Now we can use once again the same counting argument. ��

For the types of the lines with a 0-point we adopt the following notation.

type
8-lines (α) (3, 3, 1, 1, 0, 0)

(β) (3, 2, 2, 1, 0, 0)
3-lines (γ1) (3, 0, 0, 0, 0, 0)

(γ2) (2, 1, 0, 0, 0, 0)
(γ3) (1, 1, 1, 0, 0, 0)

The table below presents the types of the lines through a 0-point in a strong (3 mod 5)-arc
K in PG(2, 5) of multiplicity 18, 23, 28, and 33. For the arcs of cardinality 33, we list just
the two types that are admissible in a 128-arc in PG(3, 5). By Lemma 1 these turn out to be
the arcs in (d-i) obtained from (10, 3) arcs of type (B5) and (B7) (cf. [6]).
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|K| Types of the lines Remark
through a 0-point

18 6(γ1) A triple line
1(γ1) + 5(γ2) A double line plus a single line
1(γ1) + 5(γ3) Three concurrent lines
3(γ2) + 3(γ3) Three non-concurrent lines

23 1(α) + 4(γ2) + 1(γ3)
1(β) + 2(γ2) + 3(γ3)

28 2(α) + 2(γ1) + 2(γ3) Oval of 3-points + the internal points
33 1(α) + 2(β) + 2(γ2) + 1(γ3) Obtained from (10, 3)-arc of type (B5)

3(α) + 3(γ3) Obtained from (10, 3)-arc of type (B7)

Consider a (3 mod 5)-arcK in PG(3, 5) that is of multiplicity 128. Let ϕ be a projection
from an arbitrary 0-point P to a plane π not incident with P:

ϕ

{P \ {P} 
→ π

Q 
→ π ∩ 〈P, Q〉.

HereP is again the set of points of PG(3, 5). Note that ϕ maps the lines through P into points
from π , and the planes through P into lines in π . We define the induced arc Kϕ : π → N0

by

Kϕ(Q) =
∑

ϕ(X)=Q

K(X).

It is clear that P is incident with 3- and 8-lines, only (Theorem 4). A point in the projection
plane is said to be of type (α), (β), or (γi ) if it is the image of a line of the same type.

We define a special arc F of cardinality 128 in PG(2, 5) with seven 8-points and twenty
four 3-points:

F(T ) =
{
8 if T = Xi or Y j , i = 1, 2, 3, j = 1, 2, 3, 4
3 otherwise.

Proposition 1 Let K be a strong (3 mod 5)-arc in PG(3, 5) of cardinality 128. Let ϕ be the
projection of K from a 0-point P onto a plane disjoint from that point. Then for every choice
of P the arc Kϕ is isomorphic to the arc F described above. Moreover, the points Xi are of
type (β), the points Y j are of type (α), the points Zk are of type (γ3), the points Ul are of
type (γ1), and all the remaining points are of type (γ2).

The induced arc Kϕ is presented on the picture below.
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α : (3, 3, 1, 1, 0, 0)

β : (3, 2, 2, 1, 0, 0)

γ1 : (3, 0, 0, 0, 0, 0)

γ2 : (2, 1, 0, 0, 0, 0)

γ3 : (1, 1, 1, 0, 0, 0)

Proof By Lemma 1 the arc Kϕ has seven 8-points and twenty-four 3-points. Moreover, the
8-points are of type (α) or (β). First we are going to prove that at most three of the seven
8-points are collinear.

(1) Assume that six of the 8-points are collinear. Clearly, every 8-point is on a 28-line (a
line with two 8-points) and hence all 8-points are of type (α). Obviously, every 3-point is
also incident with a 28-line. Hence all 3-points are of type (γ1) or (γ3). But now a line with
one 8-point cannot have points of type (γ2), which is a contradiction with the structure of the
(3 mod 5)-arc of size 23.

(2) Assume that five of the 8-points are collinear and let L be the line that is incident with
them. Here there are two possibilities: the line through the two 8-points off L meets L in a
3-point or in an 8-point. In both cases all 8-points are of type (α). Now there exists a line
with exactly one 8-point which has at least four 3-points that are not of type (γ2). This is a
contradiction with the structure of the (3 mod 5)-arc of size 23.

(3) A similar argument rules out the possibility of four collinear 8-points. In all cases
these the seven 8-points have to be of type (α). Now every 23-line has to be incident with
four points of type (γ2), which is easily checked to be impossible.

(4)We are going to consider in detail the case when at most three 8-points in the projection
plane are collinear.

(4a) Assume there exists an oval of 8-points, A1, . . . , A6, say, and let B be the seventh
8-point. Every 8-point is on a line with two 8-points, and so all 8-points have to be of type
(α). Let 〈B, A1, A2〉 be a secant to the oval through Y . The lines 〈A1, A j 〉, j = 3, 4, 5, 6, are
images of planes without 2-points. Now an external line to the oval through B is a 23-line
and has at most one point of type (γ2), a contradiction.

(4b) In a similar way, we can rule out the case where there exist five 8-points no three of
which are collinear. We have to consider the different possibilities for the line defined by the
remaining two 8-points: secant, tangent, or external line to the oval formed by the former
five points and one additional point which has to be a 3-point.

(4c) We have shown so far that there are at most three collinear 8-points. It is clear that
there exist at least two lines that contain three 8-points. We consider the case where these
lines meet in a 3-point. Denote the 8-points on these two lines by Ai , Bi , i = 1, 2, 3, and the
seventh 8-point—by C . We assume that A1, A2, A3 are collinear and that so are B1, B2, B3.
Each of the lines 〈Ai ,C〉, i = 1, 2, 3, also contains three 8-points; otherwise there exist
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five 8-points no three of which are collinear—a case already considered. Without loss of
generality, let the triples Ai , Bi ,C , i = 1, 2, 3, be collinear. Now it is clear that all the points
Ai , Bi are of type (α). The point C is also forced to be of type (α) since a 33-line has either
one or all three 8-points of type (α). Again, we can use the fact that a 23-line has to be incident
with four points of type (γ2), which is clearly impossible for two the 23-lines through C .

(5)Up to this pointwhave proved that the seven 8-points ofKϕ should satisfy the following
conditions: (i) each line contains at most three 8-points, (ii) lines incident with three 8-points
meet in an 8-point, (iii) every 5-tuple of 8-points contains a collinear triple. The only possible
configuration of 8-points is the vertices of a quadrangle plus the three diagonal points, i.e.
the configuration isomorphic to the points Xi , Y j , i = 1, 2, 3, 4, j = 1, 2, 3, defined in the
beginning of the section.

Furthermore, the diagonal points (those corresponding to the Y j ’s) have to be of type (α)
while the vertices of the quadrangle (the Xi ’s) are forced to be of type (β). This is due to the
fact that through each of the vertices of the quadrangle there is a line with a single 8-point
which meets the three lines defined by the diagonal points of type (α) in three different
3-points that are not of type (γ2). Thus we get the picture below.

(α) (α)

(α)
(β) (β)

(β)

(β)

The fact that a 23-line through a point of type (α) contains four points of type (γ2) and
one point of type (γ1) identifies the six points of type (γ1).

(α) (α)

(α)

(γ1)

(γ1)

(γ1)

Furthermore, a line with two points of type (α) must contain also two points of type (γ1) and
two points of type (γ3). This identifies the six 3-points of type (γ1). The remaining 3-points
are all of type (γ2). This implies the suggested structure. ��

Lemma 1 implies that given a non-lifted, strong (3 mod 5)-arc K of cardinality 128,
every 0-point is incident with

– Three 8-lines of type (3, 3, 1, 1, 0, 0),
– Four 8-lines of type (3, 2, 2, 1, 0, 0),
– Six 3-lines of type (3, 0, 0, 0, 0, 0),
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– Twelve 3-lines of type (2, 1, 0, 0, 0, 0),
– Six 3-lines of type (1, 1, 1, 0, 0, 0)

Now this implies that

– #(3-points) = 3 · 2 + 4 · 1 + 6 · 1 = 16,
– #(2-points) = 4 · 2 + 12 · 1 = 20,
– #(1-points) = 3 · 2 + 4 · 1 + 12 · 1 + 6 · 3 = 40,
– #(0-points) = 1 + 3 · 1 + 4 · 1 + 6 · 4 + 12 · 3 + 2 · 6 = 80.

Furthermore, each 0-point is incident with six 33-planes, three 28-planes eighteen 23-planes
and four 18-planes. Moreover the number of 0-points in a 33-plane is 12, in a 28-plane—15,
in a 23-plane—18, and in an 18-plane—16. This makes it possible to compute the spectrum
of K. We have

a33 = 80 · 6
12

= 40

a28 = 80 · 3
15

= 16,

a23 = 80 · 18
18

= 80,

a18 = 80 · 4
16

= 20.

From the structure of the plane (3 mod 5)-arcs with 18-, 23-, 28- and 33-arcs, one can
conclude that no three 2-points are collinear. In other words they form a 20-capC . Moreover,
this cap has spectrum: a6(C) = 40, a4(C) = 80, a3(C) = 20, a0(C) = 16. It is not
extendable to the elliptic quadric; in such case it would have (at least 20) tangent planes.
Thus, this cap is complete and isomorphic to one of the two caps K1 and K2 by Abatangelo
et al. [1]. It is not K2 since it has a different spectrum (cf. [1]). Hence the 20-cap on the
2-points in PG(3, 5) is isomorphic to K1.

Assume that K is a 128-arc with twenty 2-points that form the Abatangelo–Korchmáros–
Larato cap K1. We are going to demonstrate that K is uniquely determined by the 2-points.
Consider a 3-plane of the cap and fix a 2-line L in it. The planes through L are denoted by
πi , i = 0, . . . , 5. It is clear that four of the planes πi are of multiplicity 6 (with respect to the
cap), and two of them, π0 and π1 say, are of multiplicity 3. This implies that with respect to
K π0 and π1 are 18-planes, and πi , i = 2, . . . , 5, are 33-planes.

Denote by A and B the 2-points on L . Let also C0 and C1 be the other 2-points in π0

and π1, respectively. The lines 〈A, B〉, 〈A,C0〉, 〈B,C0〉, 〈A,C1〉, 〈B,C1〉 are all of type
(2, 2, 1, 1, 1, 1). Now the planes 〈A,C0,C1〉 and 〈B,C0,C1〉 have to be 18-planes (the sum
of three non-concurrent lines). This is the only possibility for a plane containing two lines of
type (2, 2, 1, 1, 1, 1) meeting in a 2-point. Therefore the line 〈C0,C1〉 is also a line of type
(2, 2, 1, 1, 1, 1). Set Ci = πi ∩ 〈C0,C1〉, i = 2, . . . , 5.

Note that the lines 〈A,Ci 〉, 〈B,Ci 〉, i = 2, . . . , 5, are of type (2, 1, 0, 0, 0). Note also that
Ci is a diagonal point of the quadrangle in πi formed by the 3-points. The other two diagonal
points (denoted by D and E) are 1-points on L . Each of the lines 〈Ci , D〉 and 〈Ci , E〉 is of
type (2, 2, 1, 1, 1, 1). Denote by F ′

i , F
′′
i (resp.G ′

i ,G
′′
i ) the remaining two 1-points on 〈Ci , D〉

(resp. 〈Ci , E〉). Now the 3-points in πi are the intersections of the lines 〈D, F ′
i 〉, 〈D, F ′′

i 〉
with the lines 〈E,G ′

i 〉, 〈E,G ′′
i 〉 and all points in the planes πi , i = 2, 3, 4, 5, are determined

uniquely.
An alternative construction using few orbits The 128-cap is easily constructed if we assume
that it is fixed by the collineation group G of the cap K1. It is a semidirect product of an
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elementary abelian group of order 16 and a group isomorphic to S5 [1]. Hence |G| = 1920.
The action ofG on PG(3, 5) splits the point set of PG(3, 5) into four orbits on points, denoted
by OP

1 , . . . , OP
4 , and the set of lines into six orbits, denoted by OL

1 , . . . , OL
6 . The respective

sizes of these orbits are

|OP
1 | = 40, |OP

2 | = 80, |OP
3 | = 20, |OP

4 | = 16;
|OL

1 | = 160, |OL
2 | = 240, |OL

3 | = 30, |OL
4 | = 160, |OL

5 | = 120, |OL
6 | = 96.

The corresponding point-by-line orbit matrix A = (ai j )4×6, where ai j is the number of the
points from the i-th point orbit incident with any line from the j-th line orbit is the following

A =

⎛

⎜
⎜
⎝

3 1 4 1 2 0
3 4 0 2 2 5
0 1 2 2 0 0
0 0 0 1 2 1

⎞

⎟
⎟
⎠ .

Set w = (w1, w2, w3, w4). Here wi is the multiplicity of the points from the i-th point orbit.
We look for solutions of the equation wA ≡ 3 j (mod 5), where j is the all-one vector,
subject to the conditions wi ≤ 3 for all i = 1, 2, 3, 4. The set of all solutions is given by

{w = (w1, w2, w3, w4) | wi {0, . . . 4},
w2 ≡ 1 − w1 (mod 5), w3 ≡ 4 − 2w1 (mod 5), w4 = 3}.

There exist two solutions that satisfy wi ≤ 3: w = (3, 3, 3, 3) and w = (1, 0, 2, 3). The first
one yields the trivial (3 mod 5)-arc formed by three copies of the whole space. The second
one gives the desired arc of size 128.

It should be noted that the weight vectors (0, 3, 2, 4), (1, 2, 0, 4), (2, 1, 3, 4), and
(3, 0, 1, 4) yield strong (4 mod 5)-arcs of cardinalities 344, 264, 284, and 204, respectively,
that are not lifted.

4 Strong
(
q+1
2 mod q

)
-arcs from quadrics and the arcs of size 143 and

168

For an arbitrary odd prime power q and an integer r ≥ 2, letQ be a quadric of PG(r , q) and
let F be the quadratic form defining Q. This means that a point P(x0, . . . , xr ) of PG(r , q2)
belongs toQwhenever F(x0, . . . , xr ) = 0. The points of PG(r , q) outsideQ are partitioned
into two point classes, say P1 and P2. Indeed, if P(x0, . . . , xr ) is a point of PG(r , q)\Q,
then P belongs to P1 or P2, according as F(x0, . . . , xr ) is a non-square or a square in Fq .
Now we define the arcs K1 and K2 in the following way:

• K1: for a point P of PG(r , q) set

K1(P) =
⎧
⎨

⎩

q+1
2 if P ∈ Q,

1 if P ∈ P1,

0 if P ∈ P2.

(1)

• K2: for a point P of PG(r , q) set

K2(P) =
⎧
⎨

⎩

q+1
2 if P ∈ Q,

0 if P ∈ P1,

1 if P ∈ P2.

(2)
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The following result is well-known.

Proposition 2 [11, Theorem 5.18] Let f (x) = ax2 + bx + c, where a, b, c,∈ Fq , a �= 0, q
odd. If Fq = {α0, α1, . . . , αq−1}. Denote by S the list of the following elements from Fq :

a, f (α0), f (α1), . . . , f (αq−1).

Then

(a) If f (x) has two distinct roots in Fq the list S contains two zeros, (q − 1)/2 squares and
(q − 1)/2 non-squares;

(b) If f (x) has one double root in Fq then S contains a zero and q squares, or a zero and q
non-squares;

(c) If f (x) is irreducible over Fq then S contains (q + 1)/2 squares and (q + 1)/2 non-
squares.

Theorem 5 Let the K1 and K2 be the arcs defined in (1) and (2), respectively. Then Ki is a(
q+1
2 mod q

)
arc of PG(r , q), i = 1, 2. Moreover, if Q is non-degenerate, then both arcs

are not lifted.

Proof Let � be a line of PG(r , q), then Q ∩ � is a quadric of �. Then, from Proposition 2, it
follows that

Ki (�) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2 · q+1
2 + q−1

2 if |� ∩ Q| = 2,
q+1
2 + q if |� ∩ Q| = 1 and |� ∩ Pi | = q,

q+1
2 if |� ∩ Q| = 1 and |� ∩ Pi | = 0,

q+1
2 if |� ∩ Q| = 0.

Therefore Ki is a
(
q+1
2 mod q

)
arc of PG(r , q), i = 1, 2. If Q is non-degenerate, then

through every point of PG(r , q) there exists a line r that is secant toQ. By construction, the
line r has two q+1

2 -points, q−1
2 1-points and q−1

2 0-points. Hence by Corollary 1, Ki is not
lifted. ��
Corollary 2 If r is odd, then

|Ki | =
⎧
⎨

⎩

q+1
2 · (q

r+1
2 +1)(q

r−1
2 −1)

q−1 + qr+q
r−1
2

2 if Q is elliptic,

q+1
2 · (q

r−1
2 +1)(q

r+1
2 −1)

q−1 + qr−q
r−1
2

2 if Q is hyperbolic.

If r is even, then

|K1| = q + 1

2
· (qr − 1)

q − 1
+ qr − q

r
2

2
,

|K2| = q + 1

2
· (qr − 1)

q − 1
+ qr + q

r
2

2
.

Remark 1 In the case when the quadric Q is degenerate, then it is not difficult to see that
the arc Ki , i = 1, 2, is lifted. Let Q be a non-degenerate quadric of PG(r , q), then K1 and
K2 are projectively equivalent if r is odd, but they are not in the case when r is even. On
the other hand, if r is odd, there are two distinct classes of non-degenerate quadrics, namely
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the hyperbolic quadric and the elliptic quadric. Therefore in all cases Theorem 5 gives rise

to two distinct examples of non lifted
(
q+1
2 mod q

)
arcs of PG(r , q). For more details on

quadrics we refer the interested reader to [4].

Remark 2 In the case when r = 2 and Q is non-degenerate, then from Theorem 5 two (3
mod 5)-arcs in PG(2, 5) arise, namely K1 and K2. The arc K1 has cardinality 28, spectrum
(a3, a8) = (16, 15) and number of i-points (λ1, λ3) = (10, 6). Hence K1 coincides with
Example (c) in Theorem 4. The arc K2 has cardinality 33, spectrum (a3, a8) = (10, 21) and
number of i-points (λ1, λ3) = (15, 6). In this case K⊥

2 is a (21, 3)-blocking set in the dual
plane and K2 falls in one of the Examples (d)(i) in Theorem 4. If Q is degenerate, then (3
mod 5)-arcs in PG(2, 5) of cardinalities 18 or 43 arise, cf. [5, Table 1].

4.1 The arcs of size 143 and 168

In [5], the following two strong non-lifted (3 mod 5)-arcs in PG(3, 5) were constructed by
a computer search.

(1) An arc of cardinality 143, with spectrum (a18, a28, a33) = (26, 65, 65), number of i-
points (λ0, λ1, λ3) = (65, 65, 26) and automorphism group of order 62400.

(2) An arc of cardinality 168, with spectrum (a28, a33, a43) = (60, 60, 36), number of i-
points (λ0, λ1, λ3) = (60, 60, 36) and automorphism group of order 57600.

These arcs can be recovered fromTheorem5. Indeed, ifQ is an elliptic quadric of PG(3, 5),
then K1 is a non lifted (3 mod 5) arc of PG(3, 5) of size 143, whereas if Q is a hyperbolic
quadric of PG(3, 5), then K1 is a non lifted (3 mod 5) arc of PG(3, 5) of size 168.

5 Further examples (t mod q)-arcs

A set of type (m, n) in PG(r , q) is a set S of points such that every line of PG(r , q) contains
either m or n points of S, m < n, and both values occur. Assume m > 0. Then the only sets
of type (m, n) that are known, exist in PG(2, q), q square, and are such that n = m +√

q. In
particular, sets of type (1, 1+√

q) either contain q+√
q+1 points and are Baer subplanes or

q
√
q +1 points and are known as unitals. For more details on sets of type (m, n) in PG(2, q)

see [12] and references therein. If S is an (m, n) set in PG(r , q), r > 2, then necessarily q

is an odd square, m = (
√
q − 1)2/2, n = m + √

q and |S| = 1+ qr−1
q−1 (q−√

q)±√
qr

2 , see [14].
However no such a set is known to exist if r > 2.

Theorem 6 Let S be a set of type (m,m + √
q) in PG(r , q), q square. Let K be the arc of

PG(r , q) such that K(P) = √
q, if P ∈ S and K(P) = 0, if P /∈ S. Then K is an (m

√
q

mod q)-arc of PG(r , q).

Proof Let � be a line of PG(r , q). If |� ∩ S| = m, then K(�) = m
√
q , whereas if |� ∩ S| =

m + √
q, then K(�) = m

√
q + q . ��

In PG(r , q), q square, let H be a Hermitian variety of PG(r , q), i.e., the variety defined
by a Hermitian form of PG(r , q). It is well-known that a line of PG(r , q) has 1,

√
q + 1 or

q + 1 points in common with H. Let K′ be the arc of PG(r , q) such that K′(P) = √
q, if

P ∈ H and K′(P) = 0, if P /∈ H.
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Theorem 7 K′ is a (
√
q mod q)-arc of PG(r , q). Moreover, ifH is non-degenerate, thenK′

is not lifted.

Proof Let � be a line of PG(r , q). Then

K′(�) =

⎧
⎪⎨

⎪⎩

√
q if |� ∩ H| = 1,√
q + q if |� ∩ H| = √

q + 1,√
q(1 + q) if |� ∩ H| = q + 1.

If H is non-degenerate, then through every point of PG(r , q) there exists a line r such that
|H ∩ r | = √

q + 1. By construction, the line r has
√
q + 1

√
q-points and q − √

q 0-points.
Hence K′ is not lifted. ��
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