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Abstract

The shallow water equations (SWE) are a set of hyperbolic conservation laws frequently used
to model oceanographic and atmospheric fluid flow. They are derived from the fundamental
principles of mass and momentum conservation and are applicable when vertical dynamics can
be considered negligible compared to horizontal effects. Therefore, they are a commonly used
model to predict storm surges, tsunamis, and floods as well as to study tides and coastal ocean
circulation.
Since finding analytical solutions for the SWE is limited to specific cases, numerical methods
are the primary choice for solving these equations. However, the model poses challenges for
the numerical approaches. These challenges originate from the nonlinear nature of the coupled
equations, the different flow regimes ranging from smooth regions to shocks, and the complex
computational grids arising from irregular domain boundaries and varying bottom topography.
Hence, the SWE are also often employed to prototype numerical techniques for ocean circulation
models. In this regard, discontinuous Galerkin (DG) methods stand out as a suitable approach,
combining the respective strengths of continuous finite element and finite volume methods.
They offer local conservation properties, robustness for handling shocks and discontinuities,
applicability to complex geometries, and natural support for mesh and discretization order
adaptivity.
Nonetheless, these benefits of DG discretizations come at the cost of high computational demands,
which can only be partially mitigated through efficient parallel hardware utilization. As the
increase in the number of transistors used in traditional central processing units levels off and the
available hardware becomes more diverse, there is a need to explore new directions to enhance
computational efficiency.

This thesis focuses on advancing the computational performance of DG discretizations applied
to the two-dimensional SWE and explores several methodologies in pursuit of this goal.
It introduces a novel quadrature-free DG formulation for the nonlinear SWE, which relies solely
on product-type nonlinearities. Traditional quadrature integrations are replaced with analytical
evaluations. The method’s stability is proven with a new analysis approach.
The discretization is implemented within the Python frontend GHODDESS, which generates
domain specific language code for the automatic code generation framework ExaStencils, which,
in turn, provides performance portability.
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Discretization order (p-) adaptivity is incorporated into the numerical scheme, including a new
adaptivity indicator independent of user-defined input parameters. Thereby, the number of
degrees of freedom is reduced while maintaining the solution quality.
The thesis furthermore investigates an algorithmic redesign of the p-adaptive scheme that
separates the adaptive and non-adaptive parts of the model code to improve the hardware
utilization of a heterogeneous CPU–GPU system, resulting in accelerated computations.
Lastly, it presents simulations on masked block-structured grids for realistic ocean domains,
which, on the one hand, are capable of accurately meshing fine-scale geometric features and, on
the other, offer performance benefits associated with structured grid models.
All proposed algorithmic adaptions are evaluated with various numerical test cases encompassing
discontinuous solutions and typical tidal flow problems. With these contributions, this thesis
advances the state of the art in numerical methods for simulating shallow-water flows.
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Zusammenfassung

Discontinuous Galerkin Methoden und

Hochleistungsrechenansätze für Ozeansimulationen

Die Flachwassergleichungen (engl. shallow water equations – SWE) sind hyperbolische Erhal-
tungssätze, die häufig zur Modellierung ozeanografischer und atmosphärischer Strömungen
verwendet werden. Sie leiten sich von den Grundprinzipien der Massen- und Impulserhaltung
ab und sind anwendbar, wenn vertikale Dynamiken im Vergleich zu horizontalen Effekten
als vernachlässigbar angesehen werden können. Daher werden sie häufig zur Vorhersage von
Sturmfluten, Tsunamis und Überschwemmungen sowie zur Untersuchung von Gezeiten und der
Ozeanzirkulation an der Küste verwendet.
Da analytische Lösungen für die SWE nur in speziellen Fällen gefunden werden können, sind
numerische Methoden die bevorzugte Wahl zur Lösung dieser Gleichungen. Das Modell stellt
jedoch Herausforderungen an die numerischen Ansätze. Diese ergeben sich aus der nicht-linearen
Natur der gekoppelten Gleichungen, den unterschiedlichen Strömungsbereichen, die von glatten
Regionen bis hin zu Schocks reichen, und den komplexen Rechengittern aufgrund unregelmäßiger
Gebietsgrenzen und variabler Bodentopografie. Daher werden die SWE auch häufig als Prototyp
für numerische Techniken für Ozeanzirkulationsmodelle verwendet. In diesem Zusammenhang
zeichnen sich unstetige Galerkin (engl. discontinuous Galerkin – DG) Methoden als geeigneter
Ansatz aus, da sie die jeweiligen Stärken von kontinuierlichen Finite-Elemente- und Finite-
Volumen-Methoden kombinieren. Sie bieten lokale Erhaltungseigenschaften, Robustheit im
Umgang mit Schocks und Unstetigkeiten, Anwendbarkeit auf komplexe Geometrien und natür-
liche Unterstützung für Gitter- und Diskretisierungsordnungs-Adaptivität.
Jedoch gehen diese Vorteile der DG-Diskretisierungen mit einem hohen Rechenaufwand einher,
der nur teilweise durch effiziente parallele Hardwarenutzung gemildert werden kann. Mit dem
abflachenden Anstieg der Anzahl von Transistoren in herkömmlichen Hauptprozessoren und der
steigenden Vielfalt verfügbarer Hardware ist es notwendig, neue Ansätze zur Verbesserung der
Recheneffizienz zu erforschen.

Diese Arbeit konzentriert sich auf die Verbesserung der Rechenleistung von DG-Diskretisierungen
angewendet auf die zwei-dimensionalen SWE und untersucht mehrere Methoden, um dieses Ziel
zu erreichen.
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Sie stellt eine neue quadraturfreie DG-Formulierung für die nicht-linearen SWE vor, die auss-
chließlich auf Nichtlinearitäten in Produktform basiert. Traditionelle quadratur-basierte Integra-
tionen werden durch analytische Auswertungen ersetzt. Die Stabilität der Methode wird mit
einem neuen Ansatz analytisch bewiesen.
Die Diskretisierung ist in das Python-Frontend GHODDESS implementiert, das domänenspezi-
fischen Sprachcode für das automatische Codegenerierungs-Framework ExaStencils generiert,
welches wiederum die effiziente Rechenleistung auf verschiedener Hardware gewährleistet.
Die Diskretisierungsordnungs- (p-) Adaptivität ist in das numerische Schema integriert, ein-
schließlich eines neuen Adaptivitätsindikators, der unabhängig von benutzerdefinierten Eingabepa-
rametern ist. Dadurch wird die Anzahl der Freiheitsgrade reduziert, während die Lösungsqualität
erhalten bleibt.
Die Arbeit untersucht außerdem eine algorithmische Neugestaltung des p-adaptiven Verfahrens,
das die adaptiven und nicht-adaptiven Teile des Modellcodes trennt, um die Hardwarenutzung
heterogener CPU–GPU-Systeme zu verbessern, was zu mehr Effizienz führt.
Abschließend werden Simulationen auf maskierten block-strukturierten Gittern für realistische
Ozeangebiete präsentiert. Diese Gitter sind in der Lage, kleinskalige geometrische Merkmale
genau zu erfassen, und bieten gleichzeitig Rechenleistungsvorteile in Verbindung mit strukturi-
erten Gittermodellen.
Alle vorgeschlagenen algorithmischen Anpassungen werden anhand verschiedener numerischer
Testfälle evaluiert, die unstetige Lösungen und typische Gezeitenströmungsprobleme umfassen.
Durch diese Beiträge treibt diese Arbeit den Stand der Technik bei numerischen Methoden zur
Simulation von Flachwasserströmungen voran.
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Chapter

Introduction 1
Approximately 71% of the Earth’s surface is covered by the ocean, which plays a critical
role in supporting life on our planet through its regulation of global climate and holding vast
resources [Vis18]. The ocean hosts hundreds of thousands of species ranging from microscopic
algae to the largest creature ever known to have lived on Earth – the blue whale. For millennia,
people have depended on the ocean as a food source and a route for trade and exploration. Today,
more than one-third of the global population lives within 100 km from the coast, and almost
two-thirds of all megacities are located in the low-elevation coastal zone [RVH23]. Additionally,
scientific interest in harnessing the ocean’s renewable energy potential is growing. Several
countries have leveraged the energy potential of ocean waves, temperature gradients, currents,
or tides to drive turbines and generate electricity [NH18].
Nonetheless, the frequency of extreme events like hurricanes, cyclones, typhoons, and tsunamis
has increased in recent decades. These events can potentially cause catastrophic flooding and
widespread devastation in coastal areas, posing a growing threat to coastal populations [Sen+12].
To address this challenge, accurate simulations are crucial for predicting and mitigating damage
and saving lives through early warning systems [GTS06]. These systems aim to forecast
essential parameters, including tsunami arrival times, estimated wave heights, and inundation
zones [Har+08].
Accurate ocean simulations significantly enhance weather forecasts. They are critical in tracking
events like storm surges, influenced by ocean conditions such as sea surface temperatures and
currents [Ben+07]. Additionally, ocean simulations are essential components of climate models.
These models help forecast changes like sea level variations, ocean temperature shifts, and the
influence of oceanic patterns on global climate phenomena like El Niño and La Niña [Gri+00;
Chu+01].

Ocean simulations involve solving the complex differential equations that govern the fluid
motion. Hence, the model needs to be discretized using numerical techniques such as finite
difference, finite element, and finite volume methods. Achieving high resolution and accuracy
results in large data volumes and long computation times. However, ensuring high numerical
accuracy in low computational time is crucial for reliable predictions in extreme event simulations.
Thus, employing advanced numerical techniques, coupled with parallelization and optimization
strategies, and access to high-performance computing resources are fundamental.
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1 Introduction

The current computational strategy for numerical simulations of oceanic and atmospheric
systems predominantly relies on massively parallel architectures and partly on hybrid platforms.
An increasingly diverse spectrum of relevant computing architectures is emerging, and the need
to use new technologies has become evident due to the flattening of Moore’s Law [Moo98].
Therefore, new directions must be explored to enhance computational efficiency [Sha20].
The costs associated with running ocean simulations emphasize the importance of computational
sophistication. Thus, substantial efforts are directed toward evaluating and optimizing the
computational performance of operational ocean models [WKC97; KJ05; JCT17; Kol+19; RD19;
Irr+22]. In addition, the community is increasingly focusing on automatic code generation to
increase the productivity of model code development and to achieve a separation of concerns
between model development and software engineering [Eng02; Tor+13; Afa+21; Sze+24].
The choice of computational grids which, are necessary for the numerical methods, is also a key
factor influencing the trade-off between accuracy and computational performance. The main
properties of grids are their spatial resolution, the number of elements, and the overall mesh
quality. Therefore, they balance how accurately simulations approximate reality and how quickly
they can provide valuable information to help mitigate the impact of extreme events.

This thesis focuses on applying discontinuous Galerkin (DG) methods to shallow-water-type
flows. A key emphasis of this work lies in computational aspects and exploring methodologies
to achieve performance improvements.
The shallow water model is a set of partial differential equations representing conservation laws
that find application in situations where the vertical dimension is much smaller than typical
horizontal scales. It is not limited solely to water bodies but is also relevant to other fluids,
including air in atmospheric flows, where it serves as a convenient benchmark [Vre94].
In order to obtain computable expressions, the continuous equations need to be converted into
discrete approximations. DG discretizations provide several advantages, as explained in the
next section. However, they come at the cost of higher computational overhead compared to
other methods. Hence, a performant implementation and the effective utilization of parallel
computing resources are even more essential to achieve precise results within an appropriate
time.

1.1 Objective of this work

As previously mentioned, the primary objective of this thesis is to enhance the computational
performance of shallow water simulations that rely on DG methods. We investigate a range of
numerical, algorithmic, and computational technologies that aim to improve the performance of
our code.

Firstly, we present a new formulation of the SWE that exclusively contains product-type
nonlinearities. This allows for an analytical evaluation of all integrals resulting from the
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1.2 Outline of this thesis

discretization, eliminating the need for quadrature rules. Using new analysis techniques, we
theoretically prove the stability of the new formulation. We also evaluate the stability and the
convergence behavior numerically.
To achieve performance portability across diverse hardware architectures, we employ automatic
code generation. This involves extending an existing source-to-source compiler with a Python
frontend, which translates the quadrature-free DG discretization of the SWE into domain specific
language code. This code is subsequently transformed to a highly optimized parallel application
tailored to the target hardware architecture.
Furthermore, we extend the DG scheme by incorporating discretization order (p-) adaptivity
to reduce the number of degrees of freedom while maintaining the solution quality. We design
a new adaptivity indicator that dynamically determines whether to increase or decrease the
approximation order for each grid element. This indicator operates without user-defined input
parameters and is compared to two further indicators for evaluation.
We also redesign the p-adaptive algorithm by taking advantage of the quadrature-free formulation
of the SWE. Leveraging heterogeneous computing, the new algorithm aims to mitigate load-
balancing issues and distributes computations between the Central Processing Unit (CPU) and
the Graphics Processing Unit (GPU) using code generation techniques. The distribution is
determined based on an evaluation of kernel-based performance metrics to minimize overall
execution time.
We explore the usage of block-structured grids to further balance accuracy and computational
performance. In particular we evaluate a new masking approach. This approach involves
generating a grid covering a larger area than the actual computational domain and excluding
elements outside of it. It aims to represent complex features while preserving some structure for
performance optimizations.

1.2 Outline of this thesis

In the next chapter, we begin by introducing the shallow water equations and a new formula-
tion that eliminates fraction-type nonlinearities, enabling quadrature-free integral evaluations.
Following that, we present a p-adaptive discontinuous Galerkin discretization of the model,
including a redesign of the algorithm for optimal hardware usage. Next, we introduce a new
parameter-free adaptivity indicator. This is followed by stability proofs of both the continuous
shallow water model and its discontinuous Galerkin discretization.
In Chapter 3, we explain a code generation framework and its Python frontend developed within
the context of this work. Additionally, we present masked block-structured computational grids
and a reference code used in this study.
We first outline the setups of all numerical examples used for evaluating the technologies presented
throughout this work at the beginning of Chapter 4. Then, we assess the quadrature-free dis-
cretization, the adaptivity indicator, the algorithmic redesign, and the masked block-structured
grids.
Finally, in Chapter 5, we conclude this thesis by summarizing our findings and outlining prospects
for future research.
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1 Introduction

1.3 Previously published articles

Large parts of this thesis have already been published in the form of peer-reviewed journal
articles, which are listed below.

[FNA22] S. Faghih-Naini and V. Aizinger. “p-adaptive discontinuous Galerkin method for the shal-
low water equations with a parameter-free error indicator”. In: International Journal on
Geomathematics 13.18 (2022). doi: 10.1007/s13137-022-00208-3.

[FN+20] S. Faghih-Naini, S. Kuckuk, V. Aizinger, D. Zint, R. Grosso, and H. Köstler. “Quadrature-free
discontinuous Galerkin method with code generation features for shallow water equations
on automatically generated block-structured meshes”. In: Advances in Water Resources 138
(2020), p. 103552. doi: 10.1016/j.advwatres.2020.103552.

[FN+23b] S. Faghih-Naini, S. Kuckuk, D. Zint, S. Kemmler, H. Köstler, and V. Aizinger. “Discontinuous
Galerkin method for the shallow water equations on complex domains using masked block-
structured grids”. In: Advances in Water Resources 182 (2023), p. 104584. doi: 10.1016/j.
advwatres.2023.104584.

Parts of this thesis are based on the following article, which is under review.

[FN+23a] S. Faghih-Naini, V. Aizinger, S. Kuckuk, R. Angersbach, and H. Köstler. “p-adaptive
discontinuous Galerkin method for the shallow water equations on heterogeneous computing
architectures”. In: submitted to International Journal on Geomathematics, preprint available
at https: // doi. org/ 10. 48550/ arXiv. 2311. 11348 (2023).

Sara Faghih-Naini is the main author of the above mentioned articles.

In [FNA22], Sara Faghih-Naini conceptualized, implemented and evaluated the newly developed
indicator, including verification and visualization of the results. Vadym Aizinger has contributed
to this publication in the scope of supervision of Sara Faghih-Naini.
Sections 2.3.2, 2.3.4 and 4.3 are based on this publication.

In [FN+20], Sara Faghih-Naini implemented and evaluated the newly developed numerical model
in collaboration with Sebastian Kuckuk, verified and validated it, generated the grids used for
computations, conducted the simulations, and visualized the results. Daniel Zint, under the
supervision of Roberto Grosso, developed the block-structured grid generator. Vadym Aizinger
and Harald Köstler have contributed to this publication in the scope of supervision of Sara
Faghih-Naini and Sebastian Kuckuk.
Sections 2.1, 2.2, 2.3.1, 3.1 and 4.2 are based on this publication.

In [FN+23b], Sara Faghih-Naini implemented, validated, verified and evaluated the numerical
adaptations, generated the grids used for computations, conducted the simulations, and visualized
the results. Samuel Kemmler did a preliminary implementation, including validation and all
performance measurements. Daniel Zint, under the supervision of Roberto Grosso, developed
the block-structured grid generator. Vadym Aizinger, Harald Köstler and Sebastian Kuckuk
have contributed to this publication in the scope of supervision of Sara Faghih-Naini and Samuel
Kemmler.
Sections 3.2 and 4.5 are based on this publication.

4

https://doi.org/10.1007/s13137-022-00208-3
https://doi.org/10.1016/j.advwatres.2020.103552
https://doi.org/10.1016/j.advwatres.2023.104584
https://doi.org/10.1016/j.advwatres.2023.104584
https://doi.org/10.48550/arXiv.2311.11348


1.3 Previously published articles

In [FN+23a], Sara Faghih-Naini implemented, verified and evaluated the newly developed
numerical scheme, conducted all performance measurements and simulations, and visualized the
results. Richard Angersbach implemented the necessary adaptations in the underlying code-
generation framework. Vadym Aizinger, Harald Köstler and Sebastian Kuckuk have contributed
to this publication in the scope of supervision of Sara Faghih-Naini and Richard Angersbach.
Sections 2.3.3, 3.1 and 4.4 are based on this publication.

Furthermore, Sara Faghih-Naini is a coauthor in the following publications which are not used
in this thesis.

[Alt+23] C. Alt, T. Kenter, S. Faghih-Naini, J. Faj, J.-O. Opdenhövel, C. Plessl, V. Aizinger, J. Hönig,
and H. Köstler. “Shallow Water DG Simulations on FPGAs: Design and Comparison of a
Novel Code Generation Pipeline”. In: High Performance Computing. Ed. by A. Bhatele, J.
Hammond, M. Baboulin, and C. Kruse. Cham: Springer Nature Switzerland, 2023, pp. 86–105.
doi: 10.1007/978-3-031-32041-5_5.

[Faj+23] J. Faj, T. Kenter, S. Faghih-Naini, C. Plessl, and V. Aizinger. “Scalable Multi-FPGA Design
of a Discontinuous Galerkin Shallow-Water Model on Unstructured Meshes”. In: Proceedings
of the Platform for Advanced Scientific Computing Conference. PASC ’23. Davos, Switzerland:
Association for Computing Machinery, 2023. doi: 10.1145/3592979.3593407.

[Ken+21] T. Kenter, A. Shambhu, S. Faghih-Naini, and V. Aizinger. “Algorithm-Hardware Co-Design
of a Discontinuous Galerkin Shallow-Water Model for a Dataflow Architecture on FPGA”. In:
Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’21. Geneva,
Switzerland: Association for Computing Machinery, 2021. doi: 10.1145/3468267.3470617.

[Zin+22] D. Zint, R. Grosso, V. Aizinger, S. Faghih-Naini, S. Kuckuk, and H. Köstler. “Automatic
Generation of Load-Balancing-Aware Block-Structured Grids for Complex Ocean Domains”.
In: 30th International Meshing Roundtable, SIAM IMR 2022. Zenodo, 2022. doi: 10.5281/
zenodo.6562440.

5

https://doi.org/10.1007/978-3-031-32041-5_5
https://doi.org/10.1145/3592979.3593407
https://doi.org/10.1145/3468267.3470617
https://doi.org/10.5281/zenodo.6562440
https://doi.org/10.5281/zenodo.6562440




Chapter

Discontinuous Galerkin
methods for the 2D shallow

water equations 2
The shallow water equations (SWE) represent a set of hyperbolic equations describing fluid flows
in domains where the horizontal length scale is significantly greater than the vertical length
scale [Vre94]. This assumption is valid in various scenarios, prominently encompassing oceans,
coastal regions, large lakes, and rivers. Following [Vre94; HB99; KC00; CRB11; Aiz19], we
outline the derivation of the SWE starting from mass and momentum conservation.

Beginning with the Reynolds averaged Navier–Stokes equations formulated within a rotating
frame of reference, incompressibility of the fluid is assumed, implying that density remains
unaffected by pressure variations. Density differences due to salinity and temperature gradients
can be modeled, and the Boussinesq approximation is applied when these differences are assumed
to be small. The Boussinesq approximation replaces the actual water density with its reference
value everywhere except in the gravity forcing term. Subsequently, non-dimensionalization of
the system is achieved by introducing characteristic values for horizontal and vertical lengths
and velocities, along with an aspect ratio of vertical to horizontal dimensions, typically at
least of 1/10 for most realistic oceanic domains. Collecting the leading-order terms yields the
hydrostatic pressure condition, which states the balance between the negative vertical derivative
of the pressure and the gravitational force. Taking the hydrostatic balance as a diagnostic
equation, the hydrostatic equations of the ocean are derived, constituting the most frequently
utilized mathematical model for simulating baroclinic (i.e., variable density) circulation in global,
regional, and coastal ocean. Compared to non-hydrostatic models, the hydrostatic system offers
simpler numerical treatment. However, it does not account for vertical accelerations and fails to
conserve vertical momentum.
Additional simplifications can be applied for problems not significantly affected by the density-
driven dynamics but focusing instead on fast moving surface waves like tidal flows or tsunamis.
Assuming constant density and vertically uniform horizontal velocity, vertical integration over
the depth and applying kinematic and dynamic boundary conditions leads to the two-dimensional
SWE system (2.1)–(2.2) on page 10.

There exist several techniques for discretizing the SWE. These encompass finite difference (FD)
methods, representing one of the simplest and oldest approaches for solving differential equations.
Differential operators are approximated by replacing the derivatives in the equation using
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2 Discontinuous Galerkin methods for the 2D shallow water equations

differential quotients. One of the initial instances of employing FD methods to the SWE
is [AL77]. Despite their ease of implementation, their popularity has declined owing to their
lack of flexibility, primarily because they are commonly employed with structured meshes.
Finite element (FE) methods, originating from structural mechanics, have found extensive
application in various fluid mechanics problems. They subdivide the domain into cells, called
elements, and seek a solution of the variational form of the partial differential equation (PDE).
FE methods, first applied to the SWE in [Wan+72], excel at handling complex geometries and
irregular boundaries, however, they result in higher implementation complexity and increased
computational costs. A more recent development are finite volume (FV) methods, which are
based on the principles of conservation laws. These methods directly discretize the balance
equation and ensure flux conservation through control volumes. However, the formulation of
high-order accurate FV schemes that maintain stability and avoid numerical oscillations can be
intricate and computationally demanding. The initial utilization of such methods in the context
of the SWE was in [AGN93].
Discontinuous Galerkin (DG) finite element methods combine favorable attributes of both
FE and FV methods [CKS00]. These methods are based on the FE framework, employing
a variational formulation. Furthermore, they utilize discontinuous test and trial spaces and
numerical fluxes used in FV methods [CKS00]. In this thesis, we focus on the DG method
because it has emerged as a powerful numerical technique for solving PDEs from a wide range
of applications and since it possesses many favorable properties, as discussed below. The
DG method was first proposed in 1973 in [RH73] for a time-independent linear hyperbolic
equation. Subsequent advancements enabled its application to nonlinear hyperbolic conservation
laws [CC89]. A significant breakthrough occurred with the combination of explicit, nonlinearly
stable high-order Runge–Kutta time discretizations with a DG discretization in space with exact
or approximate Riemann solvers for interface fluxes in [CLS89; CS89; CHS90; CS91; CS98b].
This advancement allowed the treatment of time-dependent nonlinear hyperbolic conservation
laws involving first-order derivatives, such as the Euler equations [XS10].
The original DG method has three major generalization directions [Aiz19]. First, to solve
second-order elliptic and parabolic problems, interior penalty discontinuous Galerkin methods
were developed [Arn82], further classified based on the symmetry of the resulting bilinear
form [Riv08]. Second, in [CS98a], the local discontinuous Galerkin method was introduced,
motivated by the work in [BR97]. This method rewrites higher-order PDEs into first-order
systems and applies the standard DG method to solve them. This mixed DG formulation has
been the foundation for further developments, such as the hybridized discontinuous Galerkin
method [CCS06]. The third direction involves more recent developments, considering staggered
discontinuous Galerkin methods, wherein some discontinuous vertex or edge basis functions are
employed in addition to element degrees of freedom [CE06].
We refer to [CKS00; XS10; DPE12; Rup19] for a broad overview of the history and more recent
developments of DG methods.

DG methods offer several advantages compared to FD and FV methods, as outlined by [XS10]
and [CKS00]:
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• They can achieve an arbitrarily high formal order of accuracy by suitably choosing the
degree of the approximating polynomials.

• They can easily handle complicated geometries and boundary conditions and are compatible
with non-conforming meshes.

• They exhibit excellent parallelizability as the degrees of freedom of one element only need
to be communicated to its face neighbors.

• They naturally support mesh and discretization order adaptivity because of the lack of
continuity requirements on interfaces.

• They are proven to be at least (p+ 1
2)-th order accurate in the L2-norm for hyperbolic

problems when piecewise polynomials of degree p are used, irrespective of the mesh
structure [JP86]. However, the optimal rate of p + 1 is frequently observed in practice.
For elliptic and parabolic problems convergence rates of p+ 1 and p in the L2-norm can
be shown [Cas+01; Riv08].

Additionally, DG methods possess several desirable properties as summarized in [Aiz19]:

• They are locally conservative and exhibit strong stability properties.
• They are robust in handling problems involving shocks and discontinuities.
• They fully fit into the Galerkin/Petrov–Galerkin framework and allow to exploit the

sophisticated analysis toolbox that leverages Sobolev space theory.

A serious drawback of DG methods is the significantly larger number of degrees of freedom
required. However, this drawback can be mitigated by employing p-adaptivity and efficient
parallel scaling.

After establishing the derivation of the SWE and various numerical approaches to solve them,
our attention now shifts to established ocean circulation models. These models capture the
intricate dynamics, aiding in understanding and forecasting oceanic behavior, and its broader
impact on the environment. During the past decades, various models have been developed,
each with unique characteristics and capabilities, and we highlight some of the most significant
ones. These models can be broadly classified into two groups based on the computational
mesh they employ [Reu20]. Among the well-established structured grid models, widely used
examples of global ocean models are MITgcm1 [Mar+97], based on the FV discretization, and
NEMO2 [Mad+91], POM3 [BM87], and POP24 [SH94], based on FD methods. For regional and
coastal ocean studies, popular models like Delft3D5 [Ger+07] and ROMS6 [Hai+00] employ FD
approximations. In recent decades, unstructured grid models have gained popularity due to their
ability to handle complex geometries and ocean topographies more effectively. Notable examples
for regional and coastal ocean simulations include Delft3D FM7 [Del18], FVCOM8 [CLB03], and

1https://mitgcm.org
2https://www.nemo-ocean.eu
3http://www.ccpo.odu.edu/POMWEB
4https://github.com/ESCOMP/POP2-CESM
5https://oss.deltares.nl/web/delft3d
6https://www.myroms.org
7https://oss.deltares.nl/web/delft3dfm
8http://www.smast.umassd.edu/Fisheries/modelerFV/aboutFVCOM.php
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2 Discontinuous Galerkin methods for the 2D shallow water equations

ADCIRC9 [Wes+92], based on FV schemes. A DG version of the latter has been developed in
the past decade and is called DGSWEM10 [Daw+11]. SCHISM11 [Zha+16] is based on a hybrid
FE–FV method and ICOM [For+04] is based on an FE discretization. SLIM12 [WDL08] and
Thetis13 [Kär+18] rely on DG discretizations, and the latter employs code generation. For global
circulations ICON-O [Kor+22], MPAS-Ocean14 [Rin+13], and FESOM215 [Dan+17], based on
FV discretizations, and its predecessor FESOM [DKS04], based on a FE method, are extensively
used models. An early pioneer in using DG discretizations for three-dimensional hydrostatic
equations is UTBEST3D [Aiz04]. For a comprehensive understanding of structured mesh models,
[Kli+18] is a valuable resource, while [Dan13] provides deep insights into unstructured models.

In this chapter, we present the governing equations and a model reformulation. Subsequently,
we describe our p-adaptive DG discretization, encompassing an algorithmic redesign and a novel
adaptivity indicator. Finally, we conduct a stability analysis for the full two-dimensional SWE
model.

2.1 Model equations and boundary conditions

We focus on the two-dimensional SWE which, following the notation in [FN+20], are given by

∂tξ +∇ · q = 0, (2.1)

∂tq +∇ ·
(
qqT /H

)
+ τbfq +

(
0 −fc
fc 0

)
q + gH∇ξ = F . (2.2)

They are defined on some two-dimensional domain Ω ⊂ R2, and (2.1) represents the conservation
of mass and (2.2) the conservation of momentum. By ξ (in m) we denote the surface elevation
with respect to some datum, e.g., the mean sea level. The bathymetry with respect to the
same datum is represented by hb (in m) and H = hb + ξ is the total fluid depth as shown in
Figure 2.1. The depth-integrated horizontal velocity field is expressed by q ≡ (U, V )T (in m2

s ).
We denote the Coriolis coefficient by fc (in 1

s ), the gravitational acceleration by g (in m
s2 ) and

the bottom friction coefficient by τbf (in 1
s ). Some problems use a linear friction law, then

τbf = const. In other cases we employ a standard quadratic friction law, that is τbf = Cf |q|
H2 with

a constant Cf [Vre94]. Effects of variable atmospheric pressure and tidal potential are expressed
through the body force F (in m2

s2 ).

9https://adcirc.org
10https://github.com/UT-CHG/dgswemv2
11http://ccrm.vims.edu/schismweb
12https://www.slim-ocean.be
13https://thetisproject.org
14https://mpas-dev.github.io
15https://fesom.de
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2.1 Model equations and boundary conditions

free water surface

bottom sea bed

Figure 2.1: Definition of free surface elevation ξ and bathymetry hb.

This work uses the following types of boundary conditions, where ·̂ denotes a prescribed value
for the corresponding unknown.
Dirichlet boundary: At a Dirichlet boundary, all unknowns are specified

ξ(t,x) = ξ̂(t,x), q(t,x) = q̂(t,x).

Land boundary: At a land boundary, we assume no normal flow

q(t,x) · n = 0.

Open-sea boundary: We prescribe the free surface elevation at open sea boundaries

ξ(t,x) = ξ̂(t,x).

River boundary: For supercritical flow examples, we set the following river (inflow) boundary
conditions

ξ(t,x) = ξ̂(t,x), qn(t,x) = q̂n(t,x), qτ (t,x) = q̂τ (t,x),

with the normal and tangential integrated velocities q̂n(t,x) and q̂τ (t,x).

Radiation boundary: At the outflow boundary of supercritical flow examples, no unknowns are
prescribed.

Lastly, we provide initial conditions for the elevation and integrated velocity

ξ(0,x) = ξ0(x), q(0,x) = q0(x) for x ∈ Ω. (2.3)

Before we proceed to deriving the quadrature-free reformulation of the shallow water model, we
present a compact representation of system (2.1)–(2.2) [AD02; FN+20].
We denote c := (ξ, U, V )T , apply some algebraic manipulations to the gravity term, and arrive
at the following compact form

∂tc+∇ · Ã(c) = r̃(c), (2.4)
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2 Discontinuous Galerkin methods for the 2D shallow water equations

where

Ã(c) =


U V

U2

H + gξ(H+hb)
2

UV
H

UV
H

V 2

H + gξ(H+hb)
2

 and r̃(c) =


0

−τbfU + fcV + gξ∂xhb + Fx

−τbfV − fcU + gξ∂yhb + Fy

 . (2.5)

2.2 Quadrature-free model reformulation

In a quadrature-free DG scheme, all element and face integrals are computed analytically, without
quadrature rules. In the upcoming paragraphs, we summarize existing works on quadrature-free
discretizations and present our novel approach, building upon the findings from the published
article [FN+20].

The primary advantage of employing a quadrature-free method lies in eliminating the innermost
loop over quadrature points, providing better code optimization potential. This approach is
not new and has already been investigated in [AS98; LA99]. Furthermore, [RM03] utilized
a basis consisting of polynomial functions without numerical quadrature, reducing computational
costs for boundary integrations. [MRC06] proposed a quadrature-free DG method for solving
the level set equation using the efficient BLAS library in the context of interface capturing
methods. However, until now, it has been exclusively applied to linear [DRRIA12] or product-
type nonlinear operators, for example, to advection terms in Euler equations [Hil+06] or to the
kinetic equations [HJ20]. Integrals involved in DG methods discretizing such problems only
contain multidimensional polynomials and can be conveniently evaluated analytically.

However, when dealing with the SWE, the advective terms in the momentum equations formu-
lated in the conservative unknowns contain fraction-type nonlinearities, making an analytical
evaluation of integrals challenging or even unfeasible. To address this difficulty, [Nai15] adopted
the velocity as the primary unknown instead of momentum for the atmospheric SWE, avoiding
fraction-type terms. This approach was also used in [RDB18] for an ADER-DG implementation
of oceanic SWE. Nevertheless, the conservative form of the SWE offers significant advantages,
particularly in conserving essential physical properties of the system, such as momentum. Re-
cently, in [LZ21], a quadrature-free discretization of the SWE, including wetting and drying, was
proposed. In this approach, the underlying system remains unaltered, employing a nodal basis
along with evaluations conducted at interpolation nodes, thereby circumventing the necessity for
traditional quadrature computations. Therefore, analytical evaluations and thus precomputing
all element and edge integrals are not possible, and furthermore, the system is not equivalent to
its quadrature-based counterpart.

In our approach, we modify the PDE system such that it avoids fraction-type nonlinearities
to enable the quadrature-free evaluation of element and edge integrals arising from the DG
discretization of the SWE.
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2.3 Discretization of the model

For this purpose, we introduce the depth-averaged velocity u = (u, v)T (in m
s ) related to q by

q = uH and replace system (2.4) by the quadrature-free reformulation

∂tc+∇ ·A(c,u) = r(c,u), (2.6)
uH = q, (2.7)

with

A(c,u) =


U V

Uu+ gξ(H+hb)
2 Uv

V u V v + gξ(H+hb)
2

 and r(c,u) =


0

−τbfu+ fcV + gξ∂xhb + Fx

−τbfv − fcU + gξ∂yhb + Fy

 .
(2.8)

In case of the linear friction law we then use τbf = const ·H and in case of the quadratic one,
we use τbf = Cf |u|, both in m

s .

Note that A and r in (2.8) have no fraction-type nonlinearities as opposed to Ã and r̃ in (2.5).
In Section 4.2, we evaluate the above reformulation together with adaptations in the numerical
flux detailed in the following section.

The proposed approach exhibits the potential for generalization to specific classes of nonlinear
operators, thereby enabling the utilization of the advantages offered by the quadrature-free
methodology across a broader range of nonlinear problems.

2.3 Discretization of the model

In this section, we outline the DG discretization of system (2.6)–(2.8), building upon the
previously published work [FN+20] and the preprint [FN+23a]. Subsequently, we elucidate the
employed limiting and temporal discretization scheme, as detailed in [FNA22]. The p-adaptivity
strategy, including a redesign of the DG discretization to optimize hardware utilization, is then
presented based on [FN+23a]. Finally, we present our novel parameter-free adaptivity indicator,
as proposed in [FNA22].

2.3.1 Spatial discretization by a quadrature-free DG method

The DG discretization of the quadrature-based two-dimensional SWE was originally proposed
in [AD02]. We adhere to their methodology and introduce some modifications to the numerical
flux to enable a quadrature-free evaluation of the integrals.
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2 Discontinuous Galerkin methods for the 2D shallow water equations

Let {TM}M>0 represent a family of triangulations of the domain Ω, and let Ωe, e ∈ {0, . . . , E} = Ie

be elements of TM. To derive the local variational formulation of system (2.6)–(2.8) on an el-
ement Ωe, we multiply the system with sufficiently smooth test functions φ and ψ, followed
by integrating over Ωe and integrating by parts. For the subsequent equations, we introduce
the notation (·, ·)Ωe and 〈·, ·〉∂Ωe to represent the L2-scalar products on elements and edges,
respectively. Furthermore, we denote by ne an exterior unit normal to ∂Ωe and get to

(∂tc,φ)Ωe − (A(c,u),∇φ)Ωe + 〈A(c,u) · ne,φ〉∂Ωe = (r(c, u),φ)Ωe , (2.9)
(uH,ψ)Ωe = (q,ψ)Ωe . (2.10)

Let Pp(Ωe) denote the polynomial space of order p defined on Ωe. The initial conditions (2.3)
are projected into the corresponding discrete space. To obtain the semi-discrete formulation
from (2.9)–(2.10), we substitute c and u with the discrete solution cM and uM, respectively, and
use test functions φM ∈ Pp(Ωe)3, and ψM ∈ Pp(Ωe)2. This leads to

(∂tcM,φM)Ωe − (A(cM,uM),∇φM)Ωe + 〈Â(cM,uM, c
+
M ,u

+
M ,ne),φM〉∂Ωe = (r(cM,uM),φM)Ωe ,

(2.11)

(uMHM,ψM)Ωe = (qM,ψM)Ωe . (2.12)

The element-local systems (2.12) are solved by an LU-factorization per substep of the time
stepping scheme (cf. Section 2.3.2).
The edge flux A(cM,uM) ·ne is approximated on ∂Ωe by a numerical flux Â(cM,uM, c

+
M ,u

+
M ,ne).

This numerical flux depends on the discontinuous values of the solution within the element Ωe,
namely cM,uM, as well as those of its edge-neighbor, c+

M ,u
+
M . When dealing with exterior domain

boundaries, the prescribed boundary conditions for elevation or velocity are incorporated into
the flux computation. The components of the flux Â quantify the amount of each conserved
unknown transported across the boundary ∂Ωe in the direction of ne. For a locally conservative
method, this flux must equal the negative flux of the neighboring element that shares the
edge. The presence of discontinuities introduces a Riemann problem [LeV92; Tor09], for which
various Riemann solvers are available, each offering distinct characteristics such as amount
of numerical diffusion, computational cost, and stability properties. The simplest choice that
guarantees the numerical stability of the method is the Lax–Friedrichs flux [LeV92], which is
employed in all numerical simulations presented in Chapter 4 unless specified otherwise. Other
choices of Riemann solvers include the Roe solver [Roe81], the FORCE solver [THD09], or the
HLLC solver [TSS94].

The Lax–Friedrichs flux is defined as

Â(cM,uM, c
+
M ,u

+
M ,ne) = 1

2
(
A(cM,uM) +A(c+

M ,u
+
M )
)
· ne + λ

2 (cM − c+
M ), (2.13)

where λ represents the maximum absolute eigenvalue of the matrix ∂
∂c(Ã(c,u) · n). For the

SWE, this eigenvalue is given by λ(H,u) = |u · n| +
√
gH. In practice, quadrature-based
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schemes typically use λ(Ĥ, û), where Ĥ and û are evaluated at each quadrature point using the
Roe–Pike averaging method [RP85] as described in [Haj+18]. The nonlinearity of the expression
for λ introduces challenges in its quadrature-free evaluation, making the computation rather
intricate.

We propose an alternative approach motivated by the following consideration: in the Lax–
Friedrichs solver presented in (2.13), the parameter λ is a coefficient for the penalty term.
Typically, increasing the value of λ does not negatively affect the stability of the scheme,
although it may introduce higher numerical diffusion. To enable a quadrature-free formulation,
we use a single value of λ|f for each edge f of Ωe, thus permitting an analytical evaluation of
integrals involving Â defined in (2.13). For this purpose, let xf denote the midpoint of edge f ,
and we employ the approximation

λ|f := max
Ωe:xf∈∂Ωe

∣∣∣uM|Ωe (xf ) · n
∣∣∣+ max

Ωe:xf∈∂Ωe

√
gHM|Ωe (xf ). (2.14)

Owing to the excessive numerical diffusion sometimes encountered with the Lax–Friedrichs flux,
we opt for the FORCE flux [THD09] in certain cases while still using λ as described previously.
The FORCE flux can be constructed as the arithmetic mean between the Lax–Friedrichs flux
and the two-step version of the Lax–Wendroff flux

Â
F = 1

2
(
Â
LF + ÂLW

)
, (2.15)

where the latter is defined as ÂLW = A
(
QLW

)
with

QLW (cM,uM, c
+
M ,u

+
M ,ne) = λ

2
(
A(cM,uM)−A(c+

M ,u
+
M )
)
· ne + 1

2(cM + c+
M ).

Since the FORCE flux is more computationally expensive, we reserve its usage for scenarios
where the Lax–Friedrichs flux introduces too much diffusion.

Notably, with either the Lax–Friedrichs or the FORCE flux and λ approximated as in (2.14),
our semi-discrete formulation (2.11)–(2.12) only contains nonlinearities in product form, thus
all edge integrals are well suited for an analytical integration using a quadrature-free approach.
We present a comprehensive evaluation of the reformulated numerical scheme in Section 4.2.

In our implementation, we utilize a hierarchical modal basis, as this choice aligns optimally with
the requirements of a p-adaptive scheme. Given ϕei(x), i = 1, . . . , P (p), a basis of Pp(Ωe), cM
and uM can be represented as

cM(x)|Ωe = (ξM, UM, VM)T (x) =
3∑
j=1

P (p)∑
i=1

cjeiϕei(x) ej , (2.16)

uM(x)|Ωe = (uM, vM)T (x) =
2∑
j=1

P (p)∑
i=1

ujeiϕei(x) ej , (2.17)
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where cjei and u
j
ei are the basis coefficients associated with the unknowns and ej represents the

j-th unit vector in R3 in (2.16) or R2 in (2.17). A basis of Pp(Ωe) is defined through a mapping
from the corresponding reference basis on Ω̂ by

ϕei(x) =

ϕ̂i
(
F−1
e (x)

)
, x ∈ Ωe,

0, otherwise,
i ∈ {1, . . . , P (p)}.

Our implementation employs triangles. The mapping Fe : Ω̂→ Ωe, x̂→ x := Bex̂+ ae1 is an
affine-linear transformation (see Figure 2.2) from the reference triangle onto triangle Ωe with

Be =
[
Be

1,1 Be
1,2

Be
2,1 Be

2,2

]
:=
[
ae2 − ae1 ae3 − ae1

]

and ae1,ae2,ae3 denoting the vertex coordinates of Ωe.

x̂1

x̂2

â1 â2

â3

00 1

1

Ω̂

Fe

x1

x2

ae1

ae2

ae3

Ωe

Figure 2.2: Affine-linear mapping Fe from the reference triangle Ω̂ = {â1, â2, â2} ={
[0, 0]T , [1, 0]T , [0, 1]T

}
to the physical triangle Ωe = {ae,1, ae,2,ae,3} (from [FN+20]).

The number of basis functions P (p) depends on the selected polynomial approximation space.
In R2, it has the following values: P (0)=1, P (1)=3, P (2)=6, and P (3)=10. The reference
basis functions utilized in our implementation are orthonormal with respect to the L2-scalar
product on Ω̂ and given by

ϕ̂1(x̂) =
√

2, }P0(Ω̂)
ϕ̂2(x̂) = 2− 6x̂,
ϕ̂3(x̂) =

√
12(1− x̂− 2ŷ),

 P1(Ω̂)

ϕ̂4(x̂) =
√

6
(
1− 8x̂+ 10x̂2) ,

ϕ̂5(x̂) =
√

3
(
−1− 4x̂+ 5x̂2 + 12ŷ − 15ŷ2) ,

ϕ̂6(x̂) =
√

45
(
1− 4x̂+ 3x̂2 − 4ŷ + 8x̂ŷ + 3ŷ2) ,


P2(Ω̂)

ϕ̂7(x̂) =
√

8
(
−1 + 15x̂− 45x̂2 + 35x̂3) ,

ϕ̂8(x̂) =
√

24
(
−1 + 13x̂− 33x̂2 + 21x̂3 + 2ŷ − 24x̂ŷ + 42x̂2ŷ

)
,

ϕ̂9(x̂) =
√

40
(
−1 + 9x̂− 15x̂2 + 7x̂3 + 6ŷ − 48x̂ŷ + 42x̂2ŷ − 6ŷ2 + 42x̂ŷ2) ,

ϕ̂10(x̂) =
√

56
(
−1 + 3x̂− 3x̂2 + x̂3 + 12ŷ − 24x̂ŷ + 12x̂2ŷ − 30ŷ2 + 30x̂ŷ2 + 20ŷ3) .



P3(Ω̂)

(2.18)

Since the mapping from Ω̂ to Ωe is affine-linear, the basis ϕei, i ∈ {1, . . . , P (p)} retains this
orthonormal property.
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2.3 Discretization of the model

2.3.2 Slope limiting and temporal discretization

When employing FV and DG methods, the technique of slope limiting is widely utilized to
enforce discrete maximum principles [BJ89; ZS11]. Slope limiters adjust the gradients and, if
applicable, higher-order derivatives of polynomial approximations on mesh cells to preserve local
bounds based on cell averages in neighboring elements [LeV92; KH23]. These limiters serve
as post-processing tools without affecting local mass conservation. Within the context of DG
approximations in space and explicit total variational diminishing time stepping schemes, they
exploit the fact that the lowest-order (piecewise constant) part of a DG solution ensures the
preservation of solution monotonicity and produces no spurious extrema for linear problems. As
a result, this approach ensures admissible minimum and maximum values for the higher-order
solution [Reu20]. Vertex-based slope limiters represent a specific class of limiters that utilize
vertices of the computational mesh as control points [Kuz10; Aiz11]. They can be extended to
operate on higher-order DG solutions in a hierarchical manner [Kuz13; Kuz14].

In our implementation, we apply a vertex-based slope limiter following [Kuz10; Aiz11] to piecewise
linear and higher-order approximations where appropriate. For simplicity, we formulate our
methodology in the remainder of this section for a generic scalar function w(x) defined on Ω
and its discretized counterpart wM(x). For orthonormal basis functions used in our work, the
local representation of the limiting operator Π : Pp(Ωe)→ Pp(Ωe) is given by

Π
(
wM(x)|Ωe

)
= we1ϕe1 + αe

3∑
i=2

wei ϕei + δαe,1

P (p)∑
i=4

wei ϕei, (2.19)

where the limiting factor αe ∈ [0, 1] is computed as follows:

αe = min
i∈{1,2,3}


min

(
1, wmax

i −w0
e

we(aei)−w0
e

)
, if we(aei)− w0

e > ε,

min
(

1, wmin
i −w0

e

we(aei)−w0
e

)
, if we(aei)− w0

e < −ε,

1, otherwise,

(2.20)

where we choose ε = 10−5. Here, wmax
i and wmin

i represent the solution bounds given by the
maximum and minimum of piecewise constant solutions w0

e on all elements sharing vertex aei.
Note that for an orthonormal basis, one has

w0
e = 1
|Ωe|

∫
Ωe
wM(x)|Ωedx.

In cases where (2.20) results in αe < 1, all degrees of freedom corresponding to superlinear
(quadratic and higher-order) basis functions in (2.19) are set to zero, and, therefore we multiply
the corresponding terms with the Kronecker delta δαe,1, which is 1 if αe = 1 and 0 otherwise. In
such instances, this limiting does not guarantee the exact preservation of bounds wmax

i and wmin
i ,
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2 Discontinuous Galerkin methods for the 2D shallow water equations

but it effectively minimizes oscillations in most practical scenarios. In the test cases presented
in Chapter 4, we calculate the limiting factor αe from the free surface elevation and also apply
it to the depth-integrated velocity.

In the context of solving time-dependent PDEs, Runge–Kutta (RK) methods present a di-
verse set of explicit and implicit schemes of varying order. However, traditional schemes may
encounter spurious oscillations when applied to problems with discontinuities and steep gra-
dients. To address this issue, strong stability preserving (SSP) RK shemes were introduced
in [SO88; CLS89; CHS90] to preserve the total variation diminishing (TVD) property of the
spatial semi-discretization [GS98; GST01; GKS11]. Recently, building upon SSP RK schemes,
advanced time discretization schemes have been developed in [EG22; Kuz+22] to overcome the
fourth-order barrier of the explicit SSP RK schemes and allow for larger time step sizes.

In our implementation, the temporal discretization of system (2.11)–(2.12) is accomplished using
an SSP RK method. Following the presentation in [Reu+16], let 0 = t1 < t2 < · · · < tend be
a possibly non-equidistant decomposition of the time interval and ∆nt := tn+1 − tn represent
the size of the n-th time step. The update scheme of the s-stage SSP RK method with limiting
operator Π is then given by

c
(0)
M := cM(tn, ·),

c
(i)
M := Π

(
ωic

(0)
M + (1− ωi)

{
c

(i−1)
M + ∆ntL(c(i−1)

M , tn + δi∆nt)
})

, i = 1, . . . , s, (2.21)

cM(tn+1, ·) := c
(s)
M ,

where L denotes the spatial discretization operator specified by (2.11)–(2.12). For the test cases
presented in Chapter 4, we employ a two-stage SSP RK method, known as Heun’s scheme, with
coefficients ω1 = 0, ω2 = 1/2, δ1 = 0, and δ2 = 1 (cf. Equation (2.4) in [GS98]).

2.3.3 p-adaptivity and separation approach

Considering the complex flow structures observed in coastal regions and the time-dependent
nature of solutions, achieving accurate resolution of flow features using a fixed computational grid
and discretization order is often unpredictable or prohibitively expensive [Kub+09]. Therefore,
adaptive mesh refinement (h-adaptivity) or local adjustment of the polynomial order of the
discretization (p-adaptivity) are commonly employed to ensure sufficient spatial resolution for
accurately capturing the evolving flow field. The previous work in [KWD06] demonstrated the
benefits of using p-adaptivity instead of h-adaptivity, in particular for problems exhibiting smooth
solutions in coastal regions when employing DG methods. Furthermore, for DG discretizations
which rely on modal hierarchical bases, p-adaptive schemes are particularly attractive due to
their straightforward implementation, in contrast to h- and hp-adaptive schemes. We focus on
p-adaptivity, which involves adjusting the local approximation order depending on the evaluation
of an adaptivity indicator, introduced in Section 2.3.4.
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2.3 Discretization of the model

As our approach employs the quadrature-free formulation as introduced in Section 2.2, it is
highly suitable for p-adaptive schemes. The analytic evaluation of all element and edge integrals
completely avoids the main overhead of varying-order approximation spaces, i.e., the need for the
most accurate and, thus, the most expensive quadrature rule or maintaining several quadrature
rules of different orders.

Adaptive numerical schemes for time-dependent problems face a critical challenge when combined
with massively parallel computing based on distributed memory parallelization. The primary
concern revolves around achieving a well-balanced computational load throughout the simulation.
Numerous load-balancing strategies have been proposed in the past, such as those in [Bis+00;
HD00; TDF06; BB17]. However, these strategies introduce higher code complexity and additional
computational overhead. Consequently, the popularity of adaptive numerical schemes has waned
in some user communities like in numerical weather prediction or ocean modeling over the
last decade. It is worth noting that recently some highly efficient frameworks which effectively
manage scalability despite employing adaptivity, like presented in [OBB23], have been developed.
To address this issue and rejuvenate the interest in adaptive schemes, we propose a novel
approach focusing on the load-balancing challenge in the context of a p-adaptive DG method.
Our strategy involves separating the numerical scheme and the solution algorithm into two
parts: a lower-order non-adaptive component (fixed computation) and a higher-order adaptive
component (correction computation). By offloading the correction computation to separate
hardware, we can ensure that the load balance of the base computation remains unaffected.
In addition, this encapsulation of the adaptive part of the numerical method in a separate
kernel offers a meaningful way to map time-dependent adaptive FE schemes to task-based
programming models particularly well-suited for heterogeneous hardware architectures, as
illustrated in [Bos+13; GG+19]. In the following paragraphs, we delve into the algorithmic
details of our novel separation approach.

When combined with hierarchical bases, the quadrature-free formulation utilized in our solver
separates the discrete equations associated with the lower polynomial orders from the higher-order
ones. The underlying concept involves the independent evaluation of updates for non-adaptive
degrees of freedom in the DG approximation, such as the piecewise constant or piecewise linear
components, separate from the adaptive higher-order part of the solution. This decoupling
is facilitated by the product-type nonlinearities present in the quadrature-free formulation.
Consequently, the p-adaptive scheme for such a discretization boils down to adding and removing
terms without impacting the rest of the DG approximation. As depicted in Figure 2.3, the
non-adaptive lower-order DG solution, here represented as piecewise constant (left) or piecewise
linear (right), is computed for all elements. Subsequently, an adaptive correction involving
piecewise linear and higher-order components (left) or piecewise quadratic and higher-order
components (right) is selectively applied only where necessary. The setups evaluated in Section 4.4
include a constant non-adaptive part with a linear correction and a linear non-adaptive part
with a quadratic correction. This approach is naturally extendable to any higher-order DG
discretization.
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2 Discontinuous Galerkin methods for the 2D shallow water equations

constant
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higher-order (p≥3)

quadratic
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Figure 2.3: Schematic illustration of the separation approach: The solution for the non-adaptive
components (left: piecewise constant, right: piecewise linear) is computed for all elements
on dedicated hardware, e.g a GPU. An adaptive correction (left: p ≥ 1, right: p ≥ 2) is
then selectively applied to specific elements. The latter computation can be offloaded to
different hardware, e.g., a CPU (adapted from [FN+23a]).

We illustrate our separation approach for the mass conservation equation. All other integrals
are separated in a similar fashion. First, we obtain the algebraic representation of element
integrals by substituting the basis representations (2.16) and (2.17) into (2.11) and testing the
first equation with φM = ϕeqe1. For q ∈ 1, . . . , P (p) the resulting expression is

(A(cM,uM),∇(ϕeqe1))Ωe =
P (p)∑
i=1

[
c2
ei

∫
Ωe

∂ϕeq
∂x

ϕeidx+ c3
ei

∫
Ωe

∂ϕeq
∂y

ϕeidx
]
. (2.22)

We assume that the fixed non-adaptive calculation up to order b is performed for all elements,
while the correction for order b + 1 is only applied to selected elements. Thus, the fixed
non-adaptive computation can be expressed as

(A(cM,uM),∇(ϕeqe1))fixedΩe =
P (b)∑
i=1

[
c2
ei

∫
Ωe

∂ϕeq
∂x

ϕeidx+ c3
ei

∫
Ωe

∂ϕeq
∂y

ϕeidx
]

for q ∈ 1, . . . , P (b).
The correction term is then divided into two cases. For q ∈ 1, . . . , P (b), it is given by

(A(cM,uM),∇(ϕeqe1))correctionΩe =
P (p)∑

i=P (b)+1

[
c2
ei

∫
Ωe

∂ϕeq
∂x

ϕeidx+ c3
ei

∫
Ωe

∂ϕeq
∂y

ϕeidx
]
,

and for q ∈ P (b) + 1, . . . , P (p), the correction term is given by

(A(cM,uM),∇(ϕeqe1))correctionΩe =
P (p)∑
i=1

[
c2
ei

∫
Ωe

∂ϕeq
∂x

ϕeidx+ c3
ei

∫
Ωe

∂ϕeq
∂y

ϕeidx
]
.
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2.3 Discretization of the model

The edge integrals are analogously separated while, of course, considering the local approximation
order of the current element. Notably, when calculating the coefficient λ, i.e., (2.14), in front of
the penalty term for the Lax–Friedrichs flux, the evaluation exclusively employs the constant part
of the solution for the velocity and free surface elevation fields, irrespective of the approximation
order. Similarly, the right-hand side computation of the nonlinear bottom friction relies on the
piecewise constant solution component rather than the full-order approximation for determining
the velocity magnitude. This particular approach has been seamlessly integrated into our
implementation since it demonstrated no deterioration in the quality of the solution and allows
us to circumvent the need for special treatment during the application of corrections.

The solution uM(t,x)|Ωe of (2.12) involves solving an element-local linear system per RK substep.
This system is different for different approximation orders, i.e., the higher-order degrees of freedom
can actually affect the lower-order ones. However, in all benchmarks we investigated, excluding
higher-order contributions from lower-order computations showed no negative effects, while
maintaining an equal solution quality. Thus, for computing uM, we employ an LU-factorization
to now generally solve the system given by

(Hi,j)i,j∈{1,...,P (p)}

(
ulj

)
j∈{1,...,P (p)}

=
(
cl+1
i

)
i∈{1,...,P (p)}

, l = 1, 2,

where the matrices and vectors are defined as follows:

(Hi,j)i,j∈{1,...,P (p)} :=
∫

Ωe

P (p,i,j)∑
n=1

c1
enϕen + hb

ϕejϕei,(
ulj

)
j∈{1,...,P (p)}

:= ulej ,

(
cl+1
i

)
i∈{1,...,P (p)}

:=
∫

Ωe

P (p)∑
n=1

cl+1
en ϕenϕei, l = 1, 2,

and the function P (p, i, j) denotes the number of terms in the summation:

P (p, i, j) =



1, if i = j = 1,

3, if p <= 1∧!(i = j = 1),

6, if p <= 2∧!(i <= 3 ∧ j <= 3),

10, if p <= 3∧!(i <= 6 ∧ j <= 6).

The orthonormality property ensures that the lower-order terms in
(
cl+1
i

)
i∈{1,...,P (p)}

remain
unaffected by the higher-order ones. Consequently, there is no need to re-assemble the lower-order
system when applying the higher-order correction.

For a comprehensive evaluation of the performance of the separation approach, we present
a detailed analysis in Section 4.4.
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2 Discontinuous Galerkin methods for the 2D shallow water equations

2.3.4 Adaptivity indicators

Adaptive discretizations need indicators to guide the adaptivity process. In this section, we
provide an overview of existing approaches and introduce our novel indicator, which stands out
by not requiring any problem-dependent parameters as user input. Additionally, we present two
other indicators for comparison purposes.

The literature presents a diverse range of error and smoothness indicators for DG schemes,
detailed extensively in a comprehensive survey in [Nad+19]. These indicators are broadly
categorized based on the information they utilize to assess the local discretization error or
solution regularity. Feature-based indicators are often derived from physical or theoretical
problem attributes. One example is a method for vortex detection [Mit01]. Discretization-
error- and residual-error-based indicators identify refinement regions as those with high errors
of numerical solutions. One straightforward and computationally efficient scheme relies on
measuring the local spectral decay of the DG solution [Esk11; TBR13]. It compares the
absolute or relative magnitudes of degrees of freedom associated with different polynomial orders.
Another popular indicator is the non-conformity error indicator, which considers the jump
in the numerical solution as a measure of the error as illustrated in [KF03; RFS03]. Lastly,
goal-oriented indicators like the one introduced in [HH02] evaluate the impact of numerical
errors, utilizing weighted residuals from dual problems for effective error assessment. Numerous
authors showcased the superiority of discretization-error-based methods for stationary problems,
yet their high memory usage and computational cost limit their application.

A discretization-error based indicator, already applied successfully to the SWE, estimates
local solution gradients [Kub+09; Mic+11]. The authors in [Mic+11] propose to combine
a slope limiter with a p-adaptive DG method. However, the adaptivity and the slope-limiting
procedures were not integrated in that study, i.e., they did not use information from each other.
Furthermore, to the best of our knowledge, all previously employed indicators for the SWE
depend on problem-specific parameter choices.

Our indicator employs techniques introduced in [Kri+04] for non-conformity estimators (KXRCF
indicator), which quantify the absolute or relative size of discontinuities between the element-local
solutions, primarily by integrating solution jumps across inter-element boundaries. However,
specific requirements in our application necessitated the development of a new indicator for two
main reasons. Firstly, computational efficiency is needed in handling highly dynamic simulation
scenarios like tidal waves or tsunamis in the SWE. Additionally, the ability to detect large local
errors using the lowest order approximation space and support for piecewise constant polynomial
spaces is crucial, which cannot be achieved with methods like spectral decay.

The proposed adaptivity indicator satisfies the aforementioned requirements without relying on
problem-specific parameters or sensitivity measures. It seamlessly integrates into the vertex-
based slope limiter [Kuz10; Aiz11; Aiz+17; Haj+18; HKA19], effectively reducing the overall
computational cost of the scheme.
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2.3 Discretization of the model

To avoid oscillations in the approximation order within our numerical simulations, once the
order is increased, we consistently require a minimum of ten time steps before allowing it to be
decreased again for all adaptivity sensors. When reducing the approximation order of an element,
all coefficients associated with higher-order degrees of freedom are reset to zero. Furthermore,
an element’s approximation order can only be in- and decreased by one at a time.

2.3.4.1 Novel parameter-free indicator

The primary objective of the novel indicator, denoted as JRL (Jump-Reconstruction-Limiting),
is to identify resolved and under-resolved solution parts while distinguishing between smooth
and non-smooth regions such as shocks. The indicator aims to approximate non-constant smooth
solution regions through piecewise linear or quadratic polynomials, while automatically reverting
to constant approximations in regions characterized by constant behavior. In the presence of
shocks or discontinuities, the indicator attempts to prevent over- and undershoots by applying
limiting techniques whenever possible or by appropriately lowering the approximation order
when required.

The present approach draws upon relevant existing techniques in the field. Firstly, a gradient
reconstruction method based on a local L2-projection, as proposed in [KS13], where it serves as
a parameter-free smoothness indicator for the unsteady linear advection equation. Secondly,
[Aiz+17] introduced a flux-based gradient reconstruction technique, which was subsequently
employed within the framework of anisotropic slope limiters for the DG method.

Figure 2.4 shows the indicator, combining the aforementioned concepts with a vertex-based slope
limiter. This amalgamation enables the reuse of pre-computed data to enhance computational
efficiency while seamlessly integrating p-adaptivity with slope limiting. The ensuing sections
elaborate on the underlying principles governing the indicator’s operation.

For simplicity, we again formulate our methodology in the remainder of this section for a generic
scalar function w(x) defined on Ω and its discretized counterpart wM(x). Employing ϕei(x),
with i = 1, . . . , P (p), as a basis of Pp(Ωe), wM can be expressed as

wM(x)|Ωe =
P (p)∑
i=1

wei ϕei(x) =: wpe .

In this representation, the superscript denotes the approximation order, and the absence of
a superscript implies the default (full) approximation order. Additionally, we use the shorthand
notation p0, p1, and p2 to refer to piecewise constant, linear, and quadratic approximation
spaces, respectively.

In Chapter 4, the adaptivity indicator, is applied to the free surface elevation, that is, w = ξ,
and the degrees of freedom of the depth-integrated velocity q are adapted correspondingly.
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approximation
order

JwMKe
|∂Ωe| ≤ ε1 · |w0

e |

p1

JwMKe−JwbMKe
|∂Ωe| ≤

0.1 · |w0
e |

yes

p0 -1

yes

p1 0

no

JwMKe
|∂Ωe| ≤ ε̃1 · |w0

e |

p1 or p2 4

yes

limiting (cf. 2.3.2)

no

α

p1 or p2 3

1

p1 with Π(wM) 2
[0.3,1[

p0 -2
[0,0.3[

no

JwMKe
|∂Ωe| ≤ ε0 · |w0

e |

p0

p0 0

yes

reconstruction (cf. 2.3.4.1.2)

no

limiting (cf. 2.3.2)

JR(Π(wM))Ke <
JwbMKe

p0 0

no

p1 with R(Π(wM)) 1

yes

JwMKe
|∂Ωe| ≤ ε2 · |w0

e |

p2

p1 -4

no

JwMKe−JwbMKe
|∂Ωe| ≤

0.1 · |w0
e |

yes

p2 0

no

p1 -3

yes

Figure 2.4: Flow chart depicting the JRL adaptivity indicator for orders 0, 1, and 2. Π is the limiting
operator defined in (2.19), and R the reconstruction defined in (2.24). The gray boxes
represent various adaption scenarios, with zero denoting no adaption and no limiting,
negative values indicating a decrease, and positive values pointing to an increase of the
approximation order or applying limiting (adapted from [FNA22]).

24



2.3 Discretization of the model

2.3.4.1.1 Error detection

Let us begin by establishing some notation. For the base approximation order b := max {p− 1, 0},
the jump associated with element Ωe is defined as

JwMKe :=
∑
e+∈Ie

∫
∂Ωe∩∂Ωe+

∣∣∣wpe − wbe+∣∣∣ ds =
∑
e+∈Ie

∫
∂Ωe∩∂Ωe+

∣∣∣∣∣∣
P (p)∑
i=1

weiϕei −
P (b)∑
i=1

we+iϕe+i

∣∣∣∣∣∣ ds,
(2.23)

where Ie contains all element indices as stated in the beginning of Section 2.3.1. The base jump
replaces wpe in formula (2.23) by the truncated approximation wbe on Ωe, that is,

JwbMKe :=
∑
e+∈Ie

∫
∂Ωe∩∂Ωe+

∣∣∣wbe − wbe+∣∣∣ ds.
It is primarily employed in combination with JwMKe to estimate the solution regularity. The
decision-making process is dependent upon the following thresholds: ε0 = 0.01, ε1 = 0.005,
ε2 = 0.001, and ε̃1 = 0.01, all of which are suitable and remain invariant across diverse test
cases and resolutions. However, users still have the option to change the parameters if desired
or required by certain test cases.

The jump definition in (2.23) diverges slightly from the conventional jump definition (cf. (2.27)
in Section 2.3.4.2.1) wherein a full order approximation is considered. The definition we offer is
designed to mitigate the influence of over- and undershoots from neighboring elements, as well
as the sequence in which increments and decrements involving neighboring elements occur.

2.3.4.1.2 Gradient reconstruction

Considering a p0 solution w0
M(t,x) that satisfies Jw0

MKe
|∂Ωe| ≤ 0.01 · |w0

e |, we construct a linear solution
through the application of a rotationally invariant gradient reconstruction

R(wM(x)|Ωe ) = w0
e + ∂w1

e

∂x
ψe2(x) + ∂w1

e

∂y
ψe3(x). (2.24)

This reconstruction utilizes the linear Taylor basis functions ψei as outlined in Equation (6)
of [Kuz10]. These basis functions are defined on the element Ωe as follows:

ψe1(x) = 1, ψe2(x) = x− xce, ψe3(x) = y − yce,

where xce = (xce, yce)T = 1
3 (ae1 + ae2 + ae3) represents the centroid of Ωe. The first coefficient is

the solution’s mean value, while the subsequent two coefficients are derived from the directional
derivatives calculated along all edges. Let us consider Ωe+ with centroid xce+ = (xce+ , yce+) sharing
an edge with Ωe. The directional derivative of we on ∂Ωe ∩ ∂Ωe+ in direction de+ = xce+ − x

c
e

can be approximated as follows:
∂we
∂de+

≈
w0
e+ − w

0
e

|de+ |
. (2.25)

25



2 Discontinuous Galerkin methods for the 2D shallow water equations

After obtaining these approximations of the directional derivatives, a least squares problem
is solved to determine the higher-order coefficients. Specifically, let N ∈ R3×2 represent the
matrix containing the directions de+ in its rows, and let νe ∈ R3 denote the vector of directional
derivatives defined in (2.25) for all neighboring elements Ωe+ . The missing coefficients from
(2.24) are then obtained as the solution of the least squares problem

(
∂w1

e

∂x
,
∂w1

e

∂y

)T
= (NTN)−1NT νe. (2.26)

Finally, the solution is transformed back into the orthonormal basis. For elements at the
boundary of Ω, one can define the directional derivatives using a ghost layer. The aforementioned
methodology naturally generalizes to arbitrary polygons.

2.3.4.2 Jump and gradient indicators

For the assessment of our novel indicator’s performance, a comprehensive evaluation is presented
in Section 4.3. This evaluation involves comparisons with two other adaptivity indicators. The
first one, described in Section 2.3.4.2.1, represents a well-established scheme that relies on
the analysis of inter-element jumps to assess the local solution regularity. The second one,
outlined in Section 2.3.4.2.2, is our own version of the gradient indicator, specifically enhanced
to accommodate p0 discretizations. It is essential to emphasize that these two indicators need
either one (cf. Section 2.3.4.2.1) or three (cf. Section 2.3.4.2.2) user-defined thresholds as input
parameters. These parameters must be calibrated manually and may differ for different scenarios,
for limited and unlimited simulations as well as across different grid resolutions within the same
scenario.

2.3.4.2.1 Jump indicator

The indicator introduced in [RFS03] computes the sum of the jumps across the edges of an
element Ωe. In our notation, this is expressed as

JwMK∗e :=
∑
e+∈Ie

∫
∂Ωe∩∂Ωe+

∣∣∣wpe − wpe+∣∣∣ ds. (2.27)

Subsequently, if the total jump observed over the element boundaries exceeds the threshold
established by the user, the local approximation order is increased. Conversely, a decrease of
the order is performed if the jump falls below the specified threshold. This indicator can be
viewed as a simplified version of the JRL indicator since it also employs jump calculations for
error detection. We refer to it as JE (Jump-Estimation) hereafter.
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2.4 Stability analysis

2.3.4.2.2 Gradient indicator

There exist gradient indicators in the literature, including the one introduced in [BS05] originally
designed for the compressible Navier–Stokes equations and subsequently employed in the context
of the SWE in [Kub+09]. This approach computes gradients utilizing the element-local solutions,
making it unsuitable for applications with p0-discretizations. To address this deficiency, we
designed a new scheme by using directional derivatives in the directions df = xf − xce, where
xf represents the midpoint of edge f ⊂ ∂Ωe. The directional derivative is then approximated
using the element centroid value and the edge midpoint values, extracted from both the current
element and its neighboring edge, as illustrated by the following expressions:

∂we
∂df

≈ we(xf )− we(xce)
|df |

and ∂we+

∂df
≈ we+(xf )− we(xce)

|df |
.

To decide, whether an increment of the approximation order is necessary, a comparison is made
by evaluating ∣∣∣∣∣∂we∂df

− ∂we+

∂df

∣∣∣∣∣ < εw(∆e)p, (2.28)

where ∆e =
√

2|Ωe|. In our implementation, this indicator is applied to the three primary
unknowns, namely w ∈ {ξ, U, V }, in the following manner. If inequality (2.28) is not satisfied
for all directions df and all three unknowns, the local approximation order of the corresponding
element is increased. Conversely, if the inequality holds true for all directions and unknowns,
the same comparison (2.28) is carried out for the base order solution wbe (see Sec. 2.3.4.1.1) on
the current element, with εw(∆e)b being employed as the upper bound of (2.28). Should the
criterion also hold for wbe, it indicates that the lower-order approximation adequately captures
the solution, thus justifying a decrease of the order. The threshold εw requires tailored selection
for each unknown and scenario, although consistent usage across different mesh resolutions is
possible. We refer to this indicator as GRE (Gradient-Reconstruction-Extended).

2.4 Stability analysis

The theoretical aspects of DG discretizations for modeling surface and subsurface flow, par-
ticularly concerning stability and a priori error estimates, have attracted significant attention
over recent decades. A proof of discrete stability and an a priori error estimate for the DG
method applied to the two-dimensional SWE, excluding nonlinear advection terms from the
momentum equations, was presented in [Aiz04]. Building on this, [MDA15] further extended
the DG stability proof to encompass a model involving shallow water and bed morphology
dynamics. It is worth noting, however, that this approach employs an L2-projection for handling
the nonlinear terms resulting in an inconsistent model. A further contribution includes [AD07],
which introduced a stability proof for the local DG discretization of the three-dimensional SWE
model. Further stability proofs were accomplished in [Aiz+18] for the unsteady Darcy problem
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2 Discontinuous Galerkin methods for the 2D shallow water equations

without nonlinearities and in [Reu+19] for a coupled hydrostatic/Darcy system utilizing the
local DG method. Additionally, an a priori error estimate is demonstrated in [Mar97] for FE
discretization of the SWE and in [Pro02] for a simplified SWE model and various discretization
types.
Remarkably, to the best of our knowledge, no stability proof exists for the two-dimensional SWE
model that encompasses nonlinear advection terms, nor is there a discrete stability proof for
the DG method applied to the full nonlinear system. In the subsequent sections, we introduce
relevant mathematical tools, notations, and assumptions, preceding the presentation of a stability
proof for the continuous SWE model (2.29)–(2.30), alongside a rigorous proof of stability for
a DG discretization of the SWE building upon [Aiz04]. Our proof uses a new technique to
handle the nonlinear advection terms and, additionally, the discrete result is independent of the
mesh element size.

To accommodate inflow and outflow boundary conditions in the analysis, a slight adjustment
is made to the quadrature-free reformulation (2.6)–(2.8) on page 13. This adaptation, shown
in (2.29), involves interchanging u and q in the nonlinear advection terms. This modification
facilitates the offsetting of outflow boundary terms against each other. The original choice
presented in (2.8) is physically motivated by considering the advection’s role in transporting
the depth-integrated velocity. However, numerical experiments with the adapted formulation
demonstrated analogous convergence and stability behavior to those detailed in Section 4.2.
Additionally, since the bathymetry hb does not vary in time and H = hb + ξ, we take the
time derivative ∂tH instead of ∂tξ in the first equation. Furthermore, we do some algebraic
manipulations to the gravity term again and arrive at the following system:

∂t


H

U

V

+∇ ·


U V

uU + gH2

2 uV

vU vV + gH2

2

 =


0

−τbfu+ fcV + gH∂xhb + Fx

−τbfv − fcU + gH∂yhb + Fy

 , (2.29)

uH = q. (2.30)

In the remainder of this section, we assume the quadratic bottom friction law, that is, τbf = Cf |u|,
where Cf is constant. Furthermore, g and fc are constant.

2.4.1 Mathematical tools and notation

The forthcoming subsections rely on certain results from Functional Analysis and the theory
of PDEs. The most frequently used ones are cited below. They can be found in textbooks
dedicated to the mathematical theory of FE methods, such as [GT01; BS07; Eva10].

First, we need to emphasize that scalar quantities are represented using regular characters,
whereas bold font characters are reserved for vector-valued functions.
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2.4 Stability analysis

Definition 1 (Lebesgue spaces ([BS07] Section 1.1))
Let Ω ⊆ Rd be open and consider 1 ≤ p ≤ ∞. The Lebesgue spaces

Lp(Ω) = {f : Ω→ Rn | f is Lebesgue measurable, ‖f‖Lp <∞}

are Banach spaces with norms

‖f‖Lp :=
(∫

Ω
|f |p dx

) 1
p

for 1 ≤ p <∞ and ‖f‖L∞ := ess sup
Ω
|f | ≤ ∞.

Definition 2 (Sobolev spaces ([BS07] Section 1.3))
Let Ω ⊆ Rd be open, consider k ∈ N and 1 ≤ p ≤ ∞.The Sobolev spaces

W k,p(Ω) = {f ∈ Lp(Ω) | there exists a weak derivative Dαf ∈ Lp(Ω)
for each multi-index |α| ≤ k}

are Banach spaces. If p = 2, we usually write Hk(Ω) = W k,2(Ω).

Theorem 1 (Divergence (Gauss’) theorem and integration by parts ([Neč12] Sec-
tion 3.1))
Let Ω ⊆ Rd be open and bounded with Lipschitz boundary, and let 1 ≤ p, q ≤ ∞ with 1

p + 1
q = 1.

For f ∈W 1,1(Ω)d, g ∈W 1,p(Ω), h ∈W 1,q(Ω)d, identified with their traces on ∂Ω, the following
relations hold: ∫

Ω
∇ · f dx =

∫
∂Ω
f · nds

and
∫

Ω
∇g · hdx = −

∫
Ω
g∇ · h dx+

∫
∂Ω
gh · nds.

Theorem 2 (Hölder’s inequality ([Eva10] Section B.2))
Let 1 ≤ p, q ≤ ∞ with 1

p + 1
q = 1. Then if f ∈ Lp(Ω) and g ∈ Lq(Ω), we have

∫
Ω
|fg| ≤ ||f ||Lp(Ω)||g||Lq(Ω). (2.31)

Theorem 3 (Young’s inequality with ε ([GT01] Section 7.1))
For any positive real numbers a, b, p, q with 1

p + 1
q = 1 the following inequality holds:

ab ≤ εap

p
+ bq

εq/pq
. (2.32)
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2 Discontinuous Galerkin methods for the 2D shallow water equations

Theorem 4 (Grönwall’s inequality ([Gro19]))
Let ψ(t) be a continuous function satisfying

ψ(t) ≤ α(t) +
∫ t

t0
β(s)ψ(s) ds, t ∈ [t0, T ]

with continuous α(t) and β(t) ≥ 0, then the following inequality holds:

ψ(t) ≤ α(t) +
∫ t

t0
α(s)β(s) exp

(∫ t

s
β(σ) dσ

)
ds ≤ α(t) + C(β)

∫ t

t0
α(s)β(s) ds,

with a constant

C(β) = exp
(∫ t

t0
β(s) ds

)
. (2.33)

The mathematical notation follows standard conventions. Certain specifics utilized in this thesis
are introduced and outlined below:

• The Euclidean scalar product of vectors a and b ∈ Rd is a · b.
• L2-inner products on domains Ω ⊂ R2 and surfaces γ ⊂ R are denoted by (· , ·)Ω and 〈· , ·〉γ ,

respectively.
• For a non-overlapping partition TM of the domain Ω ⊂ R2, the elements are referred to as

Ωe with indices e ∈ Ie.
• The faces are referred to as γi with indices i belonging to either the interior edge indices
Iint or the indices of the exterior edges Iext. The exterior edge indices are grouped into
inflow and outflow edge indices, and denoted by Iin and Iout, respectively.

• For simplicity, we assume the triangulation TM to be geometrically conformal in the sense
of Definition 1.55 in [EG04]. While all proofs and arguments hold true for geometrically
non-conforming meshes, they would involve increased technical complexity.

• The unit normal vector on the boundary is denoted by n.
• We fix the normals of all interior edges and define the jump J·K and the average ⦃·⦄ as

JwK = (w − w+) and ⦃w⦄ = 1
2(w + w+),

where w denotes the solution on the current element and w+ on its neighbor.
The following well-known property holds: JabK = ⦃a⦄JbK + JaK⦃b⦄.

2.4.2 Continuous stability

Starting from the quadrature-free reformulation (2.29)–(2.30) we multiply the equations by test
functions, integrate them over Ω, and integrate by parts to deduce the global weak formulation
explicitly detailing all integrals involved.
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2.4 Stability analysis

We distinguish between the inflow boundary ∂Ωi := {∂Ω : q · n ≤ 0} and the outflow boundary
∂Ωo := {∂Ω : q · n > 0}. In the interest of simplicity, we assume Dirichlet boundary conditions
on the inflow segment: H = Ĥ > 0 and u = û should hold pointwise, where ·̂ denotes a prescribed
value for the corresponding unknown. Furthermore, q = ûĤ =: q̂ is also specified at the inflow
boundary. Such boundary conditions are typical in the context of supercritical flows. We assume
that the boundary condition functions fulfill the required regularity conditions.

Problem 1 (Global weak formulation)
We seek a solution (H, q,u) with H ∈ L2(0, T ;W 1,4(Ω))∩C1(0, T ;L4(Ω)), q ∈

(
L2(0, T ;H1(Ω))∩

C1(0, T ;L2(Ω))
)2, and u ∈ (L4(0, T ;W 1,4(Ω)) ∩ C1(0, T ;L4(Ω))

)2, such that for a.e. t ∈ (0, T )
and for all test functions ϑ ∈ H1(Ω), θ ∈

(
W 1,4(Ω)

)2, and ψ ∈ (L2(Ω)
)2 the following holds:

(∂tH,ϑ)Ω + 〈q̂ · n, ϑ〉∂Ωi + 〈q · n, ϑ〉∂Ωo − (q · ∇, ϑ)Ω = 0, (2.34)
(∂tq,θ)Ω + 〈û(q̂ · n),θ〉∂Ωi + 〈u(q · n),θ〉∂Ωo − (u(q · ∇),θ)Ω + 〈g2Ĥ

2n,θ〉∂Ωi + 〈g2H
2n,θ〉∂Ωo

−
(
g
2H

2∇,θ
)

Ω
+ (Cf |u|u,θ)Ω −

((
0 −fc
fc 0

)
q,θ

)
Ω
− (gH∇hb,θ)Ω = (F ,θ)Ω , (2.35)

(uH,ψ)Ω = (q,ψ)Ω . (2.36)

In Theorem 5, we present a stability result for Problem 1. Its proof, that is shown in the remainder
of this section, employs the same approach as the one for the discrete model (Theorem 6).
However, in the discrete one, additional integrals occur because of the presence of numerical flux
terms. To keep the numbering of the integrals consistent between both proofs, some numbers
are absent in the first proof.

Theorem 5
Assuming H > 0, the following stability result holds for the solution of Problem 1:

||
√
H(T )u(T )||2L2(Ω) + g||H(T )||2L2(Ω) + Cf

∫ T

0
||u(t)||3L3(Ω) dt

+
∫ T

0
〈q(t) · n,u(t) · u(t)〉∂Ωo dt+ 2g

∫ T

0
〈q(t) · n, H(t)〉∂Ωo dt

≤ K
(
||
√
H(0)u(0)||2L2(Ω) + g||H(0)||2L2(Ω) +

∫ T

0
|〈q̂(t) · n, û(t) · û(t)〉∂Ωi | dt

+2g
∫ T

0
|〈q̂(t) · n, Ĥ(t)〉∂Ωi |dt+ 2

9

√
6
Cf

∫ T

0
||F (t)||

3
2

L
3
2 (Ω)

dt
)
, (2.37)

where K = K(|Ω|, T ), and its dependence on T is exponential as shown in (2.33).
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2 Discontinuous Galerkin methods for the 2D shallow water equations

Proof. We test (2.34) twice with ϑ = 1
2u · u and ϑ = gH, respectively, (2.35) with θ = u, and

add the resulting three equations:(
∂tH,

1
2u · u

)
Ω︸ ︷︷ ︸

Λ1

+ 〈q̂ · n, 1
2 û · û〉∂Ωi + 〈q · n, 1

2u · u〉∂Ωo︸ ︷︷ ︸
Λ3

−
(
q · ∇, 1

2u · u
)

Ω︸ ︷︷ ︸
Λ4

+ (∂tH, gH)Ω︸ ︷︷ ︸
Λ5

+ 〈q̂ · n, gĤ〉∂Ωi + 〈q · n, gH〉∂Ωo︸ ︷︷ ︸
Λ7

− (q · ∇, gH)Ω︸ ︷︷ ︸
Λ8

+ (∂tq,u)Ω︸ ︷︷ ︸
Λ9

+ 〈û(q̂ · n), û〉∂Ωi + 〈u(q · n),u〉∂Ωo︸ ︷︷ ︸
Λ11

− (u(q · ∇),u)Ω︸ ︷︷ ︸
Λ12

+ 〈g2Ĥ
2n, û〉∂Ωi + 〈g2H

2n,u〉∂Ωo︸ ︷︷ ︸
Λ14

−
(
g
2H

2∇,u
)

Ω︸ ︷︷ ︸
Λ15

+ (Cf |u|u,u)Ω︸ ︷︷ ︸
Λ16

−
((

0 −fc
fc 0

)
q,u

)
Ω︸ ︷︷ ︸

Λ17

− (gH∇hb,u)Ω︸ ︷︷ ︸
Λ18

= (F ,u)Ω︸ ︷︷ ︸
Λ19

.

We note that the Coriolis terms, namely Λ17, for the x- and y-momentum equations cancel each
other out:

−
((

0 −fc
fc 0

)
q,u

)
Ω

(2.36)= −
((

0 −fc
fc 0

)
uH,u

)
Ω

= 0.

We start with Λ9 and apply (2.36), the product rule, and (2.34):

(∂tq,u)Ω = lim
∆t→0

(
q(t+∆t)−q(t)

∆t ,u
)

Ω

(2.36) since
u∈(L2(Ω))2

= lim
∆t→0

(
u(t+∆t)H(t+∆t)−u(t)H(t)

∆t ,u
)

Ω

= (∂t(uH),u)Ω

prod.
rule= (∂tH,u · u)Ω + (∂tu, Hu)Ω

(2.34) since
u·u∈H1(Ω)= −〈q̂ · n, û · û〉∂Ωi − 〈q · n,u · u〉∂Ωo︸ ︷︷ ︸

Λ9b

+ (q · ∇,u · u)Ω︸ ︷︷ ︸
Λ9c

+
(

1
2∂t(u · u), H

)
Ω︸ ︷︷ ︸

Λ9d

.

Then, we add Λ1 and Λ9d:(
∂tH,

1
2u · u

)
Ω

+
(

1
2∂t(u · u), H

)
Ω

= 1
2 (∂t(Hu · u), 1)Ω = Υ′1.

Now adding Λ4, Λ3, Λ9c, Λ9b, Λ12, and Λ11 leads to

−
(
q · ∇, 1

2u · u
)

Ω
+ 〈q̂ · n, 1

2 û · û〉∂Ωi + 〈q · n, 1
2u · u〉∂Ωo + (q · ∇,u · u)Ω − 〈q̂ · n, û · û〉∂Ωi

− 〈q · n,u · u〉∂Ωo − (u(q · ∇),u)Ω + 〈û(q̂ · n), û〉∂Ωi + 〈u(q · n),u〉∂Ωo = (?1).
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Adding the first to the fourth, the second to the fifth, and the third to the sixth term, and
keeping the rest, we get

(?1) =
���

���
��(

1
2q · ∇,u · u

)
Ω
− 〈12 q̂ · n, û · û〉∂Ωi − 〈12q · n,u · u〉∂Ωo − (u(q · ∇),u)Ω︸ ︷︷ ︸

=
���

���−( 1
2q·∇,u·u)Ω

+ 〈û(q̂ · n), û〉∂Ωi + 〈u(q · n),u〉∂Ωo = 1
2〈q̂ · n, û · û〉∂Ωi + 1

2〈q · n,u · u〉∂Ωo︸ ︷︷ ︸
≥0

= Υ′2.

Then, we proceed by adding Λ8, Λ15 and Λ14, applying (2.36) and Gauss’ theorem:

− (gq · ∇, H)Ω︸ ︷︷ ︸
(2.36) since
∇H∈(L2(Ω))2

= −(guH·∇,H)Ω=−
(g

2u·∇,H
2
)

Ω

−
(
g
2H

2∇,u
)

Ω
+ 〈g2Ĥ

2n, û〉∂Ωi + 〈g2H
2n,u〉∂Ωo

Gauss= −〈g2 , Ĥ
2û · n〉∂Ωi − 〈

g
2 , H

2u · n〉∂Ωo + 〈g2Ĥ
2n, û〉∂Ωi + 〈g2H

2n,u〉∂Ωo = 0.

Next, we look at Λ7:

〈gq̂ · n, Ĥ〉∂Ωi + 〈gq · n, H〉∂Ωo︸ ︷︷ ︸
≥0

= Υ′3.

We rewrite the bottom friction term Λ16:

(Cf |u|u,u)Ω = Cf (|u|u,u)Ω = Cf ||u||3L3(Ω) = Υ′4.

We estimate Λ18 with Young’s inequality (2.32) and Hölder’s inequality (2.31) and put the terms
to the right-hand side:

| − (gH∇hb,u)Ω |
(2.32) with
p=q=2,ε=1
≤ 1

2g
2||∇hb||2L∞(Ω) (1, H)Ω + 1

2

(√
Hu,

√
Hu

)
Ω

(2.31) with
p=q=2
≤ 1

2

(
g2||∇hb||2L∞(Ω)||1||L2(Ω)||H||L2(Ω)

)
+ 1

2 ||
√
Hu||2L2(Ω)

(2.32) with
p=q=2,ε= 1

2
≤ 1

8g
4||∇hb||4L∞(Ω) ||1||2L2(Ω)︸ ︷︷ ︸

=|Ω|

+1
2 ||H||

2
L2(Ω) + 1

2 ||
√
Hu||2L2(Ω) = Υ′5.

Next, we estimate Λ19 with Young’s inequality (2.32):

(F ,u)Ω

(2.32) with

p= 3
2 ,q=3,ε=

√
2

3Cf
≤ 2

9

√
6
Cf
||F ||

3
2

L
3
2 (Ω)

+ Cf
2 ||u||

3
L3(Ω) = Υ′6.
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The only term left is Λ5:

(∂tH, gH)Ω = g
2

(
∂t(H2), 1

)
Ω

= Υ′7.

Now, we integrate everything from 0 to T and get the following from Υ′1, . . . ,Υ′7:

Υ′1 : 1
2

∫ T

0
(∂t (H(t)u(t) · u(t)), 1)Ω dt = 1

2

(
||
√
H(T )u(T )||2L2(Ω) − ||

√
H(0)u(0)||2L2(Ω)

)
= Υ1,

Υ′2 : 1
2

∫ T

0
〈q̂(t) · n, û(t) · û(t)〉∂Ωi dt+ 1

2

∫ T

0
〈q(t) · n,u(t) · u(t)〉∂Ωo dt︸ ︷︷ ︸

≥0

= Υ2,

Υ′3 : g

∫ T

0
〈q̂(t) · n, Ĥ(t)〉∂Ωi dt+ g

∫ T

0
〈q(t) · n, H(t)〉∂Ωo dt︸ ︷︷ ︸

≥0

= Υ3,

Υ′4 : Cf

∫ T

0
||u(t)||3L3(Ω) dt = Υ4,

Υ′5 : 1
8

∫ T

0
g4|Ω|||∇hb||4L∞(Ω) dt+ 1

2

∫ T

0
||H(t)||2L2(Ω) dt+ 1

2

∫ T

0
||
√
H(t)u(t)||2L2(Ω) dt = Υ5,

Υ′6 : 2
9

√
6
Cf

∫ T

0
||F (t)||

3
2

L
3
2 (Ω)

dt+ Cf
2

∫ T

0
||u(t)||3L3(Ω) dt = Υ6,

Υ′7 : g
2

∫ T

0

(
∂t
(
H(t)2

)
, 1
)

Ω
dt = g

2

(
||H(T )||2L2(Ω) − ||H(0)||2L2(Ω)

)
= Υ7.

Then ||
√
H(0)u(0)||2L2(Ω) and ||H(0)||2L2(Ω) are put to the right-hand side.

Finally, we apply Grönwall’s inequality to 1
2
∫ T

0 ||H(t)||2L2(Ω) dt and to 1
2
∫ T
0 ||

√
H(t)u(t)||2L2(Ω) dt

from Υ5 and arrive at the stated stability result after adding Υ1, . . . ,Υ7, multiplying by 2, and
reordering the terms.

Remark 1
If the bathymetry is constant, as assumed in [Aiz04], Λ18 and consequently Υ5 vanish and
the proof does not need to make use of Grönwall’s inequality. The constant in (2.37) is then
independent of T.

2.4.3 Discrete stability

We partition our domain into elements denoted as Ωe, e ∈ Ie, and state the weak formulation
on elements. Let V = {u ∈ L2(Ω) : u|Ωe ∈ H1(Ωe) ,∀Ωe} and W = {u ∈ L2(Ω) : u|Ωe ∈
W 1,4(Ωe) , ∀Ωe}. Akin to the continuous scenario, we multiply the governing equations by the
test functions, integrate over Ωe, and integrate by parts. Assuming that the true solution is
smooth and specifying the orientation of the normal vector n to ensure its outward direction
with respect to the element possessing the lower index, we sum over all elements Ωe.
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2.4 Stability analysis

Problem 2 (Weak formulation on elements)
We seek a solution (H, q,u) with H ∈ C1(0, T ;W ), q ∈

(
C1(0, T ;V )

)2, and u ∈ (C1(0, T ;W )
)2,

such that for a.e. t ∈ (0, T ) and for all test functions ϑ ∈ V , θ ∈W 2, and ψ ∈ V 2 the following
holds:

∑
e∈Ie

(∂tH,ϑ)Ωe +
∑
i∈Iint

〈q · n, JϑK〉γi +
∑
i∈Iext

〈q · n, ϑ〉γi −
∑
e∈Ie

(q · ∇, ϑ)Ωe = 0, (2.38)

∑
e∈Ie

(∂tq,θ)Ωe +
∑
i∈Iint

〈u(q · n), JθK〉γi +
∑
i∈Iext

〈u(q · n),θ〉γi −
∑
e∈Ie

(u(q · ∇),θ)Ωe

+
∑
i∈Iint

〈g2H
2n, JθK〉γi +

∑
i∈Iext

〈g2H
2n,θ〉γi −

∑
e∈Ie

(
g
2H

2∇,θ
)

Ωe
+
∑
e∈Ie

(Cf |u|u,θ)Ωe (2.39)

−
∑
e∈Ie

((
0 −fc
fc 0

)
q,θ

)
Ωe
−
∑
e∈Ie

(gH∇hb,θ)Ωe =
∑
e∈Ie

(F ,θ)Ωe ,∑
e∈Ie

(uH,ψ)Ωe =
∑
e∈Ie

(q,ψ)Ωe . (2.40)

As a next step, we seek to approximate the solution (H, q,u) to (2.6)–(2.8) using functions
HM ∈ C1(0, T ;WM), qM ∈

(
C1(0, T ;VM)

)2, and uM ∈
(
C1(0, T ;WM)

)2, where VM ⊂ V and
WM ⊂W are finite dimensional subspaces.
To ensure the method’s consistency and stability, integrands in integrals over interior edges are
replaced by numerical fluxes. They are specified as

⦃uM⦄⦃HM⦄ in (2.43) and (2.41)
⦃uM⦄⦃HM⦄⦃uM⦄ and ⦃H2

M⦄ in (2.44). (2.42)

We choose HM, ϑ ∈ Pp, qM,θ ∈ (Pp)2, and uM,ψ ∈
(
Pmax{0,p−1}

)2
, where Pp denotes the broken

polynomial space, that is, Pp = {u ∈ L2(Ω) : u|Ωe ∈ Pp(Ωe) , ∀Ωe} with Pp being the space of
polynomials of degree p ≥ 0. We project the initial conditions (2.3) onto the corresponding
polynomial space via an L2-projection.

By denoting n as the exterior unit normal vector on the boundary γi for i ∈ Iext, where γi corre-
sponds to exterior boundary edges depicting a normal flux, we once again differentiate between
inflow edges {γi, i ∈ Iin} := {γi : q · n ≤ 0} and outflow edges {γi, i ∈ Iout} := {γi : q · n > 0}.
In the interest of simplicity, we assume that the computational grid distinguishes exterior
edges as either inflow or outflow edges when resolving the boundary. Furthermore, we assume
the following conditions on inflow edges: u = û and H = Ĥ should hold pointwise. We get
q̂n := ûĤ ·n, where ·̂ denotes a prescribed value for the corresponding unknown. On an outflow
edge, if the discrete solution satisfies

∫
γi
qM · nds > 0, this flux is retained and incorporated

into the left-hand side of our estimate; otherwise, it is set to zero. No values are prescribed for
the external boundary edges for the term ∑

i∈Iext〈
g
2H

2n,θ〉γi in (2.39). Again, we assume that
the boundary condition functions fulfill the required regularity conditions.
We obtain the semi-discrete finite element formulation as in (2.11)–(2.12) on page 14.
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2 Discontinuous Galerkin methods for the 2D shallow water equations

Problem 3 (Semi-discrete finite element formulation)
We seek a solution (HM, qM,uM) with HM ∈ C1 (0, T ;Pp) , qM ∈

(
C1 (0, T ;Pp)

)2 and uM ∈(
C1
(
0, T ;Pmax{0,p−1}

))2
such that for a.e. t ∈ (0, T ) and for all test functions ϑ ∈ Pp,

θ ∈ (Pp)2, and ψ ∈
(
Pmax{0,p−1}

)2
the following holds:

∑
e∈Ie

(∂tHM, ϑ)Ωe +
∑
i∈Iint

〈⦃uM⦄⦃HM⦄ · n, JϑK〉γi +
∑
i∈Iin
〈q̂n, ϑ〉γi +

∑
i∈Iin
〈|q̂n|(HM − Ĥ), ϑ〉γi

+
∑
i∈Iout

〈max {qM · n, 0}, ϑ〉γi −
∑
e∈Ie

(qM · ∇, ϑ)Ωe = 0, (2.43)

∑
e∈Ie

(∂tqM,θ)Ωe +
∑
i∈Iint

〈⦃uM⦄⦃HM⦄(⦃uM⦄ · n), JθK〉γi +
∑
i∈Iin
〈ûq̂n,θ〉γi

+ 3
∑
i∈Iin
〈|q̂n|max {|û|, |HM|}(uM − û),θ〉γi +

∑
i∈Iout

〈uM max {qM · n, 0},θ〉γi (2.44)

−
∑
e∈Ie

(uM(qM · ∇),θ)Ωe +
∑
i∈Iint

〈g2⦃H
2
M⦄n, JθK〉γi +

∑
i∈Iext

〈g2H
2
Mn,θ〉γi −

∑
e∈Ie

(
g
2H

2
M∇,θ

)
Ωe

+
∑
e∈Ie

(Cf |uM|uM,θ)Ωe −
∑
e∈Ie

((
0 −fc
fc 0

)
qM,θ

)
Ωe
−
∑
e∈Ie

(gHM∇hb,θ)Ωe =
∑
e∈Ie

(F ,θ)Ωe ,∑
e∈Ie

(uMHM,ψ)Ωe =
∑
e∈Ie

(qM,ψ)Ωe . (2.45)

To handle the boundary conditions without applying the inverse and trace inequalities, we add two
penalty terms: ∑i∈Iin〈|q̂n|(HM − Ĥ), ϑ〉γi in (2.43) and 3∑i∈Iin〈|q̂n|max {|û|, |HM|}(uM − û),θ〉γi
in (2.44).

In what follows, we present a stability theorem concerning Problem 3 that holds for p ≤ 2. The
remainder of this section is dedicated to its proof.

Theorem 6
Let HM > 0 and p ≤ 2, then the following stability result holds for the solution of Problem 3:

||
√
HM(T )uM(T )||2L2(Ω) + g||HM(T )||2L2(Ω) +

∫ T

0
〈|q̂n(t)|(1 + Ĥ(t)),uM(t) · uM(t)〉∂Ωi dt

+
∫ T

0
〈max {qM(t) · n, 0},uM(t) · uM(t) + 2gHM(t)〉∂Ωo dt

+
∫ T

0
〈|q̂n(t)|max {|û(t)|, |HM(t)|}uM(t),uM(t)〉∂Ωi dt+ g

∫ T

0
〈|q̂n(t)|HM(t), HM(t)〉∂Ωi dt

+ Cf

∫ T

0
||uM(t)||3L3(Ω) dt

≤ K
(
||
√
HM(0)uM(0)||2L2(Ω) + g||HM(0)||2L2(Ω) + 1

2

∫ T

0
〈|û(t)||q̂n(t)|, 1〉∂Ωi dt

+ 9
2

∫ T

0
〈|û(t)||q̂n(t)|û(t), û(t)〉∂Ωi dt+ 81

8g

∫ T

0
〈|q̂n(t)|û(t) · û(t), û(t) · û(t)〉∂Ωi dt

+ 4
∫ T

0
〈g|q̂n(t)|, 1〉∂Ωi dt+ 4

∫ T

0
〈g|q̂n(t)|Ĥ(t), Ĥ(t)〉∂Ωi dt+ 1

4

∫ T

0
g4|Ω|||∇hb||4L∞(Ω) dt

+4
9

√
6
Cf

∫ T

0
||F (t)||

3
2

L
3
2 (Ω)

dt
)
, (2.46)

where K = K (|Ω|, T ), and its dependence on T is exponential as shown in (2.33).
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2.4 Stability analysis

Proof. Recalling that uM · uM ∈ Pmax{0,2p−2} ∈ Pp for p ≤ 2, we test (2.43) twice with
ϑ = 1

2uM · uM and ϑ = gHM, respectively, (2.44) with θ = uM, and add the resulting three
equations:

∑
e∈Ie

(
∂tHM,

1
2uM · uM

)
Ωe︸ ︷︷ ︸

Λ1

+
∑
i∈Iint

〈⦃uM⦄⦃HM⦄ · n, J1
2uM · uMK〉γi︸ ︷︷ ︸

Λ2

+
∑
i∈Iin
〈q̂n, 1

2uM · uM〉γi +
∑
i∈Iin
〈|q̂n|(HM − Ĥ), 1

2uM · uM〉γi +
∑
i∈Iout

〈max {qM · n, 0}, 1
2uM · uM〉γi︸ ︷︷ ︸

Λ3

−
∑
e∈Ie

(
qM · ∇, 1

2uM · uM

)
Ωe︸ ︷︷ ︸

Λ4

+
∑
e∈Ie

(∂tHM, gHM)Ωe︸ ︷︷ ︸
Λ5

+
∑
i∈Iint

〈g⦃uM⦄⦃HM⦄ · n, JHMK〉γi︸ ︷︷ ︸
Λ6

+
∑
i∈Iin
〈gq̂n, HM〉γi +

∑
i∈Iin
〈g|q̂n|(HM − Ĥ), HM〉γi +

∑
i∈Iout

〈gmax {qM · n, 0}, HM〉γi︸ ︷︷ ︸
Λ7

−
∑
e∈Ie

(gqM · ∇, HM)Ωe︸ ︷︷ ︸
Λ8

+
∑
e∈Ie

(∂tqM,uM)Ωe︸ ︷︷ ︸
Λ9

+
∑
i∈Iint

〈⦃uM⦄⦃HM⦄(⦃uM⦄ · n), JuMK〉γi︸ ︷︷ ︸
Λ10

+
∑
i∈Iin
〈ûq̂n,uM〉γi+3

∑
i∈Iin
〈|q̂n|max {|û|, |HM|}(uM−û),uM〉γi+

∑
i∈Iout

〈uM max {qM · n, 0},uM〉γi︸ ︷︷ ︸
Λ11

−
∑
e∈Ie

(uM(qM · ∇),uM)Ωe︸ ︷︷ ︸
Λ12

+
∑
i∈Iint

〈g2⦃H
2
M⦄n, JuMK〉γi︸ ︷︷ ︸
Λ13

+
∑
i∈Iext

〈g2H
2
Mn,uM〉γi︸ ︷︷ ︸

Λ14

−
∑
e∈Ie

(
g
2H

2
M∇,uM

)
Ωe︸ ︷︷ ︸

Λ15

+
∑
e∈Ie

(Cf |uM|uM,uM)Ωe︸ ︷︷ ︸
Λ16

−
∑
e∈Ie

((
0 −fc
fc 0

)
qM,uM

)
Ωe︸ ︷︷ ︸

Λ17

−
∑
e∈Ie

(gHM∇hb,uM)Ωe︸ ︷︷ ︸
Λ18

=
∑
e∈Ie

(F ,uM)Ωe︸ ︷︷ ︸
Λ19

.

First, we note that the Coriolis terms, namely Λ17, for the x- and y-momentum equations cancel
each other out:

−
∑
e∈Ie

((
0 −fc
fc 0

)
qM,uM

)
Ωe

(2.45)= −
∑
e∈Ie

((
0 −fc
fc 0

)
uMHM,uM

)
Ωe

= 0.
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2 Discontinuous Galerkin methods for the 2D shallow water equations

We start with Λ9 and apply (2.45), the product rule, and (2.43):

∑
e∈Ie

(∂tqM,uM)Ωe = lim
∆t→0

∑
e∈Ie

(
qM(t+ ∆t)− qM(t)

∆t ,uM

)
Ωe

(2.45) since
uM∈(Pmax{0,p−1})2

= lim
∆t→0

∑
e∈Ie

(
uM(t+ ∆t)HM(t+ ∆t)− uM(t)HM(t)

∆t ,uM

)
Ωe

=
∑
e∈Ie

(∂t(uMHM),uM)Ωe

prod.
rule=

∑
e∈Ie

(∂tHM,uM · uM)Ωe +
∑
e∈Ie

(∂tuM, HMuM)Ωe

(2.43) since
uM·uM∈Pp(Ω)= −

∑
i∈Iint

〈⦃uM⦄⦃HM⦄ · n, JuM · uMK〉γi︸ ︷︷ ︸
Λ9a

−
∑
i∈Iin
〈q̂n,uM · uM〉γi −

∑
i∈Iin
〈|q̂n|(HM − Ĥ),uM · uM〉γi −

∑
i∈Iout

〈max {qM · n, 0},uM · uM〉γi︸ ︷︷ ︸
Λ9b

+
∑
e∈Ie

(qM · ∇,uM · uM)Ωe︸ ︷︷ ︸
Λ9c

+
∑
e∈Ie

(
1
2∂t(uM · uM), HM

)
Ωe︸ ︷︷ ︸

Λ9d

.

Then, we add Λ1 and Λ9d:∑
e∈Ie

(
∂tHM,

1
2uM · uM

)
Ωe

+
∑
e∈Ie

(
1
2∂t(uM · uM), HM

)
Ωe

= 1
2
∑
e∈Ie

(∂t(HMuM · uM), 1)Ωe = Υ′1.

Now adding Λ4, Λ2, Λ3, Λ9c, Λ9a, Λ9b, Λ12, Λ10, and Λ11 leads to:

−
∑
e∈Ie

(
qM · ∇, 1

2uM · uM

)
Ωe

+
∑
i∈Iint

〈⦃uM⦄⦃HM⦄ · n, J1
2uM · uMK〉γi +

∑
i∈Iin
〈q̂n, 1

2uM · uM〉γi

+
∑
i∈Iin
〈|q̂n|(HM − Ĥ), 1

2uM · uM〉γi +
∑
i∈Iout

〈max {qM · n, 0}, 1
2uM · uM〉γi

+
∑
e∈Ie

(qM · ∇,uM · uM)Ωe −
∑
i∈Iint

〈⦃uM⦄⦃HM⦄ · n, JuM · uMK〉γi −
∑
i∈Iin
〈q̂n,uM · uM〉γi

−
∑
i∈Iin
〈|q̂n|(HM − Ĥ),uM · uM〉γi −

∑
i∈Iout

〈max {qM · n, 0},uM · uM〉γi

−
∑
e∈Ie

(uM(qM · ∇),uM)Ωe +
∑
i∈Iint

〈⦃uM⦄⦃HM⦄(⦃uM⦄ · n), JuMK〉γi +
∑
i∈Iin
〈ûq̂n,uM〉γi

+ 3
∑
i∈Iin
〈|q̂n|max {|û|, |HM|}(uM− û),uM〉γi +

∑
i∈Iout

〈uM max {qM · n, 0},uM〉γi = (?1).
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2.4 Stability analysis

Reordering the terms, we get

(?1) =
��
���

���
���

��∑
e∈Ie

(
1
2qM · ∇,uM · uM

)
Ωe
− 1

2
∑
i∈Iint

〈⦃uM⦄⦃HM⦄ · n, JuM · uMK〉γi − 1
2
∑
i∈Iin
〈q̂n,uM · uM〉γi

− 1
2
∑
i∈Iin
〈|q̂n|(HM − Ĥ),uM · uM〉γi + 1

2
∑
i∈Iout

〈max {qM · n, 0},uM · uM〉γi

−
∑
e∈Ie

(uM(qM · ∇),uM)Ωe︸ ︷︷ ︸
=
((((

((((
(((

−
∑

e∈Ie(
1
2qM·∇,uM·uM)Ωe

+
∑
i∈Iint

〈⦃uM⦄⦃HM⦄(⦃uM⦄ · n), JuMK〉γi +
∑
i∈Iin
〈ûq̂n,uM〉γi

+ 3
∑
i∈Iin
〈|q̂n|max {|û|, |HM|}(uM− û),uM〉γi .

We note that ∑i∈Iint〈⦃uM⦄⦃HM⦄(⦃uM⦄ · n), JuMK〉γi = ∑
i∈Iint〈

1
2⦃uM⦄⦃HM⦄ · n, JuM · uMK〉γi

and see that the interior edge integrals also cancel. So do the element integrals and what is left
are the inflow and outflow boundary terms. To begin with, the outflow boundary term and the
first inflow boundary term are non-negative and thus incorporated into the left-hand side:

−1
2
∑
i∈Iin
〈q̂n,uM · uM〉γi + 1

2
∑
i∈Iout

〈max {qM · n, 0},uM · uM〉γi = Υ′2.

The remaining inflow terms are the following ones:

−
∑
i∈Iin
〈|q̂n|(HM − Ĥ), 1

2uM · uM〉γi +
∑
i∈Iin
〈ûq̂n,uM〉γi + 3

∑
i∈Iin
〈|q̂n|max {|û|, |HM|}(uM− û),uM〉γi

= 1
2
∑
i∈Iin
〈|q̂n|Ĥ,uM · uM〉γi + 3

∑
i∈Iin
〈|q̂n|max {|û|, |HM|}uM,uM〉γi︸ ︷︷ ︸

≥0=Υ′3

−1
2
∑
i∈Iin
〈|q̂n|HM,uM · uM〉γi︸ ︷︷ ︸

=(?2)≤1
2
∑

i∈Iin
〈|q̂n|max {|û|,||HM|}uM,uM〉γi

+
∑
i∈Iin
〈ûq̂n,uM〉γi︸ ︷︷ ︸

=(?3)

−3
∑
i∈Iin
〈|q̂n|max {|û|, |HM|}û,uM〉γi︸ ︷︷ ︸

=(?4)

.

Then, Υ′3 is non-negative and stays on the left-hand side and (?3) is estimated using Young’s
inequality (2.32):

(?3) =
∑
i∈Iin
〈ûq̂n,uM〉γi

(2.32) with
p=q=2,ε=2
≤

∑
i∈Iin
〈|û||q̂n|,uM · uM〉γi + 1

4
∑
i∈Iin
〈|û||q̂n|, 1〉γi .

We look at the two possible cases for (?4) and apply Young’s inequality (2.32) again:
Case 1: 〈|û||q̂n|, 1〉γi ≥ 〈|q̂n||HM|, 1〉γi

−3〈|û||q̂n|û,uM〉γi

(2.32) with
p=q=2,ε= 3

2
≤ 9

4〈|û||q̂n|û, û〉γi + 〈|û||q̂n|uM,uM〉γi ,
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2 Discontinuous Galerkin methods for the 2D shallow water equations

Case 2: 〈|û||q̂n|, 1〉γi < 〈|q̂n||HM|, 1〉γi

− 3〈|q̂n||HM|û,uM〉γi

(2.32) with
p=q=2,ε= 3

2
≤ 9

4〈|q̂n||HM|û, û〉γi + 〈|q̂n||HM|uM,uM〉γi
(2.32) with
p=q=2,ε= 2g

9
≤ 1

4〈|q̂n||HM|2, g〉γi + 81
16g 〈|q̂n|û · û, û · û〉γi + 〈|q̂n||HM|uM,uM〉γi ,

and therefore, we get

(?4) ≤
∑
i∈Iin
〈|q̂n|max {|û|, |HM|}uM,uM〉γi + 9

4
∑
i∈Iin
〈|û||q̂n|û, û〉γi + 1

4
∑
i∈Iin
〈|q̂n||HM|2, g〉γi

+ 81
16g

∑
i∈Iin
〈|q̂n|û · û, û · û〉γi .

And we estimate

(?2) + (?3) + (?4) ≤ 5
2
∑
i∈Iin
〈|q̂n|max {|û|, |HM|}uM,uM〉γi + 1

4
∑
i∈Iin
〈|û||q̂n|, 1〉γi

+ 9
4
∑
i∈Iin
〈|û||q̂n|û, û〉γi + 1

4
∑
i∈Iin
〈|q̂n||HM|2, g〉γi + 81

16g
∑
i∈Iin
〈|q̂n|û · û, û · û〉γi = Υ′4.

Then, we proceed by adding Λ8, Λ6, Λ15, Λ13 and Λ14. Since for p ≤ 2 we have ∇HM ∈(
Pmax{0,p−1}

)2
and we apply (2.45) to

−
∑
e∈Ie

(gqM · ∇, HM)Ωe
(2.45)= −

∑
e∈Ie

(guMHM · ∇, HM)Ωe = −
∑
e∈Ie

(
g
2uM · ∇, H2

M

)
Ωe

and obtain the following expression after applying Gauss’ theorem:

−
∑
e∈Ie

(gqM · ∇, HM)Ωe︸ ︷︷ ︸
=−
∑

e∈Ie

(g
2uM·∇,H2

M

)
Ωe

+
∑
i∈Iint

〈g⦃uM⦄⦃HM⦄ · n, JHMK〉γi −
∑
e∈Ie

(
g
2H

2
M∇,uM

)
Ωe

+
∑
i∈Iint

〈g2⦃H
2
M⦄n, JuMK〉γi +

∑
i∈Iext

〈g2H
2
Mn,uM〉γi

Gauss= −
∑
i∈Iint

〈g2 , JH
2
MuMK · n〉γi −

���
���

���
��∑

i∈Iext

〈g2H
2
MuM · n, 1〉γi +

∑
i∈Iint

〈g⦃uM⦄⦃HM⦄ · n, JHMK〉γi

+
∑
i∈Iint

〈g2⦃H
2
M⦄n, JuMK〉γi +

���
���

���
∑
i∈Iext

〈g2H
2
Mn,uM〉γi = (?5).

We note that

−
∑
i∈Iint

〈g2 , JH
2
MuMK · n〉γi = −

∑
i∈Iint

〈g2⦃uM⦄, JH2
MK · n〉γi −

∑
i∈Iint

〈g2⦃H
2
M⦄, JuMK · n〉γi

= −
∑
i∈Iint

〈g⦃uM⦄⦃HM⦄, JHMK · n〉γi −
∑
i∈Iint

〈g2⦃H
2
M⦄, JuMK · n〉γi ,

and get (?5) = 0.
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Next, we look at Λ7:∑
i∈Iin
〈gq̂n, HM〉γi︸ ︷︷ ︸

(?6)

+
∑
i∈Iin
〈g|q̂n|(HM − Ĥ), HM〉γi︸ ︷︷ ︸

(?7)

+
∑
i∈Iout

〈gmax {qM · n, 0}, HM〉γi︸ ︷︷ ︸
=Υ′5≥0

.

The outflow boundary term is non-negative and thus incorporated into the left-hand side. The
penalty inflow term is split into the following parts:

(?6) + (?7) =
∑
i∈Iin
〈gq̂n, HM〉γi +

∑
i∈Iin
〈g|q̂n|(HM − Ĥ), HM〉γi

=
∑
i∈Iin
〈gq̂n, HM〉γi +

∑
i∈Iin
〈g|q̂n|HM, HM〉γi︸ ︷︷ ︸

=Υ′6≥0

−
∑
i∈Iin
〈g|q̂n|Ĥ,HM〉γi .

The non-negative term is incorporated into the left-hand side and the remaining two terms are
estimated using Young’s inequality (2.32):

∑
i∈Iin
〈gq̂n, HM〉γi −

∑
i∈Iin
〈g|q̂n|Ĥ,HM〉γi

(2.32) with
p=q=2,ε=4
≤ 2

∑
i∈Iin
〈g|q̂n|, 1〉γi + 2

∑
i∈Iin
〈g|q̂n|Ĥ, Ĥ〉γi + 1

4
∑
i∈Iin
〈g|q̂n|HM, HM〉γi = Υ′7.

We rewrite the bottom friction term Λ16:∑
e∈Ie

(Cf |uM|uM,uM)Ωe = Cf
∑
e∈Ie

(|uM|uM,uM)Ωe = Cf ||uM||3L3(Ω) = Υ′8.

We estimate Λ18 with Young’s inequality (2.32) and Hölder’s inequality (2.31) and put the terms
to the right-hand side:

| −
∑
e∈Ie

(gHM∇hb,uM)Ωe |
(2.32) with
p=q=2,ε=1
≤ 1

2g
2||∇hb||2L∞(Ω)

∑
e∈Ie

(1, HM)Ωe + 1
2
∑
e∈Ie

(√
HMuM,

√
HMuM

)
Ωe

(2.31) with
p=q=2
≤ 1

2

(
g2||∇hb||2L∞(Ω)||1||L2(Ω)||HM||L2(Ω)

)
+ 1

2 ||
√
HMuM||2L2(Ω)

(2.32) with
p=q=2,ε= 1

2
≤ 1

8g
4||∇hb||4L∞(Ω) ||1||2L2(Ω)︸ ︷︷ ︸

=|Ω|

+1
2 ||HM||2L2(Ω) + 1

2 ||
√
HMuM||2L2(Ω) = Υ′9.

Next, we estimate Λ19 with Young’s inequality (2.32):

∑
e∈Ie

(F ,uM)Ωe

(2.32) with
p= 3

2 ,q=3,ε=
√

2
3Cf

≤ 2
9

√
6
Cf
||F ||

3
2

L
3
2 (Ω)

+ Cf
2 ||uM||3L3(Ω) = Υ′10.
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2 Discontinuous Galerkin methods for the 2D shallow water equations

The only term left is Λ5:∑
e∈Ie

(∂tHM, gHM)Ωe = g
2
∑
e∈Ie

(
∂t(H2

M), 1
)

Ωe
= Υ′11.

Lastly, we integrate everything from 0 to T and obtain the following from Υ′1, . . . ,Υ′11:

Υ′1 : 1
2

∫ T

0

∑
e∈Ie

(∂t(HM(t)uM(t) · uM(t)), 1)Ωe dt

= 1
2

(
||
√
HM(T )uM(T )||2L2(Ω) − ||

√
HM(0)uM(0)||2L2(Ω)

)
= Υ1,

Υ′2 : −1
2

∫ T

0
〈q̂n(t),uM(t) · uM(t)〉∂Ωi dt+ 1

2

∫ T

0
〈max {qM(t) · n, 0},uM(t) · uM(t)〉∂Ωo dt︸ ︷︷ ︸

≥0

= Υ2,

Υ′3 : 1
2

∫ T

0
〈|q̂n(t)|Ĥ(t),uM(t) · uM(t)〉∂Ωi dt︸ ︷︷ ︸

≥0

+ 3
∫ T

0
〈|q̂n(t)|max {|û(t)|, |HM(t)|}uM(t),uM(t)〉∂Ωi dt︸ ︷︷ ︸

≥0

= Υ3,

Υ′4 : 5
2

∫ T

0
〈|q̂n(t)|max {|û(t)|, |HM(t)|}uM(t),uM(t)〉∂Ωi dt+ 1

4

∫ T

0
〈|û(t)||q̂n(t)|, 1〉∂Ωi dt

+ 9
4

∫ T

0
〈|û(t)||q̂n(t)|û(t), û(t)〉∂Ωi dt+ 1

4

∫ T

0
〈|q̂n(t)||HM(t)|2, g〉∂Ωi dt

+ 81
16g

∫ T

0
〈|q̂n(t)|û(t) · û(t), û(t) · û(t)〉∂Ωi dt = Υ4,

Υ′5 : g

∫ T

0
〈max {qM(t) · n, 0}, HM(t)〉∂Ωo dt︸ ︷︷ ︸

≥0

= Υ5,

Υ′6 : g

∫ T

0
〈|q̂n(t)|HM(t), HM(t)〉∂Ωi dt︸ ︷︷ ︸

≥0

= Υ6,

Υ′7 : 2
∫ T

0
〈g|q̂n(t)|, 1〉∂Ωi dt+ 2

∫ T

0
〈g|q̂n(t)|Ĥ(t), Ĥ(t)〉∂Ωi dt

+ 1
4

∫ T

0
〈g|q̂n(t)|HM(t), HM(t)〉∂Ωi dt = Υ7,

Υ′8 : Cf

∫ T

0
||uM(t)||3L3(Ω) dt = Υ8,

Υ′9 : 1
8

∫ T

0
g4|Ω|||∇hb||4L∞(Ω) dt+ 1

2

∫ T

0
||HM(t)||2L2(Ω) dt+ 1

2

∫ T

0
||
√
HM(t)uM(t)||2L2(Ω) dt = Υ9,

Υ′10 : 2
9

√
6
Cf

∫ T

0
||F (t)||

3
2

L
3
2 (Ω)

dt+ Cf
2

∫ T

0
||uM(t)||3L3(Ω) dt = Υ10,

Υ′11 : g
2

∫ T

0

∑
e∈Ie

(
∂t(HM(t)2), 1

)
Ωe

dt = g
2

(
||HM(T )||2L2(Ω) − ||HM(0)||2L2(Ω)

)
= Υ11.

Then ||HM(0)||2L2(Ω) and ||
√
HM(0)uM(0)||2L2(Ω) are also put to the right-hand side.
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2.4 Stability analysis

Finally, we apply Grönwall’s inequality to 1
2
∫ T

0 ||HM(t)||2L2(Ω) dt and 1
2
∫ T
0 ||

√
HM(t)uM(t)||2L2(Ω) dt

from Υ9 and arrive at the stated stability result after adding Υ1, . . . ,Υ11, multiplying by 2, and
reordering the terms.

This proof only holds for p ≤ 2, however, numerical experiments confirm the stability also for
higher orders.

Remark 2
• In contrast to the stability estimate in [Aiz04], the above one does not make use of the

trace and inverse inequalities, and therefore contains no terms with negative exponents
of M and is still valid when approaching the limit M→ 0.

• If the bathymetry is constant as assumed in [Aiz04], Λ18 and consequently Υ9 vanish and
the proof does not need to make use of Grönwall’s inequality. The constant in (2.46) is
then independent of T.
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Chapter

Software and computational
grids 3

We implemented the discretization presented in Chapter 2 in a Python frontend to an automatic
code generation framework. Further elaboration on this implementation is provided in Section 3.1
building upon the published work [FN+20] and the preprint [FN+23a]. For the simulation of
realistic ocean domains, we employ block-structured grids, which are described in Section 3.2
based on the published articles [FN+20] and [FN+23b]. Our reference code is introduced in
Section 3.3.

3.1 Code generation and implementation details

Code generation techniques in conjunction with domain specific languages (DSLs) are experi-
encing a boom in popularity within the field of computational science and engineering appli-
cations [Kos+10; Haw11; DS15]. These techniques empower application scientists to describe
numerical models using abstract formulations, which are automatically translated into efficient
code tailored to the specific characteristics of the target hardware. We give an overview of
automatic code generation and DSLs, while also providing a detailed exposition of our own
implementation.

A paramount advantage of automatic code generation is the attainment of performance portabil-
ity across diverse hardware architectures. We highlight some particularly relevant approaches in
our field. The earliest framework in this domain is ATMOL [Eng02], short for the atmospheric
modeling language, which undergoes translation into FORTRAN with the aid of a code syn-
thesis tool. Within the ICON climate model context, the ICON DSL [Tor+13] is embedded in
FORTRAN, facilitating the generation of optimized FORTRAN code. PSyclone16 [Ada+19]
is a domain-specific compiler, also embedded in Fortran and used in the LFRic Project. Grid-
Tools17 [Afa+21] is a DSL framework engineered for enhancing performance portability within
the domain of weather and climate applications. It is embedded in C++ and successfully used to
accelerate the dynamical core of the COSMO weather forecasting model. To enhance accessibility,
16https://psyclone.readthedocs.io/en/stable
17https://github.com/GridTools/gridtools
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3 Software and computational grids

it also features a Python frontend, called GT4Py18 [BN+22]. The precursor of GridTools, known
as STELLA [Gys+15], an acronym for stencil loop language, is similarly integrated within C++.
In the broader context of solving PDEs, the automated system Firedrake19 [Rat+16] takes on
a central role, using the FE method and the Unified Form Language DSL. A comprehensive
overview of existing code generation and DSL frameworks is elucidated in [Kuc19].

This thesis focuses on utilizing and extending the open-source ExaStencils code generation
framework20 [Len+20].

3.1.1 State-of-the-art prior to this work

The ExaStencils framework introduces its own multi-layered external DSL, known as ExaSlang,
tailored to the requirements of developing numerical models across diverse applications that
need to solve PDEs [Kuc19]. It does not rely on other simulation software packages, opting
instead to handle the entire composition of the simulation program through synthesizing input
data, application parameters, and problem descriptions formulated in ExaSlang. Its output is
a highly optimized and massively parallel code, amenable for execution on a range of hardware
platforms encompassing CPU [KK16] and GPU clusters [KK18a; Len+20], as well as Field
Programmable Gate Arrays (FPGAs) [Sch+18]. For automatic optimizations, ExaStencils
supplies code transformations including but not limited to common subexpression elimination,
polyhedral loop transformations, explicit single instruction multiple data (SIMD) vectorization,
and address pre-calculation [Kro20].

ExaSlang itself offers different levels of abstraction (cf. Figure 3.1 (left), page 49): On layer 1 of
ExaSlang, users may specify a continuous problem description, including functions, operators,
governing equations, and boundary conditions, whereas layer 2 is concerned with their discretized
counterparts and supports FD, FV, and FE discretizations. Specific solver algorithms can be
expressed on layer 3 through mathematical formalism. Layer 4 completes the pipeline and is
the most comprehensive layer of the ExaSlang DSL. It can accommodate the whole program
specification, permitting data structure specialization, data communication strategies, input-
output operations, and visualization mechanisms.

3.1.2 Necessary extensions for DG simulations of the SWE

The original ExaStencils toolchain did not support incorporating higher-order discretizations,
such as the quadrature-free DG formulation. The strategy to integrate this new discretization was
influenced by the necessity to fulfill several prerequisites. Primarily, the abstract representations
18https://github.com/GridTools/gt4py
19https://www.firedrakeproject.org
20https://github.com/lssfau/ExaStencils

46

https://github.com/GridTools/gt4py
https://www.firedrakeproject.org
https://github.com/lssfau/ExaStencils


3.1 Code generation and implementation details

employed for the components must maintain a balance: they ought to closely mirror the
mathematical expressions while also easily translating into efficient code. Additionally, the
structural framework or context of the abstract representation must gain acceptance within the
user community.

To this end, within this thesis, we developed the open-source Python frontend GHODDESS21

(Generation of Higher-Order Discretizations Deployed as ExaSlang Specifications) as an extension
to the ExaStencils code generation framework. GHODDESS leverages the capabilities of the
SymPy symbolic algebra package22 [Meu+17] for the analytical evaluation of integrals and
derivatives. The principal task of GHODDESS involves translating our DG scheme, implemented
as a series of symbolic SymPy expressions, to ExaSlang layer 4.

Furthermore, one should note that ExaStencils is restricted to quadrilateral grids while our
discretization in Section 2.3 aims for triangular ones. Within GHODDESS, we address this
limitation by conceptually partitioning each element into two differently oriented triangles –
lower and upper – in order to obtain a triangular grid.

In the subsequent sections, we outline the principal stages of our approach to map a mathematical
model represented by a system of PDEs into efficient simulation code and describe each of them
in detail. For comprehensive documentation and user-oriented tutorials, readers are directed to
the ExaStencils homepage23.

3.1.3 Mapping discretization to dedicated Python frontend

Working with GHODDESS is facilitated by already provided basic abstractions, including classes
representing basis functions, triangles, and data fields.

The algebraic representations of the discrete scheme were implemented manually in our framework.
For illustration, we consider a part of the element integral for ξ. Recalling Equation (2.22), we
demonstrate its mapping to the reference basis (2.18), which results in

(A(cM,uM),∇(ϕeqe1))Ωe =
P (p)∑
i=1

[
c2
ei

∫
Ωe

∂ϕeq
∂x

ϕeidx+ c3
ei

∫
Ωe

∂ϕeq
∂y

ϕeidx
]

=
P (p)∑
i=1

[
c2
ei

|det(Be)|

(
Be

2,2

∫
Ω̂

∂ϕ̂q
∂x̂

ϕ̂idx̂−Be
2,1

∫
Ω̂

∂ϕ̂q
∂ŷ

ϕ̂idx̂
)

(3.1)

+ c3
ei

|det(Be)|

(
−Be

1,2

∫
Ω̂

∂ϕ̂q
∂x̂

ϕ̂idx̂+Be
1,1

∫
Ω̂

∂ϕ̂q
∂ŷ

ϕ̂idx̂
)]

for q ∈ 1, . . . , P (q).

This expression is further explained in an illustrative example in the context of GHODDESS.
Specifically, the first component, that is, ∑P (p)

i=1
c2ei

|det(Be)|

(
Be

2,2
∫
Ω̂
∂ϕ̂q
∂x̂ ϕ̂idx̂−Be

2,1
∫

Ω̂
∂ϕ̂q
∂ŷ ϕ̂idx̂

)
,

can be implemented as shown in Listing 3.1 in GHODDESS.
21https://i10git.cs.fau.de/ocean/ghoddess-release
22https://www.sympy.org
23https://www.exastencils.fau.de
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3 Software and computational grids

1 sum( cu ( t r i . o r i en t a t i on , i ) ∗ t r i . det_b_inv ∗ (
2 t r i . b [ 1 , 1 ] ∗ i n t eg ra t e_over_tr i ( b a s i s . phi [ i ] ∗ ba s i s . phi_dx [ q ] ) −
3 t r i . b [ 1 , 0 ] ∗ i n t eg ra t e_over_tr i ( b a s i s . phi [ i ] ∗ ba s i s . phi_dy [ q ] ) )
4 for i in ba s i s . i n d i c e s )

Listing 3.1: Implementation of the first part of (3.1) in GHODDESS. cu represents field c of the degrees
of freedom for the U -component of the solution. Access to local degrees of freedom is
parameterized with a triangle orientation (lower or upper) and an index for the respective
basis function. basis provides an abstraction for the basis functions and their derivatives.
tri allows accessing triangle data such as the transformation matrix B and the inverse
of its determinant (det_b_inv). Finally, basis.indices = P (p) is the number of basis
functions (adapted from [FN+20]).

Information about the triangles, such as their orientation or the determinant of the mapping from
the reference triangle and its reciprocal, are stored in tri. SymPy is then used for the analytical
evaluation of integrals and derivatives. Theoretically, it can also be used to simplify the resulting
expressions. This, however, increases execution times of the Python code tremendously and has
only limited effect in practice as the ExaStencils code generator inherently performs many of
the underlying optimization procedures.

3.1.4 Mapping Python to ExaSlang

To allow mapping from symbolic representations to ExaSlang, SymPy expressions are enriched
with a few required abstractions, such as field symbols that correspond to accesses to ExaSlang
fields storing quantities defined on the computational domain. GHODDESS also creates an
auxiliary knowledge file holding parameters that guide the generation process as well as ExaSlang
specifications. To be precise, we target layer 4 (as illustrated in Figure 3.1) since this requires
only a single back end. The symbolic program description also contains the control flow for
distributing individual kernels to designated architecture components.

Consider as an example the implementation of Listing 3.1 once again. The evaluation of this
expression varies according to the selected discretization order. For instance, in the context of
linear order and the second degree of freedom, denoted as P (p) = 3 and q = 2, the summation
over integrals can be analytically computed by∫

Ω̂
(−6
√

2)dx̂+
∫

Ω̂
(−12 + 36x̂)dx̂+

∫
Ω̂

(−6
√

12(1− x̂− 2ŷ))dx̂ = −3
√

2

using the basis formulation (2.18). Subsequently, this representation can be mapped to ExaSlang
together with the remaining terms. Omitting other contributions, such as the latter half of the
element integral, edge integrals, and the right-hand side would result in a code similar to the
one depicted in Listing 3.2. This code segment is incorporated within the corresponding update
kernel.

48



3.1 Code generation and implementation details

  

Layer 1
Continuous formulation, Latex-like

Layer 2
Discretization

Layer 3
Solver composition, Matlab-like

Layer 4
Complete specification, parallelization, and data structures

IR
Domain-specific optimizations

Target code
C++ with MPI, OpenMP, and CUDA

  

Layer 4
Complete specification, parallelization, and data structures

IR
Domain-specific optimizations

Target code
C++ with MPI, OpenMP, and CUDA

GHODDESS
Quadrature-free DG discretization, Python with SymPy

Figure 3.1: Schematics of the multi-layered approach of ExaSlang in the original (left) and adapted
(right) workflow. In the latter case, the continuous and discrete problem are manually
derived and implemented in GHODDESS which then directly maps to layer 4 (adapted
from [FN+20]).

1 loop over cxiNewLower1 {
2 cxiNewLower1 = (
3 − 3 .0 ∗ 1.41421356237310 ∗ bLower3 ∗ cuLower0 ∗ invDetBLower0 )
4 }

Listing 3.2: ExaSlang output for an update kernel based on the specification from Listing 3.1 for
basis.indices = 3 and q = 2 (modified for readability). cxiNewLower1 is the right-hand-
side of the time stepping scheme for the 1st degree of freedom of ξ on lower triangles.
cuLower0 stores the 0th degree of freedom for U on triangles with lower orientation.
bLower3 and invDetBLower0 are used to access the geometric information, that is, one
entry of B and det(B)−1 which are pre-calculated to improve performance. The degrees of
freedom are updated for every lower triangle (loop over) (adapted from [FN+20]).

Frequently used sub-expressions, such as parts of the transformation matrix B and the reciprocal
of its determinant, can optionally be pre-computed and stored in designated data fields, e.g.,
bLower3 and invDetBLower0, respectively, to improve performance. It is important to note that
this kernel exclusively updates triangles with a lower orientation. An equivalent kernel updating
the remaining upper triangles is also produced during the code generation.

In the context of higher-order DG approximations, the complexity and number of generated
expressions grow significantly. Consequently, the resulting layer 4 file size can easily exceed
several MB, and such configurations frequently have generation times exceeding an hour on
modern consumer hardware. This substantial time consumption is primarily attributed to
symbolic integral evaluations within the quadrature-free scheme, necessitating unrolling all
associated loops, e.g., over basis functions. With increasing order of the DG method, the number
of terms in the expressions increases cubically in the number of local basis functions. This results
in several million nodes in the abstract syntax tree (AST), leading to a noticeable slow-down in
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all routines that need to traverse it. However, in practice the code generation step is only done
once, and the same generated code can be used for many simulations, so this is not a major
drawback.

3.1.5 Mapping ExaSlang to optimized code

The ExaStencils source-to-source compiler is capable of parsing the emitted ExaSlang code,
applying code transformations and certain optimizations, and, finally, outputting a C++ and/or
CUDA code parallelized with OpenMP and/or Message Passing Interface (MPI) for shared
and/or distributed memory parallelism. For higher-order DG discretizations, the code generation
process by ExaStencils can extend beyond one hour due to the considerable scale of expressions
involved. However, it is worth noting that larger grids do not require more time for code
generation.

Building upon the example from the previous section, we proceed to generate compilable
C++ code similar to that depicted in Listing 3.3.

1 for ( int i 1 = 0 ; i 1 < 16 ; i 1 += 1) {
2 for ( int i 0 = 0 ; i 0 < 16 ; i 0 += 1) {
3 f ieldData_cxiNewLower1 [ ( ( 1 8∗ i 1 )+ i 0 +19)] = − ( 4.2426406871193 ∗
4 f ieldData_bLower3 [ ( ( 1 8∗ i 1 )+ i 0 +19)] ∗ f ie ldData_cuLower0 [ ( ( 1 8∗ i 1 )+ i 0 +19)]
5 ∗ f ieldData_invDetBLower0 [ ( ( 1 8∗ i 1 )+ i 0 +19)] ) ;
6 }
7 }

Listing 3.3: An exemplary C++ output based on the specification from Listing 3.2 without optimizations
(modified for readability). fieldData_* are data fields storing the degrees of freedom
and other triangle-specific data. Loop bounds are specialized to the chosen problem
configuration (adapted from [FN+20]).

As evident, no optimizations were carried out to produce clean code aimed at giving developers
insight. Enabling such optimizations generates better-performing but less readable code, as
showcased in Listing 3.4.

1 for ( int i 1 = 0 ; i1 <16; i 1 += 1) {
2 double∗ const _fieldData_bLower3_p0 = &(fieldData_bLower3 [ ( 18∗ i 1 ) ] ) ;
3 /∗ s i m i l a r l y f o r _fieldData_cxiNewLower1_p0 ,
4 _fieldData_cuLower0_p0 , _fieldData_invDetBLower0_p0 ∗/
5 int _start = 0 ; int _end = 16 ;
6 int _intermediate = std : : max({ _start , ( _end−((_end−_start )%4))}) ;
7 i f ( _start<_intermediate ) {
8 __m256d _vec00 = _mm256_set1_pd(4 .2426406871193) ;
9 for ( int i 0 = _start ; i0<_intermediate ; i 0 += 4) {

10 __m256d _vec01 = _mm256_loadu_pd(&(_fieldData_bLower3_p0 [ ( i 0 +19 ) ] ) ) ;
11 __m256d _vec02 = _mm256_loadu_pd(&(_fieldData_cuLower0_p0 [ ( i 0 +19 ) ] ) ) ;
12 __m256d _vec03 = _mm256_loadu_pd(&(_fieldData_invDetBLower0_p0 [ ( i 0 +19 ) ] ) ) ;
13 __m256d _vec04 ;
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14 _vec04 = _mm256_xor_pd(_mm256_mul_pd(_mm256_mul_pd(_vec02 , _vec03 ) ,
15 _mm256_mul_pd(_vec00 , _vec01 ) ) , _mm256_set1_pd( −0 .0 ) ) ;
16 _mm256_storeu_pd(&(_fieldData_cxiNewLower1_p0 [ ( i 0 +19) ] ) , _vec04 ) ;
17 }
18 }
19 for ( int i 0 = _intermediate ; i0<_end ; i 0 += 1) {
20 fieldData_cxiNewLower1_p0 [ ( i 0 +19)] = − ( 4.2426406871193 ∗
21 _fieldData_bLower3_p0 [ ( i 0 +19)] ∗ _fieldData_cuLower0_p0 [ ( i 0 +19)]
22 ∗ _fieldData_invDetBLower0_p0 [ ( i 0 +19)] ) ;
23 }
24 }

Listing 3.4: An exemplary C++ output based on the specification from Listing 3.2 with enabled
optimization (modified for readability). As before, fieldData_* are data fields storing the
degrees of freedom and other triangle-specific data, and loop bounds are specialized to
the chosen problem configuration. _fieldData_* hold addresses precomputed to enhance
performance. __m256* and _m256* are AVX vector data types and intrinsics that allow for
an explicit vectorization (adapted from [FN+20]).

3.1.6 Extensions for heterogeneous computing

Some approaches have been explored in the context of heterogeneous simulations of shallow water
models. For instance, in [Ech+20], a coupled 1D–2D model for real flood cases is hybridized using
a heterogeneous CPU–GPU architecture. A different approach was taken in [KK18b; CGD22]
for a two-dimensional shallow water model, where the domain is partitioned into subdomains
distributed across CPUs and GPUs. Furthermore, in [Fu+17], the global SWE are solved
heterogeneously by decomposing subblocks of patches into CPU and accelerator components.
However, to the best of our knowledge, prior to our contribution [FN+23a], no works attempt
to adapt the original algorithm’s numerics to parallelize it across diverse architectures.

The tight coupling between the base and correction computations in our separation approach,
presented in Section 2.3.3, favors hardware architectures that minimize the performance impact
of inter-component communication. Therefore, integrated CPU–GPU architectures represented
by Systems-on-a-Chip (SoCs) like NVIDIA Jetson systems manifest as particularly promising
candidates for our heterogeneous approach. Since the CPU and the GPU share the same die
and the system memory, no distinct memory locations and transfer operations are needed.
Consequently, such integrated setups enable low-latency communication between the CPU and
GPU units.

The execution of kernels in a heterogeneous manner necessitates the application of data syn-
chronization mechanisms and bookkeeping strategies. Automating these technically intricate
procedures holds substantial potential for enhancing productivity, rendering them an ideal
focus for code generation through the ExaStencils framework. By default, ExaStencils employs
a standard data migration methodology suited for architectures featuring discrete memory
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locations for the host and device. It generates explicit memory transfer instructions that
facilitate data exchange between these distinct memory locations, concurrently maintaining
records of their versions. However, these transfer operations are time-consuming, incur notable
latencies, and can significantly impact overall execution time, particularly when performed
at a high frequency. As part of the separation approach, ExaStencils has been expanded to
encompass additional memory management techniques of the CUDA platform, namely pinned
memory, unified memory, and zero-copy memory, each of which are explained in the following
enumeration.

• Pageable memory is referred to as memory that can be automatically swapped (paged)
by the operating system between the primary storage, typically Random-Access Mem-
ory (RAM), and secondary storage, like external drives. GPUs, however, cannot directly
access data residing in pageable host memory. Consequently, data transfers between the
CPU and GPU often incur overhead from internal copy operations to page-locked or
pinned host buffers issued by the CUDA runtime. To alleviate this challenge, CUDA offers
the (de-)allocation of pinned host memory to avoid the additional copy and to increase
the transfer bandwidth.

• Unified memory bundles the previously separate host and device memory allocations into
a single allocation. This approach eliminates the necessity for explicit memory transfers,
leveraging an automatic on-demand migration process determined by the CUDA runtime
via a page-fault mechanism. While this model significantly simplifies the development
of heterogeneous codes, it is often associated with performance overhead stemming from
fault handling. Explicit prefetching of data can mitigate this performance penalty and
allows for fine-grained overlapping with kernel executions at the cost of additional code
complexity.

• Zero-copy memory allows GPU threads to access host memory directly. Users are provided
with a shared virtual memory space for host and device data given by mapping the allocated
host memory to the CUDA address space. This technique proves especially advantageous
for systems equipped with integrated GPUs, such as the NVIDIA Jetson architectures.
While this approach does not need explicit migration requests, synchronization between
CPU and GPU execution is necessary for critical regions. The required bookkeeping for
this purpose is automatically generated by the ExaStencils compiler.

Numerical results of the separation approach are discussed in Section 4.4, with a special emphasis
on leveraging zero-copy memory within an NVIDIA Jetson architecture.

While beyond the scope of this work, we would like to highlight a recent noteworthy application
of GHODDESS, which involves porting shallow water simulations to FPGAs. This is realized
in combination with a template-based stencil processing library that provides FPGA-specific
optimizations for a streaming execution model [Alt+23], rather than relying on the ExaStencils
framework.
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3.2 Masked block-structured grids

Real-world ocean domains have complex geometries and topographies. Thus, the accuracy and
computational performance of numerical simulations on those domains is highly dependent
on the computational grid quality. Unstructured meshes are often favored because of their
geometrical flexibility [Fri+19]. Nonetheless, their irregular memory access patterns entail
additional indexing and cache misses compared to their structured counterparts and make
it also very challenging to achieve optimal computational efficiency on GPUs [Lac+14]. An
innovative approach, as detailed in [Zin+19], addresses this by introducing automatic generation
of block-structured grids (BSGs) for real-world ocean geometries, merging the geometric flexibility
of unstructured meshes with structured grids’ performance advantages, a technique employed in
CFD applications for years [Kin93; SB96]. For details about the application of unstructured
and structured grid models within the context of ocean simulations see [FN+23b].

To account for small-scale features like small islands and narrow channels, the methodology
presented in [Zin+22] and [FN+23b] enhances the generated grids by allowing them to cover
a larger area than the actual computational domain. It incorporates masking to exclude excessive
grid elements beyond the computational domain’s original boundaries. The use of land-sea
masks to distinguish wet and dry cells is common in structured-grid global ocean models, as in
NEMO [Irr+22] or ICON-O [Kor+22], facilitating accurate representation of complex geometries.
The novelty of our approach is to utilize masked BSGs and, in particular, to tune the element
count per block to optimize the trade-off between geometric flexibility and computational
efficiency. The generated BSGs have a prescribed number of quadrilateral blocks, which are
then refined using structured triangular grids. Afterward, masks are employed to accurately
represent features that are too small to be adequately captured in the block structure.

The main steps of the implemented masked BSG generation procedure are illustrated in Figure 3.2
and are summarized below.

a) Begin with an initial unstructured mesh to extract bathymetry and mesh density within
the target computational domain.

b) Reduce the initial mesh to double the target block number using the approach proposed
in [Zin+19], relying on a modified error metric [Zin+22] for the quadratic mesh simplifica-
tion scheme [GZ05]. Perform iterative edge collapses commencing with the edge causing
the smallest error based on density information and proceed until the desired triangle
count is achieved.

c) Transform triangles in the simplified grid into quad blocks using the Blossom-Quad
procedure [Rem+12], utilizing Edmonds’ Algorithm for dual graph perfect matching.
When a perfect match does not exist, merge the remaining triangles via the method
introduced in [ZG21].

d) Refine each quad block into a structured triangle grid to achieve the intended block-
structured topology. Triangle orientation should prioritize higher-quality triangles based
on the mean ratio metric [Zin+22].
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e) Adjust element sizes by relocating interior vertices according to mesh density information.
Outside the computational domain, mask triangles to restore the domain shape.

f) Align boundary vertices with exterior domain boundaries, and reposition interior vertices
to improve the quality near boundaries.

This procedure is similar to the one for generating unmasked BSGs, except that in the unmasked
case, a larger target number of blocks is necessary in step b) to capture the coastline within the
simplified triangle grid. Furthermore, the masking is omitted in step e).

a) initial mesh b)
simplification

c) blocks d) BSG e) masked BSG f) optimized
BSG

Figure 3.2: Masked BSG generation steps (from [FN+23b]).

A masked BSG generally encompasses three distinct element categories:

• active (regular grid elements),
• BC elements (adjoining active elements, where no solution is computed but the boundary

condition is projected to edges shared with active elements),
• inactive elements.

To exploit the computational benefits of the regular grid structure within a block, the algorithmic
treatment of all elements and edges in a block should follow the same pattern to the greatest extent
possible. To achieve this, our implementation in GHODDESS incorporates a pre-processing
stage before edge computations commence, reconstructing boundary conditions along edges
between active and BC elements. Consequently, regular edge updates yield accurate boundary
condition enforcement. Since one masked element can possess multiple unmasked neighbors,
this process is executed iteratively on a local edge basis, interleaved with edge computations.
Conducting three sweeps across all elements, each treating a single edge, demonstrates no
negative performance impact compared to where a single sweep is executed, addressing all three
computations simultaneously.

Two aspects of this masking approach have proven particularly advantageous. Firstly, BSGs are
now able to correctly represent complex features such as small islands and narrow channels that
were previously not meshable at all using conventional BSGs. Secondly, since the BSGs no longer
have to follow all fine geometric details, there is more freedom in tuning the number of elements
per grid block, enabling optimization for diverse hardware architectures. In fact, blocks with
just a few elements allow to nearly perfectly capture the domain geometry, requiring minimal
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land-sea masking yet providing limited structure for performance optimization. Conversely,
a BSG composed of a small number of blocks with numerous elements closely approximates a fully
structured grid in terms of topology and computational efficiency. However, for complex domain
geometries, a larger element fraction necessitates masking. We present numerical outcomes
evaluating both masked and unmasked BSGs in Section 4.5.

3.3 Reference code: quadrature-based unstructured
mesh DG SWE solver

To assess the accuracy of our quadrature-free discretization and the BSGs, in Sections 4.2 and
4.5, we compare simulation results to ones obtained with the quadrature-based unstructured
mesh DG SWE solver UTBEST described in [AD02; Aiz04]. UTBEST adheres to the original
SWE formulation (2.4), employing quadrature rules for element and edge integral computations,
supporting piecewise constant, linear, and quadratic approximations on conforming triangular
meshes. It utilizes the same temporal discretization schemes as GHODDESS and is a hybrid
FORTRAN 77/C code, with core numerical components implemented in C. UTBEST performs
all calculations in serial mode and employs the single precision floating-point format. Validation
against the test case detailed in Section 4.1.5 has been conducted via comparisons with ADCIRC24

and station measurement data [AD02]. Recently, UTBEST has been ported to OpenCL to operate
on FPGAs, demonstrating substantial performance gains over the serial CPU version [Ken+21;
Faj+23].

24https://adcirc.org
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Chapter

Numerical Results 4
Within this chapter, a numerical assessment is conducted to evaluate the quadrature-free
reformulation as elucidated in Section 2.2, along with the parameter-free adaptivity indicator
(Section 2.3.4), the p-adaptivity separation approach (Section 2.3.3) and the utilization of
masked block-structured grids presented in Section 3.2. Unless explicitly specified otherwise, all
computations are carried out employing the GHODDESS code generation framework outlined
in Section 3.1.

4.1 Setup of numerical examples

We commence by introducing a series of diverse example configurations that are used for
numerical evaluations in the following sections. These configurations encompass an analytical
sine wave, a radial dam break, a scenario of supercritical flow, a geostrophic adjustment test, and
two distinct tidal flow scenarios. In the first three setups, the physical parameters are selected
to allow computations on simple domains without the need for rescaling. Large parts of the
following descriptions build upon the previously published articles [FN+20; FNA22; FN+23b]
and the preprint [FN+23a].

4.1.1 Analytical sine wave on a quadrilateral domain

This initial test case serves mainly for verification and we consider dimensionless physical
quantities. We chose a quadrilateral domain, which was first refined as a structured triangle grid.
Following this, all nodal points of the grid were perturbed by a randomly generated displacement
that was up to 20 % of the element edge length. This geometric configuration is depicted in
Figure 4.1 on the left. The bathymetry was specified as

hb = 1 + 1
1000x+ 2

1000y.
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The gravitational acceleration g was set to 0.16, and no influences of bottom friction or Coriolis
force were considered.

We conducted the convergence studies detailed in Section 4.2 using an artificially manufactured
analytical solution given by

ξ(x, y, t) = 2 + a− 2Ca sin
(
π(x+y+Ct t)

600

)
,

U(x, y, t) = 2 a+ Ca Ct sin
(
π(x+y+Ct t)

600

)
,

V (x, y, t) = a+ Ca Ct sin
(
π(x+y+Ct t)

600

)
,

which also served to define suitable initial and Dirichlet boundary conditions. We executed all
simulations for t ∈ (0, 1500) seconds with the time step ∆t = 0.5 s for piecewise constant and
linear approximations and ∆t = 0.01 s for piecewise quadratic and cubic ones. These time step
sizes were chosen to ensure that time discretization errors remain negligible compared to those
associated with spatial discretization. We set the remaining parameters as Ca = 0.2, Ct = 0.2,
and a = 0.3. Figure 4.1 illustrates the mesh and the initial condition (left), the final solution
(middle) on the coarsest mesh with 32 elements, as well as on a four times refined one with 8192
elements (right) using the piecewise linear (p1) DG discretization.

Figure 4.1: Analytical sine wave: quadrilateral domain with perturbed mesh and piecewise linear (p1)
DG discretization: mesh with 32 elements and initial condition for the elevation (left), final
solution on the same mesh (middle), and final solution on a four times refined mesh (right)
(adapted from [FN+20]). All numbers are specified in meters.

4.1.2 Radial dam break

The radial dam break example is based on [LeV02; Haj21], again considering dimensionless
physical quantities. We set Ω = [0, 5]× [0, 5], g = 1, and fixed a constant bathymetry hb, which
is specified later in the respective sections. To incorporate the right-hand side terms into the
performance evaluation, a slight linear bottom friction τbf = 0.0001 ·H and a small Coriolis
force with coefficient fc = 10−5 were imposed.
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To make the test problem better suited for a p-adaptive approach, we set the initial condition
as

ξ(x, y, t) =

2 + 0.5 e−15((x−2.5)2+(y−2.5)2), if (x− 2.5)2 + (y − 2.5)2 < 0.25,

1, otherwise,

U(x, y, t) = 0,
V (x, y, t) = 0.

The simulation results, which serve as a reference solution, are depicted in Figure 4.2. These
results were obtained through computations on a uniform mesh comprising 524 288 elements.
To mitigate numerical diffusion, this simulation utilized the FORCE scheme (see (2.15)) instead
of the Lax–Friedrichs flux. Additionally, we employed a vertex-based slope limiter (see (2.19))
to avoid over- and undershoots. Since all external boundaries used land boundary conditions,
the wave experienced reflection, as evident in Figure 4.2 (bottom right), which corresponds
to t = 3 s.

Figure 4.2: Radial dam break: projected initial free surface elevation with slice at y = 2.5 (top left) and
limited linear approximation (p1) at t = 0.1 s (top right), t = 1 s (bottom left), and t = 3 s
(bottom right) on a uniform refined mesh with 524 288 elements using the FORCE Riemann
solver (adapted from [FNA22] and [FN+23a]). All numbers are specified in meters.
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4.1.3 Supercritical flow

The robustness of our implementation is demonstrated using a problem featuring a discontinuous
solution. We simulated a supercritical flow in a constricted channel with a constant bathymetry
of 1 meter based on the configuration proposed in [ZO95]. The lateral channel boundary walls
were confined on both sides with a constriction angle of 5° producing reflective cross-wave
patterns. Flow was induced through the inflow (bottom) boundary, where free surface elevation
and velocity were specified. There was no flow through the left and right boundaries, whereas
there were radiation boundary conditions at the outflow (top) boundary. In this setup, we
also consider dimensionless physical quantities. The inlet Froude number Fr is defined as
Fr = ui/

√
g Hi, with the axial velocity ui and the water depth Hi at the inlet. Here, we set

Fr to 2.5, thus entering a supercritical regime. The gravitational acceleration g was assigned
a value of 0.16, and neither bottom friction nor Coriolis force were imposed.

Figure 4.3 shows our unstructured mesh with 3155 elements, the BSG [Zin+19] with 3584
elements, and the exact steady-state solution projected on a mesh with approximately 230 000
elements. For an analytical solution to this problem, see, for example, [Ipp51].

Figure 4.3: Supercritical flow in a constricted channel: unstructured mesh with 3155 elements and
boundary types (left), BSG with 3584 elements (middle), and exact solution projected onto
a mesh with approximately 230 000 elements (right) (adapted from [FN+20] and [FNA22]).
All numbers are specified in meters.
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4.1.4 Geostrophic adjustment

This test case assesses the capability to reproduce the geostrophic adjustment process, i.e., the
interaction of gravitational and rotational forces leading to a complex stationary solution after
an initial perturbation of the constant water height. We employed the setup outlined in [TBR13]
and [Sze+24], with domain dimension L = 107 meters and a structured uniform mesh comprising
8192 triangles in Ω = [0, L]× [0, L]. We set g = 9.81 m

s2 , fixed a constant bathymetry hb = 1000 m
and imposed no bottom friction. Assuming an f -plane approximation, the constant Coriolis
coefficient was set to fc = 0.0001 1

s . Simulations, with a time step ∆t = 60 s, were run for
t ∈ (0, 36 000) seconds.
Land boundary conditions were applied to all external boundaries, and the initial condition was
set as

ξ(x, y, t) = 5 exp
(
− (x−L/2)2+(y−L/2)2

2(L/20)2

)
,

U(x, y, t) = 0,
V (x, y, t) = 0.

The initial free surface elevation is depicted in Figure 4.4. For verification, we compare our
results in Section 4.2.3 with those presented in Figure 10 of [TBR13] and Figure 3 of [Sze+24].

Figure 4.4: Geostrophic adjustment test: initial free surface elevation for piecewise quadratic (p2)
DG approximation. All numbers are specified in meters.

4.1.5 Tidal flow at Bight of Abaco (Bahamas)

Our first real-world example considers a tide-driven flow scenario in the Bight of Abaco within
the Bahamas archipelago, illustrated at the top in Figure 4.5. The domain geometry (rotated for
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historical reasons), the bathymetry, and the approximate positions of four recording stations for
the free surface elevation and velocity with exact coordinates in meters (38 667, 49 333), (56 098,
9613), (41 263, 29 776), and (59 594, 41 149) are illustrated in Figure 4.5 (bottom left). The setup
used g = 9.81 m

s2 and employed the quadratic friction law τbf = Cf |u| with coefficient Cf = 0.009.
This approximation is justified because the area is small and the depths are shallow. Additionally,
a constant Coriolis parameter of fc = 3.19 · 10−5 1

s was applied. The tidal forcing was composed
of five harmonic constituents (O1, K1, N2, M2, S2) given analytically by

ξ̂(t) = 0.075 cos
(

t
25.82 + 3.40

)
+ 0.095 cos

(
t

23.94 + 3.60
)

+ 0.100 cos
(

t
12.66 + 5.93

)
+ 0.395 cos

(
t

12.42 + 0.00
)

+ 0.060 cos
(

t
12.00 + 0.75

)
, (4.1)

where t in hours denotes the time elapsed from the beginning of the simulation, and ξ̂ in
meters represents the specified tidal elevation at the open sea boundary. Since in real-life ocean
simulations, the initial conditions are often unknown or challenging to obtain, we performed
a so-called cold start initialization, wherein the fluid domain is assumed to be initially at
rest (ξ0 = 0, q0 = 0), and the boundary condition – here, the tidal elevation – was gradually
increased from zero over a span of two days. We imposed no normal flow boundary conditions
at the land and island boundaries. The simulations were conducted over a ten-day period.
The original unstructured mesh, comprising 1696 elements, is visualized in Figure 4.5 (bottom
right).

4.1.6 Galveston Bay

Our concluding test case considers a tidal flow scenario within Galveston Bay, Texas. It is
presented at the top in Figure 4.6. The domain geometry and the bathymetry are depicted in
Figure 4.6 (bottom left), while the unstructured mesh of the bay consisting of 3397 elements
is displayed at the bottom right. The physical domain is rather complicated: 17 islands are
included in total, and the bathymetry varies sharply from the deep and narrow Houston Ship
Channel crossing the bay to much shallower regions in the remainder of the bay. The imposed
boundary conditions at the open sea and land boundaries were identical to those of the Bight of
Abaco simulation. The simulations also utilized the quadratic bottom friction law τbf = Cf |u|
with coefficient Cf = 0.004, a constant Coriolis forcing with coefficient fc = 7.07 · 10−5 1

s , and
a gravitational acceleration of g = 9.81 m

s2 . We executed the simulations over a period of five
days, starting from the lake-at-rest initial conditions and imposed tidal forcings via a linear
ramp-up process spanning one day.
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4.1 Setup of numerical examples

Figure 4.5: Tidal flow at Bight of Abaco: top: Google Maps excerpt overlaid with mesh, bottom:
domain geometry (rotated for historical reasons), bathymetry, and approximate positions
of four recording stations (left) and unstructured mesh with 1696 elements (right) (adapted
from [FN+20] and [FN+23b]). All numbers are specified in meters.
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Figure 4.6: Galveston Bay: top: Google Maps excerpt overlaid with mesh, bottom: domain geometry
and bathymetry (left) and unstructured mesh with 3397 elements (right) (adapted from
[FN+23b]). All numbers are specified in meters.

64



4.2 Evaluation of the quadrature-free reformulation

4.2 Evaluation of the quadrature-free reformulation

Within this section, we present evidence showcasing that the accuracy and the stability of
our quadrature-free formulation are closely comparable to that of the SWE solver that em-
ploys a standard, quadrature-based DG scheme. The results are partly based on our previously
published work [FN+20].

4.2.1 Analytical sine wave setup

Initially, we conducted an investigation of the analytical sine wave on a randomly perturbed
quadrilateral grid, as elaborated in Section 4.1.1. The errors corresponding to DG discretization
spaces spanning from piecewise constants (p0) to piecewise cubics (p3), accompanied by their
corresponding experimental convergence rates, are documented in Table 4.1 and graphically
represented in Figure 4.7.

Table 4.1: Analytical sine wave: L2-errors Err(·) and experimental orders of convergence EOC(·) for
the square domain with perturbed grid and DG discretization orders p = 0, 1, 2, 3 (adapted
from [FN+20]).

p # elements Err(ξ) in m EOC(ξ) Err(U) in m2/s EOC(U) Err(V ) in m2/s EOC(V )

0

32 1.36E+02 - 1.19E+02 - 1.37E+02 -
128 7.46E+01 0.87 7.10E+01 0.75 7.26E+01 0.91
512 3.79E+01 0.98 3.71E+01 0.94 3.78E+01 0.94

2048 1.91E+01 1.00 1.91E+01 0.96 1.95E+01 0.96
8192 9.55E+00 1.00 9.65E+00 0.98 9.91E+00 0.97

32 768 4.78E+00 1.00 4.84E+00 1.00 5.02E+00 0.98

1

32 4.51E+01 - 1.22E+02 - 1.01E+02 -
128 1.10E+01 2.04 2.04E+01 2.58 1.92E+01 2.40
515 2.67E+00 2.04 6.28E+00 1.70 5.42E+00 1.83

2048 6.79E−01 1.97 1.26E+00 2.32 1.21E+00 2.17
8192 1.82E−01 1.90 2.65E−01 2.25 0.24E−01 2.32

2

32 6.43E+00 - 1.41E+02 - 2.15E+02 -
128 9.97E−01 2.69 2.19E+00 2.69 2.54E+00 3.08
512 1.24E−01 3.01 2.58E−01 3.09 2.42E−01 3.39

2048 1.58E−02 2.97 2.63E−02 3.29 2.24E−02 3.43

3

32 9.67E−01 - 1.87E+00 - 2.62E+00 -
128 6.08E−02 3.99 9.87E−02 4.25 1.16E−01 4.49
512 3.59E−03 4.08 7.69E−03 3.68 6.92E−03 4.07

2048 2.36E−04 3.93 4.32E−04 4.15 3.71E−04 4.22

The demonstrated convergence rates are as expected for all primary unknowns, namely, the free
surface elevation and depth-integrated velocity components. Owing to increasing computational
and code generation costs, runs for higher-order DG discretizations were stopped at coarser
mesh resolutions than the lower-order runs. Nevertheless, the absolute L2-errors for higher-order
approximations are much smaller.
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Figure 4.7: Analytical sine wave: L2-errors for ξ vs. mesh resolution (cell width of the unperturbed
mesh) (adapted from [FN+20]).

4.2.2 Supercritical flow

In the supercritical flow setup from Section 4.1.3, the results of our quadrature-free implemen-
tation display excellent alignment across all tested discretization orders (p0, p1 and p2) in
comparison to results produced by the quadrature-based reference code UTBEST, described
in Section 3.3. This concurrence is evident for both unstructured and block-structured grids.
The steady state results were compared to those obtained utilizing the UTBEST model. In
Figure 4.8 on the left, we present the piecewise linear (p1) DG approximation obtained by
GHODDESS (quadrature-free) on the BSG (cf. Figure 4.3 middle). In the middle, we present
the solution obtained by UTBEST (quadrature-based) on the same BSG, and on the right, the
one of UTBEST (quadrature-based) on the unstructured mesh (cf. Figure 4.3 left). In particular,
the solution’s essential characteristics, namely the shock positions and the ’plateau’ levels, agree
very well among all runs and do not display any sensitivity to either the grid structure, DG
discretization order, or quadrature-based/quadrature-free nature of the employed scheme.

Since no slope limiting was employed in our runs, the solutions for the piecewise linear and
for any higher-order DG approximation exhibited over- and undershoots at the discontinuities.
However, the shown results represent the converged steady-state solutions, and these over-
and undershoots do not give rise to any stability difficulties for either the quadrature-based or
quadrature-free schemes.
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Figure 4.8: Supercritical flow in a constricted channel: piecewise linear (p1) quadrature-free steady-state
solution by GHODDESS on the BSG (left), quadrature-based solution by UTBEST on
the BSG (middle) and quadrature-based solution by UTBEST on the unstructured mesh
(right). The solutions are in good agreement. The numbers are specified in meters (adapted
from [FN+20]).

4.2.3 Geostrophic adjustment

We further investigate the ability of the proposed method to reproduce the geostrophic adjustment
procedure described in Section 4.1.4. Comparing the quadrature-free results shown in Figure 4.9
with those in Figure 10 of [TBR13] and Figure 3 of [Sze+24], one observes excellent agreement.

Figure 4.9: Geostrophic adjustment test: Quadrature-free piecewise quadratic (p2) solution by
GHODDESS at t = 36 000 s. Free surface elevation in meters (left), depth-averaged
x-velocity (middle), and depth-averaged y-velocity (right) in m

s .
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Additionally, we compare the quadrature-based results produced by UTBEST with the quadrature-
free simulations obtained using GHODDESS in Figure 4.10. We illustrate the L1-difference
between these solutions for the elevation field at t = 36 000 s for different discretization orders.
As we move from left to right, the order increases while the difference decreases. This trend
is expected due to the very smooth nature of the solution in the current test case. Both the
quadrature-based and the quadrature-free results converge towards the exact solution, thus
showing a reduced discrepancy.

Figure 4.10: Geostrophic adjustment test at t = 36 000 s. ξ − ξref difference between GHODDESS
(quadrature-free) and UTBEST (quadrature-based) solutions of the same DG discretization
order: p0 (left), p1 (middle), p2 (right). All numbers are specified in meters.

4.2.4 Tidal flow at Bight of Abaco

In the tide-driven flow scenario as discussed in Section 4.1.5, the simulations were executed
employing a constant time step of 15 seconds for the piecewise constant and piecewise linear
DG discretizations (p0 and p1), while a time step of 10 seconds was utilized for the piecewise
quadratic one (p2). The BSG containing 2624 elements used in this section is displayed in
Figure 4.11. The simulation outcomes were compared to those obtained using the UTBEST
model described in Section 3.3.

Figure 4.12 displays the chosen station comparisons, deliberately focusing on stations exhibiting
the most notable discrepancies between the runs. Specifically, we considered the free surface
elevation at Station 1 (top), the depth-averaged x-velocity at Station 2 (middle), and the
depth-averaged y-velocity at Station 4 (bottom). Comparable or better agreement characterized
the results for the remaining stations. Through these station comparisons, we aimed to address
several open questions concerning our approach. Primarily, we quantified the effects of the
modifications in the DG discretization which were necessitated by a quadrature-free scheme.
Secondly, by additionally plotting UTBEST results for the unstructured mesh, we clarified the
influence of BSGs on the simulation results.
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4.2 Evaluation of the quadrature-free reformulation

Figure 4.11: Tidal flow at Bight of Abaco: automatically generated BSG with 82 blocks and 32 elements
each (adapted from [FN+20]).

The comparisons illustrated in Figure 4.12 demonstrate excellent agreement for the free surface
elevation (top plot) across all different runs: UTBEST (quadrature-based scheme for p1) on
the original unstructured mesh as depicted in Figure 4.5, UTBEST (quadrature-based scheme
for p0, p1 and p2) on the BSG displayed in Figure 4.11, and GHODDESS (quadrature-free
scheme for p0, p1 and p2) on the same BSG. Upon closely inspecting a zoomed-in view of the
final elevation minimum, it becomes evident that the differences between the results for various
discretization orders are much greater than those due to the quadrature integration or the mesh
type. The depth-averaged velocities shown in the middle and bottom plots of Figure 4.12 display
slightly more sensitivity. This observation is consistent with the findings reported in the station
comparisons conducted in [AD02]. Nevertheless, it is worth noting that the absolute deviations
in the x- and y-velocities are similar. However, the x-velocity plot for Station 2 presented in
Figure 4.12 exaggerates those differences due to the much smaller x-velocity amplitude and the
subsequently finer scaling of the vertical axis.

A more elaborate comparison between the quadrature-based results produced by UTBEST
and quadrature-free simulations obtained using GHODDESS on the same BSG is shown in
Figure 4.13. For the elevation field at the end of day 10 of the simulation displayed at the
top left, we plot the L1-difference between the UTBEST and the GHODDESS results for the
piecewise constant (top right), piecewise linear (bottom left), and piecewise quadratic (bottom
right) DG discretizations. Note that the effects of the quadrature-free scheme increase with the
discretization order. In this particular test case, the solution exhibits quasi-periodicity, hence the
spectral properties of the scheme are likely responsible for the error. As the discretization order
increases, the spectral properties between the quadrature-based and quadrature-free approaches
diverge more, which is attributed to the evaluation of edge fluxes that, in the piecewise constant

69



4 Numerical Results

case, leads to nearly identical discrete expressions. With rising discretization order, the number
of edge quadrature points grows, and so do the differences in the edge flux computation between
the quadrature-based and quadrature-free scheme (see (2.14) and the corresponding discussion
in Section 2.3.1). Nevertheless, these differences are very small and, even in the worst case (p2),
do not exceed one percent of the calculated value of the free surface elevation.

ξ
 

ξ
 

ξ
 

ξ
 

Figure 4.12: Tidal flow at Bight of Abaco: elevation at Station 1 (top), depth-averaged x-velocity at
Station 2 (middle), depth-averaged y-velocity at Station 4 (bottom) for simulation days 9
and 10 (adapted from [FN+20]).
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Figure 4.13: Tidal flow at Bight of Abaco: free surface elevation ξ at the end of day 10 obtained using
UTBEST (quadrature-based) with p2 (top left). ξ − ξref difference between GHODDESS
(quadrature-free) and UTBEST (quadrature-based) solutions of the same DG discretization
order on the same BSG at the end of day 10: p0 (top right), p1 (bottom left), p2 (bottom
right). All numbers are specified in meters (adapted from [FN+20]).

Finally, two properties of our quadrature-free discretization have to be mentioned here that
play an important role for the SWE. Firstly, the local conservation of all primary variables is of
paramount importance. Equally crucial is the well-balanced nature of the scheme, specifically
with regard to zero-velocity conditions. Similar to the original quadrature-based DG scheme real-
ized in UTBEST, these properties remain preserved in the new quadrature-free implementation
since the modifications only concern the evaluation of element and edge integrals. No balance or
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conservation relationships have been affected, and no artificial terms have been introduced. The
latter property was explicitly verified by running the Bight of Abaco test case in a lake-at-rest
configuration (not shown here). The former property can be analytically demonstrated by
choosing a discrete test function equal to one on a single element and zero otherwise.

4.3 Evaluation of the parameter-free adaptivity
indicator

In this section, we evaluate the accuracy and robustness of the adaptivity indicator proposed
in Section 2.3.4.1. We present two different benchmarks encompassing various flow regimes
that differ in their spatial (constant, smoothly varying, shocks) and temporal (stationary, time-
varying) attributes. In addition to our proposed indicator, we conducted simulations employing
two alternative indicators as detailed in Section 2.3.4.2. Note that in this section, the simulations
using the JRL indicator from Section 2.3.4.1 accept the reconstructed limited p1 solution in the
left branch (p0) if its jump is smaller than 90% of the base jump instead of 100% as depicted in
Figure 2.4. For better comparability, we present limited (see Section 2.3.2) and unlimited results
for the adaptive test cases. The presented results are based on the published article [FNA22].

4.3.1 Radial dam break

First, we investigate the radial dam break example from Section 4.1.2, where the constant
bathymetry was set to hb = 0. A comparative examination of the p-adaptive solutions, employing
different indicators, is presented in Figure 4.14 a) for t = 0.1 s, in Figure 4.14 b) for t = 1 s, and
in Figure 4.14 c) for t = 3 s. For the JE indicator, optimal results, that is, the best balance
between resolving the flow features well and using as few as possible degrees of freedom, were
obtained by applying a threshold value of 0.0003. In case of the GRE indicator, in the unlimited
case, this threshold for the free surface elevation was 0.8, while for velocity components, it
was set to 1.7. In the case with limiting, a threshold for the free surface elevation of 0.2 and
for the velocity components of 0.5 produced the best solution. Our new indicator effectively
avoided over- and undershoots while not suffering from excessive numerical diffusion, as in the
case of the JE indicator with and without limiting. Meanwhile, the GRE indicator yielded
a satisfactory solution if the limiter was active. Otherwise, it was very diffusive and led to over-
and undershoots.

These findings are further corroborated by the difference plots for the free surface elevation
ξ − ξref shown in Figure 4.15 and the L1-errors listed in Table 4.2 alongside the fraction of
elements with a specific order and the number of degrees of freedom. The simulation results
shown in Figure 4.2 served as a reference.
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4.3 Evaluation of the parameter-free adaptivity indicator

a) t = 0.1 s

b) t = 1 s

c) t = 3 s

top row: p0-1, JRL p0-1, JRL p0-2, JRL p0-2, JRL
p adaption case p adaption case

bottom row: p0-1, JE p0-1, JE lim p0-1, GRE p0-1, GRE lim
p p p p

Figure 4.14: Radial dam break: free surface elevation at different time levels. Adaption range: constant-
linear (p0-1) or constant-quadratic (p0-2). Indicator: JRL, JE, JE limited, GRE, GRE
limited. Local approximation order p ∈ {0, 1, 2}. Adaption case: see Figure 2.4 (adapted
from [FNA22]).
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a) t = 0.1 s

b) t = 1 s

c) t = 3 s

p0 p1 lim p0-1, JRL p0-2, JRL
p0-1, JE p0-1, JE lim p0-1, GRE p0-1, GRE lim

Figure 4.15: Radial dam break: ξ − ξref difference plots at different time levels (from [FNA22]).
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Table 4.2: Radial dam break: L1-error for the free surface elevation, fraction of elements of each
discretization order, number of degrees of freedom (DOF), and time step size. Color coding
indicates the quality/efficiency (green=good, red=poor) (from [FNA22]).

time
in s

#
elements

approximation
order L1-error order fraction # DOF time

step size0 1 2

0.1

8192

0 1.79E-01 1.000 0.000 0.000 24 576 0.01
1 lim 8.26E-02 0.000 1.000 0.000 73 728 0.005
2 lim 9.64E-02 0.000 0.000 1.000 147 456 0.00125

0-1 JRL 8.19E-02 0.938 0.062 0.000 27 624 0.005
0-2 JRL 8.08E-02 0.938 0.042 0.020 29 124 0.005

32 768

0 1.24E-01 1.000 0.000 0.000 98 304 0.005
1 lim 4.02E-02 0.000 1.000 0.000 294 912 0.0025
2 lim 4.64E-02 0.000 0.000 1.000 589 824 0.00625

0-1 JRL 3.95E-02 0.945 0.055 0.000 109 104 0.0025
0-1 JE 4.55E-02 0.939 0.061 0.000 110 292 0.0025

0-1 JE_lim 4.19E-02 0.940 0.060 0.000 110 064 0.0025
0-1 GRE 4.32E-02 0.948 0.052 0.000 108 492 0.0025

0-1 GRE_lim 4.04E-02 0.936 0.064 0.000 110 820 0.0025
0-2 JRL 3.90E-02 0.945 0.036 0.018 114 468 0.0025

131 072

0 1.15E-01 1.000 0.000 0.000 393 216 0.0025
1 lim_force 1.41E-02 0.000 1.000 0.000 1 179 648 0.00125

2 lim 1.94E-02 0.000 0.000 1.000 2 359 296 0.0003125
0-1 JRL 1.60E-02 0.964 0.036 0.000 421 848 0.001
0-2 JRL 1.58E-02 0.962 0.027 0.012 437 016 0.001

1

8192

0 7.01E-01 1.000 0.000 0.000 24 576
1 lim 1.49E-01 0.000 1.000 0.000 73 728
2 lim 1.69E-01 0.000 0.000 1.000 147 456

0-1 JRL 1.34E-01 0.585 0.415 0.000 44 988
0-2 JRL 1.31E-01 0.580 0.213 0.207 60 510

32 768

0 4.39E-01 1.000 0.000 0.000 98 304
1 lim 7.19E-02 0.000 1.000 0.000 294 912
2 lim 7.68E-02 0.000 0.000 1.000 589 824

0-1 JRL 7.97E-02 0.643 0.357 0.000 168 456
0-1 JE 1.03E-01 0.652 0.348 0.000 166 776

0-1 JE_lim 1.36E-01 0.676 0.324 0.000 161 976
0-1 GRE 1.31E-01 0.871 0.129 0.000 123 732

0-1 GRE_lim 8.05E-02 0.617 0.383 0.000 173 568
0-2 JRL 7.55E-02 0.641 0.191 0.168 218 472

131 072

0 1.45E+00 1.000 0.000 0.000 393 216
1 lim_force 2.47E-02 0.000 1.000 0.000 1 179 648

2 lim 3.39E-02 0.000 0.000 1.000 2 359 296
0-1 JRL 6.43E-02 0.779 0.221 0.000 567 168
0-2 JRL 6.39E-02 0.782 0.133 0.085 664 134

3

8192

0 1.29E+00 1.000 0.000 0.000 24 576
1 lim 2.16E-01 0.000 1.000 0.000 73 728
2 lim 3.18E-01 0.000 0.000 1.000 147 456

0-1 JRL 2.37E-01 0.292 0.708 0.000 59 400
0-2 JRL 2.26E-01 0.286 0.458 0.255 78 492

32 768

0 8.49E-01 1.000 0.000 0.000 98 304
1 lim 1.04E-01 0.000 1.000 0.000 294 912
2 lim 1.67E-01 0.000 0.000 1.000 589 824

0-1 JRL 1.43E-01 0.770 0.230 0.000 143 532
0-1 JE 2.86E-01 0.682 0.318 0.000 160 812

0-1 JE_lim 3.07E-01 0.678 0.322 0.000 161 565
0-1 GRE 3.63E-01 0.916 0.084 0.000 114 732

0-1 GRE_lim 1.51E-01 0.590 0.410 0.000 178 860
0-2 JRL 1.41E-01 0.759 0.177 0.065 164 760

131 072

0 2.03E+00 1.000 0.000 0.000 393 216
1 lim_force 3.68E-02 0.000 1.000 0.000 1 179 648

2 lim 1.46E-01 0.000 0.000 1.000 2 359 296
0-1 JRL 1.27E-01 0.907 0.093 0.000 466 668
0-2 JRL 1.30E-01 0.902 0.077 0.021 498 808
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At t = 0.1 s, in the adaptive cases, more than 93% of the elements used order 0, and only
between 35% and 40% of the degrees of freedom of the linear approximation were needed to
achieve comparable L1-errors. At t = 1 s, in order to obtain comparable L1-errors, one needed
up to approximately 61% of the degrees of freedom of the uniformly linear approximation
for p0-1 and for p0-2 up to about 82%. Here, a substantial number of p1 elements were
necessary to accurately capture the curvature. At t = 3 s, the distribution of the approximation
order was somewhat more dependent on the resolution. Specifically, for higher resolutions, the
fraction of lower-order elements increased, and vice versa. Nevertheless, even in the worst case
only approximately 81% of the degrees of freedom compared to the uniformly higher-order
approximation were needed. The solutions with the highest resolution suffered from excessive
numerical diffusion for orders 0 and 1 which could be remedied for order 1 by applying the
FORCE flux.

To summarize the above investigations, our new parameter-free adaptivity indicator effectively
identifies resolved and underresolved regions across different resolutions while adjusting local
approximation orders accordingly. This was confirmed in a comparison with two further
indicators that showed that our new scheme achieves a good balance between solution quality
and number of degrees of freedom used.

4.3.2 Supercritical flow

The supercritical flow example described in Section 4.1.3 is characterized by shocks and constant
plateaus. Figure 4.16 depicts the steady-state solutions obtained with various schemes on the
BSG, as presented in Figure 4.3. It is apparent that the piecewise constant DG approximation
is very diffusive, whereas the limited linear and quadratic solutions solutions do not exhibit
this deficiency. As a result of using the adaption scheme, the constant-linear and the constant-
quadratic solutions using indicator JRL do not suffer from over- or undershoots and accurately
capture the jumps without introducing excessive levels of numerical diffusion.

The robustness and accuracy of our indicator can be inferred from Figure 4.17, which details
the local approximation order and the adaption case used (cf. Figure 2.4). As desired, the
constant plateaus were approximated using order 0, while higher orders were only activated in
the vicinity of the discontinuities. When comparing the JE and GRE indicators, the simulations
without limiting produced pronounced over- and undershoots in the vicinity of shocks whereas
the limited JE and GRE indicators yielded reasonable results other than being slightly diffusive.
For the JE indicator, optimal results were obtained with a threshold of 0.005. In the case of
the GRE indicator, the best results were observed with a threshold of 0.02 for the free surface
elevation and 0.05 for the velocity.

In Figure 4.18, we present difference plots of ξ − ξexact to quantify the performance of different
adaptivity indicators. This evaluation’s reference was the exact solution projected into the
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4.3 Evaluation of the parameter-free adaptivity indicator

Figure 4.16: Supercritical flow in a constricted channel: free surface elevation. Left to right: constant
(p0), limited linear (p1), limited quadratic (p2), constant-linear adaptive (p0-1), constant-
quadratic adaptive (p0-2) solution with indicator JRL (adapted from [FNA22]).

constant DG space using a high resolution grid comprising 230 000 elements. The constant
solution is clearly diffusive, while the limited linear and quadratic solutions look reasonable. The
darker colors in the unlimited constant-linear solutions indicate over- and undershoots, which are
suppressed in the fully limited adaptive solutions and also by our adaption scheme incorporating
inherent limiting. In Table 4.3, the L1-errors relative to the exact solution are listed next to the
fraction of elements attributed to specific approximation orders and the total number of degrees
of freedom. It is evident that between 64% and 82% of the elements employed a constant
approximation. The p-adaptive solutions required only between 45% and 58% of the degrees of
freedom of the uniformly linear approximation for p0-1 and approximately 63% for p0-2.

Table 4.3: Supercritical flow in a constricted channel: L1-error for the free surface elevation, fraction
of elements of each discretization order, number of degrees of freedom, and time step
used throughout the simulation. Color coding indicates the quality/efficiency (green=good,
red=poor) (from [FNA22]).

approximation
order L1-error order fraction # DOF time step

size0 1 2
0 1.52e+02 1.000 0.000 0.000 10 752 0.2

1 lim 3.40E+01 0.000 1.000 0.000 32 256 0.1
2 lim 3.37E+01 0.000 0.000 1.000 64 512 0.05

0-1 JRL 3.08E+01 0.645 0.355 0.000 18 390 0.1
0-1 JE 2.98E+01 0.652 0.348 0.000 18 228 0.1

0-1 JE_lim 4.48E+01 0.630 0.370 0.000 18 702 0.1
0-1 GRE 2.96E+01 0.809 0.191 0.000 14 850 0.1

0-1 GRE_lim 4.97E+01 0.817 0.183 0.000 14 682 0.1
0-2 JRL 3.04E+01 0.654 0.283 0.063 20 211 0.1
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top row: p0-1, JRL p0-1, JRL p0-2, JRL p0-2, JRL
p adaption case p adaption case

bottom row: p0-1, JE p0-1, JE lim p0-1, GRE p0-1, GRE lim
p p p p

Figure 4.17: Supercritical flow in a constricted channel: free surface elevation. Adaption range:
constant-linear (p0-1) or constant-quadratic (p0-2). Indicator: JRL, JE, JE limited, GRE,
GRE limited. Local approximation order p ∈ {0, 1, 2}. Adaption case: see Figure 2.4
(adapted from [FNA22]). The z-axis is scaled by a factor of 50.

This test case demonstrates the indicator’s ability to capture shocks precisely, its efficient
utilization of limiting to prevent over- and undershoots while maintaining controlled levels of
diffusion, and its effective transition to p0 approximations in constant regions.

78



4.4 Evaluation of the separation approach

p0 p1 lim p2 lim p0-1, JRL p0-2, JRL
p0-1, JE p0-1, JE lim p0-1, GRE p0-1, GRE lim

Figure 4.18: Supercritical flow in a constricted channel: ξ − ξexact difference plots using the exact
solution projected into the constant DG space on a grid with approximately 230 000
elements as the reference (from [FNA22]).

4.4 Evaluation of the separation approach

In this section, we focus on the computational performance of the separation approach proposed
in Section 2.3.3 using two simulation scenarios. The results are based on the preprint [FN+23a].
These performance measurements were carried out on two testing platforms.

The first one was an NVIDIA Jetson AGX Xavier SoC (hereafter referred to as ARM–AGX),
which is a part of the ICARUS25 cluster at TU Dortmund, comprising an NVIDIA Carmel
Armv8.2 CPU with eight cores alongside an NVIDIA Volta GPU. Throughout our test runs, the
CPU’s frequency remained fixed at 2100MHz. Given the shared die and system memory between
the CPU and GPU, no distinct memory locations and transfer operations are required, thereby

25http://www.mathematik.tu-dortmund.de/sites/icarus-green-hpc
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enabling low-latency communication between the CPU and GPU. Therefore, integrated architec-
tures such as the NVIDIA Jetson systems appear particularly promising for our heterogeneous
approach and excel, in addition, in the energy-to-solution metric [Gev+16].

The second testing platform was a server with two AMD Epyc 7742 processors with 64 cores
each and one NVIDIA Quadro RTX 6000 GPU (hereafter referred to as AMD–RTX). In this
setup, the CPU frequency was consistently fixed at 2250MHz.

For the parallelization of CPU code we used OpenMP and chose the number of threads to get
similar execution times between our code’s pure CPU and pure GPU versions. Specifically, three
threads on the ARM–AGX and 64 threads on the AMD–RTX yielded optimal alignment. We
used the most efficient memory management techniques for the measurements presented in the
subsequent sections for each specific setup. On the ARM–AGX, the pure GPU implementation
demonstrated a narrow speed advantage with pageable memory, whereas the heterogeneous
approach exhibited clear superiority with zero-copy memory. On the AMD–RTX, pinned memory
was the fastest across all code variants.

The primary computational kernels within our SWE code encompass the following numerical
components (cf. Figures 4.21, 4.22 on pages 83, 84):

• edge computation (cf. (2.11) in Section 2.3.1),
• element and right-hand-side (RHS) computation (cf. (2.11) in Section 2.3.1),
• auxiliary computation uH = q (cf. (2.12) in Section 2.3.1),
• minimum depth control to avoid negative depths,
• boundary condition (BC) evaluation,
• the RK step update (cf. (2.21)), and,
• in dynamically p-adaptive runs, the adaptivity indicator (cf. Figure 2.4).

To limit the number of different setups and to enhance understanding, we restrict the differences
in approximation order to one within this section.

Measuring how individual kernels affect runtime is valuable for practical application tuning.
A performance model could further guide the optimization process, but, due to the kernel
complexity and the need for hardware mapping, this goes beyond the scope of our current
work.

4.4.1 Radial dam break

The first example, the radial dam break presented in Section 4.1.2 with a constant bathymetry
hb = 0.5 on a randomly perturbed uniform grid was chosen because of the simplicity of the
domain and the easy problem customizability. Its purpose is twofold: first, to assess the
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performance of the main computational kernels on the ARM–AGX architecture and, second, to
quantify the effect of the separation approach on the total execution time. We designed a range of
statically adaptive setups with varying fractions of higher-order elements. This was intended to
facilitate a quantitative analysis of the overhead associated with employing a p-adaptive scheme
versus adopting a higher-order scheme without adaptivity. The same test case, executed on the
AMD–RTX platform, served to illustrate the latency effect of a discrete GPU on the execution
time. Finally, a comprehensive evaluation of the computational performance of a dynamic
p-adaptive simulation was conducted across diverse arrangements encompassing separated and
unseparated (i.e., using the standard approach) as well as various hardware configurations,
including CPU, GPU, and heterogeneous combinations.

A randomly perturbed uniform grid consisting of 2 097 152 triangles was employed for all
performance measurements. For illustration purposes, Figure 4.19 (top) shows the free surface
elevation at t = 0.1 s on a grid containing 131 072 triangles across different approximation orders.
Meanwhile, Figure 4.19 (bottom) illustrates the local approximation order of the statically
adaptive setup, wherein every 32nd element was constrained to employ a higher order. This
specific test scenario was chosen because of the inherent challenge it poses to both CPU and
GPU in terms of efficient vectorization and memory accesses. In the static setups, computations
span 100 time steps utilizing ∆t = 0.00001 s, each encompassing two substeps (RK stages).
Subsequently, the execution time was averaged throughout 200 substeps.

Figure 4.19: Radial dam break: free surface elevation at t = 0.1 s. Top row: constant (p0, left), linear
(p1, middle), and quadratic solution (p2, right). Bottom row: statically adaptive solution
with every 32nd element employing the higher approximation order: constant-linear (p0-1,
left) and linear-quadratic (p1-2, right), color-coding shows the local approximation order
(adapted from [FN+23a]).

The free surface elevation and the local approximation order for the dynamic p-adaptive cases are
depicted in Figure 4.20 at t = 0.1 s, t = 1.0 s, and t = 2.5 s. These simulations were conducted
for a total of 12 500 time steps with ∆t = 0.0002 s. Kernel execution timings were averaged
across all substeps to capture the variations in the adaptive part of the solution algorithm.
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Figure 4.20: Radial dam break: dynamic p-adaptive test. Free surface elevation at t = 0.1 s (left),
t = 1.0 s (middle), and t = 2.5 s (right). Top row: p0-1, bottom row: p1-2. Color-coding
shows the local approximation order (from [FN+23a]).

Figure 4.21 presents a comparative analysis between the unseparated configurations involving
piecewise constant, linear, and quadratic solutions without adaptivity and the statically adaptive
counterparts with 1/32 of the elements fixed at the higher order. Additionally, the dynamically
p-adaptive outcomes are included in the comparison. It is evident that, for the adaptive setups,
the total execution times were much lower than those of the non-adaptive higher-order version.

Subsequently, we activated our novel separation approach and considered the execution times
of all kernels across both CPU and GPU architectures (refer to ’homog.’ rows in Figure 4.22).
To exploit further parallelism, these outcomes guided the allocation of kernels in the separated
algorithm between the CPU and GPU (as denoted by ’heterog.’ rows in Figure 4.22). The
resulting optimal distribution assigned the correction computation to the CPU. In contrast,
the fixed non-adaptive computation (denoted by ’fixed’) and the remaining kernels, except for
the BC computation, were offloaded to the GPU. This distribution led to approximately 22%
speedup compared to the fastest separated computation, either purely executed on the CPU or
on the GPU. Contrasted with the fastest unseparated version, we noticed a speedup of 11%.

In Figure 4.23, we present the substep execution times corresponding to statically adaptive
scenarios with different ratios of higher-order elements, which were fixed during the run. Here,
a comprehensive comparison was drawn across unseparated and separated schemes executed
individually on the CPU, the GPU, or via an optimal heterogeneous distribution of kernels
between these two architectures. This allows us to easily quantify the overhead incurred
by separation, which mostly boils down to transferring the solution parts between the non-
adaptive and adaptive kernels, in each specific configuration. Furthermore, we can infer that
the CPU clearly outperformed the GPU when approximately 1/32 or more elements incorporate
higher-order approximations. Conversely, the GPU was faster if the fraction of higher-order
elements was small. Notably, all adaptive computations showcased improved efficiency relative
to their non-adaptive counterparts employing higher-order approximations when executed on
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non-adaptive

start
substep

edge
comput.

p CPU GPU
0 26.51 17.90
1 95.44 62.56
2 289.68 154.10

element
& RHS
comput.

p CPU GPU
0 11.86 7.82
1 78.20 100.95
2 297.36 607.06

RK
substep

p CPU GPU
0 8.68 3.70
1 26.39 10.87
2 73.81 23.08

min
depth

p CPU GPU
0 1.28 0.98
1 2.13 1.32
2 5.82 2.34

solving
uH = q

p CPU GPU
0 6.18 3.49
1 139.68 23.12
2 759.93 114.12

BC
comput.

p CPU GPU
0 0.43 0.42
1 0.68 0.92
2 1.31 1.47

end substep (total)
p CPU GPU
0 55.11 28.86
1 342.31 174.55
2 1425.03 806.55

statically
adaptive

start
substep

edge
comput.

p CPU GPU
0-1 57.36 53.44
1-2 183.34 147.68

element
& RHS
comput.

p CPU GPU
0-1 32.54 58.54
1-2 128.07 406.17

RK
substep

p CPU GPU
0-1 14.42 5.51
1-2 38.62 17.99

min
depth

p CPU GPU
0-1 3.82 1.86
1-2 7.39 2.69

solving
uH = q

p CPU GPU
0-1 20.14 15.49
1-2 159.02 80.71

BC
comput.

p CPU GPU
0-1 0.64 0.87
1-2 1.04 1.51

end substep (total)
p CPU GPU
0-1 129.47 118.87
1-2 517.70 587.11

dynamically
p-adaptive

start
substep

edge
comput.

p CPU GPU
0-1 39.41 27.14
1-2 143.37 81.59

element
& RHS
comput.

p CPU GPU
0-1 22.34 15.17
1-2 86.78 135.49

RK
substep

p CPU GPU
0-1 8.06 4.38
1-2 26.06 11.80

min
depth

p CPU GPU
0-1 3.49 1.28
1-2 4.61 1.65

solving
uH = q

p CPU GPU
0-1 15.84 4.66
1-2 119.72 29.85

BC
comput.

p CPU GPU
0-1 0.44 0.54
1-2 0.71 0.88

adap-
tivity
indicator

p CPU GPU
0-1 20.84 7.34
1-2 33.79 10.70

end substep (total)
p CPU GPU
0-1 110.92 59.80
1-2 416.16 270.92

Figure 4.21: Radial dam break: Data flow and kernel execution times (in ms) on the ARM–AGX plat-
form for the unseparated setup. Piecewise constant, linear, and quadratic solutions (left),
statically adaptive p0-1 and p1-2 solutions (middle), dynamically p-adaptive p0-1 and
p1-2 solutions (right). We highlight significantly faster execution times (green, underlined)
with a difference of more than 1/3 with respect to the slower ones (red) (from [FN+23a]).
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start substep

edge fixed computation
p dist. CPU GPU

0-1 hom. 21.19 17.89
het. - 18.30

1-2 hom. 87.58 62.57
het. - 63.05

edge correction
computation

p dist. CPU GPU

0-1 hom. 43.52 50.92
het. 64.19 -

1-2 hom. 88.32 127.89
het. 155.37 -

element & RHS
fixed computation

p dist. CPU GPU

0-1 hom. 9.18 6.64
het. - 6.66

1-2 hom. 44.11 97.81
het. - 97.85

element & RHS
correction comp.

p dist. CPU GPU

0-1 hom. 14.41 48.45
het. 20.04 -

1-2 hom. 42.34 340.42
het. 51.11 -

RK substep & additions
p distrib. CPU GPU

0-1 homog. 56.20 17.95
heterog. - 19.22

1-2 homog. 168.07 60.23
heterog. - 61.28

min depth
p distrib. CPU GPU

0-1 homog. 3.49 1.84
heterog. - 1.85

1-2 homog. 7.02 2.69
heterog. - 2.68

solving uH = q
p distrib. CPU GPU

0-1 homog. 21.70 15.47
heterog. - 15.42

1-2 homog. 150.02 80.70
heterog. - 80.73

BC computation
p distrib. CPU GPU

0-1 homog. 0.62 0.77
heterog. 0.98 -

1-2 homog. 1.09 1.44
heterog. 1.94 -

end substep (total)
p CPU GPU

0-1 homog. 170.86 144.55
heterog. 127.40

1-2 homog. 588.95 714.25
heterog. 460.01

Figure 4.22: Radial dam break: Data flow and kernel execution times (in ms) on the ARM–AGX
platform for the separated statically adaptive p0-1 and p1-2 solutions. The faster and slower
execution times are highlighted in green (underlined) and red, respectively, to substantiate
the decision on the heterogeneous kernel distribution (adapted from [FN+23a]).

the CPU. This trend also held true for non-adaptive GPU execution times as long as the ratio
of higher-order elements remained at or below 1/32. In the heterogeneous case, particularly for
approximation order p1-2 and certain fractions of higher-order elements (specifically 1/32 and
1/64), we achieved a noteworthy speedup exceeding 10% relative to the fastest homogeneous
version.
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4.4 Evaluation of the separation approach

The values left of the vertical dashed line displayed in Figure 4.23 illustrate the substep execution
times for the dynamically p-adaptive scenario (refer to Figure 4.20) wherein solution accuracy
is enforced to be similar to that of the full higher-order solution, cf. Section 4.3.1. For p0-1,
an average of approximately 1/482 of the elements employed the higher-order approximation,
while for p1-2, this fraction increased to 1/172. Given that dynamically p-adaptive executions
outperformed their higher-order counterparts (p1 in Figure 4.23 (left) and p2 in Figure 4.23
(right)) by a factor of more than two, these measurements confirm the benefits of p-adaptivity
in general. The heterogeneous version for p1-2 was faster than the separated homogeneous ones
and than the unseparated CPU version but not faster than the unseparated GPU version.
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Figure 4.23: Radial dam break: ARM–AGX total execution times for non-adaptive, statically adaptive
with different fractions of higher-order elements, and dynamically p-adaptive setups. For
p0-1, in the latter case, on average (over the whole simulation), approximately 1/482 of the
elements use the higher order and for p1-2, the average fraction of higher-order elements
is 1/172. The horizontal lines mark the non-adaptive (p0, p1, and p2) execution times.
Constant-linear (left) and linear-quadratic (right) approximation (adapted from [FN+23a]).

When comparing the p0-1 to the p1-2 versions, it is important to recognize that the performance
difference between constant and linear computations was smaller than between linear and
quadratic computations. Additionally, the overhead caused by separating the element and edge
computations was, in some cases, so significant to the extent that it could not be compensated
by distributing the kernels and concurrent computations. Here, flexible code generation can be
used to the best advantage by easily generating configurations that provide the best performance
depending on the problem setup and the hardware configuration.
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Achieving efficient heterogeneous kernel distribution is made possible because of the CPU and
the GPU sharing the memory on our ARM–AGX SoC architecture. However, in conventional
hardware setups featuring discrete GPUs (as observed in the case of AMD–RTX), memory
transfers between the CPU and GPU present a substantial bottleneck which is difficult to
amortize by any performance benefits arising from heterogeneous kernel parallelism. For the
separated versions and p0-1, we attained reasonable substep execution times of 24.9ms on
the CPU and 16.1ms on the GPU. Notably, the corresponding times for the heterogeneous
setup were significantly larger, measuring 101.0ms. This pattern persisted within the context of
the p1-2 approximation as well, where execution times of 68.1ms, 72.4ms, and 222.2ms were
recorded for the CPU, GPU, and the heterogeneous arrangement, respectively.

Table 4.4: Detailed kernel execution times (in ms) for different scenarios. The partial execution times
were measured without overlap, i.e., with synchronization after the kernel calls, and therefore,
their sums do not always match the total execution times (adapted from [FN+23a]).

test scenario dam break dam break dam break dam break dam break Bahamas dam break
adaptivity strategy static, 1/8 static, 1/16 static, 1/32 static, 1/64 dynamic dynamic static, 1/32
hardware platform ARM-AGX ARM-AGX ARM-AGX ARM-AGX ARM-AGX ARM-AGX AMD-RTX
kernel p dist. CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU
edge
fixed
compu-
tation

0-1 hom. 21.6 17.6 21.6 17.9 21.2 17.9 21.4 17.6 20.7 17.9 90.4 30.6 4.1 1.7
het. — 18.3 — 18.3 — 18.3 — 18.3 — 18.3 — 29.8 — 8.4

1-2 hom. 89.1 62.6 85.5 62.6 87.6 62.6 90.9 62.2 83.7 61.7 351.3 83.8 14.7 5.8
het. — 63.1 — 63.1 — 63.1 — 63.1 — 63.1 — 81.5 — 23.1

edge
correc-
tion
comp.

0-1 hom. 86.0 99.2 69.9 98.7 43.5 50.9 24.6 26.7 16.2 13.9 150.1 71.6 4.3 4.8
het. 140.6 — 109.7 — 64.2 — 37.3 — 32.5 — 92.1 — 9.5 —

1-2 hom. 196.0 254.0 161.4 251.9 88.3 127.9 48.7 65.5 20.5 23.5 279.9 189.5 12.3 12.0
het. 411.0 — 281.7 — 155.4 — 83.4 — 38.3 — 225.4 — 22.9 —

elem &
RHS
fixed
comp.

0-1 hom. 9.2 6.6 9.2 6.6 9.2 6.6 9.3 6.6 8.1 6.6 57.6 13.6 2.0 0.8
het. — 6.7 — 6.7 — 6.7 — 6.7 — 6.7 — 13.8 — 0.8

1-2 hom. 43.7 97.8 43.9 97.8 44.1 97.8 44.0 97.8 42.1 97.8 185.5 117.5 5.0 9.0
het. — 97.9 — 97.9 — 97.9 — 97.9 — 98.0 — 117.1 — 9.1

elem &
RHS
correct.
comp.

0-1 hom. 26.3 96.2 21.9 96.2 14.4 48.5 8.3 24.5 6.0 7.2 51.4 46.6 1.8 4.5
het. 42.0 — 30.0 — 20.0 — 13.7 — 11.5 — 31.7 — 1.8 —

1-2 hom. 105.3 680.5 75.7 679.7 42.3 340.4 22.5 170.7 8.8 36.9 155.8 251.8 3.7 31.5
het. 127.5 — 92.8 — 51.1 — 29.3 — 12.5 — 131.8 — 3.9 —

RK
substep
&
addition

0-1 hom. 97.7 32.1 76.6 25.3 56.2 18.0 42.3 14.1 31.7 16.3 270.4 32.2 9.9 4.3
het. — 32.8 — 26.2 — 19.2 — 15.5 — 17.7 — 34.1 — 59.4

1-2 hom. 259.7 96.5 211.3 85.6 168.1 60.2 139.3 45.0 123.8 48.6 701.8 71.2 23.1 11.6
het. — 95.9 — 86.1 — 61.3 — 46.4 — 50.2 — 74.2 — 118.1

min
depth

0-1 hom. 3.6 2.5 3.7 2.5 3.5 1.8 3.5 1.5 2.9 1.3 7.1 3.1 0.5 0.2
het. — 2.5 — 2.5 — 1.9 — 1.5 — 1.3 — 3.1 — 0.2

1-2 hom. 8.9 3.8 8.1 3.8 7.0 2.7 5.6 2.1 4.7 1.7 11.0 4.0 0.9 0.3
het. — 3.8 — 3.8 — 2.7 — 2.1 — 1.7 — 4.0 — 0.3

solving
uH = q

0-1 hom. 38.6 26.8 30.9 26.9 21.7 15.5 15.6 9.7 16.4 4.7 82.5 15.7 1.0 1.9
het. — 26.8 — 26.9 — 15.4 — 9.7 — 4.8 — 15.6 — 4.7

1-2 hom. 213.8 143.6 196.4 138.1 150.0 80.7 105.0 52.3 112.5 29.9 311.4 71.3 5.8 11.7
het. — 143.2 — 138.3 — 80.7 — 52.5 — 30.0 — 71.3 — 14.5

BC com-
putation

0-1 hom. 0.6 0.4 0.6 0.8 0.6 0.8 0.6 0.4 0.4 0.5 1.6 1.5 0.9 0.1
het. 1.0 — 1.0 — 1.0 — 1.0 — 0.8 — 1.8 — 12.6 —

1-2 hom. 1.2 1.5 1.2 1.5 1.1 1.4 1.1 0.8 0.7 0.9 2.3 1.8 1.6 0.2
het. 2.2 — 2.1 — 1.9 — 1.9 — 1.2 — 2.5 — 25.6 —

indicator
0-1 hom. — — — — — — — — 21.1 7.4 93.9 61.2 — —

het. — — — — — — — — — 8.1 — 60.5 — —

1-2 hom. — — — — — — — — 34.7 10.7 113.9 69.2 — —
het. — — — — — — — — — 11.3 — 68.9 — —

total
(paral-
lel)

0-1 hom. 284.1 258.0 234.8 249.4 170.9 144.6 126.3 92.2 123.9 74.4 826.2 379.7 24.9 16.1
het. 246.7 195.9 127.4 89.6 88.1 286.5 101.0

1-2 homog. 917.5 1237.8 783.5 1220.2 589.0 714.3 457.5 459.3 432.6 310.2 2149.5 1061.0 68.1 72.4
het. 818.8 672.2 460.1 346.1 292.7 716.1 222.2
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4.4 Evaluation of the separation approach

For a comprehensive breakdown of execution times on the AMD–RTX architecture, we direct
the reader to the final column of Table 4.4 detailing kernel execution times for all adaptive
measurements presented.

4.4.2 Tidal flow at Bight of Abaco with water hump

The second test setup demonstrates the applicability of our novel approach to more complex
problems. We investigated a tide-driven flow in the Bight of Abaco as outlined in Section 4.1.5
with a BSG consisting of several blocks. The simulations were started from the lake-at-rest initial
conditions with an added water column of 2 meters in height, essentially simulating a prototype
tsunami simulation without wetting and drying. These simulations span 50 minutes and were
driven by the tidal surface elevation at the open sea boundary. The tidal forcing consisting of
five harmonic constituents was ramped up from zero over the period of 0.1 days. Figure 4.24
displays the BSG, which contains 256 blocks with only 32 elements each for better visualization.
However, in the actual computations, a four times uniformly refined (achieved through bisecting
each edge) BSG was utilized, yielding 8192 elements per block. The total number of elements
employed was the same as in the uniform dam break examples. The simulations were executed
for 12 000 time steps with ∆t = 0.25 s.

Figure 4.24: Tidal flow at Bight of Abaco: block-structured grid with 256 blocks of 32 elements each.
The grid used for the computations was uniformly refined four times, i.e., containing 8192
elements per block (adapted from [FN+23a]).
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Figure 4.25 illustrates the temporal evolution of the free surface elevation for various time
instances, focusing on the constant-linear approximation (top) along with the corresponding
local approximation orders for the constant-linear (middle) and the linear-quadratic (bottom)
discretization. In the p0-1 case, about 24.5% of the elements adopted order 1, and, in the p1-2
case, about 12.1% of the elements employed order 2.

Figure 4.25: Tidal flow at Bight of Abaco: free surface elevation (top row) and local approximation
orders for p0-1 (middle row) and p1-2 (bottom row) at t = 1 s (left), t = 25 s (middle) and
t = 50 s (right). The z-axis is scaled up by factor 10 000 (from [FN+23a]).

Within the heterogeneous case, we distributed the kernels among the CPU and the GPU,
building upon the insights originating from the detailed performance evaluation in Section 4.4.1.
Figure 4.26 provides a comprehensive breakdown of kernel execution times, encompassing
unseparated and separated configurations on both the CPU and GPU, as well as the scenario
involving a heterogeneous kernel distribution. In the heterogeneous case, the CPU kernels are
depicted on the left, while GPU kernels are positioned on the right of the corresponding bars.
The total execution time exceeded the individual kernel times because of data dependencies that
hinder complete overlap. The heterogeneous kernel distribution, as derived in the preceding
section, performed correction computations executed on the CPU. Meanwhile, fixed non-adaptive
computations and the remaining kernels – excluding the BC computation – were handled on
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4.5 Evaluation of block-structured grids with masking

the GPU. Therefore, the heterogeneous bar (the rightmost bar of the corresponding subplots of
Figure 4.26) mostly consists of the faster kernels (i.e., smaller blocks) out of separated CPU and
GPU execution times plotted in the corresponding bars. When employing the CPU and the GPU
in parallel, we obtained an approximate 13% speedup for the constant-linear approximation and
about 22% speedup for the linear-quadratic one. For a detailed breakdown of kernel execution
times, we direct attention to the ’Bahamas’ column within Table 4.4. These results show that
our approach also works well within the context of realistic simulation scenarios.
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Figure 4.26: Tidal flow at Bight of Abaco: detailed kernel and total execution times for dynamically
p-adaptive simulation with unseparated and separated setup on the CPU and the GPU as
well as with the optimal heterogeneous distribution (from [FN+23a]).

4.5 Evaluation of block-structured grids with
masking

Finally, we investigate masked block-structured grids, as presented in Section 3.2. We validate
the accuracy of the numerical scheme and quantify the influence of element masking on the
computational performance. This evaluation leverages two distinct real-world problem scenarios
of increasing geometric complexity. The results are based on the published article [FN+23b].
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The performance measurements in this section were conducted on a single node of the Meggie
cluster26 consisting of two Intel Xeon E5-2630 v4, each featuring ten physical cores. The clock
frequency was fixed at 2.2 GHz with hyper-threading functionality disabled.

4.5.1 Tidal flow at Bight of Abaco

The initial test case revisits the tide-driven flow scenario within the Bight of Abaco, detailed
in Section 4.1.5, focusing on a relatively small ocean domain of rather simple geometry. This
domain is amenable to meshing with unmasked BSGs of satisfactory quality at a resolution
comparable to that of the unstructured mesh. Therefore, this benchmark serves as the foundation
for evaluating the performance discrepancies between masked and unmasked grids, encompassing
variations in resolution, the number of elements per block, diverse DG discretization orders,
and various parallelization approaches (MPI, OpenMP, hybrid MPI-OpenMP). Although this
particular scenario can be accurately simulated using the coarsest mesh and the first-order DG
discretization, the implications of the performance and scaling results are relevant for large,
high-resolution simulations typically employed in tsunami and storm surge forecasts.

Figure 4.27 illustrates the original unstructured mesh consisting of 1696 elements (left), the
unmasked BSG (middle), and the new masked BSG (right). The unmasked BSG encompasses 58
blocks, each comprising 32 elements; the masked BSG consists of 16 blocks, each containing 128
elements, and has 1860 unmasked (active) elements. The block count was strategically chosen to
produce BSGs comparable to the unstructured mesh in terms of resolution and element count.
For the piecewise constant discretization (p0), the time step for the unstructured mesh and
the masked BSG runs was set equal to 40 s, while for the unmasked BSG, it was set to 30 s
(imposed by the CFL condition). For DG orders p1 and p2, the time step sizes for each grid
type equated to one-half and one-quarter of the p0 time step sizes, respectively.

First, we validate the simulation results by comparing them to those obtained using the
UTBEST model, described in Section 3.3. The temporal evolution of the free surface elevation
at Station 1, the depth-integrated x-velocity at Station 4, and the depth-integrated y-velocity at
Station 2 is shown in Figure 4.28, showcasing the time series for days 9 and 10. These stations
were intentionally chosen because of the most pronounced discrepancies observed across the
simulations; it is noteworthy that other stations demonstrated either similar or more favorable
agreement.

The findings in Figure 4.28 indicate excellent agreement for the free surface elevation (top plot)
for all different runs: unstructured, unmasked block-structured, and masked block-structured
for discretization orders p0, p1 and p2. Using zoom-ins, it becomes evident that the influence of
discretization order surpassed that of masking. The depth-integrated velocities, shown in the
middle and bottom subplots of Figure 4.28, display slightly more sensitivity. This trend aligns
fully with the station comparisons previously conducted in [AD02] for this specific test case.
26Regional Computing Center Erlangen (RRZE)
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4.5 Evaluation of block-structured grids with masking

Figure 4.27: Tidal flow at Bight of Abaco: unstructured mesh (left), automatically generated unmasked
(middle) and masked (right) BSGs. Black, orange, and green represent active, BC, and
inactive elements, respectively (adapted from [FN+23b]).

We proceed to present a comprehensive assessment of computational performance across varying
scenarios, encompassing unmasked and masked grids at different resolutions, different DG
discretization orders, and a range of parallelization strategies. Only the solve phase of the
numerical algorithm was included in the measurements, that is, the setup routines were omitted.
To ensure better comparability, all simulations were conducted utilizing 20 cores, equivalent to
a full computational node. For pure OpenMP and pure MPI parallelizations, each thread or each
MPI rank was pinned to one physical core, respectively. In the context of hybrid parallelization,
we chose a distribution of two MPI ranks with ten OpenMP threads each. They were pinned
compactly, that is, each rank was pinned to a socket, and all corresponding threads were pinned
to the physical cores of that socket.

Table 4.5 provides an overview of grids employed in our performance evaluations. Each type
of grid, namely masked and unmasked, is represented by three different resolutions: coarse,
medium, and fine. At each resolution, the unmasked grid contains four times as many blocks as
the corresponding masked one, yet each individual block comprises only 1/4 of the elements. As
a result, both the unmasked and masked grid variants have identical element counts and similar
grid resolutions. Nonetheless, the number of active degrees of freedom (DOF) for solution fields
can differ between grid types because of the effect of masking, as inactive and BC elements
are excluded from the simulation. The fraction of active, inactive, and BC elements for each
grid is shown in the corresponding column of Table 4.5. In our runs, masked grids of the same
resolution contained fewer active elements than their unmasked counterparts; however, the
difference in element count was limited to a maximum of 10%.

Table 4.6 presents the performance metrics concerning the grids outlined in Table 4.5 for different
DG discretization orders and parallelization types. We compared the time required to perform
a complete time step normalized by the number of unknowns involved. This metric, called DOF
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.2Figure 4.28: Tidal flow at Bight of Abaco: elevation at Station 1 (top), depth-integrated x-velocity at
Station 4 (middle), depth-integrated y-velocity at Station 2 (bottom) for days 9 and 10.
The triangles represent the masked BSG with 16 blocks and 128 elements each, and the
squares represent the unmasked BSG with 58 blocks and 32 elements each (adapted from
[FN+23b]).
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4.5 Evaluation of block-structured grids with masking

Table 4.5: Tidal flow at Bight of Abaco: overview of unmasked and masked grids at different resolutions.
All unmasked grids consist of 80 blocks, and all masked grids consist of 20 blocks (from
[FN+23b]).

resolution # blocks # elements
per block

element type fraction total #
elements

# DOF
p0

# DOF
p1

# DOF
p2active BC inactive

coarse 80 512 1.000 0.000 0.000 4.10e4 1.23e5 3.69e5 7.37e5
20 2048 0.906 0.011 0.083 4.10e4 1.11e5 3.34e5 6.68e5

medium 80 2048 1.000 0.000 0.000 1.64e5 4.92e5 1.47e6 2.95e6
20 8192 0.910 0.005 0.084 1.64e5 4.47e5 1.34e6 2.68e6

fine 80 8192 1.000 0.000 0.000 6.55e5 1.97e6 5.90e6 1.18e7
20 32 768 0.913 0.003 0.085 6.55e5 1.78e6 5.38e6 1.07e7

per microsecond (DOF per µs), allows a fair performance comparison between different DG
discretization orders, grid resolutions, and masked and unmasked grids. The outcomes reveal
that the pure MPI parallelization outperformed the other two alternatives in most cases. One
possible cause is the comparably high overhead introduced by the synchronization of OpenMP
threads. Moreover, scaling issues could be posed by code parts serialized within each MPI rank
in the hybrid case, such as within different MPI functionalities. An additional observation is
a reduction in performance as the DG discretization order increased. This is in accordance with
the expectations since the amount of work per DOF grows superlinearly with the discretization
order, owing to the necessity for evaluating product terms across all element and edge integrals,
cf. (2.11)–(2.12). This growth in computational work is ideally offset by (exponentially) higher
accuracy of higher-order DG schemes. Also note that, across most scenarios, masked grids
exhibited comparable or improved performance relative to their unmasked counterparts.

Table 4.6: Tidal flow at Bight of Abaco: performance of unmasked and masked grids for different reso-
lutions (see Table 4.5), parallelization types, and DG discretization orders (from [FN+23b]).

resolution parallelization masking # DOF per µs
p0

# DOF per µs
p1

# DOF per µs
p2

coarse

OpenMP no 174.79 154.24 80.53
OpenMP yes 158.59 137.95 76.80

MPI no 280.55 188.47 90.92
MPI yes 373.58 204.02 95.97

Hybrid no 180.97 148.95 80.17
Hybrid yes 145.34 146.23 82.93

medium

OpenMP no 310.11 100.92 72.50
OpenMP yes 314.24 97.82 64.79

MPI no 438.86 115.17 80.02
MPI yes 497.20 106.51 71.26

Hybrid no 355.92 105.65 76.75
Hybrid yes 354.30 100.55 68.94

fine

OpenMP no 201.07 103.03 76.00
OpenMP yes 164.91 104.78 75.98

MPI no 223.77 107.51 80.74
MPI yes 194.07 101.70 71.63

Hybrid no 160.17 92.31 71.65
Hybrid yes 175.45 99.19 71.06
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4 Numerical Results

While the metric DOF per µs provides a good measure of computational performance of a model
code, the execution time specifies the total time to solution for a given problem at a prescribed
level of accuracy – where accuracy is primarily influenced by factors such as grid resolution and
discretization order. Given that masked grids of comparable resolution encompass a smaller
number of DOF compared to their unmasked counterparts, a faster execution time of the masked
grid is possible, even if its DOF per µs metric is comparatively lower. To facilitate a meaningful
comparison, we normalized the acquired execution times by the total element count, which
remains constant for both masked and unmasked grids sharing the same resolution. The results
are summarized in Figure 4.29 and show performance in the execution time per time step per
element metric.

The findings of Table 4.6 and Figure 4.29 are both based on the same configurations. Comparing
them, we can see that they correspond very well to each other. Moreover, the performance
benefits of using masked grids are even more clear in the execution time per time step per
element metric. Evidently, masked grids are faster than their unmasked counterparts in many
cases, and where the opposite is true, the differences are slight. On average, one sees an absolute
performance improvement due to masking.

4.5.2 Galveston Bay

The last test scenario is the tidal flow in Galveston Bay, described in Section 4.1.6. Given
the geometric complexity of the computational domain, employing an unmasked BSG for
Galveston Bay would lead to a BSG with either very small blocks, thus limiting the potential
for computational performance optimization, or a much higher resolution than that of the
initial unstructured mesh. This illustrative example serves to demonstrate the accuracy and
computational performance of our methodology for a complex bay geometry containing islands
and narrow channels.

Figure 4.30 presents different masked BSGs employed in this study, where we zoomed into the
region near the inlet to the ship channel. The BSG in Figure 4.30 (left) encompasses 1838
blocks, each containing 4 elements, resulting in a resolution that effectively captures the domain
while masking only a few elements. In contrast, the grid with 465 blocks of 128 elements each in
Figure 4.30 (middle) and the BSG with only 90 blocks of 2048 elements each in Figure 4.30
(right) involved the necessity to mask an increasingly larger fraction of elements to accommodate
the intricate geometry of the domain.

As shown in Table 4.7, the two latter grids contain more elements in total but managed to resolve
the ship channel better and also perform better in the DOF per µs metric when employing
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an MPI parallelization with 20 processes. We have to note here that, in this metric, the Galveston
Bay simulations were somewhat slower than the corresponding setups in the Bight of Abaco test
case (e.g., 74.79 vs. 106.51 DOF per µs for p1 on a masked BSG with 2048 elements per block
parallelized with MPI). This difference can be attributed to a larger fraction of masked elements
in the Galveston Bay BSGs as well as to load imbalances between MPI ranks that arose from
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Figure 4.29: Tidal flow at Bight of Abaco: performance for different parallelization types (OpenMP,
hybrid, MPI), discretization orders p ∈ {0, 1, 2}, and resolutions (coarse, medium, fine –
Table 4.5). All times are scaled with the total number of elements in the corresponding
grid (adapted from [FN+23b]).
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4 Numerical Results

Figure 4.30: Galveston Bay: zoom-in of masked BSGs with 1838 (left), 465 (middle), and 90 (right)
blocks. Black, orange, and green represent active, BC, and inactive elements, respectively
(adapted from [FN+23b]).

uneven distribution of masked elements among blocks. Moreover, the fact that the number of
blocks is not a multiple of 20 (number of MPI ranks) contributes to this difference. For this
particular test case, the fine BSG resolutions and the resulting smaller time steps were certainly
not necessary. Still, the results are indicative of the performance of numerous applications
demanding a fine grid resolution, such as storm surge simulations.

Table 4.7: Galveston Bay: overview and performance of different grids (from [FN+23b]).

configuration #
blocks

#
elements
per block

element type fractions total #
elements

time
step

# DOF
p1

# DOF
per µs
p1

active BC inactive

unstructured mesh 1 3397 1.000 0.000 0.000 3.40e3 4 3.06e4
BSG 1838×8 1838 8 0.997 0.002 0.001 1.47e4 1 1.32e5 26.11
BSG 465×128 465 128 0.854 0.043 0.103 5.95e4 0.5 4.57e5 76.69
BSG 90×2048 90 2048 0.724 0.028 0.248 1.84e5 0.25 1.20e6 74.79

The linear DG solution for the free surface elevation at the end of day 5 computed on the
unstructured mesh is shown in Figure 4.31 (top left). The remaining three subfigures of
Figure 4.31 contain the difference plots for the free surface elevation ξ − ξref for various masked
BSGs using the solution on the unstructured mesh as the reference. All results indicate a good
overall agreement, while the largest deviations are close to islands and small channels, as
expected. Domain fragments with larger differences seen in the zoom-ins represent artifacts of
visualizing the solution difference and correspond to locations where the BSGs and unstructured
meshes do not exactly overlap.
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Figure 4.31: Galveston Bay: linear DG solution for the free surface elevation on unstructured mesh
(top left); ξ − ξref difference plots for masked BSGs with 1838 (top right), 465 (bottom
left), and 90 (bottom right) blocks using the unstructured mesh solution as the reference
(adapted from [FN+23b]). All numbers are specified in meters.
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Chapter

Conclusion and future prospects 5
The present thesis investigated a range of new numerical, algorithmic, and computational
methodologies with the aim of enhancing the performance of ocean simulations. In particular,
it focused on the application of a discontinuous Galerkin (DG) discretization to solve the
two-dimensional shallow water equations (SWE) and evaluated the following aspects.

Quadrature-free model reformulation

A new formulation of the conservative SWE was developed, tailored for quadrature-free integra-
tion due to its exclusive reliance on product-type nonlinearities. This formulation forms the basis
for the algorithmic adaptations in the context of heterogeneous computing. The stability of both
the continuous model and the DG discretization for up to piecewise quadratic approximation
spaces were proven. This led to the development of a new stability analysis approach to handle
the nonlinear advection terms in the quadrature-free model formulation. An important benefit
is that the discrete result remains independent of the mesh element size. Furthermore, the
findings in numerical experiments reaching piecewise cubic approximations revealed that the
new formulation achieves similar accuracy and stability as the quadrature-based one.

Python frontend and automatic code generation

The ExaStencils code generation framework was extended by integrating the open-source Python
frontend GHODDESS. Leveraging the SymPy symbolic algebra package for analytical evaluations
of integrals and derivatives, GHODDESS performs the translation of the quadrature-free DG
formulation of the SWE into ExaSlang layer 4. This integration allowed the reuse of existing
optimization and automatic parallelization strategies for various hardware architectures. Within
GHODDESS, several optimizations were implemented, including data buffering, projections,
and algorithmic variations, which can be selectively activated or deactivated as needed. All
modifications were validated against reference results.
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p-adaptivity and algorithmic adaptations for heterogeneous computing

A specially redesigned p-adaptive DG scheme for the SWE was introduced. Using a hierarchical
modal basis, the approach separates computations associated with the lower-order degrees of
freedom from the rest of the discretization. Additionally, automatic code generation techniques
were exploited to distribute the computational kernels between the CPU and the GPU based
on kernel performance evaluation for specific hardware. Performance measurements showcased
the potential for significant performance enhancements in certain simulation scenarios. The
new approach fully leverages the optimization potential of Systems-on-a-Chip type hardware
platforms, where the CPU and the GPU share memory, and it has load-balancing advantages
compared to standard adaptive schemes.

Parameter-free adaptivity indicator

A parameter-free adaptivity indicator was designed to identify resolved and under-resolved
areas of the computational domain. It effectively distinguishes between smooth and non-
smooth solution regions, adjusting the local approximation order accordingly. Slope limiting
is integrated in the indicator and applied where necessary. This new indicator demonstrated
similar or improved solution quality in two numerical examples compared to a limited uniformly
linear approximation. Importantly, these results were achieved without calibration parameters
and involved a significantly reduced number of degrees of freedom. A comparison against two
further indicators revealed that the newly introduced scheme achieved a good balance between
solution quality and degree of freedom utilization.

Masked block structured grids

The accuracy and computational performance of masked block-structured grids (BSGs) were
assessed for realistic ocean domains of varying geometric complexity. In scenarios involving
complex boundaries with numerous small-scale features, the masking methodology currently
offers the only option to produce BSGs at resolutions comparable to unstructured meshes while
maintaining computational efficiency. For simple domain geometries, the masking approach
allows to generate BSGs with a higher element count per block compared to their unmasked
counterparts of equivalent resolution, thus providing additional structure for leveraging per-
formance enhancements. Simulation results obtained using masked BSGs demonstrated good
agreement with those achieved using unstructured meshes. Moreover, performance evaluations
showed the advantages of employing masked grids over unmasked ones, as the former allow for
a reduction in the number of blocks while preserving grid quality.
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Future prospects

Based on the scientific advancements provided by this thesis, a venue of novel and relevant
research questions arises, offering prospects for future investigations:

• While numerical experiments suggest convergence for the DG discretization of the two-
dimensional SWE system, including the nonlinear advection terms, proving an a priori
error estimate is still an open question – a proof without requiring the local approximation
order to be greater than one would be a significant advancement.

• Extending the parameter-free adaptivity indicator to higher approximation orders and
adapting it for further applications such as the Euler equations or modifying it to be
a suitable h-adaptivity indicator for the SWE is a potential area for future research.

• Developing a code generation framework capable of efficiently handling unstructured
discretizations is an important milestone for realistic high-resolution tsunami or storm
surge simulations in combination with domain specific languages.

• The methodology for generating BSGs and the code generation framework could be
extended to hybrid meshes containing structured blocks in large parts of the domain
and unstructured ones in regions with high geometric complexity or rapidly changing
topography. This approach is currently addressed within a DFG project, where work on
hybrid grids and numerical algorithms is already underway.

• Incorporating wetting and drying functionalities into GHODDESS is essential for storm
surge and inundation forecasts. Nevertheless, this introduces challenges for the numeri-
cal simulation regarding robustness, efficiency, and the preservation of physical proper-
ties [OLK22].

• Conducting an in-depth performance analysis and comparison between the quadrature-
based and the quadrature-free implementation is of interest. This requires an efficient
implementation of both schemes ideally within the same framework, which is currently
unavailable. Nevertheless, these implementations for the advection equation exist, but
a comprehensive performance evaluation and tuning are ongoing efforts.

• An in-depth performance analysis and comparison between unstructured meshes and BSGs
on CPUs and GPUs is of relevance. However, achieving this comparison necessitates the
efficient implementation of support for both grid types ideally within the same framework,
a task also currently in progress as part of the aforementioned DFG project.

• Also, porting the implementation to other types of hardware, such as integrated Intel
GPUs or the NVIDIA Grace Hopper Superchip, and comparing the performance in terms
of the energy-to-solution metric to traditional CPU and GPU realizations of the same
numerical scheme could yield valuable insights.

• In the context of heterogeneous computing, developing an on-the-fly performance measure-
ment system is desirable. Such a system could evaluate kernel execution times at specific
intervals during simulation runs and automatically re-distribute kernels as needed.
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