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1 The Vlasov-Poisson system with a
point mass

Most galaxies can be seen as a collection of stars with gravitational interaction and a
central black hole. As a simplification, we study a model of a point mass surrounded by
particles interacting in a gravitational, non-relativistic way.

1.1 Motivation of the system

Before we look at the whole galaxy, we consider one particle with unit mass in a conser-
vative force field. Its dynamical behavior is determined by the Newtonian equations of
motion:

ẋ = v,

v̇ = −∂xUeff(t, x).

The variable x ∈ R3 denotes the location, v ∈ R3 the velocity, and t ∈ I the time.
Furthermore, the conservative force field is induced by a potential Ueff : I × R3 → R3

with an interval I ⊂ R. Here, ∂xg = (∂x1g, ..., ∂x3g)
t denotes the gradient with respect

to x of a differentiable function g : R3 → R.

To describe the galaxy as a whole, we introduce the density function f(t) = f(t, x, v) on
the phase space R3 × R3 for t ∈ I. Since we neglect collisions between particles, f has
to be constant along particle trajectories. Let (x, v) : I → R3 be the path of a particle.
This implies that

0 =
d

dt
(f(t, x(t), v(t)))

= ∂tf(t, x(t), v(t)) + ∂xf(t, x(t), v(t)) · ẋ(t) + ∂vf(t, x(t), v(t)) · v̇(t)
= ∂tf(t, x(t), v(t)) + ∂xf(t, x(t), v(t)) · v(t)− ∂vf(t, x(t), v(t)) · ∂xUeff(t, x(t)),

which leads to the Vlasov equation:

0 = ∂tf + ∂xf · v − ∂vf · ∂xUeff .

Here, · denotes the Euclidean inner product and ∂v is defined as the gradient with re-
spect to v.
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1 The Vlasov-Poisson system with a point mass

It remains determine the potential Ueff . Since the particles interact via gravity, their
spatial density

ρ(t, x) =

∫
R3

f(t, x, v) dv

induces the potential U given by the Poisson Equation

∆U = 4πρ, lim
|x|→∞

U(t, x) = 0.

Here, ∆ = ∆x denotes the Laplace operator on R3 with respect to x. As we stated
before, the particles are surrounding a point mass with mass M0 ≥ 0. In addition to the
force arising from their interaction, the particles are affected by the potential −M0

|x| that

is induced by the point mass, so we define Ueff := U − M0

|x| .

Combining these equations, we obtain the following non-linear system of differential
equations, the so-called Vlasov-Poisson system with a point mass :

∂tf + v · ∂xf − ∂x

(
U − M0

|x|

)
· ∂vf = 0, (1.1)

∆U = 4πρ, lim
|x|→∞

U(t, x) = 0, (1.2)

ρ(t, x) =

∫
R3

f(t, x, v) dv. (1.3)

A point mass with M0 > 0 restricts the phase space to R3\{0} × R3 since we obtain a
singularity at x = 0. A solution of this system represents the behavior of the collection
of particles.

Without the point mass with M0 = 0 the system above is well-known as the Vlasov-
Poisson system, which is already well analyzed with regard to local and global existence
for special and less special initial conditions. Besides the existence of solutions, the
stability of steady states is an interesting and extensively studied topic in the analysis
of kinetic systems.

1.2 Steady states with a centered point mass

In the thesis, we construct and study the stability of steady states. Steady states are
time-independent solutions of the system. To be more specific, we consider solutions
f = f(x, v) of the system

v · ∂xf − ∂x

(
U − M0

|x|

)
· ∂vf = 0, (1.4)

∆U = 4πρ, lim
|x|→∞

U(x) = 0, (1.5)
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1 The Vlasov-Poisson system with a point mass

ρ(x) =

∫
R3

f(x, v) dv. (1.6)

Since galaxies have finite mass, we require finite mass and additionally compact support
for the steady states we construct. To be more precise, we consider spherically symmetric
steady states with compact support and

f(x, v) = 0 for |x× v|2 ≤ L0 (1.7)

for some fixed L0 > 0, similar to [11]. This implies that

supp f ⊂ {r∗ ≤ |x| ≤ R∗} × {|v| ≤ R∗}

for some 0 < r∗ < R∗, so the collection of particles forms a matter shell.

1.3 Outline of the thesis

As mentioned before, we consider spherically symmetric time-independent solutions of
the Vlasov-Poisson system with a point mass. Hence, we first define in Chapter 2, more
precisely in Section 2.1, the concept of spherical symmetry and derive some proper-
ties of spherically symmetric functions. We define the concept of a solution for non-
differentiable functions in Section 2.2 and discuss why this definition is reasonable and
consistent with the classical concept of a solution. In Section 2.3, we deduce certain
properties of solutions and obtain some conserved quantities which are fundamental in
the following chapters. Furthermore, we define the concept of a steady states.

In Chapter 3, we construct steady states with compact support and finite mass. To do
this, we proceed analogously to [9] and transfer the method to the system with a point
mass. First, we analyze general anisotropic steady states and derive certain properties.
We use these properties in Section 3.2 and specify the class of anisotropic functions by
a separation ansatz. Due to the ansatz function, we reduce the system to an ordinary
differential equation and investigate in Section 3.3 whether and under which conditions
there exists a unique solution of the ordinary differential equation. In Section 3.4, we
determine a necessary condition for the compact support of the solution and examine
under which conditions this aspect is satisfied. Finally, in Section 3.5, we summarize in
Theorem 3.10 the results and consider two examples, the so-called (generalized) poly-
tropic steady states and the (generalized) King-model.

After constructing spherically symmetric steady states, we analyze in Chapter 4 the
stability of certain steady states. For this purpose, we proceed analogously to [4] and
transfer the methods to anistropic steady states of the Vlasov-Poisson system with a
point mass. We first construct in Section 4.1 a useful conserved quantity, namely the
energy-Casimir functional which is constant along spherically symmmetric solutions. In
the next Section 4.2, we consider perturbations which respect spherical symmetry and

3



1 The Vlasov-Poisson system with a point mass

specify the class of perturbations. Furthermore, we introduce a map comparable to a
metric on the space of perturbations. Afterwards, we discuss in Section 4.3, more pre-
cisely in Theorem 4.9, an estimate which shows that the energy-Casimir functional has
a local minimum in the steady state to be investigated and show in Theorem 4.10 that
the steady stated is stable. Finally, we consider again the examples given in Chapter 3
and show that under additional assumptions these steady states satisfy the required
conditions and thus are stable.

Since the proof of Theorem 4.9 is not simple, we dedicate the entire Chapter 5 to prove
this result. For this purpose, we proceed analogously to [4]. We assume that Theo-
rem 4.9 were false and prove in Section 5.1 that there exists a function g such that the
second order variation of the energy-Casimir functional is negative. In the next Sec-
tion 5.2, we introduce the Poisson-bracket and the transport operator and show that the
second order variation of the energy-Casimir functional is positive for functions induced
by the Poisson-bracket. In order to invert the Poisson-bracket or the transport operator,
respectively, we proceed analogously to [5] and define the transport operator in a weak
sense. Furthermore, we introduce in Section 5.3 the (θ, E, L)-coordinates and express
the transport operator in the new coordinates. Thus, we invert the transport operator
in Section 5.4 and show that g is induced by the Poisson bracket and a function h. In
order to create a contradiction, we regularize the function h in Section 5.5 analogously
to [4] and show certain convergences. Finally, we summarize the results in Section 5.6
and show that the assumption that Theorem 4.9 were false leads to a contradiction.

Since we allow non-differentiable solution, we introduce in Chapter 6 the concept of
strong Lagrangian solutions and discuss that for spherically symmetric continuous initial
conditions with cut-off quantity L0, as described before, and compact support there exist
a unique strong Lagrangian solution. For this purpose, we proceed analogously to [6]
and transfer the argumentation to the Vlasov-Poisson system with a point mass. To
show the existence of the characteristics, we use the method in [11].
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2 Spherical symmetry and the
concept of solution

As stated before, we construct and analyze spherically symmetric time-independent
solutions of the Vlasov-Poisson system with a point mass. For this reason, we first
introduce the terms spherical symmetry and solution. The last expression seems trivial,
but since we allow continuous, not necessarily differentiable functions as solutions, we
have to define this term carefully.

2.1 Spherical symmetry

Mostly, we consider functions f : R3 → R or f : R3 × R3 → R. As is generally known,
functions on R3 are called spherically symmetric if they are invariant under rotations (in
x). Thus, we call functions on R3×R3 spherically symmetric if they are invariant under
simultaneous rotations in x and v. To be more precise, we define spherical symmetry on
R3 × R3 as follows:

Definition 2.1. A function f : R3 × R3 → R is spherically symmetric (on R3 × R3) if

f(Ax,Av) = f(x, v), (x, v) ∈ R3 × R3,

for every A ∈ SO(3). Here, SO(3) denotes the special orthogonal group of real-valued
3× 3 matrices.

Spherically symmetric functions on R3 can be identified with a one-dimensional function
in r := |x|. A similar behavior can be seen for spherically symmetric functions on R3×R3

because they are related to a function on a lower dimensional set:

Lemma 2.2. Let f : R3×R3 → R be spherically symmetric. Then there exists a unique
function f̃ :]0,∞[×R× [0,∞[→ R such that

f(x, v) = f̃(r, w, L)

with

r := |x|, w :=
x · v
|x|

, L := |x× v|2,

for all (x, v) ∈ R3\{0} × R3.
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2 Spherical symmetry and the concept of solution

Proof. Let f be spherically symmetric and (x, v) ∈ R3\{0} × R3. Then there exists
A ∈ SO(3) such that

Ax = re3

with e3 = (0, 0, 1)t the third unit vector in R3. Since A ∈ SO(3) and L = r2|v|2 − w2r2,
the identities (Av)3 = e3 · (Av) = Ax·Av

r
= w and |Av|2 = |v|2 = L

r2
+w2 hold. Therefore,

there exists B ∈ SO(3) of the structure

B =

(
B̃ 0
0 1

)
with B̃ ∈ SO(2) satisfying

BAv =


√
L
r

0
w

 .

The structure of B ensures that BAx = re3 still holds. In summary, we obtain

f(x, v) = f(Ax,Av) = f(BAx,BAv) = f
(
re3,

(√L
r
, 0, w

)t)
.

The function f̃ :]0,∞[×R× [0,∞[→ R with f̃(r, w, L) = f(re3, (
√
L
r
, 0, w)t) satisfies the

assertion. Finally, the uniqueness of f̃ follows directly from the relation between f and
f̃ .

Remark. (a) In the following, we identify under slight abuse of notation f̃ with f
for spherically symmetric functions on R3 × R3. The same applies for spherically
symmetric functions f on R3 with f̃ satisfying f(x) = f̃(r) for r = |x| ≠ 0.

(b) From a physical point of view, r := |x| ∈ [0,∞[ denotes the radius, w := x·v
|x| ∈ R

the radial velocity, and L := |x × v|2 = |x|2|v|2 − (x · v)2 ∈ [0,∞[ the angular
momentum squared of a particle (x, v) ∈ R3\{0} × R3.

(c) The definition of f̃ in the last step of the proof more closely shows that properties
of f like continuity or differentiability transfer to the function f̃ . Vice versa,
continuity or differentiability of f̃ lead to the same properties of f on the set
R3\{0} × R3.

The last step of the previous proof leads to a map which can be extended to a C1-
diffeomorphism for fixed x ∈ R with x ̸= 0. Additionally, this gives us the possibility
to transform integrals over spherically symmetric functions into lower-dimensional inte-
grals:
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2 Spherical symmetry and the concept of solution

Lemma 2.3. Fix r > 0. The map

T : [0, 2π[×R× [0,∞[→ R3, (φ,w, L) →


√
L
r
cosφ√

L
r
sinφ
w


is bijective, and the restriction

T :]0, 2π[×R×]0,∞[→ R3 \ {(v1, v2, v3)t ∈ R3|v1 ≥ 0, v2 = 0}

forms a C1-diffeomorphism with det(DT ) = 1
2r2

. In particular,

w(re3, T (φ,w, L)) = w, L(re3, T (φ,w, L)) = L

for φ ∈ [0, 2π[, w ∈ R and L ≥ 0. Furthermore, integrals over spherically symmetric
functions f transform into integrals in (r, w, L)-coordinates via∫

R3

f(x, v) dv =
π

r2

∫
R

∫ ∞

0

f(r, w, L) dL dw, x ∈ R3 with r = |x| > 0,∫
R3

∫
R3

f(x, v) dv dx = 4π2

∫ ∞

0

∫
R

∫ ∞

0

f(r, w, L) dL dw dr.

Proof. We first show that T is bijective. Let v ∈ R3 be arbitrary. Defining w := v3 and
L := r2(v21 + v22), there exists a unique φ ∈ [0, 2π[ such that(

v1
v2

)
=

√
L

r

(
cosφ
sinφ

)
.

Obviously, the parameters (φ,w, L) are unique. Furthermore, the function T and its
restriction are well-defined. Since T is continuously differentiable, it follows that

DT (φ,w, L) =

−
√
L
r
sinφ 0 1

2
√
Lr

cosφ
√
L
r
cosφ 0 1

2
√
Lr

sinφ

0 1 0


with det(DT ) = 1

2r2
. It remains to show how integrals convert into (r, w, L)-coordinates:

Let f be spherically symmetric. By change of variable, the previous assertions and the
proof of Lemma 2.2 imply∫

R3

f(x, v) dv =

∫
R3

f(re3, v) dv

=
1

2r2

∫ 2π

0

∫
R

∫ ∞

0

f(re3, T (φ,w, L)) dL dw dφ

=
π

r2

∫
R

∫ ∞

0

f(r, w, L) dL dw

7



2 Spherical symmetry and the concept of solution

for x ∈ R3 with r = |x| > 0 and∫
R3

∫
R3

f(x, v) dv dx =

∫
R

π

r2

∫
R

∫ ∞

0

f(r, w, L) dL dw dφ dx

= 4π2

∫ ∞

0

∫
R

∫ ∞

0

f(r, w, L) dL dw dr.

Remark. Unless specified differently, we use in the following argumentation the abbre-
viation ∫

g(z) dz =

∫
R3

g(z) dz

for integrable functions g : R3 → R.

As discussed before, the Vlasov-Poisson system with a point mass with mass M0 > 0
is only defined on the set R3\{0} × R3, so we consider spherically symmetric functions
on R3\{0} × R3. Obviously, the definitions and assertions above remain valid for func-
tions defined on R3\{0} × R3. Even though we consider only solutions f defined on
R3\{0} × R3, we can transfer the following results to the case M0 = 0 by extending
them appropriately into x = 0.

Finally, we use these properties and define spherical symmetry on R3 ×R3 for functions
defined almost everywhere (a.e.). As in [12, Lemma & Definition 2.10], we obtain the
following equivalences and definition:

Lemma and Definition 2.4. Let f ∈ L1
loc(R3 ×R3) be a pointwise defined representa-

tive. Then the following assertions are equivalent:

(i) For all A ∈ SO(3) there exists a null set NA ⊂ R3×R3 such that f(x, v) = f(Ax,Av)
for (x, v) ∈ (R3 × R3) \NA.

(ii) There exists a null set N ⊂ R3×R3 such that f(x, v) = f(Ax,Av) for all A ∈ SO(3)
and (x, v) ∈ (R3 × R3) \N .

(iii) There exists a function f̃ : [0,∞[×R × [0,∞[→ R such that f(x, v) = f̃(r, w, L)
for a.e. (x, v) ∈ R3 × R3 with (r, w, L) as defined in Lemma 2.2.

The function f is called spherically symmetric (almost everywhere) if these properties
are satisfied.

Proof. In [12, Lemma & Definition 2.10], the equivalence of the assertions (i) and (iii)
is shown. With similar arguments as in Lemma 2.2, we obtain the equivalence of the
assertions (ii) and (iii).
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2 Spherical symmetry and the concept of solution

2.2 Concept of a solution

After spherical symmetry, we turn to the concept of a solution of the Vlasov-Poisson
system with a point mass. We first look at smooth solutions and afterwards generalize
the concept of a solution based on these assertions.

At first, we have a closer look on the Poisson equation. We introduce the term induced
density and induced potential :

Definition 2.5. Let f : R3 × R3 → R be integrable. The induced density ρf is defined
by

ρf (x) :=

∫
R3

f(x, v) dv, x ∈ R3.

A function f : R3\{0} × R3 → R leads to an induced density ρf defined on R3\{0}.

Definition 2.6. Let ρ ∈ L1
loc(R3) with R3 ∋ y 7→ ρ(y)

|x−y| integrable for a.e. x ∈ R3. The
induced potential is defined by

Uρ(x) := −
∫
R3

ρ(y)

|x− y|
dy, x ∈ R3.

If ρ = ρf for some function f , we denote Uf := Uρf .

With these definitions, we can solve the Poisson equation for smooth solutions with
compact support and obtain the following properties, as discussed in [10, Lemma P1]:

Lemma 2.7. Let ρ ∈ C1
c (R3). Then Uρ is the unique solution in C2(R3) of the Poisson

equation

∆U = 4πρ, lim
|x|→∞

U(x) = 0.

Furthermore, the induced potential has the following properties:

(a) The derivative of Uρ has the form

∇Uρ(x) =
∫

x− y

|x− y|3
ρ(y) dy, x ∈ R3.

(b) The estimate

∥∇Uρ∥∞ ≤ cp∥ρ∥
p
3
p ∥ρ∥

1− p
3∞

is satisfied for 1 ≤ p < 3 with cp independent of ρ. In particular, c1 = 3(2π)
2
3 .

(c) The identities Uρ = O( 1
|x|) and ∇Uρ = O( 1

|x|2 ) hold for |x| → ∞.

9



2 Spherical symmetry and the concept of solution

Proof. Since ρ ∈ C1
c (R3), the density ρ satisfies ρ ∈ L1 ∩ L∞(R3) and is Hölder con-

tinuous. Thus, the induced potential Uρ solves the Poisson equation and is the unique
solution in C2(R3). Furthermore, it is shown in [2, Lemma 4.1] that ∇Uρ has the struc-
ture as stated in (a). The other properties are proven in [10, Lemma P1], or more
detailed in [8, Lemma 2.3].

If we consider the Poisson equation in the sense of distributions, the induced potential
still remains the solution of the Poisson equation, and under certain conditions we obtain
similar properties as in Lemma 2.7:

Lemma 2.8. Let ρ ∈ L1
loc(R3) with R3 ∋ y 7→ ρ(y)

|x−y| integrable for a.e. x ∈ R3. Then the
induced potential Uρ is locally integrable and solves

∆Uρ = 4πρ in D′(R3).

Furthermore, the following assertions hold:

(a) The distributional derivative of Uρ exists with

∇Uρ(x) =
∫

x− y

|x− y|3
ρ(y) dy for a.e. x ∈ R3,

and ∇Uρ ∈ L1
loc(R3;R3).

(b) If ρ ∈ L1 ∩ Lp(R3) with p > 3
2
, the induced potential Uρ is continuous on R3

with lim|x|→∞ U(x) = 0. If additionally p > 3, the induced potential Uρ is once
continuously differentiable, and Uρ ∈ W 2,q(R3) for all q > 3 with ∇Uρ ∈ L2(R3).

(c) The estimate in Lemma 2.7 (b) remains true for ρ ∈ L1 ∩ L∞(R3), i.e., for

1 ≤ p < 3, there exists a constant cp independent of ρ with c1 = 3(2π)
2
3 such that

∥∇Uρ∥∞ ≤ cp∥ρ∥
p
3
p ∥ρ∥

1− p
3∞ .

(d) For ρ ∈ L1(R3) with compact support, the assertion in Lemma 2.7 (c) stays valid,
i.e., Uρ = O( 1

|x|) and ∇Uρ = O( 1
|x|2 ) for |x| → ∞.

Proof. As proven in [7, Theorem 6.21], the induced potential Uρ ∈ L1
loc(R3) solves the

Poisson equation in the sense of distributions, and ∇Uρ has the particular form given
in (a) with ∇Uρ ∈ L1

loc(R3;R3). If ρ ∈ L1 ∩ Lp(R3), we obtain that Uρ ∈ C(R3) with
lim|x|→∞ Uρ(x) = 0 for p > 3

2
and that Uρ ∈ C1(R3) for p > 3

2
. The corresponding proof

is discussed more detailed in the proof of Lemma 2.15.

Furthermore, if ρ ∈ Lq̃(R3), the Hardy-Littlewood-Sobolev inequality implies that the
induced potential and its derivative has the integrability Uρ ∈ Lr(R3) and ∇Uρ ∈ Ls(R3)
with r = (1

q̃
− 2

3
)−1 and s = (1

q̃
− 1

3
)−1 for 1 < q̃ < 3

2
respectively 1 < q̃ < 3. If we allow

ρ ∈ L1 ∩ Lp(R3) with p > 3, this implies Uρ ∈ W 2,q with q ∈]3,∞[, so assertion (b) is

10



2 Spherical symmetry and the concept of solution

proven.

In the proof of the assertions (b) and (c) in Lemma 2.7, it is only used that ρ has a
compact support and ρ ∈ L1(R3) to show the assertion (c). Moreover, ρ ∈ L1 ∩L∞(R3)
is sufficient for the proof of assertion (b), so each proof can be transferred literally for
each case.

In the following chapters we consider spherically symmetric continuous densities. Under
these conditions, we are able to show that the induced potential solves the Poisson
equation in the classical sense:

Lemma 2.9. Let ρ : R3\{0} → [0,∞[ be continuous and spherically symmetric with
ρ ∈ L1(R3) and ∥ρ∥1 > 0. Then the induced potential U = Uρ has the form

U(r) = −4π

r

∫ r

0

s2ρ(s) ds− 4π

∫ ∞

r

sρ(s) ds

with

U ′(r) =
m(r)

r2
, m(r) = 4π

∫ r

0

s2ρ(s) ds,

and

U ′′(r) = −2
m(r)

r3
+ 4πρ(r), r > 0.

Furthermore, U solves the Poisson equation with U ∈ C2(R3\{0}).

The conditions in Lemma 2.9 can be weakened by allowing non-continuous densities,
but later we only consider continuous ones.

Proof. Standard calculations and the fundamental theorem of calculus yield the claimed
representations of U , U ′, and U ′′. Having a closer look on U ′′, we recognize that

U ′′(r) = −2
U ′

r
+ 4πρ(r), r > 0.

and

∆U =
1

r2
(r2U ′)′ = 2

U ′

r
+ U ′′ = 4πρ.

After analyzing the Poisson equation, we turn to the Vlasov equation. Since we allow
continuous, but not necessarily differentiable functions, we have to find a more general
description of the Vlasov equation that the classical one.

Let f ∈ C1(I × R3\{0} × R3) be a smooth solution of the Vlasov-Poisson system with
a point mass with an interval I ⊂ R. Let (t, x, v) ∈ I × R3\{0} × R3 be arbitrary, and
let (X, V )(·, t, x, v) : I → R3\{0} × R3 be the solution of the characteristic system

ẋ = v,

11



2 Spherical symmetry and the concept of solution

v̇ = −∂x
(
U(s, x)− M0

|x|

)
with (X, V )(t, t, x, v) = (x, v). As a smooth solution, the function f satisfies the Vlasov
equation, so it follows with Z = (X, V ) that

d

ds
(f(s, Z(s, t, x, v))) = ∂tf(s, Z(s, t, x, v)) + ∂xf(s, Z(s, t, x, v)) · Ẋ(s, t, x, v)

+ ∂vf(s, Z(s, t, x, v)) · V̇ (s, t, x, v)

=

(
∂tf(s, x, v) + ∂xf(s, x, v) · v − ∂vf(s, x, v) · ∂x

(
U(s, x)− M0

|x|

)) ∣∣∣
(x,v)=(X,V )(s,t,x,v)

= 0

for s ∈ I. This implies that f is constant along characteristics, i.e., the solutions of
the characteristic system. While the Vlasov equation is only defined for differentiable
functions, we can determine whether a function is constant along characteristics with-
out demanding differentiability. Therefore, we can use this observation to generalize the
concept of a solution of the Vlasov equation.

Finally, we define the term solution:

Definition 2.10. A function f : I × R3\{0} × R3 → [0,∞[ with I an interval is a
solution of the Vlasov-Poisson system with a point mass if the following assertions are
satisfied:

(i) The induced density ρ = ρf and the induced potential U = Uf exist, and U solves
the Poisson equation

∆U = 4πρ, lim
|x|→∞

U(t, x) = 0.

in the classical sense.

(ii) For all (t, x, v) ∈ I ×R3\{0}×R3 with |x× v|2 > 0, there exists a unique solution
Z(·, t, x, v) : I → R3\{0} × R3 of the characteristic system

ẋ = v,

v̇ = −∂x
(
U(s, x)− M0

|x|

)
with Z(t, t, x, v) = (x, v). Then Z(·, t, x, v) is called a characteristic and Z the
characteristic flow.

(iii) The function f is constant along characteristics, i.e., for (t, x, v) ∈ I × R3\{0} × R3

with |x× v|2 > 0,

f(s, Z(s, t, x, v)) = f(t, x, v), s ∈ I.

12



2 Spherical symmetry and the concept of solution

This definition is only reasonable if it generalizes the classical concept of a solution.
Therefore, we have to show that for smooth functions the definition of classical solutions
similar to [10, Definition, p.393] and Definition 2.10 are equivalent.

Remark. In [10, Definition, p.393], the boundedness of ∂xU set in condition (iii) en-
sures that the characteristic flow exists globally. In our setting, this conditions is not
enough to guarantee the existence of the characteristic flow. That is the reason why we
require instead of condition (iii) that the characteristic flow Z(·, t, x, v) : I → R3\{0}×R3

exists for all t ∈ I and (x, v) ∈ R3\{0} × R3 with |x× v|2 > 0.

First, we analyze the characteristic flow. Analogously to the Vlasov-Poisson system
without a point mass, we obtain similar properties as in [10, Lemma 1.2]:

Lemma 2.11. Let I be an interval and U ∈ C0,2(I × R3\{0}) spherically symmetric.
Furthermore, for every t ∈ I and (x, v) ∈ R3\{0}×R3 with |x×v|2 > 0 assume that there
exists a unique solution Z(·, t, x, v) : I → R3\{0} × R3 of the associated characteristic
system

ẋ = v,

v̇ = −∂x
(
U(s, x)− M0

|x|

)
with Z(t, t, x, v) = (x, v). Then the following assertions hold:

(a) The characteristic flow Z : I×I×{L > 0} → {L > 0} is continuously differentiable
with {L > 0} := {(x, v) ∈ R3\{0} × R3|L(x, v) = |x× v|2 > 0}.

(b) For every s, t ∈ I, the map Z(s, t, ·) : {L > 0} → {L > 0} is a C1-diffeomorphism
with inverse Z(s, t, ·)−1 = Z(t, s, ·). In addition, the map is measure preserving,
i.e.,

det
∂Z

∂z
(s, t, x, v) = 1, s, t ∈ I, z = (x, v) ∈ {L > 0}.

Proof. The fact that Z is well-defined follows by Lemma 2.13 below where we see that L
is conserved along characteristics. The characteristic flow is continuously differentiable,
since the right-hand side of the characteristic system is continuous in t and continuously
differentiable in (x, v). Furthermore, we require the uniqueness of the solutions of the
characteristic system, which implies Z(r, s, Z(s, t, x, v)) = Z(r, t, x, v) for r, s, t ∈ I and
(x, v) ∈ {L > 0}. As a result, we obtain Z(s, t, ·)−1 = Z(t, s, ·) for s, t ∈ I, so it
follows directly by (a) that Z(s, t, ·) is a C1-diffeomorphism on {L > 0}. To prove the
property that Z is measure preserving, we calculate the first derivative of the Jacobian
determinant with respect to s ∈ I for fixed t ∈ I and z = (x, v) ∈ {L > 0}. As discussed
in [10],

d

ds
det

∂Z

∂z
(s, t, z) = (divzG)(s, Z(s, t, z)), s ∈ I,

13



2 Spherical symmetry and the concept of solution

with G the right-hand side of the characteristic system, i.e.,

G(s, x, v) :=

(
v

−∂x
(
U(s, x)− M0

|x|

))

for s ∈ I and (x, v) ∈ R3\{0}×R3. For more detail, we refer to [8, Lemma 2.4]. Since G
is free of divergence, this shows that det ∂Z

∂z
(·, t, z) is constant. In particular, this implies

that

det
∂Z

∂z
(s, t, x, v) = det

∂Z

∂z
(t, t, x, v) = 1, s ∈ I.

Since the characteristic flow (X, V )(s, t, ·) is a C1-diffemorphism on {L > 0} for fixed
s, t ∈ I, the above lemma leads to the desired equivalence of classical solutions and
solutions in the sense of 2.10:

Lemma 2.12. Assume that the conditions as in Lemma 2.11 hold. Furthermore, let
f ∈ C1(I × R3\{0} × R3). Then f is constant along characteristics if and only if f
solves the Vlasov equation.

Proof. As shown before,

d

ds
(f(s, Z(s, t, x, v)))

=

(
∂tf(s, x, v) + ∂xf(s, x, v) · v − ∂vf(s, x, v) · ∂x

(
U(s, x)− M0

|x|

)) ∣∣∣
(x,v)=(X,V )(s,t,x,v)

on {L > 0}. Since (X, V )(s, t, ·) is a C1-diffemorphism {L > 0}, the equivalence holds
on {L > 0}. If the Vlasov equation is satisfied on {L > 0}, the regularities of f and U
yield the assertion on R3\{0} × R3.

In conclusion, we have shown that classical solutions are also solutions in the sense of
Definition 2.10, so our definition of solutions of the Vlasov-Poisson system with a point
mass is reasonable.

2.3 Conserved quantities and steady states

In order to complete the proof of Lemma 2.11, we collect some useful conserved quanti-
ties:

Lemma and Definition 2.13. Let U : I × R3\{0} → R be a spherically symmetric
with I ⊂ R an interval such that the characteristic flow Z exists on {L > 0}. Assume
that U is once differentiable with respect to x. Then the angular momentum squared

L(x, v) := |x× v|2, (x, v) ∈ R3\{0} × R3,

is constant along characteristics.

14



2 Spherical symmetry and the concept of solution

If U is additionally time-independent, the particle energy

E(x, v) :=
1

2
|v|2 + U(x)− M0

|x|
, (x, v) ∈ R3\{0} × R3,

is also constant along characteristics and spherically symmetric with

E(r, w, L) =
1

2
w2 +

L

2r2
+ U(r)− M0

r
, (r, w, L) ∈]0,∞[×R× [0,∞[.

Proof. Let t ∈ I and (x, v) ∈ {L > 0}. Since U(t) is spherically symmetric, ∂xU(t, x) =
U ′(t, r)x

r
for x ∈ R3\{0}. With the abbreviation (X, V )(s) = (X, V )(s, t, x, v), this leads

to

d

ds
(X(s)× V (s)) = Ẋ(s)× V (s) +X(s)× V̇ (s)

= V (s)× V (s)− ∂r

(
U(t, |X(s)|)− M0

|X(s)|

)
X(s)

|X(s)|
×X(s) = 0.

If U(t, x) = U(x) is time-independent, this yields

d

ds
(E(X(s), V (s))) = V (s) · V̇ (s) + ∂x

(
U(x)− M0

|x|

) ∣∣∣
x=X(s)

· Ẋ(s)

= −V (s) · ∂x
(
U(x)− M0

|x|

) ∣∣∣
x=X(s)

+ ∂x

(
U(x)− M0

|x|

) ∣∣∣
x=X(s)

· V (s) = 0.

Since L = r2|v|2−w2r2, we obtain |v|2 = L
r2
+w2, so the rewriting of the particle energy

into (r, w, L)-coordinates and the spherical symmetry follow directly.

Since solutions of the Vlasov-Poisson system with a point mass are constant along char-
acteristics, we obtain similar to [10, Lemma 1.3] the following properties:

Remark 2.14. Let U ∈ C0,2(I × R3\{0}) be a spherically symmetric with I ⊂ R an
interval such that the characteristic flow Z exists on {L > 0}. Assume that 0 ∈ I and
that f : I ×R3\{0}×R3 → [0,∞[ is constant along characteristics with f(0) = f̊ . Then
f has the structure

f(t, x, v) = f̊((X, V )(0, t, x, v))

for t ∈ I and (x, v) ∈ R3\{0} × R3 with (x, v) ∈ {L > 0}. Furthermore, the following
holds:

(a) The support has the property

supp f(t) = Z(t, 0, supp f̊), t ∈ I,

if supp f̊ ⊂ {L > 0}.

15



2 Spherical symmetry and the concept of solution

(b) The Lp-norm is invariant under solutions for every p ∈ [1,∞], i.e.,

∥f(t)∥p = ∥f̊∥p, t ∈ I.

(c) The induced density can be estimated by

∥ρ(t)∥p ≤
(
4π

3
P 3(t)

) 1
q

∥f(t)∥p =
(
4π

3
P 3(t)

) 1
q

∥f̊∥p,

with P (t) := sup{|v||(x, v) ∈ supp f(t)} and q ∈ [1,∞] such that 1
p
+ 1

q
= 1. We

denote 1
∞ := 0. In particular, equality holds for p = 1. If supp f̊ ⊂ {L > 0} is

compact, then P (t) <∞.

Proof. Since f is constant along characteristics, we obviously obtain the structure f(t, x, v) =
f̊((X, V )(s, t, x, v)) for t ∈ I and (x, v) ∈ R3\{0} × R3 with L(x, v) > 0. This implies
the formula for the support of f in (a). According to Lemma 2.11, the characteristic
flow is a measure preserving C1-differomorphism, so the change of variables yields (b)
since {L = 0} is a null set. Assertion (c) follows directly from Hölder’s inequality. Note
that assertion (a) implies

P (t) = sup{|v||(x, v) ∈ supp f(t)} = sup{|V (t, s, z)||z ∈ supp f(s)}, t ∈ I,

if supp f̊ ⊂ {L > 0}.

If the solution of the Vlasov-Poisson system with a point mass is appropriately integrable,
the induced potential is additionally differentiable in t:

Lemma 2.15. Let f : I × R3\{0} × R3 → [0,∞[ be a solution of the Vlasov-Poisson
system with a point mass with I an open interval. Assume that f̊ := f(0) ∈ L1 ∩Lp(R6)
with compact support supp f̊ ⊂ {L > 0} for some p ∈]3,∞]. Then the induced potential
U is once continuously differentiable in (t, x) ∈ I × R3 with

∂tU(t, x) = −
∫∫

x− y

|x− y|3
· uf(t, y, u) du dy, t ∈ I, x ∈ R3.

Proof. Let f be a solution as required and a < 0 < b with J := [a, b] ⊂ I. According to
Remark 2.14, the induced density ρ(t) is bounded in Lp(R3) independently of t on [a, b]
because

∥ρ(t)∥p ≤ CP
3
q (t)∥f̊∥p ≤ C(P ∗)

3
q ∥f̊∥p, t ∈ [a, b]

with 1
p
+ 1

q
= 1. As in Remark 2.14, P (t) is defined by P (t) = sup{|v||(x, v) ∈ supp f(t)},

and we denote P ∗ := sup{|v||(x, v) ∈ supp f(t), t ∈ [a, b]}. Note that the support
supp f̊ ⊂ {L > 0} is compact by assumption, so Remark 2.14 (a) yields

P ∗ = sup{|v||(x, v) ∈ supp f(t), t ∈ [a, b]}
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2 Spherical symmetry and the concept of solution

= sup{|V (t, 0, z)||z ∈ supp f̊ , t ∈ [a, b]}.

Since the characteristic flow Z is a measure preserving C1-diffeomorphism, as shown in
Lemma 2.11, we obtain P ∗ <∞.

Analogously to the proof [2, Lemma 4.1], we require w ∈ C∞(R) with 0 ≤ w ≤ 1,
0 ≤ w′ ≤ 1 and w(s) = 0 for s ≤ 1 and w(s) = 1 for s ≥ 2. Let ε > 0 be arbitrary. We
define

Uε(t, x) :=−
∫∫

f(t, y, u)

|x− y|
w

(
|x− y|
ε

)
dv dy

= −
∫∫

f̊(y, v)

|x−X(t, 0, y, v)|
w

(
|x−X(t, 0, y, v)|

ε

)
dv dy.

Since the characteristic flow is continuously differentiable according to Lemma 2.11,
Uε ∈ C1(I × R3) holds with

∂xUε(t, x) =

∫∫ (
x− y

|x− y|3
w

(
|x− y|
ε

)
− x− y

ε|x− y|2
w′
(
|x− y|
ε

))
f(t, y, v)dv dy

and

∂tUε(t, x) = −
∫∫ (

x−X(t, s, y, v)

|x−X(t, s, y, v)|3
· Ẋ(t, s, y, v)w

(
|x−X(t, 0, y, v)|

ε

)
− x−X(t, s, y, v)

ε|x−X(t, s, y, v)|2
· Ẋ(t, s, y, v)w′

(
|x−X(t, 0, y, v)|

ε

))
f̊(y, v) dv dy

= −
∫∫ (

x− y

|x− y|3
· vw

(
|x− y|
ε

)
− x− y

ε|x− y|2
· vw′

(
|x− y|
ε

))
f(t, y, v) dv dy

for t ∈ I and x ∈ R3. Using that supp(x,v)∈supp f(t) |v| ≤ P ∗ and ∥ρ(t)∥p ≤ C(P ∗)
3
q for

t ∈ J , some lines of calculations and estimates yield

|Uε(t, x)− U(t, x)| ≤ C∥ρ(t)∥p ≤ C(P ∗)
3
q ε

3−q
q → 0,

|∂xUε(t, x)− V (t, x)| ≤ C∥ρ(t)∥p ≤ C(P ∗)
3
q ε

3−2q
q → 0,

|∂tUε(t, x)− Ṽ (t, x)| ≤ C∥ρ(t)∥p ≤ C(P ∗)
3
q ε

3−2q
q → 0

as ε→ 0 with

V (t, x) =

∫∫
x− y

|x− y|3
f(t, y, u) du dy,

Ṽ (t, x) = −
∫∫

x− y

|x− y|3
· uf(t, y, u) du dy, t ∈ J, x ∈ R3.

Note that p > 3 and thus q < 3. Since U , ∂xU and ∂tU are continuous and converges
uniformly on J × R3, the limiting functions U , V and Ṽ are continuous as well. In
particular, V = ∂xU and Ṽ = ∂tU . Since a < 0 < b with J = [a, b] ⊂ I are arbitrary,
the assertions hold on I × R3, so the proof is complete.
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2 Spherical symmetry and the concept of solution

After having introduced the concept of a solution, we now consider time-independent
spherically symmetric potentials. Under suitable conditions, we can show that the char-
acteristic flow exists on {L > 0}:

Lemma 2.16. Let U ∈ C2(R3\{0}) spherically symmetric with ∂xU bounded on R3\{0}.
Assume that lim|x|→∞ U(x) = 0. Then for all t ∈ R and all (x, v) ∈ R3\{0} × R3 with
|x × v|2 > 0, there exists a unique solution Z(·, t, x, v) : R → R3\{0} × R3 of the
associated characteristic system

ẋ = v,

v̇ = −∂x
(
U(x)− M0

|x|

)
with Z(t, t, x, v) = (x, v).

Proof. Let (̊t, x̊, v̊) ∈ R × {L > 0} arbitrary. The right-hand side of the characteris-
tic system is continuously differentiable and thus locally Lipschitz continuous. By the
Picard-Lindelöf theorem, there exists a maximal solution (x, v) : I → R3\{0} × R3 on
an open interval I =]t1, t2[ with −∞ ≤ t1 < t̊ < t2 ≤ ∞ such that (x, v)(̊t) = (̊x, v̊).

As shown in Lemma 2.13, the angular momentum squared L and the particle energy
E are constant along characteristics. Furthermore, E is spherically symmetric with
E(x, v) = E(r, w, L) = 1

2
w2 + L

2r2
+ U(r)− M0

r
for (x, v) ∈ {L > 0}.

Assume that there exists a sequence (tk) ⊂]t1, t2[ with r(tk) → 0 and tk → t1,2 as k → ∞.
Then it follows that

E(r(0), w(0), L(0)) = E(r(tk), w(tk), L(tk)) =
1

2
w(tk)

2 +
L(tk)

2r(tk)2
+ U(r(tk))−

M0

r(tk)

≥ L(0)

2r(tk)2

(
1− 2

M0

L(0)
r(tk)

)
+ U(r(tk)) → ∞, k → ∞,

since L(0) > 0 by assumption, which leads to a contraction. Therefore, there exists a
radius R0 > 0 such that r(t) > R0 for all t ∈]t1, t2[.

Inserting (x, v)(t) into the right-hand sight of the characteristic system gives an expres-
sion which is bounded on every compact subset J ⊂ I. Hence, the characteristics exist
on I = R.

The purpose of this work is to construct steady states and study their stability. For this
purpose, we define time-independent solutions as steady states:

Definition 2.17. A function f : R3\{0} × R3 → [0,∞[ is a steady state (of the
Vlasov-Poisson system with a point mass) if f̃ : R × R3\{0} × R3 → [0,∞[ defined
by f̃(t, x, v) := f(x, v) is a solution of the Vlasov-Poisson system with a point mass in
the sense of Definition 2.10.

We are now in the position to start constructing steady states.
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3 Steady states with compact
support and finite mass

In this section, we aim to construct steady states with compact support and finite
mass. In Lemma 2.16, we have shown that the characteristic flow exists on R for
U ∈ C2(R3\{0}) spherically symmetric with ∂xU bounded and limr→∞ U(r) = 0. For
this reason, we first fix a steady state f such that f solves the Vlasov equation pro-
vided that the characteristics exist. Thus, this ansatz leads to a semi-linear Poisson
equation for U that we have to solve. Then we verify that U satisfies the conditions of
Lemma 2.16, so the characteristic flow actually exists as in Definition 2.10.

In this chapter, we proceed analogously to [9] which shows among other things the ex-
istence of anisotropic steady states of the Vlasov-Poisson system without a point mass
with compact support and finite mass.

3.1 Anisotropic steady states

First, we construct a solution f of the Vlasov equation. Since we are looking for functions
which are constant along characteristics, we use two conserved quantities, namely the
particle energy E and the angular momentum squared L as described in Definition 2.13:
Let U : R3 → R be spherically symmetric and once differentiable with respect to x. We
assume that the corresponding characteristic flow exists. Let Φ : R× [0,∞[→ [0,∞[ be
at first general. We define f : R3\{0} × R3 → [0,∞[ by

f(x, v) := Φ(E(x, v), L(x, v)), (x, v) ∈ R3\{0} × R3, (3.1)

so f obviously solves the Vlasov equation.

Remark. In [4], the ansatz function Φ only depends on the particle energy E. Since E
only depends on |x| and |v|, there is no preferred direction in (x, v). That is the reason
why ansatz functions with Φ = Φ(E) are called isotropic. In the following, we require
an explicit dependence of L, so in this case the ansatz function Φ = Φ(E,L) is called
anisotropic.

Inserting this ansatz into the Poisson equation leads to the semi-linear Poisson equation

∆U = 4π

∫
R3

Φ

(
1

2
|v|2 + U − M0

|x|
, |x× v|2

)
dv, lim

|x|→∞
U(x) = 0. (3.2)
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3 Steady states with compact support and finite mass

As discussed in [9] and thus in [1], solutions U ∈ C2(R3) of the semi-linear Poisson
equation (3.2) with M0 = 0 are necessarily spherically symmetric. That is the reason
why we also require U to be spherically symmetric.

It is necessary that steady states of the form (3.1) have cut-off energies:

Lemma 3.1. Let U ∈ C(R3) be spherically symmetric with limr→∞ U(r) = 0. Further-
more, we assume that f = Φ(E,L) has compact support. Then there exists a cut-off
energy E0 ∈ R such that

Φ(E,L) = 0, E ≥ E0, (3.3)

holds for every L ≥ 0.

Proof. Since the function f has compact support, there exist a radius R > 0 such that
|v|, |x| < R for all (x, v) ∈ supp f , so it follows

E(x, v) =
1

2
|v|2 + U(x)− M0

|x|
≤ 1

2
R2 + max

|y|≤R
U(y) =: E0

for (x, v) ∈ supp f . Since U is continuous with limr→∞ U(r) = 0, the function U is
bounded on R3, and E is continuous. The intermediate value theorem implies

E((0, 0,R), v) =
]
−∞,

1

2
|v|2
[
, v ∈ R3,

E(x, (0, 0,R)) =
[
U(x)− M0

|x|
,∞
[
, x ∈ R3\{0},

so the map R3\{0} × R3 ∋ (x, v) 7→ E(x, v) ∈ R is surjective. Thus,

Φ(E,L) = 0, E ≥ E0,

for all L > 0.

Similar to the necessary cut-off energy E0, we introduce the cut-off quantity L0 > 0
which acts in a comparable way, namely let L0 > 0 with

Φ(E,L) = 0, L ≤ L0,

for all E ∈ R. If E1 < 0, this implies that the support of f = Φ(E,L) has the form

supp f ⊂ {(x, v) ∈ R3\{0} × R3|E(x, v) ≤ E0 ∧ L(x, v) ≥ L0}.

Under suitable conditions, these two cut-off quantities create a shell-like solution f = Φ(E,L)
since the set on the right-hand side is compact and in particular bounded away from the
singularity:
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3 Steady states with compact support and finite mass

Lemma 3.2. Let U ∈ C(R3) with U ≤ 0 and lim|x|→∞ U(x) = 0. Furthermore, let
E1 ∈ R and L1 > 0 be arbitrary. Then the set

{(x, v) ∈ R3\{0} × R3|E(x, v) ≤ E1 ∧ L(x, v) ≥ L1}

is compact if and only if E1 < 0. In particular, there exist 0 < r∗ < R∗ such that

{E ≤ E1} ∩ {L ≥ L1} ⊂ {r∗ ≤ |x| ≤ R∗} × {|v| ≤ R∗}.

Proof. At first, we consider E1 ≥ 0 and L1 > 0. Let (vn) ⊂ R3 with vn := 1
n
e1 for

n ∈ N. We define xn := 2M0n
2e2 for n ∈ N with n ≥

√
L1

2M0
. Here, e1 := (1, 0, 0)t and

e2 := (0, 1, 0)t are the first and the second unit vector in R3. Then we obtain that

L(xn, vn) = |xn × vn|2 = |xn|2|vn|2 = 4M2
0n

2 ≥ L1,

E(xn, vn) =
1

2
|vn|2 + U(xn)−

M0

|xn|
≤ 1

2n2
− M0

2M0n2
= 0 ≤ E1

for n ≥
√
L1

2M0
. Obviously, the sequence (xn) is unbounded, so {E ≤ E1} ∩ {L ≥ L1} is

not compact in R3 × R3 and neither in R3\{0} × R3.

In the next step, let E1 < 0 and L1 > 0. First, we show that {E ≤ E1} ∩ {L ≥ L1} is
bounded in this case, i.e., that there exists a radius R∗ > 0 such that

|x| ≤ R∗, |v| ≤ R∗, (x, v) ∈ {E ≤ E1} ∩ {L ≥ L1}.

Assume that {E ≤ E1} ∩ {L ≥ L1} is unbounded in x. Then there exists a se-
quence (xn, vn) ⊂ {E ≤ E1} ∩ {L ≥ L1} with |xn| → ∞ as n → ∞. Since L1 ≤
|xn|2|vn|2 − (xn · vn)2 ≤ |xn|2|vn|2, the estimate |vn|2 ≥ L1

|xn|2 and we obtain that

E1 ≥
1

2
|vn|2 + U(xn)−

M0

|xn|
≥ 1

2

L1

|xn|2
+ U(xn)−

M0

|xn|
→ 0, n→ ∞.

Since E1 < 0, this leads to a contradiction. On the other hand, we assume that
{E ≤ E1} ∩ {L ≥ L1} is unbounded in v. Then there exists a sequence (xn, vn) ⊂
{E ≤ E1} ∩ {L ≥ L1} with |vn| → ∞ as n → ∞. Analogously, we get |xn|2 ≥ L1

|vn|2
for n ∈ N and

E1 ≥
1

2
|vn|2 + U(xn)−

M0

|xn|
≥ 1

2
|vn|2 +min

R3
U − M0

|xn|

≥ 1

2
|vn|2 +min

R3
U − |vn|

M0√
L1

→ ∞, n→ ∞,

so again the assumption yields a contradiction. Note that U ∈ C(R3) with U ≤ 0
and lim|x|→∞ U(x) = 0, so minR3 U exists. Therefore, the set {E ≤ E1} ∩ {L ≥ L1} is
bounded, so there obviously exists the desired radius R∗ > 0. Furthermore, this results
in the estimate |x| ≥ L1

(R∗)2
=: r∗ > 0 for (x, v) ∈ {E ≤ E1} ∩ {L ≥ L1}. In summary,

{E ≤ E1} ∩ {L ≥ L1} ⊂ {r∗ ≤ |x| ≤ R∗} × {|v| ≤ R∗}.
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3 Steady states with compact support and finite mass

The maps (x, v) 7→ E(x, v) and (x, v) 7→ L(x, v) are continuous on R3\{0} × R3, so the
set on the left-hand side is closed. Since the set on the right-hand side is compact in
R3\{0} × R3, the closed set {E ≤ E1} ∩ {L ≥ L1} is also compact in R3\{0} × R3.

Remark. If we have a closer look on the proof of Lemma 3.2, we notice that the proof
can be transferred for U : R3\{0} ×R3 → R with −M

|x| ≤ U(x) ≤ 0 for some M ≥ 0 and

for all x ∈ R3\{0} × R3.

3.2 Separation ansatz and the associated density

Using these observations, we specify the ansatz in equation (3.1) by choosing a separation
ansatz, i.e., we separate the dependence of E and L by considering functions Φ of the
form

Φ(E,L) = ξ(E)ζ(L), (E,L) ∈ R× [0,∞[,

with ξ : R → [0,∞[ and ζ : [0,∞[→ [0,∞[. More precisely, we consider in this chapter
ansatz functions of the form

Φ(E,L) = φ(E0 − E)(L− L0)
l
+, (E,L) ∈ R× [0,∞[, (3.4)

with fixed E0 ∈ R, L0 > 0 and l > −1
2
. Here, (·)l+ denotes

(·)l+ : R → [0,∞[, (x)l+ :=

{
xl, x > 0,

0, else,

while l > −1
2
will guarantee integrability at certain points.

The crucial step is to determine whether the semi-linear Poisson equation (3.2) has a
solution. For this reason, we formulate certain conditions on the ansatz function φ
step by step and proceed analogously to [9]. First of all, we require the following two
conditions:

(V1) The function φ : R → [0,∞[ is measurable.

(V2) There exists η0 > 0 such that φ(η) = 0 for η ≤ 0 and φ(η) > 0 for η ∈]0, η0[.

While the first condition ensures that Φ of the form (3.4) and thus f = Φ(E,L) are
measurable, the second condition guarantees that for any chosen E0 exactly this E0 is
the smallest cut-off energy which fulfills the condition (3.3).

Inserting the ansatz into the definiton of ρ results in the following representation:
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3 Steady states with compact support and finite mass

Lemma 3.3. Let U be spherically symmetric. Furthermore, assume that φ is satis-
fying (V1) and (V2). Then the density ρ induced by φ, i.e., induced by the function
f = φ(E0 − E)(L− L0)

l
+, has the form

ρ(r) = clr
2l

∫ E0−U(r)+
M0
r

− L0
2r2

0

φ(η)

(
E0 − U(r) +

M0

r
− L0

r2
− η

)l+ 1
2

dη

for r > 0 with E0 − U(r) + M0

r
− L0

2r2
> 0, provided the integral exists, and

ρ(r) = 0

otherwise. The constant cl is defined by

cl := 2l+
3
2π

∫ 1

0

(1− s)ls−
1
2 ds.

Proof. Let r > 0. We use the spherical symmetry of E as shown in Lemma 2.13 and
convert the integration in v into an integral in (r, w, L)-coordinates, as discussed in
Lemma 2.3. For the sake of clarity, we use the abbreviation ξ(r) := E0 − U(r) + M0

r
,

which leads to

ρ(r) =

∫
φ(E0 − E)(L− L0)

l
+ dv

=
π

r2

∫ ∞

−∞

∫ ∞

0

φ

(
E0 −

1

2
w2 − L

2r2
− U(r) +

M0

r

)
(L− L0)

l
+ dL dw

=
π

r2

∫ ∞

−∞

∫ ∞

L0

φ

(
ξ(r)− 1

2
w2 − L

2r2

)
(L− L0)

l dL dw.

After substituting τ = L
2r2

+ 1
2
w2 in the L-integral for fixed w, changing the order of

integration by applying Fubini’s theorem implies

ρ(r) = 2π

∫ ∞

−∞

∫ ∞

L0
2r2

+ 1
2
w2

φ(ξ(r)− τ)(2r2τ − r2w2 − L0)
l dτ dw

= 2π

∫ ∞

L0
2r2

∫ √
2τ−L0

r2

−
√

2τ−L0
r2

φ(ξ(r)− τ)(2r2τ − r2w2 − L0)
l dw dτ.

If we consider the w-integral separately, after some changes of variables and lines of
calculations we get∫ √

2τ−L0
r2

−
√

2τ−L0
r2

(2r2τ − r2w2 − L0)
l dw = 2l+

1
2 Il

(
τ − L0

2r2

)l+ 1
2

r2l

for τ ≥ L0

2r2
, where we denote Il :=

∫ 1

0
(1 − s)ls−

1
2 ds. Note that the integral Il exists

because of the assumption l > 1
2
. This yields

ρ(r) = 2l+
3
2πIlr

2l

∫ ∞

L0
2r2

φ(ξ(r)− τ)

(
τ − L0

2r2

)l+ 1
2

dτ
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3 Steady states with compact support and finite mass

= 2l+
3
2πIlr

2l

∫ ∞

0

φ

(
ξ(r)− L0

2r2
− τ

)
τ l+

1
2 dτ.

Since φ = 0 on ]−∞, 0], it follows ρ(r) = 0 for ξ(r)− L0

2r2
≤ 0. Otherwise,

ρ(r) = 2l+
3
2πIlr

2l

∫ ∞

0

φ

(
ξ(r)− L0

2r2
− τ

)
τ l+

1
2 dτ

= clr
2l

∫ ξ(r)− L0
2r2

0

φ(η)

(
ξ(r)− L0

2r2
− η

)l+ 1
2

dη.

To ensure the existence of ρ, we have to impose a growth condition to φ, so the integral
in Lemma 3.3 exists:

(V3) There exists κ > −1 such that for all compact sets K ⊂ R there holds the estimate

φ(η) ≤ Cηκ, η ∈ K,

with C = C(K) > 0.

As seen in Lemma 3.3, the density ρ induced by φ which satisfies the conditions (V1)–
(V3) can be represented with

ρ(r) = r2lg

(
E0 − U(r) +

M0

r
− L0

2r2

)
, r ≥ 0, (3.5)

by using the function g : R → [0,∞[ given by

g(y) :=

{
cl
∫ y
0
φ(η)(y − η)l+

1
2 dη, y > 0,

0, y ≤ 0.
(3.6)

Since g is the same function as in [9, Equation (2.3)], we obtain the same properties:

Lemma 3.4. Let g be as defined in (3.6), and assume that φ satisfies the condi-
tions (V1)–(V3). Then g ∈ C(R) ∩ C1(]0,∞[) with

g′(y) =

(
l +

1

2

)
cl

∫ y

0

φ(η)(y − η)l−
1
2 dη, y > 0.

If in addition l + κ+ 1
2
> 0, the function g is continuously differentiable on R.

Proof. Obviously, g ∈ C∞(]−∞, 0[). In order to verify g ∈ C1(]0,∞[), we show first the
differentiablity of g and then the continuity of g′.

Let y > 0 and 0 < h < min{y
4
, 1} be arbitrary. By condition (V3), there exists κ > −1

and C∗ = C∗(y) > 0 such that

φ(η) ≤ C∗ηκ, η ∈ [0, y + 1].
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3 Steady states with compact support and finite mass

To show the differentiability of g, we consider the right-hand and left-hand limit of the
difference quotient separately. First, we regard the left-hand difference quotient, which
leads to two integrals I1 and I2 via

g(y)− g(y − h)

h
= cl

(
h−1

∫ y

y−h
φ(η)(y − η)l+

1
2 dη

+

∫ y−h

0

φ(η)
(y − η)l+

1
2 − (y − h− η)l+

1
2

h
dη

)
=: cl(I1 + I2).

In the following, a constant C appears and may change from line to line and depends
on y, but never on h. The integral I1 vanishes as h→ 0 since we obtain

I1 = h−1

∫ y

y−h
φ(η)(y − η)l+

1
2 dη

≤ C∗h−1

∫ y

y−h
ηκ(y − η)l+

1
2 dη

≤ C∗h−1 max
s∈[ y

2
,y+1]

sκ
∫ y

y−h
(y − η)l+

1
2 dη

≤ Chl+
1
2 → 0, h→ 0.

The second integral I2 is more difficult to calculate. We aim to show that I2 converges
to the claimed formula of g′(y), so we consider the following expression:∣∣∣∣∣

∫ y−h

0

φ(η)
(y − η)l+

1
2 − (y − h− η)l+

1
2

h
dη −

(
l +

1

2

)∫ y

0

φ(η)(y − η)l−
1
2 dη

∣∣∣∣∣
≤
∫ y−h

0

φ(η)

∣∣∣∣∣(y − η)l+
1
2 − (y − h− η)l+

1
2

h
−
(
l +

1

2

)
(y − η)l−

1
2

∣∣∣∣∣ dη
+

(
l +

1

2

)∫ y

y−h
φ(η)(y − η)l−

1
2 dη

≤ C∗
∫ y

2

0

ηκ

∣∣∣∣∣(y − η)l+
1
2 − (y − h− η)l+

1
2

h
−
(
l +

1

2

)
(y − η)l−

1
2

∣∣∣∣∣ dη
+ C∗

∫ y−h

y
2

ηκ

∣∣∣∣∣(y − η)l+
1
2 − (y − h− η)l+

1
2

h
−
(
l +

1

2

)
(y − η)l−

1
2

∣∣∣∣∣ dη
+

(
l +

1

2

)∫ y

y−h
φ(η)(y − η)l−

1
2 dη

=: C∗J1 + C∗J2 + J3.

Obviously, J3 vanishes as h → 0. The integrand of J1 vanishes for any η ∈ [0, y
2
] as

h → 0. Furthermore, the integrand can be estimated for 0 < η < y
2
by using the mean
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3 Steady states with compact support and finite mass

value theorem. More precisely, there exists ξ ∈ [y − h, y] such that

ηκ

∣∣∣∣∣(y − η)l+
1
2 − (y − h− η)l+

1
2

h
−
(
l +

1

2

)
(y − η)l−

1
2

∣∣∣∣∣
=

(
l +

1

2

)
ηκ|(ξ − η)l−

1
2 − (y − η)l−

1
2 |

≤
(
l +

1

2

)
ηκ

{
(y − η)l−

1
2 , l ≥ 1

2
,

(ξ − η)l−
1
2 , −1

2
< l < 1

2
,

≤ Cηκ

{
(y − η)l−

1
2 , l ≥ 1

2
,

(y − h− η)l−
1
2 , −1

2
< l < 1

2
,

≤ Cηκ

{
yl−

1
2 , l ≥ 1

2
,

(y − y
4
− y

2
)l−

1
2 , −1

2
< l < 1

2
,

≤ Cηκ.

Since the right-hand term is integrable, it follows by the dominated convergence theorem
that J1 vanishes as h→ 0. After changing the variables, we obtain:

J2 =

∫ y−h

y
2

ηκ

∣∣∣∣∣(y − η)l+
1
2 − (y − h− η)l+

1
2

h
−
(
l +

1

2

)
(y − η)l−

1
2

∣∣∣∣∣ dη
≤ max

s∈[ y
2
,y]
sκ
∫ y−h

y
2

∣∣∣∣∣(y − η)l+
1
2 − (y − h− η)l+

1
2

h
−
(
l +

1

2

)
(y − η)l−

1
2

∣∣∣∣∣ dη
≤ C

∫ y

y
2
+h

∣∣∣∣∣(y + h− η)l+
1
2 − (y − η)l+

1
2

h
−
(
l +

1

2

)
(y + h− η)l−

1
2

∣∣∣∣∣ dη
≤ C

∫ y

y
2

∣∣∣∣∣(y + h− η)l+
1
2 − (y − η)l+

1
2

h
−
(
l +

1

2

)
(y + h− η)l−

1
2

∣∣∣∣∣ dη.
Again, the integrand vanishes as h → 0 and, similar to the integral J1, the integrand
can be bounded for η ∈ [y

2
, y] by∣∣∣∣∣(y + h− η)l+

1
2 − (y − η)l+

1
2

h
−
(
l +

1

2

)
(y + h− η)l−

1
2

∣∣∣∣∣
≤
(
l +

1

2

)
|(ξ − η)l−

1
2 − (y + h− η)l−

1
2 |

≤ C

{
(y + h− η)l−

1
2 , l ≥ 1

2
,

(y − η)l−
1
2 , −1

2
< l < 1

2
,

≤ C

{
(y + 1− η)l−

1
2 , l ≥ 1

2
,

(y − η)l−
1
2 , −1

2
< l < 1

2
,
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3 Steady states with compact support and finite mass

for some ξ ∈ [y, y+h]. The integrability of the right-hand term and again the dominated
convergence theorem lead to J2 → 0 as h→ 0. In summary, we have shown that

g(y)− g(y − h)

h
→
(
l +

1

2

)
cl

∫ y

0

φ(η)(y − η)l−
1
2 dη, h→ 0.

Considering the right-hand difference quotient, we obtain

g(y + h)− g(y)

h
= cl

(
h−1

∫ y+h

y

φ(η)(y + h− η)l+
1
2 dη

+

∫ y

0

φ(η)
(y + h− η)l+

1
2 − (y − η)l+

1
2

h
dη

)
.

Similar, but simpler arguments than for the integrals I1 and I2 result in the convergence

g(y + h)− g(y)

h
→
(
l +

1

2

)
cl

∫ y

0

φ(η)(y − η)l−
1
2 dη, h→ 0.

Since y > 0 is arbitrary, the function g is differentiable on ]0,∞[ with

g′(y) =

(
l +

1

2

)
cl

∫ y

0

φ(η)(y − η)l−
1
2 dη, y > 0,

and thus g is continuous.

In the next step, we show that g′ is continuous on ]0,∞[. A similar procedure to before
leads to

g′(y + h)− g′(y) = cl

(
l +

1

2

)(∫ y+h

y

φ(η)(y + h− η)l−
1
2 dη

+

∫ y

0

φ(η)((y + h− η)l−
1
2 − (y − η)l−

1
2 ) dη

)
→ 0, h→ 0

and

g′(y)− g′(y − h) = cl

(
l +

1

2

)(∫ y

y−h
φ(η)(y − η)l−

1
2 dη

+

∫ y−h

0

φ(η)((y − η)l−
1
2 − (y − h− η)l−

1
2 ) dη

)
→ 0, h→ 0,

so g′ is also continuous. Note that the appearing integrals have a similar structure to
I1 and I2 which gives us the possibility to adapt the previous arguments. Summing up,
g ∈ C1(]0,∞[) with g′(y) =

(
l + 1

2

)
cl
∫ y
0
φ(η)(y − η)l−

1
2 dη for y > 0.
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It remains taking care of the regularity in y = 0. Let 0 < h < 1. Then obviously
g(−h)− g(0) → 0 as h→ 0 and

g(h)− g(0) = cl

∫ h

0

φ(η)(h− η)l+
1
2 dη

≤ clh
l+ 1

2

∫ 1

0

φ(η) dη → 0, h→ 0,

so g ∈ C(R) ∩ C1(]0,∞[). We now assume that κ+ l + 1
2
> 0. Then g(0)−g(−h)

h
= 0 and

g(h)− g(0)

h
= clh

−1

∫ h

0

φ(η)(h− η)l+
1
2 dη

≤ Chl−
1
2

∫ h

0

ηκ dη = Chl+κ+
1
2 → 0, h→ 0,

which means that g is differentiable in y = 0 with g′(0) = 0. The continuity of g′ in
y = 0 follows by

|g′(h)− g′(0)| = cl

(
l +

1

2

)∫ h

0

φ(η)(h− η)l−
1
2 dη

≤ C

∫ h

0

ηκ(h− η)l−
1
2 dη

= Chl+
1
2
+κ

∫ 1

0

sκ(1− s)l−
1
2 ds→ 0, h→ 0.

Note that κ > −1 and l > −1
2
, so the latter integral exists. This leads to the conclusion

that g ∈ C1(R) for κ+ l + 1
2
> 0 which completes the proof.

Inserting the representation (3.5) into the Poisson equation, the semi-linear Poisson
equation (3.2) takes on the form

∆U = 4πr2lg

(
E0 − U +

M0

r
− L0

2r2

)
, lim

r→∞
U(r) = 0. (3.7)

In the next steps, we require κ+ l+ 1
2
≥ 0 and determine whether the semi-linear Poisson

equation (3.7) has a solution and whether the steady state f = Φ(E,L) with Φ as in (3.4)
has compact support, as described in Lemma 3.2. Assume that these two assumptions
are satisfied. Then Lemma 3.3 implies that the induced density ρ is spherically symmet-
ric and continuously differentiable with compact support supp ρ ⊂ {r∗ ≤ |x| ≤ R∗}. In
this case, the solution U of the semi-linear Poisson equation is induced by the density ρ
and thus U ∈ C2(R3), as discussed in Lemma 2.7. That is the reason why we search for
solutions U ∈ C2(R3) of the semi-linear Poisson equation.

The existence of solutions of the semi-linear Poisson equation (3.7) and the solution itself
depend on the parameter E0 and the boundary condition lim|x|→∞ U(x) = 0. Since we
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3 Steady states with compact support and finite mass

require U ∈ C2(R3), it would be easier to parameterize the solutions by prescribing U(0)
instead of E0. In order to introduce the new parameter U(0), we have to give up the
fixed parameter E0 and interpret the cut-off energy as a parameter given by the solution
of the semi-linear Poisson equation. More precisely: Let U ∈ C2(R3) be a solution of
the semi-linear Poisson equation and define y(r) := E0 − U(r) for r ≥ 0. Inserting this
expression into the semi-linear Poisson equation yields

1

r2
(r2y′)′ = −4πr2lg

(
y(r) +

M0

r
− L0

2r2

)
, y(0) = E0 − U(0).

Since we require U ∈ C2(R3) to be spherically symmetric, this implies y ∈ C2([0,∞[)
with y′(0) = 0. Using these properties, integrating the above equation leads to the
equation

y′ = −m(r)

r2
, y(0) = ẙ,

m(r) = m(r, y) = 4π

∫ r

0

r2l+2g

(
y(s) +

M0

s
− L0

2s2

)
ds, r ≥ 0,

(3.8)

with ẙ := E0 − U(0). Furthermore, we obtain limr→∞ y(r) = E0.
That means that U generates a solution y of the above equation with limr→∞ y(r) = E0.
Vice versa, a solution y of the equation (3.8) generates a solution U of the semi-linear
Poisson equation:

Lemma 3.5. Let y ∈ C2([0,∞[) be a solution of the equation 3.8 with y′(0) = 0 and
limr→∞ y(r) =: E0 ∈ R. Furthermore, let U := E0 − y. Then U ∈ C2(R3) is spherically
symmetric with

∆U =
1

r2
(r2U ′)′ = 4πr2lg

(
E0 − U(r) +

M0

r
− L0

2r2

)
,

lim
|x|→∞

U(x) = 0.

As a result, we consider equation (3.8) and determine whether there exists a solution.

3.3 The existence of solutions

In the next step, we investigate the existence of solutions of equation (3.8) and determine
whether they are unique and global. Furthermore, we obtain some useful properties:

Lemma 3.6. Let g ∈ C1(R) with g(y) = 0 for y ≤ 0 and g(y) > 0 for y > 0. Further-
more, let ẙ ∈ R. Then there exists a unique solution y : [0,∞[→ R of the equation (3.8).
In addition, y ∈ C2([0,∞[) with y′(0) = 0, in particular y ∈ C2(R3), and the following
properties hold:

(a) For ẙ ≤ −M2
0

2L0
, the solution y is trivial, i.e., y = ẙ on [0,∞[.
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(b) For ẙ > −M2
0

2L0
, the solution y is constant on [0, R0] and non-trivial on [R0,∞[, i.e.,

y(r) = ẙ, 0 ≤ r ≤ R0,

y(r) < ẙ, r > R0,

with

R0 :=


−M0

2ẙ
+
√

L0

2ẙ
+

M2
0

4ẙ2
, ẙ > 0,

L0

2M0
, ẙ = 0,

−M0

2ẙ
−
√

L0

2ẙ
+

M2
0

4ẙ2
, −M2

0

2L0
< ẙ < 0.

(3.9)

Proof. Let us assume that y : [0, R[→ R is a solution of the system (3.8) with R ∈]0,∞]
and analyze its properties in order to reduce the problem to an ordinary differential
equation with initial condition at some positive radius. As a solution, y is continuous
with y(0) = ẙ, so

lim
s−→

>
0

(
y(s) +

M0

s
− L0

2s2

)
= −∞,

which means that there exists 0 < R∗ ≤ R such that

y(s) +
M0

s
− L0

2s2
< 0, 0 < s < R∗.

Thus, g = 0 and thus m = 0 on [0, R∗] which implies that y′ = 0 on [0, R∗]. Since y = ẙ
on [0, R∗], it follows

ẙ +
M0

s
− L0

2s2
< 0, 0 < s < R∗. (3.10)

Furthermore, supps>0(
M0

s
− L0

s2
) =

M2
0

2L0
, so y = ẙ on [0, R[ for ẙ ≤ −M2

0

2L0
. In particular,

y : [0,∞[→ R with y(r) := ẙ is the unique and global solution for ẙ ≤ −M2
0

2L0
.

For ẙ > −M2
0

2L0
, we denote R0 > 0 as the maximal radius R∗ > 0 which satisfies the

relation (3.10). By calculating the smallest non-negative zero of ẙ + M0

s
− L0

2s2
, the

formula (3.9) for the inner radius R0 follows directly. Hence, we have shown that for

ẙ > −M2
0

2L0
, every solution y is constant on [0, R0[ with y = ẙ, so it suffices considering

the following initial value problem:

y′ = −m(r)

r2
, y(R0) = ẙ,

m(r) = m(r, y) = 4π

∫ r

R0

s2l+2g

(
y(s) +

M0

s
− L0

2s2

)
ds, r ≥ R0.
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Similar to the previous calculations, this differential equation is equivalent to

y′′ = −2
y′

r
− 4πr2l+2g

(
y +

M0

r
− L0

2r2

)
,

y(R0) = ẙ, y′(R0) = 0.

Because g is continuously differentiable on R according to the assumptions, the function

F :]0,∞[→ R2, F (r, v) :=

(
v2,−2

v2
r
− 4πr2l+2g

(
v1 +

M0

r
− L0

2r2

))t
is also continuously differentiable and thus locally Lipschitz continuous. According to
the Picard-Lindelöf theorem, there exists a unique and maximal solution y ∈ C2([R0, R̄[)
with R̄ ∈]R0,∞]. The initial conditions y(R0) = ẙ and y′(R0) = 0 lead to y′′(R0) = 0,
so the solution y can be extended on [0, R̄[ by using y = ẙ on [0, R0]. In addition,
y ∈ C2([0, R̄[) and in particular y ∈ C2(BR̄(0)) with BR̄(0) := {x ∈ R3||x| < R̄}.

At last, it remains to show R̄ = ∞. Since y is decreasing and supps>0(
M0

s
− L0

s2
) =

M2
0

2L0
,

the argument of g is bounded by some positive constant C∗ = C∗(M0, L0, ẙ) > 0 because

y(s) +
M0

s
− L0

s2
≤ ẙ +max

s>0

(
M0

s
− L0

s2

)
< C∗, 0 < s < R̄.

Therefore, we obtain

0 ≤ −y′(r) = 4π

r2

∫ r

0

s2l+2g

(
y(s) +

M0

s
− L0

2s2

)
ds

≤ 4π

r2
∥g∥L∞(]0,C∗])

∫ r

0

s2l+2 ds = Cr2l+3−2 = Cr2l+1.

and thus

ẙ ≥ y(r) = ẙ +

∫ r

0

y′(s) ds ≥ ẙ − C

∫ r

0

s2l+1 ds ≥ ẙ − Cr2l+2

for 0 ≤ r < R̄. From the standard theory of ordinary differential equations, it follows
directly R̄ = ∞, so the proof is complete.

Even if it may not seem so at first glance, it can be easily shown that the inner radius
R0 as defined in equation 3.9 is continuous in ẙ. In the proof of Lemma 3.6, we examine
the expression y(r) + M0

r
− L0

2r2
which will be useful in the later argumentation. Thus,

we summarize its properties:

Remark 3.7. In the situation of Lemma 3.6, it follows by its proof:

(a) For ẙ ≤ −M2
0

2L0
, the inequality y(r) + M0

r
− L0

2r2
< 0 holds for all r > 0.

(b) For ẙ > −M2
0

2L0
, the inequality y(r) + M0

r
− L0

2r2
< 0 holds for all 0 < r < R0, and

there exists δ > 0 such that y(r) + M0

r
− L0

2r2
> 0 for all R0 < r < R0 + δ.
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3 Steady states with compact support and finite mass

3.4 The compact support of solutions

After showing the existence of a unique solution of the equation (3.8) for every ẙ ∈ R, we
determine whether and under which conditions f has a compact support. As a reminder,
f has the form

f(x, v) = φ

(
y(x)− 1

2
|v|2 + M0

|x|

)
(L− L0)

l
+

with φ = 0 on ]−∞, 0] and φ > 0 on ]0,∞[ according to (V2). Before making statements
about the different cases, we have a closer look on the support of f . Let (x, v) ∈ supp f .
Then we obtain

y(r)− 1

2
|v|2 + M0

r
> 0 ∧ L(x, v) > L0.

Using L0 ≤ L ≤ |x|2|v|2, it follows

L0

2r2
≤ 1

2
|v|2 ≤ y(r) +

M0

r
.

In order to bound the support of f , we analyze the expression z(r) := y(r) + M0

r
− L0

2r2

for r > 0. We investigate under which conditions there exist radii 0 < Rmin < Rmax such
that

z(r)


< 0, 0 < r < Rmin,

> 0, Rmin < r < Rmin + δ,

< 0, r > Rmax

(3.11)

for some δ > 0. Since y is monotonically decreasing, the limit limr→∞ y(r) =: y∞ ∈
[−∞, ẙ] exists. Hence, the existence of Rmax is equivalent to y∞ < 0.

Assume that these radii 0 < Rmin < Rmax exist. Then L0

2r2
> y(r) + M0

r
on ]0, Rmin[ and

on ]Rmax,∞[, so the support of f has the property

supp f ⊂ (B̄Rmax \BRmin
)× B̄vmax

with vmax := ẙ + M0

Rmin
, and supp f is compact in R3\{0} × R3. Here, B̄R := B̄R(0) =

{x̃ ∈ R3||x̃| ≤ R} denotes the ball in R3 around 0 with radius R > 0.

In order to determine whether and under which conditions the required radii exist, we
distinguish between different cases for ẙ:

Case 1: ẙ ≤ −M2
0

2L0

As shown in Lemma 3.6 (a) and Remark 3.7 (a), y is trivial with y = ẙ < 0 and, in
particular, z(r) = ẙ + M0

r
− L0

2r2
≤ 0 for all r > 0. Therefore, f = 0 on R3\{0} × R3.
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3 Steady states with compact support and finite mass

Case 2: −M2
0

2L0
< ẙ ≤ 0

As discussed in Remark 3.7 (b), the radius R0 in (3.9) satisfies the conditions of the
desired radius Rmin. Since y is monotonically decreasing and ẙ ≤ 0, we obtain y(r) < ẙ
for r > R0 and thus y∞ < ẙ ≤ 0. Hence, the required radius Rmax exists, and no further
conditions need to be imposed on φ to ensure the compact support of f .

Case 3: ẙ > 0
Like in Case 2, Rmin can be set as the inner radius R0 in (3.9), but now the difficulty is
to obtain y∞ < 0. Hence, we proceed similarly as in [9] and set further conditions on the
function g to ensure y∞ < 0. Analogously to [9, Lemma 3.1], we obtain the following
assertion:

Lemma 3.8. Let l > −1
2
and g ∈ C(R) be monotonically increasing with the following

properties:

(g1) g(y) = 0 for y ≤ 0 and g(y) > 0 for y > 0.

(g2) There exists c > 0, y∗ > 0 and n < 3 + l such that

g(y) ≥ cyn+l, 0 < y < y∗.

Furthermore, let y ∈ C1([0,∞[) and ẙ > 0 with

y′ = −m(r)

r2
, y(0) = ẙ,

m(r) = m(r, y) = 4π

∫ r

0

s2l+2g

(
y(s) +

M0

s
− L0

2s2

)
ds, r ≥ 0.

Then, limr→∞ y(r) = y∞ < 0.

Proof. In order to show Lemma 3.8, we proceed analogously to [9]. First, we assume
that y∞ > 0. To create a contradiction, we estimate the mass function m appropriately.
Then we apply the estimate together with the fundamental theorem of calculus to the
differential equation. Since y converges to y∞, a radius R̄ > R0 exists such that

z(r) = y(r) +
M0

r
− L0

2r2
≥ y∞

2
, r ≥ R̄.

In particular, the monotonicity of g and the assumption (g1) imply

m(r) = 4π

∫ r

0

s2l+2g

(
y(s) +

M0

s
− L0

2s2

)
ds ≥ 4π

∫ r

R̄

s2l+2g(z(s)) ds

≥ 4πg
(y∞

2

)∫ r

R̄

s2l+2 ds

= 4πg
(y∞

2

) 1

2l + 3
(r2l+3 − R̄2l+3), r > R̄.
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3 Steady states with compact support and finite mass

With the fundamental theorem of calculus, we obtain the following estimate:

y(r) ≤ ẙ −
∫ r

R̄

y′(s) ds

≤ ẙ − 4πg
(y∞

2

) 1

2l + 3

∫ r

R̄

(s2l+1 − R̄2l+3s−2) ds

= C1 − C2r
2l+2 − C3r

−1, r > R̄,

with constants Ci = Ci(ẙ, l, g, y∞, R̄) > 0 for i = 1, ..., 3. Since the right-hand side
converges to −∞ as r → ∞ and y∞ > 0 by assumption, this leads to a contradiction.
Thus y∞ ≤ 0.

Now, it remains to prove y∞ ̸= 0. Therefore, we assume that y∞ = 0. In order to create
a contradiction, we use the growth condition (g2) and suitably estimate the integral for
r > 0 large enough by ∫ y∗

y(r)

1

g(η)
dη ≤ 1

c

∫ y∗

y(r)

1

ηn+l
dη.

Note that limr→∞ y(r) = y∞ = 0, so 0 < y(r) < y∗ for r > 0 large enough. Thus,
calculating the right-hand side results for n+ l ̸= 1 in∫ y∗

y(r)

1

g(η)
dη ≤ 1

c

1

1− n− l
((y∗)1−n−l − (y(r))1−n−l)

and for n+ l = 1 in ∫ y∗

y(r)

1

g(η)
dη ≤ 1

c
ln

(
y∗

y(r)

)
.

In the next step, we determine a lower bound of the integral on the left-hand side. First,
we have a closer look at M0

r
− L0

2r2
. Obviously, the map ]0,∞[∋ r 7→ M0

r
− L0

2r2
is strictly

monotonically increasing or decreasing on ]0, L0

M0
[ or ] L0

M0
,∞[, respectively, with

suppr>0

(
M0

r
− L0

2r2

)
=

(
M0

r
− L0

2r2

) ∣∣∣
r=

L0
M0

=
M2

0

2L0

.

Let R > max{ L0

M0
, R0} with

0 < y(r) < y∗, r > R.

Since R > L0

M0
, we obtain y(r) < z(r) and z′(r) < y′(r) for r > R. In particular, z is

monotonically decreasing on ]R,∞[. The change of variable given by z leads to∫ z(R)

y(r)

1

g(η)
dη ≥

∫ z(R)

z(r)

1

g(η)
dη = −

∫ r

R

z′(s)

g(z(s))
ds
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≥ −
∫ r

R

y′(s)

g(z(s))
ds, r > R.

For further estimates, we calculate an upper bound on y′. The monotonicity of g and z
on R and ]R,∞], respectively, yield

m(r) = 4π

∫ r

0

s2l+2g(z(s)) ds ≥ 4π

∫ r

R

s2l+2g(z(s)) ds

≥ 4πg(z(r))

∫ r

R

s2l+2 ds =
4π

2l + 3
g(z(r))(r2l+3 −R2l+3)

and therefore

y′(r) ≤ − 4π

2l + 3
g(z(r))(r2l+1 −R2l+3r−2)

for r > R. Inserting this estimate implies∫ z(R)

y(r)

1

g(η)
dη ≥ −

∫ r

R

y′(s)

g(z(s))
ds ≥ 4π

2l + 3

∫ r

R

(s2l+1 −R2l+3s−2) ds

= C1r
2l+2 + C2r

−1 − C3, r > R,

with Ci = Ci(l, R) > 0 for i = 1, ..., 3.

In summary, the estimates from above and below result in

C1r
2l+2 + C2r

−1 − C3 ≤
∫ y∗

y(r)

1

g(η)
dη +

∫ z(R)

y∗

1

g(η)
dη

≤ 1

c

1

1− n− l
((y∗)1−n−l − (y(r))1−n−l) + C4

for n+ l ̸= 1 and in

C1r
2l+2 + C2r

−1 − C3 ≤
∫ y∗

y(r)

1

g(η)
dη +

∫ z(R)

y∗

1

g(η)
dη

≤ 1

c
ln

(
y∗

y(r)

)
+ C4

for n+l = 1 and r > R with C4 = C4(g, y
∗, z(R)) > 0. In order to create a contradiction,

we multiply the inequalities with (y(r))2l+2 and obtain

C1r
2l+2(y(r))2l+2 + C2r

−1(y(r))2l+2

≤ 1

c

1

1− n− l
((y∗)1−n−l − (y(r))1−n−l)(y(r))2l+2 + C5(y(r))

2l+2

for n+ l ̸= 1 and

C1r
2l+2(y(r))2l+2 + C2r

−1(y(r))2l+2 ≤ 1

c
ln

(
y∗

y(r)

)
(y(r))2l+2 + C5(y(r))

2l+2
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for n + l = 1 and r > R with Ci > 0 independent of r for i = 1, ..., 5. Exploiting
y∞ = 0, we adapt the inequalities and find an appropriate estimate for the expression
ry(r). Since ẙ > 0, Remark 3.7 (b) implies that there exists δ > 0 such that z(r) > 0 for
all R0 < r < R0+ δ. The mass function m is monotonically increasing, and in particular
m > 0 on ]R0,∞[, so it follows

m(r) ≥ m(R) > 0, r > R,

which leads to the estimate

y(r) = −
∫ ∞

r

y′(s) ds =

∫ ∞

r

m(s)

s2
ds ≥ m(r)

∫ ∞

r

1

s2
ds =

m(r)

r
≥ m(R)

r

for r > R. In particular, ry(r) ≥ m(R) > 0 for r > R. Since 2l + 2 > 0, we obtain

C1 + C2(y(r))
2l+2r−1 ≤1

c

1

1− n− l
((y∗)1−n−l(y(r))2l+2 − (y(r))l+3−n)

+ C5(y(r))
2l+2

for n+ l ̸= 1 and

C1 + C2(y(r))
2l+2r−1 ≤ 1

c
ln

(
y∗

y(r)

)
(y(r))2l+2 + C5(y(r))

2l+2

for n + l = 1 and r > R. Together with l + 3 − n > 0 and 2l + 2 > 0, the assumption
y∞ = limr→∞ y(r) = 0 implies that the left-hand side converges to C1 while the right-
hand side vanishes for r → ∞ in both cases. Since C1 > 0, this is a contradiction, so
y∞ < 0.

As shown in Lemma 3.8, we conclude y∞ ∈ [−∞, 0[. In addition, the limit exists in R:

Remark 3.9. Let −M2
0

2L0
≤ ẙ ≤ 0. Then the limit E0 := limr→∞ y(r) ∈]−∞, 0[ is finite

and negative. In the situation of Lemma 3.8, we also obtain E0 < 0 for ẙ > 0. In
particular, this is consistent with Lemma 3.2.

Proof. As discussed before, the limit limr→∞ y(r) ∈ [−∞, 0[ exists and is negative. As a
result, a radius R > R0 exists such that z(r) = y(r) + M0

r
− L0

2r2
< 0 for all r > R. Since

g = 0 on ] − ∞, 0[, the mass function m is constant on ]R,∞[, i.e., m(r) = m(R) for
r > R. The monotonicity of m leads to

y(r) = y(0)−
∫ r

0

m(s)

s2
ds = ẙ −

∫ r

R0

m(s)

s2
ds

≥ ẙ −m(R)

(
1

R0

− 1

r

)
, r > R.

This estimate implies that limr→∞ y(r) ≥ ẙ − m(R)
R0

> −∞.
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3.5 The existence of solutions with compact support

and examples

We determined in the previous sections which conditions on general functions g are
sufficient to ensure the existence of a unique solution y and, especially for ẙ > 0, the
negativity of the limit y∞. It remains to transfer these conditions on g to conditions on
φ, so g of the form (3.6) satisfies the required conditions. After that, we discuss some
examples for φ.

We assume that φ is satisfying the conditions (V1)–(V3). Then let the function g
be as defined in equation (3.6). Obviously, g = 0 on ]−∞, 0] and g > 0 on ]0,∞[.
Let κ + l + 1

2
> 0. By Lemma 3.4, g ∈ C1(R). According to Lemma 3.6, a unique

solution y ∈ C2([0,∞[) exists for all ẙ ∈ R. In the case ẙ > 0, we additionally have to
determine whether the conditions in Lemma 3.8 are satisfied. Lemma 3.4 implies that
g is monotonically increasing, and as discussed before, the condition (g1) is obviously
satisfied. In order to fulfill the condition (g2), we impose another growth condition on
φ:

(V4*) There exist η1 > 0, c > 0 and −1 < k < l + 3
2
such that

φ(η) ≥ cηk, 0 ≤ η ≤ η1.

This assumption leads to

g(y) = cl

∫ y

0

φ(η)(y − η)l+
1
2 dη ≥ C

∫ y

0

ηk(y − η)l+
1
2 dη

= Cyk+l+
3
2

∫ 1

0

sk(1− s)l+
1
2 ds = Cyk+l+

3
2

for 0 < y < η1. Note that k > −1 and l > −1
2
, so the latter integral exists. Since

0 < k+ l+ 3
2
< 2l+3, the function g satisfies condition (g2) with 0 < n = k+ 3

2
< 3+ l.

Finally, we summarize the results of this chapter in the following theorem:

Theorem 3.10. Let l > −1
2
and L0 > 0. Assume that φ : R → [0,∞[ satisfy the

conditions (V1)–(V3) with l + κ + 1
2
> 0. Furthermore, let ẙ > −M2

0

2L0
. If ẙ > 0, let φ

additionally satisfy (V4*). Then there exists a unique solution y ∈ C2([0,∞[) of

y′ = −m(r)

r2
, y(0) = ẙ

m(r) = m(r, y) = 4π

∫ r

0

s2l+2g(y(s) +
M0

s
− L0

2s2
) ds, r ≥ 0.

with y′(0) = 0 and E0 := limr→∞ y(r) < 0.
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Let U := E0 − y. Then U ∈ C2(R3) and the function

f(x, v) = φ

(
E0 − U(r) +

M0

r
− 1

2
|v|2
)
(|x× v|2 − L0)

l
+

is a spherically symmetric steady state of the Vlasov-Poisson system with a point mass.
Furthermore, f has a compact support with supp f ⊂ (B̄R1 \BR0)× B̄vmax. Here, R0 :=
supp{R̃ > 0|y(r) + M0

r
− L0

2r2
< 0, 0 < r < R̃} and R1 := inf{R̃ > R0|y(r) + M0

r
− L0

2r2
<

0, r > R̃} > R0 and vmax := ẙ + M0

R0
. In particular, R0 is given by

R0 =


−M0

2ẙ
+
√

L0

2ẙ
+

M2
0

4y20
, ẙ > 0,

L0

2M0
, ẙ = 0,

−M0

2ẙ
−
√

L0

2ẙ
+

M2
0

4y20
, −M2

0

2L0
< ẙ < 0.

The compact support in x has a shell-like structure with radii 0 < R0 < R1.

Proof. We already discussed most assertion, so we first show that R0 is the largest radius
which satisfies z(r) = y(r) + M0

r
− L0

2r2
for 0 < r < R and that R1 > R0 exists. Then

we turn to prove that f is a time-independent solution in the sense of Definition 2.10 to
complete the proof.

By Remark 3.7 (b), y(r) + M0

r
− L0

2r2
< 0 for 0 < r < R0 and y(r) + M0

r
− L0

2r2
> 0

for R0 < r < R0 + δ and for some δ > 0, so R0 = min(x,v)∈supp f |x|. Furthermore,

limr→∞ y(r) < 0, so there exists a radius R̃ > R0 such that y(r) + M0

r
− L0

2r2
< 0 for all

r > R̃. In particular, R1 = max(x,v)∈supp f |x| exists.

It remains to show that f is a solution of the Vlasov-Poisson system with a point mass.
Since y ∈ C2([0,∞[) with y′(0) = 0 and limr→∞ y(r) =: E0 ∈]−∞, 0[, the potential U
given by U := E0 − y solves the corresponding semi-linear Poisson equation (3.7) as
discussed in Lemma 3.5. In particular, U is spherically symmetric with U ∈ C2(R3).
Since we require κ + l + 1

2
> 0, the function g is continuously differentiable on R by

Lemma 3.4. Because of the compact support of f and the relation between g and ρ
in Lemma 3.3, the induced density ρ = ρf is continuously differentiable with compact
support. Since U ∈ C2(R3) solves the Poisson equation, it follows from the uniqueness
in Lemma 2.7 that U = Uf . Moreover, ∂xU is bounded according to Lemma 2.7 (b).
Therefore, Lemma 2.16 implies that the characteristic flow exists on R×R×{L > 0}. As
shown in Lemma 2.13, the particle energy E and L are constant along characteristics, so
f = Φ(E,L) obviously solves the Vlasov equation. In summary, the function f is a steady
state of the Vlasov-Poisson system with a point mass in the sense of Definition 2.10
respectively Definition 2.17.

In the previous argumentation, we rarely used M0 > 0, so in just a few steps, we can
transfer almost all assertions in this chapter to the case M0 = 0.
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One of the two times where we used M0 > 0 was in the proof of Lemma 3.6. In the first
step of the proof, we showed that

ẙ +
M0

s
− L0

s2
< 0, 0 < s < R∗,

for some R∗ > 0. Since sups>0(−L0

s2
) = 0, it follows ẙ − L0

2r2
≤ 0 for all r > 0 and ẙ ≤ 0.

For ẙ > 0, we obtain ẙ − L0

2r2
< 0 for 0 < r < R0 and ẙ − L0

2r2
> 0 for R0 < r < R0 + δ

with some δ > 0 and R0 :=
√

L0

2ẙ
. Therefore, we have to distinguish between ẙ ≤ 0 and

ẙ > 0.

The second time where we used M0 > 0 was in the proof of Lemma 3.8 in the case
y∞ = 0. We used that the map ]0,∞[∋ r → M0

r
− L0

r2
is monotonically decreasing on

some interval of the form ]R,∞[ to ensure that z(r) := y(r) + M0

r
− L0

r2
is monotonically

decreasing in r on ]R,∞[. Since the map ]0,∞[∋ r → − L0

2r2
is monotonically increasing,

we appropriately estimate z′ to ensure monton at a similar radius R > 0:

z′(r) = y′(r) +
L0

r3
= −m(r)

r2
+
L0

r3

≤ − 1

r3
(−m(R0 + 1)r + L0), r > R0 + 1.

Obviously, z is monotonically decreasing on [R,∞[ with R := max{R0 + 1, L0

m(R0+1)
}.

Note that m(R0 + 1) > 0.

Before we analyze the stability of steady states, we introduce two explicit families of
steady states, the so-called (generalized) polytropic steady states and (generalized) King
models :

Example 3.11 (The (generalized) polytropic steady states). Let φ : R → [0,∞[ be
given by

φ(η) := (η)k+

with l > −1
2
and −1 < k < l + 3

2
. In addition, let k + l + 1

2
> 0. Then φ obviously

satisfies the assumptions (V1), (V2), (V3) and (V4*).

Steady states induced by φ are called (generalized) polytropic. In particular, for ẙ > −M2
0

2L0

(or ẙ > 0 in the caseM0 = 0) there exists an associated global solution y of equation (3.8)
with E0 := limr→∞ y(r) < 0 and U := E0 − y. Furthermore,

f(x, v) := (E0 − E)k+(L− L0)
l
+, (x, v) ∈ R3\{0} × R3,

is a solution of the Vlasov-Poisson system with a point mass.
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3 Steady states with compact support and finite mass

Example 3.12 (The (generalized) King models). Let φ : R → [0,∞[ be given by

φ(η) := (eη − 1)k+

with l > −1
2
and −1 < k < l + 3

2
. Furthermore, let k + l + 1

2
> 0. This ansatz function

φ satisfies the assumptions (V1), (V2), (V3) and (V4*) with κ = k.

Steady states induced by this ansatz are called (generalized) King model; choosing k = 1

corresponds to the usual ansatz for the King models. As seen before, for ẙ > −M2
0

2L0
(or

ẙ > 0 for M0 = 0) the associated solution y of the equation (3.8) exists globally with
E0 := limr→∞ y(r) < 0 and U := E0 − y, so

f(x, v) := (eE0−E − 1)k+(L− L0)
l
+, (x, v) ∈ R3\{0} × R3,

is a solution of the Vlasov-Poisson system with a point mass.
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4 Stability of steady states

In the previous chapter we constructed steady states with finite mass and compact
support. In the next step, we analyze the stability of a certain class of steady states
which includes the (generalized) polytropic steady states (cf. Example 3.11) and the
(generalized) King models (cf. Example 3.12) under certain conditions. We proceed
analogously to [4] and apply the method in [4] to the Vlasov-Poisson system with a point
mass and to anisotrophic steady states. As discussed before, we consider anisotropic
steady states f0 of the form

f0(x, v) = Φ(E(x, v), L(x, v)), (x, v) ∈ R3\{0} × R3,

with suitable Φ : R×[0,∞[→ [0,∞[. Recall that E and L are the particle energy and the
anguluar momentum squared as defined in Definition 2.13. Furthermore, we require the
induced potential U0 := Uf0 to be spherically symmetric, so f0 is spherically symmetric
according to Lemma 2.13.

In the theory of ordinary differential equations, we can determine the stability of a steady
state in a metric space with a Lyapunov function. Lyapunov functions have a local min-
imum in the equilibrium point to be examined and are decreasing among solutions of
the ordinary differential equation. If there exists a Lyapunov function, the equilibrium
point is stable. We adapt this procedure and introduce a map similar to a metric and
construct a functional which acts like a Lyapunov function in the theory of ordinary
differential equation. More precisely, we search for a functional which is constant along
solutions of the system and has a local minimum in f0.

4.1 The energy-Casimir functional

In order to construct a functional as described before, we consider the total energy and
the Casimir functional, which are both conserved along solutions of the Vlasov-Poisson
system with a point mass.

From a physical point of view, the total energy of the system is conserved along solutions
since we only allow gravitational particle-particle interactions and gravitational interac-
tions between particles and the point mass. Before defining it, we motivate the total
energy from a physical point of view.
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4 Stability of steady states

We consider N ∈ N particles with unit mass and a central point mass M0 and t ≥ 0.
The particle-particle interaction is given by the potential Ũ(x, y) := − 1

|x−y| for x, y ∈ R3

with x ̸= y and the interaction between particles and the point mass by the potential
UM0(x) = −M0

|x| for x ∈ R3 with x ̸= 0. Then the many-body system has the total energy

H(t) =
N∑
i=1

1

2
|vi|2 −

N∑
i=1

M0

|xi|
+

N∑
i=1

N∑
j=1
j>i

Ũ(|xi − xj|)

=
N∑
i=1

(1
2
|vi|2 −

M0

|xi|
+

1

2

N∑
j=1
j ̸=i

Ũ(|xi − xj|)
)

where (xi, vi) = (xi, vi)(t) denotes the location and the velocity, respectively, of the ith
particle. The total energy consists of the total kinetic energy given by the sum over
all kinetic energies and of the potential energy given by the sum over all interactions
of the particles and the point mass and by the sum over all particle-particle interac-
tions. Converting the discrete into a continuous setting, we introduce the phase density
f(t) = f(t, x, v) which denotes the amount of particles with location x and velocity v at
the time t. This turns the total energy into

H(t) =
(1
2
|v|2 − M0

|x|
+

1

2

∫∫
Ũ(|x− x′|)f(t, x′, v′) dv′ dx′

)
f(t, x, v) dv dx

=

∫∫ (1
2
|v|2 − M0

|x|
+

1

2
U(t, x)

)
f(t, x, v) dx dv

with U(t, x) :=
∫∫

Ũ(|x − x′|)f(t, x′, v′) dv′ dx′ = Uf(t)(x) for x ̸= 0. This leads to the
total energy of the Vlasov-Poisson system with a point mass:

Lemma and Definition 4.1. Let f : R3×R3 → [0,∞[ with compact support supp f(t) ⊂
R3\{0} × R3 for t ≥ 0. Assume that f ∈ L1 ∩ Lp(R6) for some p ∈]3,∞]. Then the
total energy is defined by

H(f) :=

∫∫ (1
2
|v|2 − M0

|x|

)
f(x, v) dv dx+

1

2

∫
Uf (x)ρf (x) dx

=
1

2

∫∫
|v|2f(x, v) dv dx− 1

8π

∫ (
|∇Uf (x)|2 + 8π

M0

|x|

)
ρf (x) dx.

In particular, all integrals are finite.

Proof. Since f ∈ L1∩Lp(R6) has compact support, the induced density ρf ∈ L1∩Lp(R3)
has compact support. This implies that Uf ∈ C1(R3) by Lemma 2.8 and that the
integrals in the definition of H(f) exist. Furthermore, Uf ∈ Lp(R3) and ∇Uf ∈ L2(R3).
Using Friedrich’s mollification, there exists a sequence (χj) ⊂ C∞

c (R3) such that χj → Uf
in Lp(R3) and ∇χj → ∇Uf in L2(R3). Since Uf solves the Poisson equation in a
distributional sense, it follows that∫

Uf (x)ρf (x) dx = lim
j→∞

∫
χjρf dx = lim

j→∞

1

4π

∫
∆χjUf dx
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4 Stability of steady states

= lim
j→∞

1

4π
lim
R→∞

∫
r≤|R|

∆χjUf dx

= lim
j→∞

1

4π
lim
R→∞

(∫
r=R

Uf∇χj ·
x

|x|
dS(x)−

∫
r≤R

∇χj · ∇Uf dx
)

= − lim
j→∞

1

4π

∫
∇χj · ∇Uf dx = − 1

4π

∫
|∇Uf (x)|2 dx.

Because of p > 3, the induced density ρ is in L1∩Lp(R3) ⊂ Lq(R3) with q = (1− 1
p
)−1 < 3

2

which shows the validity of the first limit. In summary, this leads to

H(f) =

∫∫ (1
2
|v|2 − M0

|x|

)
f(x, v) dv dx+

1

2

∫
Uf (t, x)ρf (x) dx

=

∫∫ (1
2
|v|2 − M0

|x|

)
f(x, v) dv dx− 1

8π

∫
|∇Uf (x)|2 dx.

The total energy is a candidate for the Lyapunov functional since it is conserved along
spherically symmetric solutions of the Vlasov-Poisson system with a point mass in the
sense of Definition 2.10:

Lemma 4.2. Let f : I × R3\{0} × R3 → [0,∞[ be a spherically symmetric solution of
the Vlasov-Poisson system with a point mass with I an open interval and 0 ∈ I. Suppose
that f̊ := f(0) ∈ L1∩Lp(R6) for some p ∈]3,∞] and that supp f̊ ⊂ {L ≥ L0} is compact
with some L0 > 0. Assume that ρ = ρf ∈ C(I × R3). Then the total energy H(f) is
constant in time, i.e.,

H(f(t)) = H(f̊), t ∈ I.

Proof. Let f be a solution as required. Since the angular momentum squared L is
constant along characteristics according to Lemma 2.13, it follows that

f(t, x, v) = 0, t ∈ I, (x, v) ∈ {L ≤ L0}.

Let a < 0 < b be with [a, b] ⊂ I. Furthermore, let t ∈]a, b[ be arbitrary. Since
ρ ∈ C(I × R3) and ρ is spherically symmetric, we obtain U0,2(I × R3) according to
Lemma 2.9. Thus the assumptions in Lemma 2.11 are satisfied, so the characteristic
flow X(t, s, ·) is a measure preserving C1-diffeomorphism on {L > 0}. Because {L = 0}
is a null set, it follows by the change of variables:

H(f(t)) =

∫∫ (1
2
|v|2 − M0

|x|
+

1

2
Uf(t)(x)

)
f(t, x, v) dv dx

=

∫∫
{L>0}

(1
2
|V (t)|2 − M0

|X(t)|
+

1

2
Uf(t)(X(t))

)
f(t, (X, V )(t)) dv dx

=

∫∫
{L>0}

(1
2
|V (t)|2 − M0

|X(t)|
+

1

2
Uf(t)(X(t))

)
f̊(x, v) dv dx.
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4 Stability of steady states

For the reason of clarity, we write (X, V )(t) instead of (X, v)(t, 0, x, v) for (x, v) ∈ {L > 0}.
According to Lemma 2.15, the induced potential U is continuously differentiable on
I × R3, so the integrand is differentiable with respect to t and it follows

∂tH(f(t)) =

∫∫ (
V (t) · V̇ (t) + ∂x

(
Uf(t) −

M0

|x|

) ∣∣∣
x=X(t)

· Ẋ(t)

)
f̊(x, v) dv dx

− 1

2

∫∫
∂x(Uf(t))

∣∣∣
x=X(t)

· Ẋ(t)f̊(x, v) dv dx

+
1

2

∫∫
∂t(Uf(t))(X(t))f̊(x, v) dv dx.

Note that f̊ has compact support and the integrand is continuous on [a, b] × supp f̊ .
Since L is constant along characteristics and (X, V ) is continuous, there exists a constant
C > 0 such that |V (t, 0, x, v)| ≤ C for every t ∈ [a, b] and (x, v) ∈ supp f̊ . In particular,

L0 ≤ |x× v|2 = |X(t, 0, x, v)× V (t, 0, x, v)|2 ≤ |X(t, 0, x, v)|2|V (t, 0, x, v)|2

≤ C|X(t, 0, x, v)|2, (x, v) ∈ supp f̊ , t ∈ [a, b],

so the change of integration and differentiation is valid. Obviously, the first integral
vanishes since the characteristic flow (X, V ) solves the characteristic system. Accord-
ing to Lemma 2.8 and 2.15, the induced potential U = Uf(t)(x) is once continuously
differentiable on I × R3 with

∂xUf(t)(x) =

∫∫
x− y

|x− y|3
f(t, y, u) du dy

=

∫∫
x−X(t, s, y, u)

|x−X(t, 0, y, u)|3
f̊(y, u) du dy

and

∂tUf(t)(x) = −
∫∫

x− y

|x− y|3
· u f(t, y, u) du dy

= −
∫∫

x−X(t, 0, y, u)

|x−X(t, 0, y, u)|3
· V (t, 0, y, u)f̊(y, u) du dy

for x ∈ R3 and t ∈ I. In particular, this leads to∫∫
∂tUf(t)(X(t, 0, x, v))f̊(x, v) dv dx

= −
∫∫∫∫

X(t, 0, x, v)−X(t, 0, y, u)

|X(t, 0, x, v)−X(t, 0, y, u)|3
· Ẋ(t, 0, y, u)f̊(y, u) du dyf̊(x, v) dv dx

=

∫∫∫∫
X(t, 0, y, u)−X(t, 0, x, v)

|X(t, 0, y, u)−X(t, 0, x, v)|3
f(s, x, v) dv dx · Ẋ(t, 0, y, u)f̊(y, u) du dy

=

∫∫
∂xUf(t)(X(t, 0, y, u)) · Ẋ(t, 0, y, u)f̊(y, u) du dy,
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4 Stability of steady states

so it follows that

∂tH(f(t)) = 0, t ∈ I.

Note that we choose a < 0 < b arbitrary with [a, b] ⊂ I.

Since the total energy is constant along spherically symmetric solutions of the Vlasov-
Poisson system with a point mass, we examine whether the energy functional has a
minimum in f0. Let f0 and f be as required in Lemma 4.2 with the induced potentials
U0 and Uf . Then we can expand the energy around the state f0:

H(f) = H(f0) +

∫∫ (1
2
|v|2 − M0

|x|

)
(f − f0) dv dx−

1

8π

∫
(|∇Uf |2 − |∇U0|2) dx

Similar approximations as in the proof of Lemma 4.1 and Green’s identity lead to∫
(|∇Uf |2 − |∇U0|2) dx =

∫
|∇Uf −∇U0|2 dx+ 2

∫
∇U0 · (∇Uf −∇U0) dx

=

∫
|∇Uf −∇U0|2 dx− 8π

∫∫
U0(f − f0) dv dx.

In summary, this yields

H(f) = H(f0) +

∫∫ (1
2
|v|2 + U0(x)−

M0

|x|

)
(f − f0) dv dx−

1

8π

∫
|∇Uf −∇U0|2 dx.

(4.1)

Notice that the factor in the linear term is the particle energy, which is introduced in
Definition 2.13. In general, the linear term does not vanish, so the total energy can not
act like a Lyapunov function. For this reason, we try to extend the functional and look
at another conserved quantity, the so-called Casimir functional :

Lemma and Definition 4.3. Let L̃ > 0 and Ψ : [0,∞[×[0,∞[→ R with Ψ(f, L) = 0
for f = 0 or L ≤ L̃. Furthermore, let Ψ be continuous on [0,∞[×]L̃,∞[. The Casimir
functional is defined by

C(f) :=
∫∫

Ψ(f(x, v), L(x, v)) dv dx

for f : R3 × R3 → [0,∞[ provided that the integral exists. Then the Casimir functional
is constant along the spherically symmetric solutions of the Vlasov-Poisson system with
a point mass as given in Lemma 4.2.

Proof. Since L is conserved along characteristics by Lemma 2.13 and the characteristic
flow is measure preserving by Lemma 2.11, the Casimir functional C(f(t)) is obviously
constant in t.

45



4 Stability of steady states

We combine the energy and the Casimir functional to the so-called energy-Casimir func-
tional :

HC := H + C.

Since the function Ψ is initially still arbitrary, we choose Ψ such that the linear term of
the energy-Casimir functional vanishes. We assume that Ψ = Ψ(f, L) ∈ C2,0([0,∞[×[0,∞[)
and that HC(f) and HC(f0) exists. Taylor expansion of Ψ(f, L) with respect to f around
f0 leads to

HC(f) = HC(f0) +

∫∫
(E +Ψ′(f0, L))(f − f0) dv dx−

1

8π

∫
|∇Uf −∇U0|2 dx

+
1

2

∫∫
Ψ′′(f0, L)(f − f0)

2 dv dx+

∫∫
O((f − f0)

3) dv dx.

(4.2)

In the following, Ψ′ denotes the f -derivative of Ψ, i.e., Ψ′ = d
df
Ψ = ∂fΨ. In order that

the linear term of the energy-Casimir functional HC vanishes, the choice of Ψ depends on
the steady state f0 which we are investigating. For this reason, we set some assumptions
on f0:

Let Φ ∈ C(R× [0,∞[). In addition, we assume that there exist E0 ∈ R and L0 > 0 such
that

Φ(E,L) = 0, E ≥ E0 or L ≤ L0

and limE→+∞ Φ(E,L) = −∞ for L ≥ L0. Furthermore, let Φ ∈ C2,0(]−∞, E0[×]L0,∞[)
with

Φ′(E,L) < 0, E < E0,

for all L > L0. Here, Φ
′ = d

dE
Φ = ∂EΦ.

Let f0 = Φ(E,L) ∈ Cc(R3\{0} × R3) be a non-trivial spherically symmetric solution of
the Vlasov-Poisson system with a point mass. Then U0 = Uf0 ∈ C0,2(R3) by Lemma 2.9.
Furthermore, we require that the support of f0, which has the form

supp f0 =
{
(x, v) ∈ R3\{0} × R3

∣∣∣E(x, v) = 1

2
|v|2 + U0(x)−

M0

|x|
≤ E0

∧ L(x, v) = |x× v|2 ≥ L0

}
,

is compact. In particular, the cut-off energy E0 is necessarily negative, as seen in
Lemma 3.2.

We aim to choose Ψ such that

Ψ′(f0, L) = Ψ′(Φ(E,L), L) = −E, (x, v) ∈ supp f0.

Since Φ :]−∞, E0]×]0,∞[→ [0,∞[ is continuous and monotonically decreasing in E, the
inverse with respect to E exists for all L > L0 and is continuous:
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4 Stability of steady states

Lemma 4.4. Let h : I × A → J be continuous with I and J intervals and A ⊂ Rn

with n ∈ N. Additionally, let h = h(x, z) be strictly increasing or decreasing in x
with h(I, z) = J for all z ∈ A. Then there exists the map h−1

x : J × A → I with
h(h−1

x (y, z), z) = y and h−1
x (h(x, z), z) = x for all x ∈ I, y ∈ J and z ∈ A. Furthermore,

the map h−1
x is continuous.

Proof. Since the map h(·, z) : I → J is monotonic for every z ∈ A, the inverse
h−1
x : J × A→ I exists. Without loss of generality, let h be strictly monotonically de-

creasing in x. Assume that h−1
x : J × A → I is not continuous in (y, z) ∈ J × A. Then

there exists a convergent sequence ((yk, zk))k∈N ⊂ J × A and ε > 0 with limk→∞ yk = y
and limk→∞ zk = z such that

|h−1
x (yk, zk)− h−1

x (y, z)| ≥ ε, k ∈ N.

Let x := h−1
x (y, z) and xk := h−1

x (yk, zk) for k ∈ N. By the Bolzano-Weierstraß theorem,
there exists a subsequence (xkj)j∈N with limj→∞ xkj ∈ Ī ∪ {±∞}. In particular, x̃ :=
limj→∞ xkj ∈ I, as we show at the end of the proof. Since h is continuous and xkj → x̃
as j → ∞, we obtain

h(x, z) = y = lim
j→∞

ykj = lim
j→∞

h(xkj , zkj) = h(x̃, z).

Since h(·, z) is bijective, this leads to x = x̃, so the sequence (xkj)j∈N converges to x. By
construction,

|xkj − x| ≥ ε, j ∈ N,

so this leads to a contraction. Thus, h−1
x is continuous in every (y, z) ∈ J × A.

At least, it remains to show that x̃ = limj→∞ xkj ∈ I. If inf I /∈ I, we assume that
limj→∞ xkj = inf I. Then [x − ε, x] ⊂ I holds after shrinking ε > 0 if necessary.
Furthermore, we obtain xkj < x − ε for j large enough. The monotonicity and the
continuity of h lead to the following contradiction:

y = lim
j→∞

ykj = lim
j→∞

h(xkj , zkj) ≥ lim
j→∞

h(x− ε, zkj)

= h(x− ε, z) > h(x, z) = y.

Analogously, it can be shown that limj→∞ xkj < sup I if sup I /∈ I.

We denote the inverse of Φ with respect to E by Φ−1
E : [0,∞[×]L0,∞[→]−∞, E0]. In

the following arguments, we need some additional technical assumptions on Φ to ensure
a certain boundedness. The compact support supp f0 ⊂ R3\{0} × R3 implies that the
minimal energy Emin := minsupp f0 E < E0 and the maximal angular momentum squared
Lmax := maxsupp f0 L > L0 exist since E and L are continuous maps on R3\{0} × R3.
Let Φ respectively Φ−1

E satisfy the following conditions:
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4 Stability of steady states

(A1) For all k ∈ N, there exists a constant C > 0 such that

|Φ′(Φ−1
E (y, L), L)| < C

for all 0 < y ≤ k and L0 < L ≤ Lmax.

(A2) For all k ∈ N, there exists a constant C > 0 such that

|Φ′(Φ−1
E (y, L), L)| > C

for all 1
k
≤ y ≤ k and L0 +

1
k
≤ L ≤ Lmax.

(A3) For all k ∈ N, there exists constants C1,2 > 0 such that

C1 ≤ |Φ′(E,L)| < C2

for all Emin ≤ E ≤ E0 − 1
k
and L0 +

1
k
≤ L ≤ Lmax.

(A4) The map Φ(E, ·) is monotonically increasing for all E ∈ R.

We will later provide examples of steady states satisfying these conditions.

To ensure that the linear term of the energy-Casimir functional vanishes, we choose Ψ
by

Ψ(f, L) := −
∫ f

0

Φ−1
E (z, L) dz, f ≥ 0, L > L0,

and Ψ(f, L) := 0 for L ≤ L0 or f = 0 similar to [4, Equation (2.2)]. Later in Lemma 5.1,
we examine this choice of Ψ in more detail and verify that Ψ satisfies the conditions in
Lemma 4.3.

4.2 The class of perturbations

In order to determine whether the energy-Casimir functional HC has a local minimum in
f0, we introduce analogously to [4] the space of perturbations and a map comparable to
a metric. We restrict the class of perturbations to perturbations which are dynamically
accessible from f0:

Definition 4.5. A function of the form f = f0 ◦T with T : R3\{0}×R3 → R3\{0}×R3

a measure preserving C1-diffeomorphism is called dynamically accessible from f0.

Dynamically accessible functions from f0 rearrange particles by a C1-diffeomorphism
T , so particles are given a new position and velocity. Since no particle disappears,
physical quantities like the total mass are unchanged. For this reason, we require T to
be measure preserving. To keep the spherical symmetry of f0, we additionally require
that the measure preserving C1-diffeomorphism respects spherical symmetry :
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4 Stability of steady states

Definition 4.6. A function T : R3\{0}×R3 → R3\{0}×R3 respects spherical symmetry
if for all (x, v) ∈ R3\{0} × R3 and A ∈ SO(3) holds

T (Ax,Av) = (Ax′, Av′),

|x′ × v′| = |x× v|,

with (x′, v′) = T (x, v).

Note that L is invariant under transformations which respect spherical symmetry.

Finally, we define the class of perturbations Df0 as the functions which are dynamically
accessible from f0 and respect spherical symmetry, more precisely, we define, analogously
to [4],

Df0 := {f = f0 ◦ T |T : {L > 0} → {L > 0} is a

measure preserving C1-diffeomorphism

which respects spherical symmetry}.
(4.3)

In the following, we extend f by 0 on R3\{0} × R3; since L is invariant under transfor-
mations which respect spherical symmetry and f0 = 0 on {L ≤ L0}, this extension is
reasonable.

An example for a measure preserving C1-diffeomorphism which respects spherical sym-
metry is the characteristic flow:

Lemma 4.7. Let I be an interval and U ∈ C0,2(I × R3\{0}) be spherically symmet-
ric. Furthermore, assume that the characteristic flow Z of the associated characteristic
system exists. Then the map Z(s, t, ·) : {L > 0} → {L > 0} is a measure preserving
C1-diffeomorphism which respects spherical symmetry for s, t ∈ I.

Proof. As discussed in Lemma 2.11, Z(τ, t, ·) is a measure preserving C1-diffeomorphism
τ, t ∈ I, so it is sufficient to show that Z(τ, t, ·) respects spherical symmetry for τ, t ∈ I.
Let τ, t ∈ I and A ∈ SO(3) be arbitrary and (x, v) ∈ {L > 0}. For the sake of clarity, we
write (X, V )(s) := X(s, t, x, v) for s ∈ I. Since U is spherically symmetric, we obtain

˙(AX)(s) = AẊ(s) = AV (s),

˙(AV )(s) = AV̇ (s) = A

(
−∂rU(|X(s)|)− M0

|x|

)
X(s)

|X(s)|

=

(
−∂rU(|AX(s)|)− M0

|AX(s)|

)
AX(s)

|AX(s)|
,

for s ∈ I and (AX,AV )(t, t, x, v) = (Ax,Av). Therefore, (AX,AV )(·, t, x, v) solves the
characteristic system with initial condition (t, Ax,Av). The solution of the characteristic
system is unique according to the assumption, so

(AX,AV )(τ, t, x, v) = (X, V )(τ, t, Ax,Av).
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4 Stability of steady states

The angular momentum squared L is constant along characteristics according to Lemma 2.13
which implies

|X(τ)× V (τ)|2 = L((X, V )(τ)) = L(x, v) = |x× v|2.

Because (x, v) ∈ {L > 0} and A ∈ SO(3) are arbitrary, the map Z(τ, t, ·) respects
spherical symmetry.

In particular, the class of perturbations Df0 is invariant under spherically symmetric
solutions of the Vlasov-Poisson system with a point mass:

Lemma 4.8. The set Df0 is invariant under spherically symmetric solutions of the
Vlasov-Poisson system with a point mass, i.e., let I ∋ t → f(t) be a spherically sym-
metric solution of the Vlasov-Poisson system with a point mass with I an interval and
f(0) =: f̊ ∈ Df0. Then f(t) ∈ Df0 for all t ∈ I.

Proof. Since f̊ ∈ Df0 , there exists a measure preserving C1-diffeomorphism T which

respects spherical symmetry such that f̊ = f0 ◦ T on {L > 0}. By Definition 2.10, the
characteristic flow exists. The spherical symmetry of the solution f leads to the spherical
symmetry of U and U ∈ C1(I×R3) by Lemma 2.15. Note that f̊ ∈ Cc(R3\{0}×R3) since
by assumption f0 is continuous on R3\{0} ×R3 with compact support. By Lemma 4.7,
Z(0, t, ·) is a measure preserving C1-diffeomorphism which respects spherical symmetry
for t ∈ I. Since f is constant along characteristics, we obtain

f(t, z) = f(0, Z(0, t, z)) = f̊(Z(0, t, z))

for t ∈ I and z ∈ R3\{0} × R3. Therefore, f(t) can be written as the composition
f(t) = f̊ ◦ Z(0, t, ·) = f0 ◦ T ◦ Z(0, t, ·) for t ∈ I. Obviously, the composition of two
measure preserving C1-diffeomorphisms which respect spherical symmetry retains these
properties, so f(t) ∈ Df0 holds for all t ∈ I.

To determine whether the energy-Casimir functional has a local minimum in f0, we need
an analogue to a metric on the space of perturbations which calculates the distance
between f0 and f ∈ Df0 . Therefore, we define

d(f, f0) :=

∫∫
(Ψ(f, L)−Ψ(f0, L) + E(f − f0)) dv dx+

1

8π

∫
|∇Uf −∇U0|2 dx

for f ∈ Df0 and Ψ as defined above. Note that f0 ∈ Cc(R3\{0}×R3) and f0 is spherically
symmetric, so f ∈ Df0 is spherically symmetric and continuous with compact support
supp f ⊂ {L ≥ L0}. This implies that Uf ∈ C1(R3\{0}×R3)∩L2(R3) and furthermore
HC(f0) and HC(f) exist. In summary, d = d(·, f0) is well-defined on Df0 .

Since the particle energy E = E(x, v) = 1
2
|v|2 + U0(x) − M0

|x| depends on U0 = Uf0 , the

whole definition of d = d(·, f0) depends on the steady state f0 to be investigated, so d
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4 Stability of steady states

is not a metric in the classical sense. In Lemma 5.1, we will see that there exists some
C = C(f0) > 0 such that

∥f − f0∥22 + ∥∇Uf −∇U0∥2 ≤ Cd(f, f0), f ∈ Df0 .

This estimate guarantees that d is positive definite. With the expansion of energy
functional around f0 in equation (4.1), we see that the distance d is connected with the
energy-Casimir functional by

d(f, f0) = HC(f)−HC(f0) +
1

4π

∫
|∇Uf −∇U0|2 dx, f ∈ Df0 . (4.4)

4.3 Stability of steady states and examples

With this at hand, we turn to the main result and show that the energy-Casimir func-
tional HC has a local minimum in f0 on the set Df0 . We obtain analogously to [4,
Theorem 2.1]:

Theorem 4.9. There exist C0 = C0(f0) > 0 and δ0 = δ0(f0) > 0 such that for all
f ∈ Df0 with d(f, f0) < δ0 holds

HC(f)−HC(f0) ≥ C0∥∇Uf −∇U0∥22.

We dedicate the entire following chapter to the, not easy, proof of this result. But before
that, we assume thatHC has a local minimum in f0 in the sense of Theorem 4.9 and show
the final result that provides the stability of steady states. Analogously to Lyapunov
functions for ordinary differential equations, the energy-Casimir functional is constant
along spherically symmetric solutions of the Vlasov-Poisson system with a point mass
and has a local minimum in f0, so we obtain, similar to ordinary differential equations,
the stability of f0. Analogously to [4, Theorem 2.2]:

Theorem 4.10. There exist C = C(f0) > 0 and δ = δ(f0) > 0 such that for all f̊ ∈ Df0

with

d(f̊ , f0) < δ,

the spherically symmetric continuous solution I ∋ t → f(t) with f(0) = f̊ and f(t) ∈
Cc(R3\{0} × R3) satisfies

d(f(t), f0) ≤ Cd(f̊ , f0), t ∈ I.

Here, I denotes an interval with 0 ∈ I.

Proof. Let f̊ ∈ Df0 be at first arbitrary and I ∋ t → f(t) the corresponding solution
as required in Theorem 4.10. As shown in Lemma 4.8, f(t) ∈ Df0 for all t ∈ I, so the
map I ∋ t → d(f(t), f0) is well-defined. Furthermore, it can be shown that the map is
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continuous:

Let s, τ ∈ I and J ⊂ I be a compact interval with s, τ ∈ J . According to Lemma 4.3,
the energy-Casimir functional is invariant under spherically symmetric solutions of the
Vlasov-Poisson system with a point mass, so by (4.4)

|d(f(s), f0)− d(f(τ), f0)| =
1

4π

∣∣∥∇Uf(s) −∇U0∥22 − ∥∇Uf(τ) −∇U0∥22
∣∣ .

Since f(t) ∈ Cc(R3\{0} × R3) and f(t) is spherically symmetric, the induced density
ρ is continuous and ρ(t) is spherically symmetric for t ∈ I. According to Lemma 2.9,
the induced potential U(τ) = Uf(τ) is twice continuously differentiable with respect to
x and U ∈ C0,2(I × R3). Hence, the characteristic flow is continuous by Lemma 2.11,
and the solution f has the support supp f(t) = Z(t, 0, supp f̊) for t ∈ I as discussed in
Remark 2.14. Therefore, the support of f(t) is bounded uniformly in t ∈ J . Together
with Remark 2.14 (c), this implies

|∥∇Uf(s) −∇U0∥2 − ∥∇Uf(t) −∇U0∥2| ≤ ∥∇Uf(s) −∇Uf(t)∥2
≤ C∥ρ(s)− ρ(t)∥ 6

5
≤ C∥f(s)− f(t)∥ 6

5
.

Since f is continuous, the term f(τ)− f(s) vanishes pointwise as τ → s and is bounded

uniformly on J × R3, so f(τ) − f(s) vanishes in L
6
5 (R6) as τ → s by the dominated

convergence theorem. In conclusion, this convergence leads to

|d(f(s), f0)− d(f(τ), f0)| =
1

4π

∣∣∥∇Uf(s) −∇U0∥22 − ∥∇Uf(τ) −∇U0∥22
∣∣→ 0

as τ → s, so the map I ∋ t→ d(f(t), f0) is continuous.

Let δ0 = δ0(f0) and C0 = C0(f0) be as in Theorem 4.9. We define δ := δ0(1+
1

4πC0
)−1 > 0

and C := 1 + 1
4πC0

> 0. Now let f̊ ∈ Df0 with d(f̊ , f0) < δ. Since I ∋ t → d(f(t), f0) is

continuous and δ < δ0, there exists t∗ ∈ Ī ∪ {∞} such that

d(f(t), f0) < δ0, t ∈ [0, t∗[;

let t∗ be the maximal value with this property. The choice of δ and C and the estimate
in Theorem 4.9 yield together with equation (4.4) to

d(f(t), f0) = HC(f(t))−HC(f0) +
1

4π
∥∇Uf(t) −∇U0∥22

≤
(
1 +

1

4πC0

)
(HC(f(t))−HC(f0))

=

(
1 +

1

4πC0

)
(HC(f̊)−HC(f0))

≤
(
1 +

1

4πC0

)(
HC(f̊)−HC(f0) +

1

4π
∥∇Uf̊ −∇U0∥22

)
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=

(
1 +

1

4πC0

)
d(f̊ , f0) <

(
1 +

1

4πC0

)
δ = δ0

for all t ∈ [0, t∗[. This implies t∗ = sup I, so the proof is complete.

As the attentive reader will have noticed, the above theorem assumes that for all f̊ ∈ Df0

there exists a spherically symmetric continuous solution I ∋ t→ f(t) with f(0) = f̊ and
f(t) ∈ Cc(R3\{0}×R3) for t ∈ I and an interval I with 0 ∈ I. In the last chapter, more
precisely, in Theorem 6.2, we show that for all f̊ ∈ Cc(R3\{0} × R3) with f̊(x, v) = 0
for (x, v) ∈ R3\{0} × R3 with |x × v|2 ≤ L0 with some L0 > 0, there exists a suitable
spherically symmetric solution, the so-called Lagrangian solution, which has the required
properties and exists on R.

Theorem 4.10 regarding stability is only useful if there exist anisotropic steady states
f0 which satisfy the assumptions. In the previous chapter, we constructed a class of
anisotropic steady states with compact support and finite mass. Two examples we
considered in the previous chapter are the (generalized) polytropic steady states and the
(generalized) King model. If we restrict the parameters appropriately, we obtain their
stability by Theorem 4.10.

Example 4.11 (Stability of the (generalized) polytropic steady states). Let k ≥ 1 and
l > 0. Furthermore, let L0 > 0 and E0 < 0. Analogously to Example 3.11, we define

Φ(E,L) := (E0 − E)k+(L− L0)
l
+.

Then, Φ ∈ C(R× [0,∞[) ∩ C2,0(]−∞, E0[×]L0,∞[) with

Φ′(E,L) = −k(E0 − E)k−1(L− L0)
l, E < E0, L > L0

and Φ−1
E : [0,∞[×]L0,∞[→ [E0,∞[ with

Φ−1
E (y, L) = E0 − (L− L0)

− l
k y

1
k .

In summary, this leads to

Φ′(Φ−1
E (y, L), L) = −ky1−

1
k (L− L0)

l
k , y ≥ 0, L > L0.

Conditions (A1)–(A4) are obviously satisfied with arbitrary Emin < E0 and Lmax > L0.
Hence, Theorem 4.10 shows the stability of (generalized) polytropic steady states for
l > 0, k ≥ 1, L0 > 0 and E0 < 0 if f0 = Φ(E,L) solves the Vlasov-Poisson system
with a point mass. Note that supp f = {E ≤ E0} ∩ {L ≥ L0} is compact according to
Lemma 3.2.

If we further require k < l+ 3
2
, then f0 = Φ(E,L) solves the Vlasov-Poisson system with

a point mass with compact support and finite mass for suitable E0 < 0 as discussed in
Example 3.11 which leads to the stability of the (generalized) polytropic steady states.
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Example 4.12 (Stability of the (generalized) King models). Let k ≥ 1 and l > 0. We
define, analogously to Example 3.12,

Φ(E,L) := (eE0−E − 1)k+(L− L0)
l
+

for E0 < 0 and L0 > 0 arbitrary. Obviously, Φ ∈ C(R×[0,∞[)∩C2,0(]−∞, E0[×]L0,∞[)
with

Φ′(E,L) = −keE0−E(eE0−E − 1)k−1(L− L0)
l, E < E0, L > L0,

and Φ−1
E : [0,∞[×]L0,∞[→ [E0,∞[ with

Φ−1
E (y, L) = E0 − ln

(
y

1
k (L− L0)

− l
k + 1

)
.

This implies

Φ′(Φ−1
E (y, L), L) = −k

(
y + y1−

1
k (L− L0)

l
k

)
, y ≥ 0, L > L0.

With similar arguments as in Example 4.11, conditions (A1)–(A4) are obviously satis-
fied for arbitrary Emin < E0 and Lmax > L0. Again, Theorem 4.10 yields the stability of
(generalized) King models with l > 0, k ≥ 1, L0 > 0 and E0 < 0 if f0 = Φ(E,L) solves
the Vlasov-Poisson system with a point mass.

For k < l + 3
2
, Example 3.12 shows that f0 = Φ(E,L) solves the Vlasov-Poisson system

with a point mass with compact support and finite mass for suitable E0 < 0 and thus is
stable.
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5 Proof of Theorem 4.9

For the proof of Theorem 4.9, we apply the methods in [4] to our setting. While
many parts work analogously, some steps can be done more directly with the (θ, E, L)-
coordinates as described in [5]. That is the reason why we consider the arguments in [5]
and transfer certain helpful results to our setting.

In Theorem 4.9, we claim, among other things, that HC has a local minimum in f0. In
one-dimensional analysis, we can detect a local minimum if the first derivative vanishes
and the second derivative is positive in the minimum point. We adapt this behavior to
our setting and have a closer look on the expansion (4.2) of the energy-Casimir functional
HC around f0. By the choice of Ψ, recall

Ψ(f, L) = −
∫ f

0

Φ−1
E (z, L) dz, f ≥ 0, L > L0,

and Ψ(f, L) = 0 for L ≤ L0, the linear term vanishes. Considering the quadratic term,
we define the the second order variation of HC with D2HC(f0) by

D2HC(f0)[g] :=
1

2

∫∫
{f0>0}

Ψ′′(f0, L)g
2 dv dx− 1

8π

∫
|∇Ug|2 dx

=
1

2

∫∫
{f0>0}

1

|Φ′(E,L)|
g2 dv dx− 1

8π

∫
|∇Ug|2 dx

(5.1)

for g : R3 × R3 → R if the single expressions exist. To prove Theorem 4.9, we assume
that the assertion in Theorem 4.9 were false, and as a result, we construct a function
g with D2HC(f0)[g] ≤ 0. Furthermore, we will show that D2HC(f0)[{−E, ·}] > 0 for
suitable functions. As we will later introduce, {·, ·} denotes the Poisson bracket. By
showing that g = {−E, h} and with regularization, we derive a contradiction.

In order to calculate terms like Ψ′′(f0, L) which appears in the definition of D2HC(f0)[g],
we examine Ψ in more detail and establish useful identities and estimates as in [4, Lemma
3.1]:

Lemma 5.1. (a) The function Ψ is continuous on [0,∞[×]L0,∞[ and Ψ ∈ C1,0([0,∞[×]L0,∞[)∩
C3,0(]0,∞[×]L0,∞[) with

Ψ′(f, L) = −Φ−1
E (f, L),

Ψ′′(f, L) = − 1

Φ′(Φ−1
E (f, L), L)

,
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Ψ′′′(f, L) =
Φ′′(Φ−1

E (f, L), L)

(Φ′(Φ−1
E (f, L), L))3

for f > 0 and L > L0.

(b) The estimate Ψ(f, L) ≥ −E0f holds for f ≥ 0 and L > L0. Furthermore,
f0 = Φ(E,L) leads to

Ψ′(f0, L) = −E on supp f0,

Ψ′′(f0, L) = − 1

Φ′(E,L)
on {f0 > 0}.

(c) There exists a constant C = C(f0) > 0 such that∫∫
[Ψ(f, L)−Ψ(f0, L) + E(f − f0)] dv dx ≥ C

∫∫
|f − f0|2 dv dx

for all f ∈ Df0. This yields

∥f − f0∥22 + ∥∇Uf −∇U0∥22 ≤ C̃d(f, f0)

for all f ∈ Df0 with C̃ = max{ 1
C
, 8π}.

Proof. We require Φ ∈ C(R × [0,∞[) ∩ C2,0(]−∞, E0[×]L0,∞[) with Φ′ < 0 and
Φ(]−∞, E0], L) = [0,∞[ for L > L0, as stated in the previous chapter. Hence, Lemma 4.4
implies that Φ−1

E is continuous on [0,∞[×]L0,∞[. By the fundamental theorem of cal-
culus and the inverse function theorem, the formulas of Ψ, Ψ′ and Ψ′′ follow directly and
lead to the regularity asserted in (a).

Since Φ−1
E : [0,∞[×]L0,∞[→]−∞, E0] and therefore Φ−1

E ≤ E0, the fundamental theo-
rem of calculus implies that Ψ(f, L) ≥ −E0f for f ≥ 0 and L > L0. Because of the
definition of Φ−1

E , the other assertions in (b) follow directly. According to the assumption
imposed in the previous chapter, {f0 > 0} = {E < E0} ∩ {L > L0} and Φ′(E,L) < 0
on {f0 > 0}, so the expressions in (b) are well-defined.

In order to show the assertions in (c), we estimate the expression E(f − f0) accordingly.
Let f ∈ Df0 be arbitrary. Based on the assertions in (b), we obtain

E(f − f0) = −Ψ′(f0, L)(f − f0) on supp f0

and

E(f − f0) ≥ E0f = Φ−1
E (0, L)f = −Ψ′(f0, L)(f − f0) on {E ≥ E0} ∩ {L > L0}.

In summary, this leads to

Ψ(f, L)−Ψ(f0, L) + E(f − f0) ≥ Ψ(f, L)−Ψ(f0, L)−Ψ′(f0, L)(f − f0)
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= lim
ε→0

(Ψ(f + ε, L)−Ψ(f0 + ε, L)−Ψ′(f0 + ε, L)(f − f0))

= lim
ε→0

1

2
Ψ′′(ξε,L, L)(f − f0)

2

with some ξε,L(x, v) between f(x, v)+ε and f0(x, v)+ε for (x, v) ∈ {L > L0} and ε > 0.
Hence, we obtain 0 < ξε,L ≤ ∥f0∥∞ + 1 for ε small enough. Note that ∥f∥∞ = ∥f0∥∞
since f ∈ Df0 . According to the assumption (A1) and the formula of Ψ′′, the infimum

C :=
1

2
inf{Ψ′′(f, L)|0 < f < ∥f∥∞ + 1, L0 < L ≤ Lmax} > 0

exists with Lmax = maxsupp f0 L, and it follows

Ψ(f, L)−Ψ(f0, L) + E(f − f0) ≥ lim
ε→0

1

2
Ψ′′(ξε,L, L)(f − f0)

2 ≥ C|f − f0|2

on {L0 < L ≤ Lmax}. Integrating this estimate over {L0 < L ≤ Lmax} yields the desired
expression but only with integrals over the subset {L0 < L ≤ Lmax}. Since f ∈ Df0 ,
there exists a measure preserving C1-diffeomorphism T : {L > 0} → {L > 0} which
respects spherical symmetry such that f = f0 ◦ T . The angular momentum squared
L is invariant under transformations which respect spherical symmetry, so f = 0 on
{L ≤ L0} and {L > Lmax}. Therefore, the proof is complete.

Remark. (a) The function Ψ ∈ C([0,∞[×]L0,∞[), so Ψ satisfies the condition in
Lemma 4.3.

(b) For the expansion (4.2) of the energy-Casimir functional around f0, we require the
function Ψ̃ which induces the Casimir functional to be C2,0([0,∞[×[0,∞[). Since
f = 0 = f0 on {L ≤ L0} for f ∈ Df0, it is sufficient to demand C2,0([0,∞[×]L0,∞[).
The function Ψ as defined above has at least the regularity C2,0(]0,∞[×]L0,∞[).

(c) Lemma 5.1 (a) shows that the identity (5.1) is valid.

5.1 The construction of g

As mentioned before, under the assumption that Theorem 4.9 were false, we are able to
construct, analogously to [4, Lemma 3.2], a function g such that the second derivative
of the energy-Casimir functional is negative:

Lemma 5.2. Assume that Theorem 4.9 were false. Then there exists g ∈ L2(R6) with
the following properties:

(g1) The function g is spherically symmetric.

(g2) The support of g is in supp f0, i.e., supp g ⊂ supp f0.

(g3) The function g is even in v, i.e., g(x,−v) = g(x, v) a.e. (x, v) ∈ R6.
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(g4) The derivative ∇Ug ∈ L2(R3) exists with

1

8π
∥∇Ug∥22 = 1.

(g5) The second order variation of the energy-Casimir functional exists and is negative,
i.e.,

D2HC(f0)[g] =
1

2

∫∫
{f0>0}

Ψ′′(f0, L)g
2 dv dx− 1 ≤ 0.

(g6) Let G = G(f, L) ∈ C2,0([0,∞[×[0,∞[) with G(0, L) = 0 = ∂fG(0, L) for L ≥ 0
and ∂2fG bounded. Then ∫∫

∂fG(f0, L)g dv dx = 0.

Remark. In [4], the function g is interpreted as a vector tangent to Df0 in the point f0.
For more detail, we refer to [4] and in particular to [4, Remark 3.3]

Proof of Lemma 5.2. Assume that Theorem 4.9 were false. Then there exists a sequence
(fn)n∈N ⊂ Df0 with

d(fn, f) <
1

n
, n ∈ N,

and

HC(fn)−HC(f0) <
1

8πn
∥∇Ufn −∇U0∥22.

Note that ∥∇Ufn − ∇U0∥22 > 0 for n ∈ N. Otherwise, HC(fn) − HC(f0) < 0 and thus
d(fn, f0) = HC(fn)−HC(f0) < 0 would hold which were a contradiction to Lemma 5.1 (c).

Construction of the sequence (gn)n∈N
First of all, we have to manipulate (fn) suitably to construct a sequence which converges
in a proper sense. Then we can use its limiting function to examine whether the above
conditions are satisfied.

In (g4), we require 1
8π
∥∇Ug∥22 = 1. Hence, we define gn in such a way that this condition

is satisfied for all n ∈ N. Therefore, we define

σn :=
1√
8π

∥∇Ufn −∇U0∥2,

gn :=
1

σn
(fn − f0), n ∈ N.

58



5 Proof of Theorem 4.9

This implies

fn = f0 + σngn,

1

8π
∥∇Ugn∥22 = 1, n ∈ N.

To show the convergence of (σn), we recall the proof of Lemma 5.1 (c) in which we have
shown that

Ψ(fn, L)−Ψ(f0, L) + E(fn − f0) ≥ C|fn − f0|2 ≥ 0 on R3\{0} × R3.

Note that fn = f = 0 on {L ≤ L0} and {L > Lmax} with Lmax := maxsupp f0 L. Hence,
it follows that

σ2
n ≤

∫∫
(Ψ(fn, L)−Ψ(f0, L) + Eσngn) dv dx+

1

8π
∥∇Ufn −∇U0∥22

= d(fn, f0) <
1

n

for n ∈ N.

The existence of the weak limit g
We now show that the sequence (gn) converges weakly. To apply the Banach-Alaoglu
theorem and thus ensure convergence, we show that the sequence (gn) is bounded in
L2(R6). Lemma 5.1 (c) and the definition of d yield together with Equation (4.4) the
following estimate:

C

∫∫
|gn|2 dv dx ≤ 1

σ2
n

∫∫
(Ψ(fn, L)−Ψ(f0, L) + Eσngn) dv dx

=
1

σ2
n

(
d(fn, f0)−

1

8π
∥∇Ufn −∇U0∥22

)
=

1

σ2
n

(
HC(fn)−HC(f0) +

1

8π
∥∇Ufn −∇U0∥22

)
<

1

σ2
n

(
1

8πn
∥∇Ufn −∇U0∥22 +

1

8π
∥∇Ufn −∇U0∥22

)
= 1 +

1

n
≤ 2 (5.2)

for n ∈ N. The constant C denotes the one in Lemma 5.1 (c), and thus it is indepen-
dent of n ∈ N, so (gn) is bounded in L2(R6). The Banach-Alaoglu theorem yields the
existence of a subsequence of (gn) such that it converges weakly to a limiting function g
in L2(R6). Under abuse of notation, we denote the subsequence with (gn) for the sake
of clarity.

In the next steps, we analyze whether the required conditions are satisfied.
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5 Proof of Theorem 4.9

Spherical symmetry of g
Let A ∈ SO(3). Since (gn) converges weakly to g in L2(R6), the sequence gn(A·, A·)
converges to g(A·, A·) as well. By assumption, f0 and thus (fn) ⊂ Df0 is spherically
symmetric, so gn = 1

σn
(fn − f0) preserves the spherical symmetry. This leads to

gn = gn(A·, A·)⇀ g(A·, A·)

as n → ∞. As the unique weak limit of (gn), the limiting function g has to satisfies
g = g(A·, A·) a.e.. In summary, this means that for all A ∈ SO(3) there exists a mea-
surable set N ⊂ R6 with λ(N) = 0 such that g = g(A·, A·) on N c. With Lemma 2.4,
this yields spherical symmetry of g, so (g1) is satisfied.

The support of g
We aim to show that supp g ⊂ supp f0 = {E ≤ E0} ∩ {L ≥ L0}. For this purpose,
let E0 < E1 < 0 and 0 < L1 < L0 be arbitrary. As we have discussed in the proof of
Lemma 5.1 (c), f = 0 on {L ≤ L0} for all f ∈ Df0 . By definition, gn also vanishes on
the set {L ≤ L0} which implies that∫∫

{E>E1}∪{L<L1}
gn dv dx =

∫∫
{E>E1}

gn dv dx

≤
∫∫

{E>E1}

E − E0

E1 − E0

gn dv dx

≤ 1

E1 − E0

∫∫
{E>E0}

(E − E0)gn dv dx

for n ∈ N. The steady state f0 vanishes on {E > E0}, so fn = σngn on {E > E0}.
Lemma 5.1 (b) yields the following estimate on {E > E0} ∩ {L > L0}:

Ψ(fn, L)−Ψ(f0, L) + Eσngn = Ψ(fn, L) + Eσngn ≥ −E0fn + Eσngn

= (E − E0)σngn, n ∈ N.

The inequality (5.2) leads to the estimate∫∫
{E>E0}

(E − E0)gn dv dx =

∫∫
{E>E0}∩{L>L0}

(E − E0)gn dv dx

≤ 1

σn

∫∫
{E>E0}∩{L>L0}

(Ψ(fn, L)−Ψ(f0, L) + Eσngn) dv dx

≤ 1

σn

∫∫
(Ψ(fn, L)−Ψ(f0, L) + Eσngn) dv dx < 2σn

for n ∈ N. Since (σn) tends to zero, we obtain the convergence∫∫
{E>E1}∪{L<L1}

gn dv dx ≤ 1

E1 − E0

∫∫
{E>E0}

(E − E0)gn dv dx
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5 Proof of Theorem 4.9

≤ 2

E1 − E0

σn → 0, n→ ∞.

Note that gn = 1
σn
fn ≥ 0 on {E ≥ E0} ∪ {L ≤ L0}, so this can be interpreted as

1{E>E1}∪{L<L1}gn → 0 in L1(R6).

The weak convergence of gn yields

1{E>E1}∪{L<L1}gn ⇀ 1{E>E1}∪{L<L1}g in L2(R6).

This implies that

1{E>E1}∪{L<L1}g = 0.

Therefore, supp g ⊂ {E ≤ E1} ∩ {L ≥ L1}. Since E0 < E1 < 0 and 0 < L1 < L0 are
arbitrary, we obtain the assertion (g2), namely supp g ⊂ {E ≤ E0}∩{L ≥ L0} = supp f0.

In addition to the boundedness in L2(R6), we use the L1-convergence of 1{E≤E1}∩{L≥L1}gn
for arbitrary E1 < 0 and L1 > 0 to show the boundedness of (gn) in L

1(R6):

Boundedness of (gn) in L1(R6)
Let E0 < E1 < 0 and 0 < L1 < L0. Since f0 ∈ Cc(R3\{0}×R3) is spherically symmetric,
the set {E ≤ E1} ∩ {L ≥ L1} is compact by Lemma 3.2. With the convergence shown
before and the boundedness of (gn) in L

2(R6), this leads to∫∫
|gn| dv dx =

∫∫
{E≤E1}∩{L≥L1}

gn dv dx+

∫∫
{E>E1}∪{L<L1}

gn dv dx

≤ C∥gn∥2 + C ≤ C, n ∈ N.

By using the boundedness of the sequence (gn) in L
1(R3), we next examine the condi-

tion (g4):

The condition (g4), i.e., 1
8π
∥∇Ug∥22 = 1

In order to show the existence of ∇Ug and the required identity, we first examine the
sequence (ρgn) of the induced densities for weak convergence and then show that the
sequence remains concentrated.

At first, we have a closer look on the kinetic energy induced by gn. Since f0 ∈ L1∩L∞(R6)
is spherically symmetric with finite mass, Lemma 2.9 implies that

0 ≥ U0(r) = −
∫ ∞

r

m(s)

s2
ds ≥ −∥f0∥1

∫ ∞

r

1

s2
ds = −M

r
, r > 0,

with mass M := ∥f0∥1. As a result, we estimate the kinetic energy on the set {E > E0}
by ∫∫

{E>E0}

1

2
|v|2|gn| dv dx =
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5 Proof of Theorem 4.9

=

∫∫
{E>E0}

(E − E0)|gn| dv dx+
∫∫

{E>E0}

(
E0 − U0(|x|) +

M0

|x|

)
|gn| dv dx

≤
∫∫

{E>E0}
(E − E0)|gn| dv dx+ |E0|

∫∫
|gn| dv dx+

∫∫
{E>E0}

Mtot

|x|
|gn| dv dx

for n ∈ N with the total massMtot :=M0+M . While the first two integrals are bounded
by previous calculations, the third term is the crucial one. As already discussed, gn = 0
on {L < L0} and |x| ≥

√
L0

|v| for all (x, v) ∈ {L ≥ L0}. Let a > 0 be at first arbitrary.
Then this implies∫∫

{E>E0}

Mtot

|x|
|gn| dv dx =

∫∫
{L≥L0}∩{E>E0}

Mtot

|x|
|gn| dv dx

≤ Mtot√
L0

∫∫
{E>E0}∩{L≥L0}

|v||gn| dv dx

≤ Mtot√
L0

∫∫
{E>E0}

(
a+

1

a
|v|2
)
|gn| dv dx

and thus∫∫
{E>E0}

1

2
|v|2|gn| dv dx ≤

∫∫
{E>E0}

(E − E0)|gn| dv dx+ |E0|
∫∫

|gn| dv dx

+
Mtot√
L0

∫∫
{E>E0}

(
a+

1

a
|v|2
)
|gn| dv dx, n ∈ N.

If we choose a := 4Mtot√
L0

such that 1
2
− Mtot

a
√
L0

= 1
4
, this leads to∫∫

{E>E0}

1

2
|v|2|gn| dv dx = 2

(
1

2
− Mtot

a
√
L0

)∫∫
{E>E0}

|v|2|gn| dv dx

≤ 2

(∫∫
{E>E0}

(E − E0)|gn| dv dx+ |E0|
∫∫

|gn| dv dx+
aMtot√
L0

∫∫
|gn| dv dx

)
for n ∈ N. As shown before, the first term tends to zero for n → ∞. Since (gn) is
bounded in L1(R6), the second and the third term are bounded independently of n ∈ N
as well. Now, it remains to examine the kinetic energy on {E ≤ E0}. The support
supp f0 = {E ≤ E0} ∩ {L ≥ L0} is compact, so∫∫

{E≤E0}

1

2
|v|2|gn| dv dx =

∫∫
{E≤E0}∩{L≥L0}

1

2
|v|2|gn| dv dx

≤ C

∫∫
{E≤E0}∩{L≥L0}

|gn| dv dx ≤ C

∫∫
|gn| dv dx, n ∈ N.

In summary, the kinetic energy is bounded independently of n ∈ N.
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5 Proof of Theorem 4.9

As a result, (ρgn) is bounded in certain Lp spaces: Let x ∈ R3\{0} with ρgn(x) ̸= 0. It
follows by Hölder’s inequality that

|ρgn(x)| =
∫

|gn(x, v)| dv ≤
∫
|v|≤R

|gn(x, v)| dv +
2

R2

∫
|v|≥R

1

2
|v|2|gn(x, v)| dv

≤ C

(
R

3
2

(∫
|gn(x, v)|2 dv

) 1
2

+R−2

∫
1

2
|v|2|gn(x, v)| dv

)

= C

(∫
|gn(x, v)|2 dv

) 2
7
(∫

1

2
|v|2|gn(x, v)| dv

) 3
7

with R = R(x) := (
∫
|gn(x, v)|2 dv)−

1
7 (
∫

1
2
|v|2|gn(x, v)| dv)

2
7 and C > 0 independently

of n ∈ N and x ∈ R3\{0}. Again, Hölder’s equality yields∫
|ρgn|

7
5 dx ≤ C

∫ (∫
|gn(x, v)|2 dv

) 2
5
(∫

1

2
|v|2|gn(x, v)| dv

) 3
5

dx

≤ C

(∫∫
|gn(x, v)|2 dv dx

) 2
5
(∫∫

1

2
|v|2|gn(x, v)| dv dx

) 3
5

for n ∈ N. Since the kinetic energy is bounded independently of n ∈ N and the sequence
(gn) is bounded in L1 ∩ L2(R6), the sequence (ρgn) is bounded in L1 ∩ L

7
5 (R3) and

thus in particular in L
6
5 (R3). The Banach-Alaoglu theorem provides the existence of a

subsequence of (ρgn) which we denote again with (ρgn) such that

ρgn ⇀ ρ∗ in L
6
5 (R3)

with ρ∗ ∈ L
6
5 (R3). In order to examine ρ∗, let χ ∈ C∞

c (R3) and E0 < E1 < 0 and
0 < L1 < L0. Then∫

ρ∗χ dx = lim
n→∞

∫
ρgn(x)χ(x) dx = lim

n→∞

∫∫
gn(x, v)χ(x) dv dx

= lim
n→∞

(∫∫
gn(x, v)1{E≤E1}∩{L≥L1}χ(x) dv dx+

∫∫
{E>E1}

gn(x, v)χ(x) dv dx

)
=

∫∫
g(x, v)1{E≤E1}∩{L≥L1}χ(x) dv dx =

∫∫
g(x, v)χ(x) dv dx.

Note that gn ⇀ g in L2(R6) and supp g ⊂ {E ≤ E0} ∩ {L ≥ L0} is compact. Further-
more, we have shown that

∫∫
{E>E1} |gn(x, v)| dv dx → 0 as n → ∞. Since χ ∈ C∞

c (R3)

is arbitrary, it follows with the fundamental lemma of the calculus of variations that
ρ∗ = ρg, so

ρgn ⇀ ρg in L
6
5 (R3).
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It remains to show that (ρgn) is concentrated. For this purpose, let E0 < E1 < 0. Then
a radius R1 > 0 exists such that U0(R1)− M0

R1
= E1 and thus

E(x, v) =
1

2
|v|2 + U0(r)−

M0

r
≥ U0(R1)−

M0

R1

= E1,

for (x, v) ∈ R3\{0} × R3 with |x| ≥ R1. In summary, we obtain∫
{|x|≥R1}

|ρgn| dx ≤
∫∫

{E≥E1}
|gn| dv dx→ 0, n→ ∞.

This means that the sequence (ρgn) remains concentrated.

By [10, Lemma 2.5], it follows

∇Ugn → ∇Ug in L2(R3;R3).

The conditions as stated in [10, Lemma 2.5] are only almost satisfied since ρgn can be
negative. Anyway, the proof remains true in every step if ρgn is negative. In particular,
it is shown that ∇Ug exists. Since we construct gn in such a way that 1

8π
∥∇Ugn∥22 = 1,

the limiting function g obviously retains the required property 1
8π
∥∇Ug∥22 = 1, and we

conclude (g4).

The second order variation of the energy-Casimir functional D2HC ((g5))
In the next step, we show that the second order variation of the energy-Casimir func-
tional D2HC[g] is negative. For this purpose we introduce increasing sets (Kj) on which
the sequence (σngn) convergences uniformly and increasing sets (Sm) which fix the dis-
tance from the boundary of supp f0.

Since (gn) is bounded in L2(R6) and σn → 0 as n→ ∞, we observe

∥σngn∥2 ≤ σn∥gn∥2 ≤ Cσn → 0, n→ ∞,

so there exists a subsequence which we denote again with (σngn) such that σngn con-
vergences to 0 pointwise a.e.. Since supp f0 is compact, Egorov’s theorem yields an
increasing sequence (Kj), i.e., Kj ⊂ Kj+1 ⊂ ... ⊂ supp f0 for all j ∈ N, such that

vol(supp f0 \Kj) <
1

j

and

lim
n→∞

σngn = 0 uniformly on Kj

for all j ∈ N. Furthermore, we define

Sm :=

{
(x, v) ∈ R3\{0} × R3

∣∣∣E(x, v) ≤ E0 −
1

m
∧ L(x, v) ≥ L0 +

1

m

}
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for m ∈ N to fix the distance to the boundary of supp f0. Note that (Sm) is increasing
with Sm ⊂ Sm+1 ⊂ ... ⊂ supp f0 for all m ∈ N.

Since Sm has fixed distance to the boundary of supp f0, the steady state f0 is bounded
from below on Sm, so we can show δm := infSm f0 > 0 for m ∈ N: Let (x, v) ∈ Sm, so
E := E(x, v) ≤ E0 − 1

m
and L := L(x, v) ≥ L0 +

1
m
. This leads to

f0(x, v) = Φ(E,L) ≥ Φ

(
E0 +

1

m
,L0 −

1

m

)
.

Here, we applied that Φ is monotonically decreasing in E because of Φ′ < 0 on Sm
and monotonically increasing in L by assumption (A4). Hence, it follows δm > Φ(E0 +
1
m
, L0 − 1

m
) > 0.

Fix m ∈ N and j ∈ N. As we have shown before, the 1
8π
∥∇Ug∥22 = 1 holds, so it remains

to show that 1
2

∫∫
{f0>0}Ψ

′′(f0, L)g
2 dv dx exists and is smaller or equal than 1. Before

we can apply the Taylor expansion, we have to clarify that the conditions are satisfied.
Since Ψ ∈ C3,0(]0,∞[×]L0,∞[), the Taylor expansion yields

Ψ(fn, L)−Ψ(f0, L)−Ψ′(f0, L)(fn − f0)−
1

2
Ψ′′(f0, L)(fn − f0)

2

= lim
ε→0

(Ψ(fn + ε, L)−Ψ(f0 + ε, L)−Ψ′(f0 + ε, L)(fn − f0)

− 1

2
Ψ′′(f0 + ε, L)(fn − f0)

2)

= lim
ε→0

1

6
Ψ′′′(f0 + ε+ ξ(fn − f0), L)(fn − f0)

3

= lim
ε→0

1

6
Ψ′′′(f0 + ε+ ξσngn, L)(fn − f0)

3, n ∈ N.

with some 0 ≤ ξ = ξn(x, v) ≤ 1 for (x, v) ∈ Sm ∩ Kj. Because of the construction of
Kj, the sequence (σngn) converges uniformly on Kj, so there exists n0 ∈ N such that
− δm

2
< σngn <

1
2
a.e. on Kj for n ≥ n0. This implies for n ≥ n0 and 0 < ε < 1

2
and

0 ≤ ξ ≤ 1 that

δm
2

≤ δm − ξ
δm
2

≤ f0 + ξσngn ≤ f0 + ε+ ξσngn ≤ ∥f0∥∞ + 1

a.e. on Sm ∩Kj. Since Sm ∩Kj ⊂ supp f0 ⊂ {L > Lmax}, we obtain

|Ψ′′′(f0 + ε+ ξσngn, L)|

≤ sup

{
|Ψ′′′(z, L)|

∣∣∣δm
2

≤ z ≤ ∥f0∥∞ + 1, L0 +
1

m
≤ L ≤ Lmax

}
=: Cm <∞

on Sm ∩Kj for n ≥ n0. The existence of the supremum follows from Lemma 5.1 (a) and
the assumption (A2). Inserting these assertions, we obtain for n ≥ n0 that

1

2

∫∫
Sm∩Kj

Ψ′′(f0, L)|gn|2 dv dx
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=
1

2σ2
n

∫∫
Sm∩Kj

lim
ε→0

Ψ′′(f0 + ε, L)|fn − f0|2 dv dx

=
1

σ2
n

∫∫
Sm∩Kj

lim
ε→0

(Ψ(fn + ε, L)−Ψ(f0 + ε, L)−Ψ′(f0 + ε, L)(fn − f0)

− 1

6
Ψ′′′(f0 + ε+ ξσngn, L)(fn − f0)

3) dv dx

≤ 1

σ2
n

∫∫
Sm∩Kj

(Ψ(fn, L)−Ψ(f0, L)−Ψ′(f0, L)(fn − f0)

+
1

6
Cm|fn − f0|3) dv dx

=
1

σ2
n

∫∫
Sm∩Kj

(Ψ(fn, L)−Ψ(f0, L) + E(fn − f0)) dv dx

+
1

6
Cm

∫∫
Sm∩Kj

σn|gn|3 dv dx

≤ 1 +
1

n
+

1

6
Cm sup

Kj

|σngn|
∫∫

|gn|2 dv dx,

where we have again used equation (5.2). To make statements about g, we examine
both sides for convergence. Since (σngn) converges uniformly to 0 on Kj and (gn) is
bounded in L2(R6), the right-hand side converges to 1. On the other hand, according to
the assumptions, Ψ′′(f0, L) =

1
|Φ′(E,L)| > 0 is bounded on Sm ∩Kj because of Sm ∩Kj ⊂

{Emin ≤ E ≤ E0 − 1
m
} ∩ {L0 +

1
m

≤ L ≤ Lmax} with Emin := minsupp f0 E. Furthermore,

the boundedness of Sm ∩Kj implies 1Sm∩Kj
(Ψ′′(f0, L))

1
2 ∈ L1 ∩ L∞(R6). The fact that

gn ⇀ g converges weakly in L2(R6) leads to

1Sm∩Kj
(Ψ′′(f0, L))

1
2 gn ⇀ 1Sm∩Kj

(Ψ′′(f0, L))
1
2 g in L2(R6).

The lower semi-continuity of ∥ · ∥2 implies that

1

2

∫∫
Sm∩Kj

Ψ′′(f0, L)|g|2 dv dx ≤ lim inf
n→∞

1

2

∫∫
Sm∩Kj

Ψ′′(f0, L)|gn|2 dv dx

≤ lim
n→∞

(
1 +

1

n
+

1

6
Cm sup

Kj

|σngn|
∫∫

|gn|2 dv dx

)
= 1.

Since (Kj) and (Sm) are increasing sets and the integrand is non-negative, the monotone
convergence theorem applied first for j → ∞ and then for m→ ∞ yields

1

2

∫∫
{f0>0}

Ψ′′(f0, L)|g|2 dv dx ≤ 1.

Together with (g4), this shows that the second order variation of the energy-Casimir
functional D2HC(f0)[g] =

1
2

∫∫
{f0>0}Ψ

′′(f0, L)g
2 dv dx− 1 ≤ 0 is negative, so the condi-

tion (g5) is satisfied.
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The condition
∫∫

∂fG(f0, L)g dv dx = 0 ((g6))
Let G = G(f, L) ∈ C2,0([0,∞[×[0,∞[) with G(0, L) = 0 = ∂fG(0, L) for L ≥ 0 and ∂2fG
bounded. The Taylor expansion with respect to f yields

G(fn, L)−G(f0, L) = ∂fG(f0, L)(fn − f0) +
1

2
∂2fG(f0 + τ(fn − f0), L)(fn − f0)

2

with some τ = τn(x, v) ∈ [0, 1] for (x, v) ∈ R3\{0} × R3 and n ∈ N. Integrating this
identity leads to∫∫

(G(fn, L)−G(f0, L)) dv dx

= σn

∫∫
∂fG(f0, L)gn dv dx+

σ2
n

2

∫∫
∂2fG(f0 + τσngn, L)g

2
n dv dx

for n ∈ N. Since fn ∈ Df0 , there exists a measure preserving C1-diffeomorphism
Tn : {L > 0} → {L > 0} which respects spherical symmetry such that fn = f0 ◦ Tn.
Note that {L = 0} is a null set. Thus, a change of variables provides∫∫

G(fn, L) dv dx =

∫∫
G(f0, L) dv dx, n ∈ N.

Note that L is invariant under transformations which respect spherical symmetry. This
results in∫∫

∂fG(f0, L)gn dv dx = −σn
2

∫∫
∂2fG(f0 + τσngn, L)g

2
n dv dx, n ∈ N.

By assumption, ∂2fG is bounded, and we have proven that (gn) is bounded in L2(R6).
Therefore, the integral on the right-hand side is bounded, so the convergence σn → 0 as
n→ ∞ provides that the right-hand side vanishes as n→ ∞.

Since ∂fG ∈ C([0,∞[×[0,∞[) with ∂fG(0, L) = 0 for L ≥ 0, the function ∂fG(f0, L)
is bounded with compact support in supp f0. In particular, ∂fG(f0, L) ∈ L1 ∩ L∞(R6).
Since gn ⇀ g converges weakly in L2(R6) as n→ ∞, this yields∫∫

∂fG(f0, L)gn dv dx→
∫∫

∂fG(f0, L)g dv dx, n→ ∞.

In summary, ∫∫
∂fG(f0, L)g dv dx = 0,

so the assertion (g6) is satisfied.

The construction of an even g
Finally, we have to examine whether g is even in v. With the above construction, we
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are not able to determine this property, but we can manipulate g such that the resulting
function is even in v and retains the conditions we have already proven. We expand g
into its odd and even part, i.e.,

g = godd + geven

with godd(x, v) := 1
2
(g(x, v) − g(x,−v)) and geven := 1

2
(g(x, v) + g(x,−v)) for a.e.

(x, v) ∈ R6. The function geven is even in v and has the properties which we require:
Clearly, geven ∈ L2(R6) is spherically symmetric with support in supp f0. Furthermore,
ρg = ρgeven since ρgodd =

∫∫
godd(·, v) dv = 0. Therefore, Ug = Ugeven , so the condition

1
8π
∥∇Ugeven∥22 = 1 remains true. It is easy to see that E = E(x, v) and L = L(x, v) are

even in v, so f0 = Φ(E,L) and hence Ψ′′(f0, L) and ∂fG(f0, L) are also even in v if G
has the properties required in (g6). This results in

1 ≥ 1

2

∫∫
{f0>0}

Ψ′′(f0, L)|g|2 dv dx

=
1

2

∫∫
{f0>0}

Ψ′′(f0, L)(|geven|2 + |godd|2) dv dx+
∫∫

{f0>0}
Ψ′′(f0, L)gevengodd dv dx

=
1

2

∫∫
{f0>0}

Ψ′′(f0, L)|geven|2 dv dx+
1

2

∫∫
{f0>0}

Ψ′′(f0, L)|godd|2 dv dx

≥ 1

2

∫∫
{f0>0}

Ψ′′(f0, L)|geven|2 dv dx

and

0 =

∫∫
∂fG(f0, L)geven dv dx+

∫∫
∂fG(f0, L)godd dv dx

=

∫∫
∂fG(f0, L)geven dv dx.

Note that the set {f0 > 0} = {E < E0 ∧ L > L0} is even in v. In summary, geven has
the required properties, so the proof of Lemma 5.2 is finally complete.

5.2 The Poisson bracket and the transport operator

Under the assumption that Theorem 4.9 were wrong, we are able to construct a function
g as shown in Lemma 5.2 with D2HC(f0)[g] ≤ 0. On the other hand, we can show that
D2HC(f0) is positive on a certain class of functions, namely the ones induced by the
particle energy and the Poisson bracket, respectively, the transport operator. We first
define these terms rigorously:

Definition 5.3. The Poisson bracket {·, ·} is defined by

{f, g} := ∂xf · ∂vg − ∂vf · ∂xg
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for f, g : R3 × R3 → R differentiable. We use the same definition if f and g are only
defined on R3\{0} × R3.

The transport operator T is defined by

T f := {−E, f}

for f : R3\{0} × R3 → R differentiable. Here, E = E(x, v) denotes the particle energy
with the potential U0 induced by the steady state f0.

Note that U0 and thus E are continuously differentiable on R3\{0}×R3, so the transport
operator T is well-defined. The transport operator is related to the Vlasov equation and
the characteristics:

Remark 5.4. For f : I×R3\{0}×R3 → R differentiable with I an interval, the Vlasov
equation can be expressed with the transport operator by

∂tf + T f = ∂tf + {−E, f}

= ∂tf + v · ∂xf − ∂x

(
U0(x)−

M0

|x|

)
· ∂vf = 0.

More generally, the following holds for h : R3\{0} × R3 → R differentiable:

d

ds
(h((X, V )(s, t, x, v)))

= ∂xh(Z(s, t, x, v)) · Ẋ(s, t, x, v) + ∂vh(Z(s, t, x, v)) · V̇ (s, t, x, v)

=

(
∂xh(x, v) · v − ∂vh(x, v) · ∂x

(
U0(x)−

M0

|x|

)) ∣∣∣
(x,v)=(X,V )(s,t,x,v)

= −{E, h}((X, V )(s, t, x, v))

for s, t ∈ R and (x, v) ∈ {L > 0}.

Moreover, the Poisson bracket has some helpful properties which we will use in later
argumentation:

Remark 5.5. (a) The Poisson bracket is anti-symmetric, i.e.,

{f, g} = −{g, f}

for f, g : R6 → R differentiable.

(b) By the product rule, the identity

{f, gh} = {f, g}h+ g{f, h}

holds for f, g, h : R6 → R differentiable.
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(c) Let f, g : R6 → R be differentiable and spherically symmetric. Then {f, g} is
spherically symmetric as well.
Let A ∈ SO(3) and fA := f(A·, A·) and gA := g(A·, A·). By assumption, f and g
are spherically symmetric, so f = fA and g = gA. Therefore, it follows

{f, g}(Ax,Av) = ∂xf(Ax,Av) · ∂vg(Ax,Av)− ∂vf(Ax,Av) · ∂xg(Ax,Av)
= (A · ∂xfA(x, v)) · (A · ∂vgA(x, v))− (A · ∂vfA(x, v)) · (A · ∂xgA(x, v))
= ∂xfA(x, v) · ∂vgA(x, v)− ∂vfA(x, v) · ∂xgA(x, v)
= {fA, gA}(x, v) = {f, g}(x, v)

for all (x, v) ∈ R3 × R3.

We apply the Poisson bracket and consider the class of states f = {−E, h} = T h for
certain functions h. Analogously to [4, Lemma 3.4] and [3, Lemma 1.1], we obtain that
D2HC(f0)[f ] is positive definite:

Lemma 5.6. Let h ∈ C∞
c (R3\{0}×R3) be spherically symmetric with supph ⊂ {f0 > 0}

and odd in v, i.e., h(x,−v) = −h(x, v) for all (x, v) ∈ R3\{0} × R3. Then

D2HC(f0)[{−E, h}] ≥ −1

2

∫∫
1

Φ′(E,L)

(
|x · v|2

{
−E, h

x · v

}2

+

(
U ′
0

r
+
M0

r3

)
h2

)
dv dx

=
1

2

∫∫
1

|Φ′(E,L)|

(
|x · v|2

{
E,

h

x · v

}2

+
m(r) +M0

r3
h2

)
dv dx

with m(r) := 4π
∫ r
0
s2ρ(s) ds for r > 0. The integrals extend over {f0 > 0}.

Proof. In order to prove Lemma 5.6, we proceed analogously to [4]. First, we estimate
the second term of D2HC(f0)[{−E, h}]. We take a closer look at the potential and thus
the density induced by −{E, h}. The definition of the Poisson bracket and an integration
by parts lead to

−
∫

{E, h} dv =

∫
∂vE · ∂xh dv −

∫
∂xE · ∂vh dv

=
3∑
i=1

(
∂xi

∫
vih dv +

∫
∂vi∂xi

(
U0(x)−

M0

|x|

)
h dv

)
= ∇x ·

∫
vh dv = ∇x ·K

with K(x) :=
∫
vh(x, v) dv for x ∈ R3\{0}. Note that h ∈ C∞

c (R3\{0} × R3), so inte-
grating by parts and the change of integration and differentiation are permitted. Since
h is spherically symmetric, the vector field K has a specific structure which simplifies
the calculation of the divergence: Let x ∈ R3\{0} and A ∈ SO(3) with Ax = re3 and
e3 := (0, 0, 1)t. Then it follows by Lemma 2.3 that

K(x) =

∫
vh(x, v) dv =

∫
vh(Ax,Av) dv =

∫
vh(re3, Av) dv
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= At
∫
vh(re3, v) dv

= At
∫ 2π

0

∫ ∞

0

∫ ∞

−∞


√
L
r
cosφ√

L
r
sinφ
w

h(r, w, L)
1

2r2
dw dL dφ

= At
∫ 2π

0

∫ ∞

0

∫ ∞

−∞
we3h(r, w, L)

1

2r2
dw dL dφ

= At
∫
wh(x, v) dv e3 = K(r)

x

r

with K(r) :=
∫
wh(x, v) dv. Using the symmetry, we obtain that

∇x ·K(x) =
3∑
i=1

∂xi

(
K(r)

xi
r

)
=

3∑
i=1

(
∂rK(r)

x2i
r2

+K(r)
1

r
−K(r)

x2i
r3

)
= ∂rK(r) +

2

r
K(r) =

1

r2
∂r(r

2K(r)), x ∈ R3\{0}.

Since h and thus −{E, h} are spherically symmetric, Uh := U−{E,h} with

Uh(x) :=

∫∫
{E, h}(y, v)

|x− y|
dv dy, x ∈ R3,

is spherically symmetric as well with

U ′
h(r) = − 1

r2

∫
Br(0)

∫
{E, h}(y, v) dv dy = − 1

r2

∫
Br(0)

∇y ·K(y) dy

=
4π

r2

∫ r

0

∂s(s
2K(s)) ds = 4πK(r) = 4π

∫
wh(x, v) dv, r > 0.

Note that h ∈ C∞
c (R3\{0} × R3) and hence r2K(r) → 0 as r → 0. Together with the

Cauchy-Schwarz inequality this yields the following estimate:

1

8π

∫
|∇xUh|2 dx =

1

8π

∫
|U ′

h|2 dx = 2π

∫ ∣∣∣∣∣
∫
w
√
−Φ′(E,L)

h√
−Φ′(E,L)

dv

∣∣∣∣∣
2

dx

≤ 2π

∫∫
(−w2Φ′(E,L)) dv

∫ (
− h2

Φ′(E,L)

)
dv dx.

Since Φ′(E,L) < 0 on supph ⊂ {f0 > 0}, the integrals exist, and the argument of
the square root and thus the integrands are non-negative. The derivative in E which
appears in the first integral transforms into one in w. More precisely,

w2Φ′(E,L) = w2 d

dE
Φ(E,L) = w

d

dw

(
Φ

(
1

2
w2 +

L

2r2
− M0

r
, L

))
= w

d

dw
(Φ(E,L))
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for (x, v) ∈ {f0 > 0}. We fix r > 0 and L > L0. Then E(r, w, L) < E0 if and

only if w ∈] − κ(r, L), κ(r, L)[ with κ(r, L) :=
√

2(E0 +
M0

r
− U0(r))− L

r2
> 0. Since

E(r,±κ(r, L), L) = E0, the identity Φ(E(r,±κ(r, L), L), L) = 0 holds for L ≥ L0 and
r > 0, provided that κ(r, L) > 0 exists. Integration by parts yields

−
∫
{f0(x,·)>0}

w2Φ′(E,L) dv = − π

r2

∫ ∞

L0

∫ κ(r,L)

−κ(r,L)
w

d

dw
(Φ(E,L)) dw dL

=
π

r2

∫ ∞

L0

∫ κ(r,L)

−κ(r,L)
Φ(E,L) dw dL

=

∫
Φ(E,L) dv = ρ0(x), x ∈ R3\{0}.

If {f0(x, ·) > 0} = ∅, the above identity is also valid since ρ0(x) = 0. Hence, we obtain
that

1

8π

∫
|∇xUh|2 dx ≤ 2π

∫∫
(−w2Φ′(E,L)) dv

∫ (
− h2

Φ′(E,L)

)
dv dx

≤ 2π

∫∫
ρ0(x)

h2

|Φ′(E,L)|
dv dx.

In summary, these arguments lead to the following estimate:

D2HC(f0)[{−E, h}] =
1

2

∫∫
1

|Φ′(E,L)|
|{−E, h}|2 dv dx− 1

8π

∫
|∇Uh|2 dx

≥ 1

2

∫∫
1

|Φ′(E,L)|
|{E, h}|2 dv dx− 2π

∫∫
ρ0(x)

h2

|Φ′(E,L)|
dv dx

=
1

2

∫∫
1

|Φ′(E,L)|
(|{E, h}|2 − 4πρ0(x)h

2) dv dx.

So far, we cannot say anything about the sign of D2HC(f0)[{E, h}], so we rewrite
|{E, h}|2 by introducing the function µ given by

µ(r, w, L) :=
1

rw
h(r, w, L), r > 0, w ∈ R, L ≥ 0.

Since h ∈ C∞
c (R3\{0} × R3), the auxiliary function µ ∈ C∞(]0,∞[×R \ {0} × [0,∞[)

as discussed before. Hence, it remains to show that µ is continuously differentiable in
(r, 0, L) with r > 0 and L ≥ 0. The function h is odd in v and thus in w, so h and
its second derivative with respect to w vanish in (r, 0, L). Taking this into account, the
Taylor expansion with respect to w yields

µ(r̄, w̄, L̄) =
1

r̄w̄
h(r̄, w̄, L̄)

=
1

r̄w̄

(
h(r̄, 0, L̄) + ∂wh(r̄, 0, L̄)w̄ +

1

2
∂2wh(r̄, ξ0, L̄)w̄

2
)
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=
1

r̄
∂wh(r̄, 0, L̄) +O(|w̄|) → 1

r̄
∂wh(r, 0, L), (r̄, w̄, L̄) → (r, 0, L),

and

∂wµ(r̄, w̄, L̄) =
1

r̄w̄
∂wh(r̄, w̄, L̄)−

1

r̄w̄2
h(r̄, w̄, L̄)

=
1

r̄w̄

(
∂wh(r̄, 0, L̄) + ∂2wh(r̄, 0, L̄)w̄ +

1

2
∂3wh(r̄, ξ1, L̄)w̄

2
)

− 1

r̄w̄2

(
h(r̄, 0, L̄) + ∂wh(r̄, 0, L̄)w̄ +

1

2
∂2wh(r̄, 0, L̄)w̄

2 +
1

6
∂3wh(r̄, ξ2, L̄)w̄

3
)

=
1

r̄w̄2

(
− h(r̄, 0, L̄) +

1

2
∂2wh(r̄, 0, L̄)w̄

2 +O(|w̄|3)
)

= O(|w̄|) → 0, (r̄, w̄, L̄) → (r, 0, L).

Note that ξi = ξi(r̄, w̄, L̄) ∈ [w̄, w] or ξi(r̄, w̄, L̄) ∈ [w, w̄], respectively, so ξi → 0 as
(r̄, w̄, L̄) → (r, 0, L) for i = 0, ..., 2. With similar argumentation, we can show

∂rµ(r̄, w̄, L̄) →
1

r̄
∂w∂rh(r, 0, L)−

1

r̄2
∂wh(r, 0, L), (r̄, w̄, L̄) → (r, 0, L),

∂Lµ(r̄, w̄, L̄) →
1

r̄
∂L∂rh(r, 0, L), (r̄, w̄, L̄) → (r, 0, L),

The mean value theorem yields µ ∈ C1(]0,∞[×R× [0,∞[). The definition of µ and the
product rule in Remark 5.5 (b) lead to the identity

|{E, h}|2 = |{E, rwµ}|2 = (rw{E, µ}+ µ{E, rw})2

= (rw)2({E, µ})2 + 2µrw{E, rw}{E, µ}+ µ2({E, rw})2

= (rw)2({E, µ})2 + rw{E, rw}{E, µ2}+ µ2{E, rw}{E, rw}
= (rw)2({E, µ})2 + {E, µ2rw{E, rw}} − µ2rw{E, {E, rw}}.

Since rw = |x · v|, first term corresponds to the first term in the claimed inequality. To
examine the second term, we define q(x, v) := µ2rw{E, rw} for (x, v) ∈ R3\{0} × R3.
Let s > 0 be arbitrary. Since f0 is a spherically symmetric steady state with U0 ∈
C0,2(I × R3), the characteristic flow Z(t, 0, ·) exists and is a measure preserving C1-
diffeomorphism on {L > 0} by Lemma 2.11. The particle energy E and the angular
momentum squared L are constant along characteristics, so we obtain with Remark 5.4
that ∫∫

{f0>0}

1

Φ′(E,L)
{E, µ2rw{E, rw}} dv dx =

∫∫
{f0>0}

1

Φ′(E,L)
{E, q} dv dx

=

∫∫
{f0>0}

1

Φ′(E(Z), L(Z))
{E, q}(Z(s, 0, x̃, ṽ)) dṽ dx̃

= −
∫∫

{f0>0}

1

Φ′(E(Z), L(Z))

d

ds
(q(Z(s, 0, x̃, ṽ))) dṽ dx̃

= −
∫∫

{f0>0}

d

ds

(
1

Φ′(E(Z), L(Z))
q(Z(s, 0, x̃, ṽ))

)
dṽ dx̃
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= − d

ds

∫∫
{f0>0}

1

Φ′(E(Z), L(Z))
q(Z(s, 0, x̃, ṽ)) dṽ dx̃

= − d

ds

∫∫
{f0>0}

1

Φ′(E,L)
q(x, v) dv dx = 0.

Here, for the sake of clarity, E(Z) and L(Z) denotes E(Z(s, 0, x̃, ṽ)) and L(Z(s, 0, x̃, ṽ))
for (x̃, ṽ) ∈ {f0 > 0}. Note that the support of q is bounded with supp q ⊂ supph
since supph ⊂ {f0 > 0} is compact. Hence, 1

Φ′(E,L)
q((X, V )(s, 0, ·)) is bounded on

[0, T ] × supph for all T > 0, so the change of integration and differentiation is permit-
ted. Therefore, the second term vanishes, so it remains to analyze the third term. By
calculating

{E, rw} =

(
U ′
0(r) +

M0

r2

)
x

r
· x− v · v

=

(
U ′
0(r) +

M0

r2

)
r − |v|2,

it follows that

− µ2rw{E, {E, rw}} = −µ2rw(∂xE · ∂v{E, rw} − ∂vE · ∂x{E, rw})

= −µ2rw

((
U ′
0(r) +

M0

r2

)
x

r
· (−2v)− v ·

(
∂r(rU

′
0(r))−

M0

r2

)
x

r

)
= µ2rw2

(
2

(
U ′
0(r) +

M0

r2

)
+

(
∂r(rU

′
0(r))−

M0

r2

))
= µ2r2w2

(
2
U ′
0(r)

r
+ 2

M0

r3
+

1

r
∂r(rU

′
0(r))−

M0

r3

)
= µ2r2w2

(
2
U ′
0(r)

r
+

1

r
∂r(rU

′
0(r)) +

M0

r3

)
.

Since U0 solves the Poisson equation ∆U0 = 4πρ0 and U0 and ρ0 are spherically sym-
metric, we obtain that

2
U ′
0(r)

r
+

1

r
∂r(rU

′
0(r)) = 2

U ′
0(r)

r
+

1

r
(U ′

0(r) + rU ′′
0 (r))

=
U ′
0(r)

r
+

1

r2
(2rU ′

0(r) + r2U ′′
0 ) =

U ′
0(r)

r
+

1

r2
∂r(r

2U ′
0(r))

=
U ′
0(r)

r
+∆U0(r) =

U ′
0(r)

r
+ 4πρ0.

This results in

− µ2rw{E, {E, rw}} = µ2r2w2

(
2
U ′
0(r)

r
+

1

r
∂r(rU

′
0(r)) +

M0

r3

)
= µ2r2w2

(
U ′
0(r)

r
+ 4πρ0 +

M0

r3

)
= h2

(
U ′
0(r)

r
+ 4πρ0 +

M0

r3

)
.
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If we collect all assertions, we finally get the desired statement:

D2HC(f0)[{−E, h}] =
1

2

∫∫
1

|Φ′(E,L)|
|{−E, h}|2 dv dx− 1

8π

∫
|∇Uh|2 dx

≥ 1

2

∫∫
1

|Φ′(E,L)|
(|{E, h}|2 − 4πρ0(x)h

2) dv dx

=
1

2

∫∫
1

|Φ′(E,L)|
((rw)2{E, µ}2 + {E, µ2rw{E, rw}}

− µ2rw{E, {E, rw}} − 4πρ0(x)h
2) dv dx

=
1

2

∫∫
1

|Φ′(E,L)|

(
(x · v)2

{
E,

h

x · v

}2

+ h2
(
U ′
0(r)

r
+
M0

r3

))
dv dx

=
1

2

∫∫
1

|Φ′(E,L)|

(
(x · v)2

{
E,

h

x · v

}2

+ h2
m(r) +M0

r3

)
dv dx.

Note that U ′
0(r) =

m(r)
r2

withm(r) = 4π
∫ r
0
s2ρ0(s) ds for r > 0 as discussed in Lemma 2.9,

so the proof is complete.

Lemma 5.6 says that the second order variation of the energy-Casimir functional D2HC(f0)
is positive definite for states of the form T h = {−E, h} induced by smooth h. In order
to derive a contradiction, we first invert the transport operator and show that g has the
structure g = T h for some h ∈ L2(R6). To do this, we proceed analogously to [5]. In
the most cases, the arguments in [5] can be transferred literally, so we will only have
only a look at important steps and at arguments which are not obvious at the first glance.

Since g ∈ L2(R6) with supp g ⊂ supp f0 is not even differentiable in the classical sense,
we define T h = g in a weak sense. The functions g and E are spherically symmetric.
Since the Poisson bracket is spherically symmetric, as discussed in Remark 5.5, we only
consider spherically symmetric functions on Ω0 := {f0 > 0} and define the transport
operator in a weak sense as in [5, Definition 4.1]:

Definition 5.7. Let h, µ ∈ L1
loc(Ω0) be spherically symmetric with∫∫
Ω0

hT ξ dv dv = −
∫∫

Ω0

µξ dv dx

for all ξ ∈ C1
c,r(Ω0) := {ζ ∈ C1

c (Ω0)|ζ spherically symmetric}. Then T h := µ exists
weakly. Furthermore, the domain of the operator T is defined by

D(T ) := {h ∈ L2(Ω0)|T h exists weakly and T h ∈ L2(Ω0)}.

In the following, we denote function spaces restricted to spherically symmetric functions
with an index r.
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5.3 The (θ, E, L)-coordinates and the transport

operator

Similar to the argumentation in Remark 5.4, we define new coordinates to get a more
convenient representation of the transport operator.

We define the effective potential ψL :]0,∞[→ R as

ψL(r) := U0(r)−
M0

r
+

L

2r2

for L > L0. Analogously to [5, Lemma 2.1], we obtain the following assertions and
quantities:

Lemma 5.8. (a) For all L > 0 there exists a unique radius rL with

min
]0,∞[

ψL(r) = ψL(rL) < 0.

(b) For all L > 0 and ψL(rL) < E < 0, there exist two unique radii 0 < r−(E,L) <
rL < r+(E,L) <∞ such that

ψL(r±(E,L)) = E.

Furthermore, the map

{(E,L) ∈]−∞, 0[×]0,∞[|ψL(rL) < E} ∋ (E,L) 7→ r±(E,L)

is continuously differentiable.

(c) The radius r+(E,L) is bounded from above by

r+(E,L) < −M +M0

E
= −Mtot

E

with M := ∥f0∥1 and Mtot :=M +M0 for L > 0 and E ∈]ψL(rL), 0[ and

E − ψL(r) ≥ L
(r+(E,L)− r)(r − r−(E,L))

2r2r−(E,L)r+(E,L)

for all r−(E,L) < r < r+(E,L).

Via the transformation R := |X|, W := X·V
|X| and L := |X × V |2 = const, the character-

istics (X, V ) solve the system

ṙ = w, ẇ = −ψ′
L(r), L̇ = 0. (5.3)
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Similar to Lemma 2.13, the particle energy is constant along solution of the characteristic
system in (r, w, L)-coordinates. Let R ∋ t → (r(t), w(t), L) be a global solution of the
system (5.3). Then

ψL(rL) ≤ ψL(r(t)) ≤
1

2
w(t)2 + ψL(r(t)) = E

with E = E(r(t), w(t), L) = E(r(0), w(0), L) for t ∈ R. We assume, ψL(rL) < E < 0.
This leads to

ṙ(t) = w(t) = ±
√
2E − 2ψL(r(t)), t ∈ R.

Since ψL is monotonically decreasing or increasing on ]0, rL[ or ]rL,∞[, respectively, and
ψL(rL) ≤ ψL(r±(E,L)), we obtain

r−(E,L) ≤ r(t) ≤ r+(E,L), t ∈ R.

Thus, the solution oscillates between r−(E,L) and r+(E,L) with some period T (E,L).
As in [5, Definition 2.2], we can derive the period function explicitly:

Definition 5.9. For L > L0 and ψL(rL) < E < 0 the period function T (E,L) of the
steady state f0 is defined by

T (E,L) := 2

∫ r+(E,L)

r−(E,L)

1√
2E − 2ψL(r)

dr.

Analogously to [5], the period function is bounded:

Lemma 5.10. The period function satisfies the following estimates:(
4π∥ρ0∥∞ + 3

L

r4L

)− 1
2

≤ T (E,L) ≤ 2π
(M +M0)

2

√
LE2

for all (E,L) ∈ Ω̊E,L
0 with

ΩE,L
0 := {(E,L) ∈ R× [0,∞[|E = E(x, v) ∧ L = L(x, v) for some (x,v) ∈ Ω0}.

In particular, there exist 0 < C1 < C2 with C1,2 = C1,2(f0) such that

C1 ≤ T (E,L) ≤ C2, (E,L) ∈ Ω̊E,L
0 .

Proof. With Lemma 5.8, the first estimates can be proven analogously to [5, Equation
(2.12)] and [5, Lemma B.4]. This is why we omit their proof. These estimates implies
the existence of C1,2: Since supp f0 = {E ≤ E0} ∩ {L ≥ L0} is compact with E0 < 0
and L0 > 0, the quantities Lmax := maxsupp f0 L and Emin := minsupp f0 E exist and

ΩE,L
0 ⊂ [Emin, E0]× [L0, Lmax].
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5 Proof of Theorem 4.9

Furthermore, by Lemma 3.2, there exist 0 < r∗ < R∗ with

supp f0 ⊂ {r∗ ≤ |x| ≤ R∗} × {|v| ≤ R∗}.

Therefore, rL ≥ r∗ for (E,L) ∈ ΩE,L
0 . In summary, we obtain(

4π∥ρ0∥∞ + 3
Lmax

(r∗)4

)− 1
2

≤ T (E,L) ≤ 2π
(M +M0)

2

√
L0E2

0

for all (E,L) ∈ Ω̊E,L
0 .

Analogously to [5], we use the spherical symmetry and the characteristic flow to intro-
duce the (θ, E, L)-coordinates, the so-called action-angle coordinates : Let (r, w, L) ∈
]0,∞[×R×]L0,∞[ with E(r, w, L) < E0, and let R ∋ t → (R,W )(t, r, w, L) be the
unique solution of the system:

Ṙ = W, Ẇ = −ψ′
L(R)

with (R,W )(0, r, w, L) = (r, w, L). Note that the right-hand side is continuously differen-
tiable which implies the uniqueness. Because of the relation between (R,W ) and (X, V ),
the solution (R,W )(·, r, w, L) also exists globally for all (r, w, L) ∈]0,∞[×R×]L0,∞[.
Furthermore, we discussed before that

r−(E,L) ≤ R(t, r, w, L) ≤ r+(E,L), t ∈ R.

Therefore, for all (r, w, L) ∈]0,∞[×R×]L0,∞[ with ψL(rL) < E(r, w, L) < E0, there
exist θ ∈ [0, 1[ and (E,L) ∈ Ω̊E,L

0 such that

(r, w, L) = ((R,W )(θT (E,L), r−(E,L), 0, L), L).

Since R(·, r, w, L) oscillates between r−(E,L) and r+(E,L) with period T (E,L), the
map [

0,
1

2

]
∋ θ 7→ R(θT (E,L), r−(E,L), 0, L) ∈ [r−(E,L), r+(E,L)]

is bijective for all (E,L) ∈ Ω̊E,L
0 . Inserting r = R(θT (E,L), r−(E,L), 0, L) with θ ∈ [0, 1

2
]

into the system (5.3) leads to

dr

dθ
= Ṙ(θT (E,L), r−(E,L), 0, L)T (E,L)

= W (θT (E,L), r−(E,L), 0, L)T (E,L) =
√
2E − 2ψL(r)T (E,L),

so the inverse of the previous function is given by

θ(r, E, L) :=
1

T (E,L)

∫ r

r−(E,L)

1√
2E − 2ψL(s)

ds
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5 Proof of Theorem 4.9

and exists on [r−(E,L), r+(E,L)] for all (E,L) ∈ Ω̊E,L
0 . Obviously, θ(r−(E,L), 0, L) = 0.

Via the above transformation between (r, w, L)- and (θ, E, L)-coordinates, spherically
symmetric functions can be expressed in the new coordinates: Let h ∈ L2(Ω0) be spher-
ically symmetric. By Lemma 2.2, there exists a function h̃ with h(x, v) = h̃(r, w, L)
which we denote with h. Under slight abuse of notation, we define

h(θ, E, L) := h((R,W )(θ, r−(E,L), 0, L), L)

for a.e. (θ, E, L) ∈ [0, 1]× Ω̊E,L
0 . A change of variables yields that∫∫

Ω0

h(x, v) dx dv = 4π2

∫ ∞

0

∫
R

∫ ∞

0

h(r, w, L) dL dw dr

= 8π2

∫ ∞

0

∫ ∞

0

∫ E0

ψL(r)

h(θ, E, L)
1√

2E − 2ψL(r)
dE dL dr

= 8π2

∫ r+(E,L)

r−(E,L)

∫∫
ΩE,L

0

h(θ, E, L)
1√

2E − 2ψL(r)
dE dL dr

= 8π2

∫ 1
2

0

∫∫
ΩE,L

0

h(θ, E, L)T (E,L) dL dE dθ

= 4π2

∫ 1

0

∫∫
ΩE,L

0

h(θ, E, L)T (E,L) dL dE dθ,

so integrals in (x, v)-coordinates convert into ones in (θ, E, L)-coordinates.
Furthermore, we can investigate how parity in v behaves in varies coordinates:

Lemma 5.11. Let h ∈ L2(Ω0) be spherically symmetric. Then the following assertions
are equivalent:

(i) h = h(x, v) is even (or odd) in v.

(ii) h = h(r, w, L) is even (or odd) in w.

(iii) h(·, E, L) ∈ L2,even(]0, 1[) (or h(·, E, L) ∈ L2,odd(]0, 1[)) for a.e. (E,L) ∈ ΩE,L
0 with

L2,even(]0, 1[) := {y ∈ L2(]0, 1[)|y(θ) = y(1− θ) for a.e. θ ∈]0, 1[}

and

L2,odd(]0, 1[) := {y ∈ L2(]0, 1[)|y(θ) = −y(1− θ) for a.e. θ ∈]0, 1[}.

Proof. Since w = x·v
|x| is odd and L = |x× v|2 is even in v, the first equivalence is valid.

Furthermore,

(R,W )(s, r, w, L) = (R,−W )(T (E,L)− s, r, w, L), s ∈ [0, T (E,L)],
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5 Proof of Theorem 4.9

for all (r, w, L) ∈ Ωr
0 with

Ωr
0 := {(r, w, L) ∈]0,∞[×R× [0,∞[|r = r(x, v), w = w(x, v), L = L(x, v)

for some (x, v) ∈ Ω0}.

This yields

(R,W )(θ, r−(E,L), 0, L) = (R,−W )(1− θ, r−(E,L), 0, L), θ ∈ [0, 1],

for all (E,L) ∈ Ω̊E,L
0 , so also the second equivalence is valid.

As mentioned before, we use these coordinates to derive a useful representation of T .
With Remark 5.4, we obtain for h ∈ C1

r (Ω0) that

(T h)(θ, E, L) = {−E, h}((X, V )(θT (E,L), x(E,L), v(E,L)))

=
1

T (E,L)

d

dθ
(h((X, V )(θT (E,L), x(E,L), v(E,L))))

=
1

T (E,L)
∂θh(θ, E, L), (θ, E, L) ∈ [0, 1[×Ω̊E,L

0 ,

with x(E,L) := r−(E,L)e1 and v(E,L) :=
√
L

r−(E,L)
e2 for all (E,L) ∈ Ω̊E,L

0 . Similar to [5,

Lemma 5.1], we summarize the assertion in the following lemma:

Lemma 5.12. The transport operator T has the form

(T h)(θ, E, L) = 1

T (E,L)
(∂θh)(θ, E, L), θ ∈ [0, 1], (E,L) ∈ ΩE,L

0

for all h ∈ C1
r (Ω0).

Analogously to [5], we can extend Lemma 5.12 from C1
r (Ω0) to D(T ):

Lemma 5.13. The domain of the transport operator T is given by

D(T ) = {g ∈ L2(Ω0)|g(·, E, L) ∈ H1
θ for a.e. (E,L) ∈ ΩE,L

0

and

∫∫
ΩE,L

0

1

T (E,L)

∫ 1

0

|∂θg(θ, E, L)|2 dθ dE dL <∞}

with

H1
θ := {y ∈ H1(]0, 1[)|y(0) = y(1)}.

For h ∈ D(T ), the transport operator T has the form

(T h)(θ, E, L) = 1

T (E,L)
(∂θh)(θ, E, L)

for a.e. (θ, E, L) ∈ [0, 1]× ΩE,L
0 .
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5 Proof of Theorem 4.9

Note that H1(]0, 1[) ↪→ C([0, 1]) compactly embedded, so H1
θ is well-defined. Besides

the additional potential induced by the point mass M0, the other difference between
our setting and the one [5] is that we consider L2

r(Ω0) instead of the weighted L2-space
L2
r, 1

|Φ′|
(Ω0). Even so, the proof in [5, Lemma 5.2] can be transferred almost literally if

we ignore the factor 1
|Φ′(E,L)| . This is why we omit the proof here.

The representations of T and D(T ) in the (θ, E, L)-coordinates allow us to examine the
kernel of the operator T : D(T ) → D(T ). We obtain similar to [5, Proposition 4.2] the
following representation of the kernel:

Lemma 5.14. The kernel of T is characterized by

ker(T ) = {h ∈ L2
r(Ω0)|h(x, v) = f(E(x, v), L(x, v)) for a.e. (x, v) ∈ Ω0

and for some f : R× [0,∞[→ R}
= {h ∈ L2

r(Ω0)|h(θ, E, L) = f(E,L) for a.e. (θ, E, L) ∈ [0, 1]× ΩE,L
0

and for some f : R× [0,∞[→ R}.

Proof. Let h ∈ D(T ) with T h = 0. Lemma 5.13 implies that h(·, E, L) ∈ H1
θ with

0 = (T h)(θ, E, L) = 1

T (E,L)
(∂θh)(θ, E, L)

for a.e. (θ, E, L) ∈ [0, 1]×ΩE,L
0 . Since H1

θ ⊂ C([0, 1]), the function h(·, E, L) is continu-
ous in θ with weak derivative ∂θh(·, E, L) = 0 for a.e. (E,L) ∈ ΩE,L

0 . The weak version
of the fundamental theorem of calculus leads to

h(θ, E, L) = h(1, E, L), 0 ≤ θ ≤ 1,

for a.e. (E,L) ∈ ΩE,L
0 . Therefore, we define f : R × [0,∞[→ R with f(E,L) :=

h(1, E, L) for (E,L) ∈ ΩE,L
0 and f(E,L) := 0 otherwise. Here, h is a pointwise defined

representative. This definition yields∫∫
|h(x, v)− f(E(x, v), L(x, v))| dv dx

= 4π2

∫ 1

0

∫∫
ΩE,L

0

|h(θ, E, L)− h(1, E, L)|T (E,L) dL dE dθ = 0,

so h(x, v) = f(E(x, v), L(x, v)) holds for a.e. (x, v) ∈ Ω0.

On the other hand, if h ∈ L2(Ω0) with h(θ, E, L) = f(E,L) for a.e. (θ, E, L) ∈ [0, 1]× ΩE,L
0

and for some f : R× [0,∞[→ R, Lemma 5.13 implies that h ∈ D(T ) and in particular
h ∈ ker T .
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5 Proof of Theorem 4.9

5.4 The inverse of the transport operator

As stated before, we aim to invert the transport operator to obtain g = T h for g given by
Lemma 5.2 and some h ∈ L2(R6). The previous assertions and argumentation culminate
in the following lemma that ensures the existence of the inverse for certain functions as
described in [5, Lemma 5.5]:

Lemma 5.15. Let g ∈ L2
r(Ω0) with g ⊥ kerT . Then there exists h ∈ D(T ) such that

T h = g.

In particular,

(kerT )⊥ = im(T ).

Similar to Lemma 5.13, we can transfer the proof in [5] almost literally if we neglect the
factor 1

|Φ′(E,L)| . Therefore, we omit the proof here and refer to [5, Lemma 5.5].

The proof of Lemma 5.15, as described in [5, Lemma 5.5], is constructive and shows that
for g ∈ L2

r(R6) with g ⊥ kerT the function h given by

h(θ, E, L) := T (E,L)

∫ θ

0

g(s, E, L) ds

for a.e. (θ, E, L) ∈ [0, 1] × ΩE,L
0 satisfies T h = g. Additionally, the proof of [5, Lemma

5.5] shows the identity

0 =

∫ 1

0

g(s, E, L) ds

for a.e. (E,L) ∈ ΩE,L
0 . If g is additionally even in v, we obtain 0 =

∫ 1

0
g(s, E, L) ds =

2
∫ 1

2

0
g(s, E, L) ds which leads to

h(1− θ, E, L) = T (E,L)

(∫ 1
2

0

g(s, E, L) ds+

∫ 1−θ

1
2

g(s, E, L) ds

)

= −T (E,L)
∫ θ

1
2

g(1− s, E, L) ds

= −T (E,L)

(∫ 1
2

0

g(s, E, L) ds+

∫ θ

1
2

g(s, E, L) ds

)
= −h(θ, E, L)

for a.e. θ ∈ [0, 1] and a.e. (E,L) ∈ ΩE,L
0 . In summary, if g ∈ L2

r(Ω0) is even in v with
g ⊥ ker T , the associated function h which satisfies T h = g is odd in v.
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We aim to an h ∈ L2(Ω0) such that g = T h with g given by Lemma 5.2. Obviously,
g ∈ L2

r(Ω0) since g ∈ L2(R6) is spherically symmetric with supp g ⊂ supp f0. To ap-
ply Lemma 5.15, it remains to show that g ⊥ ker T . The kernel ker T is given by
Lemma 5.14.

Let p ∈ kerT . By Lemma 5.14, there exists p̃ : R × [0,∞[→ R with p(x, v) =
p̃(E(x, v), L(x, v)) for a.e. (x, v) ∈ Ω0. Since T is bounded on Ω̊E,L

0 as discussed in
Lemma 5.10, the function p̃ satisfies p̃ ∈ L2(ΩE,L

0 ) because

∞ >

∫∫
Ω0

|p(x, v)|2 dv dx = 4π2

∫∫
ΩE,L

0

|p̃(E,L)|2T (E,L) dL dE

≥ 4π2 inf
Ω̊E,L

0

T

∫∫
ΩE,L

0

|p̃(E,L)|2 dL dE.

Hence, there exists a sequence (p̃k) ⊂ C∞
c (Ω̊E,L

0 ) with p̃k → p̃ in L2(ΩE,L
0 ) as k → ∞. In

order to show
∫∫

pg dv dx = 0, we exploit property (g6) and define

Gk(f, L) :=

∫ f

0

p̃k(Φ
−1
E (y, L), L) dy, (f, L) ∈ [0,∞[2,

for k ∈ N. Since p̃k ∈ C∞
c (Ω̊E,L

0 ) with supp p̃k ⊂ Ω̊E,L
0 ⊂ {E < E0 ∧ L > L0}, we

extend for k ∈ N the function p̃k(Φ
−1
E (y, L), L) continuously by zero to [0,∞[2. Note

that minsupp p̃k L > L0, so Gk is well-defined and twice differentiable with

∂fGk(f, L) = p̃k(Φ
−1
E (f, L), L),

∂2fGk(f, L) =
1

Φ′(ΦE(f, L), L)
p̃′k(Φ

−1
E (f, L), L)

for (f, L) ∈ [0,∞[. Since p̃k ∈ C∞
c (Ω̊E,L

0 ) and Φ−1
E ∈ C2,0(]0,∞[×]L0,∞[), we obtain

Gk ∈ C2,0([0,∞[×[0,∞[) for k ∈ N and Gk(0, L) = 0 and ∂fGk(0, L) = 0 for L ≥ 0
and k ∈ N. Furthermore, (|Φ′(E,L)|)−1 and p̃′k are bounded on the compact support
supp p̃k ⊂ Ω̊E,L

0 , so the second derivative ∂2fGk is bounded for k ∈ N. In summary, Gk

fulfills the conditions imposed in (g6) in Lemma 5.2, which implies

0 =

∫∫
∂fGk(f0, L)g dv dx =

∫∫
p̃k(E(x, v), L(x, v))g(x, v) dv dx, k ∈ N.

Since g ∈ L2(Ω0), we analyze the sequence (pk) given by pk(x, v) := p̃k(E(x, v), L(x, v))
for (x, v) ∈ R3\{0} × R3 and k ∈ N for convergence. Again, the boundedness of the
period function T yields that∫∫

Ω0

|pk(x, v)− p(x, v)|2 dv dx = 4π2

∫∫
ΩE,L

0

|p̃k(E,L)− p̃(E,L)|2T (E,L) dE dL

≤ 4π2 sup
Ω̊E,L

0

T

∫∫
ΩE,L

0

|p̃k(E,L)− p̃(E,L)|2 dE dL,
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so the convergence of (p̃k) implies that (pk) tends to p in L2(Ω0). In conclusion, we
obtain that

0 = lim
k→∞

∫∫
∂fGk(f0, L)g dv dx = lim

k→∞

∫∫
p̃k(E(x, v), L(x, v))g(x, v) dv dx

=

∫∫
p̃(E(x, v), L(x, v))g(x, v) dv dx

=

∫∫
p(x, v)g(x, v) dv dx,

so g ⊥ kerT . Hence, the conditions of Lemma 5.15 are fulfilled, and thus there exists
h ∈ L2

r(Ω0) such that

T h = g weakly

in the sense of Definition 5.7. Furthermore, g is even in v because of the condition (g3)
in Lemma 5.2, so h is odd in v as we discussed earlier.

5.5 The regularization of the inverse

Although we have shown that g = T h = {−E, h} in a weak sense, we are not allowed to
apply Lemma 5.6 and use that D2HC[f0]({−E, ·}) is positive definite to derive a contra-
diction since h ∈ L2

r(Ω0) is not smooth enough. Thus, we approximate h appropriately
by smooth functions.

We first create a cut-off version of h by reducing the support of h. More precisely, we
reuse the increasing sets (Sm) from the proof of Lemma 5.2 and consider 1Smh. As a
reminder, the increasing sequence (Sm) with Sm ⊂ Sm+1 ⊂ ... ⊂ supp f0 has a positive
distance to the boundary of supp f0 and is defined by

Sm :=

{
(x, v) ∈ R3\{0} × R3|E(x, v) ≤ E0 −

1

m
∧ L(x, v) ≥ L0 +

1

m

}
, m ∈ N.

The distance gives us some space to approximate 1Smh by smooth functions with support
in supp f0. In the following argumentation, we will switch between different coordinates,
so we define

Srm := {(r, w, L) ∈]0,∞[×R× [0,∞[|r = |x| ∧ w =
x · v
|x|

∧ L = |x× v|2 for some (x, v) ∈ Sm}

and

SE,Lm := {(E,L) ∈ R× [0,∞[|E = E(x, v) ∧ L = L(x, v) for some (x, v) ∈ Sm}

for m ∈ N. The cut-off version 1Smh is useful since T (1Smh) = 1Smg in the weak sense
of Definition 5.7:
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Lemma 5.16. For all m ∈ N,

T (1Smh) = 1Smg weakly,

i.e., 1Sr
m
h, 1Sr

m
g ∈ L2(Ωr

0) with∫∫∫
Ωr

0

1Sr
m
h{−E, ξ} dr dw dL = −

∫∫∫
Ωr

0

1Sr
m
gξ dr dw dL

for all ξ ∈ C1
c,r(Ω

r
0).

Proof. Since Sm is spherically symmetric, obviously 1Smh, 1Smg ∈ L2(Ω0) are spherically
symmetric with 1Sr

m
h, 1Sr

m
g ∈ L2(Ωr

0). Let ξ ∈ C1
c,r(Ω0). The representation of T in

Lemma 5.13 and an integration by parts yield∫∫
{−E, ξ}1Smh dv dx =

∫∫
Sm

{−E, ξ}h dv dx

= 4π2

∫∫
SE,L
m

∫ 1

0

(T ξ)(θ, E, L)h(θ, E, L)T (E,L) dθ dL dE

= 4π2

∫∫
SE,L
m

∫ 1

0

(∂θξ)(θ, E, L)h(θ, E, L) dθ dL dE

= −4π2

∫∫
SE,L
m

∫ 1

0

ξ(θ, E, L)(∂θh)(θ, E, L) dθ dL dE

= −4π2

∫∫
SE,L
m

∫ 1

0

ξ(θ, E, L)(T h)(θ, E, L)T (E,L) dθ dL dE

= −4π2

∫∫
SE,L
m

∫ 1

0

ξ(θ, E, L)g(θ, E, L)T (E,L) dθ dL dE

= −
∫∫

Sm

ξg dv dx = −
∫∫

ξ1Smg dv dx.

Note that (R,W )(·, r−(E,L), 0, L) is periodic with frequency T (E,L). Since ξ(·, E, L)
and also h(·, E, L) ∈ H1

θ (]0, 1[) are continuous, we obtain h(0, E, L) = h(1, E, L) and
ξ(0, E, L) = ξ(1, E, L) for a.e. (E,L) ∈ Ω̊E,L

0 , so the boundary terms of the integrating
by parts vanish.

In the next step, we fix m ∈ N. We aim to construct spherically symmetric approx-
imations hn ∈ C∞

c (R3\{0} × R3) with supphn ⊂ Ω0 which retain the oddness in v
for n ∈ N. Furthermore, we desire the convergences hn → 1Smh in L1 ∩ L2(R6) and
{−E, hn} → 1Smg in L

2(R6). Since we require the sequence to be spherically symmetric,
it is sufficient to construct a smooth hn = hn(r, w, L) with supphn ⊂ Ωr

0 which is odd in
w and with convergences hn → 1Smh in L1∩L2([0,∞[×R×[0,∞[) and {−E, hn} → 1Smg
in L2([0,∞[×R × [0,∞[). Note that it follows by Lemma 2.2 and 2.3 that regularity
and convergence in Lp in (r, w, L)-coordinates transfer to the same properties in (x, v)-
coordinates.
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5 Proof of Theorem 4.9

Even though the operator T has a simple structure in the (θ, E, L)-coordinates, we
prefer the (r, w, L)-coordinates in this part of the argumentation. In the (θ, E, L)-
coordinates, it would be easier to construct a suitable sequence hn = hn(θ, E, L) by
smoothing 1Smh = (1[0,1]×SE,L

m
h)(θ, E, L). Then both convergences hn → 1Smh in

L1 ∩ L2(R6) and {−E, hn} → 1Smg in L2(R6) could be shown directly. But other than
the (r, w, L)-coordinates, it would be more challenging or maybe impossible to show that
hn = hn(x, v) is regular enough to apply Lemma 5.6. That is the reason why we mollify
1Smh = (1Sr

m
h)(r, w, L) by using the (r, w, L)-coordinates.

As shown in Lemma 3.2, the set Sm is compact, and there exist radii 0 < r∗ < R∗ with

Sm =

{
E ≤ E0 −

1

m

}
∩
{
L ≥ L0 +

1

m

}
⊂ {r∗ ≤ |x| ≤ R∗} × {|v| ≤ R∗}.

Hence there exist 0 < R̄0 < R̄1, W̄0 > 0 and 0 < L0 < L̄0 < L̄1 such that

Srm ⊂ [R̄0, R̄1]× [−W̄0, W̄0]× [L̄0, L̄1] =: Q.

With the Friedrichs mollification, we smooth the function 1Smh = (1Sr
m
h)(r, w, L) in

(r, w, L)-coordinates. For this purpose, let ζ ∈ C∞
c (R3) with supp ζ ⊂ B1(0), ζ ≥ 0

and
∫
ζ = 1. Furthermore, we assume that ζ is even in all variables, i.e., ζ(z1, z2, z3) =

ζ(|z1|, |z2|, |z3|) for all z = (z1, z2, z3) ∈ R3. We define ζn := n3ζ(n·) and

hn(r, w, L) :=

∫∫∫
(1Sr

m
h)(r̄, w̄, L̄)ζn(r − r̄, w − w̄, L− L̄) dL̄ dw̄ dr̄

for (r, w, L) ∈ R3 and n ∈ N.

Since ζ ∈ C∞
c (R3) with supp ζ ⊂ B1(0), the approximate hn = hn(r, w, L) ∈ C∞

c (R3) has
the support supphn ⊂ B 1

n
(Srm) with B 1

n
(Srm) := {(r, w, L) ∈ R3||(r, w, L)− (r̄, w̄, L̄)| <

1
n
for some (r̄, w̄, L̄) ∈ Sm} for n ∈ N. In particular, we obtain hn ∈ C∞

c (]0,∞[×R×]0,∞[)
with supphn ⊂ Q ∩ Ωr

0 for n ∈ N large enough. By assumption, the mollifier ζ is even
in every variable, while the function h and thus 1Sr

m
h are odd in w. Hence, hn retains

the parity of h and is odd in w. The function ζ represents a Friedrichs mollifier, so it
follows that

hn → 1Sr
m
h in L1 ∩ L2([0,∞[×R× [0,∞[)

as n→ ∞. Note that Srm is compact, so 1Smh ∈ L1 ∩ L2(R6). In particular, hn → 1Smh
in L1 ∩ L2(R6) by Lemma 2.3. As discussed before, we obtain the regularity hn ∈
C∞
c (R3\{0} × R3), but it takes more effort to show

{−E, hn} → 1Sr
m
g in L2([0,∞[×R× [0,∞[)

and thus in L2(R6) as n→ ∞.
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5 Proof of Theorem 4.9

Some lines of straight-forward calculations show how the transport operator T = {−E, ·}
ca be expressed in the (r, w, L)-coordinates. Fix (r, w, L) ∈]0,∞[×R × [0,∞[. By
inserting the definition of hn, we obtain similar to [4] that

T hn = {−E, hn} = w∂rhn − ψ′
L(r)∂whn

=

∫
(1Sr

m
h)(r̄, w̄, L̄)(w∂r − ψ′

L(r)∂w)ζn(r − r̄, w − w̄, L− L̄) dL̄ dw̄ dr̄

= −
∫

(1Sr
m
h)(r̄, w̄, L̄)(w∂r̄ − ψ′

L(r)∂w̄)ζn(r − r̄, w − w̄, L− L̄) dL̄ dw̄ dr̄

= −
∫

(1Sr
m
h)(r̄, w̄, L̄)(w̄∂r̄ − ψ′

L̄(r̄)∂w̄)ζn(r − r̄, w − w̄, L− L̄) dL̄ dw̄ dr̄

+

∫
(1Sr

m
h)(r̄, w̄, L̄)((w̄ − w)∂r̄ − (ψ′

L̄(r̄)− ψ′
L(r))∂w̄)ζn(r − r̄, w − w̄, L− L̄) dL̄ dw̄ dr̄

=: J1,n + J2,n

for n ∈ N large enough. For the sake of clarity, we write
∫
f̃ dL dw dr :=

∫∞
0

∫
R

∫∞
0
f dL dw dr

for integrable functions f̃ . Note that the change of integration and differentiation
is permitted by general rules of convolutions and the Friedrichs mollification since
J ∈ C∞

c (R3).

We consider the two integrals separately. Lemma 5.16 converts the first integral J1,n
into a Friedrichs mollification of 1Sr

m
g which ensures convergence because

−
∫

(1Sr
m
h)(r̄, w̄, L̄)(w̄∂r̄ − ψL̄(r̄)∂w̄)ζn(r − r̄, w − w̄, L− L̄) dL̄ dw̄ dr̄

= −
∫

(1Sr
m
h){−E, ζn(r − ·, w − ·, L− ·)} dL̄ dw̄ dr̄

= −
∫

(1Sr
m
h)T ζn(r − ·, w − ·, L− ·)dL̄ dw̄ dr̄

=

∫
(1Sr

m
g)ζn(r − ·, w − ·, L− ·)dL̄ dw̄ dr̄ → 1Sr

m
g

as n→ ∞ in L2([0,∞[×R× [0,∞[).

In the next step, we consider J2,n and show J2,n → 0 as n → ∞. For this purpose,
we introduce, analogously to [4], new coordinates for fixed n ∈ N. Let r̃ = n(r − r̄),

w̃ = n(w − w̄) and L̃ = n(L − L̄). Since r̄ = r − r̃
n
, w̄ = w − w̃

n
and L̄ = L − L̃

n
, the

derivative ∂r̄ζn(r − r̄, w − w̄, L− L̄) transfers into a derivative with respect to r̃ via

∂r̄(ζn(r − r̄, w − w̄, L− L̄)) = n3∂r̄(ζ(r̃, w̃, L̃)) = n3∂r̃ζ(r̃, w̃, L̃)
dr̃

dr̄
= −n4∂r̃ζ(r̃, w̃, L̃).
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5 Proof of Theorem 4.9

The derivative ∂w̄ζn(r− r̄, w− w̄, L− L̄) converts into a derivative with respect to w̃ in
the same way. In summary, we obtain∫

(1Sr
m
h)(r̄, w̄, L̄)((w̄ − w)∂r̄ − (ψ′

L̄(r̄)− ψ′
L(r))∂w̄)ζn(r − r̄, w − w̄, L− L̄) dL̄ dw̄ dr̄

= −n4

∫
(1Sr

m
h)(r̄, w̄, L̄)

(
w̃

n
∂r̃ − (ψ′

L̄(r̄)− ψ′
L(r))∂w̃

)
ζ(r̃, w̃, L̃) dL̄ dw̄ dr̄

= −n
∫
B1(0)

(1Sr
m
h)(r̄, w̄, L̄)

(
w̃

n
∂r̃ − (ψ′

L̄(r̄)− ψ′
L(r))∂w̃

)
ζ(r̃, w̃, L̃) dL̃ dw̃ dr̃.

In the next step, we analyze the first term (1Sr
m
h)(z − z̃

n
) with z := (r, w, L) and z̃ :=

(r̃, w̃, L̃) for convergence:

Lemma 5.17. The convergence

(1Sr
m
h)
(
· − z̃

n

)
→ 1Sr

m
h in L2(R3)

is uniformly in z̃ ∈ B1(0).

Proof. Let ε > 0. Since 1Sr
m
h ∈ L2(R3), there exists ξ ∈ C∞

c (R3) with

∥1Sr
m
h− ξ∥2 < ε.

By a change of variables, we obtain that

∥(1Sr
m
h)
(
· − z̃

n

)
− 1Sr

m
h∥2

≤ ∥(1Sr
m
h)
(
· − z̃

n

)
− ξ
(
· − z̃

n

)
∥2 + ∥ξ

(
· − z̃

n

)
− ξ∥2 + ∥1Sr

m
h− ξ∥2

= 2∥1Sr
m
h− ξ∥2 + ∥ξ

(
· − z̃

n

)
− ξ∥2.

The mean value theorem applied to ξ ∈ C∞
c (R3) leads to∫ ∣∣∣ξ(z − z̃

n

)
− ξ(z)

∣∣∣2 dz ≤ ∫
B1(supp ξ)

∥∇ξ∥2∞
∣∣∣z − z̃

n
− z
∣∣∣2 dz

≤ vol(B1(supp ξ))∥∇ξ∥2∞
1

n2
, n ∈ N.

Note that z̃ ∈ B1(0). So, there exists n0 ∈ N with

∥(1Sr
m
h)
(
· − z̃

n

)
− 1Sr

m
h∥2 = 2∥1Sr

m
h− ξ∥2 + ∥ξ

(
· − z̃

n

)
− ξ∥2 < 3ε

for all z̃ ∈ B1(0) and n ≥ n0.

Now, we turn to the second term of J2,n and show that it converges uniformly:
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5 Proof of Theorem 4.9

Lemma 5.18. Let Q̃ := [R̃0, R̃1]× [−W̃0, W̃0]× [L̃0, L̃1] be a cuboid with 0 < R̃0 < R̃1,
W̃0 > 0 and 0 < L̃0 < L̃1 arbitrary. Then the convergence

n(ψ′
L̄(r̄)− ψ′

L(r)) →− U ′′
0 (r)r̃ + 2

M0

r3
r̃ − 3

L

r4
r̃ +

L̃

r3

= −ψ′′
L(r)(−r̃) +

L̃

r3

is uniformly in (r̃, w̃, L̃) ∈ B1(0) and (r, w, L) ∈ Q̃ as n → ∞. Here, r̄ = r − r̃
n
,

w̄ = w − w̃
n
and L̄ = L− L̃

n
for n ∈ N and (r̃, w̃, L̃).

Proof. Let (r̃, w̃, L̃) ∈ B1(0), (r, w, L) ∈ Q̃ and (r̄, w̄, L̄) be as described. The mean
value theorem leads to the identity

n(ψ′
L̄(r̄)− ψ′

L(r)) = n
(
U ′
0(r̄) +

M0

r̄2
− L̄

r̄3
− U ′

0(r)−
M0

r2
+
L

r3

)
= n

(
U ′
0

(
r − r̃

n

)
− U ′

0(r) +M0

((
r − r̃

n

)−2

− r−2
)
− L̃

n(r − r̄
n
)3

− L
((
r − r̃

n

)−3

− r−3
))

=
U ′
0(r − r̃

n
)− U ′

0(r)
−r̃
n

(−r̃) +M0

(r − r̃
n
)−2 − r−2

−r̃
n

(−r̃) + L̃

(r − r̄
n
)3

− L
(r − r̃

n
)−3 − r−3

−r̃
n

(−r̃)

= −U ′′
0 (ξ1)r̃ + 2M0ξ

−3
2 r̃ +

L̃

(r − r̃
n
)3

− 3Lξ−4
3 r̃

with ξi ∈ [r − |r̃|
n
, r + |r̃|

n
] ⊂ [ R̃0

2
, R̃1 + 1] for n ≥ 2

R̃0
and i = 1, ..., 3. Hence, this yields

that∣∣∣n(ψ′
L̄(r̄)− ψ′

L(r)) + U ′′
0 (r)r̃ − 2

M0

r3
r̃ + 3

L

r4
r̃ − L̃

r3

∣∣∣
=
∣∣∣− U ′′

0 (ξ1)r̃ + 2M0ξ
−3
2 r̃ +

L̃

(r − r̃
n
)3

− 3Lξ−4
3 r̃ + U ′′

0 (r)r̃ − 2
M0

r3
r̃ + 3

L

r4
r̃ − L̃

r3

∣∣∣
≤ |U ′′

0 (ξ1)− U ′′
0 (r)||r̃|+ 2M0|ξ−3

2 − r−3||r̃|+ |L̃|
∣∣∣(r − r̃

n

)−3

− r−3
∣∣∣+ 3L|ξ−4

3 − r−4||r̃|

≤ C
(
|U ′′

0 (ξ1)− U ′′
0 (r)|+ |ξ−3

2 − r−3|+
∣∣∣(r − r̃

n

)−3

− r−3
∣∣∣+ |ξ−4

3 − r−4|
)

with C = C(Q̃,M0) > 0. Since |ξi − r| ≤ |r̃|
n
≤ 1

n
, we obtain ξi → r and r − r̃

n
→ r con-

verges uniformly. The maps ]0,∞[∋ s → U ′′
0 (s), ]0,∞[∋ s → s−3 and ]0,∞[∋ s→ s−4

are continuous and hence uniformly continuous on [ R̃0

2
, R̃1 + 1], so it follows that∣∣∣n(ψ′

L̄(r̄)− ψ′
L(r)) + U ′′

0 (r)r̃ − 2
M0

r3
r̃ + 3

L

r4
r̃ − L̃

r3

∣∣∣
≤ C

(
|U ′′

0 (ξ1)− U ′′
0 (r)|+ |ξ−3

2 − r−3|+
∣∣∣(r − r̃

n

)−3

− r−3
∣∣∣+ |ξ−4

3 − r−4|
)
→ 0.

In particular, the above convergence is uniformly in (r, w, L) ∈ Q̃ and (r̃, w̃, L̃) ∈ B1(0)
as n→ ∞.
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In summary, Lemma 5.17 and 5.18 lead to the convergence of J2,n:

Lemma 5.19. The convergences

J2,n =

∫
(1Sr

m
h)(z̄)((w̄ − w)∂r̄ − (ψ′

L̄(r̄)− ψ′
L(r))∂w̄)ζn(z − z̄) dL̄ dw̄ dr̄

→ −(1Sr
m
h)(r, w, L)

∫
B1(0)

(
− w̃∂r̃ +

(
ψ′′
L(r)(−r̃)−

L̃

r3

)
∂w̃

)
ζ(r̃, w̃, L̃) dL̃ dw̃ dr̃ = 0

holds in L2(R3) with z := (r, w, L) for (r, w, L) ∈ R3.

Proof. As discussed before, we obtain that

J2,n =

∫
(1Sr

m
h)(z̄)((w̄ − w)∂r̄ − (ψ′

L̄(r̄)− ψ′
L(r))∂w̄)ζn(z − z̄) dL̄ dw̄ dr̄

= −n
∫
B1(0)

(1Sr
m
h)(r̄, w̄, L̄)

(w̃
n
∂r̃ − (ψ′

L̄(r̄)− ψ′
L(r))∂w̃

)
ζ(r̃, w̃, L̃) dL̃ dw̃ dr̃

= −
∫
B1(0)

(1Sr
m
h)
(
z − z̃

n

)
(w̃∂r̃ − n(ψ′

L̄(r̄)− ψ′
L(r))∂w̃)ζ(r̃, w̃, L̃) dL̃ dw̃ dr̃

= −
∫
B1(0)

(1Sr
m
h)
(
z − z̃

n

)
Kn(z, z̃) dL̃ dw̃ dr̃

with Kn(z, z̃) := w̃∂r̃ζ(z̃) − n(ψ′
L̄
(r̄) − ψ′

L(r))∂w̃ζ(r̃, w̃, L̃) and z̄ = z − z̃
n
for z, z̃ ∈ R3

and n ∈ N large enough. We define K(z, z̃) := w̃∂r̃ζ(z̃)− (ψ′′
L(r)(−r̃) + L̃

r3
)∂w̃ζ(r̃, w̃, L̃)

for z, z̃ ∈ R3. Since Srm ⊂ [R̄0, R̄1]× [−W̄0, W̄0]× [L̄0, L̄1], the support of 1Sr
m
h satisfies

supp(1Sr
m
h)(· − z̃

n
) ⊂ Q̃ with

Q̃ :=

[
R̄0

2
, R̄1 + 1

]
×
[
−W̄0 − 1, W̄0 + 1

]
×
[
L̄0

2
, 2L̄1 + 1

]
for n ∈ N large enough and z̃ ∈ B1(0). Lemma 5.18 shows that

Kn(z, z̃) → K(z, z̃) uniformly in z ∈ Q̃, z̃ ∈ B1(0),

and Lemma 5.17 says

(1Sr
m
h)
(
· − z̃

n

)
→ 1Sr

m
h in L2(R3) uniformly in z̃ ∈ B1(0).

Note that supp ζ ⊂ B1(0), so suppK(z, ·), suppKn(z, ·) ⊂ B1(0) for z ∈ Q̃ and n ∈ N.
Using Hölder’s inequality, this leads to the following convergence:∫ ∣∣∣ ∫

B1(0)

(1Sr
m
h)
(
z − z̃

n

)
Kn(z, z̃) dz̃ −

∫
(1Sr

m
h)(z)K(z, z̃) dz̃

∣∣∣2 dz
=

∫ ∣∣∣ ∫
B1(0)

(
(1Sr

m
h)
(
z − z̃

n

)
− (1Sr

m
h)(z)

)
Kn(z, z̃) dz̃
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5 Proof of Theorem 4.9

+

∫
B1(0)

(1Sr
m
h)(z)(Kn(z, z̃)−K(z, z̃)) dz̃

∣∣∣2 dz
≤ 4
(∫

Q̃

∣∣∣ ∫
B1(0)

(
(1Sr

m
h)(z − z̃

n
)− (1Sr

m
h)(z)

)
Kn(z, z̃) dz̃

∣∣∣2 dz
+

∫
Q̃

∣∣∣ ∫
B1(0)

(1Sr
m
h)(z)(Kn(z, z̃)−K(z, z̃)) dz̃

∣∣∣2 dz)
≤ 4
(∫

Q̃

∫
B1(0)

∣∣∣(1Sr
m
h)
(
z − z̃

n

)
− (1Sr

m
h)(z)

∣∣∣2 dz̃ ∫
B1(0)

|Kn(z, z̃)|2 dz̃ dz

+

∫
Q̃

∫
B1(0)

|(1Sr
m
h)(z)|2 dz̃

∫
B1(0)

|Kn(z, z̃)−K(z, z̃)|2 dz̃ dz
)

≤ 4
(
suppz∈Q̃,z̃∈B1(0),n∈N |Kn(z, z̃)|2

∫
B1(0)

∥(1Sr
m
h)
(
· − z̃

n

)
− (1Sr

m
h)∥22 dz̃

+ suppz∈Q̃,z̃∈B1(0)
|Kn(z, z̃)−K(z, z̃)|2∥(1Sr

m
h)∥22

)
→ 0, n→ ∞.

Note that Kn is bounded independently of n ∈ N since Kn(z, z̃) converges to K(z, z̃)
uniformly in z̃ ∈ supp ζ and z ∈ supp Q̃. Furthermore, the sets supp ζ ⊂ B1(0) and
Q̃ are compact. Moreover, ∥(1Sr

m
h)(· − z̃

n
) − (1Sr

m
h)∥2 converges to zero uniformly in

z̃ ∈ B1(0), so the claimed convergence is proven.

It remains to evaluate the limiting integral. Since ζ ∈ C∞
c (R3) with supp ζ ⊂ B1(0),

integrating by parts yields∫ (
− w̃∂r̃ +

(
ψ′′
L(r)(−r̃)−

L̃

r3

)
∂w̃

)
ζ(z̃) dz̃

= −
∫
w̃∂r̃ζ(r̃, w̃, L̃) dr̃ dw̃ dL̃+

∫ (
ψ′′
L(r)(−r̃)−

L̃

r3

)
∂w̃ζ(r̃, w̃, L̃) dw̃ dr̃ dL̃

=

∫
∂r̃(w̃)ζ(r̃, w̃, L̃) dr̃ dw̃ dL̃−

∫
∂w̃

(
ψ′′
L(r)(−r̃)−

L̃

r3

)
ζ(r̃, w̃, L̃) dw̃ dr̃ dL̃ = 0,

so the proof is complete.

Hence, we have shown that limn→∞{−E, hn} = 1Sr
m
g in L2([0,∞[×R× [0,∞[) and thus

in L2(R6). In summary, for fixed m ∈ N we have constructed a sequence (hn) of spheri-
cally symmetric functions which are odd in v. Furthermore, hn ∈ C∞

c (R3\{0}×R3) and
supphn ⊂ Sm for n large enough. Note that Sm ⊂ Q∩{E < E0}∩{L > L0} ⊂ {f0 > 0}.
In particular, hn satisfies the conditions in Lemma 5.6 for n ∈ N large enough.

5.6 The contradiction

In order to obtain the convergence of D2HC(f0)[{−E, hn}] and then exploit that the
expression is positive as established in Lemma 5.6, it remains to examine ∇U{−E,hn} for
convergence:
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5 Proof of Theorem 4.9

Lemma 5.20. Let K be a compact set in R6 and fn, f ∈ L2(R6) with supp fn, supp f ⊂ K
for n ∈ N. Assume that fn → f in L2(R6) as n→ ∞. Then the gradients of the induced
potentials exist with ∇Ufn ,∇Uf ∈ L2(R3) for n ∈ N and

∇Ufn → ∇Uf in L2(R6).

Proof. Since K ⊂ R6 is compact and fn, f ∈ L1∩L2(R3) with supp f, fn ⊂ K, we obtain
f, fn ∈ L1 ∩ L2(R6). Moreover, ρf , ρfn ∈ L1 ∩ L2(R3), and there exists a compact set

K ′ ⊂ R3 such that supp ρfn , supp ρ ⊂ K ′ for n ∈ N. In particular, ρf , ρfn ∈ L
6
5 (R3), so

Lemma 2.8 yields that ∇Uf ,∇Ufn ∈ L2(R3) exist for n ∈ N, and the Hardy-Littlewood-
Sobolev lemma (cf. [7, Theorem 4.3]) yields that

∥∇Ufn −∇Uf∥22 ≤ C∥ρfn − ρf∥26
5
= C

(∫ ∣∣∣ ∫ fn(x, v)− f(x, v) dv
∣∣∣ 65 dx) 10

6

≤ C
(∫∫

|fn(x, v)− f(x, v)|
6
5 dv dx

) 10
6

≤ C
(∫∫

|fn(x, v)− f(x, v)|2 dv dx
)
= C∥fn − f∥22 → 0, n→ ∞.

As discussed in the previous section, {−E, hn} → 1Smg converges in L2(R6) with
supphn ⊂ Q and supp(1Smg) ⊂ Sm ⊂ Q. According to Lemma 5.20, the gradients
of the induced potentials ∇U{−E,hn}, ∇U1Smg

∈ L2(R3) exist for n ∈ N with

∇U{−E,hn} → U1Smg
in L2(R6).

In summary, this culminates in the convergence

D2HC(f0)[{−E, hn}] =
1

2

∫∫
{f0>0}

Ψ′′(f0, L)|{−E, hn}|2 dv dx−
1

8π

∫
|∇U{−E,hn}|2 dx

→ 1

2

∫∫
{f0>0}

Ψ′′(f0, L)|1Smg|2 dv dx−
1

8π

∫
|∇U1Smg

|2 dx = D2HC(f0)[1Smg]

as n → ∞. Note that supp{−E, hn} ⊂ Sm with Sm ⊂ {f0 > 0} for n ∈ N, so
Ψ′′(f0, L) = |Φ′(E,L)|−1 is bounded on Sm and the above convergence is legitimate.

Since g ∈ L2(R6) with supp g ⊂ supp f0, as proven in Lemma 5.2 (g2), and supp f0
is compact by assumption, we obtain g ∈ L1 ∩ L2(R6). Furthermore, the set (Sm) is
increasing with

⋃
m∈N Sm = {f0 > 0}, so the monotone convergence theorem implies

limm→∞ 1Smg = g in L1 ∩ L2(R6). By assumption, supp f0 is compact, and thus again
Lemma 5.20 yields that

D2HC(f0)[1Smg] =
1

2

∫∫
{f0>0}

Ψ′′(f0, L)|1Smg|2 dv dx−
1

8π

∫
|∇U1Smg

|2 dx

→ 1

2

∫∫
{f0>0}

Ψ′′(f0, L)|g|2 dv dx−
1

8π

∫
|∇Ug|2 dx = D2HC(f0)[g]
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5 Proof of Theorem 4.9

as m→ ∞.

Since 1
8π
∥∇Ug∥22 = 1 by Lemma 5.2 (g4), there exists m0 ∈ N such that 1Sm0

g ̸= 0. In
particular, we obtain 1Sm0

h ̸= 0 because otherwise Lemma 5.16 would imply 1Sm0
g = 0.

Since {f0 > 0} ̸= ∅ is an open set, the mass function m(r) and thus U ′
0(r) =

m(r)
r2

are
positive for (x, v) ∈ {f0 > 0}. Finally, we apply Lemma 5.6 and obtain that

D2HC(f0)[{−E, hn}] ≥
1

2

∫∫
1

|Φ′(E,L)|

(
|x · v|2|

{
−E, hn

x · v

}
|2 + m(r) +M0

r3
h2n

)
dv dx

≥ 1

2

∫∫
1

|Φ′(E,L)|
m(r)

r3
h2n dv dx

→ 1

2

∫∫
1

|Φ′(E,L)|
m(r)

r3
1Smh

2 dv dx

as n→ ∞. Note |Φ′(E,L)|−1 and m(r)
r3

are bounded on Sm ⊂ Q, so the last convergence
follows by the convergence hn → h in L2(R6). By construction, Sm0 ⊂ Sm for all
m ≥ m0. We apply all assertions about convergence which we have discussed before,
and thus we conclude

D2HC(f0)[1Smg] = lim
n→∞

D2HC(f0)[{−E, hn}]

≥ lim
n→∞

1

2

∫∫
1

|Φ′(E,L)|
m(r)

r3
h2n dv dx =

1

2

∫∫
1

|Φ′(E,L)|
m(r)

r3
1Smh

2 dv dx

≥ 1

2

∫∫
1

|Φ′(E,L)|
m(r)

r3
1Sm0

h2 dv dx > 0, m ≥ m0.

Finally, Lemma 5.2 (g5) and the limit m→ ∞ yield the desired contradiction:

0 ≥ D2HC(f0)[g] = lim
m→∞

D2HC(f0)[1Smg]

≥ 1

2

∫∫
1

|Φ′(E,L)|
m(r)

r3
1Sm0

h2 dv dx > 0.

By this, the proof of Theorem 4.9 is complete.

Note that we did not use the assumptionM0 > 0 in this whole chapter, so the assertions
remain valid for M0 = 0.
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6 The existence of strong
Lagrangian solutions

In Theorem 4.10, we claim that for all f̊ ∈ Df0 , as defined in (4.3), there exists a
(global) solution f of the Vlasov-Poisson system with a point mass with initial condition
f(0) = f̊ . In the previous chapters, we consider anisotropic spherically symmetric steady
states of the form f0 = Φ(E,L) with

Φ(E,L) = 0, 0 ≤ L ≤ L0, E ∈ R

for some L0 > 0. Let f̊ ∈ Df0 . Then there exists a measure preserving C1-diffeomorphism

T which respects spherical symmetry, as defined in Definition 4.6, such that f̊ = f0 ◦ T .
Since f0 is spherically symmetric, so is f̊ . The angular momentum squared L is invariant
under diffemorphisms which respect spherical symmetry, so

f̊(x, v) = 0, 0 ≤ L(x, v) ≤ L0.

Among other things, we require f0 ∈ Cc(R3\{0} × R3) in the previous chapters which
yields f̊ ∈ Cc(R3\{0} × R3).

To show the existence of solutions of the Vlasov-Poisson system with a point mass,
we consider the following two papers: In [11], the global existence of solutions of the
Vlasov-Poisson system with a point mass is shown for smooth spherically symmetric
initial conditions with cut-off L0, whereas in [6] the global existence of so-called strong
Lagrangian solutions of the Vlasov-Poisson system with spherically symmetric initial
conditions is proven. Combining the methods from these two papers appropriately, we
can show that there exists a unique global strong Lagrangian solution of the Vlasov-
Poisson system with a point mass for suitable initial data. First, we define the term
strong Lagrangian solution analogously to [6, Definition 2.1]:

Definition 6.1. A solution f : I ×R3\{0}×R3 → [0,∞[ of the Vlasov-Poisson system
with a point mass with I an interval is called a strong Lagrangian solution if ∂xU is
Lipschitz continuous in x locally uniformly in t, i.e., for all compact intervals J ⊂ I
there exists C∗ > 0 such that

|∂xU(t, x)− ∂xU(t, x
′)| ≤ C∗|x− x′|

for all x, x′ ∈ R3\{0} and t ∈ J .
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6 The existence of strong Lagrangian solutions

Combing [11, Theorem 2.1] and [6, Theorem 2.2], we obtain the global existence of strong
Lagrangian solutions and furthermore their uniqueness:

Theorem 6.2. Let f̊ ∈ Cc(R3\{0}×R3) be spherically symmetric and non-negative. In
addition, assume that there exists L0 > 0 such that

f̊(x, v) = 0, 0 ≤ L(x, v) ≤ L0.

Then there exists a unique continuous spherically symmetric strong Lagrangian solution
f : [0,∞[×R3\{0} × R3 → [0,∞[ with f(0) = f̊ . Furthermore, f(t) ∈ Cc(R3\{0} × R3)
for t ≥ 0 and

f(t, x, v) = 0, 0 ≤ L(x, v) ≤ L0.

Proof. Analogously to [6], we define the following iteration: The 0th iterate of the
potential is given by

U0(t, x) := 0, x ∈ R3, t ≥ 0.

Additionally, we define

P−1(t) := 0, t ≥ 0.

Assume that the nth iterate Un ∈ C0,2([0,∞[×R3) of the potential and Pn−1(t) is already
defined for t ≥ 0 and for some n ∈ N0. Furthermore, we assume that ∂xUn(t) is
spherically symmetric for t ≥ 0 and ∂xUn is globally Lipschitz continuous in x locally
uniformly in t. In addition, we require that

∥∂xUn(t)∥∞ ≤ Cf̊P
2
n−1(t), t ≥ 0,

with Cf̊ := 4 · 3 1
3π

4
3∥f̊∥

1
3
1 ∥f̊∥

2
3∞ and that Pn−1 and thus ∂xUn is bounded on [0, T ′] for

every T ′ > 0.

Hence, ∂xUn,eff := Un − M0

|x| is locally Lipschitz continuous in x, so there exists a unique

solution Zn(·, t, z) for all t ≥ 0 and z ∈ R3\{0} × R3 of the characteristic system

Ẋn = Vn, V̇n = −∂xUn,eff

with Z(t, t, z) = z. Later, we will show that the characteristics exist globally for z =
(x, v) ∈ R3\{0} × R3 with L(x, v) > 0 and t ≥ 0. Then we define the nth iterate fn is
given by

fn(t, z) :=

{
f̊(Zn(0, t, z)), z = (x, v) with |x× v|2 > 0,

0, else,

and the induced density by

ρn(t, x) := ρfn(t)(x) =

∫
fn(t, x, v) dv, x ∈ R3, t ≥ 0.
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6 The existence of strong Lagrangian solutions

We define the (n+ 1)st iterate Un+1 of the potential by

Un+1(t, x) := Uρn(t)(x) = −
∫
ρn(t, y)

|x− y|
dy, x ∈ R3, t ≥ 0,

and

Pn(t) := supp{|Vn(s, 0, z)||z ∈ supp f̊ , 0 ≤ s ≤ t}, t ≥ 0.

Before we turn to the convergence of the iteration, we verify the assumptions we made
in the iteration by induction. Obviously, the iterate U0 has the required properties.
Assume that Un for n ∈ N0 has the required properties. In the following steps, we show
that the iteration is well-defined and that Un+1 satisfies the assumptions in the iteration
as well.

Step 1: The existence of the characteristic flow Zn on {L > 0} and the boundedness of
Pn.
Since Un ∈ C0,2([0,∞[×R3\{0}), there exists a unique solution Zn(·, t, z) of the charac-
teristic system for every t ≥ 0 and z ∈ {L > 0}. Similar to [11], we introduce following
quantity:

P̄n(t) := supp{|v||(x, v) ∈ supp f̊k(s), 0 ≤ s ≤ t, 1 ≤ k ≤ n}
= supp{|Vk(s, 0, z)||z ∈ supp f̊ , 0 ≤ s ≤ t, 1 ≤ k ≤ n},

R̄n
min(t) := inf{|x||(x, v) ∈ supp fn(s), 0 ≤ s ≤ t}

= inf{|Xn(s, 0, z)||z ∈ supp f̊ , 0 ≤ s ≤ t}.

By assumption,

∥∂xUn(t)∥∞ ≤ Cf̊P
2
n−1(t) ≤ Cf̊ P̄

2
n(t), t ≥ 0,

so we can literally transfer the proof of [11] and obtain

P̄n(t) ≤ P̊ + 4
√

6C∗P̄
1
2
n (t), t ≥ 0,

and

R̄n
min(t) ≥

√
L0

P̄n(t)
, t ≥ 0,

with C∗ = C∗(∥f̊∥1, ∥f̊∥∞,M0, L0) > 0. Therefore, there exist C0,1 = C0,1(f̊ ,M0, L0) > 0
with

Pn(t) ≤ C0, Rn
min(t) ≥ C1, t > 0.

Note that C0,1 is independent of n ∈ N. These estimates yield that the characteristics
Zn(·, 0, z) with z ∈ supp f0 exist globally. It remains to show the global existence of
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6 The existence of strong Lagrangian solutions

the characteristics Zn(·, 0, z) for general z ∈ {L > 0}. Hence, we fix R > 0 and replace
supp f̊ in the definition of P̄n and R̄n

min with the compact set

KR :=

{
L ≥ 1

R2

}
∩ (B̄R(0)× B̄R(0)).

The same procedure as described in [11] yields constants C̃0,1 = C̃0,1(f0,M0, R) with
Pn(t) ≤ C̃0 and Rn

min ≥ C̃1, so Zn(·, 0, z) exists globally for z ∈ KR. Since R > 0 is
arbitrary, we obtain the global existence of the characteristics Z(·, 0, z) for z ∈ {L > 0}.
If we repeat the whole procedure by replacing Vk(s, 0, z) and Xn(s, 0, z) with Vk(s, t, z)
and Xn(s, t, z) for t > 0, it follows that characteristic flow Z : [0,∞[×[0,∞[×{L > 0} →
{L > 0} exists.

Step 2: The spherical symmetry of Un+1 and Un+1 ∈ C0,2([0,∞[×R3).
By assumption, Un ∈ C0,2([0,∞[×R3) is spherically symmetric, so the characteristic flow
Zn is continuous on [0,∞[×[0,∞[×{L > 0} by Lemma 2.11 (a). Therefore, fn is contin-
uous on [0,∞[×{L > 0}. Recall that f̊ ∈ Cc(R3\{0} × R3) and f̊(x, v) = 0 for (x, v) ∈
R3\{0} × R3 with 0 ≤ L(x, v) < L0. Since L is constant along characteristics as shown
in Lemma 2.13, we obtain fn(t, x, v) = 0 for (x, v) ∈ R3\{0}×R3 with 0 ≤ L(x, v) ≤ L0,
so fn is continuous. We discussed in Lemma 4.7 that the characteristic flow Zn respects
spherical symmetry, so fn is spherically symmetric. Remark 2.14 (a) and the fact that
supp f̊ ⊂ {L ≥ L0} is compact yield that supp fn(t) = Zn(t, 0, supp f̊) ⊂ {L ≥ L0}, so
fn(t) ∈ Cc(R3\{0} × R3) with supp fn ⊂ {L ≤ L0} for t ≥ 0. Thus, ρn is spherically
symmetric and continuous with ρn(t) ∈ L1 ∩ L∞(R3), so Un ∈ C0,2([0,∞[×R3\{0}) is
spherically symmetric by Lemma 2.9.

Step 3: The estimate ∥∂xUn+1(t)∥∞ ≤ Cf̊P
2
n(t) for t ≥ 0.

As discussed in Step 2, ρn(t) ∈ L1 ∩ L∞(R3), so Lemma 2.8 (c) and Remark 2.14 (c)
yield that

∥∇Un+1(t)∥∞ ≤ 3(2π)
2
3∥ρn(t)∥

1
3
1 ∥ρn∥

2
3∞ ≤ 3(2π)

2
3

(
4π

3
P 3(t)

) 2
3

∥f̊∥
1
3
1 ∥f̊∥

2
3∞

= 4 · 3
1
3π

4
3∥f̊∥

1
3
1 ∥f̊∥

2
3∞P

2
n(t) = Cf̊P

2
n(t), t ≥ 0.

Step 4: The gradient ∂xUn+1 is globally Lipschitz continuous in x locally uniformly in
t.
As discussed in Step 2, Un+1 ∈ C0,2([0,∞[×R3\{0}) and

∂xUn+1(t, x) = Gn+1(t, r)
x

r
with Gn+1(t, r) :=

4π

r2

∫ r

0

s2ρn(t, s) ds

for x ∈ R3\{0} and t ≥ 0, as discussed in [6, Equation (3.4)]. Note that Gn+1(t, r) =
U ′
n+1(t, r) for r > 0 and t ≥ 0. We obtain the same estimate as in [6, Equation (3.5)] for
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0 < u < r:

|Gn+1(t, r)−Gn+1(t, u)| ≤
4π

r2

∫ u

r

s2ρn(t, s) ds+ 4π
∣∣∣ 1
r2

− 1

u2

∣∣∣ ∫ u

0

s2ρn(t, s) ds

≤ 20π

3
∥ρn(t)∥∞|r − u|.

Since Pn(t) is bounded independently of t according to Step 2, ∥ρn(t)∥∞ is also bounded
independently of t by Remark 2.14 (c). Just like in [6], it follows directly that ∂xUn is
Lipschitz in x locally uniformly in t by the above estimate. In particular, we obtain that
∂xUn is globally Lipschitz continuous in x uniformly in t.

In summary, the above iteration is well-defined. Now we show that the iterates converge.
As shown in step 2, the quantities P̄n(t) are bounded by C0 independently of n ∈ N and
t ≥ 0, so

Pn(t) ≤ P̄n(t) ≤ C0, t ≥ 0, n ∈ N.

Therefore, we neglect the function Q which is introduced in [6, Equation (3.6)] to bound
Pn independently of n ∈ N and use C0 instead. The constant C0 yields boundedness on
[0,∞[ instead of on some interval [0, δ[ which simplifies the proof here slightly.

Step 5: The convergence of fn and the limiting function f .
Let δ > 0 be arbitrary. We consider the compact subset [0, δ] ⊂ [0,∞[. As discussed
above, the induced potential Un ∈ C0,2([0,∞[×R3\{0} × R3) is spherically symmetric,
so the characteristic flow Zn(t, 0, ·) is a C1-diffeomorphism on {L > 0} according to
Lemma 2.11. Therefore, the change of variables used in the proof in [6] is allowed, and
we obtain analogously to [6, Equation (3.12)] that

∥Gn+1(t)−Gn(t)∥∞ ≤ C∗
∫ t

0

∥Gn(s)−Gn−1(s)∥∞ ds

and, in particular,

∥∂xUn+1(t)− ∂xUn(t)∥∞ ≤ C∗
∫ t

0

∥∂xUn(s)− ∂xUn−1(s)∥∞ ds

for t ∈ [0, δ] and n ∈ N. The constant C∗ > 0 is independent of n ∈ N and t ∈
[0, δ], but may depend on δ. As a result, the sequence (∂xUn) is a Cauchy sequence in
(C([0, δ]× R3), ∥ · ∥∞), so there exists a continuous map F : [0, δ]× R3 → R3 such that
∂xUn → F converges uniformly on [0, δ]× R3. Furthermore, F is spherically symmetric
and, analogously to [6], Lipschitz continuous in x locally uniformly in t. As proven in [6,
Equation (3.7)],

|Zn+1(t, 0, z)− Zn(t, 0, z)| ≤ C

∫ t

0

∥Gn+1(s)−Gn(s)∥∞ ds
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for n ∈ N, z = (x, v) ∈ R3\{0} × R3 with L(x, v) > 0 and t ≥ 0. The uniform
convergence ∂xUn → F on [0, δ] × R3 yields that (Zn) and (Żn) converges to some Z̃

and ˙̃Z, respectively, uniformly on [0, δ] × {L > 0}. Since F is continuous and globally
Lipschitz continuous in x locally uniformly in t, there exists a maximal solution Z(·, t, z) :
I → R3\{0} × R3 of the system

Ẋ = V, V̇ = −F (t,X) +
M0

|X|2
X

|X|

with Z(t, t, z) = z and I = I(t, z) an interval for z ∈ {L > 0} and t ∈ [0, δ]. As the
uniform limit of (Zn), the limit Z̃ also solves the above system with Z̃(t, t, z) = z for
z ∈ {L > 0} and 0 ≤ t ≤ δ. The uniqueness yields Z = Z̃, so Z(·, t, z) exists on
[0, δ] for z ∈ {L > 0} and t ∈ [0, δ]. To this end, Step 1 implies |X(s, 0, z)| ≥ C1

for s ∈ [0, δ] and z ∈ supp f̊ . Furthermore, the characteristic flow Z is continuous on
[0, δ]× [0, δ]× {L > 0} as shown in [6, Lemma 3.1].

Because f̊ ∈ Cc(R3\{0} × R3) is continuous, we obtain for t ∈ [0, δ]

f(t, z) := lim
n→∞

fn(t, z) = lim
n→∞

f̊(Zn(t, 0, z)) = f̊(Z(0, t, z))

for z ∈ {L > 0} and f(t, z) := limn→∞ fn(t, z) = 0 otherwise. Since the characteristic
flow is continuous and supp f̊ ⊂ {L ≥ L0}, the limiting function f is continuous with
compact support supp f(t) ⊂ {L ≥ L0} for 0 ≤ t ≤ δ. Analogously to [6], we can show
that

G(t, r) := lim
n→∞

Gn(t, r) =
4π

r2

∫ r

0

s2ρ(t, s) ds

with ρ = ρf for t ∈ [0, δ] and r > 0. Similar arguments as in Step 2 lead to

F (t, x) = G(t, r)
x

r
=

∫∫
x− y

|x− y|3
f(t, y, v) dv dy

for t ∈ [0, δ] and x ∈ R3\{0}. Finally, we define U := Uf by

U(t, x) := −
∫∫

f(t, y, v)

|x− y|
dv dy, 0 ≤ t ≤ δ, x ∈ R3.

Since f is continuous with f(t) ∈ Cc(R3\{0}×R3) for 0 ≤ t ≤ δ, Lemma 2.8 (a) implies
follows that ∂xU = F . Furthermore, ρ is continuous with ρ(t) ∈ Cc(R3\{0}) and ρ(t)
spherically symmetric for t ∈ [0, δ]. As discussed in Lemma 2.9, Uf ∈ C0,2([0, δ]×R3\{0})
solves the corresponding Poisson equation, so f is a strong Lagrangian solution on
[0, δ]×R3\{0}×R3. Since δ > 0 is arbitrary, the constructed strong Lagrangian solution
exists globally, i.e., on [0,∞[×R3\{0} × R3.

Step 6: The uniqueness
Let f̃ be a strong Lagrangian solution of the Vlasov-Poisson system with a point mass
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satisfying f(0) = f̊ . Then there exists δ̃ > 0 such that the solutions f and f̃ exist on
the set [0, δ̃]. Then we obtain with the same arguments as in Step 4, respectively, as
in [6, Equation (3.12)] the following estimate:

∥∂xŨ(t)− ∂xU(t)∥∞ ≤ C

∫ t

0

∥∂xŨ(s)− ∂xU(s)∥∞ ds

for t ∈ [0, δ̃] and C > 0 independently of t. Therefore, Grönwall’s inequality leads to
∂xU = ∂xŨ and thus Z̃ = Z. This yields

f̃(t, z) = f̃(t, Z(t, t, z)) = f̃(0, Z(0, t, z)) = f̊(Z(0, t, z)) = f(t, z)

for t ∈ [0, δ̃] and z ∈ {L > 0}. Since f̃ and f are continuous with support in {L ≥ L0},
we obtain f(t, z) = 0 = f̃(t, z) for t ≥ 0 and z = (x, v) ∈ R3\{0} ×R3 with L(x, v) = 0,
so the solution is unique.

Similar to [11, Theorem 2.1], we have shown in the previous proof in Step 1 that the
support of f(t) is bounded in x away from x = 0 by a fixed radius which is independent
of t ≥ 0.

Remark. Let f̊ be as described in Theorem 6.2 and f be the corresponding strong La-
grangian solution. Then there exists Rmin = Rmin(M0, L0, f̊) > 0 such that

f(t, x, v) = 0, |x| < Rmin,

for t ≥ 0 and (x, v) ∈ R3\{0} × R3.
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