
 

Advancing the biological control of the 

cosmopolitan pest Drosophila suzukii 

with parasitoid wasps 

 

 

DISSERTATION 

 

zur Erlangung des Doktorgrades der Naturwissenschaften  

(Dr. rer. nat.) 

der Fakultät für Biologie, Chemie und Geowissenschaften 

der Universität Bayreuth 

 

vorgelegt von 

 

Benedikt Josef Maria Häußling 

aus Bad Kreuznach 

Bayreuth, 2023



Advancing the biological control of the 

cosmopolitan pest Drosophila suzukii with 

parasitoid wasps 

 

 

DISSERTATION 

 

zur Erlangung des Doktorgrades der Naturwissenschaften 

(Dr. rer. nat.) 

der Fakultät für Biologie, Chemie und Geowissenschaften 

der Universität Bayreuth 

 

vorgelegt von 

 

Benedikt Josef Maria Häußling 

aus Bad Kreuznach 

Bayreuth, 2023



  



 

 

 

 

 

Die vorliegende Arbeit wurde in der Zeit von Mai 2017 bis Juli 2018 an der 
Justus-Liebig-Universität Gießen am Institut für Insektenbiotechnologie und von 
August 2018 bis September 2023 an der Universität Bayreuth am Lehrstuhl für 
Evolutionäre Tierökologie jeweils unter Betreuung von Herrn PD Dr. Johannes 
Stökl angefertigt. 

 

 

 

 

 

Form der Dissertation: Kumulative Dissertation 

Dissertation eingereicht am: 01.09.2023 

Zulassung durch die Promotionskommission: 27.09.2023 

Wissenschaftliches Kolloquium: 09.02.2024 

 

 

 

Amtierender Dekan: Prof. Dr. Cyrus Samimi 

 

 

 

Prüfungsausschuss:  

 

PD Dr. Johannes Stökl   (Gutachter) 

Prof. Dr. Stefan Schuster  (Gutachter/in) 

Prof. Dr. Gerrit Begemann (Vorsitz) 

Prof. Dr. Elisabeth Obermaier 
  



 

  



 

 

 

"In nature's economy the currency is not money, it is life." 

— Vandana Shiva 

  



 

  



Content 

Summary 1 

German Summary – Zusammenfassung 4 

1 Introduction 7 

1.1 Biological pest control – An overview ............................. 7 

1.2 Drosophila suzukii, a major pest in soft fruits ................ 10 

1.3 Pest control of Drosophila suzukii ................................ 12 

1.4 Parasitoids to control Drosophila suzukii ....................... 16 

1.5 Aims of this Thesis .................................................... 19 

2 Synopsis: An Overview of the Publications of this Thesis 23 

3 Conclusion 41 

4 References 46 

5 Publications and Manuscripts 57 

5.1 Publication 1: The preference of Trichopria drosophilae 

for pupae of Drosophila suzukii is independent of host 

size ......................................................................... 57 

5.2 Publication 2: Below ground efficiency of a parasitic 

wasp for Drosophila suzukii biocontrol in different soil 

types ....................................................................... 69 

5.3 Publication 3: Does the seasonal phenotype of 

Drosophila suzukii influence cellular immunity and 

parasitisation? .......................................................... 79 

Publication Record 94 

Acknowledgements 95 

Statutory declarations 96 

 



 

 

 



 1 

Summary 

Biological pest control has gained prominence as an essential 

component of sustainable food production. Its growing popularity is due 

to the advantages it offers over commonly used chemical pest control 

methods, such as reduced biodiversity loss.  

A pest of global concern is the invasive fruit fly Drosophila suzukii 

(spotted wing drosophila) as it can severely damage fruit crops. There is, 

therefore, a strong demand for biological pest control of this particular 

pest. The pest’s ability to lay eggs in ripe fruit makes biological control a 

more appealing alternative as growers are reluctant to use insecticides 

shortly before the harvest due to the risk of chemical residues on the 

fruit. Another drawback of most available insecticides is that they are 

non-selective and thus can cause harm to a wide range of non-target 

organisms, in turn reducing biodiversity in orchards. Overall, there is a 

need for alternative biological methods.  

A commonly used and successful approach for biological pest control 

is to use parasitoids from the native range of the pest or resident 

parasitoids from the invaded regions to control the pest. Unfortunately, 

many of these parasitoids are unable to successfully parasitise the 

invasive pest. This inability is presumably due to a pest’s strong immune 

response. However, pupal parasitoids indigenous to the invaded areas 

and larval parasitoids from the native range of D. suzukii’s show potential 

in managing this pest. 

To improve the utility of parasitoids for biological pest control of 

D. suzukii, I chose to study the pupal parasitoid Trichopria drosophilae 
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and the Asian larval parasitoid Asobara japonica. Specifically, I focused 

on the specificity of the pupal parasitoid for D. suzukii over the common 

fruit fly, D. melanogaster. This specificity remains consistent even with 

variations in host pupal size. When the parasitoid is released as a 

biocontrol method, its specificity for the pest should result in a reduced 

risk of parasitisation of non-target species in infested crops.  

Interestingly, contrary to expectations, D. suzukii does not use the 

fruit as its primary pupation site but instead usually chooses the soil. 

However, I have found that the ability of T. drosophilae to parasitise in 

the soil is limited. This lack of soil parasitism can be exploited in the field, 

as a layer of sandy soil or plastic mulch around fruit plants can disrupt 

the movement of D. suzukii larvae, thereby increasing their susceptibility 

to desiccation, and exposing them to additional parasitoid threats. 

A central aspect of my research focuses on the immunity of the two 

seasonal phenotypes of D. suzukii, the summer and winter phenotypes. 

In northern temperate regions, the winter phenotype typically 

predominates for the majority of the year. Unfortunately, the immune 

status of this phenotype, as well as its immune response to parasitisation, 

remains unknown. Given this gap in knowledge, my research primarily 

investigated the immunity of D. suzukii, examining differences in immune 

responses between the two phenotypes across their various life stages. 

The study of the pest’s immunity showed variations between its winter 

and summer phenotypes throughout its life stages. However, the 

efficiency of the parasitoids remains virtually unaffected, despite the 

different levels of immunity observed in the two phenotypes. 
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A different result was obtained when examining the pupal stage, where 

the pupal parasitoid T. drosophilae was found to have an increased 

parasitisation success rate on pupae of winter phenotype of D. suzukii. 

This difference highlights that a favourable time to release the pupal 

parasitoid is in early spring, when the winter phenotype is still most 

prevalent in the northern temperate regions.  

This dissertation provides a comprehensive strategy to improve the 

biological control of D. suzukii using parasitoids, particularly 

T. drosophilae. By merging insights into parasitoid preferences and 

immunity mechanisms, along with considering the seasonal variations 

and parasitisation of the pest in different soil types, I could formulate a 

more cohesive and effective approach to improving biological pest control 

efforts. 
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German Summary – Zusammenfassung 

Die biologische Schädlingsbekämpfung gewinnt als wichtiges Element 

einer nachhaltigen Lebensmittelproduktion zunehmend an Bedeutung. 

Ihre wachsende Beliebtheit ist auf die Vorteile zurückzuführen, die sie im 

Vergleich zum herkömmlichen chemischen Pflanzenschutz bietet, wie 

etwa der geringere Verlust an biologischer Vielfalt.  

Ein weltweit bedeutsamer Schädling ist die invasive Fruchtfliege 

Drosophila suzukii (Kirschessigfliege), die reifende Früchte massiv 

schädigen kann. Aus diesem Grund besteht eine hohe Nachfrage nach 

biologischer Schädlingsbekämpfung. Die Fähigkeit des Schädlings, seine 

Eier in reifende Früchten abzulegen, macht die biologische 

Schädlingsbekämpfung zu einer attraktiven Alternative, da Landwirte den 

Einsatz von Insektiziden kurz vor der Ernte aufgrund des Risikos von 

möglichen Rückständen auf den Früchten vermeiden wollen. Ein weiterer 

Nachteil vieler verfügbarer Insektizide besteht darin, dass sie nicht 

selektiv wirken und somit eine Vielzahl von Nichtzielorganismen 

beeinträchtigen können. Das wiederum kann zur Verringerung der 

Artenvielfalt führen, z.B. in Obstplantagen. Insgesamt besteht also 

dringender Bedarf an biologischen Methoden zur Schädlingsbekämpfung. 

Ein erfolgversprechender und häufiger Ansatz zur biologischen 

Schädlingsbekämpfung ist der Einsatz von Parasitoiden aus dem 

natürlichen Verbreitungsgebiet des Schädlings oder von einheimischen 

Parasitoiden im invasiven Verbreitungsgebiet. Allerdings sind viele dieser 

Parasitoiden nicht in der Lage, den invasiven Schädling wirksam zu 

parasitieren, vermutlich aufgrund seiner starken Immunreaktion. 

Einheimische Puppenparasitoide aus dem invasiven Verbreitungsgebiet 
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und Larvenparasitoide aus dem heimischen Verbreitungsgebiet von 

D. suzukii zeigen jedoch Potenzial zur Bekämpfung dieses Schädlings. 

Um den Nutzen von Parasitoiden in der biologischen 

Schädlingsbekämpfung zu optimieren, wurden der Puppenparasitoid 

Trichopria drosophilae und der asiatische Larvenparasitoid 

Asobara japonica untersucht. Insbesondere wurde die Spezifität des 

Puppenparasitoids für D. suzukii im Vergleich zur weit verbreiteten 

Fruchtfliege D. melanogaster untersucht. Es wurde festgestellt, dass eine 

klare Präferenz für D. suzukii besteht, welche auch bei der Variation der 

Größe der Wirtspuppen erhalten bleibt.  

Interessanterweise nutzt D. suzukii entgegen der Erwartung die Frucht 

nicht als primären Verpuppungsort, sondern wählt stattdessen meistens 

den Boden aus. Die Ergebnisse diese Dissertation zeigen jedoch, dass die 

Fähigkeiten von T. drosophilae, im Boden zu parasitieren, sehr 

beschränkt sind. Das Wissen um diese Einschränkung kann jedoch in der 

Praxis genutzt werden, indem eine Schicht aus Sandboden oder 

Mulchfolie um die Pflanze gelegt wird. Dadurch wird die Fortbewegung 

der Larven von D. suzukii gestört, wodurch sie anfälliger für 

Austrocknung werden und zusätzlichen Parasitoiden ausgesetzt sind. 

Ein zentraler Aspekt dieser Forschungsarbeit konzentriert sich auf die 

Immunität der beiden saisonalen Phänotypen von D. suzukii, nämlich des 

Sommer- und des Winterphänotyps. In den nördlichen gemäßigten 

Breiten dominiert üblicherweise, die meiste Zeit des Jahres, der 

Winterphänotyp. Allerdings ist der Immunstatus dieses Phänotyps und 

seine Immunantwort auf die Parasitierung nach wie vor unbekannt. 

Angesichts dieser Wissenslücke wurde in dieser Forschungsarbeit vor 
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allem die Immunität von D. suzukii untersucht, indem die Unterschiede 

in den Immunreaktionen der beiden Phänotypen in den verschiedenen 

Entwicklungsstadien der Fliege untersucht wurden. Diese Studie über die 

Immunität des Schädlings zeigt, dass es in allen Entwicklungsstadien 

Unterschiede zwischen den Winter- und Sommerphänotypen gibt. Der 

Parasitierungserfolg der Parasitoiden bleibt jedoch trotz der 

unterschiedlichen Immunität der beiden Phänotypen nahezu 

unverändert. 

Ein anderes Ergebnis ergab sich aus der Untersuchung der 

Parasitierung von Puppen durch den Puppenparasitoid T. drosophilae. 

Dieser Parasitoid hatte eine höhere Erfolgsrate bei der Parasitierung von 

Puppen des Winterphänotyps von D. suzukii. Dies zeigt, dass ein 

günstiger Zeitpunkt für die Freisetzung des Puppenparasitoide das zeitige 

Frühjahr ist, wenn der Winterphänotyp in den nördlichen gemäßigten 

Regionen noch am weitesten verbreitet ist.  

Zusammenfassend präsentiert diese Dissertation eine umfassende 

Strategie zur Verbesserung der biologischen Bekämpfung von D. suzukii 

mithilfe von Parasitoiden, insbesondere T. drosophilae. Durch die 

Verknüpfung von Erkenntnissen über die Präferenzen und 

Immunitätsmechanismen der Parasitoiden sowie der Berücksichtigung 

der saisonalen Variationen der Phänotypen und der Parasitierung des 

Schädlings in verschiedenen Bodentypen wurde ein kohärenter und 

wirksamer Ansatz zur Verbesserung der biologischen 

Schädlingsbekämpfung formuliert. 
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1 Introduction 

1.1 Biological pest control – An overview 

Crop production has been a challenge in the past, when the focus was 

mainly on food security. However, increasing biodiversity loss and climate 

change will make crop production even more challenging in the future. 

Sustainable crop production must therefore address all these challenges 

to ensure long-term food security. This also includes pest management, 

as about 18 % of agricultural yields are lost to pests before the crop 

harvest (Oerke 2006), which is expected to increase due to climate 

change (Deutsch et al. 2018). 

Over the past 40 years, chemical pesticides have been one method of 

reducing yield losses. Their use has risen by a factor of 15 to 20 (Oerke 

2006). The use of these chemicals has been considered controversial for 

years due to their potential to cause heart diseases, neurological and 

reproductive disorders, liver damage, stomach ulcers and cancer 

problems in humans (Hoppin et al. 2006, Donham 2016, Patel et al. 

2018). In recent years, there has been a major scientific and public 

debate about the use of chemical pesticides, especially insecticides 

(particularly neonicotinoids) as one of the reasons for declining insect 

populations worldwide (Hallmann et al. 2017, Sánchez-Bayo & Wyckhuys 

2019, van Klink et al. 2020, Wagner 2020). The need for alternatives to 

insecticides is therefore of great concern.  

In this context, biological control is playing an increasingly important 

role. This is especially true as it has been estimated that natural enemies 

of pests are probably responsible for about 50 - 90 % of the pest control 
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in the field (Pimentel 2005). This illustrates the potential of biological 

control, where natural enemies are used to control agricultural pests in 

cropping systems.  

A historically famous example of biological pest control is the use of 

ants to control populations of caterpillars in ancient China - probably one 

of the oldest known written records of the use of biological pest control. 

As early as 324 BC, farmers purchased and encouraged populations of 

the ant Oecophylla smaradina to control caterpillars in citrus trees. The 

ants build paper nests and feed on insects, thereby reducing the number 

and hence the damaging effects of the caterpillars (Offenberg et al. 

2013). This practice continued in the Shan States of northern Burma until 

the 1950s (Liu et al. 2014).  

As there are different ways in which biological control can be achieved, 

biological control is classified into different categories: Classical 

biocontrol, augmentative biocontrol (inundative and inoculative biological 

control) and conservative biocontrol.  

Classical biocontrol is the permanent establishment of the biological 

control agent in a new area where natural enemies are absent. The classic 

example of classical control is the introduction of the vedalia beetle 

(Rodolia cardinalis) into California. In 1880, citrus orchards in California 

were severely damaged by a new pest, the cottony pillow bug (Icerya 

purchasi). This pest was introduced to California through citrus fruits 

imported from Australia. When the entomologist Albert Koebele 

discovered in Australia in 1888 that vedalia beetles were feeding on this 

cottony pillow bug, he collected them. Then he shipped them to 

California, where they were released. By 1890, all infestations of the pest 
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in California had been completely decimated. This famous example is 

considered the beginning of the classical biological control (Mallis 1971). 

Augmentative biocontrol is the (usually repeated) release of the 

biological control agent. This is with the expectation that the agent will 

not establish and that only the released organisms themselves will control 

the pest; the agent can reproduce and control the pest for an extended 

period (Inoculative biocontrol), or short term with rapid control 

(Inundative biocontrol) but not permanently (Eilenberg et al. 2001). The 

first mass-reared natural enemy was the egg parasitoid of the genus 

Trichogramma in England in 1895. Widespread use of mass-reared 

antagonists did not occur until the 1970s, when they began to be widely 

used in greenhouses (Hajek 2012), which are a closed system compared 

to open fields. They were used in the greenhouse, because the released 

insects stay in the greenhouse for a longer period than in the field. In 

addition, the climatic conditions in greenhouses can be shifted to favour 

the natural enemy, which increases the success rate of this augmentative 

biocontrol method. 

Conservative biocontrol differs from other biocontrol methods in 

that no natural enemies are released. Instead, the resident population of 

natural enemies is enhanced and conserved (Eilenberg et al. 2001, Hajek 

2012). This method requires a thorough knowledge of the biology and 

ecology of the natural enemies. The aim is to create a habitat that 

provides shelter, food, hosts, and, as mentioned for greenhouses, 

favourable abiotic conditions for the natural enemy species. One way to 

improve the food supply for parasitoids is to increase the species 
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abundance and diversity of the floral fauna, which can be achieved by 

planting flower strips next to crop fields (Albrecht et al. 2020). 

 

1.2 Drosophila suzukii, a major pest in soft fruits 

The fruit fly Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), 

commonly known as the spotted wing drosophila, is a major pest of fruit 

crops. The fly can cause significant economic damage to a wide range of 

fruits, including berries, cherries, and grapes (Kanzawa 1939, Bolda & 

Goodhue 2010, Farnsworth et al. 2017, Mazzi et al. 2017, DiGiacomo et 

al. 2019). The increased scientific importance is also reflected in the rise 

of the total number of publications published annually over the last ten 

years, from 47 in 2012 to 1036 in 2022 (data from Dimensions AI 2023).  

Unlike most other Drosophila species, D. suzukii can lay its eggs in 

ripe fruit. Other Drosophila species can only oviposit in overripe or 

previously damaged fruit. D. suzukii has this ability to penetrate intact 

fruit due to its enlarged and serrated ovipositor (Lee et al. 2011, Atallah 

et al. 2014) (Figure 1). The ovipositor allows the female fly to serrate 

small holes in soft-skinned fruit and lay its eggs inside. The serrated 

ovipositor of D. suzukii females allows the pest to exploit a new ecological 

niche: close ripe to ripe, undamaged fruit (Atallah et al. 2014). For most 

other Drosophila species, these ripe, undamaged fruits are inaccessible. 

One of the few limitations of D. suzukii is the fruit skin; if the fruit 

epidermis is too strong or thick to penetrate, the fly cannot oviposit (Lee 

et al. 2015a, Häussling 2016).  

https://app.dimensions.ai/discover/publication
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Figure 1: Morphology of Drosophila suzukii. Left: Male D. suzukii with one dark spot on each 

wing. Right: Female D. suzukii with a serrated ovipositor. © B. Häussling 

The fruit fly D. suzukii originated from Southeast Asia and has now 

spread across the globe to North America (Hauser 2011), Europe in 2008 

(Calabria et al. 2012), and to South America (Deprá et al. 2014) and 

Africa in 2013 (Anfora et al. 2020). One factor contributing to the spread 

of D. suzukii is its ability to survive in a wide range of environments. The 

fly can survive winter temperatures down to around -9 °C as a winter 

phenotype (Toxopeus et al. 2016, Winkler et al. 2021), in which it can 

hibernate through diapause (Zerulla et al. 2015) and its insensitivity to 

cold temperatures (Shearer et al. 2016). 

Another factor contributing to the rapid and widespread expansion of 

D. suzukii is its ability to reproduce rapidly. D. suzukii females can lay up 

to 400 eggs in their lifetime, and the larvae can develop from eggs to 

adults in as little as ten days under optimal conditions (Tochen 2014, 

Hamby et al. 2016, Winkler et al. 2021). The temperature range for 

development starts at about 10 °C, has an optimum at about 28 °C and 

a maximum at about 30 °C (Tochen 2014, Winkler et al. 2021). 

Temperatures above 31 °C can reduce population growth (Tochen et al. 
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2014). The resulting high reproductive rate allows populations to grow 

rapidly. Due to the high reproductive rate, large populations can build up 

early in the season and then massively infest fruit orchards. On average, 

Minnesota growers have reported yield losses of 20 % in raspberry fields, 

but the maximum reported loss has been massive yield losses of up to 

80% in these orchards (Bolda & Goodhue 2010, Goodhue et al. 2011, 

DiGiacomo et al. 2019).  

The fly can also reproduce on a wide range of non-crop host plants 

that are available for reproduction throughout the year. With this wide 

range of host plants and their enormous reproductive output, they can 

establish high populations around orchard fields (Lee et al. 2015b, Poyet 

et al. 2015, Kenis et al. 2016). These populations can then mass invade 

the orchard when the fruit is ripe or close to the ripening (Urbaneja-

Bernat et al. 2020).  

 

1.3 Pest control of Drosophila suzukii 

Cultural management practices are the first step in an integrated pest 

management programme. For D. suzukii control, these include: 

sanitation measures; mulching, especially under the crop plant; exclusion 

netting; the timing of harvest; pruning; and canopy management such 

as defoliation and shoot thinning (Schöneberg et al. 2020). These 

measures mainly affect the microclimate in the field. They can reduce the 

humidity and increase the temperature, thereby reducing D. suzukii 

oviposition, as oviposition is positively influenced by a high relative 

humidity (Tochen et al. 2016). Further benefits include the risk reduction 
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of oomycete infections, such as Plasmopara viticola or ascomycete 

infections, such as Botrytis cinerea.  

Although previous studies have described and applied various cultural 

management practices, pest management of D. suzukii is still often based 

on chemical control. This is not least because many fruits have zero 

tolerance to pests such as D. suzukii (Haye et al. 2016). Studies in recent 

years have shown that the insecticides pyrethroids, organophosphates, 

carbamates, and spinosyns are effective against the fruit fly (Beers et al. 

2011, Van Timmeren & Isaacs 2013, Tait et al. 2021). These insecticides 

predominantly target the adult stage of D. suzukii, as the larvae and eggs 

are enclosed in the fruit and larval contact with the insecticide can be 

limited (Wise et al. 2015).  

Unfortunately, chemical pest control just before the harvest is limited 

by the pre-harvest interval. This interval means that harvesting has to 

be suspended for a certain period of time after the pesticide has been 

applied. As the efficiency of the chemical applications can be limited and, 

as mentioned above (1.1), can have a wide range of side effects, there 

is a strong demand for alternatives. One method of reducing these side 

effects is the attract-and-kill method. The lure attracts the fly to a 

location where an additional killing agent is applied. The success of this 

method depends on the pest coming into contact with or feeding on the 

killing agent (Cloonan et al. 2018). It is considered to be more selective 

than conventional insecticide spraying, as the agent is sprayed selectively 

on the plant, targeting only the fruit zone, and the attractant is specific 

for the target pest. Therefore, it has less impact on non-target organisms 

(El-Sayed et al. 2009). However, the attract-and-kill method is not yet 
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applicable and tested for wide-field situations, and research is ongoing 

(Babu et al. 2022, Jones et al. 2022, Rhodes et al. 2023).  

Therefore, combining multiple methods is of great interest, especially 

focusing on the part of biological control treatments to control D. suzukii 

populations. The biological control treatments also include parasitoids, 

predators, entomopathogens (fungi, bacteria, viruses) and the 

endosymbiont Wolbachia (Tait et al. 2021). The use of predators is 

abundant in organic farming, but so far, the generalist predators have 

only a limited ability to control D. suzukii (Lee et al. 2019). Predators that 

have been observed feeding on D. suzukii include earwigs, predatory 

bugs, as well as spiders and ants (Woltz et al. 2015, Woltz & Lee 2017, 

Wolf et al. 2018). The commercially available predators tested to date 

have shown limited efficacy in field trials and have often been 

compromised by high control costs (Woltz et al. 2015, Lee et al. 2019). 

In light of these facts, predator augmentation does not seem promising. 

Nevertheless, conservative biological control practices may be an 

alternative, especially for organic farmers where insecticide applications 

are less frequent (Lee et al. 2019). This strategy can include providing 

shelter and supplemental plant food to attract and encourage predator 

populations targeting D. suzukii (Landis et al. 2000).  

Entomopathogenic fungi have also been tested for control of 

D. suzukii. The strains tested, such as Beauveria bassiana and 

Metarhizium brunneum, have been shown to be virulent to D. suzukii 

under laboratory conditions (Yousef et al. 2017, Ibouh et al. 2019). 

However, they have little effect when applied in the field or under field-

like conditions (Woltz et al. 2015, Alnajjar et al. 2017). This may be due 
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to suboptimal field conditions that lead to rapid degradation of the spores 

(Alnajjar et al. 2017). One promising way to avoid this degradation is to 

use autoinoculation devices. Adult flies are attracted to the device by food 

odour, and once inside, they are dusted with a spore solution (Cossentine 

et al. 2016, Yousef et al. 2017). 

Entomopathogenic bacteria have also been considered for the control 

of D. suzukii. Different strains of the widely used Bacillus thuringiensis 

have been tested (Biganski et al. 2018, Cahenzli et al. 2018, Cossentine 

et al. 2019). Similar to the entomopathogenic fungi, the B. thuringiensis 

stains performed promisingly in laboratory trials but did not show high 

fly mortality when placed on dried residues (Cahenzli et al. 2018) or even 

resulted in no increase in mortality in laboratory experiments (Biganski 

et al. 2018). Another B. thuringiensis strain tested produced a toxin 

harmful to vertebrates, disqualifying it as a biological agent (Cossentine 

et al. 2019).  

Entomopathogenic viruses with an apparent effect on D. suzukii 

control are lacking (Schetelig et al. 2018, Lee et al. 2019, Tait et al. 

2021). In contrast, thoracic injections of Drosophila A virus, La Jolla virus, 

Drosophila C virus, Cricket paralysis virus or Flock house virus have 

shown high mortality (Lee & Vilcinskas 2017, Carrau et al. 2018). 

Therefore, these entomopathogenic viruses could potentially control the 

pest if it is determined how they can be delivered and spread among 

D. suzukii under field conditions.  

Another possible control method is the sterile insect technique (SIT), 

which is a species-specific method. It relies on the release of sterile 

insects that mate with wild insects and cause reproductive failure. The 
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pest insect is mass-reared and then sterilised by exposure to ionising 

radiation, followed by a sustained area-wide release at regular intervals 

(Lanouette et al. 2017, Kruger et al. 2018, Tait et al. 2021). The 

application of SIT is still under research. The effectiveness of this method 

is higher when only male sterile insects are released (Rendón et al. 

2004). Although biotechnologically enhanced SIT can achieve this 

population control, it is not a viable option for organic farmers due to 

GMO regulations.  

 

1.4 Parasitoids to control Drosophila suzukii 

Parasitoids are a promising method to control D. suzukii. They are 

important in regulating the populations of some Drosophila species 

(Janssen et al. 1987, Fleury et al. 2009). Parasitoids are insects whose 

larvae develop by feeding on other arthropods' bodies, eventually killing 

their host. Adult female parasitoids lay their eggs on (ectoparasitoids) or 

in (endoparasitoids) the host eggs (egg parasitoids), host larvae (larval 

parasitoids), host pupae (pupal parasitoids) or host adult (adult 

parasitoids) of another arthropod (Godfray 1994). The parasitoid insect 

then emerges in place of the parasitised host. As the host is usually killed 

or reduced in fitness, parasitoids can reduce the population sizes of insect 

pest species and are their most effective natural enemies (Omkar 2023).  

Research on parasitoids for the control of D. suzukii includes not only 

parasitoids from the native range of D. suzukii, i.e. Asian parasitoids, for 

their use in classical control (1.1), but also resident parasitoids for 

augmentative biological control (1.1, Wang et al. 2020b). Resident larval 
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parasitoids for augmentative biological control include the parasitoid 

wasp species Asobara tabida, Leptoplina boulardi or Leptoplina 

heterotoma. Unfortunately, all of these species failed to parasitise 

D. suzukii to an acceptable degree (Chabert et al. 2012, Kacsoh & 

Schlenke 2012, Knoll et al. 2017, Lee et al. 2019, González et al. 2020). 

This is most likely due to the high immunity of D. suzukii compared to 

other Drosophila species (Kacsoh & Schlenke 2012). 

On the other hand, pupal parasitoids are very promising for 

augmentative biocontrol of D. suzukii. These species include Trichopria 

drosophilae (Figure 2) and Pachycrepoideus vindemmiae in North 

America and Europe and Trichopria anastrephae in South America. In 

laboratory tests, these species were effective against D. suzukii. The 

highest efficacy was observed for T. drosophilae (Wang et al. 2016b). 

Unfortunately, the few reported field trials showed low population 

suppression and further studies are needed to improve the augmentative 

release of T. drosophilae wasps (Falagiarda & Schmidt 2020, Gonzalez-

Cabrera et al. 2021).  

Classical biocontrol of D. suzukii with larval parasitoids from the pest’s 

native range is also a very promising avenue to control D. suzukii 

populations. The wasp species that have been shown to be able to 

parasitise D. suzukii successfully are Leptopilina japonica, Ganaspis 

brasiliensis and Asobara japonica. These species differ in several aspects, 

such as their development time, with L. japonica grows the fastest (Wang 

et al. 2019), making this species particularly interesting as a biocontrol 

agent against D. suzukii. However, the parasitoid species with the highest 

potential to suppress D. suzukii populations is A. japonica, as its 
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parasitisation rates have been observed to be the highest (Wang et al. 

2018a, Wang et al. 2020b), while the wasp species G. brasiliensis was 

shown to have the lowest impact on non-target organisms (Girod et al. 

2018b, Girod et al. 2018a). Therefore, G. brasiliensis was used for the 

first classical biological control release in northern Italy in 2021 (Fellin et 

al. 2023). The first observations in 2022 are promising, as the released 

parasitoids were able to overwinter and emerge only on D. suzukii, 

mainly on fresh fruits. However, these are only first year results and as 

the evaluation of the release is ongoing, its success is still unpredictable.  

Although the other two Asian parasitoid wasps of D. suzukii mentioned 

above have not been reported to have been used as biocontrol agents for 

D. suzukii in Europe or North America, they have recently been found in 

the wild and occur in the same invaded regions as D. suzukii. In small 

parts of North America, L. japonica and G. brasiliensis were first recorded 

in 2019 (Abram et al. 2020, Beers et al. 2022). In the same year, 

specimens of L. japonica were recorded in small parts of Europe (Italy) 

(Puppato et al. 2020), possibly due to unintentional introduction or 

simultaneous spread with D. suzukii eggs or larvae.  

 

Figure 2: Pupal parasitoid Trichopria drosophilae parasitising D. suzukii pupae.  

© B. Häussling 
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1.5 Aims of this Thesis 

The aim of this thesis was to contribute to the development of 

biological control methods for pests, specifically the control of the 

worldwide pest species D. suzukii. As mentioned above, this fruit fly is a 

major challenge for growers worldwide and an environmentally friendly 

control method for D. suzukii is strongly needed (Tait et al. 2021). I 

hereby contribute important knowledge to improve the control of 

D. suzukii in the field and to therefore reduce crop losses worldwide. In 

addition, the knowledge gained from my thesis can be applied to 

emerging pests, particularly in the Drosophila group, hopefully 

preventing or reducing harmful effects of future pest species.  

For biological pest control, the parasitoid must prefer the pest species 

as a host in order to have a less negative impact on non-target organisms 

and a greater population-reducing impact on the pest (Nagaraja 2013). 

The parasitoid wasp T. drosophilae has been observed to prefer 

parasitising D. suzukii pupae over D. melanogaster pupae (Wang et al. 

2016a, Boycheva Woltering et al. 2019, Yi et al. 2020). However, this 

preference was thought to be due to host size, as D. suzukii pupae are 

generally larger than D. melanogaster pupae (Wang et al. 2016a). 

Therefore, in Publication 1, I investigated whether this preference might 

indeed be species-specific. Species specificity would be very important 

for the use of T. drosophilae as a biocontrol agent against D. suzukii, as 

the pupal size of fruit flies can vary considerably under field conditions. 

It is not yet known whether T. drosophilae would still prefer D. suzukii 

pupae if, for example, they were smaller than those of D. melanogaster.  
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In addition, the parasitoid must have physical access to the pest in 

order to parasitise it. This is particularly important for biological control 

of D. suzukii flies, which pupate primarily in the soil (Ballman et al. 2017, 

Woltz & Lee 2017). However, physical access to pupae in the soil can be 

very limited (Tsitsipis & Papanicolaou 1979, Dimou et al. 2003). In 

addition, the kairomones used to locate the host may be less 

concentrated in the soil (Johnson & Gregory 2006). Therefore, in 

Publication 2, I investigated whether T. drosophilae is able to find and 

parasitise buried pupae.  

Suppose further that the parasitoid is able to parasitise the host. In 

this case, the success of the parasitisation is still unknown, as the host’s 

immune system may fight the parasitisation and attempt to encapsulate 

the parasitoid egg (Carton et al. 2008). This is particularly interesting for 

the D. suzukii pest, as several larval parasitoids of the Drosophila group 

fail to parasitise this species (Poyet et al. 2013, Lynch et al. 2016, 

Iacovone et al. 2018). D. suzukii has been found to have a strong 

immune system (high hemocyte load) (Kacsoh & Schlenke 2012, Poyet 

et al. 2013, Iacovone et al. 2018), but this has only been observed for 

the summer phenotype of the fly. However, in continental and temperate 

climates, the most commonly observed phenotype of D. suzukii 

throughout the year is the winter phenotype (Panel et al. 2018). 

Therefore, it is unknown how the immune system of the winter phenotype 

of D. suzukii responds to parasitism and whether parasitism is more or 

less successful in the winter phenotype compared to the summer 

phenotype (Figure 3).  
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This knowledge would be necessary for biological control of D. suzukii, 

as an augmentative release of its parasitoid species may be more 

effective early in the season when the pest population is still small, after 

the overwintering bottleneck. However, at that time, D. suzukii flies are 

still of the winter phenotype in temperate and continental climates 

(Rossi-Stacconi et al. 2016, Rossi Stacconi et al. 2018a). Therefore, I 

performed parasitisation experiments with winter and summer 

phenotypes of D. suzukii and D. melanogaster using the larval parasitoid 

A. japonica and the pupal parasitoid T. drosophilae (Publication 3). I 

also studied the immune status of adults to assess the immune status of 

winter and summer phenotypes throughout development from larvae to 

pupae to adults.  

In summary, my aim in this thesis was to contribute important 

knowledge on the parasitism of D. suzukii to help reduce the negative 

impact of this pest on fruit growers worldwide. I investigated the 

parasitoid species specificity of the wasp T. drosophilae for Drosophila 

(Publication 1) and the wasp’s ability to locate and parasitise D. suzukii 

pupae buried below the soil surface (Publication 2) to improve its use 

as a biocontrol agent against D. suzukii. Another aspect of my research 

was to determine the optimal time to release parasitoids against 

D. suzukii in continental and temperate climates, considering the impact 

of the flies’ immune system with two seasonal phenotypes (Publication 

3). Through my dissertation, I aimed to elucidate the pathways for 

releasing and using biological control agents to effectively reduce 

D. suzukii populations in orchards. In addition, the knowledge I gained 
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has potential applications in the management of emerging pest species 

within the Drosophila group. 

 

 

 

 
Figure 3: Phenotype plasticity in the colour of A: female D. suzukii winter phenotype; B: male  
D. suzukii winter phenotype; C: female D. suzukii summer phenotype; D: male D. suzukii 
summer phenotype; E: female D. melanogaster winter phenotype; F: male D. melanogaster 
winter phenotype; G: female D. melanogaster summer phenotype; H: male D. melanogaster 
summer phenotype. The winter phenotype of both species has more melanisation in the 
abdominal segments than the summer phenotype. © Benedikt Häußling  
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2 Synopsis: An Overview of the Publications of 

this Thesis 

Publication 1  

The preference of Trichopria drosophilae for pupae 

of Drosophila suzukii is independent of host size 

 

Benedikt J. M. Häussling, Judith Lienenlüke and Johannes Stökl 

Published in the Journal Scientific Reports (2021) 11, 995 

 

The use of a parasitoid as a biocontrol method requires in-depth 

knowledge of the pest and the parasitoid. The biocontrol method must be 

effective in order to be successfully implemented in an Integrated Pest 

Management program (IPM). This can be quantified by quality 

parameters such as host recognition, specificity to the host, parasitism 

rate, and emergence rate (Nagaraja 2013). All this can help to select a 

possible candidate species or species population for biocontrol.  

As mentioned in the introduction (1.4), the pupal parasitoid Trichopria 

drosophilae is a species that can be and already is being mass-reared 

(Mazzetto et al. 2016, Wang et al. 2016b). Crucially, the parasitoid can 

parasitise at lower temperatures than other pupal parasitoids (Rossi 

Stacconi et al. 2017, Wang et al. 2018b, Colombari et al. 2020). This is 

important because early release of the pest is essential in an IPM 

programme. The goal of the programme is to suppress the pest 

population below the acceptable pest level using the least intrusive 
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method. To achieve this goal, the pest population should not exceed the 

acceptable pest level. Therefore, the pest population should be relatively 

low before the fruit is close to ripening. This is particularly important for 

D. suzukii control because the canopy of the landscape surrounding to an 

orchard can strongly influence D. suzukii crop infestation (Häussling 

2016, Haro-Barchin et al. 2018, Santoiemma et al. 2018, Drummond et 

al. 2019, Champagne-Cauchon et al. 2020). Thus, an early area-wide 

release may be necessary for successful population control below 

acceptable pest levels (Rossi-Stacconi et al. 2016, Wiman et al. 2016).  

High specificity can reduce the potential impact on non-target 

organisms. When parasitoids are released, they should have a specificity 

for the host, in our case, for D. suzukii. This is important because a 

variety of Drosophila species may be present in particularly overripe fruit 

and do not need to be controlled (non-target organisms). If there is a 

lack of specificity, the non-target Drosophila species that may be present 

could be parasitised to greater extent than the pest species D. suzukii. 

Therefore, the parasitoid’s preference for the host species over non-

target organisms is essential (Nagaraja 2013). Furthermore, specificity 

for the pest will logically increase parasitisation of the pest, giving a 

higher probability of successful control.  

The preference of T. drosophilae for D. suzukii over D. melanogaster 

has been observed in several studies (Wang et al. 2016a, Boycheva 

Woltering et al. 2019, Yi et al. 2020), although one study found no 

difference (Mazzetto et al. 2016). However, the proximate reason for this 

host preference remains unclear. Pupal size as a proximate cause would 

be supported by the findings of Wang et al. (2016a), who found that 
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D. suzukii pupae are larger than D. melanogaster pupae. To assess a 

factor for preference, we correlated pupal volume with pupal parasitism 

in Publication 1. This was made possible by video recording the 

parasitism and measuring pupal size. This direct observation had the 

advantage that the parasitism event and the success of each pupa could 

be observed, as well as the volume of each pupa could be measured 

(Figure 4). Furthermore, this approach allowed us to correlate the sex of 

the hatched parasitoids with the volume of the parasitised pupa.  

 

Figure 4: Experimental setup of A: D. suzukii pupae, B: D. melanogaster pupae and C: D. 

suzukii and D. melanogaster pupae alternately arranged for parasitisation by T. drosophilae. 

© Benedikt Häußling 

We found that the preference of the parasitoid T. drosophilae for 

D. suzukii was independent of host size. Therefore, we can exclude host 

volume as a proximate cause of the preference for D. suzukii. This means 

that the reason for the preference remains unclear but is probably a 

combination of chemical and physical cues from the pupal anterior 

spiracles. As we observed during parasitism, the parasitoid decided to 

parasitise only after drumming with its antennae over the pupal 

respiratory spiracles. This behaviour of T. drosophilae was also observed 

by Romani et al. (2002).  

In conclusion, these wasps can identify their preferred host species 

independent of the size of their host. This is important for implementation 



Synopsis: An Overview of the Publications of this Thesis 

 26 

in an IMP as this preference increases the likelihood of successful control 

of the pest with T. drosophilae, especially in cases where other hosts such 

as D. melanogaster are present. We also found that the wasps can 

recognise the pupal volume of their hosts. Our results show that pupal 

volume influences the sex ratio of hatched parasitoids. The probability of 

hatching a female wasp increased with increasing pupal volume (see 

Figure 6,7 in Publication 1). During oviposition, parasitoids determine 

the sex of the egg by fertilising it (diploid, female) or not fertilising it 

(haploid, male) (Aubert 1959). In several parasitoids, this shift in sex 

ratio has been observed to be more female-biased in larger hosts 

(Sandlan 1979, Charnov et al. 1981, King 1987). The question arises as 

to why the parasitoids shift the sex ratio in favour of females in larger 

hosts. Also, both sexes show an increase in fitness in larger hosts. One 

explanation could be the fact that the fitness increase of the female 

parasitoids is higher in voluminous hosts, and thus the increase is greater 

for females in a larger host than for males in a larger host (Charnov et 

al. 1981).  

For mass rearing of T. drosophilae and probably other parasitoids, this 

volume-dependent sex shift can be used to improve the quality of the 

rearing process. A female-biased rearing population is likely to have 

higher control success when released, as females are responsible for 

parasitisation. This can be achieved by selecting species with high host 

volume and well-fed hosts, resulting in voluminous hosts.  

To summarize, I found in this study (Publication 1), that the 

preference of T. drosophilae for D. suzukii over D. melanogaster is 

independent of the host size. In addition, the wasps prefer to lay fertilised 
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i.e. female eggs in larger host pupae, suggesting the need to select for 

larger pupal volumes during mass rearing of parasitoid wasps before 

releasing them as biocontrol agents against D. suzukii, as this will 

increase parasitisation success. 
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Publication 2 

Below ground efficiency of a parasitic wasp for 

Drosophila suzukii biocontrol in different soil types 

 

Benedikt J. M. Häussling, Melinda Mautner and Johannes Stökl 

Published in the Journal Scientific Reports (2022) 12, 9130 

 

A high parasitisation rate is crucial for successful biocontrol treatment 

of pest species with parasitoids. Therefore, in Publication 1, we 

investigated the specificity of parasitoid wasps for their hosts. 

Furthermore, it is also essential for the parasitoid to be able to locate and 

have physical access to the host. In the case of T. drosophilae, access to 

the pupae is necessary because this wasp species is a pupal parasitoid. 

Therefore, the parasitoids must locate the pupation site, which in the case 

of D. suzukii is typically buried in the soil beneath the fruit plant (Ballman 

et al. 2017, Woltz & Lee 2017, Buonocore Biancheri et al. 2023).  

To achieve a high parasitisation rate, the parasitoid must be able to 

locate and parasitise these buried pupae, which can be challenging due 

to the different physical properties of the soil matrix compared to the 

fruit. Unfortunately, all parasitisation tests to date have been performed 

on fruit or in petri dishes (Mazzetto et al. 2016, Wang et al. 2016b, Rossi 

Stacconi et al. 2018b, Esteban-Santiago et al. 2021, Häussling et al. 

2021, see Publication 1), where the parasitoid had relatively free access, 
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as opposed to an approach that mimics the most common pupation site, 

the soil.  

In this study, we investigated the pupation behaviour of D. suzukii and 

the parasitisation rate of T. drosophilae in three different soil types: 

loamy sand, loam, and clay, since they’re common soil types. Our aim 

was to predict the parasitisation success of the parasitoid wasps and the 

pupation behaviour of D. suzukii in different soil types. 

Our findings indicated that T. drosophilae parasitised the pupae at a 

very low rate, with only 1.8 % to 5.1 % wasps hatching from the pupae. 

In contrast in the control group (petri dish), where the wasp had free 

access, the hatching was 20 to 7 times higher. These differences 

emphasize how important approaches are which emulate natural 

conditions.  

These low numbers indicate that the physical properties of the soil 

matrix act as a barrier for the parasitoid, which hampers its ability to pass 

through the soil matrix (Guillén et al. 2002). In contrast, the pupal 

parasitoid Coptera haywardi was able to locate and parasitise fruit fly 

pupae up to a depth of 5 cm, possibly due to its hypognathous head 

morphology, which allows the wasp to locate pupae by digging (Sivinski 

et al. 1998, Guillén et al. 2002). In addition, the soil may not only act as 

a physical barrier, but due to its complexity, it may also reduce the 

diffusion of semiochemicals emitted by the pupae (Johnson & Gregory 

2006). This could reduce the ability of the parasitoid to locate the pupae 

in the soil compared to those located in the fruit.  

In conclusion, our results indicate that the soil matrix is a massive 

barrier for T. drosophilae, making soil parasitism almost impossible for 
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this parasitoid. This knowledge can be used to improve the biological pest 

control of D. suzukii. One possible approach could be to use plastic mulch 

or a layer of sandy soil underneath the fruit plant, as this could enhance 

the exposure of the pupae to antagonists, such as T. drosophilae. This 

could increase the chances of T. drosophilae successfully parasitising the 

pest, resulting in a reduced hatching rate of D. suzukii. Additionally, this 

sandy layer could also lead to higher desiccation rates of D. suzukii 

larvae. Simultaneous release of several different parasitoids may also be 

successful and applicable. A combination of the pupal parasitoid 

Pachycrepoideus vindemmiae together with T. drosophilae could be 

highly successful as P. vindemmiae has been observed to parasitise 

pupae on the soil surface (Guillén et al. 2002). Furthermore, it was 

observed that when Trichopria anastrephae, a relative of T. drosophilae, 

and P. vindemmiae were released together, there was an increase in the 

parasitisation rates in fruit (Buonocore Biancheri et al. 2023). This 

possibility of simultaneous release and the use of the different niches of 

the two parasitoids could improve the biological control of D. suzukii. 

(Buonocore Biancheri et al. 2023).  
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Publication 3 

Does the seasonal phenotype of Drosophila suzukii 

influence cellular immunity and parasitisation? 

 

Benedikt J. M. Häussling, Nathalie Rausch, Emely Klüsener and 

Johannes Stökl 

Published in the Journal of Applied Entomology (2023) 00, 1-14 

 

The success of parasitoids as biocontrol agents depends not only on 

their specificity for pest species (Publication 1) and their ability to 

access pupae (Publication 2) but also on the success of the 

parasitisation. Unfortunately, recent studies (Chabert et al. 2012, Kacsoh 

& Schlenke 2012, Biondi et al. 2020, Wang et al. 2020a) have shown that 

most larval parasitoids have low parasitisation success on D. suzukii 

larvae – especially those from regions where D. suzukii is not native, 

such as Europe and North America. For example, the larval parasitoid 

Asobara japonica from China has a parasitisation success rate on 

D. suzukii larvae of over 90 %, whereas Asobara tabida from France has 

a success rate of no more than 0 % (Chabert et al. 2012). It should also 

be noted that these rates vary for different strains. We used a different 

strain of A. japonica because the strain from China was not available. The 

strain we used had a much lower parasitisation success rate than the 

strain from China. 
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Figure 5: Hemocytes of D. suzukii: 1. Plasmatocyte, 2. Podocyte, 3. Lamellocyte. © Benedikt 

Häußling 

So why do so many parasitoid species fail to parasitise the pest? 

Firstly, this resistance of D. suzukii could be due to its immunity, 

specifically the increased number of hemocytes in D. suzukii (Figure 5) 

compared to other Drosophila flies such as D. melanogaster is likely the 

reason (Kacsoh & Schlenke 2012, Poyet et al. 2013, Iacovone et al. 

2018). These hemocytes are important for the resistance because they 

are responsible for encapsulating a foreign parasitoid egg in the larval 

body (Figure 6), and this encapsulation kills the parasitoid egg if the 

process is successful (Figure 6).  

 

Figure 6: Left: D. suzukii larvae (winter phenotype) with encapsulations (dark spots) after 

parasitisation by the parasitoid A. japonica. Right: Parasitoid egg of A. japonica with hemocytes 

attached to the egg. © Benedikt Häußling 

1. 

3. 

2. 
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The observations of high invulnerability of D. suzukii were made in the 

summer phenotype of D. suzukii. However, D. suzukii has two seasonal 

phenotypes: a summer phenotype and a winter phenotype (also known 

as summer morph and winter morph). The winter phenotype of D. suzukii 

is morphologically and physiologically different from the summer morph. 

The winter phenotype has a larger and darker body,  a longer lifespan at 

lower temperatures (Shearer et al. 2016, Wallingford & Loeb 2016), and 

enters a temperature-dependent reproductive diapause (Zerulla et al. 

2015, Rossi-Stacconi et al. 2016, Toxopeus et al. 2016).  

Throughout the year, the winter phenotype dominates in the 

population from September to June in northern Europe (Panel et al. 

2018). This means that the winter phenotype is dominant in the spring. 

Biological pest control can be very effective in the spring due to the 

bottleneck in the pest population size after the winter. Therefore, the 

previously neglected immune response of the winter phenotype 

D. suzukii to parasitism is crucial. 

To determine whether there is a difference in the immune response to 

parasitism between the two phenotypes, we performed parasitism 

experiments not only on the summer phenotype, but also on the winter 

phenotype of D. suzukii, and also on D. melanogaster. We used 

A. japonica as a larval parasitoid. We counted larval hemocytes from the 

hemolymph to assess the host immune response and measured the 

phenoloxidase activity (PO activity). Since hemocytes are part of the 

cellular immune response of insects through phagocytosis, encapsulation, 

and clotting (Lavine & Strand 2002), and phenoloxidase is a key 

component of the immune response of insects to the presence of foreign 
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objects (González-Santoyo & Córdoba-Aguilar 2012). Furthermore, we 

assessed the number of hatched flies and parasitoids to observe the 

effect of the parasitisation on the flies and the parasitoids. 

We found differences in immune responses between the phenotypes 

and life stages, but these were inconsistent. At certain time points (0 h 

and 48 h after parasitisation), the summer phenotype of D. suzukii larvae 

had significantly higher hemocyte counts than the winter phenotype. 

However, these differences did not increase immune resistance and did 

not result in higher levels of infestation, success of parasitisation or 

encapsulation rates. Other studies have observed that the immune 

resistance of Drosophila larvae is associated with a high host hemocyte 

load (Kacsoh & Schlenke 2012, Poyet et al. 2013). In our study, the 

differences in hemocyte load did not lead to differences in resistance 

between phenotypes. One explanation could be that the difference 

between the phenotypes is too small to alter the observed immune 

resistance. Another possibility is that the immune process of 

encapsulation depends mainly on the hemocyte cell type lamellocytes 

(Eslin et al. 2009). Our results showed that the number of this cell type 

differed between the seasonal phenotypes at 24 h and 48 h after 

parasitisation. Consequently, the lack of an increase in immune 

resistance cannot be explained by a lack of difference in the number of 

lamellocytes in the hemolymph. 

However, I would like to highlight one important factor that should not 

be underestimated: the fly strain. As we only used one fly strain, we 

cannot exclude that the hemocyte load between the summer and winter 

phenotype is different in other fly strains. An extreme example of immune 
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differences was observed between the summer phenotype of French and 

Japanese D. suzukii strains. The French strain had almost twice the 

hemocyte load of the Japanese strain (Poyet et al. 2013). Furthermore, 

the number of lamellocytes in the hemolymph was not significantly 

different between the two D. suzukii strains. This is similar to our study, 

where the number of lamellocytes did not differ between the two 

phenotypes. It appears that in this case the total number of hemocytes 

is a stronger indicator of the potential immune response of the fly than 

the number of lamellocytes alone, although the lamellocytes are 

important for the encapsulation process.  

As the pupal stage is distinct from the larval stage, we continued the 

life cycle of the pest species D. suzukii and investigated the immune 

resistance of pupae of the two phenotypes to parasitisation. We used the 

same pupal parasitoid T. drosophilae as in Publication 1 and 

Publication 2. As in the above publications, we offered the pupae to the 

parasitoid in a petri dish (Figure 4). Here we found differences in the 

parasitisation success of the two seasonal phenotypes of D. suzukii. The 

parasitoid had a significantly higher parasitisation success in the winter 

phenotype than in the summer phenotype (at 24 °C). This means that 

pupae of the winter phenotype are more susceptible to parasitism than 

those of the summer phenotype. 

We observed a difference in parasitisation success between 

phenotypes in the pupal stage, but not in the larval stage, which raises 

the question of why there are different levels of immune resistance to 

parasitisation in two life stages. We expect that different parasitoids elicit 

different immune responses in the host. Especially if the parasitoids are 
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specialised on different life stages of the host, such as pupal and larval 

parasitoids. Parasitoids have evolved various strategies to overcome the 

immune response of flies, such as specialising on specific host stages, 

evading the immune system by sticking the egg into host tissue (Eslin & 

Prevost 2000), or injecting venom during oviposition to suppress the 

host’s immune response (Schlenke et al. 2007, Moreau & Asgari 2015, 

Huang et al. 2021, Wertheim 2022). This virulence can be species-

specific and often strain-specific (Cavigliasso et al. 2019). The 

comparison between the two life stages is therefore limited, as there is a 

complete morphological change during metamorphosis, including but not 

limited to the immune cells that are released at the onset of 

metamorphosis and the ingestion of doomed larval tissues (Lanot et al. 

2001, Holz et al. 2003).  

The adult life stage of D. suzukii is not of interest to parasitoids, as no 

parasitoids have been found to parasitise the adult stage. However, it is 

of interest to increase our knowledge of the adult immune system, as 

hemocytes and phenoloxidase are important not only for the response to 

parasitisation but also for infection with various pathogens. We are 

therefore completing the life cycle by analysing the number of hemocytes 

and the phenoloxidase activity in adult females. To my knowledge, this 

is the first time that these two immunity factors have been measured in 

adult female D. suzukii in general. Surprisingly, we found that the winter 

phenotype of adults of both fly species had significantly more hemocytes 

than the summer phenotype. In contrast, at the larval stage, the winter 

phenotype had similar or lower hemocyte counts stage than the summer 

phenotype. At the pupal stage, the winter phenotype was similar or less 
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susceptible to parasitisation than the summer phenotype. This marked 

difference between the phenotypes was unexpected because adult 

D. melanogaster hemocytes are derived from embryonic and larval 

development and consist of a mixture of embryonic and lymph gland-

derived hemocytes (Holz et al. 2003). Therefore, the proportions of 

hemocytes found in larvae and pupae would be expected to be present 

in the adult stage.  

A possible explanation for these contradictory results could be the 

influence of the lower temperature (15 °C) during the development of the 

winter phenotype on the total number of hemocytes. The summer 

phenotype was reared at a higher temperature (24 °C) than the winter 

phenotype, so temperature could influence the hemocyte load. Another 

possibility is a sex-dependent decrease of hemocytes with age (Sanchez 

Bosch et al. 2019, Boulet et al. 2021). A previous study observed a sex-

dependent decrease of hemocytes with adult age in Drosophila, with adult 

female flies showing a lower decrease than males (Mackenzie et al. 

2011). It is therefore possible that this sex-dependent decline is also 

phenotype dependent.  

The other immune factor we measured, phenoloxidase, did not differ 

between the two phenotypes at either the larval or adult stage. This is 

consistent with the observed parasitisation success of the larvae, which 

was indifferent between the phenotypes. Furthermore, phenoloxidase is 

a key enzyme in the insect immune system, although it should be noted 

that the correlation between phenoloxidase activity and insect immunity 

is complex (González-Santoyo & Córdoba-Aguilar 2012). 
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In this study, we provide the first evidence that the immune system 

of the winter phenotype of D. suzukii is very similar to that of the summer 

phenotype, particularly during the larval stage. Consequently, the 

efficacy of biological pest control methods tested on D. suzukii summer 

phenotypes using different parasitoid species can be extended to 

D. suzukii winter phenotypes. Regarding the pupal stage, our results 

suggest that pupal parasitoids have greater success when targeting the 

winter seasonal phenotype. Based on our results, the most opportune 

time to release parasitoids into the field for D. suzukii population control 

would be early in the growing season. During this period, the winter 

phenotype dominates the D. suzukii population in the Northern 

Hemisphere, and parasitoid release then represents an effective 

treatment strategy, as D. suzukii populations remain relatively small 

following the winter bottleneck, in line with D. suzukii population 

dynamics. The smaller populations of winter phenotype D. suzukii can 

then be parasitised by releasing mainly female-biased populations of 

parasitoid wasps (see Publication 2). 
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3 Conclusion 

In this thesis, I have contributed to the understanding of biological 

pest control using parasitoids to control the cosmopolitan pest D. suzukii. 

For this pest control, I used the promising pupal parasitoid T. drosophila, 

which is native to areas the pest has invaded. I investigated the 

preference of the pupal parasitoid T. drosophilae for two different 

Drosophila species for potential augmentative release (Häussling et al. 

2021, see Publication 1), its parasitisation capabilities within the soil 

matrix (Häussling et al. 2022, see Publication 2) and the immune 

system and immune response of the two seasonal phenotypes of 

D. suzukii to a parasitisation by the larval parasitoid A. japonica (see 

Publication 3). A. japonica is a candidate for classical biocontrol. 

Furthermore, I also studied the immune status of adult flies. These 

findings contribute to predicting the success of A. japonica and 

T. drosophilae and other parasitoids as a biocontrol method against the 

pest D. suzukii.  

For a parasitoid to be effective in an augmentative release as a 

biocontrol method, the parasitoid must meet various key quality 

parameters: host detection and identification, specificity to the pest and 

adequate parasitisation, emergence and female sex ratio rates for 

effective pest suppression (Nagaraja 2013). I address these quality 

parameters in my thesis. For the pupal parasitoid, T. drosophilae, a 

preference was found for the pest D. suzukii over the common Drosophila 

fly D. melanogaster (Häussling et al. 2021, see Publication 1). This 

preference is independent of the host pupal size, which ensures pest 



 Conclusion 

 42 

specificity and reduces potential harm to non-target organisms such as 

D. melanogaster when the pupal sizes vary under field conditions.  

After determining the parasitoids specificity, another challenge is 

locating the pest’s primary pupation site. This pupation site is different 

from what one would expect: D. suzukii does not primarily pupate in the 

fruit, where the larvae feed and where the parasitoid would have easy 

access. Instead, the most common pupation site is the soil (Ballman et 

al. 2017, Woltz & Lee 2017). I found that the parasitisation of D. suzukii 

pupae by T. drosophilae is unlikely to be successful in the soil (Häussling 

et al. 2022, see Publication 2). The fact that the parasitisation is an 

exception applies to all three soil types studied: loamy sand, loam, and 

clay. The reason for the low parasitisation rate in the soil is probably due 

to the physical properties of the soil, which hamper the ability of the 

parasitoid to move within the soil matrix.  

These findings can refine the augmentative release of T. drosophilae 

and potentially improve the biocontrol by adding a layer of sandy soil or 

a plastic mulch around the fruit plants. This layer of sand or mulch could 

increase the desiccation of the larvae searching for pupation sites in the 

soil, as the sandy soil strongly hampers the larval movement (Ballman & 

Drummond 2019, Häussling et al. 2022, see Publication 2) and exposes 

the pupae and larvae to several antagonists such as T. drosophilae and 

other pupal and larval parasitoids.  

When a larval or pupal parasitoid finally parasitises these larvae or 

pupae, the outcome of this parasitisation remains uncertain due to the 

strong cellular immune system of D. suzukii compared to other 

Drosophila (Kacsoh & Schlenke 2012, Poyet et al. 2013, Iacovone et al. 
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2018). The invasive populations in North America and Europe exhibit an 

even more robust cellular immune system than the native Japanese 

population (Poyet et al. 2013). This high level of immunity has resulted 

in parasitism failure for numerous parasitoids, particularly endemic larval 

parasitoids from D. suzukii invasion regions (Chabert et al. 2012, Kacsoh 

& Schlenke 2012, Girod et al. 2018a, Matsuura et al. 2018).  

Similar invasions with a failure of endemic parasitoids have been 

observed for other pests such as the diamondback moth (Plutella 

xylostella), one of the most destructive cosmopolitan pests of Brassica 

crops (Sarfraz et al. 2007). Several parasitoids have been introduced in 

different countries to control the pest, often because native parasitoids 

were unable to parasitise the host, e.g. in New Zealand the parasitoid 

wasps Diadegma semiclausum and Diadromus collaris the diamondback 

moth (Hardy 1938, Talekar & Shelton 1993). 

A more recent example is the invasive brown marmorated stink bug 

(Halyomorpha halys). Native European egg parasitoids have mostly failed 

or have had less success in parasitising this stink bug (Haye et al. 2015, 

Herlihy et al. 2016, Dieckhoff et al. 2017). Similar to D. suzukii, the 

strong immune response of the stink bug has been postulated to be 

responsible for the failure of native parasitoids (Haye et al. 2015, Herlihy 

et al. 2016). In general, invasive herbivore species tend to be less 

attacked by native parasitoids than in their native region, especially when 

the invasion was recent and local parasitoids are not efficiently adapted 

to the herbivore (Cornell & Hawkins 1993). 

In recent years, studies on the immunity of D. suzukii have focused 

on the summer seasonal phenotype. However, as mentioned in Chapter 
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1.5, the most commonly observed seasonal phenotype throughout the 

year in continental and temperate climates is the winter phenotype (Panel 

et al. 2018).  

The immune response to parasitism varies between the winter and the 

summer phenotypes and is also inconsistent between larval, pupal, and 

adult life stages (see Publication 3). The larval stage is particularly 

important for biocontrol as the majority of parasitoids used for 

parasitisation tests of D. suzukii are larval parasitoids. The differences in 

immunity between the two phenotypes do not affect the success of a 

parasitoid in parasitising the larval stage (see Publication 3). In other 

words, the observed differences in immunity between the two 

phenotypes do not lead to differences in the success of the larval 

parasitoid. For biocontrol proposes, this finding means that the observed 

parasitisation rates of the summer phenotypes can be expected to be 

similar to those of the winter phenotypes when parasitised by a larval 

parasitoid. However, we did not test different larval parasitoid species, 

so some uncertainty remains for other parasitoid species. This knowledge 

of immune plasticity also provides a better understanding of pest invasion 

success, as plasticity is the key to that success (Little et al. 2020). 

Seasonal phenotypic plasticity is known in D. suzukii and other 

species, such as D. melanogaster. Although closely related to D. suzukii, 

other species in this genus, such as Drosophila simulans, do not exhibit 

distinct seasonal phenotypes (Behrman et al. 2015). Notably, our study 

(see Publication 3) represents the first investigation of immunity 

between seasonal phenotypes of D. melanogaster. 
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Another prominent example of distinct seasonal phenotypes is the 

honey bee (Apis mellifera L.), where both summer and winter bees occur 

during the year. The complexity of phenotypic differences in honey bees 

parallels that of D. suzukii. Interestingly, comparisons between the two 

honey bee phenotypes revealed no differences in hemocyte counts (Kunc 

et al. 2019, Dostálková et al. 2020). However, in contrast to our 

observation in D. suzukii larvae (see Publication 3), winter bees show 

a more intense response to bacterial infection compared to their summer 

counterparts (Dostálková et al. 2020). These comparisons underline the 

importance of our investigations on seasonal phenotypic variation of 

D. suzukii and their immune responses.  

Moreover, our research has direct implications for the augmentative 

release of the pupal parasitoid T. drosophilae. We have observed that 

T. drosophilae is more successful in parasitising winter phenotype pupae 

than summer phenotype pupae of D. suzukii (see Publication 3). This 

observation is particularly important for the augmentative release in early 

spring when the winter phenotype of the pest is dominant. The potential 

efficacy of this biocontrol approach on the winter phenotype could be 

increased by exploiting the higher success rate of the parasitoid on these 

pupae.  

In conclusion, early parasitoid release during the fruit growing season 

(see Publication 3), combined with soil coverage strategies (Häussling 

et al. 2022, see Publication 2) and the specificity of the parasitoid 

T. drosophilae for D. suzukii (Häussling et al. 2021, see Publication 1), 

can enhance the success of biological pest control using parasitoids.  
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The preference of Trichopria 
drosophilae for pupae of Drosophila 
suzukii is independent of host size
Benedikt J. M. Häussling1*, Judith Lienenlüke2 & Johannes Stökl1

Controlling the cosmopolitan pest Drosophila suzukii (spotted wing drosophila) is a challenge for 
fruit growers. A promising agent for biological control of that pest are parasitoid wasps. Especially 
the widespread pupal parasitoid Trichopria drosophilae had shown the ability to parasitise the pest 
fly. However, as a biocontrol agent, parasitoids can only be effective when they prefer the pest to 
other insects. Until now studies have been inconsistent concerning the preference of T. drosophilae 
for D. suzukii and whether the preference depends on pupal volume. To clarify this inconsistency, we 
used video recordings of parasitisation experiments with a set up to observe the direct host preference 
of the parasitoid. Additionally, the volume of each host pupa was measured. We found significant 
preference of T. drosophilae for D. suzukii pupae independent of the pupal size and of the host species 
the wasps were reared on. The article also discusses the sex ratio and the success of the parasitoid in 
the different pupae characteristics.

The range and speed of the distribution of invasive insect pest species are increasing with globalisation across 
all agricultural ecosystems. These insects can bring considerable negative impacts along with potential massive 
economic losses for  farmers1,2. An example par excellence is the invasive pest Drosophila suzukii Matsumura 
(Diptera: Drosophilidae), also called the spotted wing drosophila (SWD). SWD is endemic in south-east Asia 
and, in the last few years, has become a severe pest to fruit growers in North and South America and  Europe3.

In contrast to most of the other fruit flies in the invaded regions, females of SWD have a serrated  ovipositor4, 
enabling them to lay eggs in healthy and undamaged  fruits5. D. suzukii can reproduce on a broad range of wild 
and cultivated soft-skinned fruit crops and can have an extremely high reproduction  rate6. Therefore, enormous 
populations can be build up quickly and infest fruit crops, where they cause massive economic  damage7.

The control of this Drosophila is still firmly based on the use of insecticides due to the lack of effective alter-
natives. Here, biological options, such as predators, parasitoids, nematodes, bacteria, fungi and viruses, could 
be a possible part of an Integrated Pest Management strategy (IPM)8,9 and interest in them has been growing.

Parasitoids are, in particular, a promising option because, in natural systems, parasitisation rates of Dros-
ophila can reach up to 50%10. Parasitoid wasps from the native range of SWD show high efficacy and specialisa-
tion on the pest  flies11–15. Whereas some of these species were under consideration to be introduced to North 
America and Europe, first specimens were already discovered in North  America16 and  Europe17. However, the 
larval parasitoids native on these continents are not able to successfully reproduce on D. suzukii18,19. The most 
promising native parasitoids in Europe and North America that can successfully reproduce on D. suzukii, are 
the pupal parasitoids Pachycrepoideus vindemmiae Rondani (Hymenoptera: Pteromalidae) and Trichopria dros-
ophilae Perkins (Hymenoptera: Diapriidae)19. Ideally, these wasps should be implemented in an IPM approach.

For an augmentative release, knowledge of the species’ quality parameters, such as host identification, speci-
ficity to the host, the ratio of parasitism, the ratio of emergence (e.g., ≥ 90% for trichogrammatids) and the ratio 
of females (≥ 50%) is  essential20. Furthermore, the release of parasitic wasps should happen as early as possible 
in the growing season, when the population size of Drosophila is still  small21,22.

Trichopria drosophilae is the most promising candidate for augmentative biocontrol of SWD and is already 
available on the  market23,24. This wasp species has a high foraging efficiency on D. suzukii pupae and a high load 
of mature  eggs19,23–29. Furthermore, T. drosophilae can parasitise at lower temperatures (8–25 °C) than the spe-
cies P. vindemmiae30–32. This early parasitisation is an advantage when implementing an IPM program as it can 
parasitise the first generations of the pest early in the year. T. drosophilae can parasitise a broad host range of 
many Drosophilidae  species33, including the widespread fly D. melanogaster Meigen (Diptera: Drosophilidae).
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This fly is not a pest of healthy fruits and consequently not a target of the IPM approach, similar to most 
other Drosophilidae species. For an efficient IPM, it is therefore essential to study the host specificity and the 
host identification mechanism of T. drosophilae.

A preference of T. drosophilae for D. suzukii over D. melanogaster has been observed in several  studies34–36, 
although one study has found no differences in parasitisation between the two  species23. However, D. suzukii 
pupae are larger than pupae of D. melanogaster, at least under optimal food supply. Therefore, it is uncertain if 
this observed preference of T. drosophilae for D. suzukii is due to the larger host pupal size or to the host itself. 
Furthermore, the pupal size is an unsteady factor for host selection as varying food supply under natural condi-
tions can lead to a high variation in pupal size.

Until today studies have used indirect measures for the oviposition preference of wasps on SWD, such as the 
number of emerged parasitoid wasps or the degree of infestation (DI)34–36. These measurements have uncer-
tainties, primarily due to the immune response of the fly species, which can kill the wasp eggs oviposited into 
the larvae or  pupae37. Therefore, the number of emerged wasps is usually smaller than the number of deposited 
eggs. To accurately study the host and oviposition preference, the oviposition events must be observed directly.

In this work, we studied the host preference of T. drosophilae for D. suzukii taking the size of the pupae and 
the immune response of the fly into account. To correct for pupal size, we measured the size of each pupa, and 
by direct observation of each oviposition, we determined the real oviposition preference.

This way, we provide evidence for the host-choice of T. drosophilae and contribute essential new knowledge 
about its behaviour during oviposition as well as about offspring sex-ratios of this promising biological control 
agent. With these new results, effective use of T. drosophilae wasps becomes more feasible, and the negative 
impacts of the invasive D. suzukii flies on crops could be decreased.

Material and methods
Insects. The fly species D. suzukii and D. melanogaster were used for oviposition preference tests of T. dros-
ophilae. The strain of D. suzukii was caught in the state of Hesse, Germany, in 2016 and was refreshed in 2017. 
The strain of D. melanogaster is an established lab strain for multiple generations. D. melanogaster was reared on 
an artificial Drosophila diet (ingredients: 1 l water, 50 g cornmeal, 50 g wheat germ, 50 g sugar, 40 g baker’s yeast, 
8 g agar, 5 ml propionic acid, 20 ml methylparaben (10%)) in Drosophila vials.

Adult D. suzukii flies were kept in a BugDorm cage (MegaView Science Co., Taichung, Taiwan), where 10% 
of sugar water was provided ad libitum. The flies were allowed to lay eggs in Drosophila vials with the same 
artificial diet as D. melanogaster. Then the vials were removed from the cages. The fly development took place in 
these vials until the flies emerged. After some days, they were released into the cage. Variation in pupae volume 
was created by rearing both fly species with a higher and lower density of larvae per amount of diet.

The parasitoid wasp T. drosophilae was provided by the company “Bioplanet” in Cesena, Italy. In the lab, 
two different populations were reared for more than two years (approx. > 40 generations) in Drosophila vials 
on pupae of either D. melanogaster or D. suzukii, henceforth referred to as T. drosophilae < melanogaster > and 
T. drosophilae < suzukii > , respectively. After the wasps’ emergence, they were fed with a 10% honey-water solu-
tion. The parasitoid females used for the experiments were 4–6 days old and were held together with males. All 
insects were kept in a climate- and light-controlled chamber at 24 °C and 70% to 80% RH with a 16:8 h day to 
night rhythm.

Host preference experiments. In a choice experiment, we wanted to test whether females of T. dros-
ophilae prefer to oviposit in pupae of D. suzukii over D. melanogaster. For this, 15 pupae of each D. suzukii and 
D. melanogaster were arranged alternately (D. suzukii pupae next to D. melanogaster pupae and so on) on a disk 
of moist filter paper which was placed in a Petri dish (9.5 cm diameter). We increased the variation in the size of 
the pupae by rearing both fly species (D. melanogaster and D. suzukii) with a higher or lower amount of food per 
larvae. To accurately measure the size of the pupae, the Petri dish was photographed (Canon Eos M100) next to 
a precision ruler for scale. The length and width of each pupa were measured with the software  ImageJ38 from 
the photos, and the volume was calculated using the  formula39:

where V  is the volume, l  the length and w the width of the pupae.
One female of T. drosophilae was added to each Petri dish, and the wasp oviposition was recorded using a 

digital video recorder (Lupustec LE 800 4 K, LupusElectronics GmbH, Landau, Germany) for six hours. To 
reduce possible self-superparasitisation, we used a shorter exposition time of the wasp to SWD pupae than in 
previously conducted  studies23,34–36. The added female of T. drosophilae was either reared on D. melanogaster 
(T. drosophilae < melanogaster >) or D. suzukii (T. drosophilae < suzukii >). The oviposition events (host species 
and duration) were analysed using the event logging software  BORIS40. An oviposition event was logged when 
the wasp pierced a pupa and did not move during that behaviour for a minimum of 30 s.

Eight Petri dishes were prepared for each wasp treatment. As a control, no wasps were added to eight Petri 
dishes with fly pupae. After the potential oviposition, the pupae were transferred individually to 96-well plates 
and the species (D. melanogaster, D. suzukii, or T. drosophilae) and the sex of the emerged insects were recorded. 
When only male wasps hatched from a repetition, it was assumed that the female wasp was unmated, and the 
repetition was excluded from the analysis. All experiments were conducted in the same climate-controlled 
chamber, under the same conditions as for the insects rearing (see “Insects”).
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Sex ratio of emerged parasitoids. Previous studies observed a female-biased offspring sex ratio for 
wasps emerging from D. suzukii compared to D. melanogaster34–36. However, the size of the individual pupae 
was not measured in those studies. To confirm that the sex ratio of T. drosophilae is pupal-size dependent, we 
recorded in both experiments the sex of the emerged parasitoids. The measured size of each pupa was then used 
to determine this dependency.

Statistical analysis. The effect of the Drosophila species D. suzukii and D. melanogaster and of the pupal 
size on the number of parasitised pupae and the number of successful parasitisations by T. drosophilae females 
was analysed using a binomial generalised linear mixed model (GLMMs) in the R package  lme441. The model 
was used for the effect of pupal size on the sex of emerged wasps. As the interaction between wasp type and host 
species in the GLMM was not significant, it was excluded from further analyses. Separate GLMMs for each wasp 
type were performed. Female wasps without observed parasitisation or with only male offspring were excluded 
from testing. The parasitised pupae and number of successful parasitisation events for each wasp treatment and 
host species were compared using the Wilcoxon rank-sum test. Data were analysed in R 3.6.142.

Results
Observed oviposition preference. When the T. drosophilae females from the two populations (reared 
either on D. melanogaster or on D. suzukii) had the choice between D. suzukii and D. melanogaster as a host, 
significantly more pupae of D. suzukii were parasitised (T. drosophilae < melanogaster > W = 3465, p adj = 0.04; 
T. drosophilae < suzukii > W = 5940, p adj = 0.007, Fig. 1). Independent of the host species, T. drosophilae < mel-
anogaster > parasitised significantly more pupae than T.  drosophilae < suzukii > (Wilcoxon rank-sum test; 
W = 24,870, p = 0.002).

The preference of T. drosophilae < melanogaster > was not influenced by the pupal size of D. suzukii (p = 0.89) 
and D. melanogaster (p = 0.44) (Fig. 2). The T. drosophilae < suzukii > preference was also not influenced by the 
pupal size of D. suzukii (p = 0.89). It was, however, influenced significantly by the size of the D. melanogaster 
pupae (p = 0.003; Fig. 2, Table S1).  

Parasitisation success. The number of emerged wasps out of previously parasitised pupae is given by the 
parasitisation success. T. drosophilae tend to have a higher parasitisation success in pupae of D. melanogaster 
compared to those of D. suzukii, although the difference is not significant (W = 2089, p adj = 0.16 and W = 2124, 
p adj = 0.18, Fig. 3). Independent of the pupae species, the wasp strain reared previously on D. melanogaster 
(T. drosophilae < melanogaster >) had a significantly higher parasitisation success than T. drosophilae reared on 
D. suzukii (T. drosophilae < suzukii > ; Wilcoxon rank-sum test; W = 9410.5, p < 0.001).

The parasitisation success of T. drosophilae < melanogaster > was negatively influenced by the pupal volume 
of D. melanogaster pupae (Fig. 4, Table S2). This means that the probability of successful development of a wasp 
decreases with increasing pupal size of flies. Also, with an increasing pupal size of D. suzukii pupae, a visible 
tendency was observed for a decrease in the successful parasitisation of T. drosophilae < melanogaster > . The 
parasitisation success of T. drosophilae < suzukii > was not influenced by the pupal size of D. melanogaster pupae. 
However, in D. suzukii pupae, a slight tendency is observed that the successful parasitisation decreases with 
increasing pupal volume.
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Figure 1.  Proportion of parasitised pupae of D. suzukii (blue) and D. melanogaster (red) by the wasp 
T. drosophilae. The wasp was reared on either D. melanogaster pupae (left side) or D. suzukii pupae (right side) 
(Wilcoxon rank-sum test).
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Emergence of Drosophila from parasitised pupae. To evaluate whether the high parasitisation suc-
cess of the parasitoid, as described in “Parasitisation success”, also means a lower probability that flies emerged 
out of the parasitised pupae, we calculated the proportion of emerged flies out of the parasitised pupae. On 
average, 20–30% flies emerged from the D. melanogaster pupae parasitised from the two different reared wasp 
strains. For the parasitised D.  suzukii pupae, in both wasp strains, significantly fewer flies emerged (T. dros-
ophilae < melanogaster > : W = 2184, p adj =  < 0.001; T. drosophilae < suzukii > : W = 2414, p adj =  < 0.001, on aver-
age 1–5% (Fig. 5).

Sex of emerged wasps depending on host pupal volume. To see if the sex ratio of emerged T. dros-
ophilae can be potentially modified, we plotted the sex ratio of the wasps to the volume of the pupae, out of which 
the wasps emerged. The pupae volume of D. suzukii and D. melanogaster in a no-choice situation had a signifi-
cant increasing effect on the female-biased sex ratio (Fig. 6). However, when the wasps had the choice between 
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Figure 2.  Proportions with a 95% confidence interval of parasitised D. suzukii (blue) and D. melanogaster (red) 
pupae in relation to pupae volume. The wasp T. drosophilae was reared either on D. melanogaster (left side) or 
D. suzukii pupae (right side). The variation of the volume of parasitised and not parasitised pupae volume is 
given in the box plots on top and bottom (for GLMMs see Table S1).
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Figure 3.  Mean (± SEM) proportion of successful parasitisation of pupae of D. suzukii (blue) and 
D. melanogaster (red) by the wasp T. drosophilae. The wasp was reared on D. melanogaster (left side) pupae and 
D. suzukii pupae (right side). No significant differences were observed between the successful parasitisation of 
pupae of D. melanogaster and D. suzukii with females of T. drosophilae reared on D. melanogaster or D. suzukii 
(Wilcoxon rank-sum test).
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the pupae of both Drosophila species (D. melanogaster and D. suzukii), the pupal size did not affect the sex ratio 
(Fig. 7). Furthermore, the sex ratios of the emerged wasps in the two Drosophila species were not significantly 
different, under the choice test set up (post hoc Tukey test: p = 0.178). 

Discussion
Our results show that the parasitoid wasp T. drosophilae has an oviposition preference for pupae of the inva-
sive pest D. suzukii over those of the widespread fly D. melanogaster. The preference for the invasive pest was 
regardless of the host species on which the wasps were reared. Furthermore, we can exclude the pupal volume 
as the reason for that species preference because the pupal size did not affect the oviposition preference, except 
for D. melanogaster pupae parasitised by T. drosophilae reared on D. suzukii. Even when the pupae of the two 
Drosophila species were adjusted to be similar in size, there was still a significant preference for the D. suzukii 
pupae. In total, we can conclude that the choice of T. drosophilae wasps for D. suzukii is a real preference for the 
species and not a preference for larger pupae as concluded in some  studies34,36.
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D. melanogaster (red) pupae in relation to pupal volume. The wasp T. drosophilae was reared on D. melanogaster 
pupae (left side) and D. suzukii pupae (right side). The variation of success and no success of parasitisation to the 
volume of parasitised pupae is given in the box plots on top and bottom (for GLMMs see Table S2).
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Figure 5.  Mean (± SEM) Proportions of emerged hosts from parasitised hosts. The hosts were pupae of 
D. suzukii (blue) and D. melanogaster (red), parasitised from the wasp T. drosophilae. The wasp was reared on 
D. melanogaster (left side) pupae and D. suzukii (right side) pupae. In both wasp populations, D. melanogaster 
had a significantly higher proportion of emerged flies than D. suzukii (Wilcoxon rank-sum test).
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A preference of T. drosophilae for D. suzukii was reported in previous  studies34–36. However, those studies did 
not measure the pupal size, and the preference was based on the number of emerged wasps and flies, not on direct 
observation of oviposition. This difference is important because our data show that direct observations are more 
accurate than the traditionally used measures: the degree of infestation (DI), which measures the proportion 
of successfully parasitised hosts, and the success of parasitism (SP), which measures the proportion of emerged 
wasps out of parasitised pupae. The DI was always higher than the here observed oviposition, and the SP was 
always lower than the here observed parasitisation success (Figure S1, Figure S2). DI and SP are consequently 
less adequate when evaluating wasp parasitisation success. One of the reasons is that defining the preference 
of a parasitoid by the number of emerged parasitoids does not take into account that a wasp larva has different 
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of A: D. suzukii and B: D. melanogaster. Boxplots give the variation in size for the pupae from which male and 
female wasps emerged. The curve is an estimated proportion of the sex as a function of pupal volume with a 95% 
confidence interval (binomial GLMM, Table S3).
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success rates in different Drosophila hosts. Direct observation of the parasitoid’s preference using video record-
ings should thus be the preferred method for an accurate analysis of parasitisation of fly pupae.

One possibility of how parasitoids wasps can distinguish between pupae of different host species is that they 
could use species-specific chemical cues of the  pupae43. Romani, et al.44 observed for T. drosophilae that the 
host’s chemical cues of the anterior spiracles of D. melanogaster are probably the most important cue for host 
recognition. In D. suzukii pupae, these anterior spiracles have seven to eight radially arranged  branches6 and are 
thus more structured than they are in D. melanogaster. The anterior respiratory spiracles are especially crucial 
because the anterior part of the pupae of D. suzukii is orientated outside of fruit or soil, and the soil is the most 
common pupation location of  SWD45. Therefore, this is the only part of the pupae the wasp antenna has physi-
cal contact to during the searching process and, consequently, it may be crucial for the pupae recognition and 
perhaps pupae species recognition.

Furthermore, we noticed during observation of the parasitisation that T. drosophila wasps seem to make their 
decision to parasitise predominantly after drumming with their antennae over respiratory spiracles of the pupae. 
This T. drosophilae behaviour was also observed by Romani, et al.44 and is in accordance with other studies stating 
that, during direct contact of the parasitoid with the host, the host’s form and texture are essential for host selec-
tion and  acceptance46,47. So, we can assume that the preference for D. suzukii is probably due to a combination of 
chemical and physical cues of the pupa’s anterior spiracles, which mediates the parasitoid’s recognition of a host.

The lower parasitisation success rates of the T. drosophilae wasp in D. suzukii compared to those in D. mela-
nogaster could be due to a different immune resistance of the two fly species. Kacsoh and  Schlenke18 and Poyet, 
et al.48 found a higher haemocyte load and lower encapsulation rates in D. suzukii larvae than in D. melanogaster 
larvae when they were parasitised with larval parasitoids. Furthermore, at least in D. melanogaster, the immune 
system of the pupae is different from the larval immune system, for example, the haemocytes undergo mor-
phological changes in the pupal  stage49. The immune system of D. suzukii pupae has not yet been studied, but 
we observed these morphological changes of the haemocytes also in D. suzukii pupae (unpublished results).

The lower success rate of T. drosophilae in pupae of D. suzukii does not benefit the host. It was exceptional for 
an adult fly to emerge out of a parasitised D. suzukii pupa. Such high mortality of flies during their development 
was not observed for D. melanogaster. This lack of survival advantage for D. suzukii was also observed by Kacsoh 
and  Schlenke18 and Iacovone, et al.50. The reason that nearly no parasitised pest fly emerged could be a hyperac-
tive immune system in D. suzukii, as a hyper-activation of the JAK/STAT signalling pathway was observed to 
trigger self-encapsulation in D. melanogaster  larvae51.

However, self-encapsulation was not observed until now in pupae of Drosophila and is unlikely because the 
key haemocytes for encapsulation, the lamellocytes, are no longer present in the pupae and cannot be induced 
by  injury49. Although the larval immune system of D. suzukii is known to resist parasitoids strongly, this effect 
has not yet been studied for its pupae. Further research is needed to determine whether, in general, the pupae of 
D. suzukii also have in comparison to other Drosophila a stronger resistance (low parasitisation success) against 
pupal parasitoids. It remains unclear whether the survival disadvantage of the pest fly is due to a hyperactive 
immune system or possibly due to the venom of the pupal parasitoid injected during parasitisation, which affects 
the D. suzukii pupae.

In parasitisation tests of T. drosophilae on pupae of different volume of either D. melanogaster or D. suzukii 
(no-choice tests), the sex of the emerged wasp depends on the pupal size: Out of larger hosts, female parasitoids 
predominately emerged, whereas male wasps predominantly emerged out of smaller hosts. So, the probability 
that a diploid (fertilised) egg was oviposited by a parasitoid female increased with increasing host pupal volume 
(Fig. 6). In several parasitoid systems, it was observed that the sex ratio shifts in larger hosts to be more female-
biased52–54. The larger hosts give increased fitness for both sexes of the parasitoid; however, this increase is greater 
for female wasps than for male  wasps52. Consequently, an ovipositing female should lay female offspring in larger 
hosts, which is what we observed for T. drosophilae.

However, in choice tests where wasps could decide between differently sized pupae of the two host species, we 
found no effect of the host size on the sex of the parasitoids offspring. This could be due to the decision to oviposit 
in different species being dominant over the sex ratio adjustment of a female T. drosophilae. Therefore, the effect 
of host size on sex ratio is missing in the species choice test. Boycheva Woltering, et al.35 also found a higher 
female-biased sex ratio for T. drosophilae emerging from D. suzukii pupae than from those of D. melanogaster 
or D. immigrans under choice situations. In a no-choice situation, the sex ratios were similar for all three hosts. 
However, in those tests, they did not adjust the host size or measured the variance in host size. Therefore, in their 
study, the effect of host size on the sex ratio of the parasitoid offspring remains unclear.

For a mass-rearing, a high female-biased sex ratio is beneficial, especially for the last wasp generation, which 
will be released into the field. An adjustment to a higher female-biased sex ratio appears to be achievable by 
rearing the wasps on hosts with larger pupal sizes. Furthermore, the species for mass rearing can be D. mela-
nogaster which is more accessible and the host species does not appear to negatively influence the parasitoid’s 
preference for D. suzukii.

Conclusion
In the last years, the pest species D. suzukii causes massive agricultural losses worldwide. An effective control 
agent for D. suzukii in an IPM approach could be the parasitoid wasp T. drosophilae.

Here, a preference of T. drosophilae for the pest is essential for the success of a parasitoid release under field 
conditions. We could show that T. drosophilae has a significant preference for D. suzukii and that this preference 
is independent of the pupae size and the fly species on which the wasps were reared. Also, the probability of a 
successful parasitisation of T. drosophilae is not affected by the previous hosts. We, therefore, conclude that, for 
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mass rearing of the wasps, there is no benefit from using D. suzukii as a host. Instead, D. melanogaster, which is 
easier to handle and to rear, can be used to mass-rear the wasps.

The efficiency of a parasitoid wasp as a biocontrol agent also depends on the ratio of female wasps. Here we 
show that large-sized D. melanogaster pupae can be used to increase the proportion of female T. drosophilae, 
reared either on D. suzukii or D. melanogaster.

Overall, our study showed that T. drosophilae is a generalist parasitoid with a preference for D. suzukii over 
the very common fly D. melanogaster. This preference makes this parasitoid an even more promising candidate 
as a biocontrol agent in an IPM for D. suzukii.
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Below ground efficiency 
of a parasitic wasp for Drosophila 
suzukii biocontrol in different soil 
types
Benedikt J. M. Häussling *, Melinda Mautner & Johannes Stökl 

The parasitoid wasp Trichopria drosophilae is promising as a biocontrol agent for controlling the 
ubiquitous pest Drosophila suzukii (Matsumura). Crucial for the successful implementation of any 
biocontrol agent is a high parasitisation rate by the parasitoid. Most studies investigating the 
parasitisation rate of D. suzukii pupae have focused on parasitisation in the fruit or in a petri dish. 
However, the predominant pupation site of D. suzukii in the field is the soil. Unfortunately, little 
is known on how well parasitoid wasps can detect and parasitise pupae of D. suzukii buried in the 
soil. Therefore, we conducted soil parasitisation experiments of T. drosophilae on D. suzukii pupae 
using two pupation depths in three different soil types (loamy sand, loam, and clay). In all three soil 
types, we found generally low D. suzukii pupae parasitisation rate by T. drosophilae, independent 
of the pupation depth. The pupation behaviour of D. suzukii and the parasitisation behaviour of T. 
drosophilae are discussed in detail. For pest control in most soil types, our results mean that the 
number of D. suzukii larvae pupating in the soil should be reduced, e.g., by adding a layer of sandy soil 
or covering the soil with plastic mulch. This might increase the probability of success when using T. 
drosophilae as a biocontrol agent.

The cosmopolitan fruit pest Drosophila suzukii, also called spotted wing drosophila, is still a major challenge for 
farmers worldwide. Especially in years with favourable conditions for the pest, the risk of total yield losses can 
be  high1,2. Therefore, functional integrated pest management methods are essential to control the  pest3,4. Conse-
quently, extensive knowledge is required for a broad range of different possible control methods. One promising 
candidate is larval and pupal  parasitoids5–9. Parasitoids, mostly wasps, lay their eggs in or on a host, for example 
in the larvae or pupae of D. suzukii. The larvae of the parasitoid then feed on the host and eventually kill it.

One advantage of parasitoids as pest control is that they can be mass-reared and released at a certain date. 
Thus, population growth can be controlled if release is early in the growing  season9. Especially for D. suzukii, 
early control is necessary because its population can be high in the surrounding habitats and the insects thus 
mass invade the fruits when they are nearly  ripe10. In field and laboratory studies, naturally occurring parasitoids, 
such as the pupal parasitoids Pachycrepoideus vindemiae and, especially, Trichopria drosophilae, have proved 
promising results in controlling D. suzukii8,11–15. The pupal parasitoid T. drosophilae can parasitise the pupae of 
D. suzukii during the entire pupal development  time16. A crucial ability of the parasitoid during parasitisation is 
locating the host pupae. The location of the pupae of D. suzukii can be directly in the  fruit12, but especially in the 
field, the large majority of the larvae pupate in the soil underneath the fruit  plant17,18. This location means that 
the parasitoid needs to be able to locate the pupae in or near the fruit and in the soil matrix.

Guillén, et al.19 found that P. vindemiae could only locate pupae of the Mexican fruit fly Anastrepha ludens 
when the pupae were on the soil surface. They could not locate them when they were in the soil. In contrast, 
another study found that P. vindemiae and T. drosophilae can parasite D. suzukii pupae in the  soil12. In their 
study, Wang, et al.12 studied the parasitisation rate of D. suzukii pupae in fruits and the soil. However, it is 
unclear whether the pupae were actually buried in the soil or lay accessible on the soil surface. Furthermore, 
neither Guillén, et al.19 nor Wang, et al.12 studied the parasitisation rate in different soil types. Therefore, it is 
still unclear in what soil type and to which soil depth T. drosophilae is capable of finding and parasitising the 
pupae of D. suzukii.
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To answer this question, we investigated the pupation behaviour of D. suzukii and the parasitisation rate of 
T. drosophilae in three different standardised soil types (loamy sand, loam, and clay) with the same soil moisture 
and at two soil depths (0–6 mm and 7–12 mm). Furthermore, the hatching rate of D. suzukii was assessed under 
these soil conditions.

Material and methods
Insects. Drosophila suzukii were caught in the state of Hesse, Germany, in 2016. The parasitoid wasps T. dros-
ophilae were provided by Bioplanet s.r.l. (Cesena, Italy). D. melanogaster was the host for the T. drosophilae. 
The D. suzukii, D. melanogaster and T. drosophilae were reared and kept under the conditions as described in 
Häussling, et al.15.

Standard soil types. Three different standard soils were used. The soils were chosen to be distinctly differ-
ent in particle size distribution. According to the United States Department of Agriculture (USDA) classifica-
tion, the soil types used for these experiments were: loamy sand, loam, and clay (Supplementary Table 3). Using 
these soil types ensured different physical properties for the fly larvae when they pupated and for the wasp when 
they searched and parasitised pupae in the soil. Soils were obtained from the “Landwirtschaftliche Untersu-
chungs- und Forschungsanstalt” (LUFA) in Speyer, Germany.

The Water Holding Capacity (WHC) of all soil types were measured (dried at 105 °C), and then the soils were 
then adjusted to 40% of the maximal WHC for each soil type. This percentage was the optimal soil moisture 
for finding the pupae in the soil after the parasitisation exposure. In soil with higher soil moistures, finding the 
pupae in the soil was challenging.

Experimental set‑up. Plastic boxes (135 mm × 80 mm × 120 mm) were used as arenas for the parasitisa-
tion. The bottom of the box was filled with soil to 3 cm and covered with a plastic net with 3 mm mesh size. This 
layer was included to decrease temperature effects from the bottom of the boxes. Above the net, a layer of 6 mm 
of one of the three standard soils was added, then one more plastic net and 6 mm of the top layer of the same 
standard soil. The box was closed with a fine mesh net secured by a rubber band on the top of the plastic box. 
The top had a hole in the middle to allow airflow while the mesh prevented the escape of the flies and wasps.

We tested the parasitisation and pupation rates in the three soil types by providing each experimental box 
with 50 D. suzukii larvae of the  3rd instar that could decide freely in which of the two soil depths they pupated. To 
test whether the time of the parasitisation influenced the parasitisation rate, we either directly added five female 
wasps to the larvae or waited for 24 h before releasing the wasps, allowing the larvae to pupate first. The wasps 
had 24 h to parasitise the pupae in the soil. We did n = 57 replicates, 19 for each soil type, with 50 D. suzukii each. 
To determine the pupation rates without parasitisation, we performed a negative control treatment (n = 39, 13 
for each soil type, with 50 D. suzukii each). Here, no wasps were released in the boxes. As a positive control, we 
also analysed the parasitisation rate when all pupae were easily accessible and not buried in the soil. For this 
positive control (n = 5), 30 pupae of D. suzukii were offered on a wet filter paper in a Petri dish to three female 
T. drosophilae. In all treatments, the wasps were provided with a drop of diluted honey and the boxes were placed 
in a greenhouse. The temperature and the humidity were logged during the investigation.

The pupae of each soil depth and type were collected separately after 24 h of parasitisation time. This time was 
observed to be sufficient for a successful parasitisation of D. suzukii11,15,16,20,21. The pupae were photographed next 
to a precise ruler for scale to determine the pupal size. The length and width of each pupa were measured with the 
software ImageJ, and the volume was calculated with the formulae from Otto and  Mackauer22. Afterwards, the 
pupae were stored in a 96-well-plate in a light-controlled chamber at 24 °C and 70% to 80% RH with a 16:8 h day 
to night rhythm. The sex of the emerged D. suzukii and T. drosophilae was recorded.

Statistical analysis. The effect of the soil type, the soil depth and the presence of a wasp on the proportion 
of hatched D. suzukii was analysed using a binomial generalised linear mixed model (GLMMs) in the R pack-
age ‘lme4’23. The GLMMs were also used to analyse the effect of soil type and pupation depth on the proportion 
of hatched T. drosophilae and of soil type on D. suzukii larvae pupated in the upper soil layer. In both analyses, 
we added the pupae from each box as a nested random effect. As the interactions among the predictors in the 
GLMMs were not significant, they were excluded from further analyses. We also found no influence of the time 
of wasp release and therefore did not differentiate between the two time points in our analyses (see Supplemen-
tary Tables 1, 2). Data were analysed in R 3.6.124.

Results
Pupation depth of Drosophila suzukii larvae. Pupation on the soil surface was an exception, so include 
them in the pupation depth 0–6 mm. The larvae of D. suzukii differed in their pupation depth depending on 
the soil types (p =  < 0.001, Table 1, Fig. 1). In sandy soils, nearly all (median: 96%) pupae pupated in the upper 
soil layer; in loam soils, the median was 72%, and in clay, the median in the upper layer was 58%. The pupation 
depth in the sandy soil was significantly different from that in loam and clay soil types. However, the result in 
the latter two did not differ (Table 2). Additionally, we found that the pupae volume did not affect the pupation 
depth (p = 0.75, Table 1).

Hatching rate of Trichopria drosophilae. The proportion of emerged T. drosophilae was low for all soil 
types and pupation depths (Fig. 2). The soil type (p = 0.72) and the pupation depth (p = 0.11) had no effect on 
the proportion of emerged wasps (Table 3). In loamy sand, wasps hatched, on average, out of 1.8% of the pupae, 
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followed by clay with 4.5% and loam with 5.1% (Fig. 2). In contrast, in the positive control, where the wasps had 
free access to the pupae in a petri dish, the mean hatching rate was much higher (36%). The wasp hatching rate 
of the two pupation depths was similar for loamy sand (0–6 mm 1.5%; 7–12 mm 2.2%). In loam (0–6 mm 8.3%; 
7–12 mm 1.9%) and clay soil (0–6 mm 6.5%; 7–12 mm 2.5%, Fig. 3), the difference was more distinct but also 
not statistically significant.

Hatching rate of Drosophila suzukii. There was no difference in the hatching rates of D. suzukii between 
the negative control and the wasp treatment (p = 0.11, Table 4). Furthermore, neither the proportion of emerged 
T. drosophilae nor the soil type (p = 0.08) affected the emergence rates of D. suzukii. Only the pupation depth 
affected the proportion of hatched flies (p = 0.005), with more flies hatching out in the deeper soil layer (p = 0.02, 
Table 5, Fig. 4). The median of the hatching rate was between 34.2 and 51.4% (Fig. 5). In contrast, in the positive 
control, in which the wasps had free access to the pupae, the hatching rate of the flies was much lower, with a 
median of 6.7%.

Table 1.  Pupation depth—generalised linear mixed effect model (family = binomial, link = logit, random 
factors: “Box/pupae volume”, “mean temperature”) examining the effect of soil type and pupal volume on the 
proportion of larvae (D. suzukii) pupating in the upper soil layer. Significant values are in bold.

Predictor χ2 df p-value
Soil type 61.06 2 < 0.001
Pupal volume 0.11 1 0.75

Figure 1.  Proportion of Drosophila suzukii pupae that pupated in the upper layer (0–6 mm) in relation to the 
lower layer (7–12 mm). The larvae pupated in the three different soil types: loamy sand, loam and clay (n = 96).

Table 2.  Multiple comparison between soil types of the pupated pupae. Test: Tukey Honest Significant 
Difference. Significant values are in bold.

Multiple comparison Estimate SE Z p-value
l. sand–loam 2.23 0.39 5.70 < 0.001
clay–loam − 0.76 0.36 − 2.08 0.10
clay–l. sand − 2.98 0.39 − 7.63 < 0.001
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Discussion
The pupae of D. suzukii buried in soils were rarely parasitised by the wasp T. drosophilae in all three soil types, 
with wasps emerging from only 1.8% to 5.1% of the fly pupae. This result clearly demonstrates that the parasitisa-
tion of host pupae in soils through T. drosophilae is an exception. The few hatched wasps were mainly from the 
upper soil layer. When the wasp had free access in the positive control, the percentage of emerged wasps raised 
to 36%. This range was also observed from Chabert, et al.7.

Figure 2.  Proportion of hatched Trichopria drosophilae wasps out of pupae of Drosophila suzukii in the three 
soil types (loamy sand, loam, and clay) and the positive control where the wasp had free access to the pupae in a 
petri dish. (Soil types: n = 57, positive control: n = 5).

Table 3.  Hatched wasps—generalised linear mixed effect model (family = binomial, link = logit, random 
factors: “Box/pupae number”, “Percent Pupated”) examining the effects of pupation depth and soil type on the 
hatching rate of the wasp T. drosophilae on D. suzukii pupae.

Predictor χ2 df p-value
Soil type 0.68 2 0.71
Pupation depth 2.53 1 0.11

Figure 3.  Proportion of hatched Trichopria drosophilae wasps between two different pupation depths (0–6 mm 
and 7–12 mm) in the soil types loamy sand, loam and clay (n = 57).
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These findings are consistent with the earlier results of Guillén, et al.19, who observed very low parasitisation 
of pupae of the Mexican fruit fly Anastrepha ludens by the pupal parasitoid Pachycrepoideus vindemiae in the 
soil. In fact, in their study, the parasitisation of pupae only happened on the soil’s surface. In our experiments, 
we had nearly no pupation on the top of the soil. Therefore, the few parasitisations in our study mainly happened 
in the soil. In contrast, Wang, et al.12 found high parasitisation rates of D suzukii pupae in soils by T. drosophilae. 
(approx. 55%) and P. vindemiae (approx. 30%), but they did not differentiate between soil types or pupation 
depths. Perhaps the pupae were easily accessible on the soil surface in their study.

The low proportion of hatched wasps in our study is probably due to the physical properties of the soil, which 
hamper the wasps’ ability to pass the soil matrix and parasitise the host pupae. Another possibility is, although it 
has yet to be verified, that T. drosophilae probably recognises its host through kairomones, and the kairomones 
are reduced when the host pupae are buried in the soil. This reduction is could be caused by the complex medium 
soil, where semiochemicals do not diffuse to outside the  soil25.

The number of hatched flies did not differ between the control treatment and the wasp treatment in soils 
(Fig. 5). In contrast, the number of emerged T. drosophilae wasps was seven times higher in the positive control 
without soil than in the treatment with soil (Fig. 2). Therefore, we conclude that the low number of hatched 
wasps is due to low parasitisation rates, rather than a difference in the flies’ immune responses between soil 
treamtents and the control.

Previous studies have shown that the majority of D. suzukii larvae pupate in the soil and less often near or in 
the  fruit17,18. It seems that the choice of the larvae’s pupation site depends on the interspecific competition of the 
fly larvae: more larvae pupate outside of the fruit with increasing  competition26. In our experiment, we found 
that most larvae, which had only the choice of pupating in the soil, pupated in the upper 0–6 mm soil layer (only 
a few on the top). We did not expect high interspecific competition in our experiment due to the relatively low 

Table 4.  Hatched flies—generalised linear mixed effect model (family = binomial, link = logit, random factors: 
“Box/Pupae number”, “Percent pupated”, “Mean Temperature”) output quantifying the effect of pupation depth, 
soil type and the treatment (with wasp/without wasp) on the hatching rate of the fly D. suzukii.  Significant 
values are in bold.

Predictor χ2 df p-value
Soil type 5.10 2 0.08
Pupation depth 7.87 1 0.005
Treatment 2.51 1 0.11

Table 5.  Multiple comparison between pupation depth of the hatched flies. Test: Tukey Honest Significant 
Difference. Significant values are in bold.

Multiple comparison Estimate SE Z p-value
7-12–0-6 mm 0.35 0.13 2.81 0.02

Figure 4.  Proportion of hatched Drosophila suzukii flies between the two pupation depths 0–6 mm and 
7–12 mm and the three soil types (loamy sand, loam and clay; n = 96 as waps and control treatments showed no 
difference).
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number of larvae. The larvae appear to choose their pupation depth differently depending on the soil type. In 
sandy soils, they pupate almost exclusively in the upper soil layer; in clay and loam soil, pupation also happened 
in the lower soil layers. Renkema and  Devkota27 also found that, in the field, the majority of larvae pupate in 
the upper soil layer, especially in saturated sandy soils. In contrast, in dry sandy soils, most larvae either desic-
cated or pupated on the soil surface. The pupation behaviour of D. suzukii larvae is affected by the soil type. 
In soils with smaller particles sizes (e.g., clay soil), D. suzukii larvae had a deeper pupation depth than in soils 
with larger particle sizes (Fig. 1, e.g., sandy loam, Supplementary Table 3). A possible explanation could be that 
the presence of predominantly larger soil particles hampers larvae movement. We observed that, particularly 
in sandy soils, several soil particles were attached to the pupae, possibly decreasing the movement ability of the 
larvae. This hypothesis is supported by the fact that in Bactrocera oleae, increasing soil particle size was found 
to reduce pupation  depth28,29.

Genetic analyses confirmed that a single gene can explain the pupation behaviour and preference for habitat 
differences (fruit or soil) in D. melanogaster30,31. The habitat choice of D. melanogaster is influenced not only by 
the soil water content but also by the air temperature and the fly strain. The larvae tend to choose the best suit-
able pupation site for emergence, which is high soil water content and has optimal temperature of 25 °C32. As for 
D. melanogaster, our results show the same effect for D. suzukii in which pupation in wet soils (40% WHC) also 
occurs in the upper soil layer. Furthermore, it is also possible that D. suzukii have a genetic polymorphism in 
their population that determines the pupation site similar to that of D. melanogaster. Interestingly, we found a 
significantly higher hatching rate for D. suzukii adults in the deeper soil layer. The higher hatching rates might 
arise from more favourable temperature conditions in deeper soil depth and/or, that only the physically fitter 
larvae can move to deeper soil layers.

In conclusion, this study shows that the soil is a massive barrier for the parasitoid T. drosophilae when para-
sitising its host.

Our results can be implemented in an integrated pest management method by adding a layer of sandy soil 
or a plastic  mulch33 on top of the ground under the fruit plants. This layer could decrease the hatching rate of 
D. suzukii due to the desiccation of the larvae and would expose the pupae to a range of antagonists, including 
T. drosophilae18. The area covered with the sandy soil can be minimal because D. suzukii larvae have a limited 
movement ability of less than 7.5  cm34.

Data availability
All data generated or analysed during this study are included in this published article (and its supplementary 
information files).

Received: 20 March 2022; Accepted: 17 May 2022

Figure 5.  Proportion of hatched Drosophila suzukii flies from the three soil types (loamy sand, loam, and 
clay). Pupae were either exposed to the parasitoid wasp (Wasp) or not (Control). The fourth panel displays the 
number of hatched D. suzukii in the positive control, where the wasps had free access to the pupae in a petri dish 
(wasp: n = 57, control: n = 39, positive control: n = 5).
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1  |  INTRODUC TION

Pest management is an ongoing global challenge that requires effec-
tive and sustainable solutions (Omkar, 2016). One possible solution 
is the use of parasitoid wasps, which have been successfully em-
ployed in numerous biocontrol systems. A biocontrol method that 
can provide timely control is augmentative release, where the natu-
ral enemy is mass- reared and released periodically (Lenteren, 2003).

To implement a similar system, research has focused on parasit-
oids to control the cosmopolitan pest Drosophila suzukii in an aug-
mentative biological control approach (Häussling et al., 2022; Knoll 

et al., 2017; Rossi Stacconi et al., 2015; Wang et al., 2016b, 2021). 
In contrast to Drosophila melanogaster, which aims at rotten fruits, 
the pest D. suzukii can cause quality and high yield losses in ripening 
and ripe thin- skinned fruits (Bolda & Goodhue, 2010; DiGiacomo 
et al., 2019; Farnsworth et al., 2017; Mazzi et al., 2017). The cosmo-
politan pest is endemic to Southeast Asia and spread to Europe in 
2008 (Calabria et al., 2012), North America in 2008 (Hauser, 2011), 
South America in 2013 (Deprá et al., 2014) and Africa in 2013 
(Anfora et al., 2020).

Unfortunately, studies in recent years have shown low para-
sitisation success of parasitoids on D. suzukii larvae compared to 
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Abstract
Controlling the worldwide invasive pest Drosophila suzukii remains a challenge. One 
promising biological method for managing this pest is the use of larval and pupal 
parasitoids. Unfortunately, most of the larval parasitoids fail to successfully parasitise 
D. suzukii larvae in laboratory experiments due to the high immunity of the pest. So 
far, only the summer phenotype (summer morph) of D. suzukii has been tested for 
parasitisation. However, the winter phenotype (winter morph) is the dominant form 
of D. suzukii throughout the year in the northern hemisphere. Therefore, this study 
investigates the immunity during parasitisation for both phenotypes using the larval 
parasitoid Asobara japonica and the pupal parasitoid Trichopria drosophilae. It is the 
first to compare across all life stages the immunity of the winter phenotype to the 
summer phenotype of not only D. suzukii but also D. melanogaster. Our results indicate 
differences in the immunity between the two phenotypes for larvae, pupae, and 
adults. However, the degree and direction of these differences were inconsistent 
across the different life stages of D. suzukii. The findings have important implications 
for the integrated pest management (IPM) of D. suzukii.

K E Y W O R D S
biological pest control, haemocytes, immunity, phenoloxidase, spotted wing drosophila, winter 
morph
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D. melanogaster larvae (Chabert et al., 2012; Kacsoh & Schlenke, 2012). 
In particular, larval parasitoids from the non- native regions, Europe 
and America, often have lower parasitisation success than those 
from native regions, such as China and Japan (Chabert et al., 2012; 
Girod, Borowiec, et al., 2018; Matsuura et al., 2018). For example, 
Asobara japonica from the native region of D. suzukii has a success 
rate of parasitism (SP) of over 90%, but Asobara tabida from France 
has a SP of 0% (Chabert et al., 2012).

One explanation for the high invulnerability of the D. suzukii 
larvae is probably the high haemocyte load of D. suzukii larvae 
compared to D. melanogaster larvae (Iacovone et al., 2018; Kacsoh 
& Schlenke, 2012; Poyet et al., 2013). Circulating haemocytes are 
blood cells that are responsible for detecting foreign organisms 
(e.g. parasitoid eggs) and rapidly forming multilayered capsules 
(encapsulation, lamellocytes), together with the phenoloxidase- 
mediated melanogenesis, they are part of the innate immune 
system (Carton et al., 2008). Interestingly, the invasive strains of 
D. suzukii in Europe and America have an even higher haemocyte 
load than those in the original distribution area in Asia (Poyet 
et al., 2013), probably due a bottleneck during the invasion event 
effect (Facon et al., 2011; Lee, 2002). This high load may enable 
the immune system of D. suzukii to resist parasitisation, particu-
larly by parasitoids from regions outside the native range of D. su-
zukii (Kacsoh & Schlenke, 2012). Surprisingly, despite this high 
haemocyte load, encapsulation is delayed in D. suzukii compared 
to D. melanogaster (Iacovone et al., 2018).

The pest D. suzukii has two seasonal phenotypes: A summer and 
a winter phenotype, also known as summer and winter morphs. 
Adults of the winter phenotype have a longer lifespan at lower 
temperatures, have larger and darker bodies (Shearer et al., 2016; 
Wallingford & Loeb, 2016) and enter a temperature- dependent 
reproductive diapause (Rossi- Stacconi et al., 2016; Toxopeus 
et al., 2016; Zerulla et al., 2015). Furthermore, comparisons of 
the two phenotypes showed that the winter phenotype has an 
overexpression of detoxification genes in response to insecti-
cides (Seong et al., 2022) and the summer morphs have a higher 
attraction to food odours (Schwanitz et al., 2022). The winter 
phenotype is adapted to colder conditions and is, therefore, the 
dominant phenotype at lower temperatures. In the Netherlands, 
for example, the winter phenotype is dominant from September 
to June (Panel et al., 2018). Therefore, the winter phenotype is 
likely to be the dominant phenotype when population control of 
D. suzukii is required for early spring in continental and oceanic 
climates. Population density control is more effective in early 
spring because the population is at a bottleneck after the win-
ter (Rossi Stacconi et al., 2018; Rossi- Stacconi et al., 2016; Wiman 
et al., 2014). Furthermore, D. melanogaster also shows these sea-
sonal phenotypes under the influence of the developmental tem-
perature (Ayrinhac et al., 2004; Bouletreau- Merle et al., 1986; 
Gibert et al., 2000).

Consequently, for successful biocontrol in the given situation, 
parasitoids should be able to parasitise the winter phenotype. As 
mentioned above, only a few parasitoid species can overcome the 

larval immune response of the Drosophila larvae and successfully 
develop (Chabert et al., 2012; Gabarra et al., 2014; Girod, Borowiec, 
et al., 2018; Iacovone et al., 2018; Kacsoh & Schlenke, 2012; Wang 
et al., 2020). The most promising larval parasitoids are Asobara 
japonica (Biondi et al., 2020; Wang et al., 2021) Leptopilina ja-
ponica (Daane et al., 2016; Girod, Rossignaud, et al., 2018) and 
Ganaspis brasiliensis (Fellin et al., 2023; Wang et al., 2020) as 
well as the pupal parasitoids Trichopria drosophilae (Falagiarda & 
Schmidt, 2020; Hougardy et al., 2022) and Pachycrepoideus vin-
demiae (Knoll et al., 2017; Wang et al., 2016a). Unfortunately, so 
far, all parasitisation tests for D. suzukii have been performed on 
the summer phenotype. It remains unknown whether the winter 
phenotype larvae or pupae have the same immune response to 
parasitisation as the summer phenotype.

We tested the immune system response to parasitism in 
winter and summer phenotypes of D. suzukii and D. melanogas-
ter using the larval parasitoid A. japonica and the pupal parasit-
oid T. drosophilae, both potential biocontrol agents (Colombari 
et al., 2020; Falagiarda & Schmidt, 2020; Girod, Lierhmann, 
et al., 2018; Häussling et al., 2021; Herz et al., 2021; Matsuura 
et al., 2018; Wang et al., 2020, 2021). Additionally, we determined 
the phenoloxidase activity of the larval haemolymph of the two 
phenotypes of D. suzukii and D. melanogaster and counted all four 
different types of haemocytes. The haemocyte counts and the 
phenoloxidase activity provides an overview of the innate immune 
system of both phenotypes. Furthermore, we measured the phe-
noloxidase activity of the haemolymph and counted haemocytes 
from adult females. This should provide a deeper understanding 
of adult immunity and allow conclusions about the life cycle of 
haemocytes.

2  |  MATERIAL S AND METHODS

2.1  |  Insects

Drosophila suzukii were caught in the state of Hesse, Germany, in 
2016. The parasitoid wasps Trichopria drosophilae were provided by 
the company ‘Bioplanet’ in Cesena, Italy. D. suzukii, D. melanogaster, 
and T. drosophilae were reared on D. melanogaster and kept under 
the conditions described in Häussling et al. (2021). Asobara 
japonica were received from the Department of Evolutionary 
Animal Ecology at the University of Groningen. They were reared 
on D. melanogaster larvae. The parasitoid wasps were fed with a 
50% honey–water solution on filter paper, and both sexes were 
kept together. The parasitoid wasps were, as usual, 4–6 days old 
when used in the experiment, so they were mostly mated. The 
summer phenotypes of D. melanogaster and D. suzukii and the 
parasitoids were kept in a climate-  and light- controlled chamber at 
24°C and 70%–80% RH with a 16:8 h day/night rhythm. The winter 
phenotypes were kept for the hole development in a climate-  
and light- controlled chamber at 15°C and 70%–80% RH with an 
8:16 h day/night rhythm.
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2.2  |  Parasitisation experiment

In the parasitisation experiment, we tested the parasitisation rate 
of A. japonica on second instar larvae and the parasitisation rate 
of T. drosophilae on pupae of both fly species. Second instar larvae 
of the two seasonal phenotypes of D. suzukii and D. melanogaster 
were used to test larval parasitisation. The larvae were flushed out 
of a Drosophila vial onto a fine sieve (300 μm aperture), and 740 
medium- sized second instar (L2) larvae were collected with a fine 
paintbrush under a stereomicroscope and placed in Drosophila 
Ringer solution to free them from residues (per 1000 mL water: 
0.33 g CaCl2·2H2O, 13.6 g KCl, 1.21 g Tris base; pH adjusted to 7.2 
with 1 N HCl). After the collection (max. 30 min), the larvae were 
dried on a precision wipe. For each treatment, 30 dried larvae 
were transferred to a piece of Drosophila diet in a Petri dish. For 
the parasitisation treatment, three female A. japonica wasps were 
placed on the Petri dish for 6 h at 24°C. We used three wasps 
to increase the likelihood that the larvae would be parasitised. 
The piercing was performed as described in the larval immunity 
experiment in Section 3.3. For each treatment, nine Petri dishes 
were prepared. After pupation, each pupa was transferred to 
each well of a 96- well plate. The plate was covered with a gas- 
permeable sealing membrane (Breath- Easy® sealing membrane, 
Sigma- Aldrich) and stored at 24°C. After hatching, the number 
of emerged wasps, flies and unhatched pupae were counted. The 
degree of infestation (DI) (Boulétreau & Fouillet, 1982; Boulétreau 
& Wajnberg, 1986) was estimated using the equation:

where DC describes the number of emerged flies in the control group 
and DT the number of flies that emerged from the treatment groups 
(parasitisation, pierced). 

(

DC − DT

)

< 0,
(

DC − DT

)

 was set = 0. We in-
cluded piercing for the DI to differentiate between wounding reactions 
and immune reactions.

In the pupal parasitisation experiment, 15 pupae of either the 
summer or the winter phenotype of D. suzukii or D. melanogaster 
were placed on moist filter paper. The pupae were tanned pupae of 
similar age. Tanning was visually similar between the phenotypes. 
This filter paper was in a Petri dish (9.5 cm diameter) and offered to 
one female parasitoid T. drosophilae. The temperature of the parasit-
isation and storage temperature was either the rearing temperature 
of the summer phenotype (24°C) or the winter phenotype (15°C) 
(see Section 3.1), but both phenotypes were observed at both tem-
peratures. The oviposition behaviour of the wasp was recorded for 
6 h using a video recorder (Lupustec LE 800 4K, Lupus- Electronics 
GmbH, Landau, Germany), as described in Häussling et al. (2021), 
and the number of oviposition events were counted. Multiple rep-
etitions were observed simultaneously, each with its own camera. 
This method was used for T. drosophilae parasitism because, unlike in 
the A. japonica parasitism experiment, the pupae are unable to move, 
allowing the oviposition of each pupa to be observed. We counted 
an event as oviposition when the wasp pierced a pupa and did not 

move for at least 30 s. For D. suzukii we had sample sizes of 22 Petri 
dishes for the winter phenotype (9 at 24°C and 13 at 15°C) and 16 
Petri dishes for the summer phenotype (8 at 24°C and 8 at 15°C). 
For D. melanogaster, we had sample sizes of 31 Petri dishes for the 
winter phenotype (22 at 24°C and 9 at 15°C) and 30 Petri dishes 
for the summer phenotype (25 at 24°C and 5 at 15°C). The numbers 
are not equal, as in some of the Petri dishes the parasitisation or 
the observation failed. As a control, no wasps were added to the 
Petri dishes (sample size of 9 for the winter and 9 for the summer 
phenotype of D. suzukii and 15 for the winter and 13 for the summer 
phenotype of D. melanogaster). All these pupae were then individu-
ally transferred to 96- well plates. These plates were sealed with a 
gas- permeable sealing membrane (Breath- Easy® sealing membrane, 
Sigma- Aldrich). Once the insect emerged, we identified whether it 
was a fly or a wasp and recorded its sex. The parasitisation success 
was measured by the proportion of infested hosts that give rise to an 
adult parasitoid (Boulétreau & Wajnberg, 1986).

2.3  |  Larval immunity experiment

We counted all immune cells in the larval immunity experiment 
and measured the phenoloxidase activity after the larvae were 
parasitised. First, the larvae were collected from the rearing vials 
in the same way as for the parasitisation experiment (Section 3.2). 
One hundred of the collected larvae were used directly to extract 
the hemolymph at time point 0 h (no parasitisation). For each 
parasitisation and control treatment, 200 larvae per replicate were 
transferred to a Petri dish with a Drosophila diet. More larvae were 
transferred to compensate for potential losses due to parasitisation 
and development.

For the parasitisation treatment, 20 female A. japonica were 
added to the Petri dish for 6 h. The control group received no further 
treatment until hemolymph extraction. For the pierced treatment, 
240 larvae were transferred to a Petri dish. More larvae were trans-
ferred for the pierced treatment to compensate for the potentially 
higher mortality due to piercing. Before and during the piercing, the 
larvae were transferred to an ice- cooled porcelain plate to reduce 
larval movement for the piercing treatment. Piercing was performed 
using a flame- sterilised insect needle in the posterior cuticles 
without harming the internal organs. The piercing treatment was 
included in the experiment to test the haemocyte induction for a 
potential effect of piercing during oviposition in the absence of wasp 
venom, similar to Kacsoh and Schlenke (2012), as the piercing can 
induce the production of lamellocytes (Markus et al., 2005). Pierced 
larvae were transferred to a new Petri dish with a Drosophila diet. 
The petri dishes of all treatments were closed with parafilm tape and 
placed in the climate chamber at 24°C under long- day (16:8 h day/
night rhythm) conditions until haemolymph extraction.

We extracted the haemolymph from 60 larvae from all three 
treatment groups at 24 and 48 h. Prior to haemolymph extraction, 
larvae were collected and washed in Drosophila Ringer's solution. 
They were then dried on a precision wipe and, in groups of 20 larvae, 

(1)DI =

(

DC − DT

)

DC
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transferred to a microscope slide. 1 μL of 5 mM MOPS buffer contain-
ing protease inhibitor cocktail (Roche cOmplete, CAS 30827997, one 
tablet solved in 50 mL of 5 mM MOPS buffer) was added per larvae. 
The buffer compensates for evaporation and inhibits the protease. 
For the parasitisation treatment, the number of visual encapsula-
tions were counted. The larvae were then cut below the mandibles 
with dissection scissors and left in the buffer to bleed for 1 min. The 
buffer containing the haemolymph from the 60 larvae was collected 
into a 1.5 mL Eppendorf tube and kept on ice. The tubes were frozen 
in liquid nitrogen and stored at −80°C. Prior to freezing, 5 μL of the 
haemolymph was mixed with 15 μL N- Phenylthiourea (0.01% in 1× 
PBS, Thermo Fisher Scientific, CAS 103- 85- 5) and 2.6 μL Giemsa- 
Stain (Sigma, CAS 51811- 82- 6) and loaded onto a haemocytometer 
(Neubauer improved, NanoEntek, C- Chip DHC- N01) for the haemo-
cyte counting. The haemocytes were counted and discriminated in 
16 diagonally arranged grids of the haemocytometer using a phase- 
contrast microscope (Zeiss, Axio Lab.A1) at 63× magnification. The 
counted haemocytes were plasmatocytes, podocytes, crystal cells, 
and lamellocytes. The counting took place directly after the load of 
the haemocytometer to avoid the loss of crystals in the crystal cells 
(Kacsoh & Schlenke, 2012).

We used the ratio of phenoloxidase to the total protein content 
as a measurement for the phenoloxidase. This ratio was used in 
order to be independent of the haemolymph concentration in each 
sample due to the different amounts of larval bleeding. The max-
imum linear rate of colour change (Vmax) of the substrate L- DOPA 
converted by PO was used for the phenoloxidase. Total protein was 
measured using the Pierce™ Rapid Gold Protein Assay Kit (A53225, 
Thermo- Scientific™). This kit was used in line with the user guide 
with 5 mM MOPS buffer as blank. Absorbance was measured using a 
BioTek® Synergy H1 microplate reader.

We measured the phenoloxidase activity using a 10 mM L- DOPA 
solution and added 34.4 mg of L- DOPA (Sigma, CAS 59927) to 20 mL 
5 mM MOPS buffer. This solution was vortexed for 15 min, followed 
by 3 min in an ultrasonic tub. To measure the samples, we used a 
microplate reader and kept the 96- well plate on ice. Samples were 
defrosted on ice, vortexed and centrifuged briefly on a benchtop 
centrifuge. 10 μL of 5 mM MOPS buffer was added to each well. 
This step was followed by adding 10 μL of sample haemolymph or, 
as a control, adding 10 μL of deionised water. The last 180 μL of ul-
trafiltered 10 mM L- DOPA solution was added and mixed. The set 
temperature of the microplate reader was 30°C. The samples were 
mixed orbitally, and the absorbance at 490 nm was measured every 
minute for 75 min.

2.4  |  Adult immunity assay

For the adult immunity assay, we counted the haemocytes and 
measured the phenoloxidase for both phenotypes. For this purpose, 
the haemolymph of the female adult D. suzukii or D. melanogaster 
were collected by piercing the thorax of the adult flies. The 
wings were also removed with forceps. 15 female flies were then 

transferred to a 0.5 mL Eppendorf tube with a fine cut from a razor 
blade at the bottom. This tube was then inserted in a 2 mL Eppendorf 
tube containing 5 μL of MOPS buffer with protease inhibitor so 
that the haemolymph could drip down into the 1.5 mL tube during 
centrifugation and immediately mix with the protease inhibitor. 
The tubes were centrifuged at 4025 g rpm for 8 min at 4°C. The 
haemolymph sample from five tubes was pooled so that one sample 
contained the haemolymph of 75 female flies. 5 μL was used directly 
for counting circulating haemocytes. The remainder was frozen in 
liquid nitrogen and stored at −80°C until the phenoloxidase activity, 
and the total protein was measured as described in Section 3.3.

2.5  |  Statistical analysis

The effect of the seasonal phenotype of D. suzukii and D. melanogaster 
on the phenoloxidase activity and the haemocyte counts were 
analysed using a binomial generalised linear mixed model (GLMMs) 
using the R package ‘lme4’ (Bates et al., 2015).

As a random factor for each GLMM, we used the repetition 
equivalent to one Petri dish. We tested the models for overdis-
persion. If there was overdispersion, we used a negative binomial 
model. The degree of infestation of the flies' larvae and pupae, the 
encapsulation rate and the haemocyte counts and female phenoloxi-
dase activity were compared between the two seasonal phenotypes 
using the Wilcoxon rank- sum test.

All data were analysed in R 4.1.3 (R Development Core 
Team, 2008).

3  |  RESULTS

3.1  |  Larvae

3.1.1  |  Degree of infestation of Asobara japonica

We found no significant difference in the degree of infestation 
between the winter and summer phenotypes of D. melanogaster and 
D. suzukii, neither in larvae parasitised by Asobara japonica nor in 
pierced larvae (Figure 1 and Figure S1).

3.1.2  |  Encapsulation rate

The encapsulation rate gives the percentage of D. suzukii or 
D. melanogaster larvae that have a visible encapsulation of an 
A. japonica egg (Figure 2). After 24 h of parasitisation, we found 
no significant difference in the encapsulation rate between the 
two seasonal phenotypes of D. melanogaster larvae. After 48 h, we 
found that the winter phenotype larvae had a significantly higher 
encapsulation rate than the summer phenotype larvae. For D. suzukii 
larvae, we found no significant difference in the encapsulation rate 
at either time point.
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F I G U R E  1  Degree of infestation (DI)—
the proportion of larvae that could not 
develop into adult flies due to treatment 
(pierced or parasitisation treatment) 
compared with a control group—for larvae 
of summer (red) and the winter (blue) 
phenotype of Drosophila melanogaster and 
Drosophila suzukii that were either pierced 
with a needle (pierced) or parasitised by 
Asobara japonica (parasitised) (Wilcoxon 
rank- sum test).

p  = 0.24p  = 0.33 p = 1.00 p  = 0.71
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F I G U R E  2  Encapsulation rate—
the proportion of larvae with visible 
encapsulations—for larvae of the winter 
and the summer phenotype of Drosophila 
melanogaster and Drosophila suzukii. 
Encapsulations were counted 24 and 48 h 
after possible parasitisation. The seasonal 
phenotype of the larvae was either 
summer (red) or winter (blue) (Wilcoxon 
rank- sum test).

p.adj  = 0.72 p.adj  = 0.04 p.adj  = 0.15 p.adj  = 0.59
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Subset Response Terms 𝜒2 df p- Value

0 h

D. suzukii Haemocytes Phenotype 5.00 1 0.03

D. melanogaster Haemocytes Phenotype 0.57 1 0.45

24 h

D. suzukii Haemocytes Treatment 5.21 2 0.07

Phenotype 1.26 1 0.26

D. melanogaster Haemocytes Treatment 0.01 2 0.99

Phenotype 1.41 1 0.24

48 h

D. suzukii Haemocytes Treatment 11.25 2 0.004

Phenotype 5.49 1 0.02

D. melanogaster Haemocytes Treatment 20.95 2 <0.001

Phenotype 1.05 1 0.31

Note: Significant values (p- value <0.05) are highlighted in bold. The response ‘haemocytes’ refers 
to the total number of haemocytes, with no differentiation of the haemocyte type.

TA B L E  1  Circulating haemocyte 
counts—generalised linear mixed effect 
model (family = negative binomial, 
link = logit, Petri dish (‘repetition’) as a 
random factor) output quantifying the 
effect of the phenotype (winter, summer) 
and the treatment (control, pierced, 
parasitisation by Asobara japonica) 
for Drosophila suzukii and Drosophila 
melanogaster.
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3.1.3  |  Haemocyte response of Drosophila 
suzukii and Drosophila melanogaster to parasitisation of 
Asobara japonica

In the second instar of D. suzukii, we found significant differences 
between the seasonal phenotypes in the number of haemocytes. 
Before treatment assignment (0 h), more haemocytes were counted 
in the summer phenotype than in the winter phenotype. After 24 h, 
neither the phenotype nor the treatment affected the number of 
haemocytes. After 48 h, the seasonal phenotype affected the 
number of haemocytes in D. suzukii, with a higher number of cells 
found in the summer phenotype. At that time, the treatment also 
influenced the number of haemocytes in D. suzukii larvae (Table 1 and 
Figure 3). Here the ‘parasitised’ treatment group had a significantly 
higher number of haemocytes than the ‘pierced’ treatment group. All 
other treatment groups were not significantly different from each 
other (Table S1 and Table 2).

The haemocyte counts of D. melanogaster larvae were not af-
fected by the seasonal phenotype at any time point (Table 1). But 
the treatment affected the number of haemocytes at 24 h in D. mela-
nogaster. The parasitised treatment group had a significantly lower 
number of haemocytes than the control and the pierced treatment 
group (Table S2).

Looking at the different types of haemocytes separately, we 
found that, in D. suzukii, the number of podocytes and the crystal 
cells were significantly affected by the phenotype at 48 h. The sum-
mer phenotype had significantly more crystal cells than the winter 
phenotype (Table S2). In D. melanogaster, the phenotype affected the 
number of podocytes of the second instar larvae (0 h). The winter 
phenotype larvae had significantly more podocytes than the summer 
phenotype larvae.

The treatment affected the number of podocytes in D. suzukii 
at the time point 24 h. The parasitisation treatment had signifi-
cantly more podocytes than the control. At 48 h, the number of 
plasmatocytes, crystal cells and lamellocytes counts were sig-
nificantly affected by the treatment (Figures S2–S5). The con-
trol group had significantly more plasmatocyte counts than the 
pierced treatment group. The parasitisation treatment group had 
significantly more counted crystal cells than the pierced or the 
control. The same significant differences were observed for the 
lamellocytes.

For D. melanogaster larvae, the treatment significantly affected 
the number of podocytes and the crystal cell counts at 24 h. More 
podocytes were found in the parasitisation treatment group than 
in the control group. In the pierced treatment, significantly more 

F I G U R E  3  Haemocyte count—the number of cells in the 
haemolymph of Drosophila melanogaster or Drosophila suzukii larvae. 
Larvae were pierced or offered for parasitisation or untreated. The 
seasonal phenotype of the larvae was either summer (red) or winter 
(blue).
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TA B L E  2  Phenoloxidase activity—GLMM (family = binomial, 
link = logit, ‘repetition’ (Petri dish) as a random factor) output 
quantifying the effect of the Drosophila phenotype (winter, 
summer) of Drosophila suzukii and Drosophila melanogaster and the 
treatment (control, pierced, parasitisation by Asobara japonica) on 
the activity of the immune enzyme phenoloxidase.

Time Terms 𝜒2 df p- Value

D. suzukii

0 h Phenotype 0.55 1 0.46

24 h Treatment 0.36 2 0.84

Phenotype 0.69 1 0.41

48 h Treatment 17.44 2 <0.001

Phenotype 0.78 1 0.38

D. melanogaster

0 h Phenotype 2.63 1 0.11

24 h Treatment 0.41 2 0.82

Phenotype 1.78 1 0.18

48 h Treatment 2.28 2 0.32

Phenotype 0.19 1 0.67

Note: Due to the non- independence of samples from the same Petri 
dish, we included the ID of the Petri dish as a random factor. Significant 
values are indicated in bold.
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crystal cells were counted than in the parasitisation treatment. At 
48 h, the treatment significantly affected the number of plasmato-
cytes, crystal cells, and lamellocytes. The pierced treatment group 
had significantly more plasmatocytes than the parasitisation treat-
ment group. The pierced treatment had significantly more crystal 
cells than the control and parasitisation treatment groups. The con-
trol group had significantly more crystal cells than the parasitisation 
treatment group. For the number of lamellocytes, we found that the 
pierced treatment group had significantly more than the parasitisa-
tion or the control groups.

3.1.4  |  Phenoloxidase activity

Not affected by the seasonal phenotype at any time point (Table 2, 
Figure 4, Table S5).

The treatment (control, parasitisation or pierced) also did not 
affect the phenoloxidase activity in either fly species. The only 

exception was the phenoloxidase activity of D. suzukii at 48 h. Here, 
the wasp treatment group had significantly lower phenoloxidase ac-
tivity than the control or pierced treatment groups.

3.2  |  Pupae

3.2.1  |  Parasitisation success of the pupal parasitoid 
Trichopria drosophilae

Parasitisation success is the number of emerged wasps from previously 
parasitised pupae. The number of parasitised pupae was for D. suzukii 
at 24°C in summer larvae 98 and 95 in winter; at 15°C in summer, 49 
and 46 in winter. For D. melanogaster, it was at 24°C in summer, 286, 
255 in winter; at 15°C in summer, 11, 16 in winter. The parasitisation 
success of the pupal parasitoid Trichopria drosophilae was significantly 
different between the two seasonal phenotypes of both fly species 
D. melanogaster and D. suzukii pupae at a parasitisation temperature 
of 24°C (Figure 5). The parasitoid had a higher parasitisation success 
in the winter phenotype of pupae of D. suzukii than in the summer 
phenotype. In D. melanogaster, the summer phenotype was parasitised 
more successfully than the winter phenotype.

At a parasitisation temperature of 15°C, the parasitisation suc-
cess of the two seasonal phenotypes was not significantly different 
for either fly species.

The temperature had no significant effect on the parasitisation suc-
cess of the D. suzukii summer (p = 0.73) and winter phenotype (p = 0.25). 
The D. melanogaster summer phenotype was significantly more suc-
cessfully parasitised at 24°C than at 15°C (p = 0.002) (Tables S3 and S4). 
The parasitisation success in D. melanogaster winter phenotypes did not 
differ significantly between those two temperatures (p = 0.82).

3.3  |  Female adults

3.3.1  |  Haemocytes

Adults of the winter phenotype of both female D. suzukii and D. 
melanogaster had a significantly higher number of haemocyte 
counts than female adults of the summer phenotype (Figure 6). In 
both fly species, the number of haemocytes was much higher in 
the winter phenotype. The number of haemocytes did not differ 
between species (winter phenotype p = 0.72, summer phenotype 
p = 0.59).

3.3.2  |  PO activity

On average, the summer phenotype of D. melanogaster had twice 
the phenoloxidase activity of the winter phenotype. However, 
the two phenotypes did not statistically differ from each other 
(Figure 7). In D. suzukii, the phenoloxidase activity was equal 
in both phenotypes. Although not statistically significant, the 

F I G U R E  4  Phenoloxidase activity—the ratio of phenoloxidase 
activity to the total protein in the haemolymph of Drosophila 
melanogaster or Drosophila suzukii larvae. Larvae were pierced or 
offered for parasitisation or untreated. The seasonal phenotype of 
the larvae was either summer (red) or winter (blue).
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phenoloxidase activity in the D. melanogaster winter phenotypes 
was almost four times higher than that in the D. suzukii winter 
phenotype. Similarly, for the D. melanogaster summer phenotype, 
the phenoloxidase activity was almost eight times higher than that 
in D. suzukii summer phenotype.

4  |  DISCUSSION

In this study, for the first time, the immune system responses to 
parasitisation of the summer and winter phenotype of different 
life stages of D. suzukii were compared. We found differences 

F I G U R E  5  Parasitisation success 
(the proportion of hatched parasitoids) 
of Trichopria drosophilae from pupae of 
the summer (red) and winter phenotype 
winter (blue) of Drosophila melanogaster 
and Drosophila suzukii at 15 and 24°C 
(Wilcoxon rank- sum test).
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F I G U R E  6  Haemocyte count (the 
number of cells in the haemolymph) of 
adult females of the summer phenotype 
(red) and the winter phenotype (blue) of 
Drosophila melanogaster and Drosophila 
suzukii (Wilcoxon rank- sum test).
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F I G U R E  7  Phenoloxidase activity—the 
ratio of phenoloxidase activity and total 
protein of the haemolymph of female 
Drosophila melanogaster and female 
Drosophila suzukii adults. The seasonal 
phenotype of the adults was either 
summer (red) or winter (blue) (Wilcoxon 
rank- sum test).
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between phenotypes for all life stages, but these differences were 
inconsistent among the different life stages. Furthermore, we 
found differences in the immune response between D. suzukii and 
D. melanogaster.

First, we looked at the larvae stage. Our results show that at 
0 h (second instar larvae), the summer phenotype of D. suzukii has 
a higher haemocyte count than the winter phenotype. This differ-
ence could also be found at 48 h after the parasitisation across all 
treatments (control, pierced, parasitisation). However, the haemo-
cyte counts at 24 h (third instar larvae) after parasitisation do not dif-
fer. Thus, at 24 h, when the absolute haemocyte count is highest in 
D. suzukii, the differences between the phenotypes disappear. As we 
observed the onset of encapsulation at 24 h after parasitisation, the 
reduced haemocyte count at this time point could be due to a more 
pronounced encapsulation, because the capsules are an aggregation 
of haemocytes (Dubovskiy et al., 2016).

Another possible explanation for the reduction in haemocytes 
could be the temperature: during the parasitisation experiment, we 
kept both phenotypes at 24°C to keep the wasps active and the re-
sults comparable. However, this temperature also meant an increase 
for the winter phenotype larvae, which were previously kept at 15°C. 
The effect of temperature on the immune system has only been de-
scribed for cold temperatures: Salehipour- Shirazi et al. (2017) found 
an increase in haemocytes in D. melanogaster exposed to acute cold. 
Whether such an increase in temperature, as in our experiment, 
leads to a similar increase in haemocyte counts should be the subject 
of further studies.

The immune resistance of Drosophila larvae to parasitoid 
eggs is associated with a high host haemocyte load (Kacsoh & 
Schlenke, 2012; Poyet et al., 2013). However, our study did not ob-
serve a higher immune resistance, as the encapsulation rates and the 
degree of infestation of the two seasonal phenotypes were similar, 
also we observed a higher cellular immunity of the summer pheno-
type. The effect that a high cell count results in higher immunity 
has also been observed in different strains of D. suzukii (Kacsoh & 
Schlenke, 2012; Poyet et al., 2013). Compared with D. melanogaster 
which has a lower immunity than D. suzukii, the haemocyte load in 
D. suzukii strains was five to eight times higher than that in D. melan-
ogaster larvae (Poyet et al., 2013). However, in our study, the haemo-
cyte count of the summer phenotype was only twice as high as the 
winter phenotype. The smaller difference between the phenotypes 
could explain why the higher haemocyte load did not affect the im-
munity of the D. suzukii summer phenotype in our study.

Furthermore, Drosophila's encapsulation process mainly de-
pends on the haemocyte cell type lamellocytes (Binggeli et al., 2014; 
Dudzic et al., 2015; Vlisidou & Wood, 2015). At 0 h (second instar), 
lamellocytes were only found in the summer phenotype. At 24 and 
48 h post- parasitisation, this cell type did not differ between the 
seasonal phenotypes, which further explains why we did not find a 
higher encapsulation rate in the summer phenotype. Another factor 
that influences the encapsulation is the fly strain, as the encapsula-
tion rate against parasitoids can vary greatly between the D. suzukii 
and the D. melanogaster strains (Gerritsma et al., 2013; Kacsoh & 

Schlenke, 2012). Therefore, it could be that other strains show dif-
ferent encapsulation rates between the two phenotypes.

Drosophila melanogaster phenotypes exhibited no differences in 
total haemocyte counts or lamellocytes, crucial for encapsulation. 
Parasitised larvae showed consistent infestation and encapsulation 
rates across phenotypes. Previous studies noted increased haemo-
cytes, particularly lamellocytes and crystal cells, in response to par-
asitisation in D. melanogaster larvae (Eslin & Prevost, 1998; Kacsoh 
& Schlenke, 2012). Our experiment confirmed a similar response. In 
D. suzukii, a trend towards higher haemocyte counts in the parasi-
tisation treatment was observed, primarily due to increased lamel-
locytes and crystal cells after 48 h. This suggests limited impact of 
wasp venom on D. suzukii's immune system. In contrast, D. melano-
gaster exhibited reduced haemocyte counts, especially lamellocytes 
and crystal cells, indicating the potent effect of wasp venom, con-
sistent with findings by Kacsoh and Schlenke (2012). Overall, hae-
mocyte count differences were more associated with treatment 
(pierced, control, or parasitisation) than phenotype.

Interestingly, we found encapsulations in D. melanogaster and 
D. suzukii as early as 24 h (third instar larvae) after parasitisation. 
Other studies observed no encapsulation at all when D. suzukii lar-
vae were parasitised by A. japonica (Iacovone et al., 2018; Poyet 
et al., 2013) and a delayed encapsulation (compared to D. melanogas-
ter larvae) when parasitised by Leptoplina heterotoma or Leptoplina 
boulardi (Iacovone et al., 2018). One explanation could be the strains 
of flies and parasitoids, as we used a different strain of D. suzukii and 
probably also a different strain of A. japonica than those studies. As 
it has been observed that the parasitisation success can vary widely 
between different parasitoids and Drosophila strains from different 
geographical regions (Gerritsma et al., 2013; Iacovone et al., 2018; 
Poyet et al., 2013), it is very likely that this factor alone could explain 
the early encapsulation in our study.

Another important factor in the immunity of Drosophila larvae 
is phenoloxidase (PO), as it contributes to the melanisation process 
(Dudzic et al., 2015; González- Santoyo & Córdoba- Aguilar, 2012; 
Moreau et al., 2000; Tang, 2009). We found no difference in PO activ-
ity between the seasonal phenotypes in both species. Interestingly, 
we found a difference between the seasonal phenotypes of D. su-
zukii in the number of crystal cells containing the substrate and en-
zymes of the phenoloxidase cascade (Carton et al., 2008) at 48 h 
after parasitisation. However, this difference did not result in higher 
phenoloxidase activities. Furthermore, the parasitised treatment 
group of D. suzukii had a significantly lower phenoloxidase activity 
than the control or the pierced treatment groups. This low activ-
ity could be due to advanced melanisation of the parasitoid egg in 
the larvae, where the PO is a key enzyme in melanin biosynthesis 
(Tang, 2009). In general, there is often no clear correlation between 
phenoloxidase activity and insect immunity (González- Santoyo & 
Córdoba- Aguilar, 2012).

We can conclude, that for the larval stage, the difference in hae-
mocyte load in the second instar or 48 h later did not result in any 
clear immunity benefits, such as a higher encapsulation rate or de-
gree of the infestation when the larvae were parasitised.
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In contrast to the larval parasitisation experiment, we found a 
difference in parasitisation success in the pupae of the D. suzukii 
phenotypes. Parasitisation at 24°C by the pupal parasitoid T. dro-
sophilae resulted in a significantly higher parasitisation success in 
the winter phenotype compared with the summer phenotype. In 
conclusion, at 24°C, the winter phenotype pupae are more sus-
ceptible to parasitism than are the summer phenotype pupae. This 
finding raises the question of why the two phenotypes have sim-
ilar degrees of infestation in the larval parasitisation experiment 
but such different levels of parasitisation success in the pupal 
stage. One explanation could be the complete morphological 
change during metamorphosis. Cellular immunity changes at the 
onset of metamorphosis, resulting in the release of haemocytes 
by the lymph glands. These cells are part of the metamorphosis 
when they ingest doomed larval tissues (Holz et al., 2003; Lanot 
et al., 2001). Therefore, different outcomes between larvae and 
pupae, as we observed, are possible and, thus, make it difficult to 
compare these two life stages.

In addition, the pupal parasitoids have evolved different strate-
gies to circumvent the host immune system than larval parasitoids. 
This difference could cause the observed different levels of parasi-
tisation success of pupa and larval stages. In some species, such as 
Asobara tabida, the egg can stick to host tissue by proteins or special 
coatings that make the eggs sticky (Eslin & Prevost, 2000; Huang 
et al., 2021). When attached to host tissue, the egg is less likely to be 
attacked by haemocytes, which is one passive form of immune eva-
sion. An active form of immune invasion is the venom that is injected 
during oviposition, which can suppress the host immune response, 
as shown in Leptopilina heterotoma (Huang et al., 2021; Moreau & 
Asgari, 2015). The virulence of the parasitoid can be species- specific 
and often also strain- specific (Cavigliasso et al., 2019). To our knowl-
edge, it is unclear whether the parasitoid T. drosophilae also injects 
venom or whether its eggs have a sticky coating. The pupal ectopar-
asitoid Pachycrepoideus vindemiae is known to inject venom into the 
pupae (Yang et al., 2020). As an endoparasitoid, T. drosophilae lays 
its eggs in the host's hemocoel (Carton et al., 1986). This process 
means the egg is in contact with the host haemolymph in a similar 
way to the eggs of larval parasitoids. These behaviours make it likely 
that the T. drosophilae also injects venom, similar to larval parasitoids 
(Wertheim, 2022).

Temperature affects the immunity of Drosophila flies. Cavigliasso 
et al. (2021) observed a decrease in the encapsulation rate of para-
sitoid eggs with increasing temperature in D. melanogaster larvae. 
We observed a similar effect in the parasitisation success of the 
Drosophila pupae: With an increasing temperature, a higher para-
sitisation success of the parasitoid in the summer phenotype of D. 
melanogaster and in the winter phenotype of D. suzukii occurred. 
This effect means these pupae are probably less immune to para-
sitoids at higher temperatures. In the respective corresponding 
phenotype, the parasitisation success did not change with increased 
temperature.

The success of parasitisation relies on both the host's immune 
response and the parasitoid's ability to parasitise. Temperature, 

which affects this ability, has been noted in previous studies 
(Cavigliasso et al., 2021). Further studies evaluating the tempera-
ture impact on T. drosophilae parasitisation are warranted. Adult 
females of the winter phenotype in D. suzukii and D. melanogaster 
unexpectedly exhibited significantly more haemocytes than their 
summer counterparts. This contradicts the larval development 
trend, where D. suzukii's winter phenotype had similar or lower 
haemocyte loads. In D. melanogaster, adult haemocytes are primar-
ily embryonic and lymph gland- derived, with little haematopoiesis 
in adulthood (Boulet et al., 2021; Holz et al., 2003). The observed 
disparity in haemocyte proportions between adults and larvae sug-
gests potential differences in the phenotypes' ability to maintain 
haemocytes during metamorphosis, influenced by developmental 
temperatures. The winter phenotype, developing at 15°C, demon-
strated an immunity advantage, as seen in our pupal parasitisation 
experiment for D. suzukii.

Alternatively, the differing decline of haemocytes with age in the 
two phenotypes may provide an explanation. In Drosophila, haemo-
cyte numbers generally decrease with adult age, a phenomenon ob-
served more prominently in females than males (Boulet et al., 2021; 
Mackenzie et al., 2011; Sanchez Bosch et al., 2019). Surprisingly, 
adult female flies exhibited lower haemocyte counts than their 
larval- stage counterparts. This discrepancy suggests a potentially 
higher decline in haemocytes with age in the summer phenotype 
compared with the winter phenotype, warranting further analysis.

We found a difference when we examined the phenoloxidase 
activity. In D. suzukii, the phenotypes were not different in PO 
activity. Additionally, we found a much lower PO activity than in 
D. melanogaster. These findings are unexpected. As D. suzukii lar-
vae have a much higher haemocyte load than D. melanogaster lar-
vae and a much higher immunity against parasitoids (Kacsoh & 
Schlenke, 2012; Poyet et al., 2013), we anticipated they would also 
have a higher PO activity. However, also González- Santoyo and 
Córdoba- Aguilar (2012) argued in their review that PO activity in in-
sects does not seem to be an indicator of host resistance but rather 
of host condition, as it is a costly trait. Adult D. melanogaster flies live 
more frequently in food patches with higher population densities 
than D. suzukii (personal observation), and D. suzukii avoids compe-
tition by shifting the oviposition preference to ripe fruits (Kidera & 
Takahashi, 2020). In addition, the contact of the fly with microbes 
should be higher in rotten food patches than in ripe fruits. As a re-
sult, the adult D. suzukii may have a lower phenoloxidase activity 
because it is very costly, and the immune challenge is lower in D. 
suzukii adults than in D. melanogaster adults.

5  |  CONCLUSION

Our study found that differences in immunity between the seasonal 
phenotypes of D. suzukii larvae have no measurable effect on 
the success of a parasitoid at the larval stage. Still, we suggest 
further research on the winter phenotype, as other factors than 
the immunity can affect the parasitisation of D. suzukii larvae. 
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Unexpectedly, we discovered a high haemocyte load in adult females 
of D. suzukii and D. melanogaster of the winter seasonal phenotype. 
This high haemocyte load gives the fly a stronger immunity during 
overwintering. As far as we know, it is unclear why such a high 
level of immunity is required for overwintering female flies. At the 
pupal stage, our study shows that a pupal parasitoid will be more 
successful on the winter seasonal phenotype of D. suzukii when it 
develops at higher temperatures.

Our results have implications for integrated pest management 
implementation, where an early release of larval parasitoids during 
the growing season is crucial to reduce early pest populations. The 
release of pupal parasitoids may be particularly effective in areas 
and years where spring temperatures rise rapidly, as the winter phe-
notype of D. suzukii pupae is more susceptible to parasitisation under 
such conditions. With global warming, these abiotic conditions are 
expected to become more common in the future.
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