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A B S T R A C T   

Prospective Life Cycle Assessments (LCAs) are crucial for analyzing and optimizing emerging technologies’ 
conceivable environmental performance. However, emerging technologies are often subject to high uncertainties 
and are still at laboratory or pilot scale, necessitating the scale-up of LCA relevant data, such as energy and 
material flows, to an industrial level. Hence, robust and adequate scaling methods are required as an integrated 
part of any sustainability-oriented prospective assessment. This work presents a systematic review of scaling 
techniques used in various LCA related studies (n = 78) and analyzes their frequency and the respective tech-
nology type’s and group’s potential influence. Literature providing detailed scaling methodologies are identified, 
exposed, and quantitatively evaluated to discover their advantages and disadvantages. An Excel-based tool is 
derived to assist in selecting appropriate scaling methodologies as provided by literature by customizing the 
respective evaluation criteria (complexity, data intensity, duration, and uncertainty). With its primary focus on 
prospective LCA to provide practical guidance, the work offers insights that are relevant to other sustainability 
assessment methods as well. Essential guidance in the selection of appropriate scaling methods is provided, 
facilitating more robust sustainability assessments and supporting decision-making processes in research, in-
dustry, and policymaking.   

1. Introduction 

The ongoing development of novel technologies that are more 
environmentally friendly, cost-efficient and socially beneficial than their 
established counterparts (van der Giesen et al., 2020) have rendered 
them an increasing focus in sustainability-driven evaluation methods to 
ensure their superiority (Thonemann et al., 2020). Specifically, the 
application of prospective Life Cycle Assessments (LCAs) is employed 
with emerging technologies to analyze and enhance their probable 
environmental impacts (Cucurachi et al., 2018). While there is no single 
definition for emerging technologies, the characteristics identified by 
Rotolo et al. (2015) – novelty, rapid growth, coherence, prominent 
impact, and uncertainty and ambiguity – capture their essence 
comprehensively. Particularly, novelty and uncertainty were identified 
as key features by several other studies (Boon and Moors, 2008; Day and 
Schoemaker, 2000; Hung and Chu, 2006; Porter et al., 2002; Small et al., 
2014; Stahl, 2011) unveiling opportunities and challenges in the 

application of assessment methods. 
Emerging technologies are characterized by a low degree of maturity 

and are in the early development phase (Arvidsson et al., 2018; Cucur-
achi et al., 2018; Gavankar et al., 2015; Moni et al., 2020; Thonemann 
et al., 2020). This early stage’s high flexibility in the technology design, 
allows identifying and exploiting optimization potentials sustainably, 
but is also accompanied by a lack of information and uncertainty, as 
known from the Collingridge dilemma (Arvidsson et al., 2018; Moni 
et al., 2020). The data needed to evaluate a technology’s ecological 
impact is either incomplete or lacking entirely (Moni et al., 2020; Tho-
nemann et al., 2020). The low functional readiness of novel technologies 
and their immature production processes at small scales must be 
translated to higher levels to provide insights into the impact of 
commercialization on their sustainability (Moni et al., 2020; Thone-
mann et al., 2020; Buyle et al., 2019; M. Shibasaki et al., 2007). In the 
context of LCA, this requires the scale-up of either the Life Cycle 
Inventory’s (LCI) material and energy flows or the direct environmental 
burdens of a novel technology. Hence, adequate and robust scaling 

* Corresponding author. Institute for Technology Assessment and Systems Analysis (ITAS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany. 
E-mail address: merve.erakca2@kit.edu (M. Erakca).  

Contents lists available at ScienceDirect 

Journal of Cleaner Production 

journal homepage: www.elsevier.com/locate/jclepro 

https://doi.org/10.1016/j.jclepro.2024.142161 
Received 19 October 2023; Received in revised form 21 March 2024; Accepted 7 April 2024   

mailto:merve.erakca2@kit.edu
www.sciencedirect.com/science/journal/09596526
https://www.elsevier.com/locate/jclepro
https://doi.org/10.1016/j.jclepro.2024.142161
https://doi.org/10.1016/j.jclepro.2024.142161
https://doi.org/10.1016/j.jclepro.2024.142161
http://creativecommons.org/licenses/by/4.0/


Journal of Cleaner Production 451 (2024) 142161

2

methods are required as an integrative part of any 
sustainability-oriented prospective assessment (Moni et al., 2020; Tho-
nemann et al., 2020; Tsoy et al., 2020; Buyle et al., 2019; Simon et al., 
2016). 

The increasing interest in prospective sustainability assessments has 
brought attention to the scaling issue in recent literature. Several scaling 
techniques and methodologies have been demonstrated (Buyle et al., 
2019; Caduff et al., 2014; Hummen and Kästner, 2014; Majeau-Bettez, 
2021; Moni et al., 2020; Parvatker and Eckelman, 2019; Piccinno et al., 
2016; Simon et al., 2016; Thonemann et al., 2020; Tsoy et al., 2020), but 
an in-depth picture and their conceivable relationships to the technol-
ogies studied is lacking to date. Prospective LCA practitioners face ob-
stacles in selecting appropriate scaling methods for their individual 
application driven by the absence of guidance. Advantages and disad-
vantages of existing scaling methods were assessed primarily qualita-
tively (Hummen and Kästner, 2014; Parvatker and Eckelman, 2019; 
Simon et al., 2016; Tsoy et al., 2020; van der Giesen et al., 2020), 
impeding their comparison and the identification of the most beneficial 
one. 

Thus, this study serves a systematic analysis of currently applied 
scaling methods in various studies (n = 78) examining their frequency of 
use and the investigated technology’s influence on the choice of method. 
The research identifies detailed scaling methodologies as presented in 
literature, quantitatively evaluating their strengths and weaknesses. An 
Excel-based tool is derived, to assist with the selection of those meth-
odologies. The tool considers factors limiting the application of a 
methodology and eliminates unsuitable ones. By individually weighting 
the evaluation criteria comprising complexity, data intensity, duration, 
and uncertainty, the most suitable methodology can be determined. The 
topic is discussed primarily in the context of prospective LCA to provide 
a practical context. However, it is not only relevant for LCA but for many 
other sustainability assessment methods as well as for non-sustainability 
oriented methods or process engineering in general. 

2. Background 

To assess a technology’s maturity the Technology Readiness Level 
(TRL) and Manufacturing Readiness Level (MRL) can be utilized. The 
TRL was originally developed by the NASA to gauge the functional 
maturity of a technology, based on its development progress, with TRL 1 
representing the lowest maturity level and TRL 9 the highest (Tzinis, 
2015). The MRL, developed by the USDOD, assesses the manufacturing 
maturity and the system-level risk, ranging from MRL 1 to MRL 10, 
representing the lowest and highest maturity levels, respectively 
(Manufacturing Readiness Level (MRL) Deskbook, 2020). These two 
methods are closely interrelated, as each MRL includes a nominal 
technological maturity level. In addition to the TRL and MRL, the 
Market Penetration Level (MPL) can be availed to assess a technology’s 
market share based on its production volume (Grübler et al., 1999; Hulst 

et al., 2020), since the diffusion of a technology can further alter its 
environmental impacts (Buyle et al., 2019). Grübler et al. (1999) iden-
tified four penetration stages, namely invention and innovation with 0% 
market share, niche market commercialization with 0%–5% market 
share, pervasive diffusion with 5%–50% market share, and saturation 
with up to 100% market share. 

Table 1 illustrates the production stages according to their respective 
TRLs and MRLs, as based on Gavankar et al. (2015). For convenience, 
these production stages are grouped into three scales: laboratory (TRLs 
and MRLs 1–5), pilot (TRLs and MRLs 6–8), and industrial (TRLs and 
MRLs 9–10). The laboratory scale studies fundamental properties of 
technologies and processes, which entails greater uncertainties, lower 
throughputs, lower efficiencies, and lower levels of automation 
(Majeau-Bettez, 2021; Shibasaki et al., 2006). In contrast, the industrial 
scale prioritizes efficiency and aims to produce a mature technology 
under known and optimized parameters at maximum capacity and 
minimum cost. Synergy effects and advanced techniques, such as heat 

Abbreviation list 

Abbreviation Definition 
GHG Greenhouse gas 
IIL Intermediate Input Learning 
LCA Life Cycle Assessment 
LCC Life Cycle Costing 
LCI Life Cycle Inventory 
LCIA Life Cycle Impact Assessment 
MPL Market Penetration Level 
MRL Manufacturing Readiness Level 
TRL Technology Readiness Level 
VAL Valued Added Learning  

Table 1 
Production stages and respective Technology Readiness Levels (Tzinis, 2015) 
and Manufacturing Readiness Levels (Manufacturing Readiness Level (MRL) 
Deskbook, 2020) as based on Gavankar et al. (2015).  

Production stages Technology 
Readiness Level 

Manufacturing 
Readiness Level 

Laboratory 
Pilot 

Conceptual 
development 

1 Basic principles 
observed and 
reported 

Basic 
manufacturing 
implications 
identified 

2 Technology 
concept or 
application 
formulated 

Manufacturing 
concepts identified 

3 Experimental and 
analytical critical 
function and 
characteristic proof 
of concept 

Manufacturing 
proof of concept 
developed 

4 Component or 
breadboard 
validation in a 
laboratory 
environment 

Capability to 
produce the 
technology in a 
laboratory 
environment 

Technology 
development 

5 Component or 
breadboard 
validation in a 
relevant 
environment 

Capability to 
produce prototype 
components in a 
production relevant 
environment 

Pilot 6 System or 
subsystem model 
or prototype 
demonstrated in a 
relevant 
environment 

Capability to 
produce a prototype 
system or subsystem 
in a production 
relevant 
environment 

Engineering 
development 

7 System prototype 
demonstration in 
an operational 
environment 

Capability to 
produce systems, 
subsystems, or 
components in a 
production 
representative 
environment 

Small scale 
production 

8 Actual system 
completed and 
“flight qualified” 
through test and 
demonstration 

Pilot line capability 
demonstrated; 
ready to begin low 
rate initial 
production 

Industrial 9 Actual system 
“flight proven” 
through successful 
mission operations 

Low rate production 
demonstrated; 
capability in place 
to begin full rate 
production 

Mass 
production 

10 – Full rate production 
demonstrated and 
lean production 
practices in place  
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recovery or internal waste recycling, are used to achieve this goal 
(Piccinno et al., 2016; Maiya Shibasaki et al., 2007). Additionally, the 
technology design generally improves with increasing production scales 
and maturity. Consequently, material and energy flow data at the in-
dustrial scale are several orders of magnitude lower than lab or 
pilot-scale data, resulting in lower environmental impacts (Buyle et al., 
2019; Shibasaki et al., 2006). Sustainability assessments of novel tech-
nologies, mostly conducted at laboratory or pilot scale, are not mean-
ingful and necessitate scale-up to the industrial level. 

Several studies discussed the challenges associated with prospective 
LCA and scale-up. The works of Thonemann et al. (2020) and Moni et al. 
(2020) emphasized the need for scaling, and introduced studies pre-
senting scaling procedures. Thonemann et al. (2020) examined methods 
used in 65 prospective LCAs to scale their LCI. The methods – simula-
tions, transfer of literature data, expert interviews, assumptions, risk ana-
lyses, linear scaling rates, power laws, or calculations – were classified 
under the broad umbrella of predictive scenarios or scenario ranges, 
without being further analyzed. 

In their practical recommendation for conducting prospective LCAs, 
Buyle et al. (2019) provided a detailed overview of possible scaling 
techniques. The methods identified (ideal system baseline, problem solu-
tion space, proxy technology transfer, scaling and extrapolation, participa-
tory methods, learning curves, ex-ante learning curves, socio-economic 
stories, cost-curves, and diffusion analyses) were assigned to TRLs and 
periods after TRL 9 (technology learning and diffusion), with further 
categorization into ’concepts’, ’procedures’, and ‘data collection’. Each 
scaling method’s core principles were introduced, although without 
quantifying their advantages and disadvantages. A method’s assignment 
to the time dimension of the technological development is an innovative 
attempt, which, however, needs to be validated. 

Similarly, Hummen and Kästner (2014) investigated approaches for 
prospective LCAs focusing on scaling methods. The identified methods’ 
(simple reduction factors, modular influence estimations, economies of scale, 
neuronal network approach, and process modelling) strengths and weak-
nesses were assessed qualitatively. A subsequent utility analysis evalu-
ated data-related criteria (like data completeness) and systematic 
criteria (such as complexity), revealing modular influence estimation to 
be the best method. 

Parvatker and Eckelmann (2019) studied methods for generating 
chemical LCI data, by evaluating get real plant data (the most accurate 
but time-consuming method), process simulation, process calculation, 
stoichiometry, molecular structure-based models, approximations, and to 
omit (the least accurate but most timesaving method). The authors 
evaluated the methods’ advantages and disadvantages in detail, and 
applied them to a case study to verify their accuracy. Although the work 
did not specifically focus on scaling, some methods can be considered as 
scaling techniques, and the results can be applied to scaling, albeit only 
in the context of chemicals. 

Tsoy et al. (2020) reviewed 18 prospective LCAs and their scaling 
techniques, categorizing them as simulation, calculation, molecular 
structure-based model and approximation. A decision tree for selecting one 
of these four techniques was developed. However, critical aspects, such 
as a methods’ time-intensiveness or complexity, were not considered. 
Hence, the method proposed by the decision tree might not be sufficient 
if other factors, besides a method’s applicability, are considered. 

These methods identified in the literature, also referred to as tech-
niques, describe a general type of scaling. Within these synoptic in-
vestigations, several studies on scaling methodologies were frequently 
cited. In contrast to methods (such as simulation or molecular structure- 
based models), these methodologies (also called approaches) are asso-
ciated with a specific literature that details a comprehensive scaling 
procedure by using one or more of the aforementioned methods (Eu-
ropean Commission. Joint Research Centre, 2023). 

Shibasaki (2009) comprised a methodology to predict LCAs of 
large-scale plants from pilot plants by subdividing potentially influential 
factors into modules and systematically analyzing their relevance and 

reduction factors. Artificial neural networks were used by Wernet et al. 
(2009) to estimate pertinent LCI parameters of synthesis processes based 
on molecular descriptors of the target chemical. Caduff et al. (2014) 
demonstrated the effectiveness of power law relationships, based on 
empirically derived scaling factors, in extrapolating the changes in a 
technology’s environmental impacts as it scales. A thorough engineering 
scale-up approach for generating industrial LCI data for batch reactions 
in the liquid phase was showcased by Piccinno et al. (2016). To scale up 
the LCI to an industrial level, Simon et al. (2016) used approximate 
values and scaling factors derived from existing mature reference 
technologies. 

The aforementioned studies focused on discovering or developing 
scaling techniques, resulting in the identification of seven techniques 
serving as the foundation for this current work. The first technique is 
approximation and involves utilizing existing reference technologies and 
data, as exemplified by Simon et al. (2016). This could entail adapting 
LCI data from a mature lithium-ion battery for newer battery technol-
ogies like organic batteries. Process engineering includes scale-ups based 
on mathematical, physical, or chemical calculations, as proposed by 
Piccinno et al. (2016). The straightforward adjustment of LCI data or 
environmental impacts by a certain factor without using complex cal-
culations, is termed simple extrapolation. This typically involves the 
enlargement or reduction of a few selected values, such as reducing 
lab-scale material consumption by 40% to mimic industrial material 
inputs. The use of simulation software, like Aspen Plus (Aspen Tech-
nology Inc, 2023), is covered by simulation. The method of advanced 
empirical scaling, as performed by Caduff et al. (2014), involves the usage 
of learning curves, cost curves, regression analysis or power laws, and 
many more methods, to empirically analyze relationships and scaling 
factors, enabling the anticipation of the development of an emerging 
technology. Methods for identifying LCA relevant system modules and 
their scaling factors, as was done in Shibasaki (2009), are labeled 
modular influence estimation. The previously mentioned molecular 
structure-based model, originating from Wernet et al. (2009), is the final 
scaling technique. 

Although some scaling attempts have been identified in previous 
studies, little guidance was provided on the selection of appropriate 
scaling procedures considering comprehensive aspects, like time- 
intensiveness or complexity. Choosing the most appropriate procedure 
is of great importance in prospective LCAs, as it has a substantial impact 
on the accuracy and robustness of the LCA findings. Consequently, it is 
vital to make a thoughtful decision when selecting a scaling procedure 
and to clearly understand its strengths and weaknesses. This includes the 
comparison of the scaling procedures’ advantages and disadvantages 
quantitatively, which was only done for four methods in the utility 
analysis of Hummen and Kästner (2014). Furthermore, it remains un-
known whether and which dependencies there might be between the 
investigated technology and the scaling technique selection. Such 
analysis would reveal the suitability or unsuitability of techniques with 
respect to the technology under study. 

3. Review methodology 

The study on hand seeks to conduct a systematic review, as proposed 
by Grant and Booth (2009), to provide insights into the scale-up tech-
niques applied in prospective LCAs. A systematic review was chosen as it 
pursues a high scientific standard. It aims to systematically search for, 
analyze and summarize research findings while presenting the review 
method transparently, enabling replication (Grant and Booth, 2009). 
Costa et al. (2019)’s systematic review on the application of Life Cycle 
Sustainability Assessment, provides structural guidance, while Tsoy 
et al. (2020)’s review on scaling methods in prospective LCAs serves as a 
reference for contextual orientation and a basis for further development. 

As displayed in Fig. 1, the three stages of a systematic review as 
outlined by Pullin and Stewart (2006) were followed: (1) planning the 
review, (2) conducting the review, and (3) reporting and dissemination 
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of results. Accordingly, the review was initiated by defining the research 
questions and developing an associated review protocol, a document 
that guides the review (Pullin and Stewart, 2006), including the precise 
review procedure, the search strings used, and the detailed inclusion and 
exclusion criteria, which is fully disclosed in the supplemental in-
formation’s (SI) ‘Cover sheet’. In the second step, literature was 
searched and reviewed through identification, selection, extraction, and 
synthesis of pertinent data. The results were analyzed and displayed 
with regard to the previously defined research questions, ultimately 
culminating in a decision tool for selecting appropriate scaling 
methodologies. 

The objectives and research questions were divided into two di-
mensions. The first dimension considered the entirety of the studies 
reviewed and the scaling methods used addressing following questions.  

• Which scaling methods are frequently applied in LCA related studies 
of lab-scale technologies?  

• Are there relationships between the technology type or technology 
group and the scaling method chosen? 

The second dimension focused on the scaling methodologies 
encountered among the literature reviewed investigating following 
questions.  

• Which are the detailed scaling methodologies provided in current 
literature sources?  

• What are the advantages and disadvantages of these scaling 
methodologies? 

Based on 185 studies reviewed, 78 met the inclusion criteria, leading 
to the extraction and analysis of relevant data. Both the main article and 
supplementary materials were reviewed to ensure the abstraction of 
relevant data to an equivalent degree of detail. Thus, the corresponding 
authors were contacted in cases requiring clarification. The extracted 
data was then assigned into the categories outlined in Table 2. 

The SI’s review table (see ‘2. Review’) specified the examined tech-
nology in each study in the category ‘application’. These applications 
were further grouped into higher-level ‘technology types’ (see Table 2) 
that were derived iteratively from the technologies identified in the 
studies. The boundaries between these technology types are fluid and 
there may be overlaps between them. To avoid excessive granularity, a 
minimum of three technologies per technology type was defined. Since 
the analysis of potential relationships between technology types and 
scaling methods focuses on a detailed but narrow picture, the technol-
ogy types were subsequently combined into ‘technology groups’ to de-
pict potential relationships on a higher perspective. Afterward, each 
technique employed for the scale-up of energy and material flows was 

Fig. 1. Methodological approach for systematic review of scale-up methods and methodologies for prospective LCAs; detailed review protocol can be found in the SI 
(see ‘Cover sheet’). 
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extracted (see ‘2. Review’ in SI) and assigned to the scaling methods 
explained in the previous section. Lastly, the scaling range was allo-
cated, illustrating the starting and intended future production scales. 
The terms ‘large scale’, ‘commercial scale’, and ‘small-industrial scale’ 
were allotted to the industrial scale. 

For the sake of transparency, traceability, and replicability, all search 
outcomes are provided in the SI (see ‘1. Search results’). The last search 
activity was performed on January 04, 2023, excluding studies pub-
lished after that date. The findings of this work are presented narratively 
and descriptively with tabular and graphical assistance in the following 
sections. 

4. Results 

A majority of 63 (81%) studies comprised case studies applying 
scale-up techniques in the context of LCA, as displayed in Fig. 2. Eight 
(10%) studies furnished precise methodologies, serving as a template for 
scale-up. The remaining seven (9%) articles presented own methodol-
ogies and their direct application in a case study. When analyzing the 
number of studies per publication year, an upward trend can be 
observed (see Fig. 2), indicating the growing interest in prospective LCA 
and its accompanying scaling. 

Fig. 3 displays that 72 studies conducted a scale-up to the industrial 
level, demonstrating the high interest in industrial-scale results. Among 
these industrial scale-ups, the majority of studies started at the labora-
tory scale, highlighting the demand and importance of early-stage scale- 
up efforts in emerging technologies. 

As represented by Fig. 4, chemicals comprise the largest group of 
technology types, involving all kinds of chemical or pharmaceutical 
substances like lactic acid or anesthetic drugs, indicating a particular 
interest in their scale-up and innovation rate. Energy technologies, like 
hydrogen, represent the second-largest category, reflecting their crucial 
role in the energy transition and the continuous development of new 
technologies in that field. Similarly, this trend applies for batteries, 
which can be assigned to energy technologies, but are listed as an own 
category, given that six articles studied them explicitly. At the tech-
nology group level, there is a notable research interest in the ‘material’ 
group, driven by its incorporation of chemicals, but also graphene and 
nanomaterials. Likewise, the interest in the ’process’ group, is stimu-
lated by waste treatment, particularly as interest in the recovery of 
valuable materials grow, and by various energy technologies, such as 
power-to-gas. 

4.1. Scale-up techniques applied 

As displayed in Fig. 5, thirty-seven studies (47%) employed a com-
bination of two or more scaling techniques rather than a single method. 
Thus, the sum of all methods used (126) is larger than the total number 
of studies (78). 

Among the methods applied within the studies, approximation and 
process engineering were the most often used ones. Thereby, the process 
engineering-based methodology by Piccinno et al. (2016) stood out, 
being applied 14 times for energy flows and 12 times for material flows. 
Aspen Plus by Aspen Technology (Aspen Technology Inc, 2023) was the 
most frequently utilized software for simulations, with six and four ap-
plications for energy and material flows, respectively. Advanced 
empirical scaling were only performed seven times, of which four 
studies presented a related methodology. Modular influence estimations 
and molecular structure-based models were only employed in method-
ologies presenting these approaches. When differentiating between 
methods applied exclusively and in combination, process engineering 
remains as the most regularly used scaling method. Approximations, on 
the other hand, were mainly used in combination with other techniques, 
such as simple extrapolations and process engineering. Since extrapo-
lation factors are often derived from approximations and implemented 
within process engineering, it is not surprising that there were almost 

Table 2 
Data synthesis of studies reviewed.  

Category Content Definition 

Study type Case study Studies applying one or more scaling 
methods 

Methodology Studies presenting a detailed 
methodological approach for scale-up 

Case study and 
methodology 

Studies presenting a methodology and its 
direct application in a case study 

Technology 
type 

Battery Battery technologies, such as lithium-ion 
batteries 

Bio-product All kinds of bio-products such as 
microalgae biomass or biopolymer 

Chemical Chemical compounds and 
pharmaceuticals such as fatty acids 

Construction Construction elements or factories such as 
windows and chemical plants 

Energy Energy technologies such as power-to-x or 
thermal energy recovery 

Food Technologies related to the food sector or 
food such as gelatin 

Graphene Due to its frequent assessment, graphene 
was listed as an own technology type 

Nanomaterial Nanomaterials such as carbon nanotubes 
or Nano cellulose 

Waste treatment Waste treatment processes such as metal 
recovery or waste water treatment 

Other Technologies not belonging to any other 
named category 

Technology 
group 

Material Technology corresponds to a specific 
material (like chemical) 

Product Technology corresponds to the 
composition of several materials or 
products (like batteries) 

Process Technology corresponds to one or more 
processes (such as waste treatment) 

Other Technology cannot be assigned to one of 
the groups mentioned 

Scaling 
method 

Approximation Utilization of data from analogous, pre- 
existing technologies (see Simon et al. 
(2016)) 

Process engineering Use of process engineering, such as 
mathematical and physical equations and 
stoichiometric relationships (see Piccinno 
et al. (2016)) 

Simple extrapolation Scaling performed using simple 
calculations such as linear extrapolation 
or multiplication by scaling factors (see  
Erakca et al. (2023) or Pini et al. (2017)) 

Simulation Scaling technique or data estimation 
method for which a simulation software 
(like Aspen Plus (Aspen Technology Inc, 
2023)) is used 

Advances empirical 
scaling 

Utilizing learning curves, cost curves, 
regression analysis, power laws, and more 
methods, to empirically analyze 
relationships and scaling factors, to 
forecast the development of emerging 
technology (see Bergesen and Suh (2016)) 

Modular influence 
estimation 

Systematical reduction functions and 
modular influence estimations (see  
Shibasaki (2009)) 

Molecular structure- 
based model 

Neural network based models enabling 
the calculation of impact results based on 
the molecular structure of chemicals (see  
Wernet et al. (2009)) 

Scaling range Lab to pilot Laboratory data is scaled-up to pilot scale 
Lab to industry Laboratory data is scaled-up to industrial 

scale 
Pilot to industry Pilot data is scaled-up to industrial scale 
Lab to pilot and lab 
to industry 

Laboratory data is scaled-up to pilot and 
to industrial scale 

N/A Data is scaled-up to industrial scale; 
starting scale unclear  

M. Erakca et al.                                                                                                                                                                                                                                 



Journal of Cleaner Production 451 (2024) 142161

6

entirely applied in combination with other techniques. 
The frequency of scaling techniques used per technology type are 

plotted in Fig. 6. The total number of scaling methods per technology 
type, to which the percentage values relate, is indicated in the ‘Method’ 
column, while the total number of studies examining the technology 
type is indicated by ’Studies’. Process engineering was applied in 15 out 
of 20 cases for chemicals, especially in combination with simple ex-
trapolations, approximations, or simulations, indicating a connection. 
No relationship is apparent for energy technologies, bio-products, nor 
waste treatment, as process engineering, simple extrapolation combined 
with approximations, and simulations were used with similar frequency. 
The use of approximation combined with simple extrapolation was 

performed in four out of six publications investigating batteries indi-
cating a certain connection. For the remaining technology types, it is 
difficult to depict a relationship, as five or fewer studies are assigned to 
each of them. 

The same analysis was conducted for technology groups, as dis-
played in Fig. 6, to investigate potential dependencies on a higher 
perspective. Process engineering techniques were used as the most 
common method for the scale-up of materials, either as a single method 
(11 times) or in combination with approximations and extrapolations or 
simulation (11 times). Consequently, the use of process engineering for 
the scale-up of materials is notable and indicates a relationship. Un-
surprisingly, chemicals, for which similar relationships were found, 
account for 17 of the 38 technologies within this group. While more 
sophisticated approaches are often applied at the material level, the 
analysis at the product level tends to be more straightforward. The wide 
adaptability and simplicity of approximations and extrapolation make 
them commonly employed for scaling up products, particularly when 
considering the complexity of product-level scale-ups, which involve 
multiple materials. This relationship is fostered further by a specific 
technology type assigned to this group – the battery. On the process 
level, approximations were the leading scaling technique, however, in 
15 out of 18 cases applied in combination with process engineering, 
extrapolation, or simulation. Strikingly, simulation was not performed 
on product level, but only on processes and materials. The bar repre-
senting ‘other’ is shown translucent, to avoid distraction as it only in-
volves four or two case studies for technology type and group, 
respectively. 

4.2. Literature presenting specific scale-up methodologies 

In the following, selected literature introducing a precise and 
detailed methodology for scaling and thereby serving as a direct tem-
plate for individual scaling purposes, were evaluated, leading to the 
selection of the studies shown in Fig. 7. In turn, the studies by Caduff 
et al. (2014) and Köhler et al. (2007), presenting methodologies as well, 
were excluded from the following analysis due to their lack of specific 
guidance. Since many LCA studies (like Birrozzi et al. (2022), Erakca 
et al. (2023), Günkaya and Banar (2016), Kulkarni et al. (2022), Liu 
et al. (2013), Parisi et al. (2020), Pini et al. (2017) and von Drachenfels 
et al. (2021)) used proxy-based extrapolation for upscaling, the scaling 
attempt in the authors’ previous study (Erakca et al., 2023) was included 
as a representative of simple extrapolation, although it is not a scaling 
methodology and merely an example. The selected methodologies and 
their underlying scaling methods and ranges are illustrated in Fig. 7 and 
outlined briefly in the following. It should be mentioned that a 
razor-sharp distinction of scaling techniques used within these meth-
odologies is not always possible as the boundaries often blur. 

Fig. 2. Studies reviewed per year and study type.  

Fig. 3. Scaling range investigated by studies reviewed.  

Fig. 4. Technology types and groups investigated by studies reviewed; values 
may not add up to 100% due to rounding. 
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Consequently, some methodologies encompass more than one scaling 
technique, as illustrated by the color gradients in Fig. 7. 

4.2.1. Approximation 
A methodology for the scale-up of lab-scale LCI data to a higher scale 

is proposed by Simon et al. (2016) and applied to nanofibers in battery 
cathodes. The approach includes a qualitative description of the 
lab-scale preparation to identify potential industrial production 
methods, followed by a quantitative description of the lab-scale 

processes to identify necessary precursors and reaction kinetics and 
characteristics. Further, the working characteristics of the theoretical 
industrial-scale process, such as power requirements, are obtained using 
the properties of a reference large-scale process eventually enabling the 
calculation of a hypothetical industrial-scale technology’s LCI data. 

Delpierre et al. (2021) present a methodology in which scaling is 
accounted for by exploratory scenarios using morphological analysis. 
These scenarios are built by identifying values for defined dimensions or 
variables, resulting in a so-called morphological field. The scenarios are 

Fig. 5. Application of scale-up methods: (a) distribution of methods applied exclusively or in combination among studies reviwed, and (b) total amount of appli-
cation per scale-up method (126 methods applied in 78 studies); values may not add up to 100% due to rounding. 

Fig. 6. Scale-up method applied per technology type and group; values may not add up to 100% due to rounding.  
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developed in close exchange with experts through interviews and 
workshops and in consideration of the current literature. Additional 
factors that could further influence a technology’s development (such as 
stakeholder interaction) are considered. The methodology is applied on 
a pilot-scale technology. 

4.2.2. Process engineering 
Jiménez-González et al. (2000) introduce a methodology for the 

acquisition of industrial gate-to-gate LCI data for chemicals, rather than 
an explicit methodology for scaling up processes. The authors outline 
the general approach for gathering data, which entails the utilization of 
mathematical models, as well as mass and energy balances, for 
approximating the inputs and outputs. Nevertheless, the publication 
does not present any explicit formulas or equations. 

The methodology by Geisler et al. (2004) is not specifically intended 
for scaling up, but for generating LCI data for fine and specialty chem-
icals and can be applied to processes at the laboratory scale. Process 
engineering equations are provided that could be used to determine 
material quantities and energy consumption values. In addition, default 
best and worst-case values are provided for yields or solvent recycling 
rates, heuristically determined by on-site data.Piccinno et al. (2016) 
propose a process engineering-based scaling methodology that is ver-
satile and applicable to a variety of chemical processes at different 
scales. The methodology entails identifying the critical process param-
eters that are essential for scaling up, such as reactor size, temperature, 
and residence time. Detailed formulas and mathematical calculations, 
and default values are provided to calculate material and energy flows, 
as well as emissions and waste outputs, for a hypothetical industrial 
scale. 

Zhou et al. (2017)’s methodology bears a resemblance to the 
approach outlined by Piccinno et al. (2016) and is applicable to chem-
icals. The procedure entails the conversion of experimental data from 
pilot-scale operations into LCI data that can be extrapolated to an in-
dustrial scale. The calculations and equations involved in the scaling 
approach are elaborately described in the study. 

4.2.3. Simple extrapolation 
As mentioned previously, the authors’ own scaling attempt in Erakca 

et al. (2023) is used exemplary to assess proxy-based simple extrapola-
tion as a scale-up technique. In the case study, the material loss rates and 
throughput volumes of a lab-scale production are extrapolated to values 
of larger-scale productions provided in literature to mimic small-scale 
industrial production. 

4.2.4. Advanced empirical scaling 
Tecchio et al. (2016)’s methodology was initially developed for 

biopolymers and involves the selection of a reference polymer for which 
three LCAs are assessed: pilot scale (worst mass conversion yield), ideal 
stoichiometric scale (best mass conversion yield) and industrial scale. 
Based on the greenhouse gas (GHG) emissions of these three LCAs, the 
relationship between the data points is defined as a function of the mass 
conversion yield using various mathematical functions (such as power 
regression or linear interpolation). The resulting function is then applied 
to the new biopolymer’s GHG emissions of its actual pilot scale and its 
ideal stoichiometric scale. In the case study, linear interpolation was 
chosen as the most suitable mathematical function due to its balance 
between simplicity and accuracy, which is why this approach also in-
cludes simple extrapolation. 

Bergesen and Suh (2016) present a generalized mathematical 
methodology, based on Wright’s law (Wright, 1936) and its extensions, 
to account for the learning effects of a technology’s entire supply chain 
and the calculation of the technology’s life cycle impacts, taking into 
account these learning effects. Thereby, they divide the learning effect 
into its subcomponents: a) Intermediate Input Learning (IIL), including 
efficiencies in material and energy use of a company, Valued Added 
Learning (VAL), which are not relevant for environmental impacts, and 
Supply chain IIL and VAL, considering efficiencies of the whole supply 
chain. The study exemplary scales-up to the industrial level, without 
defining a starting scale. 

The systematic approach by Hulst et al. (2020) aims at calculating 
the potential industrial GHG emission associated with a pilot-scale 
technology, in this example a photovoltaic laminate, considering a 

Fig. 7. Overview of literatures providing detailed scale-up methodologies.  
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multitude of changes across various levels to provide an accurate 
assessment of the technology’s potential impact. At the process level, 
changes such as improved product performance are evaluated against 
reference technologies, whereas size scaling is conducted by utilizing 
scaling curves obtained from regression analysis. Process synergies, such 
as internal recycling, are deduced from the flow charts of existing in-
dustrial processes. The effects of industrial learning are included by 
using experience curves. Finally, potential external developments 
affecting the environmental performance of the technology are 
accounted. It should be noted that various sophisticated scaling tech-
niques are applied in this methodology, which, for the sake of simplicity, 
are summarized in the method advanced empirical scaling. 

4.2.5. Modular influence estimations 
Kupfer (2005)’s approach involves the modularization of chemical 

processes and the estimation of environmental impacts at modular level. 
Each module is subdivided into its individual process steps, and corre-
sponding input-output data is used to calculate the environmental 
impact of each process. By aggregating the environmental impacts of 
each process step, the environmental impact of the module is achieved. 
Finally, the modules are combined to estimate the environmental impact 
of the entire chemical process. 

The methodology by Shibasaki (2009) for estimating the environ-
mental impacts of a large-scale plant using pilot data exhibits significant 
similarities to the methodology adopted by Kupfer (2005). Pilot plant 
data is collected along with information on any differences in technol-
ogy or process between the pilot and potential large-scale plants. The 
opinions of experts are then sought to predict the potential reduction in 
environmental impact that could be achieved in the large-scale plant 
through the implementation of specific mitigation measures or techno-
logical improvements. These predictions are subsequently used to 
calculate reduction factors for each module, which can be applied to the 
environmental impact data of the corresponding pilot plant module to 
determine the environmental impact of the large-scale plant. 

4.2.6. Molecular structure-based models 
Wernet et al. (2009) provide a molecular structure-based model to 

estimate the environmental impact of chemical production processes. 
The model considers the chemical structure of the compounds involved 
in the process and predicts their fate and behavior in the environment. 
By inputting the chemical structure of the compound, the model can 
estimate its aggregated global warming potential. 

4.3. Advantages and disadvantages of scale-up methodologies as 
presented in selected literature 

To gain an improved understanding of the implementation of the 
methodologies, their step-by-step approaches were systematically 
captured and compared, yielding in a five-step scaling procedure. The 
analysis revealed whether a methodology executed certain steps and 
identified potential benefits or drawbacks, and can be found in detail in 
the SI. Based on this analysis, the methodologies’ strengths and weak-
nesses were assessed using five criteria: limitation, complexity, data 
intensity, duration, and uncertainty. These criteria were derived and 
consolidated from earlier studies (Buyle et al., 2019; Hummen and 
Kästner, 2014; Parvatker and Eckelman, 2019; Tsoy et al., 2020). The 
restrictions imposed by a scaling methodology with regard to specific 
technology types, groups, or scaling ranges, are evaluated by limitation, 
which was also discussed in Tsoy et al. (2020)’s review. Hence, limita-
tion is considered an upstream filter, as it assesses the technical appli-
cability of a methodology. Complexity refers to the level of expertise 
required or the intricacy of a scaling methodology and was addressed 
previously in the work of Hummen and Kästner (2014). The quantity of 
data required to apply a scaling technique refers to data intensity, while 
duration quantifies the time commitment associated with implementing 
a scaling method. These criteria were addressed by Hummen and 

Kästner (2014), being labeled as necessary effort, Buyle et al. (2019), 
and Parvatker and Eckelmann (2019). Uncertainty, being a major focus 
in Parvatker and Eckelmann (2019), characterizes the underlying am-
biguity and imprecision of a methodology. The criteria are rated on a 
scale from 1 to 4, with 1 signifying the least intensity, or the most 
favorable rating, and 4 the highest intensity, or the least favorable rat-
ing. The respective ratings of the scale-up methodologies are provided in 
Table 3 and can be found in more detail in the SI (see ‘3. 
Methodologies’). 

4.3.1. Limitation 
Simon et al. (2016)’s study, which employs reference technologies, 

can be applied to any other technology and production scale, if com-
parable reference technologies are available. Although Delpierre et al. 
(2021) applied their methodology to pilot-scale electrolysis technolo-
gies, it can be transferred easily to a range of technologies at various 
production scales and is deemed unrestricted in terms of its applica-
bility. The process engineering-based approaches of Jiménez-González 
et al. (2000), Piccinno et al. (2016) and Zhou et al. (2017) are geared 
towards analyzing chemical substances. Nonetheless, the review anal-
ysis indicates that 20 studies have already evaluated chemicals, 
excluding bio-products or batteries, which also comprise chemical 
constituents. Consequently, the reach of these methodologies extends 
beyond chemicals and can be implemented at any production scale, 
earning them a rating of 2. In contrast, Geisler et al. (2004) score 3 due 
to their narrower focus on fine and specialty chemicals, while Szïjjarto 
et al. (2008)’s methodology, being limited to steam, score even lower. 
Simple extrapolation (Erakca et al., 2023) can be applied as a scaling 
method to any emerging technology at any production scale. Tecchio 
et al. (2016)’s methodology can be extended to lab-scale technologies, 
despite its original application on a pilot scale and applied to a wide 
range of chemical materials. Bergesen and Suh (2016) and Hulst et al. 
(2020) are both characterized by their wide-ranging applicability, 
making them suitable for any technology that possesses sufficient data to 
derive scaling functions. While employing these methodologies during 
the pilot phase, rather than the laboratory stage, may enhance the 
precision of estimations, such constraints are not explicitly stated in the 
studies. Kupfer (2005) is solely applicable to the construction of chem-
ical plants, thereby imposing a notable limitation, while Shibasaki 
(2009) is restricted to chemical processes. Additionally, both method-
ologies are specifically designed for scaling from pilot, rather than lab-
oratory scale, leading in a rating of 4. Wernet et al. (2009) is exclusively 
suitable for petrochemical synthesis providing a limited scope of 
application. 

4.3.2. Complexity 
Simon et al. (2016) anticipate changes based on reference technol-

ogies at the product and system level, requiring a profound knowledge 
of the technology and its product environment. The development of 
dependable scenarios in Delpierre et al. (2021) relies on the input of 
experts via workshops and interviews, highlighting the expertise 
required for the execution of this methodology. It should be noted that 
such extensive knowledge is not generally necessitated for the approx-
imation method, but owes specifically to Simon et al. (2016) and Del-
pierre et al. (2021). No equations or computational strategies are 
provided in Jiménez-González et al. (2000)’s study earning it a rating of 
4. The scale-up practitioner must independently identify appropriate 
process engineering formulas, which can be a daunting task that ne-
cessitates expertise in process. In contrast, the inclusion of proximity 
values and calculation equations in the remaining process 
engineering-based methodologies (Geisler et al., 2004; Piccinno et al., 
2016; Szïjjarto et al., 2008; Zhou et al., 2017) indicate a relatively 
moderate degree of complexity facilitating their practical implementa-
tion. Similarly, the simple extrapolation in Erakca et al. (2023) and the 
advanced empirical scaling in Tecchio et al. (2016), score 2, indicating a 
relatively moderate degree of complexity. Bergesen and Suh (2016) and 
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Hulst et al. (2020) score 3, signifying a certain degree of intricacy. Both 
approaches delve into alterations occurring at various levels, necessi-
tating a substantial level of expertise to derive appropriate inferences. 
Kupfer (2005) and Shibasaki (2009), both rated 4, necessitate a 
comprehensive understanding of the conceivable product and system 
levels to determine the reduction factors. In contrast, Wernet et al. 
(2009)’s model can be conveniently applied as the tool automatically 
generates output values based on the input data and has the lowest 
complexity level among the methodologies reviewed. 

4.3.3. Data intensity 
The methodologies of Simon et al. (2016) and Delpierre et al. (2021) 

warrant a rating of 3 as they necessitate additional data on reference 
technologies and possible alterations on several levels, and data per-
taining to sub-components and modules. Due to the absence of equations 
mandating the collection of thermodynamic formulations, default 
values, and related factors, Jiménez-González et al. (2000)’s approach 
scores 3. The remaining process engineering based methodologies 
(Geisler et al., 2004; Szïjjarto et al., 2008; Piccinno et al., 2016; Zhou 
et al., 2017) only require input values for calculating the material 
quantities or energy values, meriting their rating of 2. The simple 
extrapolation in Erakca et al. (2023), requiring only some reference 
values, is rated 1. Tecchio et al. (2016)’s methodology relies on five 
LCAs, necessitating a larger volume of data, resulting in a rating of 3. 
The remaining two methodologies employing advanced empirical 
scaling (Bergesen and Suh, 2016; Hulst et al., 2020) score 4. Their 
application assumes the availability of extensive historical data on the 
use of specific technologies over time or data on key properties of the 
technology related to the size of the production equipment. The limited 
availability of LCA and LCI studies as data sources for some technologies 
can thus hamper their application. The requirement for data concerning 
sub-processes and modules earns the modular influence 
estimation-based studies (Kupfer, 2005; Shibasaki, 2009) a rating of 3. 
Wernet et al. (2009) is rated 1, requiring only some data related to the 
molecular structure of the chemical assessed (like hydroxyl or carboxyl 
groups). 

4.3.4. Duration 
Delpierre et al. (2021), envisage the consultation of experts via in-

terviews or workshops, which’s evaluation can be exceedingly 
time-consuming and prolong the duration of the assessment. Simon et al. 

(2016) do not rely on interviews or workshops and is considered as 
time-efficient. The use of thermodynamic equations, stoichiometry, and 
other process engineering techniques is deemed comparably rapid, 
warranting those methodologies (Jiménez-González et al., 2000; Szïj-
jarto et al., 2008; Geisler et al., 2004; Piccinno et al., 2016; Zhou et al., 
2017) a rating of 2. Erakca et al. (2023)’s scaling attempt merits a rating 
of 1 as it involves the modification of only two parameters (loss rate and 
throughput). Requiring five fully-fledged LCAs, Tecchio et al. (2016)’s 
methodology is more time-consuming yielding a rating of 3. Bergesen 
and Suh (2016) and Hulst et al. (2020) are deemed time-intensive due to 
the extensive empirical data required for calculating scaling functions, 
assuming that prior studies have not established these values. While the 
exponential factor R in Hulst et al. (2020)’s study could be adopted from 
a previous investigation, the absence of such values for a wide range of 
technologies renders it unfeasible to assume their availability in general, 
culminating in a rating of 4. Similar to Delpierre et al. (2021), expert 
interviews or workshops are required in Kupfer (2005), and Shibasaki 
(2009), resulting in a score of 4. Wernet et al. (2009)’s model, which 
relies on neural networks to estimate the global warming potential of 
specific chemicals, represents another highly time-efficient methodol-
ogy, earning it a rating of 1. 

4.3.5. Uncertainty 
The evaluation of the various methodologies’ uncertainty remains 

challenging, as experimental data is required for its validation. As noted 
by Parvatker and Eckelmann (2019), approaches using approximations 
(Delpierre et al., 2021; Simon et al., 2016), are considered inaccurate, 
scoring 4. Contrary, process engineering based methodologies 
(Jiménez-González et al., 2000; Szïjjarto et al., 2008; Geisler et al., 2004; 
Piccinno et al., 2016; Zhou et al., 2017) are valued as accurate (Par-
vatker and Eckelman, 2019), receiving a rating of 2. Yet, the use of 
simple extrapolation, as done in Erakca et al. (2023), is regarded inac-
curate (Parvatker and Eckelman, 2019). Tecchio et al. (2016)’s 
approach scores 3 due to its reliance on a single existing reference 
technology. The advanced empirical scaling methods applied in Berge-
sen and Suh (2016) and Hulst et al. (2020), are judged to be accurate by 
Hummen and Kästner (2014) and Majeau-Bettez (2021). Shibasaki 
(2009)’s approach was verified several years later (Simon et al., 2016) 
and considered highly accurate, scoring 1, while Kupfer (2005)’s 
methodology receives a rating of 3 due to the lack of validation or un-
certainty assessment. Wernet et al. (2009)’s model is deemed as 

Table 3 
Evaluation of scale-up methodologies as presented in literature 1 = very low (most favorable rating); 2 = low; 3 = high; 4 = very high (least favorable rating).  

Year Author Scaling technique Study type Limitation Complexity Data 
intensity 

Duration Uncertainty 

2016 Simon et al. Approximation Case study and 
methodology 

1 4 3 2 4 

2021 Delpierre et al. Approximation Case study and 
methodology 

1 4 3 3 4 

2000 Jiménez-González 
et al. 

Process engineering Methodology 2 4 3 2 2 

2004 Geisler et al. Process engineering; approximation Methodology 3 2 2 2 2 
2008 Szïjjarto et al. Process engineering; approximation Case study and 

methodology 
4 2 2 2 2 

2016 Piccinno et al. Process engineering; simple extrapolation Methodology 2 2 2 2 2 
2017 Zhou et al. Process engineering; simple extrapolation Case study and 

methodology 
2 2 2 2 2 

2023 Erakca et al.a Simple extrapolation; approximation Case study 1 2 1 1 4 
2016 Tecchio et al. Advanced empirical scaling; simple 

extrapolation 
Case study and 
methodology 

2 2 3 3 3 

2016 Bergesen and Suh Advanced empirical scaling Methodology 1 3 4 4 2 
2020 Hulst et al. Advanced empirical scaling Case study and 

methodology 
1 3 4 4 2 

2005 Kupfer Modular influence estimations Case study and 
methodology 

4 4 3 3 3 

2009 Shibasaki Modular influence estimation Methodology 4 4 3 3 1 
2009 Wernet et al. Molecular structure-based model Methodology 4 1 1 1 3  

a Authors’ previous case study is used as an example of simple extrapolation and does not represent a methodology. 
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uncertain due to the need for very precise input values and its black-box 
nature, which makes it difficult to identify uncertainty sources. 

4.4. Excel-based tool for selection of scaling methodologies as presented in 
literature 

Evidently, no single scale-up methodology can be universally applied 
to all types of studies, possessing different advantages and disadvan-
tages. The selection of these scaling methodologies depend on individual 
use cases, user preferences and expertise, and resources available. 
Therefore, identifying and selecting suitable scaling methodologies has 
posed a challenge for prospective LCA practitioners. Thus, an Excel- 
based decision tool was developed and can be found in the SI’s tab ‘4. 
Decision tool’. The tool provides a user-friendly and straightforward 
approach, simplifying the otherwise time-consuming process of meth-
odology selection. 

In a first stage, individual study specifications (such as technology 
type, scaling domain, and data to be scaled) are entered into the tool by 
the user, to eliminate unsuitable methodologies. For example, if the 
technology is a food product without chemical compounds, methodol-
ogies limited to chemicals are automatically excluded. This is accom-
plished by background data extracted for each methodology, which is 
evaluated using Excel’s chained if-then functions. The details for this 
process can be found in the SI’s ‘4.1 Decision Tool Background’. In a 
second stage, the aforementioned evaluation criteria (complexity, data 
intensity, duration, and uncertainty) are weighted by the user based on 
their own requirements. For example, if low uncertainty within the 
methodology is crucial, uncertainty could be given a weight of 70%, 
while the other criteria could each be assigned a weight of 10%. Based 
on these weights and the previously assigned ratings (ranging from 1 to 
4 for each methodology and criterion), a weighted sum is calculated (see 
SI’s ‘4.1 Decision Tool Background’). The methodologies are subse-
quently ranked based on their weighted sums, with the top-ranked 
methodology as the most appropriate for scaling. 

Since all data are linked and calculations are automated, no in-depth 
knowledge is required for the tool’s usage, making it suitable for non- 
experts. Nevertheless, the SI’s ‘4.1 Decision Tool Background’ contains 
instructions for adding further methodologies so that the review can be 
continuously expanded when required. Additionally, the initial assess-
ment of the advantages and disadvantages of the individual methods 
(see SI’s ’ 3. Methodologies’) can be changed if the assessment of this 
work is deemed insufficient. The Excel tool is thus made available as 
open-source and can be updated and further optimized within the LCA 
community. Moreover, the tool’s applicability can extend beyond LCA, 
making it suitable for scale-ups in other sustainability assessment 
methods such as life cycle costing (LCC) or technology development in 
general. 

5. Discussion 

However, the evaluation criteria employed in the Excel-based tool 
are limited in scope and fail to account for other aspects of the meth-
odologies. These aspects should be considered in the selection process as 
well, and are subsequently assessed qualitatively. Firstly, the selected 
methodologies are scrutinized in the context of technology design and 
manufacturing. Although scaling effects in other life cycle phases, such 
as the use or end-of-life phase, are sometimes indirectly addressed when 
evaluating supply chain changes, they are not the primary focus of the 
methodologies. None of the methodologies delve into how the scaling of 
a novel technology might be portrayed in a prospective cradle-to-grave 
analysis. Nevertheless, these effects can be examined through scenario 
analyses in an LCA. 

When employing approximations for scaling, it may not be feasible to 
obtain data for comparable processes or products, as such when dealing 
with highly innovative processes or products, hampering the applica-
bility of this approach. 

Furthermore, some methodologies, like Jiménez-González et al. 
(2000), Geisler et al. (2004) and Kupfer (2005), are considered rather 
outdated and partly unsuitable for scaling in prospective LCA. Erakca 
et al. (2023) and Tecchio et al. (2016) assume a linear relationship be-
tween energy and material flows and the production scale. In reality, 
environmental impacts or energy and material flows may increase or 
decrease at a non-linear rate as production scales up or down. In addi-
tion, simple extrapolation, as performed in Erakca et al. (2023), con-
siders only two variables and lacks a systematic execution, rendering it 
somewhat incomplete (Hummen and Kästner, 2014). However, this 
approach could be particularly valuable in evaluating vaguely and 
preliminary the potential impacts at higher scales, requiring little time 
and effort. 

Along with Wernet et al. (2009)’s approach, the advanced empirical 
scaling methodologies suffer from the drawback of not providing LCI 
data (Parvatker and Eckelman, 2019; Simon et al., 2016) and lack 
granularity in their output data, as they focus on the scale-up of envi-
ronmental impacts (GHG emissions) rather than process-level LCI data 
(Hummen and Kästner, 2014). Consequently, these methodologies 
possess a ‘black box character’ (Hummen and Kästner, 2014) hampering 
the identification of potential hotspot processes. The environmental 
footprint of a process or product can be influenced by a range of 
context-specific variables, including but not limited to, geographic 
location, local infrastructure, and environmental regulations, which are 
not considered in these scale-up methodologies. In addition, the 
advanced empirical scaling methodologies (Bergesen and Suh, 2016; 
Hulst et al., 2020; Tecchio et al., 2016) hinge on empirical data that may 
not be transferable to prospective scenarios, given the absence of 
anticipatory considerations for potential developments, such as gov-
ernment regulations or material scarcities. 

Furthermore, the Excel-based tool does not evaluate the combination 
of two or more methodologies. Instead, it treats them as separate entities 
and evaluates them under the assumption of independent application. 
However, a combination of certain methodologies could be beneficial in 
some cases and should be considered when using the tool. 

In addition to the limitations in the evaluation scheme, there are 
general constraints inherent to any systematic review. Due to the use of 
specific search strings (see SI’s ‘Cover sheet’) to identify potentially 
relevant literature, additional literature that would meet the review 
inclusion criteria could not be located if the search keywords(e.g., ‘scale- 
up’) were not utilized in that source. This constraint applies, for 
example, to studies using terms like ‘scale effect’ instead of ‘scale-up’, as 
in the work of Kawajiri et al. (2020). Similarly, the use of specific search 
engines will include or exclude various literature sources. 

Despite being a systematic review, replicating the search results as 
presented in the SI’s ‘1. Search results’ is challenging since the last 
search was conducted in January 2023. More recent work will emerge 
when conducting the same literature search, and changes in the rele-
vance of certain literature is expected, resulting in a different ranking of 
the search results. Another consequence of this is that interesting studies 
published after January 2023, like Weyand et al. (2023) or Langkau 
et al. (2023), could not be included in this review. 

6. Conclusion and outlook 

In a first dimension, this study aimed at investigating commonly used 
scaling techniques in LCA related studies and identifying potential re-
lationships between technology types or groups and scaling method by 
systematically reviewing 78 studies Across all technology types, ap-
proximations were found to be the most commonly used method, fol-
lowed by process engineering, being particularly popular for chemicals 
and bio-technologies. Simple extrapolation was almost entirely used in 
combination with approximations and process engineering. A potential 
relationships between simulations and chemicals, bio-products, and 
waste treatment, was observed. On the technology group level, a 
connection between approximations applied in combination with 
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extrapolation was striking for products, whereas process engineering 
was used for materials. Advanced empirical scaling, modular influence 
estimations and molecular structure-based models were infrequently 
employed. To analyze potential statistical correlations between tech-
nology type or group and choice of scaling method, further research with 
a higher sample size is required. LCA relevant traits, such as system 
boundary or functional unit, could have additional influence on the 
selection of a specific scaling method. However, the exploration of these 
potential relationships remains beyond the scope of the current review 
study, but could be considered in future reviews. 

In a second dimension, studies providing detailed scaling method-
ologies were analyzed to assess their strengths and weaknesses, aiming 
to facilitate the selection of the most appropriate methodology. Five 
criteria were utilized to evaluate the methodologies, including limita-
tion, complexity, data intensity, duration, and uncertainty. While 
approximation and simple extrapolation-based methodologies are 
applicable to any type of technology, they present drawbacks in terms of 
uncertainty. Process engineering-based approaches are limited to 
chemicals or steam, yet they are performing well in the remaining 
criteria. Advanced empirical scaling-based methodologies demonstrate 
low uncertainty, but they require extensive data and time and lack 
output data granularity. Although they can offer very precise results, 
modular influence estimation-based methodologies are intricate and 
demand in-depth knowledge. The molecular structure-based model is 
limited to petrochemical synthesis and only provides aggregated GHG 
emissions hampering the identification of potential hotspot processes, 
but it performs well in the remaining criteria. 

Given that no methodology surpasses the others, the selection of a 
suitable scaling methodology relies on study specifications and indi-
vidual requirements, leading to the development of an Excel-based de-
cision tool. Firstly, the individual study specifications are assessed to 
eliminate unsuitable methodologies. Secondly, the evaluation criteria 
are weighted by the user and weighted sums are calculated. The tool 
ranks methodologies, enabling users to select the most suitable scaling 
one. Being open-source, the Excel-based tool can be expanded and 
improved with further methodologies within the LCA community. 
Future research is needed to evaluate the scaling methodologies 
revealed by the tool in a direct use case. 

While this study focuses on prospective LCA, its findings contribute 
significantly to sustainability assessment methods, process engineering, 
and product development in general. Advanced empirical scaling based 
approaches can predict costs, while process engineering reveals energy 
and material flows essential for LCC, Techno-Economic Analysis, critical 
raw material analysis, and social LCA. Expert integration in the use of 
approximations and modular influence estimations enables for 
comprehensive scaling across various domains, including ethical and 
societal factors, potentially aiding political decision-making. 
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