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We study the influence of side walls on the stability of falling liquid films. We combine a
temporal biglobal stability analysis based on the linearised Navier–Stokes equations with
experiments measuring the spatial growth rate of sinusoidal waves flowing downstream
an inclined channel. Very good agreement was found when comparing the theoretical and
experimental results. Strong lateral confinement of the channel stabilises the flow. In the
wavenumber-Reynolds number space, the instability region experiences a fragmentation
due to selective damping of moderate wavenumbers. For this range of parameters, the
three-dimensional confined problem shows several prominent stability modes which are
classified into two categories, the well-known Kapitza hydrodynamic instability mode
(H-mode) and a new unstable mode, we refer to it as wall-mode (W-mode). The two mode
types are stabilised differently, where the H-modes are stabilised at small wavenumbers,
while the W-modes experience stabilisation at high wavenumbers, and at sufficiently small
channel widths, only the W-mode is observed. The reason behind the unique H-modes
stabilisation is that they become analogous to waveguide modes, which can not propagate
below a certain cut-off wavenumber. The spatial structure of the eigenmodes experiences
significant restructuring at wavenumbers smaller than the most damped wavenumber. The
mode switching preserves the spatial symmetry of the unstable mode.

Key words: thin films

1. Introduction

Falling liquid films are thin viscous liquid flows driven down an inclined plate by gravity.
For several decades, they have been under extensive investigation due to their important
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role in various mechanical and chemical applications, such as complex flow coating
(Weinstein & Ruschak 2004) and cooling of mechanical and electronic systems (Hu et al.
2014). For instance, the wavy nature of falling films organised into localised structures
or solitary waves (Miyara 2000) were found to increase the heat/mass transfer rate by
10–100 % compared with flat films (Goren & Mani 1968). Therefore, understanding the
mechanisms leading to the complex dynamics of falling liquid films are crucial to the
development of various industrial applications. Studying the linear stability is considered
the first step in understanding the disordered spatiotemporal state that characterises falling
liquid films. Investigating the onset of the instability and the domains in which the flow is
stable or unstable is crucial to understand this kind of flows.

Mostly, the stability of falling liquid films with respect to infinitesimal perturbations is
studied using the modal approach, in which the eigenmodes of an operator describing
the evolution of the perturbations are examined separately. This approach relies on
decomposing the flow quantities q into a steady part q̄ (usually called base state) and
an unsteady part q̃ (perturbations). Traditionally, the base state of a falling film is found
using the parallel flow approximation, where the wall-normal velocity component and
the spanwise derivatives are assumed to be negligible. With this approximation, the base
state forms a semiparabolic velocity profile varying in the wall-normal direction, while
it remains constant in the other directions. This base state was first obtained by Nusselt
(1916), and is referred to as the Nusselt film solution.

In the case of laterally confined falling films, the base state does not only change in
the direction normal to the bottom wall, but also in the spanwise direction. Scholle &
Aksel (2001) followed by Haas, Pollak & Aksel (2011) used analytical and experimental
methods to investigate the effect of side walls on the base state of falling films. They found
two competing effects in the vicinity of the wall: (i) the reduction of the base flow velocity
due to the no-slip boundary condition; and (ii) an increase in the surface velocity near the
side walls due to the increased film thickness caused by the capillary elevation. However,
the latter effect can be ignored if the film thickness is sufficiently large.

The linear stability analysis based on the Nusselt base state is a local stability analysis,
since the flow stability at a single point in the downstream is sought. The stability
analysis in which the base flow varies in two spatial directions, as in laterally confined
falling films, is named biglobal stability analysis. Finally, when the base state is not
homogeneous in any of the considered spatial directions, the stability analysis is referred to
as global stability analysis; see, for example, Albert, Tezuka & Bothe (2014). A quantitative
comparison between different stability modal approaches can be found in the work of
Juniper, Hanifiand & Theofilis (2014).

The pioneering works of Kapitza & Kapitza (1948, 1949) were the first to describe
the development of ‘long’ wavelength deformations on the surface of the film. They
identified these deformations as hydrodynamic instability, and therefore called it H-mode
instability. The Orr–Sommerfeld approach has been followed in much of the work devoted
to studying the local stability of falling films with respect to the hydrodynamic instability.
Benjamin (1957) and Yih (1963) were first to follow this approach as they performed
a temporal stability analysis in which the wave velocity and amplification factor for a
perturbation with a given wavelength is sought. They identified the onset of the H-mode
for small wavenumbers in terms of the critical Reynolds number and inclination angle
β as Rec = (5/6) cot(β), where this condition is only valid when the Reynolds number
is based on the average liquid velocity. On the other hand, Krantz & Owens (1973)
performed a spatial stability analysis where the spatial amplification and the wavelength
of a disturbance with a prescribed frequency is sought. A more simplified approach was
formulated by Benney (1966), which used long-wave expansion to obtain a temporal
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evolution equation (Benney’s equation) that describes the interface development for small
wavenumber perturbations. The evolution equation can be utilised to obtain a dispersion
relation of the temporal amplification rate in the regions of small wavenumbers and weak
inertia. Various physical effects were considered while studying the local stability of
falling films such as heating and phase change (Mohamed & Biancofiore 2020), shearing
gas (Lavalle et al. 2019) and flexible inclined surface (Alexander, Kirk & Papageorgiou
2020). For the wide range of mathematical approaches and physical effects considered
while studying the interface evolution and local stability of falling films, refer to the
reviews by Oron, Davis & Bankoff (1997), Craster & Matar (2009) and Kalliadasis et al.
(2012).

With regards to the linear stability of laterally confined falling films (biglobal stability),
Vlachogiannis et al. (2010) and Georgantaki et al. (2011) experimentally studied long-wave
perturbations in narrow channels. The earlier showed that the critical Reynolds number
(Rec) increases significantly as the channel width decreases, while it converges to
the two-dimensional (2-D) theoretical value as channel width increases. The latter,
Georgantaki et al. (2011), confirmed the aforementioned observation, and additionally
showed that surface tension, opposed to classical stability, has a drastic effect on the
long-wave instability threshold. They showed that the deviation in the critical Reynolds
number due to spanwise confinement is strongly enhanced as the ratio between capillary
and viscous forces increases. Pollak, Haas & Aksel (2011) investigated the influence of
the contact angle at the side walls on the onset of the stability. Experiments showed a
significant change in the neutral stability curve between two different contact angles, but
with no structural modification on the neutral curves. Most recently, Kögel & Aksel (2020)
performed experiments for a wide range of forcing frequencies and Reynolds numbers.
They showed that the side walls can have a dramatic effect on the shape of the neutral
curve by causing a fragmentation due a selective damping of the instability at moderate
frequency range. They concluded that the damping effect is independent of the inclination
angle and only depends on the channel width.

While the effect of spanwise confinement on the stability of falling films is not
properly investigated from the theoretical perspective, there are several examples in the
literature for other flow configurations. Tatsumi & Yoshimura (1990) formulated two
Orr–Sommerfeld-like equations to study the stability of laminar flow in a rectangular duct.
Their stability analysis showed that the critical Reynolds number increases monotonically
with decreasing the aspect ratio of the duct, thus a stabilising effect is observed. Theofilis,
Duck & Owen (2004) showed similar results solving the full linearised Navier–Stokes
equations. More recently, Lefauve et al. (2018) and Ducimetière et al. (2021) studied the
effect of spanwise confinement on stratified shear instabilities showing that the lateral
confinement has a stabilising effect.

We examine the effect of side walls on the linear stability of falling liquid films
by combining theoretical modelling and experimental techniques. This approach to the
problem introduces the missing theoretical background for the spanwise confinement
effect reported in the literature, which is limited to experiments only. In addition,
the theoretical stability model offers the opportunity to explore a wide range of flow
parameters, which was not possible due to the experimental techniques restrictions. This
monograph is organised as follows: in § 2, we discuss the non-dimensional governing
equations alongside the dimensionless parameters. The base state and the linear stability
analysis are also presented in the same section. The experimental set-up and the linear
stability measurement technique are presented in § 3. Our results consisting of validating
the numerical stability model with the experiments followed by extensive theoretical
investigation of different aspects of the problem are presented in § 4. Finally, we

964 A40-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

39
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.391


H. Mohamed, J. Sesterhenn and L. Biancofiore
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Figure 1. Schematic diagram of liquid film falling down an inclined channel. Here, h(x, z, t) is the local film
thickness and hm is the mean film thickness.

present our concluding remarks and potential direction of investigations in §§ 5 and 6,
respectively.

2. Theoretical formulation

The theoretical formulation of the problem is presented in this section. We start with
listing the non-dimensional governing equations, and the associated walls and free surface
boundary conditions in § 2.1. Afterwards, we present the base state solution (§ 2.2)
followed by the methodology to linear stability analysis (§ 2.3). Finally, the numerical
approach to solve the problem is presented in § 2.4.

2.1. Non-dimensional governing equations:
We consider a three-dimensional (3-D) liquid film running down a tilted channel due to
gravity g (figure 1). The channel has a width W and forms an angle β with the horizontal.
The density ρ and dynamic viscosity μ are constant, while the kinematic viscosity ν is
given by ν = μ/ρ. We use the Cartesian coordinates (x, y, z), where x corresponds to the
streamwise direction, y is bottom wall normal increasing into the liquid and z is in the
spanwise direction. The left and right walls of the channel are located at z = 0 and z = W,
respectively. The following length, time, velocity and pressure scales are introduced in
order to non-dimensionalise the system:

h → hmh∗, (x, y, z) → hm(x∗, y∗, z∗), W → hmW∗,
t → h2

m/νt∗, (u, v, w) → ν/hm(u∗, v∗, w∗), p → ρν2/h2
mp∗,

where hm is the mean film thickness. By using these scales and dropping the
stars for simplicity, we obtain the dimensionless governing equations, continuity and
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Navier–Stokes, as follows:

∂xu + ∂yv + ∂zw = 0, (2.1a)

∂tu + u · ∇u = −∂xp + ∇2u + G sin(β), (2.1b)

∂tv + u · ∇v = −∂yp + ∇2v + G cos(β), (2.1c)

∂tw + u · ∇w = −∂zp + ∇2w, (2.1d)

where G = gh3
m/ν2 is the ratio of inertial to viscous forces. The Reynolds number is a

function of the flow rate q̇ and channel width W:

Re = q̇
2νW

. (2.2)

It is important to clarify that G sin(β) does not represent the Reynolds number as in
the case of the 2-D problem (W → ∞). The quantity G sin(β) is always larger than the
Reynolds number because the velocity is slowed down in the vicinity of the wall. Here,
Re approaches G sin(β) as the channel width goes to infinity. The dimensionless boundary
conditions at the bottom ( y = 0) and side walls (z = 0, W) read

u(x, y = 0, z) = 0, (2.3a)

u(x, y, z = (0, W)) = 0. (2.3b)

Moreover, the kinematic and dynamic couplings at the free surface lead to the interface
boundary conditions at y = h(x, z, t) which are written as

v = ∂th + u∂xh + w∂z, (2.4a)

p = 2
n2 [(∂xh)2∂xu + (∂zh)2∂zw + ∂xh∂zh(∂zu + ∂xw)

− ∂xh(∂yu + ∂xv) − ∂zh(∂zv + ∂yw) + ∂yv]

− 1
n3 3S[∂xxh(1 + (∂zh)2) + ∂zz(1 + (∂xh)2) − 2∂xh∂zh∂xzh], (2.4b)

0 = 1
n

[2∂xh(∂yv − ∂xu) + (1 − (∂xh)2)(∂yu + ∂xv)

− ∂zh(∂zu + ∂xw) − ∂xh∂zh(∂zv + ∂yw), (2.4c)

0 = 1
n

[2∂zh(∂yv − ∂zw) + (1 − (∂zh)2)(∂yw + ∂zv)

− ∂xh(∂zu + ∂xw) − ∂xh∂zh(∂yu + ∂xv), (2.4d)

where n = (1 + (∂xh)2 + (∂zh)2)1/2. The kinematic interface boundary condition (2.4a)
governs the relationship between the film thickness and the normal velocity component,
while the equilibrium between the pressure and surface tension at the interface is
governed by the normal and tangential stress boundary conditions (2.4b)–(2.4d), where the
non-dimensional surface tension is written as S = σhm/3ρν2. For the complete derivation
of the boundary conditions, see Kalliadasis et al. (2012).

Finally, we need to address the wetting effects which are also tied to the contact line
behaviour at the side walls where solid, liquid and ambient meet. Formulating an accurate
description of the intertwined issues of meniscus and contact line dynamics is a complex
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task, and has received a considerable amount of attention in the literature (Snoeijer &
Andreotti 2013). For a thin liquid film, wetting effects result in an increase in the local film
thickness at the side walls. This increase is defined as Δh = �c

√
2(1 − sin(θ)) where �c

is the general capillary length (�c = √
σ/ρg cos(β)). In the scope of this work, the Bond

number (Bo = W2/�2
c), which measures the magnitude of gravitational forces to surface

tension for interface movement, is very high since the capillary length is much smaller than
the channel width (�c � W). Therefore, wetting effects are not dominant and are limited
to a thin region near the side walls and, thus, neglected. Consequently, we implement a
simple free-end boundary condition where the contact line can freely slip at the side walls
with a contact angle usually chosen as π/2:

∂zh( y = h, z = (0, W)) = ± cot(θ) = 0. (2.5)

For a follow-up discussion on wetting effects and contact line dynamics, the reader is
referred to section (4.3). In addition, wetting effects can cause an overshoot in the velocity
in the vicinity of the side walls when the increase in the film thickness Δh exceeds the
mean film thickness hm as shown by Scholle & Aksel (2001). However, this condition is
never met in our work and, therefore, this effect is outside the scope our analysis.

2.2. Base flow
The effect of side walls on the base flow with an undisturbed free surface is examined
in this section. When the spanwise direction is unbounded (W → ∞), the system
presented in (2.1) alongside the walls and interface boundary conditions (2.3)–(2.5) has
a one-dimensional (1-D) base flow solution as a semiparabolic velocity profile known as
the Nusselt film solution (Nusselt 1916). When the domain is confined in the spanwise
direction, the base flow solution is altered because of (i) the no-slip boundary condition
on the side walls which causes the velocity to decrease in the vicinity of the side walls and
(ii) the wetting effects causing a capillary elevations at the side walls. Regarding the latter
effect, we neglect it by setting the contact angle to π/2 based on the discussion in § 2.1.

Next, by assuming the bottom wall-normal velocity (v) and the streamwise spatial
derivatives (∂x) to be zero, the base flow of the 3-D problem can be found numerically
by solving the following system of equations:

∂yyŪ + ∂zzŪ = G sin(β), (2.6a)

∂zP̄ = 0. (2.6b)

With the walls and interface boundary conditions:

Ū( y = 0, z) = 0, (2.7a)

Ū( y, z = (0, W)) = 0, and ∂zh̄(z = (0, W)) = 0, (2.7b)

∂yŪ( y = h, z) = 0, and P̄( y = h, z) = 0. (2.7c)

Figure 2(a) shows the base state velocity for a confined channel with W = 20. The
colour scale presents the percentage drop in the velocity profile Ū(z, y) from the 1-D
Nusselt velocity profile Ū1-D( y) along the y-direction. Clearly, the base state is only
affected in a small region near the side walls, in which the velocity is slowed down, while it
retains the Nusselt film solution in most of the channel width. We approximate this region
to be in the order of the mean film thickness hm. This is expected since the side walls
effect on the velocity is mainly controlled by the ratio between the film thickness and the
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Figure 2. (a) Base state velocity for a channel with W = 20 for G sin(β) = 40. (b) Normalised local flow rate
per unit width q̄.

channel width which is typically small, for example, for a relatively narrow channel of
W = 20, this ratio equals 0.05.

Moreover, the local flow rate per unit width (q̄) along the channel width W is shown in
figure 2(b). The values are normalised with the flow rate per unit width for an infinitely
wide channel (q̄1-D), which is, in fact, equal to G sin(β)/3. The local flow rate does not
experience a significant drop even for relatively narrow channels. For example, the flow
rate is only decreased by 5 % compared with the 1-D flow rate for a channel width of
W = 25. The local flow rate asymptotically reaches q̄1-D as the channel width increases.
This is again because the effect of side walls on the flow is restricted to a thin region in the
vicinity of the walls, while outside this region, the flow obeys the 2-D Nusselt flow.

2.3. Linear stability analysis
The flow field variables q(x, y, z, t) = (u, v, w, p) in addition to the interface variable
h(x, z, t) are expanded as a sum of the base flow and an infinitesimal perturbation as

q(x, y, z, t) = q̄( y, z, t) + εq̃(x, y, z, t), (2.8a)

h(x, z, t) = 1 + εh̃(x, z, t). (2.8b)

Expansions in (2.8) are then substituted in the governing equations (2.1) and boundary
conditions (2.3)–(2.5), which are then linearised for ε � 1 leading to the linearised
perturbation equations at O(ε):

∂xũ + ∂yṽ + ∂zw̃ = 0, (2.9a)

∂tũ + Ū∂xũ + ∂yŪṽ + ∂zŪw̃ + ∂xp̃ − ∇2ũ = 0, (2.9b)

∂tṽ + Ū∂xṽ + ∂yp̃ − ∇2ṽ = 0, (2.9c)

∂tw̃ + Ū∂xw̃ + ∂zp̃ − ∇2w̃ = 0, (2.9d)

with the bottom and side wall boundary conditions

ũ(x, y = 0, z) = 0, (2.10a)

ũ(x, y, z = (0, W)) = 0. (2.10b)
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For the interface boundary conditions at y = 1 + h̃, we utilise a Taylor expansion and
expand the equations around the undeformed interface y = 1, for example the variable X
is expanded as follows X|h = X(1) + x̃|1 + DX(1)h̃:

ṽ − ∂th̃ − Ū∂xh̃ = 0, (2.11a)

p̃ + ∂yP̄h̃ − 2∂yṽ + 3S∇2
xzh̃ = 0, (2.11b)

−∂yyŪh̃ − ∂yũ − ∂xṽ + ∂zh̃∂zŪ = 0, (2.11c)

∂yw̃ + ∂zṽ − ∂zŪ∂xh̃ = 0. (2.11d)

Afterwards, the pressure perturbation boundary conditions are needed at the walls in
order to close the problem. We use the solution proposed by Theofilis et al. (2004), which
is to introduce the compatibility condition at the walls derived from the Navier–Stokes
equations as follows:

∂yp̃ = ∇2ṽ − Ū∂xṽ, (2.12a)

∂zp̃ = ∇2w̃ − Ū∂xw̃. (2.12b)

Finally, we introduce Fourier modes to expand the perturbation variables in x and t as

q̃(x, y, z, t) = Q(z, y) exp(ikx − iωt), (2.13a)

h̃(x, z, t) = η(z) exp(ikx − iωt), (2.13b)

where k is the wavenumber and ω is the angular frequency. For temporal stability analysis,
k is considered to be real, and we solve for the complex eigenvalue ω. The temporal
growth rate ωi is the imaginary part of ω. If ωi > 0 the perturbation grows in time
and the base flow is unstable. Moreover, the phase velocity is denoted as cr = ωr/k.
For spatial stability analysis, ω is assumed real and k is complex. Similarly, the flow is
unstable if the spatial growth rate γi is larger than zero. Equations (2.13) may describe
waveguide modes (Lighthill 1978), where the wave disturbances are allowed to travel in
the longitudinal direction while being confined in the spanwise direction. They can be
interpreted physically as plane modes (W → ∞) bouncing back and forth between the
side walls (Elmore & Heald 1969). This concept is revisited in the next sections as it leads
to interesting results.

2.4. Numerical method
We discretise the domain using 2-D Chebyshev differentiation matrices (Trefethen 2000).
The boundary conditions were implemented by replacing the corresponding rows in the
matrices with the discretised boundary conditions. We prefer a temporal stability analysis
since it requires less storage and computational power than what is required by the spatial
stability problem. We base our results mainly on the temporal growth rate ωi, and utilise
Gaster transformation (Gaster 1962) that allows us to relate the temporal and spatial growth
rates as

γ = ωi

/
∂ωr

∂k
. (2.14)

Brevdo et al. (1999) showed that this transformation is applicable to falling liquid films
since the spatial and temporal growth rates are small. Finally, the eigenvalue problem was
solved using the QZ algorithm (Moler & Stewart 1973).
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Figure 3. Sketch of the experimental set-up used to measure linear stability.

3. Experimental set-up

We use the very experimental rig as (Pollak et al. 2011; Schörner, Reck & Aksel
2016; Kögel & Aksel 2020). Here, we briefly present the experimental apparatus and
measurement technique. For more details, please refer to the aforementioned works.

3.1. Experimental apparatus
The experimental set-up we use in this work is sketched in figure 3. The set-up consists of
a channel with an aluminium bottom and Plexiglas side walls. The width of the channel is
170 mm, but two movable side walls can be placed within the channel to achieve smaller
channel widths. The whole channel is tilted with an inclination angle β and mounted onto
a damped table in order to reduce the effect of vibrations. A collection tank is located
at the end of the channel in which the liquid is maintained at a certain temperature T .
An eccentric pump is used to convey the liquid from the collection tank to the inflow
tank located at the inlet of the channel. The inflow tank allows the liquid to rest and to
smoothly overflow into the channel. Periodic waves are introduced in the flow using a
paddle that is permanently dipped in the liquid film. The paddle oscillates at an adjustable
frequency fp and amplitude Ap, causing sinusoidal waves evolving downstream the channel
with the same frequency and amplitude. The disturbances generated by the paddle are
instantaneously convected downstream the channel, and do not disturb the flow in the
inflow tank. The working liquid used in this experiment is Elbesil 140 which is a mixture
of silicon oils, Elbesil 50 and Elbesil 200. The physical properties of Elbesil 140 at
temperature 24 ◦C are listed in table 1.

3.2. Linear stability measurement
The linear stability of the flow was investigated through measuring the spatial growth rate
of the excited waves γ . Two laser beams are reflected at the film’s surface at two locations,
upstream and downstream. The two laser reflections are projected onto a screen on which
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Physical property Notation Value

Density ρ 962.7 ± 0.4 (kg m−3)

Kinematic viscosity ν 142 ± 0.5 (mm2 s−1)

Surface tension σ 20.25 ± 0.11 (mN m−1)

Contact angle θ 17.25 ± 7 (deg.)

Table 1. Physical properties of Elbesil 140 at working temperature T = 24 ◦C.
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Figure 4. Normalised upstream and downstream signals and their corresponding discrete Fourier transform
for forcing frequency f = 10 Hz and amplitude Ap = 0.6 mm. The peaks are located at f = 9.91 Hz.

they oscillate at the same frequency of the sinusoidal waves generated by the paddle. The
oscillations of the laser spots on the screen can can be written as

Au(t) = A0
u sin(2πft), (3.1a)

Ad(t) = A0
d sin(2πft), (3.1b)

where A0 is the amplitude of the signal, and the subscripts u and d correspond to upstream
and downstream locations, respectively. Simply, the oscillation amplitudes A0

u and A0
d

are proportional to the oscillation amplitude of the liquid interface slope, which is also
proportional to the waves amplitudes. This is true as long as the waves are linear and
sinusoidal, for a detailed discussion please see the work of Pollak et al. (2011). A CCD
camera with a 100 frames per second is used to capture the screen for 10 seconds, resulting
in 1000 images each measurement. Figure 4(a,b) show the oscillation of the upstream
and downstream laser spots, for a paddle frequency fp equals 10 Hz with an amplitude
Ap = 0.6 mm. The oscillations of the laser spots were obtained by applying a Gaussian
filter on the images and tracing the centres of the laser spots. The mean film thickness
hm was measured to be 9 mm and, thus, the excited waves amplitude is 6.6 % of the
film thickness. The excited waves amplitude was chosen large enough to be adequately
examined, but small enough to be compatible with the linear stability theory. Subsequently,
the amplitudes A0

u and A0
d were found by performing discrete Fourier analysis of the laser

spots oscillations traced from the images. Figure 4(c) shows the Fourier spectra for the
same paddle frequency and amplitude ( fp = 10, Ap = 0.6). The spectra show a dominant
peak indicating that the signal is monochromatic with a frequency very close to the
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Control parameter Notation Range of variation

Dimensional channel width (mm) W 129 ± 0.5
Inclination angel (deg.) β 10 ± 0.1
Mean film height (mm) hm 9.025 ± 0.02
Capillary length (mm) �c 2.08 ± 0.01
Channel width/mean film thickness W/hm 14.3 ± 0.087
Flow parameter G 357 ± 4.9
Surface tension S 3.19 ± 0.047

Table 2. Experiment parameters and non-dimensional numbers for the numerical stability model.

excitation frequency (maximum difference between the excitation frequency and response
frequency is 0.1 Hz).

The downstream amplitude was geometrically corrected since it covers a smaller
distance from the reflection point to the screen as follows:

A0
d,corr = A0

d

(
1 + Δx

xS

)
, (3.2)

where Δx = 400 mm is the distance between the two reflection points, and xS = 2.966 m
is the distance from the downstream reflection point to the screen. Furthermore, x1 is the
distance between the channel inlet and upstream laser spot, which we made sure to be
sufficiently large to avoid inlet effects on the base flow. Finally, the linear growth rate of
the excited waves is obtained as

γ = ln(A0
d,corr/A0

u)

Δx
. (3.3)

4. Results

We start with confronting our numerical linear stability with experimental results in § 4.1.
Afterwards, in § 4.2, we utilise the numerical model to examine the effect of the spanwise
confinement on several aspects of the problem, such as (i) maximum linear growth rate,
(ii) types of stability modes and their distinct behaviour, (iii) eigenmodes structure and
(iv) eigenvalues spectra.

4.1. Comparison of experiments and theory
In this section, we compare the results obtained by our numerical stability model, our
experiments, as well as the experiments conducted by Kögel & Aksel (2020). The
comparison is based on the spatial growth rate γ , which is directly found from the
experimental measurements as explained in § 3.2. Gaster transformation is utilised to
obtain the numerical spatial growth rate from the quantities ω and k as shown in (2.14).
We also need to obtain the response frequency f corresponding to each wavenumber k,
which can be easily found as f = ωr(k)/2π. The experimental control parameters and
their corresponding non-dimensional numbers used in the numerical model are listed in
table 2, in which the general capillary length is shown to be much smaller than the channel
width (Bo ≈ 3850) and, therefore, the wetting effects can be neglected.
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Figure 5. Spatial growth rate obtained using our theoretical model, our experiments and the experiments of
Kögel & Aksel (2020). The colour in background represents the amplitude of supfr∈R ‖R‖.

Figure 5 shows the spatial growth rate in terms of the response frequency. In general,
good agreement is observed between our numerical model and our experiments. Most
importantly, the sharp cusp in the growth rate and its corresponding frequency are captured
accurately. The minimal shift in the response frequency is due to the accuracy of the
Fourier analysis which has an error of ±0.1 Hz. The grey band represents the upper
and lower limits found by the numerical model. These limits were obtained based on the
tolerances in the fluid properties and experiment control parameters (tables 1 and 2). For
example, the upper limit was obtained by choosing the parameters limits that result in
the maximum growth rate combining (Gmax, Smin, βmax, Wmax), while the opposite was
applied in finding the lower limit.

Furthermore, while our theoretical and experimental results match very well for low
and high frequencies, an evident discrepancy is observed before and after the cusp around
the frequencies 5.5 and 7.5 Hz. We offer a heuristic support for this discrepancy by
plotting the supremum of the resolvent norm (supfr∈R ‖R‖), which indicates the maximum
amplification over the excitation frequency fr (Trefethen et al. 1993):

sup
fr∈R

‖R‖ = sup
fr∈R

‖(−ifrB + A)−1‖, (4.1)

where A and B are our matrices in the general eigenvalue problem. Since the streamwise
spatial derivative is replaced by ik based on the modal decomposition in (2.13), this
requires sweeping over the frequency fr to find supfr∈R ‖R‖ at a certain wavenumber k.
Finally, we find the corresponding response frequency for every wavenumber to be able
to compare against the spatial growth rate, as shown in figure 5. It is obvious that the
norm of the resolvent appears to be proportional to the discrepancy between the numerical
and experimental results. The maximum value of supfr∈R ‖R‖ is located before the cusp
at which the maximum discrepancy exists ( f ≈ 5.5 Hz), while the lower peak matches
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the smaller discrepancy region after the cusp ( f ≈ 7.5 Hz). Therefore, the discrepancy
between the theoretical and experimental growth rate appears to be maximum where
supfr∈R ‖R‖ is large. While the experimental growth rate accounts for the maximum
amplification of the disturbances, the numerical growth rate is taken directly from the
most unstable stability mode.

4.2. Theoretical results
We now study the effect of spanwise confinement on the linear stability from different
perspectives. The numerical model allows exploring the parameters space, which was
not possible using experimental means. To begin with, it is useful to recall the results
of the well-studied 1-D local stability problem (where the spanwise variation is not
taken into account) in order to accurately assess the influence of the side walls. The
1-D problem results in only one prominent stability mode, which is responsible for the
1-D hydrodynamic instability. For this reason, is it called the H-mode. (We refer to 1-D
H-mode for distinction as 1-D-mode in this paper and preserve the name H-mode for
the 2-D equivalent.) We found that our problem results in several stability modes which
behave differently depending on the degree of the spanwise confinement. In the following,
we first focus on the maximum temporal growth rate regardless of which stability mode is
dominant. Afterwards, we quantify the most important stability modes and examine them
from different perspectives, in order to find an explanation for the unique effect of the side
walls on the stability.

4.2.1. Initial observations: maximum temporal growth rate
We examine the effect of spanwise confinement on the maximum temporal growth rate
for a certain range of parameters. Figure 6 shows the temporal growth rate contours as a
function of G sin(β) and k for different W and β values. The white area is stable, while
the coloured area is unstable. The solid line is a local minimum in the growth rate along
the wavenumber, while the dashed line is the neutral curve for the classical 1-D-mode. In
general, we observe one unstable region identical to that of the 1-D problem for W = ∞.
As spanwise confinement becomes stronger, significant modifications are seen on both,
the structure and the magnitude of the unstable region, while the local minimum in the
growth rate shifts to higher wavenumbers. Moreover, the stabilisation effect shows to be
stronger for small inclination angles as seen when comparing the unstable regions of the
inclination angles β = 5 and β = 15.

A local minimum in the growth rate is shown at W = 30 for inclination angle β = 10.
Decreasing the channel width to film height ratio to W = 20, shifts the local minimum
to higher wavenumbers, while the unstable region starts splitting. Further decrease in the
channel width creates two unstable regions with a horizontal stable band in between. For
a smaller inclination angle (β = 5), the stabilisation effect is strong enough that the upper
unstable region is completely stabilised, while the local minimum still exists. On the other
hand, for β = 15, the stabilisation effect is less dominant; however, it manages to create
the two unstable regions with a much thinner stable band separating them. Note that the
mean film thickness (hm) is kept constant while changing the channel width W, this is done
by changing the flow rate q̇ accordingly in order to keep the Reynolds number Re constant,
as (2.2) shows.

A more detailed presentation of the stabilisation behaviour can be shown by plotting
the maximum temporal growth rate against the wavenumber for a fixed G sin(β). In
figure 7(a), the growth rate at intermediate wavenumbers is affected the most, while it
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Figure 6. Temporal growth rate contours in the G sin(β) − k space for (a–d) β = 5, (e–h) β = 10 and (i–l)
β = 15, with S = 1. The dashed line is the neutral curve of the 1-D problem, while the purple line is a local
minimum along the wavenumber.

approaches the 1-D growth rate at small and large wavenumbers. This agreement decreases
as the confinement becomes stronger. A smooth dent in the growth rate curve is seen for
moderate confinement (W = 50), which slowly transforms into a sharp cusp as the channel
becomes narrower. Furthermore, figure 7(b) highlights the effect of the inclination angle
on the stabilisation behaviour. It is clear that the flow is stabilised more significantly at
smaller inclination angles when comparing the difference between the growth rates for
W = 30 (solid) and that of the 1-D problem (dashed). In addition, the band of stabilised
wavenumbers and the local minimum are located at higher values for smaller inclination
angles. To conclude this section, the fragmentation effect of the unstable region was first
observed in the experimental results of Kögel & Aksel (2020); however, no theoretical
explanation was offered for this unique stabilisation behaviour. We suggest an explanation
for this phenomenon in the following sections using different perspectives of the problem.

4.2.2. The 2-D stability modes
The initial observations in the previous section were based on the maximum temporal
growth rate ωi, regardless of what is the dominant stability mode. In the following, we
examine several stability modes, and analyse the effect of confinement on them. The modes
are obtained using the arc-continuation technique (Chan & Keller 1982).

Figure 8 shows the growth rate ωi along the wavenumber k for the most dominant
stability modes for several degrees of lateral confinement. Starting with very weak

964 A40-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

39
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.391


The effect of side walls on the stability of falling films

2

1

0

0 0.5 1.0

k k
1.5 0 0.5 1.0 1.5 2.0

–1

2

3

4

1

0

–1

W∗ = ∞
W∗ = 50
W∗ = 30
W∗ = 20
W∗ = 10

β = 5
β = 15

ωi

(a) (b)

Figure 7. (a) Maximum growth rate for different W values for G sin(β) = 85, β = 10 and S = 1. (b) Influence
of the inclination angle on the stabilisation effect for W = 30, G = 500 and S = 1. The dashed lines correspond
to the 1-D growth rate.

confinement (W = 500) as in figure 8(a), all the stability modes except for two, coincide all
together matching the 1-D-mode (dashed line). Thus, these modes belong to the H-mode
type. The remaining pair of modes matches the H-modes for small wavenumber, but
diverges at large values. We call these two modes wall modes (or simply W-modes).

For W = 40, significant changes occur to all the stability modes as seen in figure 8(b).
All the modes are stabilised in general, but we observe three distinct stabilisation actions;
the most unstable H-mode is mainly stabilised at moderate wavenumbers showing the
smooth indentation observed earlier in figure 7(a). More interestingly, the remaining
more stable H-modes are strongly stabilised at low wavenumbers, while the opposite
is experienced by the W-modes, which show strong stabilisation at large wavenumbers.
Moreover, the local minimum of the most unstable H-mode (H1) is accurately aligned
with the maximum of the second most unstable W-mode (W2). This configuration will
oddly develop in later stages. From another perspective, the H-modes (except for the most
unstable mode) are transformed into waveguide modes. Waveguide modes are similar to
the plane 1-D mode, but allowed to propagate in the longitudinal direction only. They are
also restricted to a cut-off wavenumber below which they do not propagate, which explains
the stabilisation of the H-modes for low wavenumbers.

Figure 8(c) shows similar stabilisation actions experienced by the H-modes and
W-modes for W = 25. Intriguingly, an attraction centre involving H1 and W2 modes takes
a place leading to the formation of a sharp cusp in H1 and an acute tip in W2. The
reason behind this attraction involving those two specific modes among the others will
be investigated in subsequent sections. Eventually, further decrease in the channel width
(W = 15) shows the final picture in figure 8(d). The concurrence between the H1 cusp and
W2 tip sufficiently increases until they meet and switch branches for wavenumbers before
the meeting point. At this stage the most unstable H-mode also becomes a waveguide
mode. This mode switching behaviour was also observed previously while studying the
stability of falling liquid films on flexible substrates when changing the damping ratio
(Alexander et al. 2020).

In summary, the solution of the biglobal stability problem contains several prominent
stability modes. For the parameters under considerations, most of these modes belong
to the H-mode type, while two of them are different, we name them W-modes. The
stabilisation effect at moderate wavenumbers is a result of two factors. First, the spanwise
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Figure 8. Stability modes along the wavenumber for (a) W = 500, (b) W = 40, (c) W = 25 and (d) W = 15
for the parameters G = 500, β = 10 and S = 1. H-modes are blue and W-modes are orange.

confinement influence the two stability mode types in a different manner, where H-modes
are transformed into waveguide modes, and stabilised at low wavenumbers, while
W-modes are stabilised at high wavenumbers. Second, an attraction centre involving
two different modes, the most unstable H-mode (H1) and the second most unstable
W-mode(W2). This attraction centre strengthens as confinement increases, until a mode
switch takes place in the branch with lower wavenumbers, after which the most unstable
H-mode becomes a waveguide mode as well.

With the same approach, figure 9 shows the phase velocity (cr = ωr/k) for the stability
modes for W = 40 and W = 15. The highlighted curve follows the maximum temporal
growth rate along the wavenumber. We observe a similar behaviour to that of the temporal
growth rate as a transition in the phase velocity is shown leading to a sharp jump when the
channel width is sufficiently small. For W = 40, H1 is still the most dominant stability
mode along the wavenumber, and the phase velocity is very close to that of the 1-D
mode, while the other H-modes show higher phase velocity. The W-modes phase velocity
drop sharply as wavenumber increases since they are stabilised strongly in this range. As
channel width decreases to W = 15, the mode switch has occurred and a sudden jump
in the phase velocity is observed. The phase velocity of the W-modes does not change
significantly, but all the H-modes show a higher phase velocity than that of the 1-D mode,
which is a characteristic behaviour of waveguide modes (Elmore & Heald 1969).
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Figure 9. Phase velocity cr for different stability modes along the wavenumber for (a) W = 40 and (b) W = 15
for the parameters G = 500, β = 10 and S = 1. The highlighted curve follows the maximum temporal growth
rate along the wavenumber.

4.2.3. Perturbation patterns and eigenvectors structure
In this section, we study the perturbation patterns and the eigenvectors structure of
different stability modes for several confinement configurations. This will identify the
structural nature of the different mode types, and help us better comprehend their particular
behaviour as the channel width decreases. First, we compare the interface perturbation
field h̃(x, z) of the stability modes at two wavenumbers, i.e. k = 0.15 and k = 0.75. These
two values are suitable options since the spanwise confinement affects the modes heavily at
the former, but very lightly at the latter wavenumber. Afterwards, we plot the eigenmodes
as a function of the wavenumber, along which the stability modes change significantly, in
particular for strong confinement.

Figure 10 shows h̃(x, z) for the pair of modes (H1,W2) for different W values. The
pair has an even symmetry around the axis z = 0, which offers an explanation for the
unique behaviour involving them. For W = 500, the modes show their natural structure at
k = 0.75, where H1 is concentrated at the centre of the channel, while W2 is only observed
in the vicinity of the side walls, as expected for a mode created by the confinement. At k =
0.15, the two modes are in close proximity, see figure 8(a) and, thus, they affect each other
slightly causing H1 to increase its curvature, while W2 spreads more into the domain.
These structures are logical since confinement is yet very weak. For W = 25, H1 changes
its structure to a straight wave along the spanwise direction at k = 0.15, while it keeps the
original structure at k = 0.75 with more curvature. For the same confinement (W = 25),
W1 is dramatically enhanced at k = 0.15, while it just spreads slightly into the domain at
k = 0.75. Finally, W = 15 shows a structure switch between the two modes at k = 0.15. It
also shows a strong curvature in H1 at k = 0.75, while stronger spreading for W1.

For a complete analysis, we also plot the interface perturbation field h̃(x, z) for the
modes pair (H2,W1), which are the second most unstable H-mode and the most unstable
W-mode, respectively (figure 11). These two modes have an odd symmetry, such as
h̃(x, z) = −h̃(x, −z), and show less complex behaviour compared with the other pair
(H1,W2). For W = 500, the spatial structure H2 is one step higher in the harmonic range
compared with H1, while W1 is restricted at the walls. As confinement becomes stronger
(W = 25, W = 15), H2 changes structure and shows higher harmonics of W1 at k = 0.15,
while it keeps its original structure with a curvature proportional to the confinement degree
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Figure 10. Interface perturbation field h̃(x, z) for the modes (a) H1 and (b) W2 at different wavenumbers for
the parameters G = 500, β = 10 and S = 1.
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Figure 11. Interface perturbation field h̃(x, z) for the modes (a) H2 and (b) W1 at different wavenumbers for
the parameters G = 500, β = 10 and S = 1.

at k = 0.75. Furthermore, W1 spreads more into the domain for all wavenumbers, but
strongly at lower values. For both mode pairs, the symmetry of the perturbation fields are
conserved for any W value.

With regards to the eigenmodes, figure 12 shows the absolute of the normalised η(z),
which is the eigenmode of the interface perturbation field h̃(x, z) (see (2.13b)). The first
row belongs to the H-mode H1, while the second row belongs to most unstable W-mode
(W1). The third and fourth rows show the eigenmodes W2 and H2, respectively. The
dashed lines present the location at which the different mode types cross each other,
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Figure 12. The real part of normalised η(z) eigenmode along the wavenumber for different confinement
ratios, for the parameters G = 500, β = 10 and S = 1.

except for H1 at W = 40 and W = 25 where it shows the local minimum. When the
spanwise confinement is very weak (W = 500), all the eigenmodes are constant along
the wavenumber except at small values. The most dominant mode H1 is concentrated at
the centre and zero at the walls, while H2 has similar structure but with a higher step in
the harmonic range. On the other hand, the W-modes are strictly concentrated at the side
walls and zero everywhere else. The stability modes form a ‘discrete spectrum’ consisting
of the H-modes only (H1,H2,H3, etc.), while W-modes play no major role. This is in
agreement to what is observed earlier in figures 10 and 11.

The unique patterns in the eigenmodes at small wavenumbers for W = 500 spread into
higher values as confinement increases to W = 40 and W = 25. The presence of the
W-modes become more evident causing significant restructuring of the other eigenmodes
along the wavenumber axis. The region in which the eigenmodes are reconstructed extends
into higher wavenumbers proportionally to the strength of the confinement. In this limited
region (bounded by the dashed line), the stability modes form a different harmonic
sequence; W1 is no longer only concentrated at the walls but spreads towards the centre
of the channel, while W2 shows similar structure but with the further step in the harmonic
range. Moreover, the H-modes are reconstructed to fit the new harmonic sequence; H2
shows a third step in the new harmonic range, while H1 shows a constant maximum along
z, which is the lowest step in the harmonic range. The eigenmodes are slightly affected
after the cusp (dashed line), and the original harmonic series is conserved. For W = 15, the
same structures spread to higher wavenumbers and become more prominent. In addition,
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we notice the switch of the eigenmode between H1 and W2 in order to conserve the
harmonic series.

In short, when the spanwise confinement is negligible, the H-modes form a harmonic
sequence with a fundamental mode that is maximum at the centre and zero at the
side walls, while W-modes are insignificant. When confinement becomes stronger, the
W-modes presents an opposite (as in maximum at the walls and zero in the centre of the
channel) harmonic series at small wavenumbers region. This forces a reconstruction on
the H-modes to be compatible in the new harmonic sequence.

4.2.4. Eigenvalue spectra of confined 2-D problem vs 1-D oblique problem
As seen, the W-modes play no significant role for weak spanwise confinement,
but experience dramatic change in both growth rate and spatial structure for strong
confinement. We also observed that they seemed to developed from H-modes when
confinement is weak. In this section, we confront the eigenvalues spectrum of the 2-D
problem to that of the oblique unbounded case to show how the two W-modes evolve
as confinement becomes stronger. In the oblique simplified problem, the base state is
spanwise invariant (Ū( y), P̄( y)), while the perturbation fields have a harmonic structure
in the spanwise direction, and expanded as follows:

q̃(x, y, z, t) = Q̂( y) exp(iζ z) exp(ikx − iωt), (4.2a)

h̃(x, z, t) = η̂ exp(iζ z) exp(ikx − iωt), (4.2b)

where ζ ∈ R is the spanwise wavenumber. Equation (4.2) implies that the spanwise
direction is unbounded, since any spanwise wavelength is possible for the perturbations
(ζ ∈ R). For ζ = 0, the oblique problem becomes identical to the 1-D problem, while
for ζ /= 0, a spanwise variation is allowed for the perturbations without considering the
confining effect of the side walls. Similarly to the 1-D problem, only one unstable mode
(H-mode) shows in the oblique problem regardless of the value of ζ .

Figure 13 compares the eigenvalues spectrum of the 2-D problem with the oblique mode.
The two problems are compared at three different wavenumbers for several confinement
values. The oblique solutions in all the subfigures are the same since the problem is not
a function of the spanwise confinement. For ζ = 0, the oblique mode (line) matches the
1-D mode. As ζ increases, the oblique modes become more stable since they experience
stronger viscous damping. This is a consequence of the increase in the diffusive term
weight as the Laplacian term became (−k2 + ∂yy − ζ 2) instead of (−k2 + ∂yy + ∂zz) due
to the oblique expansion in (4.2).

Focusing first on W = 100 (figure 13a), the 2-D modes including both H-modes and
W-modes match the oblique dispersion relation at small wavenumber k = 0.15, while
being tightly packed around the 1-D mode. For larger wavenumbers, the H-modes follow
the oblique mode but the W-modes start departing from the line (k = 0.35), until they
disappear at k = 0.75. For stronger confinement as in figure 13(b–d), the 2-D modes spread
out on the oblique line, while the agreement decreases. The most evident discrepancy
between the 2-D modes and the oblique dispersion relation is observed for moderate and
high wavenumbers. This discrepancy is a reason of the complex behaviour we observed
involving the stability modes, which takes place at moderate wavenumbers and influence
higher wavenumbers as well. Interestingly, the 2-D modes including the W-modes are very
close with the oblique dispersion relation for strong confinement at small wavenumber
k = 0.15. Moreover, the 2-D modes are always more stable than the 1-D mode for all
parameters.
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Figure 13. The 2-D problem eigenvalues spectrum (hollow markers) vs oblique dispersion relation (lines) as
a function of the spanwise wavenumber ζ : (a) W = 100, (b) W = 40, (c) W = 25, (d) W = 15 at wavenumber
values k = 0.15 (� , solid), k = 0.35 (◦, dashed), k = 0.75 (�, dotted). The red dots mark the 1-D mode, while
the blue and orange markers are the 2-D H-modes and W-modes, respectively.

4.3. Discussion on surface tension and contact line dynamics
The results presented are limited to cases where surface tension is not the dominant
restoring force where S ∼ O(1) in both theoretical analysis and experiments. In such
scenarios, the capillary length is very small compared with the channel width, for example
Bo is of O(103) in experiments. Therefore, neglecting the wetting effects and using the
simple free-end contact line boundary condition (2.5) is admissible. This is also consistent
with the base flow under consideration in which the interface is assumed to be invariant in
the spanwise direction.

Nevertheless, capillary dissipation due to wetting effects and contact line dynamics in
confined surface waves is non-negligible in several cases, such as very narrow channels
(Monsalve et al. 2022), micro-gravity conditions (Zhang & Thiessen 2013) or simply when
surface tension is the main restoring force, and capillary forces are dominant over viscous
forces (Georgantaki et al. 2011). The last scenario is directly related to this work where
it was shown experimentally that surface tension, when dominant, can significantly affect
the onset of the long-wave instability in falling films confined by side walls. They suggest
that this effect is a result of a 3-D capillary wave attenuation mechanism, which stems
from damping the oscillations near the side walls caused by (i) viscous boundary layer
and, more relevantly, (ii) the heightened resistance to the depinning of the contact line.
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Under the stability model in this work, the free-end boundary condition (2.5) allows
the interface to freely slip at the side walls, which eliminates the damping effect due
to resistance of contact line depinning. Therefore, the unique capillary damping of
oscillations near the side walls, which leads to a delay in the long-wave instability onset, is
not captured in our model. In order to be able to analyse scenarios in which surface tension
is dominant, a more complex contact line boundary condition is necessary. Hocking
(1987), motivated by experimental evidence suggesting that contact angle is not fixed but
depends on contact line motion (Dussan 1979), proposed a contact line boundary condition
in which the contact line velocity is proportional to the variation in the contact angle θ :

∂h
∂t

= α
∂h
∂z

, (4.3)

where α is a slip coefficient that characterises the boundary condition. An important
feature of this boundary condition is that it includes two extreme limits of zero and infinite
slip coefficients, which correspond to a pinned-end (∂th = 0) and a free-end (∂zh = 0)
conditions, respectively. More complex models are present in the literature that incorporate
contact angle hysteresis, where α is described as function of contact line displacement
(Viola, Brun & Gallaire 2018).

Another related issue to be addressed here is the well-known contact line singularity,
which results from assuming a moving contact line at the wall alongside the no-slip
boundary condition (Dussan & Davis 1974). This singularity can be avoided by using
a pinned-end contact line boundary condition which is physically relevant in specific
cases, such as brim-full containers (Benjamin & Scott 1979). Apart from that, various
remedies were developed to remove the singularity, such as the common approach of
using a slip model in which the fluid is assumed to slip in a small neighborhood near
the contact line (Dussan 1979). The outer region where the no-slip applies, and the slip
region can be perfectly matched as done in Sibley, Nold & Kalliadasis (2015a). For a
comprehensive comparison between approaches to tackle this singularity, please refer to
Snoeijer & Andreotti (2013) and Sibley et al. (2015b).

In this context, using the range of parameters relevant to this work, we compared
the results produced by both limits of Hoking’s law (4.3), a pinned contact line vs a
free-moving contact line. We found the difference in temporal growth rate to be clearly
visible but consistently below 5 %. This shows that for the range of parameters we
considered, the implementation of a free-moving contact line condition and the associated
singularity do not affect the qualitative accuracy of our results. Further investigation of
capillary-dominated flows is planned for future work.

5. Conclusions

Using temporal stability analysis and experimental approaches, we study the linear
stability of falling liquid films bounded by side walls. The two agree very well for small
and large wavenumbers. Noticeable discrepancies were observed before and after the cusp
in the growth rate. We showed that the supremum of the resolvent norm is large in these
two regions, indicating the presence of stronger receptivity to disturbances. We plan to
investigate this further in a future work.

The theoretical stability model showed that the solution of the confined 2-D problem
shows several stability modes, unlike the classical 1-D problem where only the H-mode
is present. In the k–G sin(β) plane, we observe the fragmentation effect on the unstable
region which was reported by Kögel & Aksel (2020). The unstable region splits into two
smaller regions separated by a stable band at moderate wavenumbers. As confinement
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becomes stronger, the upper unstable region disappears. The stabilising effect is depending
on the inclination angle. As inclination angle decreases, the magnitude of damping
increases, and also the band of stabilised wavenumbers shifts towards higher values.

The reason behind this behaviour is the existence of different stability modes. For
a certain range of parameters, the 2-D modes except a pair converge to the 1-D
H-mode for weak confinement configurations. The unique pair is named W-modes. As
confinement strengthens, H-modes and W-modes are stabilised in a different manner
along the wavenumber. The former is stabilised strongly at low wavenumbers, while the
latter experience stabilisation at high wavenumbers. An attraction centre involving the
most unstable H-mode and a more stable W-mode also contributes to the formation of
the stabilised wave band. The spatial structure of the eigenmodes shows an alternative
even–odd symmetry in both H-modes and W-modes. The spatial structure of the most
unstable H-mode shows a maximum in the centre of the channel, while that of the most
unstable W-mode shows a maximum at the walls. The less-stable modes are an alternating
symmetry with a further degree in the harmonics. The eigenvalues spectra shows that
the 2-D eigenvalues follow the 1-D oblique problem for small wavenumbers regardless of
the confinement degree, and it deviates at larger wavenumbers as confinement becomes
stronger.

6. Future work

The results presented in this work can stimulate future research. The biglobal stability
problem results in a multiple stability modes with comparable growth rates. This could
lead to very rich nonlinear dynamics, especially that the stability modes are structural
harmonics of each other (Ducimetière et al. 2021). One way to examine this can be through
3-D direct numerical simulations which was previously carried out for falling films but
with periodic boundary conditions in the spanwise direction (Dietze et al. 2014). Moreover,
the excitation introduced by the paddle can be included in the theoretical model as a forcing
term. The forced problem can also be solved and compared with the existing autonomous
problem as in the work of Fabre et al. (2020). Finally, there exist a plethora of applications
that involve volatile liquid films falling down a heated surface. The instabilities induced
by thermocapillary forces (S-mode) or vapour recoil (E-mode) were only examined in the
2-D configurations in the classical Orr–Sommerfeld problem (Mohamed & Biancofiore
2020) or in the long-wave expansion regime (Mohamed, Dallaston & Biancofiore 2021).
The analysis of the effect of spanwise confinement on this kind of instabilities is of great
benefit due to the intrinsic spanwise nature of the thermal instabilities.
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