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ABSTRACT

Rod-like fillers in a flow field of a viscous fluid may form complex structures after passing a sudden contraction. The rods start with a dilute
distribution with random positions and orientations. Behind the contraction, a large amount of rods tumble in a spatially correlated way,
such that orientations perpendicular to the flow field occur at regular distances along the channel. The correlated tumbling results from an
interplay of several effects, the tumbling inferred by the space dependent shear flow, the accumulation of rods at a certain distance from the
wall, and the rod alignment at the contraction. The system is studied numerically for rod-like fillers in a shear-thinning viscous fluid.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0143006

I. INTRODUCTION

The dynamics of rod-like particles in the flow field of a viscous
solution is of great importance for the production of composite mate-
rials. One important application is the creation of short fiber rein-
forced thermoplastics by injection or compression molding.1,2 The use
of fillers like nano- or micro-fibers opens up new opportunities for
adjusting the matrix properties, such as viscosity and toughness.2,3 It is
a widespread procedure to use composite approaches to expand the
parameter range of materials, for example, to improve the tensile
strength of weaker matrix materials like contemporary carbon fiber
reinforced polymers.4 Rod-like fillers are also used to change electric
and thermal conductivity.5,6 The physical characteristics of composite
materials depend on the spatial distribution and alignment of the fill-
ers. Especially, fillers with a preferred orientation induce anisotropic
material properties.

Another application field is the 3D-printing of hydrogels with
rod-like fillers, which can potentially be used in tissue engineering
approaches and biofabrication. In the field of biofabrication, the ink
made of a hydrogel-based matrix containing short fragments with rod
shape morphology will be extruded in a predefined morphology.7 The
ink usually has viscoelastic properties. Typically, the aim is that fiber
fragments in the ink are uniformly distributed and get aligned with the
flow during the 3D printing in order to create a unidirectional distri-
bution that modifies and enhances the properties of the printed mate-
rial. The rod-shaped fillers can improve material properties like the

stability during the printing process or in the created biomaterial.8,9 In
the printed structure, rod-shaped fillers may serve as a guidance for
anisotropic cell growth.8,9 Various other biomaterial properties depend
on the orientational and spatial order of the rod-like fillers, so that a
control of the filler dynamics during the printing process is of high
relevance.4,10–12

The flow of a solvent through a cavity has an amplitude that
decreases toward the channel wall so that rod-like fillers are exposed
to shear forces. This has an influence on the orientation of the rods; in
many cases, one finds an average alignment of the rod axes in the
direction of the flow field. However, especially for dilute rod systems,
rods may still rotate but spend more time in the flow direction. The
behavior of rod-like fillers in a confined flow has been investigated in
several experimental studies.10,13–17

In many molding or 3D-printing processes, the melt or hydrogel
flows through a contraction as it enters a circular or slot-shaped noz-
zle, a narrow mold, or the needle of a 3D-printer. In this article, we
study this rather common scenario with computer simulations and
find that dilute rod suspensions form a remarkable structure in the
narrow channel behind the contraction.

In the simulations, we study a system that excludes all effects that
are not essential for the discussed structure formation. We investigate
the individual dynamics of rod-like fillers in a viscous, non-Newtonian
matrix, flowing from a broad to a narrow channel through a sudden
contraction. At the beginning, rod-like fillers in the broad channel start
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with random spatial and orientational distribution. We assume that
the rod density is low so that rods hardly interact with each other. The
rods stream with the flow field and pass the contraction into the nar-
row channel, as sketched in Fig. 1. In the narrow channel, they tumble
in a way, that the average alignment of rods is strongly correlated with
the distance from the contraction. A rod orientation perpendicular to
the flow occurs at predictable points with fixed distance to each other.

It is known that individual rods in a shear flow of a fluid tumble
with time forming so-called Jeffery orbits.18 The remarkable observa-
tion in our system is that a large amount of rods tumble with the same
periodicity and phase shift, in spite of (a) their random starting condi-
tions and (b) the fact that the shear rate of the flow field varies signifi-
cantly along the cross section of the narrow channel.

Rods in a flow field have been investigated with various different
computational methods. One direct approach is the use of coarse-
grained molecular dynamic simulations (CGMD).19,20 Other methods
are based on Brownian motion,21 the reciprocal theorem,22 or a grand
mobility matrix that considers hydrodynamic interactions of particle
surfaces.23 Another attempt includes smoothed particle hydrodynam-
ics (SPH),24 which is sometimes combined with the discrete element
method (DEM).25 For dilute systems, in which rods rarely meet each
other, the motion of rods can be studied separated from each other.
The dynamics of an ellipsoidal rod in a shear flow has been deter-
mined by Jeffery.18 A comprehensive listing of particle-based methods
is given in the fourth section of an article by Kugler et al.,26 which oth-
erwise focuses on macroscopic models for the orientation field.

Orientation fields are usually tensor fields that characterize the
local orientation distribution as a function of position. In methods
based on orientation fields, rods are not considered individually.
Frequently, the dynamics of the tensor field follows an extension of
Jeffery’s equations,18 where additional terms consider the average
rod–rod interactions and the effect of Brownian motion. Many of
these numerical methods are based on the Folgar–Tucker model.27

The motion of rod-like fillers in a viscous matrix depends on the
flow field, the interaction with other rods and the impact of walls
enclosing the fluid. The flow field depends on the geometry of the sys-
tem, wall interactions, the viscosity and viscoelasticity of the matrix

material, and the interaction with the rods. As discussed by Abtahi
and Elfring,28 the viscosity of a shear-thinning matrix may also be
altered by a shear flow, induced locally by the rod. An explicit consid-
eration of the rod impact on the flow field requires a self-consistent
solution of the rod and the fluid dynamics. If the influence of the rods
on the fluid is restricted to short distances from the rods, one can cal-
culate the undisturbed flow field and use it to determine the rod
dynamics afterwards. If the P�eclet number Pe ¼ _c=Dr with shear rate
_c and rotational diffusion constant Dr is low, Brownian dynamics and
diffusion get relevant and the dynamics of the rods changes qualita-
tively. Recently, orientation dependent diffusion has been studied for
anisotropic particles in a Poiseuille flow, which depends significantly
on the P�eclet number.13 Experiments with rods flowing through a
channel in a non-Newtonian fluid have reproduced periodic orbits
predicted by Jeffery. With lower P�eclet number, rods may show vari-
ous types of oscillatory motions like tumbling, kayaking, or log-roll-
ing.29,30 The tumbling gets aperiodic and rods can rotate out of the
shear plane.29,30

In this article, the dynamics of rods is studied explicitly, using the
following assumptions:

• The mass of the fillers is small enough so that inertia terms in the
equations of motion are negligible.

• The P�eclet number is large so that Brownian motion can be
ignored.

• The influence of a rod on the flow field is restricted to small dis-
tances from the rod.

• The system of rods is dilute, and rod interactions play no role.
• For the sake of clarity, we investigate the contraction of a planar
channel, though we expect similar effects in cylindrical geometries.

• We consider a steady-state flow field obtained for a shear-
thinning fluid. Rod induced shear-thinning is neglected as a
higher order effect.

We start our discussion with the simple example of a rod in the
shear plane of a flow field uxðyÞ with constant shear rate _c ¼ @ux

@y . In
this special case, the center of the rod drifts with a constant velocity v0
in the x direction, while the rod axis tumbles periodically with an angle
/. For / ¼ 0, the rod axis is parallel to the x axis. The same orienta-
tion occurs at / ¼ p and then the tumbling repeats. If the rotation
from / ¼ 0 to / ¼ p takes a time T, then the rod moves a length
k ¼ Tv0 until the tumbling repeats.

It is tempting to utilize the spatial periodicity of the rod dynamics
to create a composite material with embedded rod-like fillers forming
a regular pattern. In practice, there are two problems. (a) The tumbling
rods need a synchronized phase in space. If rods tumble with the same
frequency but start at a point x0 with random orientations, the result-
ing average orientation distribution will be spatially homogenous. (b)
In nearly all molding or 3D printing processes, the shear rate is not
constant in space. All viscous fluids that stream through a pipe or a
planar channel have a spatially dependent shear flow like the
Poiseuille flow field in the case of a Newtonian fluid. In this article, we
show with numerical methods that both problems, (a) and (b), are
strongly suppressed in the case of dilute rod distributions flowing
through a sudden contraction. At the point where the fluid flows from
a broad channel into a narrow one, the rod-like fillers tend to align
with the direction of the narrow channel. One of the reasons is the
acceleration, leading to an extension of the flow field. The rod

FIG. 1. Conceptual visualization of a viscous fluid with rod-like fillers flowing
through a contraction. Rods are set at rather close distance to make the structure
more perceptible.
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alignment in extensional flows has been studied experimentally and
numerically for rod distributions in confined flow fields.31,32 Of special
interest for this article is the fact that this rod alignment is found in
the accelerating flow field at channel contractions and pore entran-
ces.33–35 At inverse contractions, rods orient away from the channel
direction.34

In our system, the extensional flow at the contraction leads to
similar orientation of fillers behind the contraction, which leads to a
reasonable synchronization of the rods, tumbling in the narrow chan-
nel. The distance k that a rod travels during a half rotation depends on
the distance yc to the channel center. Therefore, rods with different yc

will desynchronize soon. This problem is strongly reduced by a second
effect of the contraction: In the broad channel, a large number of rods
are far away from the center of the channel. Passing the contraction,
they end up in the outer region of the narrow channel. Here, they tum-
ble and hit the wall so that further rotation shifts their center of mass
to a distance half the rod length away from the wall, where the rod can
rotate freely. This means a large fraction of the rods ends up at nearly
the same distance from the wall, where they are exposed to the same
shear rate.

II. THEORETICAL BACKGROUND
A. Flow dynamics

We consider that the rod dynamics is controlled by the given
flow field. The solvent is incompressible, and inertial effects of the rods
are negligibly small. For the contraction geometry, we calculate the
flow field with OpenFoam,36 a frequently used program for computa-
tional fluid dynamics. Both, polymers used in molding processes
and hydrogels deployed in bioprinting, are typically shear-thinning
fluids; we consider a fluid material with a power-law relation for the
viscosity l,

l ¼ Kj _cjn�1 (1)

with the shear rate _c, the flow consistency index K, and the flow
behavior index n. Since the viscosity depends on _c, which is space-
dependent in our case, the Navier–Stokes equation of an incompress-
ible fluid reads

q
Du
Dt
¼ $ � lðrÞ$uðrÞð Þ � $PðrÞ: (2)

B. Rod motion

In this section, we provide a simple approach for a spherocylin-
drical rod. Our derivation follows roughly the concept used by Dhont
and Briels37 to derive the motion of a stiff chain of spheres. The rod
motion results from the surface forces applied by the matrix on the
rod. For simplicity, we consider only surface forces on the cylindrical
part with diameter D and length L, see Fig. 2. At a time t, the center of
mass rcðtÞ moves with a velocity vcðtÞ, and the rod axis is parallel to a
unit vector, the so-called director nðtÞ. The angular velocity is given by
X0ðtÞ. Then, the velocity at some point r on the rod is

vðrÞ ¼ vc þX0 � ðr � rcÞ: (3)

Inertial effects shall be negligible, so that the total force F ¼ m _vc and
the total torque M0 ¼ H _X0 must vanish. Dynamic equations for vc
and X0 result from F ¼ 0 andM0 ¼ 0.

We assume that the fluid sticks to the rod surface. Thus, at each
surface point r, the fluid velocity is equal to vðrÞ, which typically dif-
fers from the flow field uðrÞ in the absence of the rod.

A rod moving with director n and velocity v in a flow field u is
exposed to a force field37–40

Ffric ¼ N � ðu� vÞ; (4)

where the friction tensor N has the components

Nij ¼ Nkninj þ N?ðdij � ninjÞ
� �

(5)

with the Kronecker symbol dij. This considers the fact that (u-v) can
be separated into a part parallel and a part perpendicular to the rod
axis which make different contributions to the force, weighted by Nk
and N?.

For the case of an arbitrary moving particle in an arbitrary flow
field, we use the same approach to define the local force density f at a
point r on the rod surface

f ðrÞ ¼ Q � uðrÞ � vðrÞð Þ (6)

with a friction density tensor Q defined via

Qij ¼ ckninj þ c?ðdij � ninjÞ
� �

: (7)

We neglect the force densities at the spherical caps, which is rea-
sonable for suitably small D/L. Integrating f over the cylinder surface S
provides the force

F ¼
ð

S
f ðrÞd2r (8)

and the torque

M0 ¼
ð

S
r � rcð Þ � f ðrÞd2r (9)

with respect to the rod center rc .
We define a vector rs :¼ rc þ sn, which lies on the rod axis, a

distance jsj from rc . A ring shaped path on the rod surface around rs
is parametrized by rðs;wÞ :¼ rs þ qðwÞ, where qðwÞ :¼ q cos ðwÞe2
þq sin ðwÞe3 with 0 � w < 2p. The unit vectors e2 and e3 are perpen-
dicular to n and to each other. The integrals over the cylinder surface
become

FIG. 2. Scheme for the calculation of force and torque on a rod with velocity vðrÞ
at surface points r in a flow field, which would be uðrÞ in the absence of the rod.
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F ¼
ðL

2

�L
2

ð2p
0
f rðs;wÞð Þqdwds: (10)

If uðrÞ varies little over lengths q, one has

u rs þ qð Þ ’ uðrsÞ þ q � $uð Þ rsð Þ (11)

and Eq. (10) becomes

F ¼ 2pqQ �
ðL

2

�L
2

u rsð Þ � v rsð Þð Þds: (12)

Equation (3) leads to
Ð L=2
�L=2 vðrsÞds ¼ Lvc . With F ¼ 0, one finds

vc ¼
1
L

ðL=2

�L=2
u rsð Þds: (13)

The rod can rotate around its axis n, but in the following, we are
just interested in the dynamics of n itself. Therefore, we just consider

X :¼ 1� n nð Þ �X0 (14)

the part of the angular velocity vector X0 that is perpendicular to n.
For calculating the dynamics of X, we introduce analogously

M :¼ 1� n nð Þ �M0: (15)

Just likeM0 alsoMmust be zero, which leads to the equation

M ¼
ðL

2

�L
2

ð2p
0
mðs;wÞqdwds ¼ 0 (16)

with

mðs;wÞ :¼ 1� n nð Þ � rðs;wÞ � rcð Þ � f rðs;wÞð Þ½ �: (17)

Using Eqs. (6), (11), and (17), the integral over w in Eq. (16) can be
calculated, which leads to

M ¼ cr 1þ j2ð ÞX� n� I1 � I2ð Þ
� �

(18)

including two integrals

I1 ¼
12
L3

ðL=2

�L=2
s uðrsÞð Þds; (19)

I2 ¼
j2

L
n �
ðL=2

�L=2
$u rsð Þds (20)

and two parameters

j2 :¼ 3
2

D2

L2

ck
c?
; (21)

cr :¼ 2pqL
L2

12
c?: (22)

The quantity jL=D depends sensitively on the shape of the rod.
Jeffery found jL=D ¼ 1 for ellipsoids of revolution.18 Using ck=c?
¼ 1=2 (Ref. 41), Eq. (21) leads to jL=D ¼

ffiffiffi
3
p

=2, which for
L=D ¼ 86 2 is in the same range as the values found by Cox for
cylindrical rods.42 The quantity cr matches with the rotational friction
coefficient.37

WithM ¼ 0 one ends up with

X ¼ 1
1� j2

n� I1 � I2ð Þ: (23)

If D/L is small enough, one can set 1
1�j2 ’ 1.

In this article, we use Eqs. (13) and (23) to determine the dynam-
ics of the rods. We just mention at this point the frequently considered
case of a linear flow field for which $u is constant. Then, the flow field
can be written as uðrÞ ¼ G � r with the fixed gradient velocity tensor
G :¼ ð$uÞT. Inserting uðrÞ into Eqs. (19), (20), and (23), one gets

X ¼ 1
1� j2

n� G � n� j2 GT � nÞÞ:
��

(24)

This is the equation found by Jeffery,18 which is valid for all linear flow
fields.

1. Approximations for the integrals

For numerical calculations, the integrals in Eqs. (13), (19),
and (20) are impractical. In many cases, the undisturbed flow field
uðrc þ ssÞ with jsj < L=2 can be approximated very well by a fourth
order polynomial. For all fourth order polynomials pðsÞ ¼

P4
k¼0 aksk,

the following two equations are valid:

1
L

ðL=2

�L=2
pðsÞds ¼ 4

9
pð0Þ þ 5

18
pðs1Þ þ pð�s1Þ½ �; (25)

1
L

ðL=2

�L=2
s pðsÞds ¼ 5

18
s1 pðs1Þ � pð�s1Þ½ � (26)

with s1 :¼
ffiffiffiffi
3
20

q
L. With a suitably smooth function uðrÞ, the expres-

sions Eqs. (13) and (23) can be approximated by

vc ¼
4
9
uðrcÞ þ

5
18

uðrþÞ þ uðr�Þ
� �

; (27)

X ¼ n� 10
3L2

s1 uðrþÞ � uðr�Þ
� �

� 4
9
j2$uðrcÞ � n

�

� 5
18

j2 $uðrþÞ þ $uðr�Þ
� �

� n
�

(28)

with

r6 ¼ rc 6 s1n: (29)

C. Rod flow between plane-parallel walls

First, we study a power-law fluid with flow behavior index n,
flowing in the x direction with a steady-state flow field u ¼ uxðyÞex in
a channel with fixed, plane-parallel walls at y ¼ 6w. With Eq. (1) and
shear rate _c ¼ @ux

@y , Eq. (2) becomes

@

@y
K

				 @ux

@y

				
n�1

@ux

@y

 !
¼ @P
@x
; (30)

where the term on the right side is negative and constant. The solution
of Eq. (30) with no-slip boundaries at the walls uxð6wÞ ¼ 0 is given
by
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uxðyÞ ¼ umax 1�
				 y

w

				
m

 !
(31)

with

m ¼ nþ 1
n

; (32)

umax ¼
n

nþ 1
w

nw
K

				 @P
@x

				
 !1=n

: (33)

For a Newtonian fluid (n¼ 1), one gets the Poiseuille flow field

ulinðyÞ :¼ umax 1� y2

w2


 �
: (34)

A fluid with a viscosity l / j _cj1=2 forms the steady-state flow field

uflowðyÞ :¼ umax 1�
				 y

w

				
3

 !
: (35)

Flow fields are shown in Fig. 3 in the range�w=2 � y � w=2.
We consider a rod in the x, y plane. The velocity vc and the angu-

lar velocity X of a rod in the planar channel result from Eqs. (13) and
(23). The rod center flows in the x direction vc ¼ vcex , while
X ¼ Xez . Let / be the angle between the rod axis and the x axis. In
general, X and vc have contributions that oscillate with /. For / ¼ 0,
vc is maximum, while X is a small but finite value. For the Newtonian
fluid, one has

Xð/ ¼ 0Þ ¼ 2umaxj
2w�2yc;

for the shear-thinning fluid with n¼ 1/2, one finds

Xð/ ¼ 0Þ ¼ 3umaxj
2w�3jycjyc:

It is useful to characterize the rod geometry by j which includes
the axis ratio and the absolute cylinder length L. In the following, we

always use j2 ¼ 1=108, even if we vary the rod length L. First, we
study the dynamics of rods, tumbling in the x, y plane in a planar
channel.

Inserting Eqs. (35) and (34) into Eqs. (13) and (23), one reveals
the velocity of the rod center vc;x and the angular velocity X as a func-
tion of /. Setting qð/Þ :¼ L2

12y2c
sin2ð/Þ, we find

vc;xð/Þ ¼ uxðyÞ �
y2c
w2

qð/Þ; (36)

Xð/Þ ¼ 2umaxyc

w2
j2 cos2ð/Þ þ sin2ð/Þ
� �

(37)

for the Newtonian fluid. For the shear-thinning fluid, simple expres-
sions are found if yc > L=2. Then, one has

vc;xð/Þ ¼ uxðyÞ � 3
y3c
w3

qð/Þ; (38)

Xð/Þ ¼ 3umaxy2c
w3

1þ qð/Þ½ �j2 cos2ð/Þ þ 1þ 3
5

qð/Þ
� �

sin2ð/Þ
� �

:

(39)

The rod length appears only in qð/Þ, a positive term that oscil-
lates with sin ð/Þ and is proportional to L2. For rods in the Newtonian
fluid, the velocity is reduced by a term proportional to qð/Þ, while,
interestingly, Xð/Þ does not depend on L at all, as long as the rod does
not collide with the channel wall.

Also, for rods in the shear-thinning fluid, the velocity is decreased
by a term proportional to qð/Þ. The angular velocity X is increased by
a term proportional to qð/Þ. The lowest velocities are always found for
/ðxÞ ¼ p=2; 3p=2;… Examples of vxð/Þ and Xð/Þ of a rod in a pla-
nar channel are shown in Fig. 4.

One important characteristic of the rod dynamics is the distance
k :¼ xð/ ¼ pÞ � xð/ ¼ 0Þ that the rod travels as it fulfills a half rota-
tion. Values of xð/Þ are given by

x ¼
ð/

0

vð~/Þ
Xð~/Þ

d~/:

For Newtonian fluids, one finds

k ¼ p
2y0

w2 � y20
j

� L2

12ð1þ jÞ

 !
:

For a shear-thinning matrix, the integral is more complicated. In
the following, a case of special interest is a rod in a shear-thinning
matrix with n¼ 1/2 at height yc ¼ w=2 with rod length L ’ w.

For this case, k is approximately

k ’ 11p

4
ffiffiffi
6
p

j
L: (40)

In general, k decreases strongly with yc. The rotation dynamics in
a channel is visualized in Fig. 5, which shows cos2ð/Þðxc; ycÞ for rods
with length L ¼ 0:9w and j2 ¼ 1=108 that start with / ¼ 0 at xc¼ 0.

D. Rod flow through a sudden contraction

Now we come to the main subject of this article. We study
rods in a fluid matrix that flows through a planar channel with a

FIG. 3. Flow velocities in a planar channel of width 2w in the range
�w=2 � y � w=2. (A) Flow field uxðyÞ for a power-law fluid with flow behavior
index n¼ 1/2. This corresponds to the maximum velocity of rod centers with yc¼ y.
The minimum velocities of rods with j2 ¼ 1=108 and centers at y are shown for
rod lengths (C) L ¼ 0:5w, (D) L ¼ 0:7w, and (E) L ¼ 0:9w. (B) The velocity pro-
file of a Newtonian fluid.
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sudden contraction at xco where the width reduces spontaneously
from 2w0 to 2w. A steady-state flow field was created with the help
of the program OpenFoam for a system with 2w0 ¼ 2:4mm; 2w
¼ 0:8mm; xco ¼ 4mm ¼ 10w, and a kinematic pressure decreasing

with DP=Dx ¼ �1125ms�2. The fluid velocity at the walls is u ¼ 0.
The kinematic viscosity of the shear-thinning matrix obeys the power-
law equation (1) with flow behavior index n¼ 1/2 and flow consis-
tency index K ¼ 5:67� 10�3 m2sn�1. The x and y components of the
stationary flow field are shown in Fig. 6.

For our system, we can estimate the P�eclet number by using the
approach used by Kobayashi and Yamamoto.43 For the estimation, we
use conditions in our model system, a temperature T ¼ 300K, and a
mass density q ¼ 1 g=cm3, typical for hydrogels. Considering a parti-
cle in the thin cylinder that is one rod diameter away from the cylinder
axis, we find a very large P�eclet number of Pe � 109. This is caused by
the large size of the fillers in our system. For fillers in the micrometer
range under the same conditions, one has Pe ’ 400.

With the given flow field, we calculate the dynamics of rods, rep-
resented by spherocylinders. The diameter is d ¼ 0:1w, and the cylin-
drical part of the rod has a length L ¼ 0:9w so that the total rod
length is Ltot ¼ w. Furthermore, we use j2 ¼ 1=108. At the walls, we
assume a perfect slip motion of the rods. This means, at the collision
point, the velocity normal to the collision axis does not change.

We investigate the formation of ordered structure by rods start-
ing with a random distribution. The proper choice of accurate random
starting conditions is not self-evident. We consider that in a region
x< 0, rods have a random, homogenous orientational and spatial dis-
tribution. Thus, at each height yc, rod centers have the same average

FIG. 4. Motion of rods in a planar channel: (i) Angular velocities X and (ii) velocities
vc;x of rod centers. The results are shown for rods with j2 ¼ 1=108 for different
lengths and different positions. The matrix is either shear-thinning with flow behav-
ior index n¼ 1/2 or a viscous Newtonian fluid. Values are shown in length units of
w and velocity units umax.

FIG. 5. Values of cos2ð/ðx; yÞÞ for angle / between the rod axis and the x direc-
tion. Rods start at ð0; yÞ with / ¼ 0 and drift in a shear-thinning fluid with n¼ 1/2
flowing through a planar channel.

FIG. 6. Flow field around the compression. The plots show (a) the x component
and (b) the y component of the flow field. In the plots, u0 is the maximum absolute
flow velocity in the whole region, and w is half the diameter of the small channel.
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distance Dx in the x direction. In a time interval Dt, rods appear at
xc¼ 0 with an average frequency f ðycÞ ¼ uxðycÞ=Dx. The amount of
rods n0ðycÞDt per time Dt is proportional to uxð0; ycÞ / 1 �ðyc=w0Þ3.
Therefore, in our simulation, the number of rods starting at ð0; yc;0; 0Þ
is weighted with the factor 1� ðyc=w0Þ3.

Before we look at a system with random initial orientation in 3D,
we discuss some aspects of the rod dynamics with initial rod axes lying
in the x, y plane. In Fig. 7, paths of rods through the contraction are
shown. One can see that rods that start above a height ~yc;0 ’ w0=2
end up above a height ~yc :¼ w� Ltot=2. With the given rate of rods
n0ðycÞ that pass xc¼ 0 at height yc, the fraction of rods that end up
above ~yc is about ðyc;max

~y c;0

n0ðycÞdycðyc;max

0
n0ðycÞdyc

’ 0:32:

Approximately 32% of the rods end up in the upper region yc > ~yc.
This percentage can be increased by choosing a larger w0=w ratio. As
the rods continue to drift in the narrow channel, they keep rotating in
the x, y plane, until they hit the channel wall, see Fig. 8. Wall repulsion
presses the rod center away from the wall as the rod keeps rotating. As
the rod gets perpendicular to the wall plane, the rod center reaches
yc ¼ ~yc, where it remains during the subsequent rotations. In Fig. 7,
kinks in the paths indicate points at which rods hit the wall and the
rod center reaches yc ¼ ~yc. In the end, contraction, rotation, and wall
repulsion let 32% of rods end up a distance, Ltot=2 from the walls.
Here, all these rods are exposed to the same ux and _c.

Now we study rods with 3D orientation, which start with random
directors n, distributed homogeneously on a unit sphere. Figure 9
shows a logarithmic contour plot of the spatial distribution ncðx; yÞ of
rod centers captured from the whole paths of all rods. One can see a
pronounced maximum at y ’ w� Ltot=2. Analyzing ncðx; yÞ shows
that for y > 50w about 30% of the rod centers are in the range of

FIG. 7. Paths of centers of rods, passing a contraction. Rods starting at yc > ~y c;0
end up above ~yc in the narrow channel and collide with the upper wall. Thick brown
lines represent the upper wall. Dotted brown lines indicate the second half of the
contraction.

FIG. 8. Three rods passing the contrac-
tion. The length of the colored lines indi-
cates the full length Ltot of the rods. The
thick brown line denotes the wall. The
motion of the rods continues in the lower
plot.

FIG. 9. Logarithmic contour plot of the density ncðx; yÞ of rod centers near the con-
traction. The fat brown line denotes the wall.
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0:5w � jycj � 0:55w. The orientation of the rods is reflected in the
spatial distribution ntipðx; yÞ of cylinder ends rc6 L

2 n, shown in Fig. 10.
At constant distances k, there are spikes of ntipðx; yÞ indicating

that rod ends get close to the wall. At these positions, rods are perpen-
dicular to the flow direction. In between, rods are nearly parallel to the
x axis, most of the time. If this is the case, the cylinder ends are roughly
at the same y position as the rod center, yc ’ 6~y , which leads to the
maxima of ntip at 6~y .

Figure 11 shows the diagonal elements Axx and Ayy of the orienta-
tion tensor

A ¼ hn ni;

which is frequently used in the field of rod distributions.26,44 The com-
ponent AxxðxcÞ ¼ hnxnxixc

provides information on the average align-
ment in x-direction for rods with rod centers in the range
ðxc; xc þ DxÞ with small Dx. The same applies for AyyðxcÞ and
AzzðxcÞ. The plot in Fig. 11 shows values of Axx and Ayy (dashed lines),

averaged over the whole range �w < yc < w and Am
xx and Am

yy (con-
tinuous lines), averaged over rods with jyc � ~ycj < 0:01w, which
belong to the maxima in Fig. 9.

At the starting point, xc ’ 0, the quantities Axx, Ayy, and Azz

¼ 1� Axx � Ayy are 1/3, which correspond to an isotropic distribu-
tion. At xc ’ xco, one has Axx ’ 0:78. This indicates a distinct align-
ment in the flow direction. At fixed distances k, Ayy shows small
peaks, which are much more pronounced for Am

yy. The peaks coincide
with sharp minima in Am

yy and indicate that a larger amount of rods
with yc ’ 6~yc point in the y direction at these x positions.

At the contraction, the flow field accelerates, and the foremost
part of a rod is torn in the flow direction, resulting in an alignment of
the rods almost parallel to the x axis. The effect holds for all rods, inde-
pendent of their starting point or initial orientation. When they point
in the x direction, rods are exposed to the shear rate _cðyÞ ¼ @ux

@y ðyÞ
and tumble with an angular velocity perpendicular to the x, y plane. If
their center of mass is above ~yc, they hit the wall and end up at
yc ’ ~yc. The large amount of rods with yc ¼ ~yc is exposed to the same
shear flow _cð~ycÞ and so they all rotate with the same angular velocity
sequence. The rod alignment at the contraction leads to / ’ 0 at this
point so that many rods follow the same path with the same orienta-
tion sequence /ðxcÞ. The rods at yc ¼ ~yc contact the channel walls at
regular distances, when the rods are perpendicular to the flow direc-
tion /ðxÞ ¼ p=2.

We have investigated the behavior of rods entering a contraction
for the case that the fluid is shear-thinning. This was chosen because
in many applications shear-thinning fluids are used. At this point, it
must be emphasized that shear-thinning is not required for the
observed structure formation. As an example, the spatial distribution
ntipðx; yÞ of cylinder ends is presented in Fig. 12 for rods passing a
contraction in a Newtonian fluid. All other parameters are used as in
the non-Newtonian case. One can see that the synchronized rotation
of the rods is visible just like in the non-Newtonian case.

III. SUMMARY

Tumbling of rods in a viscous fluid that flows through a channel
depends on the distance from the channel center yc and the orientation

FIG. 10. Contour plot of the probability density ntipðx; yÞ of the cylinder ends
rc6 L

2n of rods passing a contraction in a shear-thinning matrix. Thick brown lines
indicate the walls.

FIG. 11. Diagonal elements Axx (blue) and Ayy (red) of the orientation tensor.
Orientations are sampled over the whole planar channel (dashed lines) or in the
range jyc � ~y cj < 0:01w (Amxx ; A

m
yy , continuous lines).

FIG. 12. Contour plot of the probability density ntipðx; yÞ of the cylinder ends
rc6 L

2 n of rods passing a contraction in a Newtonian fluid. Thick brown lines indi-
cate the walls.
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at an initial point xco. The distribution of these two parameters can be
strongly narrowed by a regular sudden contraction. Passing the con-
traction, rods are strongly aligned with the flow direction, which serves
as a reference point for the tumbling phase. Remarkably, even rod axes
that deviate distinctly from the x, y plane are dragged at the contrac-
tion into the x direction from where they start a tumbling motion in
the x, y plane. Shortly after the contraction, a large amount of rods is
localized at a distance Ltot=2 from a channel wall. Here, the rods are
exposed to the same shear rate and tumble with the same frequency.
Our simulations show a spatially synchronized tumbling of rods that
have started in the wider channel with a random, uniform distribution
of starting position and orientation. Rod orientations perpendicular to
the flow direction occur at equally spaced positions xn ¼ x0 þ nk with
n ¼ 0; 1; 2;….

Those who aim for a spatially homogenous distribution of rods
pointing in the flow direction must be aware of two aspects, if the filler
density is low. (a) Fillers are far from being distributed homogeneously,
instead the density has distinct local maxima at jyj ¼ w� L=2. Here,
more than 30% of rods may be localized, depending on the width ratio
of broad and narrow channel and the ratio of rod length and narrow
channel width. (b) The fraction of rods that end up in the high density
layers is not permanently aligned but tumble.

The tumbling of rods forms a regular pattern in space. This way
the contraction provides a rather complex structure of fillers without
any extra effort. If the matrix solidifies in the narrow channel, the
resulting material may have spatially structured material properties
with a periodicity k that may be several hundred times larger than the
rod length. Mechanical strength may vary in space periodically. For
systems with electrically conducting fillers, it might be especially inter-
esting that rods touch the surface of the matrix at regular distances.
Thus, one ends up with a compound layer with spatially controlled
contact points, see the conceptual visualization in Fig. 1.

In this article, we studied a somewhat idealized system, in which
the reasons of the observed effects are clarified by leaving out various
aspects. However, extended simulations indicate that the effects still
occur in altered systems. They are found for different j and other
ratios of rod length Ltot to narrow channel width w. The effect does
not vanish for rod densities with occasional rod interactions, and a
synchronized tumbling is also found in contractions of cylindrical
pipes. All these observations are of great interest, but go beyond the
scope of this article and must be analyzed in independent, extensive
studies.

Many other aspects are worth studying in the future. The rod-
wall interactions may be varied as well as the local geometry of the
contraction. One should explore a critical density at which the system
switches from a tumbling to a constantly aligned state. Length distri-
butions of rods are another important point.

The requirements for performing the respective simulations are
expounded here, in this article. Especially, it is shown how to treat the
dynamics of rods in a flow field that may not be assumed to be linear
on the length scale of the rods.
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