
Classical and Quantum Gravity

Class. Quantum Grav. 40 (2023) 193001 (56pp) https://doi.org/10.1088/1361-6382/acf436

Topical Review

Stability and instability results for equilibria
of a (relativistic) self-gravitating
collisionless gas—a review

Gerhard Rein

Fakultät für Mathematik, Physik und Informatik, Universität Bayreuth, D-95440
Bayreuth, Germany

E-mail: gerhard.rein@uni-bayreuth.de

Received 3 May 2023; revised 17 August 2023
Accepted for publication 25 August 2023
Published 8 September 2023

Abstract
We review stability and instability results for self-gravitating matter distribu-
tions, where the matter model is a collisionless gas as described by the Vlasov
equation. The focus is on the general relativistic situation, i.e. on steady states
of the Einstein–Vlasov system and their stability properties. In order to put
things into perspective we include the Vlasov–Poisson (VP) system and the
relativistic VP system into the discussion.
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1. Introduction

Consider a large ensemble of massive particles which interact only through the gravitational
field which they create collectively. The density f⩾ 0 on phase space of such a collisionless
gas obeys the collisionless Boltzmann or Liouville equation, which in mathematics is usu-
ally (and regrettably) called the Vlasov equation. The exact form of this equation depends on
the situation at hand—Newtonian, special relativistic, or general relativistic—, but its content
is always that f is constant along particle trajectories. This equation is coupled to the field
equation for gravity which in the Newtonian case results in the Vlasov–Poisson (VP) system
and in the general relativistic one in the Einstein–Vlasov (EV) system; these systems will be
formulated in the next section.

The former system has a long history in the astrophysics literature where it is used to model
galaxies and globular clusters, andwe refer to [12, 28] and the references there. The importance
of the latter system is two-fold: on the one hand there are major open, conceptual problems in
general relativity such as the cosmic censorship hypotheses for which the choice of a matter
model which by itself is well understood is important, and the Vlasov equation is a natural
candidate in this context. On the other hand, general relativistic effects become increasingly
important in astrophysics, given for example the fact that most galaxies have a massive black
hole at their center. Historically, this interest started in the mid 1960s with the discovery of
quasars [13, 14, 119].

From a mathematical point of view one gains a better understanding of these systems if
one includes the so-called relativistic VP system, a hybrid system which is neither Galilei
nor Lorentz invariant. All three systems under consideration share the property that they have
a plethora of steady state solutions which represent possible equilibrium configurations of a
galaxy or a globular cluster; only steady states with finite mass will be relevant here. A natural
question both from the mathematical and the astrophysical point of view is which of these are
stable, and how stable or unstable equilibria react, at least qualitatively, to perturbations.

For the VP system several different approaches to the stability question exist in the by now
quite extensive mathematical literature on this subject, part of which we will recall later on.
Our focus in these notes is on the stability problem for the EV system where much less is
known. We aim to bring out the differences between the non-relativistic and the relativistic
situation and to discuss why some approaches which were successful in the Newtonian case
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seem to fail in the general relativistic case andwhich approaches are at least partially successful
also in the relativistic case. In the context of general relativity the stability question differs
in an essential and striking way from its Newtonian counterpart: in the latter case one can
formulate conditions on the so-called microscopic equation of state which guarantee nonlinear
stability of any steady state with that microscopic equation of state, but in the former context
such a microscopic equation of state guarantees stability only if the steady state is not too
relativistic, while a sufficiently relativistic steady state with the same microscopic equation of
state will be unstable. This instability of strongly relativistic steady states has no analogue in
the Newtonian context. We should also emphasize that so far the general relativistic case has
only been attacked under the assumption of spherical symmetry.

These notes are intended to be such that they can be followed and the main ideas can be
appreciated without consulting the original literature. We aim to introduce the necessary con-
cepts and major results self-consistently and explain at least the ideas of most proofs. But
while some hopefully instructive proofs are given in detail, we very often have to refer the
reader to the original literature for a complete, rigorous analysis. Although we try to do justice
to the mathematical literature on the subject, the selection and presentation of the material is
without doubt strongly influenced by the author’s preferences, prejudices, and limitations; the
coverage of the relevant astrophysics literature is certainly quite incomplete.

The paper proceeds as follows. In the next section we state the three systems under
discussion—the VP system, the relativistic VP (RVP) system, and the EV system—together
with their conserved quantities which play a key role in the stability analysis; we will often use
the abbreviations (VP), (RVP), (EV) to refer to these systems. We also point out an import-
ant, basic difference between (VP), (RVP), and (EV), according to which they may be dubbed
energy ‘subcritical’, ‘critical’, or ‘supercritical’. In section 3 we review the basic construction
of one-parameter families of steady states which in the general relativistic case are parameter-
ized by their central redshift and share the samemicroscopic equation of state. Section 4 recalls
the basic strategies which have lead to stability results for (VP) or (RVP), which we distin-
guish into global variational methods, local variational methods, and linearization. Section 5
is devoted to a linear stability result for steady states of (EV) with small central redshift, while
section 6 discusses a linear, exponential instability result for large central redshift. The spec-
tral properties of the linearized (EV) system are reviewed in section 7, where we in particular
discuss a recently derived Birman–Schwinger principle for (EV). In section 8 we review the
main numerical observations concerning stability for (EV) and discuss some related conjec-
tures and open problems. The last section provides an example which shows that for infinite
dimensional dynamical systems strict global energy minimizers need not be stable.

1.1. Notation

Since these notes are fairly long it may be useful to provide a placewhere some general notation
is collected which is used throughout these notes; some of it will be re-introduced again later.

For vectors like x,p,v ∈ R3 we use | · | and · for the Euclidean norm and scalar product,

x · v=
3∑

j=1

xjvj, |x|=
√
x · x,

etc. Gradients with respect to, say, x or p are denoted by ∂x or ∂p, and in order not to be too
consistent we occasionally write ∇ instead of ∂x. We also abbreviate

〈v〉=
√

1+ |v|2, w=
x · v
|x|

, L= |x× v|2 for x,v ∈ R3;

3



Class. Quantum Grav. 40 (2023) 193001 Topical Review

this will make more sense when it first comes up. If H is some Hilbert space and L a linear,
bounded or unbounded operator on H we denote by D(L), R(L), and N (L) its domain of
definition, its range, and its null-space or kernel, i.e.

L : H⊃ D(L)→ H, R(L) = L(D(L)), N (L) = L−1({0})⊂ D(L).

2. The systems under consideration and their conserved quantities

2.1. The VP system

In the Newtonian case the density f = f(t,x,p)⩾ 0 of the particle ensemble on phase space is
a function of time t, position x ∈ R3, and momentum p ∈ R3. It obeys the VP system

∂t f+ p · ∂x f − ∂xU · ∂pf = 0, (2.1)

∆U= 4πρ, lim
|x|→∞

U(t,x) = 0, (2.2)

ρ(t,x) =
ˆ
f(t,x,p)dp, (2.3)

whereU= U(t,x) is the gravitational potential induced by the macroscopic, spatial mass dens-
ity ρ= ρ(t,x); integrals without explicitly specified domain extend over R3. The boundary
condition in (2.2) corresponds to the fact that we consider an isolated system in an otherwise
empty Universe. As usual, we assume that all the particles in the ensemble have the same mass
which is normalized to unity so that p is also the velocity of a particle with coordinates (x, p).
Up to regularity issues a function f satisfies the Vlasov equation (2.1), iff it is constant along
solutions of the equations of motion of a test particle in the potential U, namely

ẋ= p, ṗ=−∂xU(s,x); (2.4)

the latter is the characteristic system of (2.1). If the sign in the Poisson equation is reversed, the
system models a plasma, where one will typically add a neutralizing ion background and/or
an exterior confining field.

Smooth, compactly supported initial data f|t=0 = f̊ ∈ C1
c(R6) launch classical, smooth solu-

tions to this system, which are known to be global in time [75, 85, 104], see also the review
[99]. These solutions conserve the following quantities, which we define as functionals acting
on states f = f(x,p):

H( f) := Ekin( f)+Epot( f) :=
1
2

¨
|p|2f(x,p)dpdx− 1

8π

ˆ
|∇Uf(x)|2dx (2.5)

is the total energy of the state f, i.e. the sum of its kinetic and potential energies, where the
potential Uf is induced by f via (2.2) and (2.3), and

C( f) :=
¨

Φ( f(x,p))dpdx (2.6)

is a so-called Casimir functional, which is conserved for any choice of Φ ∈ C1([0,∞[) with
Φ(0) = 0. The fact that the energy H is conserved along solutions of the VP system simply
says that the latter is a conservative system, while the conservation of the Casimir functionals
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corresponds to the fact that the characteristic flow induced by (2.4) preserves Lebesgue meas-
ure. In other words, f (t), the state of the system at time t, is related to f̊ via

f(t) = f̊ ◦Z(0, t) (2.7)

where

s 7→ (X,P)(s, t,x,p) = Z(s, t,z)

is the solution to (2.4) with (X,P)(t, t,x,p) = (x,p), which induces a diffeomorphism

Z(t,0) = Z(t,0, ·) : R6 → R6

with inverse Z(0, t), and

det∂zZ(t,0) = 1.

Both types of conservation laws are essential for deducing global-in-time existence of solutions
and for nonlinear stability issues, see section 2.4.

Before we proceed to relativistic models we mention a different way of writing the Vlasov
equation (2.1). To this end we recall the Poisson bracket of two smooth functions g= g(x,p)
and h= h(x,p),

{g,h} := ∂xg · ∂ph− ∂pg · ∂xh, (2.8)

and the energy of a particle with coordinates (t,x,p),

E= E(t,x,p) =
1
2
|p|2 +U(t,x). (2.9)

Then the Vlasov equation (2.1) can be written as

∂t f + {f,E}= 0. (2.10)

We recall that · denotes the Euclidean scalar product between vectors inR3, and the Euclidean
norm of such vectors is denoted by | · |.

2.2. The relativistic VP system

For this system the Vlasov equation takes the form

∂t f+
p√

1+ |p|2
· ∂x f − ∂xU · ∂pf = 0, (2.11)

where we again assume that all the particles have the same rest mass, normalized to unity, and
the speed of light is set to unity as well. The Poisson equation (2.2) together with its boundary
condition and the relation (2.3) remain unchanged. The characteristic system now reads

ẋ=
p√

1+ |p|2
, ṗ=−∂xU(s,x),

and the relation (2.7) remains true with the flow map redefined accordingly. The characteristic
flow is still measure preserving so that we keep the Casimir functionals (2.6) as conserved
quantities, and (RVP) is still conservative with the obvious change that now

Ekin( f) :=
¨ √

1+ |p|2f(x,p)dpdx.

The Vlasov equation (2.11) can again be put into the form (2.10) with (2.9) replaced by

E= E(t,x,p) =
√

1+ |p|2 +U(t,x). (2.12)
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As mentioned above, this system is neither Galilei nor Lorentz invariant. While it may not be
so relevant from the physics point of view it will be useful in illustrating the difficulties which
the stability discussion encounters whenmoving from (VP) to (EV). Initial data as specified for
(VP) launch local, classical, smooth solutions of (RVP) which can easily be seen by adapting
the proof of [99, theorem 1.1]. But it is known that such solutions can blow up in finite time,
see [32]. In section 2.4 we will explain this difference to (VP) and consider the question what
this means with respect to stability.

2.3. The EV system

On a smooth spacetime manifold M equipped with a Lorentzian metric gαβ with signature
(−+ ++) the Einstein equations read

Gαβ = 8πTαβ . (2.13)

Here Gαβ is the Einstein tensor induced by the metric, and Tαβ is the energy–momentum
tensor; Greek indices run from 0 to 3. The world line of a test particle onM obeys the geodesic
equation, which can be written either as a first order ODE on the tangent bundle TM of the
spacetime manifold, coordinatized by (xα,pβ) where xα are general coordinates onM and pα

are the corresponding canonical momenta, or on the cotangent bundle TM∗, coordinatized by
(xα,pβ) where pβ = gβγpγ . If we opt for the latter alternative,

ẋα = gαβpβ , ṗα =−1
2
∂xαg

βγpβpγ ;

gαβ denotes the inverse of the metric gαβ , the dot indicates differentiation with respect to
proper time along the world line of the particle, and the Einstein summation convention is
applied. All the particles are to have the same rest mass which we normalize to unity, and to
move forward in time. Their number density f is a non-negative function supported on the
mass shell

PM∗ :=
{
gαβpαpβ =−1, pα future pointing

}
,

a submanifold of the cotangent bundle TM∗ which is invariant under the geodesic flow. Letting
Latin indices range from 1 to 3 we use coordinates (t,xa) with zero shift which implies that
g0a = 0. On the mass shell PM∗ the variables p0 and p0 then become functions of the variables
(t,xa,pb):

p0 =−|g00|1/2
√

1+ gabpapb, p
0 = |g00|−1/2

√
1+ gabpapb.

Since the number density f = f(t,xa,pb) is constant along the geodesics, the Vlasov equation
reads

∂t f +
gabpb
p0

∂xa f−
1

2p0
∂xag

βγpβpγ∂pa f= 0. (2.14)

The energy–momentum tensor is given as

Tαβ = |g|−1/2
ˆ
pαpβ f

dp1dp2dp3
p0

, (2.15)

where |g| denotes the modulus of the determinant of the metric. The system (2.13)–(2.15) is
the EV system in general coordinates. As we want to describe isolated systems, we require
that the spacetime is asymptotically flat which corresponds to the boundary condition in (2.2).
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An obvious steady state of this system is flat Minkowski space with f = 0. In [24, 72, 112]
nonlinear stability of this trivial steady state was shown for the system above, which is a highly
non-trivial result. Under the simplifying assumption of spherical symmetry this result was
shown in [94, 100]. Mathematically speaking, these results are small data results which rely on
the fact that close to vacuum the characteristic flow of the Vlasov equation disperses the matter
in space. When perturbing a non-trivial, i.e. non-vacuum, steady state no such mechanism
exists, and the problem becomes completely different. Our discussion is focused exclusively
on the stability of non-trivial steady states.

Questions like the stability or instability of non-trivial steady states are at present out of
reach of a rigorous mathematical treatment, unless simplifying symmetry assumptions are
made. We assume spherical symmetry, use Schwarzschild coordinates (t,r,θ,φ), and write
the metric in the form

ds2 =−e2µ(t,r)dt2 + e2λ(t,r)dr2 + r2(dθ2 + sin2 θdφ2). (2.16)

Here t ∈ R is a time coordinate, and the polar angles θ ∈ [0,π] and φ ∈ [0,2π] coordinatize the
surfaces of constant t and r> 0. The latter are the orbits of SO(3), which acts isometrically on
this spacetime, and 4π r2 is the area of these surfaces. The boundary condition

lim
r→∞

λ(t,r) = lim
r→∞

µ(t,r) = 0 (2.17)

guarantees asymptotic flatness, and in order to guarantee a regular center we impose the bound-
ary condition

λ(t,0) = 0. (2.18)

Polar coordinates have a tendency to introduce artificial singularities at the center. Hence it is
convenient to also use the corresponding Cartesian coordinates

x= (x1,x2,x3) = r(sinθ cosφ,sinθ sinφ,cosθ)

and the corresponding canonical covariant momenta p= (p1,p2,p3).
Before we proceed to formulate (EV) in these variables we emphasize the fact that from

this point on we will not raise or lower any indices, treat x and p simply as variables inR3, and
use notations like

x · p=
3∑

a=1

xapa, |p|2 =
3∑

a=1

(pa)
2

for Euclidean scalar products and norms, just as we did for (VP) or (RVP).
In order that the particle distribution function f = f(t,x,p) is compatible with (2.16) it must

be spherically symmetric; we call a state f = f(x,p) spherically symmetric iff

f(x,p) = f(Ax,Ap), x,p ∈ R3, A ∈ SO(3). (2.19)

Using the abbreviation

〈p〉 :=−e−µp0 =

√
1+ |p|2 +(e2λ − 1)

(x · p
r

)2
, (2.20)
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(EV) can be put into the following form:

∂t f+ eµ−2λ p
〈p〉

· ∂x f

+

[
eµ−2λλ ′

(x · p
r

)2 1
〈p〉

− eµµ ′ 〈p〉+ eµ
1− e−2λ

r〈p〉

(
|p|2 −

(x · p
r

)2
)]

x
r
· ∂pf = 0, (2.21)

e−2λ(2rλ ′ − 1)+ 1= 8π r2ρ, (2.22)

e−2λ(2rµ ′ + 1)− 1= 8π r2σ, (2.23)

λ̇=−4π reλ+µȷ, (2.24)

e−2λ

(
µ ′ ′ +(µ ′ −λ ′)

(
µ ′ +

1
r

))
− e−2µ

(
λ̈+ λ̇(λ̇− µ̇)

)
= 8πσT, (2.25)

where

ρ(t,r) = ρ(t,x) = e−λ

ˆ
〈p〉 f(t,x,p)dp, (2.26)

σ(t,r) = σ(t,x) = e−3λ
ˆ (x · p

r

)2
f(t,x,p)

dp
〈p〉

, (2.27)

ȷ(t,r) = ȷ(t,x) = e−2λ
ˆ

x · p
r
f(t,x,p)dp, (2.28)

σT(t,r) = σT(t,x) =
1
2
e−3λ

ˆ ∣∣∣∣x× p
r

∣∣∣∣2 f(t,x,p) dp〈p〉 . (2.29)

Here ˙ and ′ denote the derivatives with respect to t and r respectively, ρ is the mass-energy
density—its integral is the ADM mass, see (2.30)—, and σ, σT are the pressure in the radial
or tangential direction, respectively.

The equations (2.21)–(2.29) are a form of the spherically symmetric (EV) which does not
look too appealing and has so far not been used in the literature. The fact that the source terms
defined in (2.26)–(2.29) depend on the metric, in particular via (2.20), makes it technically
unpleasant to handle. But this form of the system has some advantages. The characteristic flow
of the Vlasov equation (2.21) is again measure preserving, and hence the Casimir functionals
defined exactly as in (2.6) remain conserved quantities. Moreover, the Vlasov equation (2.21)
still is of the general form (2.10) with

E= E(t,x,p) = eµ 〈p〉 .

The total energy, which in this case is usually referred to as the ADM mass, is given as

H( f) :=
¨

e−λf

√
1+ |p|2 +(e2λf − 1)

(x · p
r

)2
f(x,p)dpdx (2.30)

where λf is the solution to (2.22) subject to the boundary conditions from (2.17) and (2.18)
and with ρ satisfying (2.26).

We rewrite the above form of (EV) by introducing non-canonical momentum variables via

v= p+(eλ − 1)
x · p
r

x
r
. (2.31)

In these variables (2.20) turns into

〈v〉 :=−e−µp0 =
√

1+ |v|2, (2.32)
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in the definition of spherical symmetry of f = f(t,x,v)we simply replace p by v, and the Vlasov
equation (2.21) becomes

∂t f + eµ−λ v
〈v〉

· ∂x f −
(
λ̇
x · v
r

+ eµ−λµ ′ 〈v〉
) x
r
· ∂vf = 0. (2.33)

The field equations (2.22)–(2.25) remain unchanged, but the source terms

ρ(t,r) = ρ(t,x) =
ˆ

〈v〉 f(t,x,v)dv, (2.34)

σ(t,r) = σ(t,x) =
ˆ (x · v

r

)2
f(t,x,v)

dv
〈v〉

, (2.35)

ȷ(t,r) = ȷ(t,x) =
ˆ

x · v
r
f(t,x,v)dv, (2.36)

σT(t,r) = σT(t,x) =
1
2

ˆ ∣∣∣∣x× v
r

∣∣∣∣2 f(t,x,v) dv〈v〉 (2.37)

are now given completely in terms of f, they do no longer depend on the metric. The price to
pay for this simplification is that the characteristic flow of the Vlasov equation (2.33) is not
measure preserving, and the Casimir functionals, which are still conserved quantities, take the
form

C( f) :=
¨

eλfΦ( f(x,v))dvdx. (2.38)

On the other hand, the ADM mass simplifies to a linear functional that depends only on f,

H( f) :=
¨

〈v〉 f(x,v)dvdx=
¨ √

1+ |v|2f(x,v)dvdx. (2.39)

Taking into account the boundary conditions (2.17) and(2.18) the metric components are given
explicitly in terms of ρ and σ, and hence of the state f = f(x,v); we suppress the time variable
t for the moment:

e−2λ = 1− 2m
r

(2.40)

and

µ ′ = e2λ
(m
r2

+ 4π rσ
)
, (2.41)

where

m(r) = 4π
ˆ r

0
ρ(s)s2ds. (2.42)

At this point we notice that a spacetime manifold can only be covered by Schwarzschild
coordinates if 2m< r everywhere; the spacetime must not contain trapped surfaces. Finally,
we also mention that the structure (2.10) is lost when using the non-canonical momentum
variable v. As in most of the stability-related literature we will use the version of (EV) in non-
canonical variables, but since many important aspects of the stability issue are still widely open
(even in spherical symmetry), it may be useful to keep the alternative, canonical formulation in
mind. It is also possible that other coordinates adapted to spherical symmetry are more suitable
for the stability analysis. We will not pursue this issue but mention maximal areal coordinates
as one alternative [35].
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2.4. A basic difference between (VP), (RVP), and (EV)

Let us suppose that we want to make use of conservation of energy to get insight into global
existence issues for the initial value problem or stability issues. Then in the case of (VP) or
(RVP) wemust deal with the fact that while Ekin +Epot is conserved, the two terms have oppos-
ite signs, and no immediate control of Ekin or Epot results.

In what follows we sometimes employ the notation

ρf(x) :=
ˆ
f(x,p)dp

for the spatial density induced by some measurable phase-space density f = f(x,p)⩾ 0.
Similarly, we will write Uρ or Uf for the potential induced by ρ or ρf via (2.2).

Now let 0⩽ k⩽∞ and n= k+ 3/2. For any R> 0,

ρf(x) =
ˆ
|p|⩽R

f(x,p)dp+
ˆ
|p|>R

f(x,p)dp

⩽
(
4π
3
R3

) 1
k+1

‖f(x, ·)‖1+1/k+
1
R2

ˆ
|p|2f(x,p)dp,

where ‖ · ‖s denotes the usual Ls norm, in this case over R3. We choose

R=

(ˆ
|p|2fdp/‖f(x, ·)‖1+1/k

) 1+k
5+2k

,

take the resulting estimate to the power 1+ 1/n and integrate with respect to x to conclude
that

‖ρf‖1+1/n ⩽ C‖ f‖
2+2k
5+2k

1+1/k

(¨
|p|2f(x,p)dpdx

) 3
5+2k

. (2.43)

On the other hand, the Hardy–Littlewood–Sobolev inequality [71, theorem 4.3] implies that

−Epot( f)⩽ C‖ρf‖26/5.

We require that

1+
1
n
⩾ 6

5
, i.e. n⩽ 5, i.e. k⩽ 7

2
.

Then we can interpolate the L6/5 norm between the L1 and L1+1/n norms and conclude that

−Epot( f)⩽ C‖ f‖
7−2k

6
1 ‖ f‖

k+1
3

1+1/kEkin( f)
1/2. (2.44)

This key estimate has important consequences for (VP). Assume that we have a local-in-
time, smooth solution to this system, which conserves the total energy and both ‖f(t)‖1 and
‖f(t)‖∞. Then (2.44) with k= 0 implies that along this solution both Epot( f(t)) and Ekin( f(t))
and hence also ‖ρ(t)‖5/3 remain bounded, which are key a-priori bounds toward global-in-
time existence.

Staying with (VP) we now suppose that we want to minimize an energy-Casimir
functional

H( f)+ C( f)

under the constraint that the mass
˜
f =M is prescribed and for a Casimir function Φ which

grows sufficiently fast to control ‖ f‖1+1/k with k⩽ 7/2; a corresponding minimizer will be
a candidate for a stable steady state, see section 4. Then the key estimate (2.44) implies that

10
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along a correspondingminimizing sequenceEkin( f) and hence also ‖ρf‖1+1/n remain bounded,
which is an important step toward a necessary compactness argument along such a minimizing
sequence. We see that the success of both global-in-time existence results and stability results
via global variational techniques hinges on the estimate (2.44).

Let us check how (2.44) fares in the (RVP) case. Proceeding as before,

‖ρf‖ k+4
k+3

⩽ C‖ f‖
k+1
k+4

1+1/k

(¨
〈p〉 f(x,p)dpdx

) 3
k+4

,

and (2.44) turns into

−Epot( f)⩽ C‖ f‖
2−k
3

1 ‖ f‖
k+1
3

1+1/kEkin( f), 0⩽ k⩽ 2. (2.45)

This estimate gives no control on Ekin along either a local-in-time solution or a minimizing
sequence for the variational problem mentioned above. The point here is that for (RVP) the
kinetic energy is only a first order moment in p while for (VP) it is a second order moment.

For (EV) the situation is even worse in the following sense. The key point above is that the
kinetic energy is a higher-order moment in p than what appears in the definition of ρ so that
some Ls norm of ρ with s> 1 is under control, provided Ekin is under control. But as we see
from the formula for the energy (2.39) in the (EV) situation, this energy gives us exactly an L1

bound for ρ and nothing more. This missing ‘something more’ makes (EV) that much harder
to deal with, both with respect to global-in-time existence and with respect to stability.

3. Steady states

Before we address their stability we must recall what typical steady states of (VP), (RVP),
or (EV) look like, and how one can establish their existence. To this purpose let us suppose
that we are given a time-independent potential U= U(x) or a time-independent metric of the
form (2.16). Then the particle energy, defined for (VP) or (RVP) in (2.9) or (2.12) and for the
non-canonical form of (EV) as

E= E(x,v) = eµ 〈v〉 , (3.1)

is constant along characteristics of the corresponding static Vlasov equation and hence solves
that equation. For (VP) or (RVP) we therefore make the ansatz

f(x,p) = ϕ(E) = φ(E0 −E) (3.2)

for the particle distribution function, which for technical reasons we modify to

f(x,v) = ϕ(E) = φ

(
1− E

E0

)
(3.3)

in the (EV) case. We refer to the relation (3.2) or (3.3) as a microscopic equation of state. To
keep matters simple we assume that

φ ∈ C(R)∩C2(]0,∞[), φ = 0 on ]−∞,0], φ > 0 on ]0,∞[; (3.4)

E0 is a cut-off energy with E0 < 0 for (VP) or (RVP) and 0< E0 < 1 for (EV). Such a cut-off
energy is necessary to obtain steady states with a localized matter distribution. Notice that
the ansatz function ϕ depends on the cut-off energy E0, which must be specified to in order to
specifyϕ, but the ansatz functionφ does not depend onE0, and it has the reversedmonotonicity
behavior with respect to E.

With this ansatz we satisfy the Vlasov equation, the source terms become functionals of U
or µ, respectively, and the static systems reduce the the field equation(s) with this dependence

11
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substituted in. In the (EV) case these functions are spherically symmetric by assumption, but
also in the (VP) and (RVP) case the ansatz (3.2) leads to steady states which necessarily are
spherically symmetric, see [31]. In particular, both U and µ can be viewed as functions of
r= |x|. Instead of looking for U or µ directly, we define a new unknown

y(r) = E0 −U(r) or y(r) = E0 −U(r)− 1

in the (VP) or (RVP) case, respectively, and

y(r) = lnE0 −µ(r)

in the (EV) case. In the latter case,

ρ(r) = g(y(r)), σ(r) = h(y(r)) = σT(r), (3.5)

where

g(y) := 4π e4y
ˆ 1−e−y

0
φ(η)(1− η)2

(
(1− η)2 − e−2y

)1/2
dη (3.6)

and

h(y) :=
4π
3

e4y
ˆ 1−e−y

0
φ(η)

(
(1− η)2 − e−2y

)3/2
dη. (3.7)

The functions g and h are continuously differentiable on R, see [101, lemma 2.2], they are
strictly decreasing for y> 0, and they vanish for y< 0. For (VP),

ρ(r) = gN(y(r)), where gN(y) := 4π
√
2
ˆ y

0
φ(η) (y− η)

1/2 dη;

the subscript N stands for ‘Newtonian’, and the exact form of the analogous relation for (RVP)
is not relevant here. We recall that λ is given in terms of ρ via (2.40), and the static (EV) system
is reduced to

y ′(r) =− 1
1− 2m(r)/r

(
m(r)
r2

+ 4π rσ(r)

)
, y(0) = κ (3.8)

see (2.41); herem, ρ, and σ are given in terms of y by (3.5) and (2.42), and κ> 0 is prescribed.
The static (VP) or (RVP) systems reduce to

y ′(r) =−m(r)
r2

, y(0) = κ. (3.9)

For any given κ> 0 a fixed point argument yields a unique, smooth, local solution to (3.8)
or (3.9) on some short interval [0, δ]. The solution y is strictly decreasing, can be extended to
exist on [0,∞[, and either remains strictly positive, or has a unique zero at some radius R> 0
beyond which there is vacuum. The crucial question is for which ansatz functions ϕ respect-
ively φ the latter case holds, because in that case the above procedure yields steady states with
compact support and finite mass. Once such a solution y is obtained, E0 := limr→∞ y(r) and
U(r) := E0 − y(r) defines the cut-off energy and the potential in the (VP) or (RVP) case, while
E0 := exp(limr→∞ y(r)) and µ(r) = lnE0 − y(r) for (EV); in either case the boundary condi-
tion at infinity follows. For more details to these arguments we refer to [87] and the references
there.

12
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A sufficient condition on φ which guarantees finite mass and compact support of the res-
ulting steady states in all three cases, (VP), (RVP) and (EV), is that

φ(η)⩾ Cηk for η ∈]0,η0[ (3.10)

for some parameters C> 0, η0 > 0, and 0< k< 3/2, see [87]; in passing we note that condi-
tions on φ or ϕ which are both necessary and sufficient for finite radius and finite mass are not
known. To sum up:

Proposition 3.1. Let φ satisfy (3.4) and (3.10).

(a) There exists a one-parameter family of steady states ( fκ,Uκ)κ>0 of the spherically sym-
metric (VP) (or (RVP)) system, and κ= Uκ(Rκ)−Uκ(0).

(b) There exists a one-parameter family of steady states ( fκ,λκ,µκ)κ>0 of the spherically
symmetric, asymptotically flat (EV) system, and κ= µκ(Rκ)−µκ(0).

The spatial support of such a steady state is an interval [0,Rκ] with 0< Rκ <
∞, ρκ,σκ ∈ C1([0,∞[), yκ,Uκ,µκ,λκ ∈ C2([0,∞[), and ρ ′

κ(0) = σ ′
κ(0) = y ′κ(0) = U ′

κ(0) =
µ ′
κ(0) = λ ′

κ(0) = 0. Moreover, we denote D= Dκ := {fκ > 0} so that supp fκ = Dκ, which is
compact in R6.

An essential difference between the (VP) and the (EV) case concerning the stability of
steady states is the following: for (VP) one can formulate conditions on the microscopic
equations of state—φ in (3.2) should be strictly increasing on [0,∞[—which guarantee that all
steady states in the corresponding one-parameter family from proposition 3.1 are nonlinearly
stable; this remains true even for the King model φ(η) = (eη − 1)+ where the mass-radius
diagram, mentioned in item (d) of the remark below, exhibits a spiral structure, see [44]. For
(EV) the same type of microscopic equation of state will yield a one-parameter family where
the individual steady states change from being stable to being unstable as the central redshift
κ increases from small values to larger ones. There is by now ample numerical evidence for
this behavior [7, 34, 36], and we will discuss the first steps toward an analytic understanding
of this behavior. To do so, we must understand the consequences which very small or very
large values of κ have on the structure of the corresponding steady states ( fκ,λκ,µκ)κ>0 in
the (EV) case.

In what follows we make the dependence of the (EV) steady states on κ explicit in the
notation only when we study the limits κ→ 0 in section 5.2 and κ→∞ in section 6.1 or when
the logic of some statement requires this. For other parts of our discussion, in particular for
the (VP) case, the value of κ plays no role or is fixed, and we will abuse notation in saying that
( f0,U0) or ( f0,λ0,µ0) is a steady state of (VP) or (EV), which is to be understood in the sense
that some κ0 > 0 is fixed and f0 := fκ0 etc.

One should also notice that many other quantities depend on κ such as the particle energy

E= E(x,v) = eµκ 〈v〉 ,

the set D= {fκ > 0}, the ansatz function ϕ in (3.3) via the cut-off energy E0, and various
operators introduced in sections 5–7. These dependencies on κ will always be suppressed in
our notation.

We conclude our steady state discussion with some remarks.

13
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Remark. (a) The steady states obtained in proposition 3.1 are isotropic in the sense that σ =
σT; we use σ to denote the (radial) pressure also in the Newtonian case. In the (EV) case
they satisfy the following identities on [0,∞[, the second of which is known as the Tolman–
Oppenheimer–Volkov equation:

λ ′
κ +µ ′

κ = 4π re2λκ (ρκ +σκ) , (3.11)

σ ′
κ =−(ρκ +σκ) µ

′
κ. (3.12)

(b) A remarkable property of these steady states is that their induced macroscopic quantit-
ies solve the Euler–Poisson or Einstein–Euler system respectively. Given the fact that the
functions gN or g are one-to-one for y> 0 one can write y as a function of ρ, and sub-
stituting into the relation for the pressure in (3.5) yields the corresponding macroscopic
equation of state σ = σ(ρ), which is part of the corresponding Einstein–Euler of Euler–
Poisson system.

(c) The parameter κ which parameterizes the above steady state families is the difference in
the potential between the center and the boundary of the matter distribution. In the (EV)
case it is related to the redshift factor z of a photon which is emitted at the center r= 0 and
received at the boundary Rκ of the steady state; this is not the standard definition of the
central redshift where the photon is received at infinity, but it is a more suitable parameter
here:

z=
eµκ(Rκ)

eµκ(0)
− 1=

eyκ(0)

eyκ(Rκ)
− 1= eκ − 1.

Although this is not the standard terminology we refer to κ as the central redshift, and we
will see later that it is a measure for how non-relativistic or relativistic a steady state is.
In the (VP) case the parameter κ seems to have no effect on the stability properties of the
corresponding steady states, but in the (EV) case steady states with sufficiently large κwill
be seen to be unstable.

(d) An instructive way to visualize one of these one-parameter families of steady states is
to plot, for a certain parameter range, the points (Mκ,Rκ) representing the (ADM) mass
and radius of the state with parameter κ. The resulting curve is referred to as a mass-
radius curve. For (VP) these curves can be strictly monotonic, for example in the polytropic
case φ(η) = ηk+, or they can exhibit a spiral structure, for example for the King model
φ(η) = (eη − 1)+, see [88]. In strong contrast, these curves always have a spiral structure
in the (EV) case, see [8, 79]. This is interesting, because according to the so-called turning
point principle [110] passing through a turning point on the mass-radius spiral should
affect the stability behavior of the steady state. For the Einstein–Euler system a rigorous
version of this principle has been proven in [46], see also [47], but the principle does not
hold in the (EV) case, see [34, 36]. The principle is known to be false for (VP) where for
example all the steady states along the mass-radius spiral for the King model are known
to be nonlinearly stable.

(e) Due to spherical symmetry the quantity

L := |x× p|2,

14
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the modulus of angular momentum squared, is conserved along characteristics of both
(VP) and (EV); for the latter system, L= |x× v|2. Hence one may include a dependence
on L into the microscopic equation of state (3.2) or (3.3). Resulting steady states are
then no longer isotropic, i.e. σ 6= σT, and the correspondence to the Euler matter model
explained in part (b) above is lost. A common way to include the L-dependence is to
generalize (3.3) to

f(x,v) = ϕ(E,L) = φ

(
1− E

E0

)
(L−L0)

l
+. (3.13)

Here l>−1/2, and the analogous ansatz is used for (VP). If L is bounded away from
zero, i.e. L0 > 0, then the resulting steady states have a vacuum region at the center, if
L0 = 0 they do not. The static shell solutions with L0 > 0 look somewhat artificial, but
they become more interesting if one places a Schwarzschild black hole (or a point mass in
the (VP) case) into the vacuum region, which is then surrounded by a static shell of Vlasov
matter, see [37, 59, 93, 96].

4. Strategies toward stability in the (VP) and (RVP) case

In this section we recall the main methods which have resulted in stability results for the VP
or the relativistic VP system. We do not aim for completeness, but only wish to give some
orientation on what approaches one may try for the stability problem in the EV case. Our
discussion will be even less complete concerning results from the astrophysics literature. All
the available results rely explicitly or implicitly on the condition that the ansatz (3.2) or (3.13)
is strictly decreasing in E on its support:

ϕ ′(E)< 0 for E< E0 or ∂Eϕ(E,L)< 0 for E< E0,L⩾ L0. (4.1)

4.1. Global variational methods

Let us consider the following variational problem: minimize the energy-Casimir functional

HC =H+ C

over the set

FM :=

{
f ∈ L1(R6) | f⩾ 0,

¨
fdpdx=M, Ekin( f)+ C( f)<∞

}
.

Here the kinetic, potential, and total energy Ekin, Epot, andH are defined as in (2.5), the Casimir
functional C is defined in (2.6) where for the moment we take

Φ( f) :=
k

1+ k
f1+1/k (4.2)

with some k ∈]0,3/2[, and M> 0 is fixed. Since k< 3/2 we can choose α such that 0<
α
2 ,

k
3

α
α−1 < 1. The key estimate (2.44) and Young’s inequality then imply that for any f ∈ FM,

HC( f)⩾ Ekin( f)+ C( f)−CC( f)k/3Ekin( f)
1/2

⩾ Ekin( f)−CEkin( f)
α
2 + C( f)−CC( f)

k
3

α
α−1 , (4.3)

where the constant C> 0 depends on M, k, and α. This estimate implies that

hM := inf
FM

HC >−∞.
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Now consider a minimizing sequence ( fj)⊂FM, i.e.HC( fj)→ hM. Then by (4.3), Ekin( fj) and
C( fj) remain bounded, in particular, ( fj) is a bounded sequence in L1+1/k(R6) which by the
Banach–Alaoglu theorem has a weakly convergent subsequence, again denoted by ( fj). Its
limit is a natural candidate for a global minimizer of HC over FM. By (2.43) the sequence
of induced spatial densities (ρj) is bounded and (up to a subsequence) weakly convergent in
L1+1/n(R3).

The key difficulty now is to upgrade these weak convergences in such a way that one can
pass to the limit in the potential energy; the kinetic energy is not a problem since it is linear
in f. More generally speaking, some sort of compactness argument must be applied to the
minimizing sequence. The following lemma, which is proven for example in [99, lemma 2.5],
captures the compactness property of the solution operator to the Poisson equation; recall that
Uρ or Uf denotes the Newtonian gravitational potential induced by a spatial density ρ or a
phase-space density f.

Lemma 4.1. Let 0< n< 5. Let (ρj)⊂ L1+1/n(R3) be such that

0⩽ ρj ⇀ρ0 weakly in L
1+1/n(R3), and

∀ϵ > 0 ∃R> 0 : limsup
j→∞

ˆ
|x|⩾R

ρj(x)dx< ϵ. (4.4)

Then ∇Uρj →∇Uρ0 strongly in L
2(R3).

Under our assumption on k it holds that n= k+ 3/2< 3, so the key issue is to verify (4.4),
i.e. the minimizing sequence must in essence remain concentrated. To do this, one may employ
the concentration-compactness principle introduced by Lions [74] combined with an analysis
of how Epot( f) behaves under scalings and splittings, or one may rely on the latter arguments
exclusively, and all this is greatly simplified if one restricts the discussion to spherical sym-
metry; we refer to [99] and the references there for details. At this point one should note that
while the steady states under consideration are spherically symmetric anyway, an a-priori
restriction to spherical symmetry in the variational problem limits a resulting stability result
to spherically symmetric perturbations and is thus undesirable.

In the concentration argument it turns out that in order to achieve (4.4) the ball in which
the mass remains concentrated must be allowed to shift with the sequence; notice that all the
functionals used above are invariant under translations in x. The resulting existence result for
the above variational problem reads as follows.

Theorem 4.2. Let ( fj)⊂FM be a minimizing sequence of HC. Then there exists a function
f0 ∈ FM, a subsequence, again denoted by ( fj) and a sequence (aj)⊂ R3 of shift vectors such
that

fj(·+ aj, ·)⇀ f0 weakly in L
1+1/k(R6), j→∞,

∇Ufj(·+ aj)→∇Uf0 strongly in L
2(R3), j→∞,

and the state f0 minimizes the energy-Casimir functionalHC over FM.

One should realize that the compactness along minimizing sequences captured in the the-
orem above is indispensable for concluding that the state f 0 is a nonlinearly stable steady state
of (VP); its minimizer property is not sufficient for stability. To appreciate this point, we now
discuss how stability is obtained; a pedagogical example which further illustrates this issue,
which is typical for infinite dimensional dynamical systems, will be given in section 9.
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First we remark that by standard arguments which can for example be found in [99, the-
orem 5.1] the minimizer obtained in theorem 4.2 is of the form

f0(x,p) = (E0 −E)k+ (4.5)

with E defined as in (2.9) with the induced potential U0 = Uf0 ; E0 arises as a Lagrange multi-
plier. So f 0 is a polytropic steady state of (VP).

For f ∈ FM,

HC( f)−HC( f0) = d( f, f0)−
1
8π

ˆ
|∇Uf−∇U0|2dx, (4.6)

where

d(f, f0) :=
¨

[Φ( f)−Φ(f0)+E(f− f0)] dpdx

=

¨
[Φ( f)−Φ(f0)+ (E−E0)(f− f0)] dpdx

⩾
¨

[Φ′(f0)+ (E−E0)] (f− f0) dpdx⩾ 0

with d( f, f0) = 0 iff f = f0. Let us define

dist( f, f0) := d( f, f0)+
1
8π

ˆ
|∇Uf−∇U0|2dx. (4.7)

Notice the switch in the sign between (4.6) and (4.7); dist( f, f0) is a perfectly fine measure for
the distance of a perturbation f from f 0. We obtain the following nonlinear stability result.

Theorem 4.3. Let f0 be a minimizer as obtained in theorem 4.2. Then for every ϵ> 0 there
exists a δ > 0 such that for every classical solution t 7→ f(t) of the VP system with f(0) ∈
C1
c(R6)∩FM the initial estimate

dist(f(0), f0)< δ

implies that for every t⩾ 0 there is a shift vector a ∈ R3 such that

dist(f(t, ·+ a, ·), f0)< ϵ.

Proof. Assume the assertion is false. Then there exist ϵ > 0, tj > 0, fj(0) ∈ C1
c(R6)∩FM such

that for j ∈ N,

dist(fj(0), f0)<
1
j
,

but for any shift vector a ∈ R3,

dist(fj(tj, ·+ a, ·), f0)⩾ ϵ.

Since HC is conserved, (4.6) and the assumption on the initial data imply that HC( fj(tj)) =
HC( fj(0))→HC( f0), i.e. ( fj(tj))⊂FM is a minimizing sequence. Hence by theorem 4.2,´
|∇Ufj(tj) −∇U0|2 → 0 up to subsequences and shifts in x, provided that there is no other

minimizer to which this sequence can converge. By (4.6), d( fj(tj), f0)→ 0 as well, which is
the desired contradiction.

For the polytropic case (4.5) there exists for each value of the total mass M exactly one
corresponding steady state—up to shifts in x—which provides the uniqueness of the minimizer
f 0 used above.
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The spatial shifts in the above arguments are necessary due to the Galilei invariance of the
problem, and a stability assertion of the form above is sometimes referred to as orbital stability
[81].

At the end of this subsection we will briefly comment on various variations and extensions
of the basic theme discussed so far, but one variation deserves some attention. As seen from
lemma 4.1 the basic compactness mechanism along minimizing sequences operates on spatial
densities ρ. Following [97] we define for r⩾ 0,

Gr :=
{
g ∈ L1(R3)| g⩾ 0,

ˆ (
1
2
|p|2g(p)+Φ(g(p))

)
dp<∞,

ˆ
g(p)dp= r

}
and

Ψ(r) := inf
g∈Gr

ˆ (
1
2
|p|2g(p)+Φ(g(p))

)
dp.

We consider the problem of minimizing the reduced functional

Hr(ρ) :=

ˆ
Ψ(ρ(x))dx+Epot(ρ) (4.8)

over the set

RM :=

{
ρ ∈ L1(R3) | ρ⩾ 0,

ˆ
Ψ(ρ(x))dx<∞,

ˆ
ρ(x)dx=M

}
;

the potential energy Epot(ρ) is defined in the obvious way and is finite for states in this con-
straint set. For the polytropic choice (4.2),

Ψ(r) = cnr
1+1/n, r⩾ 0,

which should be compared with the estimates introduced in section 2.4; here n= k+ 3/2 as
before, and cn > 0 is some constant. There is a close relation between the reduced variational
problem and the original one. For every function f ∈ FM,

HC( f)⩾Hr(ρf),

and if f = f0 is a minimizer ofHC overFM then equality holds, i.e. the reduced functional ‘sup-
ports’ the original one from below. Moreover, if ρ0 ∈RM is a minimizer of Hr with induced
potentialU0 then it can be lifted to a minimizer f 0 ofHC inFM as follows: the Euler–Lagrange
equation for the reduced functional says that

ρ0 =

{
(Ψ′)−1(E0 −U0) , U0 < E0,

0 , U0 ⩾ E0,

whereE0 is the corresponding Lagrangemultiplier.With the particle energyE defined as before
the function

f0 :=

{
(Φ′)−1(E0 −E) , E< E0,

0 , E⩾ E0,

is a minimizer of HC in FM; for the details see [99, theorem 2.1].
To attack the variational problem through the reduced functional has several advantages.

The minimizer of the reduced functional can be shown to be a nonlinearly stable steady state
of the Euler–Poisson system with macroscopic equation of state σ = σ(ρ) = cnρ1+1/n. The
relation between the latter system and (VP) which was noted for isotropic steady states carries
over to their stability properties, see [98, 99]. More important for the present context, compact-
ness properties are easier to study for the reduced functional, because the latter lives on a space
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of functions of x and, in case of spherical symmetry, of the 1d variable r= |x|. In addition,
a result of Burchard and Guo [16, theorem 1] shows that if one minimizes the reduced func-
tional only over spherically symmetric densities ρ= ρ(|x|), the resulting minimizer is actually
a minimizer over the full set RM, and the stability result theorem 4.3 is recovered.

A somewhat different reduced functional which acts on the mass functions mf(r) =
4π
´ r
0 ρf(s)s

2ds induced by spherically symmetric phase-space densities f was used in [116].
This was historically the first rigorous stability result for (VP), but for (VP) the approach was
not explored any further. The approach may become useful for (EV), see [5, 6, 117].

As mentioned before, there are many variations to the basic theme discussed above, and we
mention some:

Remark. (a) The form of the Casimir functional can be much more general than the proto-
typical form (4.2). Strict convexity of Φ and growth conditions for small and for large
arguments compatible with (4.2) are sufficient. Strict convexity of Φ corresponds to the
main stability condition (4.1).

(b) For such more general Casimir functionals the uniqueness of the minimizer, which played
a role in the proof of theorem 4.3, will in general be lost, but this is not essential for the
stability argument, see [106].

(c) Instead of minimizing the energy-Casimir functional H+ C under the mass constraint˜
f =M, one can also minimize the energy H under the mass-Casimir constraint

˜
f +

C( f) =M. This has the advantage that one can cover the polytropes (4.5) for 0< k< 7/2,
see [42, 99], and, with some extra effort, also the limiting case k= 7/2, the so-called
Plummer sphere; for k> 7/2 finite mass and physical relevance are lost.

(d) The reduction mechanism does no longer work for the situation described in (c), but
this is as it should be, since for k> 3/2, i.e. n> 3, stability of the corresponding Euler–
Poisson steady states is lost, see [60]. That the (VP) steady states remain stable also for
k> 3/2 shows that the parallels between the Euler and the Vlasov matter models have
their (obscure) limitations.

(e) By making the Casimir functional depend on the angular momentum variable L, in which
case it should no longer be called ‘Casimir’ functional, steady states depending on L can
be covered, see [38, 40, 41]. Besides such spherically symmetric, non-isotropic states one
can apply the method also to states with axial symmetry, with a point mass at the center,
or to flat steady states with or without a dark matter halo, see [25–27, 43, 95, 108].

(f) One can also minimize the energyH under two separate constraints, a mass constraint and
a Casimir constraint, see [103]. Along these lines the arguably strongest result on global
minimizers for (VP) was obtained by Lemou et al [68].

4.2. Local minimizers; the structure of D2HC

The global minimizer approach reviewed in the previous subsection has been quite successful,
but it also has limitations. Suppose we want to investigate the stability of the King model, an
important steady state of (VP) which appears in the astrophysics literature, obtained via

φ(η) = (eη − 1)+.

Then the function Φ in the corresponding Casimir functional becomes

Φ( f) = (1+ f) ln(1+ f)− f,

which grows too slowly to control any Ls norm of f with s> 1, and hence the key estim-
ate (2.44) cannot be brought into play. If instead we consider (RVP), then the corresponding
estimate (2.45) provides no control in the context of the global variational problem to begin
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with, so the method from the previous subsection fails. Notice further that the global minim-
izer method provides the existence of a steady state which then turns out to be stable. The
method is not really one for addressing the stability of some given steady state, obtained by
some other method.

In the present subsection we discuss an approach which aims to show that a given steady
state f 0 is a local minimizer of an energy-Casimir functional by examining the structure of the
latter near f 0. The method was first applied to the King model in the (VP) context, see [44].
Following [48] we review this approach in the context of (RVP), which is a little closer to (EV)
where for analogous reasons the global approach seems to fail as well.

We consider some fixed, isotropic steady state ( f0,ρ0,U0) of (RVP) given by an ansatz
like (3.2), and an energy-Casimir functional defined as before. By a (formal) expansion,

HC( f) = HC(f0)+
¨

(E+Φ′(f0))(f− f0)dvdx

− 1
8π

ˆ
|∇Uf−∇U0|2dx+

1
2

¨
Φ′′(f0)(f− f0)

2dpdx+ . . . ,

and we now define Φ: [0,∞[→ R such that f 0 becomes a critical point of HC, namely

Φ( f) :=−
ˆ f

0
ϕ−1(z)dz, f ∈ [0,∞[,

so that Φ ∈ C2([0,∞[) with Φ ′( f0) =−E on supp f0. To simplify the discussion we restrict
ourselves to the polytropic form (4.5) with 1⩽ k< 7/2 where the above becomes rigorous;
the key assumption is again that on its support the ansatz strictly decreases in the particle energy
E, see (4.1). The question whether f 0 is a strict local minimizer of HC obviously depends on
the behavior of the quadratic term in the expansion above, i.e. on

D2HC(f0)(g,g) :=
1
2

¨
{f0>0}

1
|ϕ′(E)|

g2 dpdx− 1
8π

ˆ
|∇Ug|2dx;

we write the argument g twice to emphasize that this is a term which is quadratic in g,
and we notice that ϕ ′ < 0 where f0 > 0. It was a remarkable insight in the astrophysics
community and for the (VP) case that on so-called linearly dynamically accessible states
g= {f0,h}= ϕ ′(E){E,h} the quadratic termD2HC( f0)(g,g) is positive definite, see [62, 111],
and the analogous result holds for (RVP); the Poisson bracket {·, ·} was introduced in (2.8).

Lemma 4.4. Let h ∈ C∞
c (R6) be spherically symmetric with supph⊂ {f0 > 0} and such that

h(x,−p) =−h(x,p). Then the following inequality holds:

D2HC(f0)({E,h},{E,h})⩾
1
2

¨
1

|ϕ′(E)|

[
|x · p|2

∣∣∣∣{E, h
x · p

}∣∣∣∣2+ U′
0

r(1+ |p|2)3/2
h2
]
dpdx.

This lemma is proven in [48, lemma 3.4]. It provides positive definiteness of D2HC( f0) on
dynamically accessible states in a quantified manner. A crucial step in any stability analysis
is to specify the set of admissible perturbations. In astrophysical reality, perturbations arise
by some exterior force acting on the steady state ensemble. It redistributes the particles in
phase space by a measure preserving flow, leading to perturbations of the form f = f0 ◦T with
T : R6 → R6 a measure preserving diffeomorphism. Such perturbations are called dynamically
accessible from f 0. For the case at hand we restrict ourselves to spherically symmetric such
perturbations and require that the diffeomorphism T : R6 → R6 respects spherical symmetry,
i.e. for all x,p ∈ R3 and all rotations A ∈ SO(3),

T(Ax,Ap) = (Ax′,Ap′) and |x′ × p′|= |x× p|, where (x′,p′) = T(x,p).
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From a physics point of view this restriction is undesirable. The set of admissible perturbations
is defined as

Df0 :=
{
f = f0 ◦T | T : R6 → R6 is a measure preserving C1-diffeomorphism

which respects spherical symmetry
}
.

This set is invariant under classical solutions of (RVP). At least formally, states of the bracket
form g= {f0,h} are tangent vectors to themanifoldDf0 at the point f 0, and the set of these states
is invariant under the linearized dynamics; this terminology is borrowed from Hamiltonian
dynamics, see [83].

We are going to measure the distance of a state f ∈ Df0 from the steady state f 0 by the same
quantity which we used in the previous subsection, namely

dist(f, f0) =
¨

[Φ( f)−Φ(f0)+E(f− f0)]dpdx+
1
8π

ˆ
|∇Uf−∇U0|2 dx,

see (4.7). Then

dist( f, f0) =HC( f)−HC( f0)+
1
4π

ˆ
|∇Uf−∇U0|2 dx. (4.9)

It can be shown by Taylor expansion that there exists a constant C> 0 which depends only on
the steady state f 0 such that

‖f − f0‖22 + ‖∇Uf−∇U0‖22 ⩽ C dist(f, f0), f ∈ Df0 ,

see [48, lemma 3.1]. The key result is the following theorem which says—in a precise, quan-
tified manner—that the steady state is a local minimizer of the energy-Casimir functional in
the set Df0 .

Theorem 4.5. There exist constants δ0 > 0 and C0 > 0 such that for all f ∈ Df0 with
dist( f, f0)⩽ δ0 the following estimate holds:

HC( f)−HC(f0)⩾ C0‖∇Uf−∇U0‖22.

The proof goes by contradiction: if the theorem were false, one could eventually con-
struct a linearly dynamically accessible state that would contradict the positive definiteness
of D2HC( f0) obtained in lemma 4.4; for the quite technical and non-trivial details we refer to
[48]. Stability of f 0 is an immediate corollary.

Theorem 4.7. There exist constants δ > 0 and C> 0 such that every solution t 7→ f(t) of (RVP)
which starts close to f0 in the sense that f(0) ∈ Df0 with dist( f(0), f0)< δ, exists globally in
time and satisfies the estimate

dist(f(t), f0)⩽ C dist(f(0), f0), t⩾ 0.

Proof. With δ0 and C0 from theorem 4.5, define δ := δ0(1+ 1/(4πC0))
−1, and consider a

solution [0,T[3 t 7→ f(t) of (RVP) with f(0) ∈ Df0 on some maximal interval of existence; a
suitable local existence result can be found in [64]. Assume that

dist(f(0), f0)< δ < δ0.

By continuity,

dist(f(t), f0)< δ0, t ∈ [0, t∗[,
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where 0< t∗ ⩽ T is chosen maximal. Since f(t) ∈ Df0 for all t ∈ [0,T[, theorem 4.5, the rela-
tion (4.9), and the fact that HC is conserved yield the following chain of estimates for
t ∈ [0, t∗[:

dist(f(t), f0) =HC(f(t))−HC(f0)+
1
4π

‖∇Uf(t) −∇U0‖22

⩽HC(f(t))−HC(f0)+
1

4πC0
(HC(f(t))−HC(f0))

=

(
1+

1
4πC0

)
(HC(f(0))−HC(f0))⩽

(
1+

1
4πC0

)
dist(f(0), f0)< δ0.

This implies that t∗ = T. Thus Ekin( f(t)) is bounded on [0,T[ which for spherically symmetric
solutions is sufficient to conclude that T=∞, see [48, proposition 4.1] and [64].

A nice feature of this theorem, also in view of the (EV) case, is that the stability estimate
provided by the theorem implies global existence of spherically symmetric solutions which
start close enough to f 0, while spherically symmetric solutions of (RVP) withH( f(t))< 0 are
known to blow up in finite time, see [32]. The only previously known global solutions of (RVP)
were small data solutions (and steady states). We should also point out that the need for the
spatial shifts which were necessary in theorem 4.3 is eliminated by the restriction to spherical
symmetry.

We close the discussion of the local minimizer approach by some comments on possible
variations and extensions.

Remark. (a) We restricted ourselves to the polytropic case (4.5) in order to avoid formulat-
ing the general conditions on the steady state which are needed for the above arguments,
see [48].

(b) The method works for (VP) just as well and was introduced in [44] to deal with the King
model for which the global method fails.

(c) The local minimizer method can be combined with a suitable reduction of the energy func-
tional. In [69] this was done for (VP) by exploiting the monotonicity of H under general-
ized symmetric rearrangements. This analysis was inspired by results from the astrophysics
literature [2, 78, 86, 115] and was restricted to spherical symmetry. The latter restriction
was removed in [70] which provides arguably the strongest result on (VP) in the spirit of
the present subsection.

4.3. Linearization

Why is it that linearization has up to this point not shown up in this review, when this approach
is probably the first that one encounters in the relevant mathematics courses and when it figures
most prominently in the relevant astrophysics literature [9, 12, 19, 28, 62]? For a possible
answer we have to look at the linearization of (VP) about some given steady state f 0, which
we take as isotropic; f0 = ϕ(E).

If we substitute f = f0 + δf into (VP), use the fact that f 0 is a stationary solution, and drop
the term which is quadratic in δf with the justification that δf is very small, the result is the
equation

∂tδf + T δf−∇Uδf(t) · pϕ ′(E) = 0, (4.10)
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where

T := p · ∂x−∇U0 · ∂p = {·,E}

is the transport operator associated to the steady state f 0, i.e. the operator which generates the
characteristic flow in the steady state potentialU0 = Uf0 , see [102]. Following Antonov [9] we
split δf = δf+ + δf− into its even and odd parts with respect to p,

δf±(t,x,p) =
1
2
(δf(t,x,p)± δf(t,x,−p)) .

Since Uδf(t) = Uδf+(t),

∂tδf− + T δf+ =∇Uδf+ · pϕ′(E),
∂tδf+ + T δf− = 0.

We differentiate the first equation with respect to t and substitute the second one in order to
eliminate δf+. If we write g instead of δf− the linearized (VP) system takes the form

∂2
t g+Lg= 0, (4.11)

where the Antonov operator L is defined as

Lg :=−T 2g−Rg=−T 2g+∇Udiv jg · pϕ′(E)

with jg :=
´
pgdp; notice that ∂tUδf+ = U∂tδf+ =−UT δf− and ρT δf− = div jδf− . The operator

R is the gravitational response operator. We will not go into the functional analysis details
of properly defining these operators on suitable Hilbert spaces. This has been done in [52], in
particular, L can be realized as a self-adjoint operator on some Hilbert space; since the latter
is a weighted L2 space on {f0 > 0} with weight |ϕ ′(E)|−1 the key assumption on the steady
state is again that (4.1) holds.

One can now check that a state f = f(x,p) is an eigenfunction of the operator in (4.10) with
eigenvalue λ iff g= f− is an eigenfunction of L with eigenvalue µ= λ2. Since the spectrum
of L is real, the eigenvalues of (4.10) come in pairs of the form ±λ and ±iλ with λ ∈ R.
But this means that the best possible situation as to stability is that the spectrum of (4.10) sits
on the imaginary axis, which is the situation when even in finite dimensions no conclusion
to nonlinear stability is possible; the example in section 9 will show that in such a situation
stability (in the Lyapunov sense) cannot even be concluded for the linearized system.

Given the fact that the variational methods by-pass all spectral considerations and yield
nonlinear stability directly, linearization seemed, for the author, of little value for the ques-
tions at hand. But this conclusion turned out to be too rash for two reasons. Firstly, variational
methods so far do not seem to succeed for (EV), while linearization has lead to some inter-
esting, non-trivial results. Secondly, once a steady state is known to be nonlinearly stable the
question arises how exactly it responds to perturbations: does it start to oscillate in a time-
periodic way or are such oscillations damped? Very recently, progress on this question was
made via linearization [51, 52, 65], and hence we now take a closer look at (4.11).

To do so we restrict ourselves to spherically symmetric functions; f = f(x,p) is spherically
symmetric in the sense of (2.19) iff be abuse of notation

f(x,p) = f(r,w,L), where r= |x|, w=
x · p
r
, L= |x× p|2.

In order to understand the transport operator T we must understand the characteristic flow in
the stationary potential U0 = U0(r).
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Lemma 4.7. (a) Under the assumption of spherical symmetry the characteristic system (2.4)
for the stationary potential U0 takes the form

ṙ= w, ẇ=−Ψ ′
L(r), L̇= 0, (4.12)

where the effective potential ΨL is defined as

ΨL : ]0,∞[→ R, ΨL(r) := U0(r)+
L
2r2

.

The particle energy E is conserved and takes the form

E= E(r,w,L) =
1
2
w2 +ΨL(r).

(b) For any L> 0 there exists a unique rL > 0 such that minΨL =ΨL(rL)< 0, and for any
E ∈]ΨL(rL),0[ there exist two unique radii r±(E,L) satisfying

0< r−(E,L)< rL < r+(E,L)<∞ and ΨL(r±(E,L)) = E.

(c) Let t 7→ (r(t),w(t),L) be a solution of (4.12) withΨL(rL)< E= E(r(t),w(t),L)< 0. Then
r(t) oscillates between r−(E,L) and r+(E,L), and the period of this motion, i.e. the time
needed for r(t) to travel from r−(E,L) to r+(E,L) and back, is given by the period function
of the steady state,

T(E,L) := 2
ˆ r+(E,L)

r−(E,L)

dr√
2E− 2ΨL(r)

.

These assertions a fairly easy to see. The key property of the effective potential is that it has
a single well structure. Since

Ψ′
L(r) =

1
r3

(rm(r)−L)

and r 7→ rm(r) is strictly increasing from 0 to ∞, Ψ ′
L has a unique zero rL > 0, and ΨL is

strictly decreasing on ]0,rL] with limr→0ΨL(r) =∞, and strictly increasing on [rL,∞[ with
limr→∞ΨL(r) = 0; the mass function m(r) is defined as in (2.42).

The structure of the stationary characteristic flow can be used to introduce action-angle
variables on the set

D := {(r,w,L) ∈ R3 | f0(r,w,L)> 0};
this is a slight abuse of the notation introduced in proposition 3.1. For (r,w,L) ∈ D let
(R,W)(·,r,w,L) be the solution to (4.12) with (R,W)(0,r,w,L) = (r,w); (R,W)(·,r,w,L) is
periodic with period T(E,L), where E= E(r,w,L). We supplement the action variables (E,L)
with the angle variable θ ∈ [0,1] defined by

(r,w,L) = ((R,W)(θT(E,L),r−(E,L),0,L),L) ;

the mapping [0, 12 ] 3 θ 7→ R(θT(E,L),r−(E,L),0,L) ∈ [r−(E,L),r+(E,L)] is bijective with
inverse

θ(r,E,L) :=
1

T(E,L)

ˆ r

r−(E,L)

ds√
2E− 2ΨL(s)

.
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Functions defined on D can now be written as functions of the action-angle variables (E,L,θ).
By the chain rule,(

T 2g
)
(E,L,θ) =

1
T2(E,L)

(∂2
θg)(E,L,θ) (4.13)

for suitable functions g defined on D.
One can now analyze the spectra of−T 2 andL. Using (4.13) and the fact thatR is relatively

T 2-compact, one can show that the essential spectra of L and −T 2 coincide, and

σess(L) = σess(−T 2) = σ(−T 2) =

{
4π2k2

T2(E,L)

∣∣∣ k ∈ N0, (E,L) ∈ D̊EL

}
, (4.14)

where DEL = (E,L)(D), see [52, theorems 5.7 and 5.9]. For suitable steady states the period
function T(E,L) is bounded from above and bounded away from zero on the support of the
steady state. Thus (4.14) shows that the essential spectrum has a gap between 0 and the value

4π2

sup2(T) , the principal gap G.

The spectrum of−T 2 is purely essential, but the spectrum of Lmay contain isolated eigen-
values, in particular, eigenvalues in the principal gap G. To obtain such eigenvalues a version
of the Birman–Schwinger principle has been developed, inspired by a paper by Mathur [80].
It is easily checked that λ ∈ G is an eigenvalue of L iff 1 is an eigenvalue of the operator

Qλ =R
(
−T 2 −λ

)−1
.

The operator Qλ is not easy to analyze directly, but due to spherical symmetry,

(Rg)(r,w,L) =−4π2

r2
wϕ′(E)

ˆ ∞

−∞

ˆ ∞

0
w̃g(r, w̃, L̃)dL̃dw̃.

HenceR and Qλ map onto functions of the form |ϕ ′(E)|wF(r) which allows the definition of
an operator

Mλ : F →F

on a Hilbert space of functions of the radial variable r such that any eigenvalue ofMλ gives an
eigenvalue ofQλ. When considered on the appropriate function space F thisMathur operator
is a symmetric Hilbert–Schmidt operator with an integral kernel representation. The largest
element in its spectrum, which is an eigenvalue, is given by

Mλ = sup{〈h,Mλh〉F | h ∈ F , ‖h‖F = 1} .

It follows that the operator L has an eigenvalue in the principal gap G iff there exists λ ∈ G
such that Mλ ⩾ 1, see [52, theorem 8.11]. This criterion can be verified for certain examples
of steady states by rigorous proof, and for more general examples with numerical support,
see [52, section 8.2].

A positive eigenvalue ofL gives rise to a time-periodic, oscillating solution of the linearized
(VP) system (4.10), and this explains—at least on the linear level—numerical observations
made in [89]; the fact that the latter oscillating solutions pulse in the sense that their support
expands and contracts can be understood by linearization in mass-Lagrange variables, which
leads to the same spectral problem, see [52, section 3.2].

But in [89] it was also observed that some steady states upon perturbation start to oscillate
in a damped way. In [51] such damping phenomena are for the first time rigorously analyzed in
the gravitational situation. A family of steady states of (VP) with a point mass at the center is
constructed, which are parameterized by their polytropic index k> 1/2, so that the phase space
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density of the steady state is C1 at the vacuum boundary if and only if k> 1; see remark (e)
at the end of section 3. The following dichotomy result is established: if k> 1, linear perturb-
ations damp, and if 1/2< k⩽ 1 they do not. The undamped oscillations for 1/2< k⩽ 1 are
obtained by Birman–Schwinger type arguments as above. The damping for k> 1 occurs on
the level of macroscopic quantities and is (up to now) non-quantitative: no damping rate is
established, but (for example)

lim
T→∞

1
T

ˆ T

0
‖∇UT f(t,·)‖2L2dt= 0,

where [0,∞[3 t→ f(t) is any solution to (4.11) with initial data f (0) in the domain of L.
This type of damping is obtained by an application of the RAGE theorem [17]. The main

fact which has to be established in order to apply this theorem is that the operator L has no
eigenvalues, and the key difficulty is to exclude eigenvalues embedded in the essential spec-
trum, see [51, theorem 4.5].

The damping result can also be viewed as a result on macroscopic, asymptotic stability for
the corresponding steady states on the linearized level. The importance of relaxation processes
in astrophysics can be seen from the discussion in [12] and the references there; we explicitly
mention the pioneering work of Lynden–Bell [76, 77].

In the plasma physics situation an analogous damping phenomenon around spatially homo-
geneous steady states was discovered by Landau [66] on the linearized level, and on the non-
linear level in the celebrated work of Mouhot and Villani [82], see also [11, 33]. It should be
noticed that in this case the characteristic flow of the unperturbed steady state is simple free
streaming, so the corresponding result for the gravitational case has to deal with substantial
and qualitatively new difficulties due to the non-trivial characteristic steady state flow.

5. Stability for (EV)—steady states with small central redshift

5.1. The set-up

We consider the spherically symmetric (EV) system as formulated in section 2.3 and choose
the formulation which employs the non-canonical momentum variable v, see (2.31). Functions
or states f = f(x,v)⩾ 0 are always spherically symmetric, i.e.

f(x,v) = f(r,w,L) with r= |x|, w=
x · v
r
, L= |x× v|2, (5.1)

and induce the mass-energy density

ρf(r) = ρf(x) =
ˆ

〈v〉 f(x,v)dv

and the metric component λ= λf via

e−2λf(r) = 1−
2mf(r)
r

= 1− 8π
r

ˆ r

0
ρf(s)s

2ds; (5.2)

only states f with 2mf(r)< r are admissible.
Let us fix some steady state ( f0,λ0,µ0) of (EV) of the form (3.3) with (3.4); for the moment

the central redshiftκ of this steady state is not relevant and suppressed. Let us also fix a function
Φ ∈ C1([0,∞[) with Φ(0) = 0. In section 2.3 we introduced the energy and Casimir function-
als, see (2.38), (2.39), and we define the energy-Casimir functional

HC( f) :=H( f)+ C( f) =
¨

〈v〉 f(x,v)dvdx+
¨

eλfΦ(f(x,v))dvdx.
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We formally expand HC about f 0:

HC(f0 + δf) =HC(f0)+DHC(f0)(δf)+D2HC(f0)(δf, δf)+O((δf)3).

To proceed we again make the standard stability assumption that on the support of the steady
state ϕ is strictly decreasing, see (4.1). If the function Φ is such that

Φ′(f0) = Φ′(ϕ(E)) =−E, i.e. Φ′ =−ϕ−1,

then a non-trivial, formal computation [49], see also [61], shows that

DHC(f0)(δf) = 0

and

D2HC( f0)(δf, δf) =
1
2

¨
eλ0

|ϕ ′(E)|
(δf)2 dvdx− 1

2

ˆ ∞

0
eµ0−λ0 (2rµ ′

0 + 1) (δλ)2 dr. (5.3)

Here δλ is to be expressed in terms of δf through the variation of (5.2), see (5.7) below. Only
perturbations δf which are supported in the support of the steady state f 0 are considered—δf
must be small compared to f 0—which is important for the first integral in (5.3). We see that
the steady state is a critical point of the energy-Casimir functional HC, but like for (VP) the
quadratic term (5.3) is the sum of two terms with opposite signs, which is the central difficulty
in the stability analysis; one should notice that since µ ′

0 ⩾ 0,

2rµ ′
0 + 1⩾ 1, r⩾ 0. (5.4)

For (VP), one way to by-pass this difficulty was the global minimizer approach explained in
section 4.1, but so far this strategy has not been successful for (EV) for reasons which we
indicated in section 2.4. But we also saw in section 4.2 how for (RVP) D2Hc( f0) is positive
definite on linearly dynamically accessible states, and how this fact can lead to a stability result
as well. We follow this route in the present (EV) case. To do so we first need to discuss the
concept of dynamically accessible states for (EV).

An admissible state f is nonlinearly dynamically accessible from f 0 iff for all χ ∈ C1(R)
with χ(0) = 0,

Cχ ( f) = Cχ ( f0), (5.5)

where Cχ is defined like C, but with the general function χ instead ofΦ, the latter being specific
for the steady state under consideration. Property (5.5) is preserved by the flow of the Einstein–
Vlasov system. Taking the first variation in (5.5), a definition for δf to be linearly dynamically
accessible could be that

DCχ( f0)(δf) =
¨

eλ0 (χ ′( f0)δf+χ( f0)δλ)dvdx= 0 (5.6)

for all χ ∈ C1(R) with χ(0) = 0, where

δλ= e2λ0
4π
r

ˆ r

0
s2ρδf(s)ds. (5.7)

This needs to be turned into a more explicit and workable definition. A suitable integration by
parts turns (5.6) into

DCχ( f0)(δf) =
¨

eλ0χ ′( f0)

[
δf − eµ0δλϕ ′(E)

w2

〈v〉

]
dvdx= 0, (5.8)
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see [49, lemma 3.1]. Hence a variation δf satisfies (5.6), if

eλ0δf − eµ0+λ0δλϕ ′(E)
w2

〈v〉
= {h, f0} (5.9)

for some spherically symmetric generating function h ∈ C2(R6); note that for any such h,¨
χ′(f0){h, f0}dvdx= 0.

We make the definition more explicit; recall that D= {f0 > 0}.

Definition 5.1. A state δf is linearly dynamically accessible from f 0 if there exists some spher-
ically symmetric generating function h ∈ C1(D) such that

δf = fh := e−λ0{h, f0}+ 4π re2µ0+λ0ϕ ′ ′(E)
w2

〈v〉

ˆ
ϕ ′(E(x, ṽ))h(x, ṽ) w̃dṽ. (5.10)

Notice that possible values of the generating function h outside D would not influence δf
which vanishes outside D. The justification for this definition is the following result, see [49,
proposition 3.2]; we will see later that this form of δf is preserved under the linearized (EV)
dynamics, and we will give a slightly more general, functional-analysis type definition of this
concept.

Proposition 5.2. If δf is linearly dynamically accessible from f0 and δλ is defined by (5.7),
then

δλ= λh := 4π reµ0+λ0

ˆ
ϕ ′(E)h(x,v)wdv, (5.11)

δf satisfies both (5.6) and (5.9), and

δf = fh = ϕ ′(E)

(
e−λ0{h,E}+ eµ0λh

w2

〈v〉

)
. (5.12)

The key feature of linearly dynamically accessible states is that if we substitute such a
state into D2HC( f0), then, for sufficiently non-relativistic steady states, this quadratic form
becomes positive definite, just as for (RVP), see lemma 4.4. To see this we have to understand
the behavior of the steady states obtained in proposition 3.1 for small redshift κ.

5.2. Steady states for κ small—the non-relativistic limit

We fix an ansatz function φ satisfying (3.4), define

φN(η) := Cηk for η > 0

with 0< k< 3/2 and C> 0, and require that

φ(η) = φN(η)+O(ηk+δ) for η→ 0+, (5.13)

with some δ > 0; notice that this condition implies (3.10). For κ> 0 small we wish to relate
yκ and the induced steady state ( fκ,λκ,µκ) obtained in proposition 3.1(b) to the solution yN
of the Newtonian problem (3.9), with yN(0) = 1 and φN as Newtonian microscopic equation
of state, and the induced steady state ( fN,UN) of (VP). We define

a :=
k+ 1/2

2
.

28



Class. Quantum Grav. 40 (2023) 193001 Topical Review

Proposition 5.3. There exist constants κ0 > 0, S0 > 0, and C> 0 such that for all κ ∈]0,κ0],

suppρκ ⊂ [0,κ−aS0],

and for all r⩾ 0,∣∣κ−1yκ(r)− yN(κ
ar)
∣∣⩽ Cκδ,∣∣∣e2λκ(r) − 1

∣∣∣⩽ Cκ,∣∣κ−1µκ(r)−UN(κ
ar)
∣∣+ |κ−1−2aρκ(r)− ρN(κ

ar)|⩽ Cκδ.

This result was shown in [50]. For the proof one introduces a rescaled function ȳκ and a
rescaled radial variable s by

yκ(r) = κ ȳκ(κ
ar) = κ ȳκ(s), s= κar.

One can then derive an equation for the function ȳκ which corresponds to the equation (3.8)
for yκ. In this rescaled version of (3.8) the microscopic equation of state becomes

φκ(η) := κ−kφ(κη),

which by (5.13) converges to φN for κ→ 0. In addition, the ‘relativistic corrections’ in the
rescaled version of (3.8) like the pressure term σ and the term 2m/r in the denominator pick
up multiplicative factors of κ, while ȳκ(0) = 1= yN(0). A lengthy Gronwall-type argument
implies that there exist constants κ0 > 0 and C> 0 such that for all 0< κ⩽ κ0 and s⩾ 0,

|ȳκ(s)− yN(s)|⩽ Cκδ.

The assertions in proposition 5.3 then follow.
In section 4.3 we saw that action-angle variables are an essential tool for understanding

the linearized dynamics in the (VP) case. Introducing these variables relied on the single-
well structure of the effective potential ΨL discussed in lemma 4.7. For (EV), the steady state
characteristics obey the equations

ṙ= e−λκ(r) ∂wEκ(r,w,L), ẇ=−e−λκ(r) ∂rEκ(r,w,L)

with

Eκ(r,w,L) = eµκ(r)

√
1+w2 +

L
r2
.

Let us define the analogue of the Newtonian effective potential as

Ψκ,L(r) := eµκ(r)

√
1+

L
r2

and assume that
2mκ(r)

r
⩽ 1

3
, r> 0. (5.14)

Then one can show that Ψκ,L has a single-well structure analogous to lemma 4.7(b), and
the conclusions of lemma 4.7(c) and its action-angle consequences remain valid, see [37,
section 3]. By proposition 5.3, the condition (5.14) holds for κ small.

Remark. The question whether the steady state characteristic flow has the single-well struc-
ture is intimately related to the question whether for spherically symmetric steady states the
phase space density can always be written in the form f = ϕ(E,L). For (VP) this result, which
is sometimes called Jeans’ theorem, is a direct consequence of the single-well structure of
the effective potential. For (EV), Jeans’ theorem is known to be false, see [105]. Numerical
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evidence strongly suggests that for isotropic steady states of (EV), 2m(r)/r< 1/2, which is a
considerably sharper bound than the general Buchdahl inequality [3, 4, 15], but it is unclear
whether this is sufficient to yield the single-well structure.

The information provided by proposition 5.3 can be used to show that on linearly dynamic-
ally accessible states the quadratic form D2HC( fκ) is positive definite for κ sufficiently small.

5.3. An energy-Casimir coercivity estimate

As in the previous section, let the microscopic equation of state φ satisfy (3.4) and (5.13), and
let ( f0,λ0,µ0) be a steady state as obtained in proposition 3.1(b). As an abbreviation, let

A(δf, δf) := D2HC(f0)(δf, δf)

=
1
2

¨
eλ0

|ϕ′(E)|
(δf)2 dvdx− 1

2

ˆ ∞

0
eµ0−λ0 (2rµ′

0 + 1) (δλ)2 dr.

The following result is the desired energy-Casimir coercivity estimate.

Theorem 5.4. There exist constants C∗ > 0 and κ∗ > 0 such that for any 0< κ⩽ κ∗ and any
spherically symmetric function h ∈ C1(D) which is odd in v,

A(δf, δf)⩾ C∗
¨

|ϕ′(E)|

(
(rw)2

∣∣∣∣{E, hrw
}∣∣∣∣2 +κ1+2a|h|2

)
dvdx,

where h generates the dynamically accessible perturbation δf according to (5.10).

For a dynamically accessible perturbation δf = fh defined by (5.10) and (5.11),

A(δf, δf) =A(h,h) =
1
2
A1(h)+

1
2
A2(h),

where

A1(h) :=
¨

e−λ0 |ϕ′(E)||{E,h}|2dvdx−
ˆ ∞

0
eµ0−λ0(2rµ0

′ + 1)(λh)
2dr,

A2(h) := − 2
¨

|ϕ′(E)|{E,h}λheµ0
w2

〈v〉
dvdx+

¨
|ϕ′(E)|e2µ0+λ0

w4

〈v〉2
(λh)

2dvdx.

It turns out thatA1 yields the desired lower bound whileA2 is of higher order in κ and can be
controlled by the positive contribution fromA1. For more details we refer to [50, theorem 5.1],
but we emphasize that for the proof the complete structure of the stationary (EV) system must
be exploited, in particular, the static version of (2.25) and (3.11) come into play.

The assumption in theorem 5.4 that h is odd in v can be removed. We split a general, spher-
ically symmetric function h ∈ C2(R6) into its even and odd-in-v parts, h= h+ + h−. Then

λh = 4π reµ0+λ0

ˆ
ϕ′(E)h−(x,v)wdv= λh− ,

and

δf+ = (fh)− = e−λ0{h+, f0}, δf− = (fh)+ = e−λ0{h−, f0}+ γeµ0ϕ′(E)
w2

〈v〉
λh− .
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Hence

A(δf, δf) =A(δf+, δf+)+
¨

eλ0
δf+ δf−
|ϕ ′(E)|

dvdx+
1
2

¨
eλ0

|δf−|2

|ϕ ′(E)|
dvdx

=A(δf+, δf+)+
1
2

¨
e−λ0 |ϕ ′(E)| |{E,h+}|2 dvdx

⩾ C∗
¨

|ϕ ′(E)|

(
(rw)2

∣∣∣∣{E, h−rw
}∣∣∣∣2 +κ1+2a|h−|2

)
dvdx

+
1
2

¨
e−λ0 |ϕ ′(E)| |{E,h+}|2 dvdx. (5.15)

If one tries to proceed from this positive definiteness result on the second variation of HC

towards nonlinear stability, analogously to section 4.2 for (RVP), serious difficulties in deriving
an analogue of theorem 4.5 arise, again from the inherent lack of compactness for (EV). We
believe that some analogue of theorem 4.5 remains correct for (EV), but so far the result of the
present section has only been used to derive linear stability.

5.4. Linear stability

In order to deal with this issue we need to linearize (EV) about some given steady state
( f0,λ0,µ0); for the moment, no assumption is made on the size of κ, because we will use
the linearized system also for large κ. We substitute

f(t) = f0 + δf(t), λ(t) = λ0 + δλ(t), µ(t) = µ0 + δµ(t)

into the system, use the fact that ( f0,λ0,µ0) is a solution, and drop all terms beyond the linear
ones in (δf, δλ,δµ). In addition the boundary conditions δλ(t,0) = δλ(t,∞) = δµ(t,∞) = 0
are imposed. We observe that

δλ= λδf := e2λ0
4π
r

ˆ r

0
s2ρδf(s)ds (5.16)

is the corresponding solution to the linearized version of the field equation (2.22), see (5.7).
The linearized versions of the field equations (2.23) and (2.24) yield

δµ ′ = µ ′
δf := 4π re2λ0σδf+

(
2µ ′

0 +
1
r

)
λδf, (5.17)

˙δλ=−4π reµ0+λ0ȷδf, (5.18)

where as before,

ρδf =

ˆ
〈v〉δfdv, σδf =

ˆ
w2

〈v〉
δfdv, ȷδf =

ˆ
wδfdv.

If we substitute into the linearization of the Vlasov equation (2.33),

∂tδf + e−λ0{δf,E}+ 4π re2µ0+λ0ϕ ′(E)

(
w2

〈v〉
ȷδf−wσδf

)
− e2µ0−λ0

(
2µ ′

0 +
1
r

)
λδfϕ

′(E)w= 0; (5.19)

it can be shown that (5.18) follows from the other equations.
In order to proceed we need to observe that linear dynamic accessibility propagates under

the dynamics of the linearized (EV) system.We recall that some h ∈ C1(D) generates a linearly
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dynamically accessible perturbation δf = fh according to (5.10), and (5.16) turns into δλ= λh,
defined by (5.11). One can check that if t 7→ h(t) solves the transport equation

∂th+ e−λ0{h,E}+ eµ0λh(t)
w2

〈v〉
− eµ0 〈v〉µh(t) = 0 (5.20)

with spherically symmetric initial data h(0) = h̊, then δf(t) = fh(t) defined according to (5.10)
is the solution of the above linearized (EV) system to the linearly dynamically accessible
data δ̊f= f̊h. In particular, δf(t) is the linearly dynamically accessible state generated by
h(t). A simple iteration argument shows that for any h̊ ∈ C1(D) there exists a unique solu-
tion h ∈ C1([0,∞[;C(D))∩C([0,∞[;C1(D)) of (5.20) with h(0) = h̊. The induced linearly
dynamically accessible solution δf needs to be only continuous (unless one demands more
regularity of h̊ and φ) and solves the linearized (EV) system integrated along the steady state
characteristics, see [10] for the analogous concept for the linearized (VP) system. We do not
discuss these issues further, since in the context of the more functional analytic approach in
section 7 we solve the linearized (EV) system by a suitable C0 group.

The important fact here is that such linearly dynamically accessible solutions preserve the
energy

A( fh, fh) =A(h,h) =
1
2

¨
eλ0

|ϕ ′(E)|
( fh)

2 dvdx− 1
2

ˆ ∞

0
eµ0−λ0 (2rµ ′

0 + 1)(λh)
2 dr. (5.21)

Combining this fact with theorem 5.4 or with the more general estimate (5.15) proves the
following stability result.

Theorem 5.5. Let C∗ and κ∗ be as in theorem 5.4, and let 0< κ⩽ κ∗. Then the steady state
( fκ,λκ,µκ) is linearly stable in the following sense. For any spherically symmetric function
h̊ ∈ C1(D) the solution of the linearized (EV) system with dynamically accessible data δ̊f gen-
erated by h̊ according to (5.10) satisfies for all times t⩾ 0 the estimate

C∗
¨

|ϕ′(E)|

(
(rw)2

∣∣∣∣{E, h−(t)rw

}∣∣∣∣2 +κ1+2a|h−(t)|2
)

dvdx

+
1
2

¨
e−λκ |ϕ′(E)| |{E,h+(t)}|2 dvdx⩽A(δ̊f).

The restriction to perturbations δ̊f of the form (5.10) may seem a bit special. Condition (5.8)
suggests that the natural set of perturbations for the linear problem are functions δ̊f ∈ C1(R6)
supported on the support of f 0 with the property that

eλ0 δ̊f− eµ0+λ0 δ̊λϕ′(E)
w2

〈v〉
is L2-orthogonal to any ψ(f0) ∈ L2(R6), ψ ∈ C(R).

For any such perturbation there exists a generating function h ∈ C2(R6) so that

{h, f0}= eλ0 δ̊f− eµ0+λ0 δ̊λϕ′(E)
w2

〈v〉
,

which by proposition 5.2 says that δ̊f is linearly dynamically accessible. The proof is analogous
to the proof of the parallel fact for (VP) given in [44, section 3.2] and relies on the fact that
for κ small the stationary characteristic flow (or rather its effective potential) has a single-well
structure, see the end of section 5.2.
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6. Instability for (EV)—steady states with large central redshift

We continue to use the set-up which we discussed in section 5.1. We saw in section 5.3 that the
second variation D2HC is positive definite on linearly dynamically accessible states, provided
the central redshift κ of the steady state ( fκ,λκ,µκ) in question is small, and we saw in
section 5.4 that this fact implies linearized stability of the corresponding steady state. The
key to this was a good understanding of the behavior of the steady state in the limit κ→ 0, the
Newtonian limit. It turns out that for κ sufficiently large, such steady states become unstable.
The major step towards this result is that there is a direction in whichD2HC becomes negative,
provided κ is sufficiently large, and the key to this is a good understanding of the behavior of
the steady state in the limit κ→∞. This is more challenging and more interesting, because
no κ→∞ limiting system seems to suggest itself for the role that (VP) plays as the κ→ 0
limiting system. But such a system exists.

6.1. Steady states for κ large—the ultrarelativistic limit

We again consider steady states of (EV) as obtained in proposition 3.1. As indicated in
part (b) of the remark following that proposition a microscopic equation of state φ gives
rise to a macroscopic equation of state which relates pressure and mass-energy density, more
precisely,

σκ = P(ρκ), where P := h ◦ g−1 (6.1)

with g and h defined by (3.6) and (3.7). When κ is very large also yκ(r) and ρκ(r) become
very large at least for r close to 0. For y very large,

g(y) = 4π e4y
ˆ 1−e−y

0
φ(η)(1− η)2

(
(1− η)2 − e−2y

)1/2
dη ≈ e4y =: g∗(y), (6.2)

and

h(y) =
4π
3

e4y
ˆ 1−e−y

0
φ(η)

(
(1− η)2 − e−2y

)3/2
dη ≈ 1

3
e4y =: h∗(y), (6.3)

where for the sake of notational simplicity we normalize

4π
ˆ 1

0
φ(η)(1− η)3 dη = 1.

Hence for κ very large and close to the center the equation of state (6.1) asymptotically turns
into

σκ = P∗(ρκ) =
1
3
ρκ (6.4)

which is known in astrophysics and cosmology as the equation of state for radiation. It can be
shown that ∣∣∣∣P(ρ)− 1

3
ρ

∣∣∣∣⩽ Cρ1/2, ρ⩾ 0

for some constant C> 0, see [47], which is the precise version of the limiting behavior of the
equation of state.
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Of course now the question arises how the limiting equation of state (6.4) fits into the Vlasov
context, since that equation of state cannot come from an isotropic steady state particle distri-
bution of the form (3.3):

σ(r) =
ˆ
f(x,v)

(x · v
r

)2 dv
〈v〉

=
1
3

ˆ
f(x,v) |v|2 dv

〈v〉
<

1
3

ˆ
f(x,v)(1+ |v|2) dv

〈v〉
=

1
3
ρ(r);

massive particles do not behave like radiation. To obtain a Vlasov-type system which captures
the limiting behavior as κ→∞wemust pass to a collisionless ensemble of massless particles.
Mathematically, this means that throughout the (EV) system the term 〈v〉 must be replaced by
|v|. In particular, (3.3) turns into the ansatz

f(x,v) = ϕ(eµ(r)|v|) = φ

(
1− eµ(r)|v|

E0

)
.

This ansatz satisfies the massless version of (2.33), we get exactly the radiative equation of
state (6.4), and

ρ(r) =
ˆ
ϕ(eµ(r)|v|) |v|dv= 4π

ˆ ∞

0
ϕ(η)η3dη e−4µ(r)

which is as expected from (6.2). Hence if y is a solution of (3.8) where g and h are replaced by
g∗ and h∗, and µ,λ,ρ,σ are induced by y, then these quantities satisfy the stationary Einstein
equations together with the radiative equation of state and the above f is a consistent, stationary
solution of the massless EV system.

Proceeding as in [93, theorem 3.4] one can obtain the following result.

Lemma 6.1. For every κ> 0 there exists a unique solution y∗ = y∗κ ∈ C1([0,∞[) to the
problem

y ′(r) =− 1
1− 2m∗(r)/r

(
m∗(r)
r2

+ 4π rσ∗(r)

)
, y(0) = κ > 0, (6.5)

where ρ∗ = g∗(y), σ∗ = h∗(y) with (6.2), (6.3) and

m∗(r) = m∗(r,y) = 4π
ˆ r

0
s2ρ∗(s)ds.

For κ very large and close to the center the behavior of the massive steady state is indeed
captured by the massless one, more precisely:

Lemma 6.2. There exists a constant C> 0 such that for all κ> 0 and r⩾ 0,

|yκ(r)− y∗κ(r)|⩽ Ce2κ
(
r2 + e4κr4

)
exp
(
C
(
e4κr2 + e8κr4

))
.

In [47, lemma 3.10] this result is proven for the pressures σ instead of the functions y,
because that allows one to treat the EV and the Einstein–Euler cases simultaneously. The result
above is actually more easy to obtain. Essentially, the proof consists of a lengthy Gronwall-
type estimate, based on the equations satisfied by yκ and y∗κ, but rewritten in the rescaled radial
variable τ = e2κr, and using the facts that due to the Buchdahl inequality [3, 4],

2m(r)
r

,
2m∗(r)

r
<

8
9
,

and that the asymptotics in (6.2) and (6.3) take the quantitative form

|g(y)− g∗(y)|+ |h(y)− h∗(y)|⩽ Ce2y, y ∈ R,
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This is indeed a good approximation for large y, since all the terms on the left are then of
order e4y.

Since g∗ and h∗ are strictly positive, a steady state of themassless system is never compactly
supported. The massless system has a scaling invariance which is important for what follows.

Lemma 6.3. Let y∗0 denote the solution of (6.5) with initial data y∗0(0) = 0. Then for all
κ> 0,

y∗κ(r) = κ+ y∗0(e
2κr), r⩾ 0.

We see that in order to understand the behavior of y∗κ(r) for positive, small r and very large
κ we need to understand the behavior of the special solution y∗0(s) for s→∞. The key point
here is that the massless steady state equation (6.5) can be turned into a planar, autonomous
dynamical system. We let w1(τ) = r2ρ(r), w2(τ) = m(r)/r with τ = lnr. Then the Tolman–
Oppenheimer–Volkov equation (3.12) and the relation between ρ and m imply that

dw1

dτ
=

2w1

1− 2w2

(
1− 4w2 −

8π
3
w1

)
, (6.6)

dw2

dτ
= 4πw1 −w2. (6.7)

The system has two steady states,

(0,0) and Z :=

(
3

56π
,
3
14

)
.

Using Poincaré–Bendixson theory it can be shown that there is a unique trajectory which cor-
responds to one branch T of the unstable manifold of (0,0) and converges to Z with a rate
determined by the real parts of the eigenvalues of the linearization at Z, which equal − 3

2 . For
the solution induced by y∗0 it holds thatw(τ)→ (0,0) for τ →−∞, and its trajectory coincides
with T. The result is that for any 0< γ < 3/2 and all τ sufficiently large,

|w(τ)−Z|⩽ Ce−γτ .

When we rewrite this in terms of the original variables and combine it with the previous three
lemmata, we obtain the following result:

Proposition 6.4. There exist parameters 0< α1 < α2 <
1
4 , κ0 > 0 sufficiently large, and con-

stants δ > 0 and C> 0 such that on the critical layer

[r1κ,r
2
κ] := [κα1e−2κ,κα2e−2κ]

and for every κ⩾ κ0 the following estimates hold:∣∣∣∣r2ρκ(r)− 3
56π

∣∣∣∣ , ∣∣∣∣r2σκ(r)− 1
56π

∣∣∣∣ , ∣∣∣∣mκ(r)
r

− 3
14

∣∣∣∣ , |2rµ′
κ − 1| ,

∣∣∣∣e2λκ − 7
4

∣∣∣∣ , |rλ′κ|⩽ Cκ−δ.

For more details on the proof of this result we refer to [47, propositions 3.13 and 3.14],
but we wish to discuss the limiting object which corresponds to the stationary state Z of the
dynamical system (6.6) and (6.7). Indeed, Z corresponds to the macroscopic data

ρ(r) =
3

56π
r−2, σ(r) =

1
56π

r−2, m(r) =
3
14
r,

2m(r)
r

=
3
7
, e2λ =

7
4
, µ′(r) =

1
2r
,

which represent a particular steady state of the massless (EV) system; there is a free constant
when defining µ which we take such that e2µ(r) = 7

4 r. We refer to this solution as the BKZ
solution, because these macroscopic quantities are the same as for a certain massive solution
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found by Bisnovatyi-Kogan and Zel’dovich [13]. It does not represent a regular, isolated sys-
tem: it violates both the condition (2.18) for a regular center and for asymptotic flatness (2.17),
and it has infinite mass. Its Ricci scalar vanishes, while its Kretschmann scalar

K(r) := RαβγδR
αβγδ(r) =

72
49
r−4

blows up at the center; the BKZ solution has a spacetime singularity at r= 0. The curves

r(t) = (c+ t/2)2, t>−2c

with c> 0 represent radially outgoing null geodesics which start at the singularity and escape
to r=∞, i.e. the singularity is visible for observers away from the singularity. Hence it viol-
ates the strong cosmic censorship hypothesis; the concept of weak cosmic censorship is not
applicable to this solution, since it is not asymptotically flat. According to the cosmic cen-
sorship hypothesis such ‘naked’ singularities should be ‘non-generic’ and/or ‘unstable’. The
analysis which we review in the present section shows that regular steady states, which in the
critical layer are close to the BKZ solution for large central redshift κ, seem to inherit this
instability and are indeed unstable themselves.

We also point out that the BKZ solution can for obvious reasons not capture the behavior
of the massive (EV) steady state at the center or for large radii. But the information provided
in proposition 6.4 on the critical layer [r1κ,r

2
κ] turns out to be what is needed for the next step.

6.2. A negative energy direction for κ large

When κ is sufficiently large there exists a linearly dynamically accessible direction in which
the second variation of HC, i.e. the bilinear form A, becomes negative.

Theorem 6.5. There exists κ0 > 0 such that for all κ > κ0 there exists a spherically symmetric,
odd-in-v function h ∈ C2(R6) such that

A(h,h) =A(fh, fh)< 0,

where fh is given by (5.12).

The negative energy direction h is of the form

h(x,v) = g(r)w, (6.8)

with a suitable function g ∈ C2([0,∞[). Clearly, h is spherically symmetric and odd in v, where
we recall (5.1). A suitable integration by parts implies thatˆ

ϕ ′(E)w2 dv=−e−µκ(ρκ +σκ). (6.9)

Combining this with (6.8) and (3.11) the expression (5.11) for λh can be simplified:

λh = 4π reµκ+λκg
ˆ
ϕ′(E)w2 dv=−e−λκg(λ′κ +µ′

κ) .

Moreover,

{h, fκ}= ϕ′(E)eµκ

(
g′(r)

w2

〈v〉
−µ′

κg(r)〈v〉+ g(r)
|v|2 −w2

r〈v〉

)
,

and thus

fh = eµκ−λκϕ′(E)

(
(g′ − g(µ′

κ +λ′κ))
w2

〈v〉
−µ′

κg〈v〉+ g
|v|2 −w2

r〈v〉

)
.
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On the critical layer [r1κ,r
2
κ] the steady state ( fκ,λκ,µκ) is well approximated by the BKZ

solution, provided κ is sufficiently large, see proposition 6.4. We localize the perturbation h
given by (6.8) to this interval by setting

g= e
1
2µκ+λκχ,

where 0⩽ χ⩽ 1 is a smooth cut-off function supported in the interval [r1κ,r
2
κ] and equal to 1

on [2r1κ,r
2
κ/2]; the latter interval is non-trivial for κ sufficiently large. In addition, |χ ′(r)| is to

satisfy certain bounds which are not relevant here. The perturbation f h now takes the form

fh = e
3
2µκϕ′(E)

(
−µ′

κχ

[
w2

2〈v〉
+ 〈v〉− 1

µ′
κr

|v|2 −w2

〈v〉

]
+χ′ w

2

〈v〉

)
.

Substitution of this expression into (5.21) yields the following identity:

A(h,h) =
ˆ r2κ

r1κ

e2µκ−λκχ2

[
4π r2eµκ+2λκ(µ′

κ)
2
ˆ

|ϕ′(E)|
(

w2

2〈v〉
+ 〈v〉− 1

µ′
κr

|v|2 −w2

〈v〉

)2

dv

− (2rµ′
κ + 1)(µ′

κ +λ′κ)
2

]
dr+ 4π

ˆ
suppχ′

r2e3µκ+λκ(χ′)2
ˆ

|ϕ′(E)| w
4

〈v〉2
dvdr

+ 8π
ˆ
suppχ′

r2e3µκ+λκµ′
κχχ

′
ˆ

|ϕ′(E)|

(
w4

2〈v〉2
+w2 − 1

µ′
κr
w2|v|2 −w4

〈v〉2

)
dvdr.

The key point now is that if in the first integral the steady state quantities are replaced by their
corresponding limiting quantities according to proposition 6.4, a strictly negative term arises,
together with error terms, which, being like the second and third integral of lower order in κ,
do not destroy the negative sign of A(h,h), provided κ is sufficiently large; for the details we
have to refer to [47, theorem 4.3]1.

6.3. Linear exponential instability

An adaptation of an argument by Laval et al [67] shows that the existence of a negative energy
direction as provided by theorem 6.5 implies a linear exponential instability result. At first
glance this may seem surprising, since the energy A could be negative definite in which case
its conservation should imply stability. In order to appreciate the role of the negative energy
direction, h in (5.20) must be split into even and odd parts with respect to v, which turns the
latter equation into the system

∂th− + T h+ = 0, (6.10)

∂th+ + T h− = Ch−. (6.11)

Here

T h := e−λκ{h,E}, Ch :=−eµκλh
w2

〈v〉
+ eµκµh 〈v〉 .

Let L2
W = L2

W(D) denote the weighted L2 space on the set D= {f0 > 0} with the weight
W := eλκ |ϕ ′(E)|, and let 〈·, ·〉L2

W
denote the corresponding scalar product. As we noted before,

1 The proof published in [47] contains an error which has been corrected in arXiv:1810.00809.
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solutions to (5.20) conserve the energy A(h,h). But substituting h= h+ + h− and using the
fact that λh = λh− it follows that

A(h,h) =A(h−,h−)+ 〈T h+,T h+〉L2
W
.

Hence for the system (6.10) and (6.11) conservation of energy takes the form

〈T h+,T h+〉L2
W
+A(h−,h−) = const,

and A now plays the role of potential energy. A negative direction for the latter together with
the positive definiteness of the kinetic energy gives a saddle point structure for the total energy,
and instability is expected.

Using the fact that solutions of the system (6.10) and (6.11) also satisfy the virial identity

1
2
d2

dt2
〈h−,h−〉L2

W
=−A(h−,h−)+ 〈T h+,T h+〉L2

W

one can now follow the idea in [67] to derive the following linear, exponential instability result;
for details we refer to [47, theorem 4.8].

Theorem 6.6. There exist initial data h̊+, h̊− ∈ C1(D) and constants c1,c2 > 0 such that for
the corresponding solution to the system (6.10) and (6.11),

‖h−(t)‖L2
W
,‖T h+(t)‖L2

W
⩾ c1e

c2t.

A much stronger result, namely the existence of an exponentially growing mode, is dis-
cussed in the next section.

7. Spectral properties of the linearized (EV) system

7.1. The functional-analytic structure of the linearized (EV) system

Important aspects of the linearized (EV) system such as the existence of exponentially growing
modes for κ sufficiently large can only be properly understood, if the linearized system is put
into the proper functional-analytic framework. The latter is set up on the real Hilbert space

H := {f : D→Rmeasurable and spherically symmetric | ‖ f‖H <∞} ,

where the norm ‖ f‖H is defined in terms of the scalar product

〈f,g〉H :=

¨
D

eλ0

|ϕ′(E)|
fgdvdx, g,h ∈ H;

for the moment we consider some fixed steady state ( f0,λ0,µ0) and ignore the dependence on
the central redshift κ; we recall that D= {f0 > 0}. We need to define the transport operator
T f = e−λ0{f,E} where, say, f ∈ C1(D), as an operator on H.

We say that for a function f ∈ H the transport term T f exists weakly if there exists h ∈ H
such that for every spherically symmetric test function ξ ∈ C1

c(D),

〈f,T ξ 〉H =−〈h, ξ 〉H.

If such a function h exists, it is unique, and we set T f = hin a weak sense. The domain of T
is defined as

D(T ) := {f ∈ H |T f ∈ Hexists weakly},
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and the resulting operator T : D(T )→ H is the transport operator. In view of (5.19) we also
define B : D(T )→ H by

Bf :=−T f − 4π r|ϕ ′|e2µ0+λ0

(
wσf−

w2

〈v〉
ȷf

)
, (7.1)

and the residual operator R : H→ H by

Rf := 4π |ϕ′|e3µ0(2rµ′
0 + 1)wȷf.

These operators have the following properties2:

Lemma 7.1. (a) The transport operator T : D(T )→ H is densely defined and skew-adjoint,
i.e. T ∗ =−T , and T 2 : D(T 2)→ H with

D(T 2) := {f ∈ H | f ∈ D(T ), T f ∈ D(T )}

is self-adjoint.
(b) The operator B : D(T )→ H is densely defined and skew-adjoint, and B2 : D(T 2)→ H is

self-adjoint.
(c) The operator R : H→ H is bounded, symmetric, and non-negative, i.e. 〈Rf, f〉H ⩾ 0 for

f ∈ H.

That the transport operator is symmetric with respect to the scalar product on the Hilbert
spaceH is easy to see; for the details of the above results we refer to [37] or [47]. We use these
operators to put the linearized (EV) system, i.e. (5.19), into the form

∂t f = Bf − e2µ0−λ0

(
2µ ′

0 +
1
r

)
λf|ϕ ′(E)|w; (7.2)

note that we simply write f instead of δf here and in what follows. As before and following
Antonov we split f = f+ + f− into its even and odd parts with respect to v. Since B reverses
v-parity,

∂t f+ = Bf−,

∂t f− = Bf+ − e2µ0−λ0

(
2µ′

0 +
1
r

)
λf|ϕ′(E)|w.

Differentiating the second equation with respect to t and substituting the first one implies that

∂2
t f− = Bf+ − e2µ0−λ0

(
2µ′

0 +
1
r

)
∂tλf|ϕ′(E)|w

= B2f− + 4π e3µ0 (2rµ′
0 + 1)ȷf− |ϕ′(E)|w

= B2f− +Rf−,
where we used (5.18), the fact that ȷf = ȷf− and the definition of the residual operatorR. Since
this second-order formulation of the linearized system lives on the odd-in-v parts of the per-
turbations, we define

Hodd := {f ∈ H | f is odd in v},

2 In the literature the sign in front of T is not always chosen as consistently as we try to.
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which is a Hilbert space with the same scalar product as before. The properties of the operators
stated in lemma 7.1 remain true on Hodd, and we define the Antonov operator

L : D(L)→ Hodd, D(L) := D(T 2)∩Hodd, L :=−B2 −R.

This is again a self-adjoint operator, and the linearized (EV) system is put into the form

∂2
t f− +Lf− = 0, (7.3)

which has the same structure as the corresponding equation (4.11) for (VP).
The above second-order formulation has been used in the astrophysics literature, see [55,

56, 58] (without precise spaces, domains etc). Based on (7.3) we call a steady state of the EV
system linearly stable if the spectrum of L is strictly positive, i.e.

γ := inf σ(L)> 0;

notice that the spectrum of L is real since L is self-adjoint. By [54, proposition 5.12] this
spectral condition implies the Antonov-type inequality

〈f,Lf〉H ⩾ γ‖ f‖2H, f ∈ D(L).

Since

‖∂t f−‖2H+ 〈f−,Lf−〉H =A(∂t f−,∂t f−)

is conserved along solutions of the linearized equation (7.3), this implies linear stability in the
corresponding norm.

Assume on the other hand that α< 0 is an eigenvalue of L with eigenfunction f ∈ Hodd.
Then g := e

√
−α tf solves (7.3), and we get an exponentially growing solution of the linearized

(EV) system. Hence an eigenfunction f ∈ Hodd to a negative eigenvalue α< 0 of L is called
an exponentially growing mode. Using theorem 6.5 one can show that for κ sufficiently large,
such exponentially growing modes exist.

To see this one needs some further tools which are also used to obtain a first-order formu-
lation of the linearized (EV) system with good functional-analytic properties. This first-order
formulation has to our knowledge not appeared in the physics literature and was introduced in
[47]. A key ingredient is a modified potential induced by a state f ∈ H:

µ̄(r) = µ̄f(r) :=−e−µ0−λ0

ˆ ∞

r

1
s
eµ0(s)+λ0(s)(2sµ ′

0(s)+ 1)λf(s)ds (7.4)

is the modified potential induced by f ∈ H, where λf is defined by (5.16). It has the following
properties, where Ḣ1

r denotes the subspace of spherically symmetric functions in the homo-
geneous Sobolev space Ḣ1(R3), see [30].

Lemma 7.2. (a) For f ∈ H, µ̄= µ̄f ∈ C([0,∞[)∩C1(]0,∞[)∩ Ḣ1
r , and |µ̄(r)|⩽ C‖f‖H, r⩾ 0,

with some C> 0 independent of f.
(b) It holds that

µ̄ ′ =−(µ ′
0 +λ ′

0) µ̄+
2rµ ′

0 + 1
r

λf, (7.5)

e−µ0−λ0r
2rµ ′

0 + 1
(eµ0+λ0 µ̄) ′ = λf, r⩾ 0, (7.6)

and in the weak sense,
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1
4π r2

d
dr

(
e−µ0−3λ0r2

2rµ ′
0 + 1

d
dr

(
eµ0+λ0 µ̄

))
= ρf a. e. (7.7)

(c) The operator K : H→ H, Kf := ϕ ′(E)Eµ̄f is bounded, self-adjoint, and compact.

One should at this point recall (5.4). The field equation (2.23) and the boundedness of
σ0,µ0,λ0 imply that the quantity eµ0+λ0(2rµ ′

0 + 1) is bounded. The estimate for µ̄ then fol-
lows by the Cauchy–Schwarz inequality. For the remaining assertions one should observe that
by (3.11), µ ′

0 +λ ′
0 = 0 outside D, and that r2ρ ∈ L1([0,∞[). That K is bounded follows from

part (a), integration-by-parts and (7.7) imply its self-adjointness, and compactness follows
using the the Arzela-Ascoli theorem, where it is important that the steady state has compact
radial support. For the details we refer to [47, lemmata 4.17 and 4.18].

The compactness of the map K is important for the operator L̄ : H→ H defined by

L̄f := f −ϕ ′(E)Eµ̄f. (7.8)

By lemma 7.2(c):

Lemma 7.3. The operator L̄ is bounded and symmetric on H.

The linearized (EV) system can now be put into the following first order Hamiltonian form
which means that the general theory developed in [73] can be applied.

Proposition 7.4. The linearized (EV) system takes the form

∂t f = BL̄f, (7.9)

D(BL̄) = D(T ), the operator L̄ induces the quadratic form

〈L̄f, f〉H =

¨
eλ0

|ϕ ′(E)|
f 2 dvdx−

ˆ ∞

0
eµ0−λ0 (2rµ ′

0 + 1) λ2
f dr=A( f, f) (7.10)

on H, and the flow of (7.9) preserves A( f, f). The relation of the first-order formulation (7.9)
to the second-order one in (7.3) is captured in the relation

L=−BL̄B. (7.11)

We refer to [47, lemma 4.20] for a rigorous proof and highlight only some instructive
aspects. For f ∈ H, at least formally,

T (ϕ′(E)Eµ̄f) = e2µ0−λ0ϕ′(E)w µ̄′
f .

Together with (6.9) and (7.5) this implies that

B (ϕ′Eµ̄f) =−ϕ′(E)e2µ0−λ0w
2rµ′

0 + 1
r

λf.

If we combine this with the form (7.2) of the linearized (EV) system we obtain

∂tf = B (f−ϕ′(E)Eµ̄f) = BL̄f.

If we differentiate 〈L̄f, f〉H with respect to t and use the symmetry of L̄, (7.9), and the skew-
adjointness of B the conservation law follows. By the definition of L̄,
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〈L̄f, f〉H = 〈f−ϕ′(E)Eµ̄f, f〉H

=

¨
eλ0

|ϕ′(E)|
f 2 dvdx+

ˆ
eµ0+λ0 µ̄f

ˆ
f〈v〉 dvdx

=

¨
eλ0

|ϕ′(E)|
f 2 dvdx+ 4π

ˆ ∞

0
r2µ̄f e

µ0+λ0ρf dr,

and since 4π r2ρf =
(
e−2λ0rλf

) ′
the assertion (7.10) follows by using (7.6).

If we split some element f ∈ D(BL̄) = D(T ) into its even and odd parts with respect to v,
it follows that λf = λf+ , hence also µ̄f = µ̄f+ , and L̄f = L̄f+ + f−. Since L̄ preserves v parity
and B reverses it, the first order formulation (7.9) splits into

∂t f+ = Bf−, ∂t f− = BL̄f+
which directly implies

∂2
t f− = BL̄Bf−

as desired; of course the relation (7.11) can be checked directly.
The spectral properties of the operators L or BL̄ are difficult to analyze, and a key idea to

do so is to find simpler, macroscopic Schrödinger-type operators by which for example L is
bounded from above and below. These reduced operators act on functions of only the radial
variable r, which makes them easier to analyze.

The construction which we explain below was developed in [47] and relies on the modified
potential µ̄f as a key ingredient. An earlier, but not really satisfactory attempt to construct such
a reduced operator was made in [55].

The modified Laplacian ∆̄ is given by

∆̄ψ :=
eµ0+λ0

4π r2
d
dr

(
e−µ0−3λ0r2

2rµ′
0 + 1

d
dr

(
eµ0+λ0ψ

))
.

On a flat background, i.e. for λ0 = µ0 = 0 the operator 4π ∆̄ is the Laplacian applied to spher-
ically symmetric functions. The reduced operator S is given by

Sψ :=−∆̄ψ− eλ0

ˆ
|ϕ ′(E)|E2 dvψ, (7.12)

and the non-local reduced operator S̃ is

S̃ψ :=−∆̄ψ− eλ0

ˆ
(id−Π)(|ϕ ′(E)|Eψ )Edv, (7.13)

where Π denotes the projection onto R(B)⊥, the orthogonal complement in H of the range of
the operator B, and id is the identity.

For what follows, µ̄f, which only belongs to Ḣ1
r , must lie in the domain of S and S̃. Hence

one must be careful to define these operators between the proper spaces, which is done using
duality; (Ḣ1

r )
′ denotes the dual space of Ḣ1

r and 〈·, ·〉 denotes the corresponding dual pairing.

Lemma 7.5. The operator S : Ḣ1
r → (Ḣ1

r )
′ defined by

〈Sψ,χ〉 :=
ˆ ∞

0

e−µ0−3λ0

2rµ′
0 + 1

d
dr

(
eµ0+λ0ψ

) d
dr

(
eµ0+λ0χ

)
r2 dr−

¨
D
eλ0 |ψ′(E)|E2ψχdvdx

is self-dual, and it is given by (7.12) on sufficiently regular functions. The operator S̃ : Ḣ1
r →

(Ḣ1
r )

′ is defined analogously and has the analogous properties.
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These operators bound the quadratic form A which according to (7.10) is induced by L̃
from above and below in the following precise sense:

Proposition 7.6. (a) For every µ ∈ Ḣ1
r and f = fµ := ϕ ′

κ(Eκ)Eκµ,

〈Sµ, µ〉⩾A(fµ, fµ).

For every f ∈ H and µ̄f as defined in (7.4),

A(f, f)⩾ 〈Sµ̄f, µ̄f 〉.

(b) For every µ ∈ Ḣ1
r and f̃ = f̃µ := (id−Π)(ϕ ′(E)Eµ) ∈ R(B),

〈S̃µ, µ〉⩾A(̃fµ, f̃µ).

For every f ∈ H,

A(f, f)⩾ 〈S̃µ̄f, µ̄f 〉.

The proof relies on the observations that for µ ∈ Ḣ1
r ,

〈−∆̄µ,µ〉=
ˆ ∞

0

e−µ0−3λ0

2rµ′
0 + 1

((
eµ0+λ0µ

)′)2
r2 dr,

in particular, for f ∈ H, using (7.4) and (7.6),

〈−∆̄µ̄f, µ̄f 〉=
ˆ ∞

0
eµ0−λ0 (2rµ′

0 + 1)

(
e−µ0−λ0

2rµ′
0 + 1

r
(
eµ0+λ0 µ̄f

)′)2

dr

=

ˆ ∞

0
eµ0−λ0 (2rµ′

0 + 1) λ2
f dr.

On the other hand by (7.7),

〈−∆̄µ̄f, µ̄f 〉=−4π
ˆ ∞

0
eµ0+λ0 µ̄f ρf r

2dr=−
¨

eµ0+λ0 µ̄〈v〉 f dvdx.

The definitions of A and the operators S and S̃ lead to the desired results; for details see [47,
theorem 4.24].

7.2. (In)stability for the linearized (EV) system

The results of the previous section imply the existence of an exponentially growingmode when
κ is large enough, more precisely:

Theorem 7.7. For κ sufficiently large, there exists at least one negative eigenvalue of L
and therefore an exponentially growing mode for the linearization (7.3) of (EV) around
( fκ,λκ,µκ); such a steady state is (linearly) unstable. For general κ> 0, the negative part
of the spectrum of L is either empty or consists of at most finitely many eigenvalues with finite
multiplicities.

Before we sketch the proof we need to introduce some more notation. Let L : H⊃ D(L)→
H be a linear, self-adjoint operator on some Hilbert spaceH. Its negative Morse index n− (L) is
the maximal dimension of subspaces of H on which 〈L·, ·〉H < 0. The analogous terminology
applies to a self-dual operator L : H→ H ′.
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Proof. The operator L is self-adjoint. For f ∈ D(Lκ),

〈Lf, f〉H = 〈L̄Bf ,Bf〉H,

see (7.11). By proposition 7.6,

n− (L)⩽ n−
(
L̄
)
⩽ n− (S)<∞;

the general argument behind the first two estimates is reviewed in [47, lemma A.1]. To
show that n− (S)<∞ is easier than showing this for L directly, since S has a much simpler
structure and acts on functions of only the radial variable; this is the key point in introdu-
cing the reduced operators. For ψ ∈ Ḣ1

r , 〈Sψ,ψ〉⩾ C〈S ′ψ,ψ〉, where the self-dual operator
S ′ : Ḣ1

r → (Ḣ1
r )

′ is formally given as S ′ =−∆−V with a non-negative, continuous, com-
pactly supported potential V. This follows from suitable bounds on λκ and µκ. Now the map-
ping (−∆)1/2 : Ḣ1(R3)→ L2(R3), ψ 7→ (2π |ξ|ψ̂)ˇ is an isomorphism which respects spher-
ical symmetry. Passing to χ = (−∆)1/2ψ the relation 4π 〈S ′ψ,ψ〉= 〈(id−K)χ,χ〉L2 follows.
Here K = (−∆)−1/2V(−∆)−1/2 : L2(R3)→ L2(R3) is compact, since V is bounded and sup-
ported on the compact set B̄R(0) with [0,R] the radial support of the steady state, and the
map Ḣ1(R3) 3 f 7→ 1B̄R(0)f ∈ L2(R3) is compact; notice that h= V(−∆)−1/2χ ∈ L1 ∩L2(R3)

so that ĥ ∈ L∞ ∩L2(R3), and hence 1
2π|ξ| ĥ and its inverse Fourier transform are in L2(R3).

The spectral properties of compact operators imply that n−(id−K)<∞, and invoking [47,
lemma A.1] again it follows that n− (S)<∞.

The assertion on the spectrum of L now follows from the spectral representation of this
operator; the argument is discussed in detail in [47, proposition A.2].

Let us now assume that κ is large enough to apply theorem 6.5. That theorem provides a
negative energy direction, i.e. there exists a spherically symmetric function h ∈ C2(R6) which
is odd in v such thatA(h,h) =A( fh, fh)< 0. Here fh is the linearly dynamically accessible per-
turbation generated by h according to (5.12). If we compare this relation to the definition (7.1)
of the operator B it follows that fh =−B(ϕ ′h). Hence by (7.10),

0>A(h,h) =A(B(ϕ′h),B(ϕ′h)) = 〈L̄B(ϕ′h),B(ϕ′h)〉H
=−〈BL̄B(ϕ′h),ϕ′h〉H = 〈L(ϕ′h),ϕ′h〉H;

for the last two equalities notice that by lemma 7.1(b) the operator B is skew adjoint and the
relation (7.11) holds. Hence by definition n−(L)⩾ 1, and invoking the spectral representa-
tion of this operator again shows that L has a negative eigenvalue α< 0 of finite multiplicity,
see [47, proposition A.2]. Since the operator L is non-negative when restricted to the subspace
all even-in-v functions inH, eigenfunctions associated toαmust be odd-in-v, and the existence
of an exponentially growing mode is established.

Remark. (a) In the proof above the following observation concerning the concept of linearly
dynamic accessibility was important: the fact a state f = fh is linearly dynamically access-
ible and generated by h according to (5.12) is equivalent to saying that fh =−B(ϕ ′h).
This motivates the following generalization of this concept: a function f ∈ H is a linearly
dynamically accessible perturbation if f ∈ R(B).

(b) The condition (5.8) for linear dynamic accessibility requires that〈
χ′(f0) |ϕ′(E)|, f + eµ0λf|ϕ′(E)|

w2

〈v〉

〉
H

= 0 for all χ ∈ C1(R) with χ(0) = 0,
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and it can be shown that f ∈ R(B) satisfies this orthogonality condition which further jus-
tifies the generalization of the definition of linear dynamic accessibility.

(c) If the steady state allows the introduction of action-angle variables which according to the
discussion in section 5.2 is true in particular when κ is not too large so that the condi-
tion (5.14) holds, then H= R(B)⊕N (B), see [37, proposition 5.9], and R(B) is closed.
It is not clear if this is true in general.

(d) An important feature of linear dynamic accessibility was that it is preserved under
the linearized flow, see (5.20). The generalized concept shares this property which
can be seen as follows. The exponential formula for C0 semigroups [84, theorem 8.3]
shows that

etBL̄f = lim
n→∞

(
id− t

n
BL̄
)−n

f.

If f ∈ R(B) then induction shows that each of the n-dependent functions on the right is
again an element of R(B), and so is the limit if we are in the situation where that space is
closed. If needed this argument extends to the R(B)-case.

The same arguments as in the proof above show that

n−(L)⩽ n−(L̄|R(B)
)⩽ n−(S̃)<∞.

Based on the first-order formulation (7.9) these estimates and the machinery developed above
can be used to derive a detailed picture of the linearized flow for general κ. The important
point here is that (7.9) is a linear Hamiltonian PDE in the sense of [73]. We list some of the
key features here and refer to [47, theorem 4.28] for details.

The operator BL̄ generates a C0 group (etBL̄)t∈R of bounded linear operators on H. The
Hilbert space H can be decomposed into stable, unstable, and center space, i.e.

H= Es⊕Eu⊕Ec,

where Eu and Es is the linear subspace spanned by the eigenvectors corresponding to positive
or negative eigenvalues of BL̄ respectively. Moreover,

dimEu = dimEs = n−(S̃)<∞.

The subspaces Ec, Eu, Es are invariant under etBL̄. If S̃> 0, then the steady state is linearly
stable in the sense that there exists a constant C> 0 such that for all perturbations f ∈ H and
all times t ∈ R,∥∥∥etBL̄f

∥∥∥
H
⩽M‖f‖H . (7.14)

In the Newtonian limit κ→ 0 the operator S̃ converges to its Newtonian counterpart, which was
proven to be positive e.g. in [39]. By (7.14) one can therefore obtain linear stability against
general initial data in H, which improves theorem 5.5.

7.3. A Birman–Schwinger principle for (EV)

An important step in the previous two sections was to relate the generator(s) of the linearized
(EV) dynamics to some operator(s) defined on functions which depend only on the radial
variable r. An alternative way to do this is the Birman–Schwinger principle, which for (VP)
we discussed in section 4.3. In [37] a Birman–Schwinger type principle was developed for
(EV), and we now discuss the main features of this approach.
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The general aim is to derive a criterion for the existence of negative eigenvalues of
L=−B2 −R. The tool we consider here is the Birman–Schwinger operator

Q :=−
√
RB−2

√
R : Hodd → Hodd (7.15)

associated toL; notice that we work on the spaceHodd of odd-in-v functions since the Antonov
operatorL governs the evolution of that part of the perturbation, see (7.3). We recall lemma 7.1
for the basic properties of the operators B2 and R. In order to define the operator Q one first
has to show that the non-negative operator R has a square root

√
R : Hodd → Hodd. Indeed,

this operator can be defined explicitly:

√
Rf := 4π

√
r|ϕ ′(E)|e2µ0+λ0

√
2rµ ′

0 + 1
µ ′
0 +λ ′

0
wȷf (7.16)

defines a bounded and symmetric operator on Hodd with the property that
√
R
√
R=R; we

recall that ȷf =
´
wfdv and that by (3.11) the denominator is positive in the interior of the

radial support [0,R0] of the steady state under consideration, see [37, lemma 5.15]. Secondly,
one can show that the operator B2 : D(T 2)∩N (B2)⊥ → R(B2) is bijective; the inverse of
the latter operator cannot be written down explicitly, which makes its analysis tricky, but it
exists, see [37, proposition 5.14]. The key properties of the Birman–Schwinger operator Q are
captured in the following result.

Proposition 7.8. (a) The Birman–Schwinger operator Q is linear, bounded, symmetric, non-
negative, and compact.

(b) The number of negative eigenvalues of L counting multiplicities equals the number of
eigenvalues > 1 of Q.

Quite some machinery goes into proving this result, and we try to explain the main points.
First one introduces a family of auxiliary operators

Lγ :=−B2 − 1
γ
R : D(T 2)∩Hodd → Hodd, γ > 0.

Since B2|Hodd is self-adjoint and R is bounded and symmetric, Lγ is self-adjoint by the Kato-
Rellich theorem [92, theorem X.12]. Now Q is constructed such that 0 is an eigenvalue of Lγ

if and only if γ is an eigenvalue of Q, and the multiplicities of these eigenvalues are equal:
if f ∈ D(T 2)∩Hodd solves Lγ f = 0, i.e. −γB2f =R f, then applying −

√
RB−2 to the latter

Equation and writing R=
√
R
√
R yields

γ g= γ
√
R f = Q

(√
R f
)
= Qg,

with g :=
√
R f ∈ Hodd. The converse direction is similar.

Next, the operatorR|Hodd can be shown to be relatively (B2|Hodd)-compact so that by Weyl’s
theorem [54, theorem 14.6],

σess(Lγ) = σess(−B2|Hodd) = σess(L).

In addition, one can show that σ(−B2|Hodd) is positive and bounded away from 0, and hence
inf(σess(L))> 0. It remains to understand the behavior of the isolated eigenvalues of Lγ when
varying γ. This can be done by their variational characterization, and one can show that the
number of negative eigenvalues of L equals the number of γ’s for which 0 is an eigenvalue of
Lγ . This establishes the relation in proposition 7.8(b); for details we refer to [37, sections 6.1
and 6.2].
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By proposition 7.8 the original question of negative eigenvalues of L is translated into an
eigenvalue problem for the Birman–Schwinger operator which has quite favorable qualities.
But following Mathur’s idea encountered for (VP) in section 4.3 one can exploit the structure
which manifests itself in (7.15) and (7.16) to pass to an even simpler operator. By (7.15) an
eigenfunction of Q which corresponds to a non-zero eigenvalue lies in the range of

√
R, and

by (7.16),

R(
√
R)⊂

{
f = f(x,v) = |ϕ′(E)|wα0(r)F(r)a.e. | F ∈ L2([0,R0])

}
,

where

α0(r) :=
e

1
2 (λ0+µ0)(r)√
r(λ′0 +µ′

0)(r)
, r ∈]0,R0[.

In addition, if f(x,v) = |ϕ ′(E)|wα0(r)F(r) and g(x,v) = |ϕ ′(E)|wα0(r)G(r), then

〈f,g〉H = 〈F,G〉L2([0,R0]); (7.17)

a key ingredient here is the identity¨
w2|ϕ′(E)|dv= e−2λ0(r)−µ0(r)

4π r
(λ′0 +µ′

0)(r), r> 0,

which follows from (6.9) and (3.11). Based on these observations, the reduced operator or
Mathur operator

M : L2([0,R0])→ L2([0,R0]), F 7→ G

is defined as follows. First map F ∈ L2([0,R0]) to f ∈ Hodd defined by

f(x,v) := |ϕ′(E)|wα0(r)F(r) for a.e. (x,v) ∈ D.

Next map this f to Qf ∈ R(
√
R). Then there exists a unique G ∈ L2([0,R0]) such that

Qf(x,v) = |ϕ′(E)|wα0(r)G(r) for a.e. (x,v) ∈ D,

which completes the construction of the map M.
The relation ofM with Q immediately implies that γ 6= 0 is an eigenvalue of Q if and only

if it is an eigenvalue of M, and the multiplicities are equal; concerning the latter notice that
by (7.17) orthogonality of eigenfunctions is preserved. By the same relation it is easy to verify
that M inherits the functional analytic properties of Q: M is a bounded, linear, symmetric,
non-negative, compact operator, see proposition 7.8.

A draw-back of the construction seems to be that the Birman–Schwinger operator Q and
hence also the Mathur operator M contain the inverse operator of B. As noted before, this
inverse cannot be given explicitly, which seems to make it unclear how to apply the machinery
above to specific examples. However, the right inverse B̃−1 of B can actually be given expli-
citly, see [37, definition 5.7]. The operator B : D(T )∩N (B)⊥ → R(B) is bijective with
bounded inverse given by

B−1 = (id−Π)B̃−1,

where Π : H→ N (B) is the orthogonal projection onto the kernel N (B) of B, see for
example [54, section 5.4]. This information turns out to be sufficient to derive an integral
representation of M which is quite workable in applications.

Proposition 7.9. For G ∈ L2([0,R0]),

(MG)(r) =
ˆ R0

0
K(r,s)G(s)ds, r ∈ [0,R0],
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where the kernel K ∈ L2([0,R0]
2) is defined as

K(r,s) = e
1
2 (µ0(r)+3λ0(r))e

1
2 (µ0(s)+3λ0(s))

√
2rµ′

0(r)+ 1
√

2sµ′
0(s)+ 1

rs
I(r,s),

with

I(r,s) =
〈
(id−Π)

(
|ϕ′|Ee−λ0−µ01[0,r]

)
, |ϕ′|Ee−λ0−µ01[0,s]

〉
H
, 0⩽ r,s⩽ R0.

The kernel is symmetric, i.e. K(r,s) = K(s,r), andM is a Hilbert–Schmidt operator, see [91,
theorem VI.22 et seq.].

If one now combines the relations between the spectra of the Antonov operator L, the
Birman–Schwinger operator Q, and the Mathur operator M with general results on Hilbert-
Schmidt operators the following linear (in)stability information on (EV) results.

Theorem 7.10. (a) The steady state is linearly stable if, and only if,

sup
G∈L2([0,R0]),∥G∥2=1

ˆ R0

0

ˆ R0

0
K(r,s)G(r)G(s)dsdr< 1.

If equality holds, there exists a zero-frequency mode but no exponentially growing mode.
(b) The number of exponentially growing modes of the steady state is finite and strictly

bounded by ‖K‖2L2([0,R0]2)
.

(c) The steady state is linearly stable if ‖K‖L2([0,R0]2) < 1.

For a detailed proof we refer to [37]. Here we want to discuss an application of
these techniques yielding a result which was not obtained by the methods in the previous
sections, namely, we want to consider the stability of a shell of Vlasov matter surrounding
a Schwarzschild black hole. To this end we generalize the steady state ansatz to (3.13), we
place a Schwarzschild singularity of fixed mass M> 0 at the center, multiply the ansatz for
the particle distribution f with a parameter δ > 0 and keep the condition (4.1). One can show
that there exist corresponding steady states of (EV) where the Vlasov shell has finite mass,
finite extension, and is of course situated outside the Schwarzschild radius of the black hole;
for the details of the construction of these steady states we refer to [37, section 2.2]. If one
keeps the ansatz function with its cut-off energy and cut-off angular momentum and the mass
M of the Schwarzschild singularity fixed one can show that for δ > 0 sufficiently small, the
corresponding effective potential for the particle motion still has a single-well structure in the
sense of lemma 4.7 and section 5.2. This allows the introduction of action-angle variables for
the stationary characteristic flow, which was the tool behind many of the constructions in the
present section, so that these constructions continue to function also for the case with a central
black hole, provided the mass of the black hole dominates the mass in the surrounding Vlasov
shell. If one applies these constructions, one obtains the following result.

Theorem 7.11. There exist families of steady states ( fδ,λδ,µδ)δ>0 of (EV) with a
Schwarzschild singularity of mass M> 0 at the center surrounded by a shell of Vlasov matter
with particle distribution fδ , where the parameter δ > 0 controls the size of the Vlasov shell.
These steady states are linearly stable for δ > 0 sufficiently small. For δ→ 0 the metric con-
verges to the vacuum Schwarzschild metric of mass M, uniformly on ]2M,∞[, and the density
fδ converges to zero pointwise.

One should note that the characteristic flow for the particles in the shell of Vlasov matter
is very different from the flow induced by null geodesics, which governs the propagation of
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massless particles and perturbations of the metric. The result in theorem 7.11 is very different
from the result in [18].

8. Numerical observations, conjectures, and open problems

Maybe the most important single fact about the stability problem for the EV system is that
along a one-parameter family ( fκ,λκ,µκ)κ>0 of steady states with some microscopic equation
of state φwith φ ′ > 0, see proposition 3.1, the steady states change from being stable to being
unstable when the central redshift κ changes from being small to being large. This is a genu-
inely relativistic feature which has no parallel for the non-relativistic VP system.

We discussed some first steps toward understanding this κ-dependence of the stability beha-
vior on the linearized level in sections 5–7, and there is ample numerical evidence that this
behavior is very general for (EV) and is true on the nonlinear level, see [7, 34, 36]. Hence
any successful, comprehensive stability analysis for (EV) will have to take this phenomenon
properly into account.

One key step toward understanding this behavior would obviously be to find a criterion for
exactly when the change from stability to instability occurs. For the Einstein–Euler system
the turning-point principle clearly specifies the points along the so-called mass-radius curve
of a one-parameter steady state family, where stability changes to instability or the other way,
see [53, 79, 107]; in [46] Hadžić and Lin give a rigorous proof of the turning-point principle
for the Einstein–Euler system. But with the Vlasov matter model instead of a compressible,
ideal fluid numerical evidence shows the analogous turning-point principle to be false [34].
This issue has also been discussed in the astrophysics literature [1, 21, 56–58, 90, 109, 118,
119], where the behavior of the so-called binding energy has been suggested as an alternative
stability indicator. The (fractional) binding energy of a steady state ( fκ,λκ,µκ) is defined as

Eb,κ =
Nκ −Mκ

Nκ
,

where

Mκ =

¨
fκ 〈v〉dvdx, Nκ =

¨
eλκ fκ dvdx

are its ADM-mass and particle number. One can distinguish two forms of the binding energy
hypothesis. The weak binding energy hypothesis claims that steady states are stable at least
up to the first local maximum of the binding energy curve parameterized by the redshift. The
strong binding energy hypothesis claims that steady states are stable precisely up to the first
local maximum of the binding energy curve and become unstable beyond this maximum. In
[36] numerical evidence against the strong binding energy hypothesis is given and it is shown
that along the binding energy curve several stability changes can occur. The question from
which quantity one can predict the stability behavior of the corresponding steady state is open
even on the level of numerical simulations, and a good candidate could indicate how to make
progress on the rigorous analysis of the stability issue.

A further question which has been investigated numerically in [7, 34] is how a stable or an
unstable steady state reacts to perturbation. Upon perturbation, a stable steady state typically
starts to oscillate with an undamped or damped amplitude, very similarly to what we discussed
for the (VP) case. The reaction of an unstable steady state to perturbations is much more
interesting. Depending on the ‘direction’ of the perturbation it collapses to a black hole or
it seems to follow some sort of heteroclinic orbit to a different, stable steady state about which
(the bulk of) it starts to oscillate. Steady states with a very large central redshift may upon
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perturbation also disperse towards flat Minkowski space instead of following a heteroclinic
orbit as described above.

Obviously, there are in this context plenty of challenging questions awaiting rigorous math-
ematical analysis. We emphasize that the stability question for (EV) has also received a lot of
attention in the astrophysics literature; in addition to the citations above we mention [20, 22,
23, 63, 113].

One aim certainly must be to prove nonlinear stability of steady states with small redshift,
i.e. for steady states where linear stability holds according to theorem 5.5 and the results in
section 7. As we explained in section 2.4 it seems doubtful whether the global variational
approach based on the energy-Casimir functional HC can succeed in the (EV) case, although
it is very successful for the (VP) case as we saw in section 4.1. Probably a better chance for
generalizing it to the (EV) case exists for the local minimizer approach discussed in section 4.2
for the (RVP) case. The situation may improve if one considers a suitable reduced functional
derived from HC, such as we discussed for (VP) in section 4.1, see (4.8). In [117] such a
functional was derived for (EV), but the approach there suffers from two defects. Firstly, some
of the arguments in [117] are wrong; the main assertions in [117] have not been proven, see [5].
Secondly, even if correct the results in [117] would not imply any stability assertion since the
existence of minimizers to the reduced functional relies on certain barrier conditions which are
not known to be respected by the time-dependent solutions. This second, conceptual problem
persists even though in [6] the authors were able to rigorously prove some of the assertions
in [117]. In any case, nonlinear stability for (EV) is open, and we believe that new types of
(conserved) functionals, probably involving derivatives of the metric coefficients, or/and new
types of barrier conditions which are respected by time-dependent solutions are needed.

A second aim should be to prove nonlinear instability in situations where the existence of an
exponentially growing mode is known by theorem 7.7. It seems inconceivable that an expo-
nentially growing mode exists and the steady state is nonlinearly stable anyway, but saying
this is no proof. We point out that in the (VP) plasma physics case the step from an exponen-
tially growing mode to nonlinear instability has been made in [45], see also [29]. We believe
that it is a non-trivial and worthwhile project to prove the analogous result for (EV), even
though the outcome will probably not be surprising; notice that such unstable states should
upon proper perturbation collapse to a black hole, and initial data which lead to the forma-
tion of black holes are very important in themselves. An interesting aspect here is that for the
gravitational (VP) case the existence of exponentially growing modes has so far not been rig-
orously proven for potentially unstable steady states—those with sufficiently non-monotone
microscopic equation of state φ—but we refer to [114] for a numerical construction, see also
[39].

To conclude this section we point out that the stability problem reviewed above also poses
some open problems which refer to the structure of the steady states themselves, but which
have some bearing on the dynamic stability problem. It would be interesting to know for which
steady states the effective potential has a single-well structure and allows for the introduction
of action-angle variables for the stationary characteristic flow. Numerical evidence seems to
suggest that this is true for isotropic steady states, but not necessarily for general ones. A
proof exists only for isotropic steady states which satisfy the condition sup 2m(r)

r ⩽ 1
3 , while

numerical evidence suggests that this Buchdahl quotient is bounded by 1
2 , but whether this

improved Buchdahl bound indeed holds for all isotropic (EV) steady states and whether it
implies a single-well structure is open.
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9. Strict, global energy minimizers need not be stable

Consider the Hilbert space

H :=

{
(zk)k∈N | zk = (xk,pk) ∈ R2, k ∈ N, and

∞∑
k=1

(x2k + p2k)<∞

}
equipped with the norm

‖z‖ :=

( ∞∑
k=1

(x2k + p2k)

)1/2

, z= (zk)k∈N = ((xk,pk))k∈N.

On this space we define a linear dynamical system via

ẋk = pk, ṗk =− 1
k2
xk, i.e. ẍk =− 1

k2
xk, k ∈ N,

which can be written as

ż= Lz (9.1)

with the linear, bounded operator

L : H→ H, Lz :=
((

pk,−
1
k2
xk

))
k∈N

.

The operator L generates a uniform C0 group (etL)t∈R of bounded operators onH. The energy
functional

H : H→ R, H(z) :=
∞∑
k=1

1
2

(
1
k2
x2k + p2k

)
is Fréchet differentiable with

〈DH(z), δz〉=
∞∑
k=1

(
1
k2
xk δxk+ pk δpk

)
,

and H is a conserved quantity: d
dtH(etLz) = 0 for any z ∈ H. Since the system is linear, 0 is

a stationary solution, and it is the unique, strict minimizer of the energy H. However, 0 is
dynamically unstable in the sense of Lyapunov. To see this, we choose ϵ= 1 and let δ > 0 be
arbitrary. Fix some n ∈ N such that 1

2nδ > 1 and let z̊ :=
(
δnk(0, δ2 )

)
k∈N ∈ H. The solution with

these initial data is given by

zk(t) := δnk
δ

2

(
−kcos

( t
k
+
π

2

)
,sin

( t
k
+
π

2

))
, k ∈ N,

and ‖̊z‖= δ
2 < δ, while ‖z( 3π2 n)‖= |zn( 3π2 n)|=

1
2nδ > 1, which shows that the steady state is

unstable.
The nice thing about this example, which in some form or other is certainly known and

is obvious enough, is that the instability is not triggered by some nonlinear correction to the
linear(ized) dynamics, but solely by the infinitely many directions in which a solution can
escape.

It is also obvious that there is no compactness along minimizing sequences of H, such as
we exploited in section 4.1. Let zn := ((δnk,0))k∈N. Then (zn)n∈N is a minimizing sequence of
H, H(zn) = 1

2n2 → 0, but it converges no better than weakly.
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Finally, the operator has the spectrum σ(L) = {± i
k | k ∈ N} consisting only of isolated

eigenvalues of multiplicity 1. When viewed as a second order system, (9.1) takes the form

ẍ= L̃x,
where the bounded, self-adjoint operator L̃ : l2 → l2 is defined by

L̃x :=
(
− 1
k2
xk

)
k∈N

and has spectrum σ(L̃) = {− 1
k2 | k ∈ N}. One should compare this with the situation for (VP)

or (EV) where we also had a first and a second order version of the linearized system with a
self-adjoint operator governing the latter.
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