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Fruit body-forming fungi are hyperdiverse and of central importance for the

functioning of ecosystems worldwide. They provide habitat and resources for

other organisms and perform critical roles in carbon and nutrient cycling. Like in

animals and plants, fungal coloration is expected to play a fundamental role in

response to biotic and abiotic environments, thus providing invaluable

information to predict fungal and associated diversity in the Anthropocene.

Despite centuries of plant and animal coloration research, the role of fruit

body colors in fungal ecology remains mostly obscure. Essential questions are

unresolved, such as: How do fruit body colors function to cope with abiotic

stress? Do fruit body colors function to attract dispersal vectors or prevent

predation via camouflage or aposematism? What is the significance of fruit body

colors for fungal fitness? What are the implications of climate change-induced

fruit body color change on fungal and associated biodiversity? Here, I review

existing knowledge and outline several research trajectories to better understand

the ecological role of fruit body colors. Revealing climate-driven adaptations and

interactions with other organisms will improve forecasts under climate change

for fungal diversity and interrelated biodiversity and inform cross-taxonomic

conservation strategies.

KEYWORDS

fungi–animal interactions, climate change, attraction, aposematism, camouflage,
thermoregulation, defense, reflectance
Introduction

Fungi constitute one of the largest groups of organisms on Earth (Niskanen et al.,

2023). They are crucial in carbon and nutrient cycling, providing ecosystem stability (Liu

et al., 2022). Fruit body-forming fungi have evolved unique decay abilities (Floudas et al.,

2012) as well as plant symbioses (Kohler et al., 2015) and provide resources to other

organisms for breeding (Lunde et al., 2022) or nutrition (Fogel and Trappe, 1978; Elliott

et al., 2022; Kitabayashi et al., 2022). Gaining a mechanistic understanding of the biotic and

abiotic drivers of biodiversity is fundamental to forecasting and predicting fungal species

and community performance and associated diversity in climate change (Urban et al.,
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2016). Forecasts of biodiversity have implications for the

management of protected areas (Hannah, 2010), conservation

strategies (Dawson et al., 2011), and policymaking (Watson et al.,

2019). Functional traits and experiments allow for a mechanistic

understanding of species’ adaptations to their environment and

thus provide a better basis for forecasts than species diversity

measures (McGill et al., 2006; Urban et al., 2016). Coloration, one

of the most important functional traits on earth (Cuthill et al.,

2017), is a complex trait with multifunctional roles as a visual signal

and as pigments. Biotic processes include attraction, camouflage,

aposematism, mimicry (Chittka and Raine, 2006), microbial

defense (Narsing Rao et al., 2017), and dispersal (Lomáscolo

et al., 2010). Abiotic processes include protection from abiotic

stress such as extreme temperatures via thermoregulation (Trullas

et al., 2007; Delhey, 2019), UV radiation, desiccation, physical

damage, or heavy metals (Gill and Tuteja, 2010; Vavricka et al.,

2010; Cordero and Casadevall, 2017). However, despite the

enormous research on color in animals and plants (Chittka and

Menzel, 1992; Caro, 2017; Cuthill et al., 2017), we lack even the

most fundamental understanding of the multifunctional ecological

roles of fruit body colors and, therefore, knowledge of the

consequences of climate change for fungi and the biodiversity

depending on fruit body formation. Fruit bodies are the organ of

sexual reproduction of ca. 26,000 fungal species only within the

Agaricomycetes (Sánchez-Garcıá et al., 2020). Their colors are

important features in the systematic research (Guarro et al.,

1999), species identification (Læssøe and Petersen, 2019), and the

industry (Afroz Toma et al., 2023).
Pigments and colors in fruit bodies

Pigments found in fruit bodies are mainly melanins (dark

brown), carotenoids (orange, yellow, and red), and betalains

(yellow, red, and violet) (Gill, 1999; Velıśěk and Cejpek, 2011).

Fruit body colors are mainly brownish or whitish, but many fruit

bodies are also brightly red, yellow, purple, or greenish (Figure 1A).

These colors are, however, based on human vision color models and

do not capture what other organisms might interpret. Currently,

there are no studies of fruit body reflectance spectra (except some

single species) (Bekiaris et al., 2020), and therefore, a respective

database is missing, which also restricts the translation of fruit body

reflectance into different color vision models, e.g., of beetles and

mammals. Furthermore, it is currently largely unclear how

frequently fruit bodies reflect in the ultraviolet range. Although

structural colors seem to be absent (Brodie et al., 2021), fluorescence

appears to play some role (Reinhold, 2020). Thus, a critical step will

be to generate a fruit body reflectance database and use it to

calculate textual colors for different organism visual models.

The diversity of colors is high among species; however, it may

also be high among populations. Currently, we have generally only

little information about the role of intraspecific trait variability in

fungi (Krah and Bässler, 2021). Field identification guides often list

the occurrence of varieties within species, which often differ in color

(e.g., Knudsen and Vesterholt, 2008). There is currently no

systematic assessment of color variability within species; however,
Frontiers in Ecology and Evolution 02
a recent publication found that the high color diversity in Boletus

edulis could be partly explained by the population structure

(Tremble et al., 2023). Thus, when fruit body reflectances are

measured, the variability within the species should ideally

be captured.
Biotic and abiotic factors

Both biotic and abiotic environmental factors relate to the

coloration of organisms (Figure 1B).
Biotic factors

Within animal and plant studies, biotic mechanisms include

attraction (e.g., pollinators, dispersers, and mating partners),

aposematism and mimicry (e.g., repellence of consumers),

camouflage (e.g., avoidance of consumers) (e.g., outlined in Caro,

2017), and antimicrobial activities (Cordero and Casadevall, 2017).

First, fungus–animal interactions are frequent, including the

utilization of fruit bodies as a food source by mammals and slugs,

as a breeding ground for beetles and flies, or simply as a resting site

for flying insects (Elliott et al., 2022; Borgmann-Winter et al., 2023).

Attraction might play a role in dispersing sexual spores produced in

the fruit body. Many studies have indeed suggested that animals

may contribute to spore dispersal likely on small spatial scales

(Guevara and Dirzo, 1999; Lilleskov and Bruns, 2005; Seibold et al.,

2019; Elliott et al., 2022; Borgmann-Winter et al., 2023); however,

wind dispersal is relevant for both short- and long-distance

dispersal (Finlay and Clarke, 1999; Hallenberg and Kuffer, 2001;

Galante et al., 2011; Golan and Pringle, 2017). Furthermore, the

attraction could also signal profitability, similar to the color change

of plant fruits when ripe (Sinnott-Armstrong et al., 2021). Although

studies have shown that the nutritional value of fruit bodies varies

with their developmental stages (Cheung, 2013), we do not know if,

e.g., dietary fiber content correlates with color changes. Finally, fruit

body color has been suggested as a warning (aposematism) of their

unprofitability or poisoning to herbivores. First, we currently need

more observational data on repellent tastes and toxic properties (but

see below on antimicrobial defense) and only some reports and

speculations for single species (Halbwachs et al., 2016). Second,

textual color categories based on human color sensitivity did not

correlate with human-coded unprofitability (Sherratt et al., 2005).

The latter paper found a strong correlation between color and spore

size, indicating a role of color in dispersal by insects or mammals.

Thus, the correlation between spore size and fruit body color should

be examined in more detail. The paper further suggested relations

between smell and poisoning, highlighting the need to investigate

olfactory clues when studying fungal colors. These results highlight

that we need to understand whether fruit body color provides biotic

signaling leading to increased or decreased animal consumption

or visitations.

Although attraction is important in plant–pollinator

interactions, other biotic factors may play a role. Based on the

human color model, ca. more than 50% of fruit body colors are
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somewhat dull colored (Figure 1A), maybe resembling forest floors,

especially in fall, when most species produce fruit bodies in the

northern hemisphere (Krah et al., 2023). Visual camouflage could

deceive mycophores and protect fruit bodies by preventing

detection (crypsis) against the background or their substrates or

environments (Stevens and Merilaita, 2009). The matching of fruit

bodies with their backgrounds may thus prevent detection. Since

the key function of the fruit body is protecting spore production

until the release of spores, camouflage could protect the fruit body

long enough to avoid being consumed before spore discharge
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(Halbwachs et al., 2016; Nagy et al., 2017). However, the

camouflage hypothesis has yet to be tested. Crypsis became

known first in plants, where ca. 25% of all species are estimated

to be cryptic or aposematic (Lev-Yadun, 2016). In fact, the lines

between crypsis and aposematism are often not clear and many fruit

bodies may be camouflaged and poisonous at the same time. In

summary, we lack evidence in favor of or against the attraction and

camouflage hypotheses.

Besides biotic factors based on visual signals, pigments may also

play essential roles in the defense from bacterial and fungal attacks.
B

A

FIGURE 1

(A) Fruit body colors of 1,575 temperate fungal species based on a standardized color palette (Læssøe & Petersen, 2019). Fruit body images by Franz
Krah. (B) Conceptual framework of the abiotic and biotic aspects of potential relevancy for the role of fruit body colors. Pigment production is driven
by pigments, which also mediate responses to abiotic stress. Depending on the visual system, different colors are seen, which may lead to different
animal behavior such as predation. Both abiotic and biotic factors may effect fungal fitness if they suppress maturation and spore release.
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Those may include aspects of aposematism or the killing of

pathogens and predators. Chemical defense strategies have been

reviewed elsewhere (e.g., Spiteller, 2015). For example, the pigment

mycenaaurin produced by the orange-colored species Mycena

aurantiomarginata exhibits antibacterial activity (Jaeger and

Spiteller, 2010); however, the ecological significance is still

unclear. Another largely unexplored topic is photoactivated

defense strategies. Many basidiomycete pigments show structural

similarity with plant pigments, which are known for light-activated

defense strategies such as the production of radical oxygen species

(Siewert, 2021). A first case study showed that some pigments of

species of Cortinarius subgenus Dermocybe are photoactivated and

had toxic effects on a glassworm species (Hannecker et al., 2023).
Abiotic factors

Besides biotic factors, the abiotic environment also interacts

with color, specifically pigments. Pigments have been described for

some species (Gill, 1999), primarily for food and medicinal (Kalra

et al., 2020) or for taxonomic and systematic purposes (e.g., Lodge

et al., 2014). However, we need pigment composition data for most

species (but see Siewert, 2021).

One of the most studied abiotic aspects of color is

thermoregulation. The thermal-melanism hypothesis for

ectotherm organisms, such as fungi, states that dark-colored

organisms are at an advantage in colder environments (Trullas

et al., 2007). Using the first large-scale fruit body distribution

dataset, colleagues and I found that fungal assemblages had, on

average, darker fruit bodies in colder environments, supporting the

thermal-melanism hypothesis for the fruit body-forming fungi

(Krah et al., 2019). In subsequent studies, this finding was

confirmed along with an elevational gradient and independent

from the microclimate (Krah et al., 2022; Oechler and Krah,

2022). Further hypotheses regarding fruit body coloration are the

desiccation-protection hypothesis (DPH; Oechler and Krah, 2022),

which predicts color adaptations of organisms in dry environments,

and the photo-protection hypothesis (PPH; Rensch, 1929), which

predicts color adaptations of organisms in radiation-rich

environments. Considering multiple covariates, Krah et al. (2019)

found no support that darker colors are related to radiation

protection but that assemblage color lightness varied with

precipitation, maybe due to desiccation protection via pigments

(Cordero and Casadevall, 2017). Despite these first vital insights, we

still need to find out whether fungi respond plastically in terms of

fruit body pigmentation to environmental factors, whether

pigmentation can reduce environmental stress, and whether

pigmentation provides a fitness benefit in specific conditions such

as biomass or number of viable spores. Thus, additional studies

relating measured color spectra and pigment composition to abiotic

factors and testing for fitness advantage under controlled conditions

are needed.

Besides ecological studies, phylogenetic comparative methods

also provide important insights into the ecology and evolution of
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coloration. For example, plant species likely diversified in co-

evolution with pollinating insects (van der Niet et al., 2014). In

Agaricomycetes, only low phylogenetic signal of color lightness was

found across ca. 3,000 species, suggesting rather adaptive evolution

of pigments and colors (Krah et al., 2019). However, the low

phylogenetic signal may also have resulted from considering only

one aspect of color in terms of color lightness.
Future perspective

The summary of studies clearly shows a need for more research

on the role of fruit body coloration in fungal ecology. Thus, in the

following, I will highlight essential ways forward toward research

trajectories required to fill the apparent research gaps. Those will

include generating novel data and combining them with existing

data to address macroecological questions. Furthermore, laboratory

and field experiments are needed to test for abiotic effects on color

and explicitly test for attraction/aposematism vs. camouflage. These

studies should be complemented by functional and physiological

studies focusing on how color mediates fungal responses to their

environment and fitness.
Database and color models

The current greatest obstacle in studying the role of color in

fruit bodies is the need for more data on fruit body reflectance

spectra. Thus, research efforts should increase to measure

reflectance. Furthermore, reflectance should be translated into

different color vision models. Insects, mammals, birds, and slugs

are relevant for fungi–animal interactions (Elliott et al., 2022). For

instance, most mammals have two photoreceptors sensitive to green

and blue light (Jacobs, 2009); most insects have either three or four

photoreceptors sensitive to UV, blue, and green light, for example,

the honey bee or flies, respectively (Backhaus, 1991; Lunau, 2014;

Hannah et al., 2019); however, many beetles possess two

photoreceptors, which is also likely true for Staphilinidae (beetles

often found in fruit bodies), but some beetles have four

photoreceptors (van der Kooi et al., 2021); birds have four kinds

of photoreceptors sensitive to red, blue, and green light and some

are also sensitive to UV (Hart and Hunt, 2007); the visual system of

slugs is most likely not able to differentiate colors due to their

reduced optical system and their mostly nocturnal activity (Dimock

Jr and Parno, 1981; Nishiyama et al., 2019).
Big data integration

Macroecological community ecological approaches have proved

invaluable in ecological research in testing broad species diversity

and functional diversity patterns (Keith et al., 2012). Utilizing large

datasets, macroecological community patterns can inform about the

relative effects of different predictor sets while incorporating a large
frontiersin.org
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volume of existing diversity. Despite their correlative nature, the

large amount of data used provides robust statistical means to gain

first insights into ecological relations that are of importance to

inform more detailed analyses and experiments. Existing extensive

species distribution datasets that draw from reputable sources such

as the CLIMFUN project (Andrew et al., 2017; Krah et al., 2019),

GBIF (GBIF, 2017; Krah et al., 2023), and GlobalFungi (Větrovskỳ

et al., 2020) should be integrated with reflectance measurements to

build macroecological models and test for the relative importance of

abiotic and biotic predictor sets (e.g., Dalrymple et al., 2020).

Additionally, fungi–animal datasets in combination with

reflectance data should be exploited. One example is the dataset

comprising 58 fungal species, 40 insect species (Cisidae), and 65,675

interaction data points (Reibnitz, 1999), which was used prior to

studying fungi–insect relationships, but without consideration of

color traits (Thorn et al., 2015). In addition, several articles exist

where feces were collected and fungi were identified via

metagenomic approaches (Bradshaw et al., 2022; Kitabayashi

et al., 2022; Ogórek et al., 2022; Weinstein et al., 2022); however,

these data have not been analyzed yet in terms of the fruit body

coloration. One promising approach might be to use the existing

species-by-species fungus–animal associations and use occurrence

data (e.g., GBIF) to test for phenological overlap of fruiting and, e.g.,

insect activity. Given enough temporal resolution of the data, it

would be important to test for phenological mismatches over time,

as this would be the first evidence for a novel form of mismatch that

might be explained by climate warming.
Experiments

The attraction, aposematism, or camouflage hypothesis for

fungi have not been tested in experimental settings. Therefore,

real-world field experiments should be used to test the independent

effects of fruit body traits on animal interactions. Furthermore, if the

studied species are involved in fungus–animal interactions, color

changes via abiotic factors may disrupt those interactions. One

experiment could be designed to test if species with specific colors

are more visited by animals. Fruit bodies could be treated in the field

to disentangle a visual signal (color), an olfactory signal (volatiles),

and abiotic factors by differentially excluding either the visual signal

or the olfactory signal. This experiment could comprise fruit bodies

of species and five treatments: (i) real fruit body, (ii) real fruit body

covered by transparent odor-impermeable nylon-resin oven bag

(visual only), (iii) only transparent odor-impermeable nylon-resin

oven bag (visual control), (iv) real fruit body covered by odor-

permeable intransparent green muslin bag (scent only), and (v) only

odor-permeable intransparent green muslin bag (scent control).

This approach has been successfully conducted within the plant–

pollinator research (Policha et al., 2016). To identify insects and

other animals, a camera survey (Schmid et al., 2019) or sticky traps

(Graf et al., 2022) could be used.
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Functional studies

Many of the pigments responsible for fruit body colors may have

a role in resistance to abiotic stressors, including extremely high or

low temperatures, low water availability, rainfall as physical damage,

or ultraviolet radiation (Cordero and Casadevall, 2017). Depending

on the pigment composition and the color spectra, species and

individuals should be differentially able to exist in an environment

more or less affected by such stressors. Thus, pigments and colors

should provide a fitness advantage in harsher environments. To fully

support any of the thermal-melanism, the DPH or the PPH requires

three aspects to be supported (following Cordero et al., 2018): (1)

colors are related to the specific abiotic variable (e.g., darker fruit

bodies in colder environments), (2) colors function to reduce abiotic

stress (e.g., darker fruit bodies warm faster than light-colored ones),

and (3) colors provide a fitness advantage in the abiotic condition

(e.g., darker fruit bodies have the same biomass in cold environments

as light-colored ones in warm environments). Fruit bodies could be

collected across different environments with measurements of dry

weight and the number of spores determined as relative fitness. For

the abiotic physiological stress experiments, fruit bodies could be

subjected to high UV radiation followed by a spore viability test, or

placed under an artificial solar radiation (Krah et al., 2021) to

determine warming rates, or placed in a drying cabinet to

determine desiccation rates.
Phylogenetics and evolution

Further phylogenetic analyses would be helpful to answer some

important evolutionary questions. For example, how conserved

pigments and colors are across larger phylogenies may inform

about selective pressures. Furthermore, fungal diversification rates

may be explained by the kind of fungus–animal interaction.

Likewise, estimating precisely the first occurrence of certain

pigments and colors can help to explain the mechanisms behind

color pattern we see today.
Conclusion

The role of colors is a key trait with implications for fungi’s

relations to both the abiotic and the biotic world. Establishing a

trait-based mechanistic understanding of how color mediates fungal

responses to climate and other factors will enhance our ability to

forecast fungi under global change. Furthermore, identifying the

role of color in fungi–animal interactions will allow assessing the

potential for climate change-induced disruption of their interaction

via color change. Finally, a better understanding of the biology of

fruit body colors will also benefit a more holistic understanding of

color across kingdoms.
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