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Abstract

As human activities in natural areas increase, understanding human–wildlife
interactions is crucial. Big data approaches, like large-scale camera trap studies,

are becoming more relevant for studying these interactions. In addition, open-

source object detection models are rapidly improving and have great potential

to enhance the image processing of camera trap data from human and wildlife

activities. In this study, we evaluate the performance of the open-source object

detection model MegaDetector in cross-regional monitoring using camera traps.

The performance at detecting and counting humans, animals and vehicles is

evaluated by comparing the detection results with manual classifications of

more than 300 000 camera trap images from three study regions. Moreover, we

investigate structural patterns of misclassification and evaluate the results of the

detection model for typical temporal analyses conducted in ecological research.

Overall, the accuracy of the detection model was very high with 96.0% accuracy

for animals, 93.8% for persons and 99.3% for vehicles. Results reveal systematic

patterns in misclassifications that can be automatically identified and removed.

In addition, we show that the detection model can be readily used to count

people and animals on images with underestimating persons by �0.05, vehicles

by �0.01 and animals by �0.01 counts per image. Most importantly, the tem-

poral pattern in a long-term time series of manually classified human and wild-

life activities was highly correlated with classification results of the detection

model (Pearson’s r = 0.996, p \ 0.001) and diurnal kernel densities of activi-

ties were almost equivalent for manual and automated classification. The results

thus prove the overall applicability of the detection model in the image classifi-

cation process of cross-regional camera trap studies without further manual

intervention. Besides the great acceleration in processing speed, the model is

also suitable for long-term monitoring and allows reproducibility in scientific

studies while complying with privacy regulations.
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Introduction

Increasing human activities such as recreation can affect

wildlife behaviour globally. Wildlife adapts to human

presence by changing its habitat use, movement patterns

and temporal activity (Gaynor et al., 2018; Naidoo & Bur-

ton, 2020; Tucker et al., 2018). Although evidence indi-

cates that human disturbances can impact wildlife

behaviour, these effects are potentially reversible (Nelle-

mann et al., 2010; Shively et al., 2005). Moreover, knowl-

edge on long-term consequences for populations and

ecosystems is limited (Wilson et al., 2020). Assessing

human–wildlife interactions on broad spatial and tempo-

ral scales is hence of importance to incorporate this infor-

mation into wildlife management and conservation

(Frank et al., 2019). As interactions are complex and

hardly generalizable (Tablado & Jenni, 2017; Zimmer-

mann et al., 2021), big data approaches such as the com-

bination of camera trapping and machine learning will

highly improve studies on the spatiotemporal interactions

of human and wildlife activities.

In wildlife ecology, camera traps have proven to be a

robust method to generate spatiotemporal data on multi-

ple species with the advantage of being non-invasive, and

cost-efficient (Burton et al., 2015; Caravaggi et al., 2017;

Glover-Kapfer et al., 2019; Rowcliffe et al., 2014).

Recently, this approach has further increased its applica-

bility for research, wildlife management and conservation

as machine learning models for wildlife classification on

image data improved rapidly (Falzon et al., 2020; Norouz-

zadeh et al., 2020; Tabak et al., 2019). Computer vision

algorithms reach high accuracies in animal species classifi-

cation and outperform manual classification substantially

on a temporal scale with, for instance, 2000 classified

images per minute (Tabak et al., 2019). A key disadvan-

tage is the restriction to species that were included and

labelled while training the machine learning model result-

ing in low accuracies beyond those classes as well as trou-

bles with untrained camera trap sites (Schneider et al.,

2020). To overcome the site- and species-dependence

issues, object detection models, which identify the location

of an object on an image and classify those objects into

basic categories may be favourable compared to mostly

used image classifiers, which classify the entire image.

Open-source object detection models, such as MegaDetec-

tor (Beery et al., 2019) are trained on millions of globally

generated images to detect basic object classes, such as

persons, animals or vehicles and have been used in multi-

ple wildlife conservation programs worldwide.

Particularly studies in recreation ecology seeking to

understand complex interactions of species and humans

in space and time, would benefit from such an approach

as large spatiotemporal data from wildlife and human

activities can be analysed simultaneously. So far, assess-

ments of human–wildlife interactions using camera traps

were limited by data protection regulations, that is, per-

sonal rights, and costly manual classification processes

(Lupp et al., 2021; Miller et al., 2017; Reilly et al., 2017).

Using automated object detection would significantly

reduce temporal and financial efforts in this field and

additionally facilitate the compliance with data protection

regulations. MegaDetector has been shown to detect

humans with a high precision of 99% and animals with

82% precision, which resulted in a 500% increase in pro-

cessing speed (Fennell et al., 2022). Despite these advan-

tages, the establishment of a widely usable approach by

coupling camera trap data and open-source object detec-

tion models on wildlife and human activity (Fennell

et al., 2022; Staab et al., 2021) requires a detailed assess-

ment of the methodological restrictions and bottlenecks.

Investigating general patterns in human–wildlife interac-

tions needs long-term, large-scale and cross-regional study

designs resulting in the use of differing camera trap

models and multiple human classifiers. Different site and

trail conditions, varying seasons (e.g. snow heights and

vegetation heights) and recreational activities (e.g. moun-

tain biking, hiking and skiing) as well as fluctuating staff

in research and camera trap maintenance tend to increase

the complexity of the underlying data and might impose

biases to the detection models. Nevertheless, a determina-

tion of error sources, which decrease the accuracy of

automated detection has not been conducted yet. Such an

approach would help to define site-specific workflows to

increase the accuracy of datasets generated with object

detection models and hence the output of subsequent

studies in wildlife and recreation ecology.

Here, we present and evaluate a methodological

approach for automated visitor and wildlife monitoring

in multiple recreational areas using camera traps and

automated object detection. We test the object detection

model MegaDetector on 352 426 images generated from

159 different off- and on-trail camera traps in three study

regions in Bavaria, Germany. This is to our knowledge,

the largest dataset of classified human and wildlife activi-

ties tested for automated object detection since so far

mostly image classifiers were used. Here, we used an

object detection model as image classifier to overcome

the problem of having different backgrounds due to vary-

ing camera trap sites and environmental conditions. We

specifically evaluate (a) the accuracy of MegaDetector fol-

lowing Fennell et al. (2022) while discriminating between

object class, detection confidence, study areas and camera

trap sites and (b) the performance of MegaDetector in

counting objects on camera trap images. In addition, we

(c) identify systematic misclassifications of the object

detection model and (d) test the detection results for
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long-term time series of activity patterns as well as diur-

nal activity patterns, two typical analyses in wildlife and

recreation ecology, which have yet only been addressed

for wildlife species (Whytock et al., 2021).

Materials and Methods

Camera trap data and classification process

Camera trap images were collected in three areas in

Bavaria: the Fichtelgebirge, the Veldensteiner Forst and

the Bavarian Forest National Park (Fig. 1). In the nature

park Fichtelgebirge, 72 879 images from 10 camera traps

running from December 2019 to September 2020 were

used for the study. For the Bavarian Forest National Park

(BFNP), 269 051 images were used from 143 camera traps

deployed from November 2020 to July 2021. In the

nature park Veldensteiner Forst, six camera traps were

deployed from July 2020 to January 2022 and recorded

10 496 images. In total, we used 352 426 images for this

analysis, 229 100 contained humans and/or vehicles and

114 937 contained animals.

We used different camera trap models including Reco-

nyx HyperFire2, CuddebackC2 and CuddebackG at on-

trail as well as off-trail locations. The cameras were set to

continuously record 1–3 images per trigger with no delay

in high-sensitivity mode. We checked the cameras every

4–8 weeks to replace image data storage and batteries.

Camera traps were installed in a way that human privacy

rights are conserved. We either directed the camera traps

to the lower body parts only, manually added a blurring

filter to the camera trap and/or blackened the bounding

boxes around human detections prior to manual classifi-

cation in order to meet privacy regulations. The latter

was done using the artificial intelligence software Amazon

Rekognition (Amazon Web Services, 2023), since an auto-

mated anonymization of humans was not available via

MegaDetector yet.

Wildlife ecologists and students manually classified the

image data into detections of 19 wildlife species, human

outdoor activities and vehicles and identified empty

images (Table S1). The counts per class were recorded for

each image using the tagging software xnviewmp (version

1.0) and the server-based software TRAPPER (Bubnicki

et al., 2016). The same camera trap images were classified

into animals, persons, vehicles and empty images by the

object detection algorithm MegaDetector (version 4.1,

Beery et al., 2019), running locally on a desktop (Intel i9-

9000 series CPU, 64 GB RAM and an NVIDIA Quadro

RTX 4000 GPU).

Figure 1. Map of Bavaria in Germany with the three study areas Bavarian Forest National Park, Veldensteiner Forst and Fichtelgebirge (from

bottom to top).
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Analysis

We determined the performance of the object detection

model by comparing the results with the manual classifi-

cation. First, we compared each image file, summarized

results into a confusion matrix of true positive (TP), true

negative (TN), false positive (FP) and false negative (FN)

and calculated accuracy TPþ TNð Þ= TPþ TNþ FPþð
FNÞ, precision TPð Þ= TPþ FPð Þ, recall TPð Þ= TPþ FNð Þ
and specificity TNð Þ= TNþ FPð Þ (Fennell et al., 2022) for

the object classes person, animal and vehicle. Here, accu-

racy is the most suitable metric to report the performance

of MegaDetector in detecting and counting the target

object classes per frame, which is why we focus on report-

ing our results for accuracy. For other analysis, however,

and for enabling future comparisons, the results for preci-

sion, recall and specificity are reported in the supplements

(Figure S1; Table S2). We visualized the performance of

the object detection model using boxplots in order to

identify variances amongst study regions and camera trap

sites. The performance of the object detection model for

counting objects per image frame was evaluated by calcu-

lating the difference in detected counts per object class

between manual and automated detection. We further

summed detections on a daily level and calculated Pear-

son correlation coefficient of manual and automated

detections. To test the suitability of automated object

detection results for ecological analyses, we calculated ker-

nel densities of the activities of animals and persons and

determined the overlap coefficient of those two classes

(Niedballa et al., 2016). All analyses were performed for

the confidence thresholds 50, 60, 70, 80, 90 and 95 per

cent to evaluate the best confidence threshold in depen-

dence of the object class and using R Statistical Software

(version 4.2.1; R Core Team, 2022) and camtrapR R

package (Niedballa et al., 2016).

Results

Overall, the object detection model accurately detected

the object classes animal (96% for the 95 per cent confi-

dence threshold), person (93.8% for a 95 per cent confi-

dence threshold) and vehicle (99.3% for a 95 per cent

confidence threshold). Results varied across study areas

with the lowest detection accuracy being 84.3% for ani-

mals at Veldensteiner Forst (95 per cent confidence

threshold) and the highest accuracy with 99.7% for vehi-

cles in the Bavarian Forest (95 per cent confidence thresh-

old). Similarly, detection accuracy highly differed within

study areas (Fig. 2; Table S2). In the Fichtelgebirge, model

accuracy for detecting persons ranged between 52% (95

per cent confidence) and 97.9% (50 per cent confidence),

whereas detection accuracy of animals and vehicles was

more consistent across camera trap sites (animals: 86.5–
98.6%; vehicles: 83.9–99.8%). Likewise, the detection

accuracy for animals and vehicles was slightly more con-

sistent than for persons in the Bavarian Forest (animal:

77.5–99.6%; person: 68.9–100%; vehicles: 90.5–100%).

Contrarily, the variance of the detection accuracy of ani-

mals (72.2–96.6%) was greater compared to persons and

vehicles (persons: 78.7–95.4%; vehicle: 94–100%) in the

Veldensteiner Forst. Across all images, a 95 per cent con-

fidence threshold has the highest detection accuracy for

the object classes animal and vehicle, whereas for persons,

Figure 2. Object detection model accuracy for detecting the object classes animal (green), person (orange) and vehicle (violet). The accuracy,

which is the proportion of correctly detected images, is shown per camera trap location and study area and calculated for the confidence

thresholds 50, 60, 70, 80, 90 and 95 per cent.
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the highest accuracy was achieved with a 50 per cent con-

fidence threshold (93.98% accuracy, 93.83% accuracy for

95 per cent confidence) (Fig. 2). Similarly, precision for

all object classes was highest for a 95 per cent confidence

threshold and reached 97.4% for animals, 99.6% for per-

sons and 94.1% for vehicles, whereas recall was highest at

a 50 per cent confidence threshold (animal: 91.2%; per-

son: 91.4%; vehicle: 89.7%) (Figure S1; Table S2).

Overall, detection accuracy slightly differed between

images taken at night and daylight. Given a 95 per cent

confidence threshold, accuracy was 96.8% at day and

93.4% at night for animals. Performance in detecting per-

sons at day was lower (92.0% accuracy) than during the

night (98.9% accuracy), whereas there was no difference

in detection performance between day and night time for

vehicles (99.0%; 99.9%). Compared to manual detection,

the object detection model was on average barely under-

estimating the object counts for animals (�0.01). How-

ever, for individual images, the count difference between

the automated and manual detection was high, for exam-

ple, ranged between �29 and +7 for an image with a

flock of chaffinches. The best count was achieved at a

confidence threshold of 90 per cent (Fig. 3). For persons,

the object detection model underestimated counts by on

average �0.05 counts per image (min = �8; max = +9)
and performed best at a low confidence threshold of 50

per cent. Vehicle object counts were only slightly underes-

timated by �0.01 (�6 to +4), and the results marginally

varied between confidence thresholds (Fig. 3).

The object detection model continually detected some

patterns on camera trap images inaccurately. For instance,

false positive detections commonly occurred on blurry

pictures when the camera trap was moved for mainte-

nance, when vegetation is moving in sunlight as well as

branches and cones in the shape of animals (Fig. 4A).

However, detections were similarly identified as false posi-

tives when the manual detection was incorrect (Fig. 4A).

The detection model frequently misclassified fast moving

objects which are blurry, such as running shoes or bicycle

wheels, or a head of hair close to the camera trap as ani-

mals and smartphones or backpacks were detected as

vehicles (Fig. 4B). Particularly persons on a bicycle were

repeatedly not detected by the object detection model

when only small parts of the human body are visible on

the image, resulting in false negatives (Fig. 4C). Addition-

ally, one bicycle was occasionally detected as two vehicles

(Fig. 4C).

Daily activity patterns of animals, persons and vehicles

detected by the object detection model were overall highly

correlated with daily manual detections (Pearson’s

r = 0.996, p \ 0.001). While daily detections were

slightly over- or underestimated depending on the confi-

dence threshold and object class (Fig. 5), the distribution

of daily detections of automated (95 per cent confidence)

and manual classification overlapped by 95.4%.

Analyses of the diurnal activity pattern as kernel den-

sity curves of all manually detected animals and persons

were of high conformity with the patterns of automati-

cally (95 per cent confidence) detected animal and human

diurnal activities (Fig. 6). Consequently, the activity over-

lap coefficients of both approaches were almost equivalent

(manual: 0.42, automatically: 0.41).

Figure 3. The average difference and confidence intervals in counts per detection of the object detection model and the manual detection for

the object classes animal (green), person (orange) and vehicle (violet) and the confidence thresholds 50, 60, 70, 80, 90 and 95 per cent across all

camera trap locations and study areas.
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Discussion

We show that the used open-source object detection model

is an effective tool for analysing camera trap data of

wildlife and human activities. The overall detection perfor-

mance is highly accurate for the object classes animal,

person and vehicle, indicating great improvements in

processing large image data amounts by reducing time and

Figure 4. Examples of incorrectly labelled images with (A) false positive detections of the object detection model or the human classifier, (B) false

classes detected by the object detection model and (C) false counts of the detected classes by the object detection model.
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cost efforts. Although misclassification of objects other

than animals, persons or vehicles as well as of repeatedly

generated blurry images during maintenance of camera

traps may result in reduced detection performance, we

found that they occur systematically and are hence exclud-

able. Therefore, we consider object detection models for

Figure 5. Daily detections of manually and automatically (model confidence threshold 50, 60, 70, 80, 90 and 95 per cent) detected object

classes animal, person and vehicle on the camera trap image data in the Bavarian Forest National Park.

Figure 6. Kernel densities of diurnal activities of (A) manually and (B) automatically (95 per cent confidence threshold) detected object classes

animal and person on all camera trap image data of the study and the underlying activity overlap coefficients (Niedballa et al., 2016).
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assisting in the image classification process a highly benefi-

cial tool for studies in recreation or wildlife ecology.

In general, object detection models allow a strong

reduction in manual labour while classification of objects

is highly accurate and independent from geographical

regions (Beery et al., 2019; Fennell et al., 2022; Norouzza-

deh et al., 2018; Tabak et al., 2022). Empty images or

images with specific objects can be excluded rapidly and

hence, the time for the image classification process can be

significantly reduced (Beery et al., 2019). Likewise, our

results indicate that within cross-regional study designs

with differing camera trap models and technical equip-

ment as well as slightly differing data handling, the overall

detection accuracy remains high, while accelerating classi-

fication speed from 200–500 images to 15 000–20 000

images per hour. This proves the applicability of detection

models for realistic scenarios of camera trap studies in

wildlife and recreation ecology. Particularly for recreation

ecological research questions, where human activities are

of similar interest as wildlife activity, using automated

object detection models, such as MegaDetector is benefi-

cial. It enables the processing of large amounts of images

collected on recreational trails in a short time (Fennell

et al., 2022), while keeping compliance with data protec-

tion regulations (Sharma et al., 2020).

Moreover, if the types of recreational activities com-

monly carried out in a region are known, detections based

on object detection models have the potential to addition-

ally differentiate these activities from each other. For

example, if hiking and biking are the most common activ-

ities, a differentiation into hiker and biker is possible as

detected vehicles and persons on the same image should

refer to biking while images with exclusively persons being

detected should represent hikers. This is a strong advan-

tage of using camera traps and automated object detection

for investigating recreational activities in natural systems

(Lupp et al., 2021), since other methods used for generat-

ing large spatiotemporal data of human activities such as

pressure sensors or infrared sensors are limited in differ-

entiating between activities (Cessford & Muhar, 2003;

Staab et al., 2021). However, depending on the common

human activity and the proximity of cameras to human

settlements, images with detections of a person plus vehi-

cle may need to be further investigated, since also objects

such as buggies and wheelchairs were classified as person

plus vehicle. If motorized activities are allowed, humans

on scooters, quads, etc., add further complexity to inter-

preting such classification results. Likewise, images with

detections of both animals and persons may indicate

hikers with dogs but also horseback riders, in case the lat-

ter activity is allowed in the study region. For camera trap

studies in wildlife ecology, detection models have the

potential to drastically reduce the classification effort of,

for example, large carnivores. Carnivores are known to

preferably use linear features such as recreational trails

(Bojarska et al., 2020; Newton et al., 2017), which is why

camera traps are often placed along these linear features

to increase capture rates, thereby unintentionally generat-

ing large amounts of image data with persons or vehicles.

By employing the output of object detection models to fil-

ter these, in this example, unnecessary object classes and

the vast majority of empty images, manual classification

time can be reduced.

In addition to the significant acceleration of the classifi-

cation process when using detection models, we also found

that the MegaDetector detection model, by detecting each

individual object in an image, generally performs well at

counting objects on images. For more general assessments

of human–wildlife interactions, the accuracy of detection

models in detecting and counting animals, persons and

vehicles is sufficient as it only slightly over- or underesti-

mates counts. However, in rare events where, for instance,

a blurry flock of birds is passing or where single individuals

in a group of animals or humans are partly covered by

others, counts are less precise due to difficulties in detec-

tion of and differentiation between objects. The assessment

of more detailed spatiotemporal patterns of visitors or

wildlife in natural areas (Arnberger & Hinterberger, 2003;

Ladle et al., 2017) may require a more precise group size

estimate. Furthermore, object detection models are often

limited to broad categories (person, animal and vehicle),

while wildlife studies usually address questions on the spe-

cies level. In this case, we suggest applying a combined

approach of initially using MegaDetector to filter out

empty pictures, and for example, pictures of human activi-

ties, followed by either manual classification and counting

of remaining wildlife images on the species level or using

additional models for automated species or activity identi-

fication (Redmon et al., 2016; Rigoudy et al., 2022, Fig. 7).

Depending on the specific research question, it might be

relevant to additionally classify more detailed attributes

such as sex, age or behaviour of the animal, which is not

applicable yet when using open source models (Vélez

et al., 2022). Additionally, it is worth mentioning that

MegaDetector as well as other machine learning models are

continuously improving with increasing training data, and

therefore, the version (version 4) used in this study might

not be the current one in future studies.

A combined approach of camera traps and automated

object detection enables the long-term collection of

human and wildlife presence–absence data on a large spa-

tial scale. For assessing variation in activity patterns over

time or species responses to habitat change or human dis-

turbances, camera trap data is commonly analysed in

time-series analysis or kernel densities of diurnal activi-

ties. Here, we prove that the classification results of the

8 ª 2023 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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object detection model were extremely consistent with

manual classifications and both approaches were highly

correlated in these typical analyses. This is in line with

the results for calculating species richness, activity pat-

terns and occupancy of wildlife species when using a

machine learning model for automated labelling (Why-

tock et al., 2021). For the analysis presented here, we sug-

gest choosing a confidence threshold higher than 90 per

cent, when high precision is needed for ecological studies.

However, this leads to losses of detections when the

object detection model was unconfident due to, for

instance, suboptimal positioning of the object in the

image. A strategy to reduce this deficiency would be to

adjust the confidence threshold according to the study

specific requirements to lower levels. Studies targeting, for

example, species richness or occupancy may need to

reduce the confidence threshold in order to achieve

higher recall and not miss animal detections.

Particularly for cross-regional camera trap studies with

large image datasets, the application of automated object

detection models has the advantage to standardize classifi-

cation processes to a certain extent. Manual classification

of large datasets requires multiple observers, resulting in an

inter-observer bias and misidentification of mammal

species (Zett et al., 2022). Such mistakes can be reduced by

categorizing observations in certain classes using an auto-

mated object detection model prior to manual classifica-

tion. In addition, automated blackboxing of humans on

camera trap images to keep in compliance with data pro-

tection increases miscounting of individuals by human

classifiers as one bounding box may cover multiple persons

walking next to each other. Conversely, automated object

detection models serve as a standardized method to protect

the privacy of human individuals photographed by camera

traps (Sharma et al., 2020), enabling the use of the images

of human activities for recreational purposes studies. Using

detection model classification results, images with humans

are easily removed from the dataset to protect privacy

rights. Besides, this study shows that misclassification

mostly results from blurry parts of a human without faces

recorded on the image. If a further investigation of images

classified by an object detection model is needed, for exam-

ple, to determine outdoor activities in more detail, we rec-

ommend the use of filters such as instance segmentation,

Figure 7. Hierarchal workflow for automated visitor and wildlife detection on camera trap images by using different models for the classification

levels (A) elimination of empty images (B) detection of the object classes animal, vehicle and person using MegaDetector (Beery et al., 2019) and

(C) classify into wildlife species and human activities using, for instance, DeepFaune or YOLO (Desai et al., 2022; Redmon et al., 2016; Rigoudy

et al., 2022).
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which only blur humans in pictures instead of completely

covering the part of the picture the human bounding box is

in (Desai et al., 2022; Kirillov et al., 2020). Further advances

in automated image processing may additionally enable the

identification of similar individuals on a sequence of

images using object tracking (Wojke et al., 2017).

While the bare use of automated object detection models

for the classification of large camera trap data is still limited

to broader object classes, we conclude that the integration

of automated object detection in a hierarchical classifica-

tion approach is highly beneficial. Beside a great accelera-

tion in image processing speed and a subsequent reduction

of costs involved, it has the potential to standardize the

classification process across studies and keeps the compli-

ance with data protection regulations. For detailed analyses

in recreation and wildlife ecology, where precise species

classification and counting of individuals as well as addi-

tional attribute identification is necessary, a subsequent

manual classification is still unavoidable. However, as data

collection is rapidly increasing worldwide and likewise,

software as well as hardware is improving quickly (Glover-

Kapfer et al., 2019; Norouzzadeh et al., 2020), reliable

models for more detailed classification and broad use in

ecology are certain.
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Vélez, J., Castiblanco-Camacho, P.J., Tabak, M.A., Chalmers,

C., Fergus, P. & Fieberg, J. (2022) Choosing an appropriate

platform and workflow for processing camera trap data

using artificial intelligence (arXiv:2202.02283). arXiv. http://

arxiv.org/abs/2202.02283
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