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Abstract: The social cost of carbon (SCC) has emerged as one of the relevant measures in integrated
assessment models in climate economy, to quantify costs related to global warming and climate change.
While the SCC is used in different models including DICE (Dynamic Integrated model of Climate
and Economy), PAGE (Policy Analysis of the Greenhouse Effect) and FUND (Climate Framework
for Uncertainty, Negotiation, and Distribution), its exact definition and computation depends on the
reference and frequently lacks consistency within research streams focusing on a single or on different
models. In this paper, we investigate three different methods for the computation of the SCC using the
integrated assessment model DICE. While the first two methods are commonly known and used, the
novel formula derived for the third method allows a direct analysis of the impact of the discount factor
in the calculation of the SCC. We provide a detailed proof for the correctness of the third method and
validate all three methods by numerical experiments.
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sensitivity analysis

1. Introduction

To quantify the damages from anthropogenic emissions of heat-trapping greenhouse gases,
economists model the dynamics of climate—economy interactions using integrated assessment mod-
els (IAMs), which incorporate mathematical models of phenomena from both geophysical science and
economics. A central role for IAMs is to estimate the social cost of carbon (SCC), defined as the
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dollar value of the economic damage caused by a one metric tonne increase in carbon dioxide (CO;)
emissions to the atmosphere. The SCC can then form the basis of a Pigouvian tax on greenhouse
gas emissions, guide carbon prices in emissions trading schemes, inform cost-benefit analyses driving
climate policy, or be used by investors looking to consider potential emissions costings in investment
decisions. This wide range of uses highlights the importance of methods for computing the SCC.

A critical and much debated issue in computing the SCC is the choice of discount rate. CO, is a
long-lived greenhouse gas (GHG), with CO, emissions having a substantial impact on climate for thou-
sands of years; e.g. 20—40% of a CO, perturbation remains in the atmosphere even after equilibration
with the ocean on a timescale of 2-20 centuries [1, 2]. Comparing costs and benefits over such long
time horizons necessitates a careful choice of discount rates and methodologies in order to provide a
fair comparison of costs paid now—rvia emissions reductions—with economic benefits from curbed
global warming in the far distant future.

Conceptually, the most common approach to computing the SCC using IAMs is to compute baseline
emissions and economic consumption. These computations are then repeated with an increment of CO,
emissions in a chosen year, yielding reduced economic consumption into the future as the result of a
climate damages function in the IAM. The SCC is computed as the net present value (NPV) of the
“damage stream” (i.e. pathway of lost consumption) (see, for example, [3, 4]). This NPV approach is
employed directly by two of the most widely used IAMs: PAGE (Policy Analysis of the Greenhouse
Effect [5]) and FUND (Climate Framework for Uncertainty, Negotiation, and Distribution [6]). While
descriptively this is what is intended with DICE (Dynamic Integrated model of Climate and Economy,
see Figure 1 and associated discussion in [4]), in practice the publicly available implementation of
DICE uses a different method, based on shadow prices or Lagrange multipliers obtained as a result of
solving an optimal control problem (see [7]).

The classical Ramsey formula for social discount rate is given by r = p + 6g, where p is the pure
rate of time preference (or “impatience factor”), 6 is the elasticity of marginal utility of consumption,
and g is the growth rate of per-capita consumption [8]. While the calculation of the SCC as the NPV of
damage stream due to CO, pulse implies use of a discount rate, there is widespread disagreement in the
literature regarding the appropriate discount rate to use in this context; see for example the following
list of representative papers, wherein the SCC is described as being computed as the NPV of a damage
stream variously discounted at: (a) the classical Ramsey formula (i.e., assuming a constant growth
rate of consumption); (b) a time-varying Ramsey formula (reflecting the growth rate of time-varying
consumption); (c) the pure rate of time preference; and (d) a fixed rate without any explicit reference to
the Ramsey formula; see [9], [6], [10], [11], [5], [12], [13], [3], [14], [15, Appendix E], [4], [16], and
also [17, Section 13.7] which proposes exercises based on both (b) and (d). The report [18, Chapter
7] provides a chapter on various discounting approaches in the economics of climate change. It is
worth noting that in some cases it is unclear precisely how the discounting is being performed as it is
described in words rather than by providing an explicit mathematical expression.

As briefly mentioned above, a conceptually distinct approach to computing SCC relies on max-
imizing a social welfare function. As explicitly defined in [19], “The [SCC] in a particular year is
the decrease in aggregate consumption in that year that would change the current expected value of
social welfare by the same amount as a one unit increase in carbon emissions in that year.” Expressed



formally, the SCC at time 7 is defined as

ow

Sce(h) =~ (1.1)

C(1)

where a simple manipulation shows that this is the ratio of the marginal prices of consumption and
emissions. In fact, this is the computation contained in the code implementing the DICE model and
optimal control problem as presented in [7]. Here, W denotes social welfare, E denotes emissions and
C denotes consumption, whose definitions are made precise in Section 2.

The above discussion indicates three possible computational methods for the SCC: a direct dis-
cretization of (1.1); using the ratio of marginals obtained from solving an optimal control problem:;
and an NPV approach based on experimental CO, emission pulses. Additionally, for the last approach,
there are several options for how to perform the required discounting. This leads us to the follow-
ing question: which (if any) of the above options for computing the SCC are consistent with each
other? Importantly, neither FUND nor PAGE involve an optimal control problem, meaning the first
two methods mentioned here are not relevant. Hence, answering this consistency question is critical
for comparing results between IAMs based on optimal control methodologies with those based on
scenario methodologies.

Our main mathematical result is Theorem 1, which demonstrates that in order to obtain consistency
between the NPV calculation and the SCC values calculated via optimal control approaches, it is
necessary to use a time-varying discount rate. In particular, the time-varying component is inversely
proportional to economic growth, leading to a declining discount rate [20], [21], [22]. Specifically,
returning to the Ramsey formula r = p + g, mentioned above, the quantity g is time-varying and given
by the growth rate of consumption. The quantities p and 8 are “exogenous” to the model and need to
be selected by the modeler on the basis of data and/or economic expertise. Note that it has been argued
that the use of declining rates is justified in the presence of significant uncertainty in future economic
growth (see [23]). Here, we see that the use of a declining discount rate is required for consistency with
outputs from calculations based on shadow prices obtained when solving optimal control problems.

This paper is organized as follows. In Section 2 we succinctly present the DICE model as described
in [24]. In Section 3, we investigate three methods for computation of the SCC using the DICE model.
Section 3.1 presents the calculation based on a discretization of the difference quotient of the two
quantities in (1.1). In Section 3.2 we demonstrate how to rewrite the DICE optimal control problem
so that emissions and consumption are decision variables, which allows us to obtain the marginals or
dual variables directly as an output of solving the optimal control problem. This has the computational
benefit of removing the welfare function as an intermediary in the SCC calculation. In Section 3.3 we
present the main mathematical result of the paper (Theorem 1) which shows an equivalence between
calculating the SCC as a ratio of the dual variables versus the NPV when the discounting approach
is computed via the time-varying Ramsey formula accounting for a time-varying growth rate of con-
sumption. Section 4 presents some numerical results and discussion and we conclude in Section 5.
Mathematical necessities and the proof of our main result are collected in Appendices.

Notation: The set Ny = {0, 1, 2,...} denotes the natural numbers including zero, while N = {1,2,...}
denotes the natural numbers without zero. The real numbers are denoted as R and R,y = {x € R| x > 0}
denotes the real numbers bigger or equal to zero. For n € N, the set R” = R x - - - X R denotes the n-fold
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Cartesian product of the real numbers and & € R" denotes an n-dimensional vector with x(i) € R,
i €{1,...,n}. To simplify expressions and to define convergence rates we use the big O-notation, i.e.,
two functions fi, > : R = R, f2(x) > 0 for all x > 0, satisfy fi(x) = O(f>(x)) if and only if there are
C > 0 and 6 > 0 such that |f;(x)| < Cf>(x) for all 0 < x < §. For a continuously differentiable function
f i R"XR" - R, (x,y) — f(x,y), the gradient is denoted by V f(x, y). The gradient and the second
derivative of f with respect to a subset of variables, that is with respect to x, for example, is denoted
by V. f(x,y) and V2 _f(x,y), respectively.

2. The DICE model

For the computation of the social cost of carbon, we consider the Dynamic Integrated model of
Climate and Economy (DICE). For a comprehensive introduction of the model and its parameters we
refer to [4, 24]. Here we only present the equations of the model that are necessary for the following
sections while following the notation introduced in [24]. We focus on the parameters defining the
R-DICE2016 model, but the results derived in this paper also hold for the parameters defining the
DICE-2013R model. Following the R-DICE2016 setting we denote time in years by ¢ € R so that

t=ty+A-1, (2.1)

with initial time 7, = 2015, a sample period A = 5, and i € Ny. The DICE model is described through
the dynamics

M(i + 1) = @y M(i) + By (0()(1 = p(@)AGDK G LG + Epana(i) + Epuse(i)) (CAR)

TG+ 1)=®;T@) + By (FZX log, (,V”/Tlgzo) + FEX(i)) : (CLI)

K(l + 1) = (DKK(l) + A (m) (1 -6 (l)'u(Z)GZ)A(Z)K(Z)YL(Z)I_YS(Z), (CAP)
) [ 1+ L, g

Li+1)= L(z)(1 " L(l.)) , (POP)
. 3 A(D)

A D = g expanb G~ 1)’ (D)

(i + 1) = o(i) exp (=go(1 = 6, VA, (ED)

modeling the climate (CLI), the carbon cycle (CAR), the capital (CAP), the population (POP), the total
factor productivity (TFP), and the emissions intensity (EI). The remaining time dependent quantities
are described through the equations

01(i) = ﬁ(l —8,) " - (i), 2.2)
FEx<i>=fo+min{ﬁ s flt‘ff"(i— 1)}, 2.3)
Elana(i) = Ero- (1 = 6)™". (2.4)

Control inputs are the savings rate, s(i) € [0, 1] for all i € Ny, and the mitigation rate, u(i) € [0, 1] for
all i € Ny. An additional parameter, Epy(i) € R, for all i € N, is used for the calculation of the partial
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derivatives needed contained in the definition of the SCC, cf. equation (3.2), below. The additional
parameter Epy(i) has an impact on the total emissions

E@) = o ()(1 = p@DADKELE)'™ + Epana(i) + Epuise(d) (2.5)

at time i € N, which we can identify in (CAR). The parameter is not present in the baseline DICE
model where Epy..(i) = O for all i € Ny. We collect the states in the variable X, i.e.,

X(@@) ={T (D), M(@), K@), L(D), A(D), o (D)}

and use X(0) = X, to denote a fixed initial condition.
The control inputs are used to maximize the social welfare depending on the consumption and the
utility at time i € Ny as

CGi) = (TW) (1= 1)) ) AGDK @ LG)' ™ (1 = 5()) + Cruse i) (2.6)
(1000_0(;‘))1“’ _1
UGi) = L(i){ L(’)l — ] 2.7)

Here, Cpyse(i) € R, for all i € Ny, plays the same role as Epy(7) in Equation (CAR), manipulating the
consumption in a specific year. Then, for a fixed horizon N € N, the social welfare is defined as

N-1 .
W=y v (2.8)
i=0

(1 +p)™

and the optimal control problem (2.9) which maximizes the social welfare and generates optimal path-
ways is defined as

N-1 .
. _ U(i)
W ) o
subjectto X(0) - Xy =0 (2.9)
(CAR)-(ED), Vi=0,...,N—1,
(2.2) - (2.4), Vi=0,...,N—1,
s@),u@) €[0,11 Vi=0,...,N—-1.

The optimal control problem (2.9) constitutes a nonlinear program (NLP). We use the notation W*
to denote the optimal value with respect to Cpyse(j) = Epuse(j) = 0, for all j € {0,...,N — 1}, i.e.,
W* denotes the nominal or baseline solution of (2.9). In the case that Cpys(j) # 0 or Epye(j) # 0
for j € {0,...,N — 1}, is considered in (2.9), the optimal solution is denoted by W*[Cpysc(j)] or
W*[Epuse()], respectively. Similarly, optimal pathways are denoted using -*. In this context, C*(-),
C*'[Cpuse(N](+), and C*[Epyise(j)]1(-) denote the optimal consumption pathways obtained through (2.9)
with Cpyse(J) = Epuse(j) = 0, Cpuse(j) # 0, and Epyee(j) # 0, respectively (in all cases we set
Cpuise(i) = Epyse(i) = 0 for all i # j). Additionally, N € N denotes a fixed horizon and s, i € RY define
a short-hand notation for

s(0) u(0)
s = : and m= : . (2.10)
s(N-1) u(N -1)



3. Calculation of the Social Cost of Carbon

In this section we take as a formal definition of the SCC at time j € {0,..., N — 1}, a scaled version
of the change of the optimal consumption C*(j) with respect to a change of the optimal emissions
E*(j), i.e., we define

aC*(j)
OE*(j)’

Sce(j) = —1000 (3.1
The scaling provides an SCC value in US dollars per tonne of CO,, [24, Sec. 2.8]. Since E*(j) is itself
an outcome of the optimal control problem (2.9) rather than an independent variable on which C*(j)
would depend, it is not immediately clear how this partial derivative has to be interpreted. Its meaning
is as follows: we consider Epy(j) € R\ {0} and Epyse(i) := O for all i # j. Then we solve the optimal
control problem (2.9) in order to obtain C*[Epy(j)](-). The partial derivative in (3.1) is then defined

as
aC* () ._ lim C*[Epuse(N1() — C*())
8E*(J) ) EPulse(-/_)_‘O EPulse(j) )

Epylse(N#0

(3.2)

In the same way, partial derivatives with respect to other quantities occurring in the optimization can
be defined.

Under appropriate differentiability assumptions on E*, C* and the optimal value function W*, Equa-
tion (3.1) can be rewritten as
oc*(j) owr OW*[OE*(j)

-1000 ——+—= (3.3)

Sce(j) = —1000 _
ce() oW+ BE*(j) W /C*(j)

used as the common definition in [4, Sec. 2.1], for example. Here, “[t]he numerator is the marginal
impact of emissions at time j on welfare, while the denominator is the marginal welfare value of a unit
of aggregate consumption in period j”, [4, Sec. 2.1].

Since the optimal value function W* as well as the optimal total emissions E*(j) and optimal con-
sumptions C*(j) are only implicitly known as the optimal solutions of the optimal control problems
(2.9), a direct calculation of the social cost of carbon through (3.3) is not possible. Nevertheless, there
are several efficient ways to approximate (3.3).

3.1. Direct discretization based on the difference quotient

Using (3.2), we can approximate the quantity in (3.3) at a fixed time j € {0, ..., N—1} by performing
three experiments to compute approximations

ow” N W Epyse(j)] — W* and ow” N W Cpyse())] — W* (3.4)
6E*(]) EPulse(j) ac*(]) CPulse(j) . .

To this end three optimal control problems can be solved.

1. A baseline solution of (2.9) that generates a welfare value W* corresponding to Epy..(j) = 0 and
Cpuse(j) =0forall j=0,...,N - 1.

2. A second solution of (2.9) with a small non-zero perturbation on emissions at time j € {0,...,N—
1}; i.e., Epuse(j) # 0. This yields a second (optimal) welfare value W*[ Epyse(j)]-
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3. A third solution of (2.9) with a small non-zero perturbation on consumption at time j € {0,..., N—
1}; i.e., Cpuse(j) # O that yields a third (optimal) welfare value W*[Cpyse(j)]-

Then the SCC in (3.3) can be approximated by

CPulse(j) . w* [EPulse(j)] -w
EPulse(j) w [CPulse(j)] - W ‘

Since (3.4) is a first order approximation of the derivative of W* with respect to E*(j) and C*(}),
respectively, the right-hand side of (3.5) converges with order O(Cpyse(j) + Epuse(j)) to (3.3) for
Cpuise(j) = 0 and Epyse(j) — 0 and under the assumption that the optimal control problem (2.9) can be
solved with arbitrary precision. To calculate Scc(j) for all j € {0,..., N — 1} using the approximation
(3.5), 2N + 1 optimal control problems need to be solved.

Remark 1. The order of convergence follows from Taylor expansions of W* under the assumption that
W* is twice continuously differentiable with respect to E and C. In particular, the derivation of the
error term O(Cpyse(j) + Epuise())) relies on

*

W*[EPulse(j)] = GE*( )EPulse(]) + O(EPulqe(]) )
(3.6)
ow™*
wr [Cruse(N)] = ac*( )CPulse(]) + O(CPulse(]) )

and is given in detail in Appendix C.

3.2. SCC calculation based on dual variables

Most modern NLP solvers, including IPOPT [25] and CONOPT [26], for example, the optimal La-
grange multipliers, i.e., the dual variables, of all explicitly enforced equality and inequality constraints
in addition to the optimal solution W*, s*, u*. This can be used to compute the SCC directly via dual
variables. All what is necessary to do is formulating (2.9) in a way such that C(i) and E(7) are decision
variables of the NLP. Using (2.5) allows a reformulation of (CAR) in terms of

M@+ 1) = Oy M) + ByEQ). (3.7)
Instead of (2.9), we can thus consider the modified optimal control problem
= max v
B s,u,C.E ‘= (1 +p)Ai

subject to X(0) - Xy =0

(3.7),(CLI) = (EI), Yi=0,...,N—1, (3.8)
(2.2) = (2.4), Vi=0,.. . . N-1,
(2.5) — (2.6). Vi=0,.. . .N-1,
s, u() €[0,11  Vi=0,...,N—1.
where

C(0) E(0)
C = : and FE :
C(N-1) E(N - 1)
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are defined similar to (2.10). The optimal control problems (2.9) and (3.8) are identical in the sense
that the optimal solutions W* as well s* and p* coincide. However, in (3.8) we avoid the substitution
of (2.6) and (2.5).

The main difference between (2.9) and (3.8) is that in the latter case, consumption and emissions
are treated as pseudo decision variables defined via explicit equality constraints, while in the former
case one substitutes C(7) and E(7) in the objective and the dynamics by the expressions given in (2.6)
and (2.5). The implementation of (3.8) in an NLP solver such as IPOPT yields values for the optimal
Lagrange multipliers of all constraints.

To make this more precise, note that we can rewrite (3.8) in form of the parameter dependent
optimization problem

f(p) =max f(z)
subjectto hg(x) = pg, Yi=0,...,N-1,

he(x) = pc, Vi=0,....,N—1, 3.9)
k(x)y = 0,
glx) = 0,

in the optimization variables x = {s, u, C, E}. Here,

denotes the objective function in the variables s, u, C, E and

hi () = EG) = (@)1 = p))ADKG L' ™ + Evana(i)),

_ ) ) N’ . ) wl— .

he,(x) = C(0) - ((TW) (1= 61 (u()*) ADK LG (1 = 5())),

capture (2.5) and (2.6) fori = 0,...,N — 1. The pulses Epys and Cpy are included through the
parameter p = [pr. pLl”,

PE, Pc,
PE = : and DPc = :
PEy_, Pcy_,

in the right-hand side and the optimal value f*(-) depends on the selection of p. The equality and
inequality constraints & — k(x) and « — g(x) cover the remaining constraints of (3.8), i.e., X(0) = X,
(3.7), (CLD—(E)), (2.2)—(2.4), s(i), u(@) € [0,1] fori € {0, ..., N — 1} are encoded through appropriate
equality and inequality constraints in the decision variable x.

The Lagrangian corresponding to (3.9) with Lagrange multipliers (Ag, Ac, 0, k) is defined as

N-1

L@, A, Ac, 0, k5p) = f(x) - Z AP, = hi () + Ac/(pe, = he,(®)) | = 6" k(®) - k" g(x). (3.10)

J=0
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If z* and (A}, A;, 6", k") are an optimal solution-Lagrange multiplier pair (see [27, Sec. 5.1.3], for
example) then the optimal value function satisfies

[ (p) = L& (p), Ap(p), Ac(p), 07 (p), K*(p); p) = f(2"(P)). (3.11)

Moreover, under appropriate conditions (second order sufficiency conditions [27, Prop. 3.3.2], for
example) the partial derivatives of the optimal value function in a neighborhood around p = 0 satisfy

of*
opE
of*
dpc

0
(p) = ﬁ(w*(p), A:(P) Ac(p), 6% (p), k' (p); p) = —A.(P),

(3.12)

(p) = %(w*(p), AE(P), Ac(p), 67 (p), k' (p); p) = —A¢,(P),
forall i € {0, ..., N — 1}, according to [27, Prop. 3.3.3].

While in the optimal value function necessarily the terms containing Lagrange multipliers vanish
and only the objective function is important according to (3.11), in V,f*(p) in (3.12) it turns out
that the dependency of (x*, A}, Az, 6%, K*) on p can be ignored when computing the gradient through
the Lagrangian (3.10). Thus, the Lagrange multipliers Az, A¢ are a measure of the sensitivity of
the objective function with respect to changes in the right-hand side of the equality constraints. In
economics, this sensitivity is also known under the name shadow price as outlined in [28, Chapter
3.3.4], [29, Chapter 3.5], for example.

These observations finally allow us to return to (3.3). If we recall the connection between (3.8) and
(3.9) we observe that
. ow* ow

Ay = ———, d AL =- 3.13
5T TRy T YT Tac() -13)

is satisfied for all j € {0,..., N — 1}. Thus according to (3.3) the SCC is given by

/'l*
E;

—.
/lcj

Scc(j) = —1000 (3.14)

Using (3.14), Scc(j) can be computed for all j € {0, ..., N—1} by solving only a single optimization
problem (3.8). In addition, unlike (3.5), Equation (3.14) is not an approximation of (3.3) but an exact
expression. However, the pulse experiments might be more intuitive and from an interpretation point
of view easier to understand than the connection to the Lagrange multipliers.

3.3. SCC calculation based on the discounted damages stream

In this section we present a third way to compute the SCC. This is based on the net present value,
which, as described in the introduction, has been used in much of the climate economics research but
not in a consistent manner. Here, we will show that a time-varying Ramsey discount factor, accounting
for a time-varying growth rate of consumption, is required for consistency between calculating the
SCC as a discounted damages stream and calculating the SCC as a ratio of marginal prices. The result
relies on the assumption that (2.9) satisfies second order sufficiency conditions. The precise definition
and a corresponding result are reported in Theorem 2 in Appendix A.
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Theorem 1. Consider the optimal control problem (2.9) and assume that (2.9) satisfies second order
sufficiency conditions. Then the SCC at time j € {0,...,N — 1} is given by

ey
Sce(j) = 10002 aE*((l)) i (3.15)

where the Ramsey discount factor between periods jand i € {0,...,N — 1} is defined as

1 1
0i:= — . =, (3.16)
g (1 +P)A(l 7 (1 + g],))
and the growth rate of per capita consumption up to period i is defined as
C*()/L(i
8ji = M - 1. (317)
C*(D/LG)

A proof of Theorem 1 is given in Appendix B. Based on Theorem 1 the SCC can again be com-
puted using a finite difference approximation. While 6;; in (3.16) can be computed explicitly, the
partial derivative gg((;; in (3.15) needs to be approximated. We can thus perform two experiments to
approximate the SCC at time j € {0,..., N — 1} using Equation (3.15):

1. A baseline solution of (2.9) that generates a welfare value W* corresponding to Epys(i) = 0 and

Cpuse(i) = Oforalli = 0,...,N — 1 and additionally returns the nominal consumption pathway
C*(i)fori=0,...,N—1.
2. A second solution of (2.9) with a small non-zero perturbation on emissions at time j € {0,..., N—

1}, i.e., Epuse(j) # 0. This yields a second (optimal) welfare value W*[Epy;s(j)] and additionally
a second (optimal) consumption pathway C*[Epy(j)](@) fori =0,...,N — 1.

With the resulting pathways, we can calculate the discount rate ¢;; and we can approximate the
partial derivatives, similar to (3.4), by (C*[Epuse(J)](@) — C*(i))/(Epuise(j)). The social cost of carbon
can then be approximated by

1000 XS
Z(C [Epuse(NIG) — C* (D)6 ;. (3.18)

Sce()) » =
CC(J) Epulse(j) i=0

The expression (3.18) has a familiar interpretation as the net present value (NPV) of the stream
of damages due to an emissions pulse at time j, and is conventionally expressed in units of $/tCO,.
Note, however, that in computing the NPV in (3.18), the discount factor ¢;; is time-varying due to its
dependence on the growth rate g(-) of per capita consumption; cf. (3.16). This marks a subtle, but
potentially interesting point of departure between (3.18) and a large body of literature which applies
the well-known, continuous-time Ramsey equation for the discount rate r = p + « - g for constant g, to
the discrete-time setting (see [30], for example).

Remark 2. Using the Taylor expansion

*

oC
C*[EPu]se(j)](i) = C*(Z) + 6E*( )EPu]se(]) + O(EPulse(]) ) (319)
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le.,
€ _ C'lEpuse(DIG) = C°()
6E*(]) EPu]se(j)

it follows that (3.18) converges with order O(Epye(j)) to Scc(j), similar to the first order convergence

of (3.5).

+ O(EPulse(j)),

4. Numerical Results

In this section we discuss three aspects in the calculation of the SCC using the DICE model. For the
calculations we use the standard setting of the DICE-2016R model (see [24, Table 2] for the parameter
selection) if not specified differently. For the numerical calculations we use the implementation [31].
While we use a horizon of N = 100, consistent with the parameters in DICE-2016R, we only focus on
the first time steps in the visualizations.

Before we focus on the calculation of the SCC, we recall one of its illustrative definitions and
visualizations used in the literature and highlight the antcipatory response of solutions of the optimal
control problem (2.9) when emission or consumption impulses are added at different time steps. In [4]
the SCC is illustrated as “the economic cost caused by an additional ton of carbon dioxide emissions”
which is usually illustrated by adding a pulse to the first time step in the future [4, Figure 1]. In
particular, with respect to [4, Figure 1], if time step 1 indicates the initial conditions, an additional ton
of carbon dioxide emissions is added at time step 2. Under these assumptions, baseline emission and
consumption pathways are compared with perturbed emission and consumption patways. The baseline
emissions and consumption pathways using the DICE-2016R model are visualized in Figure 1.

200 W T | -+E(z) ]
R 100 1
0 : = o}

2050 2100 2150

D
6000 ]
o 4000 r
2000 .
| 000000 —o—C(i)
2050 2100 2150
Year
Figure 1. Optimal (baseline) emissions and consumption pathways using the DICE-2016R

model.

By adding the additional tonne at the earliest possible time in the future, one might get the mislead-
ing impression that a perturbation Epy(j), j € {0, ..., N — 1}, only affects emissions and consumption
at time steps k € {j,..., N — 1}. This is however not the case as shown in Figure 2, where a pulse is
added attime j = 1, j = 10 and j = 20, respectively. In Figure 2 the difference between the baseline so-
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Figure 2. Impact of an additional tonne of emissions at different time steps with respect to
the optimal emissions and consumption pathways.

lution, i.e., Epyse(j) = Cpuse(j) = 0 for all j € {0, ..., N — 1}, and perturbed solutions with Cpy(j) = 1
for j =1, j = 10 and j = 20 are shown. A pulse at time j € {0,..., N — 1} has an impact on the whole
pathways C[Epy;se(/)1(-) and E[Epy;se(j)1(-) due to the optimization involved in their computation. This
does also become clear from the definition of the partial derivative (3.2) used in the formula for the
SCC: for computing this derivative, first the pulse is added and then the optimization is performed,
implying that the optimizer is aware of the pulse at time j when performing the optimization for the
timesi = 0,..., j— 1. In other words, if there is a change of emissions in the future, which importantly
by assumption is known, then the change is anticipated and encoded in the optimal control problem
(2.9). This explains the non-negligible difference in C[Cpys(20)](7) and C(i) and in E[Cpye(i)](20)
and E(i), respectively, for i < 20, for example.

As a next step, we show that all three methods discussed in Section 3 essentially lead to the same
SCC value. Figure 3 compares the three methods with each other, where for the pulse experiments the
values Cpyse(j) = 1 and Cpyee(j) = 1, j € {0,..., N — 1}, were used for the finite difference approxi-
mations (which corresponds to a one tonne impulse in the implementation). On the scale on the left of
Figure 3, the SCC values are indistinguishable. However, the difference between the Lagrange multi-
plier method and the finite difference approximation (3.5) and the formula (3.18) derived in Theorem
1 appears to grow nonlinearly with j € {0, ..., N — 1} as visualized in Figure 3 on the right.

In Figure 4 the error in the SCC calculation with respect to Epyse and Cpyse are shown. In particular,
the impulses Epye(j) and Cpye(j) are varied from 0.01 to 5 for different values of j € {0,..., N — 1}.
As expected from Remarks 1 and 2, the error grows linearly with Epy and Cpye, respectively.

Remark 3. While in theory the SCCs computed with the three methods coincide, the precise numerical
values we obtain are sensitive with respect to Ep,, and Cpy., the chosen optimization algorithm and
the parameter selection of the optimization algorithm. Figure 5 shows the same results as Figure 4
with the only difference that the horizon N = 100 has been replaced with N = 150. In this case
the parameter selection used in the IPOPT solver does not lead to reliable results for all impulse
perturbations.

As a final visualization we show the change of the SCC with respect to the discount rate in Figure
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Figure 3. Comparison of the SCC calculation with three different methods discussed in
Section 3.
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Figure 4. Error in the calculation of the SCC. In general, the error changes linear with the
pulse. However, some values of the perturbations lead to numerical problems.

6, 1.e., %SCC( J) is calculated and shown in Figure 6. Here %SCC( J) 1s approximated through a finite
difference approximation

%Scc(j) ~ ALp(SCC[p + Apl(j) = Scclpl(H),

where Scc[p + Apl(j) and Scc[p](j) are calculated using the Lagrange multiplier method presented in
Section 3.2.

5. Conclusions

In this paper, we have investigated and compared three different methods for the computation of
the SCC in integrated assessment models. While our discussion is focused on the DICE model, it is
equally relevant for other models including PAGE and FUND, to obtain a characterization of the SCC
that is consistent among the literature. While the first two methods, which rely on perturbations of a
baseline model and on dual variables of an appropriately defined optimal control problem, respectively,
are commonly known and used, the third method relies on a novel formula stated in Theorem 1. The
novel formula allows a direct analysis of the impact of the discount factor in the calculation of the NPV
and the SCC through Equation (3.16), which subsequently provides insights in SCC values stemming
from different integrated assessment models.
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Appendix

A. Optimality conditions for constrained and parametric optimization

In this section we recapitulate optimality conditions for constrained optimization problems from
[27], which are needed for the proof of the main Theorem 1 in Appendix B. In particular, for the
convenience of the reader, we rewrite results for minimization problems in terms of maximization
problems discussed in this paper. We consider optimization problems of the form

J7 =max f(x)

subject to  h(x) = 0,
g(x) <0.

(A.1)

where x e R", f : R" > R, h: R" - R" and g : R* — R” for n,m, p € N. With the Lagrange
multipliers A € R™ and u € R” , the Lagrangian corresponding to (A.1) is defined as

>0

L, A p) = f(x) = A h(x) - " g(x).
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Additionally, for x € R" we define

Ax)={iefl,...,p}|gix) =0}
as the corresponding active set with respect to the inequality constraints g.

Theorem 2 (Second order Sufficiency Conditions, [27, Prop. 3.3.2]). Consider the optimization prob-
lem (A.1) and assume that f, h and g are twice continuously differentiable. Let x* € R", 1* € R™ and
ur e R™ satisfy

VLo ) = 0, h(x)=0,  gx)<0,
W= 0, Vje(l,....p)
poo= 0, Vjie{l...,phAGKY)
YIVLLE X )y < 0

forall'y # 0 such that
Vh(x)'y=0, VYi=1,...,m, Vei(x)'y=0 VieAX".
Finally, assume that
u;>0 VjeAX).

Then x* is a strict local maximum of (A.l) and we say that (A.1) satisfies the second order sufficient
condition at x*.

Additionally we will need the following result for parameter dependent optimization problems
where the parameter only appears in the objective function f : R" X R — R.

Theorem 3 ([32, Corollary 3.4.2]). Consider the parameter dependent optimization problem

f(p)= max S, p)

subject to  h(x) = 0 (A.2)
gx)<0

with Lagrangian

Lx, ,u, p) = f(x,p) = A" h(x) — 1" g(x),

Lagrange multipliers A, u and parameter p € R in the objective function. Assume that the second order
sufficiency conditions of Theorem 2 are satsified. Then, in a neighborhood around p = 0 it holds that

f(p) = L& (p), " (p), 1 (p), P, (A.3)
Vo (p) =V, f(x"(p), p), (A4)
V21 (p) = Vaf(x, p)V,x(p) + Vo f(x(p), p). (A.5)
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B. Proof of Theorem 1

To prove Theorem 1 we will make use of results in [32] and the results summarized in Appendix A.
Before we begin with the actual proof we note that for

(]

the optimization problems (2.9) can be written in the general form

(p = max f(x, p)

subject to g(x) <0,

(B.1)

where the equality constraints are eliminated and the box constraints are captured in the function g.
Here, the parameter p represents the pulses Epyse(j) and Cpyie(j), or equivalently, p represents a change
in C(j) and E(}j), for j € {0,..., N — 1}. Since we only consider the perturbation with respect to C or
E and only with respect to one j € {0,..., N — 1} at a time, we assume that p is one dimensional. With
these definitions we can use Theorem 3 (without the function /) in the following. Additionally we
note that according to the definition of the functions involved in the optimal control problem (2.9), the
functions f and g are twice continuously differentiable.

Proof of Theorem 1: We begin the proof by rewriting the partial derivatives
ow” ow~
: an -
aC*(j) IE*(j)
for j € {0,...,N — 1}. To this end we define

. C(@)
i = C C = 1000—, B.2
¢i = ci(C() 70 (B.2)
which is a scaling of C(i) through the known parameter L(i), i € {0,...,N — 1}. Thus the utility U
defined in (2.7) can be written as a function of ¢;,

) cl.l‘“ -1
U(c)) = L(i) (B.3)
-«
For the derivative we obtain
ou
—— () = L()¢;, (B.4)
aci
and with respect to the original variables it holds that
ou oU(c;) 0ci(C(i)) ~ _, 1000 _
i) = = L(i)c; " —— = 1000c;"“. B.5
o= Tae acw CHYIH ‘i .5

With Theorem 3, and in particular with (A.4) for p = Epyi(j), j € {0, ..., N — 1}, it holds that

oW 0 (= i

i=0
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Using the notation

Yi={-p)

to shorten the expressions and the equation derived in Equation (B.5) the right-hand side can be written
in the form

W U AU IC () g OC (i)
aE*(j)—;waTmm) Z 30 FEG ;yilooom) o5 ®9

Similarly, the application of Equation (A.3) in Theorem 3, where p represents a change in C(}),
j€{0,...,N — 1}, leads to the expression

oW ) o AU & aU(e) ac(i)
aC () ~ 9C(; >(ZV’U( )) 2750y = 247305 6C ) .

9C* (i)

_ Zy,lOOO( Dy

As a next step, we derive Taylor expansions of the optimal value function W*. In particular for
parameters p; representing a change in C*(j), (i.e., a pulse Cpyye(i)) for i € {0,..., N — 1}, we derive
Taylor expansions in a neighborhood of p; = 0. Using the definition of ¢; in Equation (B.2), the
consumption (2.6) can be equivalently written as

103

T 1w (1 T aTa(p

)(1 — 0D ADK LG (1= () + o CpueD).  (B.S)

Moreover, with the definition cpy. (i) =
as

L(l) Cpulse(l) and ¢; = ¢; + cpuise (i), Equation (B.8) can be written

& =4 (TW) (1= 61()u()™) AGYK L)' (1 = (i) (B.9)

and the utility function can be written as

( CPulse(l))1 -1
l-a '

Ulepuse(D](E) = L) (B.10)

Thus, instead of the parameter Cpys(j) in the consumption (2.6) we can use a scaled parameter directly
in the utility function (2.7) and the optimal value function satisfies

N

W'lpd = UG pd + p) + ) mUGGIpiD)
k=0
k#i

with p; = cpyie(i). According to Theorem 3 (using Equation (A.5)) the optimal value function is twice
continuously differentiable with respect to the parameter p;, and using Theorem 3, Equation (A.4), the
Taylor approximation is given by

Wi pil = W01 + v:.L(D(E& [0D ™ pi + Ri(p))
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where

d?
R(p) = = ng] (B.11)

2dp
for & € [0, p;]. Fori, j €{0,...,N — 1} we take specific perturbations p; # 0, p; # 0 with the property
W*[pi] = W*[p,] so that the Taylor approximation satisfies

WI0] + v, LG)(E; (0D~ pi + Ri(pi) = W[O] + v, L()(E 0D p; + Ri(p)). (B.12)

A p; satisfying (B.12) can be found for each sufficiently small p; because the terms in front of p;
and p; in (B.12) are not zero due to the assumption that (2.9) satisfies the second order sufficiency
conditions. In fact, y;L( j)(Ej.[O])‘“ = 0 implies that s*(i) = 1 or 8,()u*(i)*> = 1 (see Equation (B.9)).
If s*(i) = 1 then u*(i) € [0, 1] can be selected arbitrarily and if 8,()u*(i)” = 1 then s*(j) € [0,1]
can be selected arbitrarily, 1.e., the optimal solution of (2.9) is not characterized through a strict local
maximum, which contradicts Theorem 2. Under these assumptions stated above, p; is a function of p;
and lim,,_,o p;(p;) = 0 (since W* is continuously differentiable). Rearranging terms yields

Py _ YLOGIOD™  Rip) = Rip)
P yLOEIOD " poy,L(HE 0]

(B.13)

and allows us to investigate the limit p; — 0, p; # 0, (i.e., p;(p;) — 0). We observe that

i () = pA0) _ dp,
i 2P0 _ e PP = PiO) i,
pi=0 i =0 pi=0 dp;
and since the remainder in Equation (B.11) satisfies R;(p;) = O( p1.2) we obtain
lim 2 R(p) = 0
To be able to neglect the second term in the right-hand side of Equation (B.13), it is left to
show that iR i(pj(pi)) converges to zero for p; — 0. With the definition of the remainder R;(p;) =

2 dp W* [€lp ](pl)2 in Equation (B.11) the limit satisfies

p](p,)

1 1d
lim ( —R; (p](p,))) = hm [——W [£(pi)] P](Pz)
pi—0 p

2dp?

d2
= 5 d_ Wr[€ (0)] (O)P 1(0)

L dp
:——W—O 0=0.
2dp? O

Consequently, using Equation (B.4) together with ¢; = ¢; in the case p; = 0, it holds that

Cpi L™ )
;ITO PR L)) Yi-j au( i) (B.14)
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To return to the original variables C(i), we recall the coordinate transformation (B.2), and use the
notation P; = Cpyuse(j) = 22 p;.

With the above computations we are finally in the position to derive the partial derivative of C*(7)
with respect to C*(j) for i, j € {0,..., N — 1}. In particular, using the chain rule and the definition of

the derivative, it holds that
aC*(i) % limp, o 2 (W [P;] - W)

0C*(j) s limpg 5 (WP = W)

Using the relation between p; and P;, this expression can be equivalently written as

6C"(iy _ limp -0 %(W*[Pﬂ “WO L Lop (Wl = W)
OC*(J)) ~ lim,_q 12 (Wil = W) =0 L(p; (W*[pil =W’

Finally, with the result derived in Equation (B.14), it holds that

ac () _ . Li)pi (™

— = lim — =Yj-iTes

aC*(j)  »—0 L(Hp(pi) (e

where the second term is equal to one since W*[p;] = W*[p;(p;)] according the assumption made at

the beginning of the derivation of (B.14) in (B.12).

To complete the proof we combine the results so far in the definition of Scc(j). With Equations
(B.6) and (B.7) the SCC can be expressed as

(B.15)

N-1 wy—a 0C* (i)

OW* |OE(j 2o ¥il000(c)) ™ 755

Sce(j) = _1000WLEWD) _ 1000 Nol et
IW[C()) ik 7i1000(e) ™ 565

and which becomes
—a 0C* (i)
o Yile)) "5 (j)

N_l )—()’
Z[:O yl(c ) 7/ l(‘ )@

Sce(y) = =1000

through the identity (B.15). Finally, reformulating individual terms and recalling the definition of ¢
in Theorem 1 completes the proof:

S yilep) el (@) ac ) i C*(l)
Scc(j) = —1000 = =-1000 ) yij— S =1
« SE e Z 1) E()) Z(;
C. Order of Convergence

As a last result in this paper we show that (3.5) converges with order O(Cpyise(j) + Epuse(J)) to
Scc(j). Using the notation introduced in (3.4) and (3.5) the SCC satisfies

oW W*[Epyise (/)] -W* .
; + (DE(EPulse(]))
Sce(j) = ~100022 = 1000 e : (C.1)
Z)C (]) g:fl;(j) + (DC(CPulse(]))



20

CPulse(j) . W*[EPulse(j)] - W
EPulse(j) W+ [CPulse(j)] - W

for unknown functions @z, ®- and ®. However, according to the Taylor expansions in (3.6) it holds

that (DE(EPulse(j)) = O(EPulse(j)) and (DC(CPulse(j)) = O(CPulse(j))-
We investigate properties of the function ®. To simplify the notation, we drop the index in the
derivations, i.e., we investigate the equation

= -1000 — 1000®(Epyise (), Cruise()))- (C2)

SR+ 0E) ¢ WIEI-W
WAV | po(c) E WICI- W

+ O(E, C),

or equivalently

C(W'[E]1-W") + E®g(E) _ C(W'[E] - W)+ LW [C] - WHD(E,C)
E (W*[C] - W*) + CD(C) E W*[C] — W* ‘

We further simplify the notation and define AW, = W*[E] — W* and AW;. = W*[C] — W*. Then,
multiplying by the denominator leads to the equation
AWEAWL + AWEEDR(E) = (AWE + CO(C)AW + g(AWé + CO(C)AWLD(E,C)
= AWAWL + CO(C)AW,, + g(AWé + CO(C)AWLD(E, C).

After canceling and rearranging terms, we are left with the expression:

AWEEDE(E) — COC)AW; = E(AW + CO(CHAWLD(E, C).

Since W* is differentiable, i.e., the limits

ow* = lim W*[EPulse(j)]_W* ow* _ ‘m W*[CPulse(j)]—W*
OE*(j)  Eruscti=0 Epyise()) ’ 9C*(j)  Cruseli=0 Cruise())

Epylse()#0 Cpulse (N#0

(C.3)

exist, it holds that AW, = O(Epyi(j)) and AW; = O(Cpus(j)). Using these properties in the last
equation simplifies the expression to
O(C)EO(E) + CO(C)O(E) = %(O(C) + CO(C)O(C)D(E,C)
or equivalently
O(CE®) + O(C’E) = (O(CE) + O(C*E))®(E, C) = O(CE)®(E, C).
In particular, ® satisfies ®(E, C) = O(C + E) proving the assertion.
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