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ABSTRACT We address the soybean leaves infestation problem by proposing a robust classification model
that can reliably detect infests by Diabrotica speciosa and caterpillars. Our transfer-learning based model uses
a VGG19 convolutional neural network to classify the soybean leaves and we achieve balanced accuracies
between 93.71% and 94.16% on unseen testing data. This sets a new benchmark and outperforms previous
work using the same dataset. Our work has theoretical and practical implications. The soybean plays a crucial
role in the agricultural industry. Infestation of soybeans leads to enormous economic and environmental
losses. With our model presented here, an early and accurate detection to control the spread of plant pests is
possible, which reduces economic and ecological damages.

INDEX TERMS Convolutional neural network, VGG-19, plant infestation, soybean, Diabrotica speciosa,

caterpillars.

I. INTRODUCTION

Plant diseases and infestations are leading to major ecological
and economic losses in the agricultural industry. 14% of
global crop yields are lost due to plant diseases, weeds and
insects, which not only leads to smaller revenues for the
agricultural industry but also causes expenses for crop treat-
ment [1], [2], [3], [4]. Furthermore, it is necessary to develop
efficient controls to enhance crop production to meet the
increasing demands of the growing world’s population [5],
[6]. It is estimated that the production of global crops will
have to be doubled by 2050 making it more important to
reduce losses [1]. Besides the economic impact, the treat-
ment of plant infestations, also affects the environment [1],
[7], [8]. To control plant infestations, cultural, biological
and chemical techniques are in use [1], [7], [8]. Cultural
practices include, for example, crop rotation or soil solar-
ization. However, this is often not enough and is therefore
combined with chemical and biological methods [1]. As a
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result, the use of chemical substances continues to be the
most important [7]. Soil, water and air contamination are
possible consequences of excessive pesticide use. In addi-
tion, pesticides are harmful to healthy plants, animals and
microorganisms due to their toxins [8], [9]. This also has
implications for human health, as pesticides can enter the
human body through, for example, inhalation of polluted
air [10]. In conclusion, the early detection of plant diseases is
essential to minimize economic and ecological losses, reduce
pesticide residues and enhance the crop quality [2]. There-
fore integrated pest management (IPM) was founded and
implemented in the 1970s [7], [11]. IPM as one of the most
successful programs of pest management focuses on reducing
pesticides and protecting the environment and declares early
pest detection as a key factor in selecting and developing
appropriate countermeasures [7], [11].

In South America, especially in Brazil, damages in the
soybean production caused by Diabrotica speciosa and cater-
pillars were detected [12]. Soybeans as a crop are very
important in the agricultural industry since the crop is used for
oil and protein consumption for humans and livestock, as well

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

99670

VOLUME 11, 2023


https://orcid.org/0009-0005-5930-2382
https://orcid.org/0009-0009-9316-9537
https://orcid.org/0009-0001-1080-653X
https://orcid.org/0000-0003-2263-6408
https://orcid.org/0000-0002-0651-4278

N. Farah et al.: Deep Learning-Based Approach for the Detection of Infested Soybean Leaves

IEEE Access

as feedstock for bio-fuel production [5]. In recent years,
the production of soybeans already increased enormously:
The crop quantity for 2022/23 stands at 383,011 thousand
metric tons which is an increase of over 40% compared to
2012/13, when approximately 269,000 thousand metric tons
of soybeans were harvested [13], [14]. As Brazil is one of
the major soybean-producers and the leading export country
of soybeans worldwide the damage caused by Diabrotica
speciosa and caterpillars has an enormous impact [13], [15].

With approximately 153,000 thousand tons, Brazil is pre-
dicted to have a share of about 40% of the world’s soybean
production in 2022/23 [13]. About 92,000 thousand tons will
be exported, making Brazil the largest exporter of soybeans
in the world [13]. As a result, pest infestation in soybeans
affects not only the Brazilian economy, but also the global
supply [16].

To identify infested soybeans effective classification meth-
ods are required. Traditional crop management that rely on
human identification of diseases and pests are often no longer
sufficient. It requires skilled and experienced personnel and
hence significant investment in resources. At the same time,
the method is time-consuming, labor-intensive and ineffi-
cient. Additionally it carries a high risk of false detection and
poor monitoring [17].

Previous work has demonstrated the successful use of
deep learning models in object detection, especially in
the detection of various plant pests and diseases [2],
[6], [18], [19], [20], [21], [22], [23], [24]. Specifically,
Badgujar et al. [24] have already used the same dataset and
adopted a multiclass-approach to classify healthy soybeans,
soybeans infested with Diabrotica speciosa and soybeans
infested with caterpillars. We address this approach and
improve its results. Our objective was to use image classi-
fication to detect plant infestations. We followed a transfer
learning approach by using the pre-trained model VGG19 and
assume that the model will deliver accurate results that can
support IPM or pest management in general. To improve the
results, we chose a binary approach and focused on distin-
guishing between healthy and infested soybean leaves. As a
result, the most important contributions of this study are the
following:

e We develop a model to outperform the existing
bench-mark regarding the detection of soybeans
infested with caterpillars or Diabrotica speciosa by
Badgujar et al. [24].

e We adopt a transfer learning approach using the
pre-trained deep learning model VGGI19.

« We followed a binary approach to improve the results.
We developed three cases to be able to differenti-
ate between healthy and infested soybeans in general,
between healthy and caterpillar infested and between
healthy and Diabrotica speciosa infested soybean leaves.

o« We contribute to improving pest management and
thereby help to reduce economic and ecological damage.

Therefore, this paper is structured as follows: The second
chapter presents the theoretical background regarding the
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pests in the dataset and current approaches to early plant
disease detection. In the third chapter our methodological
approach is described in detail followed by the presentation
of the results in the fourth chapter. Afterwards, we discuss
their implications, the limitations of our work as well as
possible future research. Finally, the work is summarized in
the conclusion in the sixth chapter.

Il. RESEARCH BACKGROUND

A. SOYBEAN PLANTS DAMAGES BY CATERPILLARS AND
DIABROTICA SPECIOSA

Caterpillars cause damage to various parts of the soybean
plants. Depending on their gender, they attack leaves, stems,
pods and grains. The damage is in the form of cracks that are
eaten from the sides to the center of the leaf [12]. There are
various different types of caterpillars, like Anticarsia gem-
matalis, Chrysodeixis includens, Spodoptera and Omiodes
indicalus [12]. In recent years, Spodoptera caterpillars have
become increasingly common and have caused enormous
damage, especially in some Brazilian states [11]. Specifically
the species Spodoptera frugiperda has emerged as a soybean
pest in Brazil, with increased infestations and observed dam-
age [25], [26]. As a result, there are various strategies to
control the damage. Traditionally caterpillars were controlled
by the use of insecticides such as carbamate [26]. The misuse
use of these insecticides led to undesirable effects on the envi-
ronment and human health. In addition the caterpillar became
mostly resistant to these insecticides. Other techniques had to
be established such as the use of parasitic fungus called Beau-
veria bassiana or the use of entomopathogenic viruses [26].
Nevertheless successful control depends on the spread of the
pest and therefore on the detection of the pest [26].

Diabrotica speciosa, also called green cow or patriot, has
been detected in most crops in South America. In Brazil,
the adult pest is considered an important pest infesting some
extensive crops, such as soybeans [27], [28]. The pest that
prefers the softer leaves and damages plants by eating small
round holes in the leaf or making incisions on the leaf
edges [12]. To control damages in soybean crops, insecticides
like carbamates can be used [27]. In addition, also biological
approaches promise success. Soybean fields damaged by Dia-
brotica speciosa can also be treated with the fungi Beauveria
bassiana or entomopathogenic viruses [27], [28]

Both pests are considered and observed in IPM. One of
the objectives of IPM is to reduce the amount of pesticides,
for this reason it is important to use as much as necessary
and to use only as little as possible making the accurate and
early pest detection and alternative control techniques more
important [11]. As aresult, according to the principles of IPM
early pest detection is a key factor and constitutes the basis
for further actions: After identifying pests, sampling them,
and considering their economic impact and natural mortality,
there are different strategies to control pests [11]. Since both
pests can be treated with similar procedures, this emphasizes
our approach of binary identification model. In particular, it is
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TABLE 1. Concept matrix of related work.

Reference Year Research subject Image acquisition Methodology Accuracy

Dos Santos Ferreira 2017 Weed detection in soybean crops Acquisition with UAV | CaffeNet >98%
etal [19] under natural conditions

Khalili et al. [2] 2020 Detection of Charcoal Rot Disease | Acquisition under labo- | LR-L1 95.92%

in soybeans ratory conditions LR-L2 95.58%

MLP 94.88%

RF 95.42%

GBT 96.79%

SVM 96.04%

Tetila et al. [6] 2020 Automatic recognition of soybean | Acquisition with UAV | Inception-v3 99.04%

leaf diseases under natural conditions | Resnet-50 99.02%

VGG-19 99.02%

Xception 98.56%

Tetila et al. [20] 2020 Detection and classification of var- Acquisition with UAV Inception-v3 91.87%

ious soybean pests under natural conditions Resnet-50 93.82%

VGG-16 91.80%

VGG-19 91.33%

Xception 90.52%

Mohanty et al. [21] 2016 Classification of various plant dis- | Acquisition under labo- | AlexNet 91.87%

eases ratory conditions GoogLeNet 93.82%

Sladojevic et al. 2016 Detection of leaf diseases from | Dataset collection by | CaffeNet 91.87%
[22] various plants downloading various
images from the internet

Ferentinos [23] 2018 Recognition of various plant dis- | Acquisition under labo- | AlexNet 91.87%

eases ratory and natural condi- | AlexNetOWTBn 93.82%

tions GoogLeNet 91.80%

Overfeat 91.33%

VGG 90.52%

more important to detect an infestation than to classify the
type of infestation and therefore improve IPM.

B. RELATED WORK

The basis of pest management is early and accurate identifi-
cation of pests. This is important not only in the crop of soy-
beans, but in the entire agricultural economy. Consequently,
there are several studies that focus on the identification of
plant diseases by using machine learning methods. Table 1
summarizes the following studies and gives an overview of
related work.

Dos Santos Ferreiraetal. [19], Khalili et al. [2] and
Tetila et al. [6], [20] all researched in the soybean agriculture.
While Dos Santos Ferreira et al. [19] and Tetila et al. [6], [20]
used images taken with an Unmanned Aerial Vehicles (UAV)
under natural conditions, Khalili et al. [2] used a dataset with
images taken under laboratory conditions.

Specifically, dos Santos Ferreira et al. [19] developed a
Convolutional neural network-based approach for weed
detection in soybean crops. Their study achieved over 98%
average accuracy using the CaffeNet architecture. To evaluate
their results, they compared the results of the CaffeNet with
SVM, Adaboost - C4.5 and RF and were able to achieve the
best results with the Convolutional neural network (ConvNet)
CaffeNet. The study therefore demonstrated the feasibility of
using a ConvNet for weed control in soybean fields.

In addition to pest and weed detection, machine learning
techniques have also been used to predict diseases in soy-
bean crops. Khalili et al. [2] investigated the use of machine
learning models to predict Soybean Charcoal Rot Disease.
Their study achieved between 95.92% and 96.79% accu-
racy with different machine learning techniques, indicating
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that machine learning models can effectively predict disease
occurrence.

Similarly, Tetila et al. [6] used different deep learning
architectures to detect leaf diseases in soybeans. They
achieved accuracies of 99.04%, 99.02%, 99.02% and 98.56%
for Inceptionv3, Resnet-50, VGG19 and Xception.

Tetila et al. [20] considered the five deep learning models

Inception-v3, Resnet-50, VGG16, VGG19 and Xception
for classifying images of various soybean pests. The accu-
racies were 91.87% (Inception-v3), 93.82% (Resnet-50),
91.80% (VGG16),91.33% (VGG19) and 90.52% (Xception).

Mohanty et al. [21], Sladojevic et al. [22] and Ferenti-
nos [23] classified various diseases of different plants. The
applicability of deep learning in 14 plant species with
26 diseases was tested using both AlexNet and GoogLeNet
architectures. With regard to the achieved accuracies of
91.87% and 93.82% it should be noted that the image
dataset was acquired under laboratory conditions [21].
Sladojevic et al. [22] used CaffeNet to detect 13 leaf diseases
of different plants. The dataset was collected by downloading
various images from the internet. This led to an accuracy
of 91.87%. The architectures AlexNet (91.87% accuracy),
AlexNetOWTBn (93.82%), GoogLeNet (91.80%), Overfeat
(91.33%) and VGG (90.52%) have been used to detect plant
diseases based on their leaves. The dataset is composed of
images under laboratory and natural conditions [23].

Badgujar et al. [24] already used the same dataset as
in this study. For the annual international meeting of the
American Society of Agricultural and Biological Engineers,
they produced an overview of classifying images of soybean
leaves infested with pests using deep learning techniques.
The authors followed a multi-class approach to classify the
healthy, caterpillar infested and Diabrotica speciosa infested
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plant images. To do so, they used the four different deep
learning techniques DenseNet201, VGG16, Inception-v3 and
ResNet50 and achieved accuracies of 88%, 86%, 84% and
74%.

Overall, the studies reviewed in this section demonstrate
the potential of ConvNets and other machine learning tech-
niques in plant disease and infestation detection. Since related
studies achieved great results of over 90%, we would like to
address this and develop an accurate model for the detection
of caterpillar and Diabrotica speciosa infested soybeans and
therefore outperform the existing benchmark.

lll. METHODOLOGY

In the following, the methodological steps are explained.
First, we provide a brief description of ConvNets, fol-
lowed by the presentation of our deep learning architecture.
Afterwards, the evaluation method is explained. Finally,
we describe the data pre-processing and the underlying
dataset.

A. CONVOLUTIONAL NEURAL NETWORKS
ConvNets are a type of deep learning model commonly used
for image and video recognition tasks. ConvNets are designed
to automatically extract features from input data, which are
then used to make predictions about the output [29], [30].
ConvNets consist of three different types of layers: con-
volutional layers, pooling layers and fully-connected lay-
ers [29]. As the name suggests, the use of convolutional layers
plays an important role in the architecture of ConvNets. These
are layers that apply a set of adaptive filters to the input data.
The filters are typically small (e.g. 5 x 5), but are applied
to the input data using a sliding window approach, resulting
in a set of output features (also referred to as feature maps)
that capture local patterns in the input data [29], [31]. These
features are then pooled (e.g., using max-pooling) to reduce
their dimensionality, and the resulting features are passed to
a fully connected layer that makes the final prediction [29].

B. MACHINE LEARNING APPROACH

The VGG19 model is a 19-layer ConvNet introduced by
Simonyan and Zisserman [32]. This model was trained in
general on the ImageNet dataset and is capable of perform-
ing a wide range of computer vision tasks, including image
classification and object recognition [32].

VGG19 requires a fixed image size 224 x 224 RGB as
input. The architecture then consists of a series of convo-
lutional layers and max-pooling layers, followed by several
fully connected layers. Specifically, the model has five con-
volution blocks, the first and the second block consists of
two layers, while the remaining blocks each have four con-
volutional layers [32]. The convolutional layers are used to
extract features from the input image, while the max-pooling
layers are used to downsample feature maps and reduce their
spatial extent. The fully linked layers then use these features
to perform the final classification or recognition. The VGG19
model is characterized using very small 3 x 3 convolutional
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FIGURE 1. A simple representation of our VGG19 architecture.

filters and up to 512 filters in each layer. To activate the
hidden layers, the ReLU function is implemented [32]. This
architecture allows the model to learn many complex features
from the input image. In addition, the model uses a deep-
network architecture that allows it to capture hierarchical
representations of the input image [32].

The VGG19 model has been widely used as a pre-trained
model for transfer learning, where it is used to extract features
from an input image and then serves as a starting point for a
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new task [33]. The pre-trained weights of the model can be
fine-tuned on a new dataset to learn task-specific features.

Fig. 1 shows our approach, which uses the VGG19 base
model up to and including the last max-pooling. We then con-
figured the three final layers. At first we implemented a global
average pooling layer. This layer computes the average of
the feature maps across all spatial dimensions and generates
a 2D feature vector [34]. Afterwards the model consists of
two dense layers. The first dense layer has 1024 neurons and
the second dense layer has a single neuron with a sigmoidal
activation function.

C. EVALUATION METHOD

In order to evaluate the quality of our predictions, the dataset
was split into a testing and training dataset before training the
model. The hold-out validation randomly divides the dataset
according to a defined ratio. The training set trains the model
while the test set is used to estimate the performance of the
model [35]. In our case, the entire dataset was split into 70%
training data and 20% testing and 10% evaluation data.

To evaluate and interpret the performance of the model,
we use the following performance indicators: Accuracy, Bal-
anced Accuracy, True Positive Rate, True Negative Rate,
Precision and the Cohen’s Kappa. In addition, the Receiver
Operating Characteristic (ROC)-curve and the Area Under
the Curve (AUC) give an overview of the quality of the model.
Finally, we also provide a Confusion Matrix for evaluation.

The Accuracy determines the overall effectiveness of a
model [36]. However, especially for imbalanced distributed
classes, the Balanced Accuracy is considered. It indicates
how well a model correctly recognizes both classes by taking
the average of the correctness for both classes [37]. While
the True Positive Rate (or Sensitivity, or Recall) focuses
on how well the model recognizes positive examples by
measuring the proportion of examples correctly classified
as positive among all actual positive examples, the True
Negative Rate (or Specificity) calculates how well the model
recognizes negative examples. In this case, it measures the
proportion of examples correctly classified as negative among
all actual negative examples [36]. The Precision determines
what proportion of positive identification was actually cor-
rect [36]. Cohen’s kappa describes the reliability of the model
and therefore measures the agreement between two judg-
ments. It varies from —1 to 1, with a Cohen’s kappa of
—1 representing complete disagreement. A Cohen’s kappa
of 1 means that the same result is expected when the model
is repeated [38]. The ROC-curve is a graphical representa-
tion used to evaluate the performance of binary classifiers.
The ROC-curve shows the classifier’s ability to distinguish
between positive and negative examples by plotting the true
positive rates against the false positive rates [39]. The AUC is
the corresponding metric that indicates how good a classifier
is at distinguishing between positive and negative examples.
An AUC of 1 means that the classifier differentiates perfectly,
while an AUC of 0.5 shows that the classifier is no better than
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FIGURE 2. Data Pre-Processing.

random guessing [39]. The F1 score combines the precision
and the true positive rate of the model using their harmonic
mean. It describes the ability of the model to detect positives
cases and be accurate in the detected cases. The value fluctu-
ates in the interval 0 and 1 and is better the higher it is [36].

D. DATA PRE-PROCESSING

The dataset used in this study consisted of a total of 6,410
RGB color images divided into three categories: Healthy,
Diabrotica speciosa and caterpillars. To preprocess the data,
the images were first resized to 224 x 224 px for faster
processing and then scaled to a range of [0, 1] for normal-
ization using the rescale parameter with a value of 1/255.
In addition, data expansion techniques were applied to the
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FIGURE 3. Healthy plant.

images in the training set using the ImageDataGenerator class
from the Keras library, which provides several options for
image expansion.

In particular, the following data augmentation techniques
were applied to the training images: The images were rotated
randomly by up to 40 degrees, and random horizontal and
vertical flipping was applied, as well as random zooming of
up to 20% [40]. Empty pixels due to applied scale shifts were
filled using the nearest neighbor method. Additionally, ran-
dom width and height shifts of up to 20% were also applied
to the images to expand the training data [40]. The application
of these techniques helps to increase the variability of the
training data, which can lead to improved performance of the
trained model.

To evaluate the performance of the model, a hold-out cross-
validation approach was used. The entire dataset was first
divided into training (70%), testing (20%), and validation
(10%) datasets. The evaluation dataset was never shown to
the model during training and was only used to calculate per-
formance scores after training was completed. This prevented
the model from overfitting to certain image sequences.

The training dataset was used to train the model. Once the
model training was complete, the performance metrics were
calculated using the previously mentioned validation dataset.

E. DATASET

The VGGI19 network just described, combined with the
data pre-processing steps, was then applied to a dataset
provided by Mignoni [12]. This dataset is freely available
online on Mendeley website. The dataset includes a total of
6,410 images which had already been annotated and divided
into three folders. Fig. 3 represents the first folder that pro-
vides 896 images of healthy soybean leaves. The second one
contains 3,309 images of caterpillar attacked leaves (Fig. 4).
Finally, the third folder stores 2,205 images of plants dam-
aged by Diabrotica speciosa (Fig. 5) [12]. The images were
captured with two smartphones equipped with a 48mp Al
triple camera and a UAV camera in January 2021 on two
soybean farms in the State of Mato Grosso in Brazil under
natural weather and field conditions [12].

IV. RESULTS

In this section, we present the results of the experiments
conducted to evaluate the performance of the VGG19 model
on the soybean leaf dataset. We trained and tested the
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FIGURE 5. Diabrotica speciosa attacked plant.

model on a dataset consisting of 6,410 images of soy-
bean leaves belonging to three classes: healthy soybean
leaves (896 images), soybean leaves infested with caterpillars
(3,309 images), and soybean leaves infested with Diabrotica
speciosa (2,205 images). The classes were divided into a
training dataset with 70%, a test dataset with 20% and a
evaluation dataset with 10% as already described above.

A. HYPER-PARAMETERS

We trained the VGG19 model with different hyper-
parameters, which are parameters, that are not directly
learned within the estimators but pre-determined by the
authors [41]. The batch size of a model, i.e. the number of
training examples propagated through the model in one step,
was 16 in the used model in this paper [42]. The number
of epochs, i.e. the number of times the entire training data
set was passed through the model during the training pro-
cess, was 100 [43]. We used Root Mean Square Propagation
(RMSprop) as an optimizer that adjusts the learning rate
for each weight in the model based on the moving average
of the squared gradient. The learning rate, that controls the
size of the optimization steps and affects the speed and
accuracy of the training process, was 0.001, which is the
predefined rate of the RMSprop-optimizer [44]. We used
a binary cross-entropy loss function, which measures the
dissimilarity between the predicted probability distribution
and the actual distribution of the target variable [45].

In summary, we used a VGG19 model pre-trained on an
ImageNet dataset. First, the top layer of an existing model
was removed, and the remaining layers were frozen to prevent
their weights from being updated during training. New layers
were then selected, including a “Global average pooling2D”’
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TABLE 2. Performance metrics of the VGG19 model for the soybean leaf dataset.

Class Accuracy Balanced Ac- | Sensitivity Specificity Precision Cohen’s AUC F1 Score
curacy Kappa
Calculation (True Pos + | (Sensitivity + | True Pos / | True Neg / | True Pos /
formula True Neg) / | Specificity) /2 (True Pos + | (True Neg + | (True Pos +
Total False Neg) False Pos) False Pos)
Healthy/Infested 93.71% 83.64% 97.62% 69.66% 95.19% 72.03% 95.48% 96.39%
Healthy/Caterpillars| 94.00% 90.46% 96.65% 84.27% 95.77% 81.92% 95.95% 96.21%
Healthy/Diabrotica | 94.16% 92.56% 96.35% 88.76% 95.48% 85.68% 97.68% 95.91%
speciosa
Confusion Matrix 100 Model accuracy
500 ' —— Train
0.95 1 Test
- 534 13 400 WW
0 0.90 1 WM /4 : !
© > LAY
= -300 © /
= 5 0.851
S g
= -200 < .50
o 27 62
-100 0.75 {
0.70 — v T v T -
1 0 0 20 40 60 80 100
Predicted labels Epoch

FIGURE 6. Confusion Matrix - Healthy/Infested.

ROC Curve: Transfer Learning VGG Healthy vs. Pest CNN
1.0 >

0.8
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o

True Positive Rate
o
'S

o
N

—— ROC Test Split (AUC: 0.95)

0.0

0.2 0.4 0.6 0.8 1.0

False Positive Rate

FIGURE 7. ROC - Healthy/Infested.

layer to reduce the spatial dimensions of the input feature
maps, a “Dense” layer with 1024 units and ReL.U activation
function to extract high-level features, and an output layer
with one unit and sigmoid activation function to predict
binary classification results. These layers were added to the
existing model, replacing the excluded top layer.

B. RESULTS OF THE MODELS

As an example, we present the results of the Healthy/Infested
model, which includes both the caterpillars and Diabrotica
speciosa. As already described, models were also created
for the individual infestations. The exact values of the
three models are shown in Table 2. Since both caterpil-
lars and Diabrotica speciosa can be controlled with the
same methods [26], [27], [28], we decided to emphasize the
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FIGURE 8. Model Accuracy - Healthy/Infested.
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FIGURE 9. Confusion Matrix - Healthy/Diabrotica speciosa.

Healthy/Infested model because it is the recognition of the
infestations that is needed, not the classification of what pest
1t 18.

The Healthy/Infested model achieved an accuracy of
93.71%. The balanced accuracy, taking the average of sen-
sitivity and specificity, was 83.64%. The sensitivity of the
model was 97.62%, meaning that the model correctly iden-
tified 97.62% of the infested plants in the dataset. The
specificity was the lowest metric at 69.66%, indicating that
the model correctly identified 69.66% of the healthy plants.
The model’s precision was 95.19%, indicating that when it
classified a plant as infested, it was correct 95.19% in the
cases. The Cohen’s kappa coefficient was 72.03%, indicating
substantial agreement between the model’s predictions and
the actual labels. The AUC was 95.48%, indicating that the
model had good discrimination between healthy and infested
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FIGURE 12. Confusion Matrix - Healthy/Caterpillars.

plants. The F1 score, which measures the balance between
precision and sensitivity, was 96.39%.

The model accuracies over the training, respectively testing
period are shown in Fig. 8 for the Healthy/Infested model,
in Fig. 12 for the Healthy/Diabrotica speciosa model and in
16 for the Healthy/Caterpillars model. They demonstrate that
the model can improve at the beginning of the epochs, but
reaches stable results at the end.

V. DISCUSSION

Table 2 and the corresponding confusion matrices shown for
the three models in Fig. 6, 10 and 14, clearly demonstrate that
the model based on the VGG19 network accurately predicts
whether the soybean leaves under consideration are healthy
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or infested. We attribute this improvement to the deeper
and more complex architecture of the VGG19 model, which
allows it to capture more complicated features and patterns
in the images. The distinct advantages of the VGG19 method
are its ability to learn complex and diverse features in images
and its pre-trained weights in a large dataset. In addition,
VGG19 is known for its high accuracy rates in various image
classification tasks.

Our model outperformed the study that had previously used
image recognition on the same dataset. The benchmark they
had previously set was therefore exceeded and the results
presented in our paper can be seen as a new benchmark.

A. LIMITATIONS
Although this work provides a good overall result, it has
limitations. The first issue that needs to be addressed is the
generalisability of the results. We used a dataset published
in the Data of Brief Journal containing images of soybean
leaves [12]. Although we wanted to ensure the best possible
validation of the data through a hold-up split, the result of our
model should also be confirmed with other datasets to ensure
the generalisability of the results.

The second limitation is the imbalanced dataset. There is
a majority of images representing soybean leaves infested
with caterpillars (3,309 images), followed by soybean leaves
infested with Diabrotica speciosa (2,205 images), and a
minority of images representing healthy soybean leaves (896
images).

Finally, the absence of external validation constitutes a
limitation. This should be considered and is part of the future
work.

B. FUTURE WORK
Further research could explore the use of other deep learn-
ing models or additional data augmentation techniques to
improve the performance of the classification model.
Possible alternative models that have not been tried yet on
this dataset are, for example, CaffeeNet [46], AlexNet [47]
GoogleNet [48] or also Xception [49].
Additionally, future research could use the k-fold
cross-validation instead of the hold-out validation. K-fold
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cross-validation offers several advantages, including more
efficient use of data, better estimation of model performance,
more generalisable results and reduced bias [50]. This could
improve the performance of the model even more.

VI. CONCLUSION

In this study, we successfully applied the VGG19 ConvNet
to classify images of soybean leaves as healthy or infested
with Diabrotica speciosa or caterpillars. The results show
that VGG19 is a very suitable convolutional network for
this task and could improve and support IPM. The VGG19
model therefore provides a new benchmark in the detection
of caterpillar or Diabrotica speciosa infested soybeans.

Our results were validated by a hold-out split, which
confirmed the reliability of our model. The accuracy and
reliability of our model suggest that it has the potential to be a
valuable tool for the soybean industry, enabling more targeted
use of pesticides or alternative techniques and helping to
reduce the cost and environmental impact of treating infested
soybean leaves.
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