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Machine Learning Enabled Image Analysis of
Time-Temperature Sensing Colloidal Arrays

Marius Schöttle, Thomas Tran, Harald Oberhofer, and Markus Retsch*

Smart, responsive materials are required in various advanced applications
ranging from anti-counterfeiting to autonomous sensing. Colloidal crystals are
a versatile material class for optically based sensing applications owing to
their photonic stopband. A careful combination of materials synthesis and
colloidal mesostructure rendered such systems helpful in responding to
stimuli such as gases, humidity, or temperature. Here, an approach is
demonstrated to simultaneously and independently measure the time and
temperature solely based on the inherent material properties of complex
colloidal crystal mixtures. An array of colloidal crystals, each featuring unique
film formation kinetics, is fabricated. Combined with machine
learning-enabled image analysis, the colloidal crystal arrays can
autonomously record isothermal heating events — readout proceeds by
acquiring photographs of the applied sensor using a standard smartphone
camera. The concept shows how the progressing use of machine learning in
materials science has the potential to allow non-classical forms of data
acquisition and evaluation. This can provide novel insights into
multiparameter systems and simplify applications of novel materials.

1. Introduction

Autonomous sensing has become increasingly important for var-
ious aspects of everyday life. For example, lifetime monitoring of
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batteries, food, and medicine requires
tamper-proof sensors independent of an
external power supply.[1–3] Color-coded
systems are advantageous since they allow
user-friendly readout.[4] This prerequisite
is often realized using the responsive pho-
tonic properties of nanostructured (often
polymeric) materials.[5,6] These can react to
external stimuli by changing the spacing,
effective refractive index, or via loss of
order.[7–9] Beside the sensing of, e.g., pH-
value[10] and (bio-)analytes,[11] temperature
monitoring plays a key role in tracking
degradation and spoilage.[12,13] Depending
on the application, both reversible sen-
sors and irreversible indicators have been
shown.[14,15] More intricate systems can
provide further information regarding the
thermal history. Time–temperature integra-
tors (TTIs) additionally provide temporal
readout, which is highly relevant for estab-
lishing the safety of products.[16–18] Often,
this is achieved by controlling the kinetics

of the deformation process in structured polymeric materials.[19]

A system shown by Lee et al. even allows the indepen-
dent evaluation of time and temperature.[20] This was possi-
ble by semi-analytical characterization of the creep-deformation
process in polymeric inverse opals using local UV–vis spec-
troscopy. Recently, we showed a related material class: mixed
colloidal crystals.[21] These make use of adjustable dry-sintering
kinetics[22,23] and show great potential regarding evaluation using
simple image analysis.

Sensing via RGB channels of images obtained with digital
cameras greatly enhances the applicability compared to a spec-
tral analysis. Examination using commercial, hand-held devices
rather than expensive (micro-)spectrometers makes these appli-
ances much more user-friendly and more easily distributable.
Research on such methods has been shown for, e.g., pH-
sensing[24] and water-content determination.[25] Other materi-
als for smartphone-based temperature sensing allow readout via
luminescence thermography.[26–29] Another path towards com-
bining materials science with digital advancements is begin-
ning to evolve in the form of machine learning.[30] The appli-
cation of these tools stretches from the prediction of optical
properties[31] to optimizing synthetic parameters to create the
desired materials.[32] For sensors, machine learning allows au-
tomated readout of complex, multiparameter systems that often
cannot be described analytically. Examples comprise biomolecu-
lar sensing,[33] ethanol content,[34] and temperature.[35,36]
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Here, we introduce a TTI based on multicomponent colloidal
crystals, using smartphone-based image acquisition and ma-
chine learning analysis for the data evaluation. Four monodis-
perse polymer particle types are synthesized with varying glass
transition temperatures to span a quaternary phase diagram. We
use a fast, automated, and reproducible drop-casting method to
fabricate colloidal crystal arrays of mixed compositions. The com-
position correlates to the dry-sintering kinetics and concomi-
tantly to the loss of structural color. However, the quaternary par-
ticle system is too complex to allow an analytical description. In-
stead, we demonstrate that an artificial neural network can accu-
rately measure our colloidal crystal arrays’ time and temperature
history. A system that initially is too intricate for conventional
characterization is thereby made applicable for multiparameter
sensing. Our analysis demonstrates a general approach to im-
prove the sensing capabilities of well-established photonic struc-
tures drastically. Due to the scalable fabrication process, the mod-
ular adjustment to other sensing tasks by a specific particle se-
lection, and the user-friendly, low-tech characterization method,
this TTI concept opens the pathway toward cheap multiparame-
ter sensors.

2. Results and Discussion

We aim to fabricate a sensor enabling a simple readout of two
independent parameters: time and temperature. One main dif-
ficulty, thereby, is designing a system that is complex enough to
over-determine the parameter space yet remains feasible to ana-
lyze. The concept presented here is based on an array of polymer
colloidal crystals (CCs). The first step, therefore, is the realiza-
tion of a suitable self-assembly process. Prerequisites for sample
preparation are site selectivity, reproducibility, automation, and
a fast preparation rate. Consequently, we apply a combination of
array-printing and drop-casting that meets these criteria and ad-
ditionally is scalable, resource-efficient, and non-toxic.

A spring-loaded pin with a hydrophilic, round tip is dipped into
a particle suspension that adheres via wetting. When brought
into contact with a glass substrate, a defined dispersion volume
is deposited and subsequently forms a CC via evaporative self-
assembly (Figure 1a). The interplay of capillary and Marangoni
flow in these sessile droplets at room temperature results in a
pronounced coffee-stain effect (Figure 1b).[37] Structural colors
appear faint and far from homogeneous, and the droplet itself
shows an irregular shape. When heating the substrate to 70 °C,
the interactions favor a homogeneous layer of particles, facilitated
by the formation of a “milk-skin”-like particle layer during the ac-
celerated evaporation.[38] Additionally, evaporation occurs at the
edges immediately after contact, forcing the assembly to occur
in a well-defined circular area. This greatly enhances the repro-
ducibility and, thereby, the readability of the sensor during the
analysis described later. Scanning electron microscopy (SEM) im-
ages of the surface show large domain sizes of densely packed,
monodisperse particles, corroborating the vivid structural colors
observed via light microscopy (Figure 1c). Another significant
feature of this process is efficiency, as almost none of the suspen-
sion is wasted. Therefore, a given laboratory-scale batch of parti-
cles (typically a few 100 mL with 5 wt.% particle concentration)
can theoretically be used to prepare several thousand samples.

Having established a robust array fabrication method, we now
present the cornerstones of the particulate system. The polymer
latex particles used in this work consist of random copolymers
of methyl methacrylate (MMA) and n-butyl acrylate (nBA). Four
different particle types are prepared with varying comonomer vol-
ume ratios between 85:15 and 100:0 while maintaining a consis-
tent particle diameter of 320± 5 nm. Self-assembly of all four par-
ticle types and subsequent UV–vis spectroscopy (Figure 1d) show
an optical stop band at 635 ± 3 nm in each case. Both the assem-
bly behavior and the periodicity of the resulting nanostructure are
thereby proven to be uniform. The differences between the four
particle types are elucidated via differential scanning calorimetry
(DSC). Heating curves show the glass transition temperature (Tg)
shifting towards higher temperatures when increasing the MMA
content (Figure 1e). This dependency of Tg and comonomer com-
position is linear (Figure 1f).

The key aspects of these building blocks are the same size and
surface chemistry of the particles with different thermal proper-
ties. This allows the fabrication of multicomponent yet crystalline
nanostructures from mixed particle suspensions. Depending on
the number of components in an ensemble, the film formation
process can be tailored to a specific temperature range. The ther-
mal parameter space, we apply for sensing, can be elucidated in
a quaternary phase diagram (Figure 1g) showing all utilized par-
ticle mixtures. The automated array-printing setup facilitates the
realization of this large parameter space. We, therefore, drop-cast
a total of 20 different particle mixtures onto defined positions on
a glass substrate (Figure 1h). Two spots are prepared with each
composition to introduce some redundancy and improve later
readout. The setup allows reproducible fabrication of samples
with circular spots of CCs, all with the same vivid, red structural
coloration due to a consistent periodicity, geometry, and effective
refractive index (Figure 1i). Differences can later be observed at
elevated temperatures, where the thermal response of each com-
position is tracked.

The question now is how to characterize such a sample appro-
priately. Classic laboratory characterization methods can be di-
vided into two groups: 1) Methods that exhaustively cover the en-
tire sample but can only be measured ex situ. 2) In situ methods
that are, however, limited to one spot at a time. An example of ex
situ characterization is scanning light and electron microscopy
(Figure 2a–d). A pristine sample (RT), as well as three samples
subjected to isothermal sintering at different temperatures be-
tween 83 and 112 °C for 120 min are shown. Depending on the
thermal history, specific CCs remain (nearly) pristine, while oth-
ers show various degrees of discoloration. We examine three rep-
resentative positions post-sintering via SEM to corroborate the
expected structural change (Figure 2b–d). The respective CCs
consist of particles with 90%, 95%, and 100% MMA and show
compositions of 0:1:2 (spot i), 1:1:1 (spot ii), and 2:1:0 (spot iii).
When the CC consists of only high-Tg particles (spot i), the struc-
ture remains intact after heating (blue-shaded particles). When
only the minority phase is affected by the temperature increase,
and these particles deform (spot ii), an interconnected nanostruc-
ture of periodically arranged particles remains. As the tempera-
ture persists, these voids are slowly filled by the creeping polymer.
The overall refractive index contrast between spheres and voids
is concomitantly reduced, and the saturation diminishes. If the
majority of particles are heated above their Tg (spot iii), only small
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Figure 1. Fabrication process of multi-spot colloidal crystal sensors. a) Snapshots of the array-printing procedure, showing the (i) advancing, loaded
tip, (ii,iii) the tip in contact with the substrate, and (iv) the receding pin. b) Microscopy images of spots prepared at different substrate temperatures,
elucidating the importance of accelerated evaporation during self-assembly. c) SEM images of the colloidal crystal shown in panel (b). d) UV–vis re-
flectance spectra of four spots prepared from copolymer particles of identical size but different comonomer compositions. e) DSC heating curves of the
four different copolymers. f) Glass transition temperatures obtained from panel (e), showing a linear dependence regarding the comonomer composi-
tion. g) Quaternary phase diagram of all particle mixtures obtained from mixing the four different particle types. h) Positions of these mixtures on the
substrates. i) Microscopy image of a substrate prepared via the array-printing of the mixed particle suspensions shown in panels (g) and (h).

islands remain and (nearly) all symmetry and periodicity are lost.
No discernable color remains.

Complementary to this ex situ evaluation, in situ UV–vis spec-
troscopy provides temporal information regarding the sintering
process. Three spots are measured, one after the other (Fig-
ure 2e–g). The spectrum of spot i shows little to no change during
60 min at an elevated temperature. Spot ii, however, shows a slow
and consistent degradation of the stop-band to approximately half
of its previous reflectance. Spot iii shows a fast response, with

almost complete loss of any indication of a photonic stop-band
during the first 10–15 min. Quantifying the time-dependent UV–
vis spectra is possible, e.g., in the form of the normalized stop-
band intensity (Figure 2h). However, it is unfeasible to perform
this measurement at all 40 spots at once. Spectroscopic meth-
ods, therefore, fail to provide a holistic evaluation of the sen-
sor’s response to thermal events. Additionally, while similar op-
tical studies of inverse polymeric opals have been conducted by
applying, e.g., the Kelvin–Voigt model and WLF theory,[20] our
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Figure 2. Thermal response of the sensors. a) Light microscopy images of samples held at different temperatures for 120 min. The width of each image
is 27 mm. b–d) SEM images of the spots indicated in panel (a). The blue overlay shows intact, non-sintered particles. e–g) In situ UV–vis spectra of
equivalent spots during the sintering process at 98 °C showing the gradual stop-band degradation. These, however, have to be measured consecutively.
h) Time-dependent decrease of the normalized stop-band intensity. i) Photographs taken in situ of a sample during the sintering process at 98 °C with
a smartphone camera.

system is difficult to be studied (semi-)analytically.[21] Sintering
of particulate systems, in general, is a multi-step process,[39,40]

and the binary and ternary mixtures increase this intricacy. Be-
sides the polymer and particle composition, the surface chem-
istry may influence the film formation kinetics. All this ren-
ders an analytical description of the film formation increasingly
difficult.

Machine learning lends itself as a prime candidate for evalu-
ating the behavior of our sensors. It can describe nonlinear be-
havior without requiring extensive physical modeling. Instead, a
prerequisite for machine learning is a large amount of data. We
acquire the necessary data by capturing the time-dependent opti-
cal response of the sensor using a smartphone camera. This un-
conventional yet convenient method has the additional benefit of
being widely applicable and providing a user-friendly and non-
expert evaluation. Capturing the response with a smartphone
combines the time-resolution of the in-situ UV–vis spectroscopy

with the ability to measure the entire sensor of scanning mi-
croscopy (Figure 2i).

An evaluation of the full images is computationally expensive
and includes many pixels of the substrate background that con-
tain no relevant information. Furthermore, slight differences be-
tween spot sizes will complicate the training process. We, there-
fore, determine the mean red value of each spot by dividing every
image into 40 sub-images containing one spot each (Figue 3a).
We use the mean brightness of the 5%, 10%, 15% , 20%, and 25%
of pixels with the highest red value for the evaluation (Figure 3b).
For each substrate, 40 spots with five mean values each corre-
spond to 200 inputs for a given image. Compared to the RGB
images with a size of 420×1060 pixels, the number of inputs is
reduced by a factor of ≈6700, significantly speeding up computa-
tions. The mean red value of each spot (Figure 3c) changes sim-
ilarly to the stop-band intensity shown in Figure 2h. Spots i and
ii both show little to no change during 120 min of isothermal
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Figure 3. Preprocessing of the image data for the neural network. The shown image was taken after heating the sample for 80 min at 98 °C. a) The digital
image of the sensor is divided into 40 sub-images containing one spot each. b) For each sub-image, the pixels with the highest red value are used for
further evaluation. c) The mean red values follow the same trend as the stop-band decay.

heating. Also, the absolute red value of the two spots is nearly
identical, corroborating the homogeneity and structural integrity
of the CCs. The mean red value of spot iii decreases continu-
ously throughout the measurement, while spot iv shows a fast
degradation during the first 10 min. Combining these different
response types to an elevated temperature is important for mak-
ing a reasonable readout possible. For comparison, we also show
analogue plots for samples measured 5 K above and below this
temperature (Figure S1, Supporting Information). The influence
of the change in temperature on the sintering kinetics is clearly
visible in each decay curve. Therefore, we conclude that thermal
and temporal information is hidden in the 200 inputs and con-
tinue to establish a model capable of deciphering the results.

We use artificial neural networks (ANNs) with ten hidden lay-
ers to predict the time and temperature of a single image. The de-
sign idea for our ANN is to model the distinct sintering kinetics
of each particle composition at each temperature. Therefore, the
model consists of two parts (Figure 4). First, the model estimates
the probability of an image being taken at a specific temperature
by detecting the pattern of spots with no, little, and high red inten-
sities. The resulting probability density and the mean red values
are the inputs for the time prediction layer. Finally, the model re-
ports the most probable temperature and predicts the time as a
continuous variable. A detailed description of the network archi-
tecture and training procedure is in the Experimental Section.

We trained the ANN with nine different temperatures between
100 and 140 °C. Here, we report the hot plate set point as the
temperature for better readability. The set point is slightly higher
than the actual sensor temperature (Figure S2, Supporting Infor-
mation). At each temperature, we measured eight samples for 2
h at intervals of 5 s, corresponding to >94000 training images.
Supervised training optimizes the model parameters, and after
20 training epochs, the model assigns 96.7% of training images
to the correct temperature (Figure S3a, Supporting Information).
The predicted time also correlates very well with the measured
time. More than 80% of training inputs deviate <10 min from
the correct value (Figure S3b, Supporting Information). We no-
tice that the wrong assignment of temperatures occurs primarily

Figure 4. Artificial neural network architecture. The model consists of two
parts. The first half predicts the temperature by using only the mean red
values. The second half predicts the heating time, with the inputs being
the mean red values and the temperature probabilities.

at short times and that the incorrectly predicted temperature is
directly below the correct temperature (Figure S3c, Supporting
Information).

Next, we investigate the generalization of our ANN by predict-
ing the time and temperature for two validation samples per tem-
perature. Our model has never seen these samples before and is
unaware of the correct values. We can validate our system over
the whole time–temperature regime because both the sensor cre-
ation and the sensor evaluation are automated. In total, the vali-
dation set consists of >23000 images. As shown in Figure 5, the
resulting predictions resemble the training results well. Temper-
ature predictions are correct for the most part (96.4%). If images
are mislabeled, the temperature error is mainly only 5 K (3.3%).
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Figure 5. Prediction results for two samples per temperature, corresponding to >23000 validation images. a) Correlation of correct and predicted
temperatures. Incorrect predictions (hatched areas) are minimal and mostly show a deviation of only 5 K from the correct value. Underestimations are
shown at the top, and overestimations at the bottom. b) Correlation between correct and predicted time values.

Concerning the time, the majority of the predictions closely fol-
low the correct value (Figure 5b). However, some predictions de-
viate from expectations. The large number of validation images
allows us to investigate these deviations in more detail by group-
ing the time predictions by the correct temperature.

Figure 6a shows how the prediction quality varies with the cor-
rect sensor temperature. Each point in the graphs corresponds to
one validation image. For most temperatures, no difference be-
tween the two used validation samples is visible, demonstrating
that both the creation and evaluation of our sensors are highly re-
producible. While predictions at temperatures below 135 °C are
very accurate, some images at the highest temperatures show in-
correctly predicted time values. As the same phenomenon occurs
in the training data (although less pronounced), this is not a gen-
eralization issue but a limitation of the applied system itself.

Without a large amount of validation data, it is impossible to
identify the prediction capabilities in the distinct areas shown
above. Previous publications about TTIs validated their system
with a small number of validation samples,[15,18,20,21] thus, not
covering the whole time–temperature regime. Our large amount
of validation data allows us to state individual uncertainties for
each pair of predicted temperature and time (Figure 7). The mean
absolute difference between the predicted and the measured time
is generally below 10 min for temperatures below 135 °C. For
high temperatures, the uncertainty is larger. These individual er-
rors can be used as an output for the end user. Examples of single
images as recorded by a potential user are shown in Figure 6b.

Further examples are in Figures S4–S6 (Supporting Informa-
tion), showing how our integrators behave with multiple temper-
ature steps. As expected, if the sensors cool down between two
isothermal heating steps, the predicted time is the sum of the two
heating durations (Figure S4, Supporting Information). If multi-
ple heating events in the temperature range of the sensors occur,
the prediction refers to the higher temperature and further heat-
ing at lower temperatures does not affect the readout (Figure S5,
Supporting Information). For small temperature differences, a
slight overestimation of the time is possible (Figure S6, Support-
ing Information). Consequently, this type of TTI sensor is most
suitable and applicable for the recording of the highest tempera-
ture events, which are, in many cases, the most relevant ones to
judge on safety or spoilage issues.

The evaluation of a single photograph takes <1 s and is based
solely on an image taken by a smartphone camera. No knowl-
edge of photonic systems or the underlying physical processes
is necessary to utilize our system. The software will immedi-
ately predict the time and temperature of the photographed sen-
sor and state the corresponding uncertainty. Consequently, non-
specialists can employ our system effortlessly. This concept can
conceivably be adjusted to adapt the prerequisites to various ap-
plications. The time and temperature ranges that can be deter-
mined are related only to the thermal properties of the respective
polymer particles. Changing the glass transition temperature of
these can easily be done by varying the monomer composition.
Alternatively, high-temperature applications can be made possi-
ble by adding inorganic components such as silica colloids to the
phase diagram. Since the process is irreversible, tamper-proof
monitoring of goods such as food or batteries becomes a simple
process. Further advancements can be readily implemented by
miniaturizing the colloidal arrays down to the image resolution
limit of commercial cameras. Thereby, an even larger number
of CC spots and, consequently, particle mixtures could be exam-
ined at once. Increasing the number of CC spots will also provide
flexibility to include particle mixtures with different stop-bands
allowing for a multi-color analysis specific to certain tempera-
ture ranges.

3. Conclusion

We established a concept that applies a combinatorial approach to
add significant functionality to the well-known material class of
polymer colloidal crystals. Mixed photonic systems described by
a quaternary phase diagram were assembled using a scalable and
efficient array-printing method. This allowed us to examine the
thermal response of numerous samples, which formed a solid
training set for our measurement evaluation. The sensor state
can be optically read out by digital photography using a standard
smartphone. The evaluation was performed using an artificial
neural network. Using only the photograph of a sample subjected
to isothermal heating, the model correctly predicts time and tem-
perature independently. Our concept can be readily transferred
to specific sensing applications comprising photonic structures
and integrating sensing capabilities. The case demonstrated here
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Figure 6. Detailed prediction results for the validation images. a) Predictions for the first seven temperatures are very close to the true values. At higher
temperatures, the time predictions begin to deviate. b) Input images of five validation points from (a) with their corresponding predictions.

is particularly simple owing to the robust array fabrication pro-
cedure and the optical readout, which make this sensor useful
for non-expert users. Overall, we showed how the combination
of materials chemistry and advanced computational methods are
starting to enable a multiparametric analysis from complex col-
loidal systems.

4. Experimental Section
Materials: Methyl methacrylate (MMA), n-butyl acrylate (nBA), 3-

styrenesulfonic acid sodium salt hydrate (NaSS, 99%), and potassium per-
sulfate (KPS, 99%) were obtained from Sigma–Aldrich. Before further use,
both MMA and nBA were destabilized over Alox B. Water of MilliQ quality
was used throughout all experiments. Glass substrates were cleaned via
sonication in an aqueous 2 vol.% Helmanex III solution and in ethanol.

Particle Synthesis: Monodisperse particles were prepared via a
surfactant-free emulsion polymerization. 240 mL water were heated to 80
°C and degassed in a 250 mL three-necked flask for 75 min. While stir-

ring at 600 rpm, 19 mL of the respective monomer mixture were added,
together with 10 mg NaSS dissolved in 5 mL water. After 5 min, the poly-
merization was initiated by adding 200 mg KPS dissolved in 5 mL water.
The reaction was left to proceed overnight and terminated by exposure to
ambient oxygen. The different particle dispersions were each filtered over
a 125 μm mesh and otherwise used directly for preparing the binary and
ternary mixtures. The concentration of all dispersions was 5.7 ± 0.1 wt.%.

Self-Assembly via Array-Printing: The printing procedure was fully au-
tomated using an XYZ stage to ensure full reproducibility. A clean glass
substrate was placed on a hot-plate set to 70 °C. A spring-loaded, rounded
brass pin with a diameter of 5 mm was dipped into a dispersion and then
brought in contact with the substrate for a duration of 1 s. The pin was then
mechanically cleaned in a water bath and dried with a non-woven fabric.
The process then repeated with the next dispersion.

Characterization Methods: Microscopy images were obtained using a
laser scanning confocal microscope (Olympus, OLS5000) with a white
light source as well as a 405 nm laser with a 5×-magnification lens and
stitching of 7×18 images.

Scanning electron microscopy images were obtained with a Zeiss Leo
1530 (Carl Zeiss AG, Germany) at an operating voltage of 1 kV and both
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Figure 7. Mean errors between predicted and correct time. The validation over the whole time–temperature regime allows estimating uncertainties
precisely. Lower temperatures show a smaller deviation from the correct value. For high predicted temperatures, the uncertainty increases.

in-lens as well as secondary electron detection after sputtering of 2 nm
platinum. Images, where a false-colored overlay was applied, are shown in
their original form in Figure S7 (Supporting Information).

UV–vis spectra of drop-cast suspensions were measured on an Olym-
pus IX71 inverted microscope with a 10× lens in reflection geometry and
a halogen light source. An OceanOptics USB4000 spectrometer was cou-
pled via fiber optics. In situ measurements were conducted using an In-
stec HCS622HV heating stage with a silver heating block set to 110 °C.
Samples were attached to the stage using double-sided carbon tape, and
the sample was heated to 98 ± 3 °C. Spectra were obtained at intervals of
2 s.

Differential scanning calorimetry was conducted using a TA Instru-
ments Discovery DSC 2500. The second of two heating cycles was used
for the evaluation. Samples were measured between 20 and 200 °C at 10
K min−1 and in a nitrogen atmosphere.

The hydrodynamic diameter was measured using diluted dispersions
with a Zetasizer (Malvern) with 175° backscattering geometry.

Image Acquisition and Feature Extraction: Each sample was placed on a
black-coated hot plate (PZ 28-2, Harry Gestigkeit GmbH). A full-spectrum
lamp (Walimex pro LED Niova 600 Plus Daylight) with a light diffuser illu-
minated the sample at an angle of 10° and a distance of 30 cm. A smart-
phone (Fairphone 3+) took photographs (ISO 100, 1/10647 s exposure
time) of the sample at an angle of 10° and a distance of 10 cm every 5 s,
stored in the WebP format. The full 3000×4000 pixel images were cut into
40 squares of 75×75 pixels at pre-defined positions. The cropped images
are available online.[41] For each square, the 5%, 10%, 15%, 20%, and 25%
pixels with the highest red value were used to determine five distinct mean
values used as the input for the ANN. Each input vector of length 200 was
standardized by z-score normalization using the mean and standard devi-
ation of the training set.

ANN Architecture: PyTorch[42] was used for the network creation and
we made the code available online.[43] To choose a suitable model struc-
ture, different architectures were compared. Details are in the Supporting
Information. The final machine learning approach encompasses two al-
most identical, sequential models for temperature and time. They consist
of an initial batch normalization layer and five hidden, linear layers each.

The hidden layers have node sizes of 8192, 2048, 2048, 2048, and 512,
respectively. Each hidden layer uses a leaky ReLU function[44] as its activa-
tion. After the final hidden layer, a dropout layer with a dropout probabil-
ity of 50% was introduced to improve generalization. For the temperature
module, the output layer was a softmax function creating a probability den-
sity for the nine temperature categories. For the time module, the output
layer was a final linear layer of size one.

Training Process: The time series images of eight samples per temper-
ature were labeled and used for training. The initial 2 min of each sam-
ple were discarded due to temperature equilibration (Figure S2, Support-
ing Information). Prior to training, the time labels were scaled by min–
max normalization with a minimum time of 2 min and a maximum of
122 min. Stochastic gradient descent was employed. Different hyperpa-
rameters were tested (Table S2, Supporting Information). The final model
was trained with a batch size of 32, a learning rate of 5×10−4, a Nesterov
momentum of 0.9 and a weight decay of 1×10−3. The loss function is
the sum of the cross-entropy loss for the temperature prediction and the
mean squared error for the time predictions. The training concluded af-
ter 20 epochs.

Statistical Analysis: The errors indicated for the predicted times are
mean deviations between the correct and predicted times of the validation
data. To determine those, predictions were grouped into the temperature
and time bins shown in Figure 7. For each bin, the mean absolute differ-
ence between the correct and predicted value is shown. The training set
consists of 94032 and the validation set of 23433 images. Preprocessing
of the photographs is explained in the subsection “Image Acquisition and
Feature Extraction” . The data and software are available online.[41,43]

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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