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ABSTRACT Human-robot teaming receives an ever-increasing level of attention in research, development
and industry. Novel approaches to task sharing in hybrid teams range from optimized schedules to intelligent
cobot assistants with a high degree of autonomy. These approaches must prove their usefulness and benefits
compared to manual work or full automation – particularly when it comes to assessing their potential
for productive industrial use. This leverages demand for standardized, repeatable benchmarks to compare
approaches and measure improvements in a reproducible way. Designing such benchmarks is challenging as
numerous aspects, from safety considerations to human factors and team performance, must be considered.
This survey seeks to contribute to the future development of benchmarks for the field of collaborative
assembly, handling, and industrial cobot applications by giving a comprehensive overview of relevant
metrics, evaluation strategies, and tasks for human-robot teams.

INDEX TERMS Human–robot interaction, intelligent robots, benchmarks, human factors, survey.

I. INTRODUCTION
Human-robot teaming has lately gained increased atten-
tion also in the context of industrial applications. Hybrid
teams of humans and lightweight robots promise the sym-
biotic use of individual human and robot strengths in small
and medium-sized enterprises (SMEs) [1]. Various planning
methods for organizing joint task execution have been pro-
posed: Static teaming approaches target the calculation of
fixed schedules for mixed teams (e.g. [2], [3], [4], [5], [6]).
By contrast, dynamic teaming methods emphasize situation-
dependent co-working similar to human team coordination
(e.g. [7], [8], [9], [10], [11], [12], [13]). These methods
leverage robot reasoning and decision-making competencies
to achieve dynamic online adaptation, e.g. regarding varying
assembly sequences, product variety, worker availability etc.
They integrate several complex techniques from different
fields of cognitive robotics and artificial intelligence to make
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a robot communicate, sense, plan, and act together with
humans in possibly unknown environments.

Independently of the teaming mode (static or dynamic),
the introduction of robot co-workers in SMEs comes along
with investment costs for suitable manipulators and sensory
equipment – particularly cognitive robot systems as proposed
in recent years must therefore be thoroughly tested regard-
ing their usefulness to justify the investment. This leverages
demand for structured benchmarks enabling the comparative
assessment of different approaches, which is increased by the
currently prevalent replication crisis in human-robot inter-
action (HRI) research [14]. Compared to prior benchmarks
for intelligent robots (cf. e.g. [15], [16], [17]), establishing
such benchmarks for collaborative robots is even more chal-
lenging. Metrics, strategies, and tasks must take human and
robot into account: Firstly, human-robot teaming requires an
evaluation along multiple scales in addition to task efficiency
and effectiveness [18], e.g. human factors and occupational
safety. Secondly, these scales are partly based on subjective
metrics which can not directly be measured. And thirdly,
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FIGURE 1. This paper addresses the key steps for benchmarking
industrial cobot use: The process starts with the goals of cobot use under
the constraint of ensuring safety. Evaluation strategies are then derived.
Based on these strategies, concrete tasks and metrics are picked. Insights
from HRI research influence metrics and strategies.

an additional challenge is raised by dynamic methods: Static
approaches produce fixed human-robot workflows that are
optimal according to some optimization criterion (e.g. phys-
ical ergonomics [5]). This yields an objective standard of
comparison. By contrast, dynamic approaches are designed
to adapt robot behaviour to different situations online. These
situations emerge e.g. from human decisions or errors. Hence,
teaming performance depends on the interplay of robot and
human decisions, actions, and events that are not necessarily
deterministic and fully foreseeable for robots. Benchmarking
strategies for dynamic teams must therefore cover a range
of situations which might occur during joint task execution
to explore the average performance to expect from adaptive
robot assistants.

Prior publications have already gathered sets of metrics for
objective as well as subjective and cognitive aspects in the
general field of HRI [19], [20], [21], [22], [23], [24]. In con-
trast to these surveys, this paper seeks to contribute more
targeted insights for collaborative robotics and puts a stronger
focus on the overall benchmarking process (Figure 1): After a
short description of the literature review process (Section II),
we will first reframe relevant metrics from HRI research with
regard to typical goals of human-robot teaming in industrial
settings (Section III). Strategies for collecting these met-
rics are then reviewed and discussed regarding their ease
of use, reproducibility, and versatility (Section IV). Finally,
we will give an overview of recently used tasks and model
sets which might inspire future unified benchmark problems
(Section V). To the best of our knowledge, this holistic view
on hybrid teaming benchmarks has not yet been taken in
literature.

II. METHODOLOGY
This survey is based on literature we gathered during our
work in the field of human-robot teaming [25], [26], [27],
[28], [29], [30], starting from 2017. We have expanded and
completed this literature collection through an exploratory
forward and backward search. For each item in our initial
collection, we recursively screened the works referenced
by the item and more recent works referencing the item.

For the latter, we used the Google Scholar ‘Cited by’ func-
tionality. The key criterion to include a publication was
whether individual studies involved task sharing between
human and robot agents according to the following nomen-
clature: A task or process (T , ≺T) is a pair of a set T =

{τ1, . . . , τ|T |} of |T | subtasks or process steps denoted τi
(i ∈ {1, . . . , |T |}) and a partial order ≺T that encodes
‘‘earlier-later’’-relations (also called precedence constraints)
between subtasks. Each subtask τi is assumed to be feasible
for only one of the agents (human or robot) exclusively, for
both agents alike, or for neither of them on his/her own in
the case of timely synchronized collaboration. The problem
we seek to benchmark is, hence, the coordinated division
of subtasks among the members of a hybrid team. Accord-
ingly, we will not cover benchmarking the performance of
individual robot system components (perception, navigation,
manipulation, etc.; see [23]) but rather consider measuring
the effects of multi-agent teams as a whole. We will refer to
the task definition when formalizing evaluation metrics in the
next section.

III. EVALUATION METRICS
Metrics for measuring aspects of HRI have comprehensively
been discussed [19], [22], [23], [24], [31], [32], [33], [34],
[35]. In this section, we summarize this extensive body of
work. We extracted metrics that can be numerically quanti-
fied and compared and put them into the context of indus-
trial human-robot task sharing. These metrics are hereinafter
clustered by the major goals that companies pursue when
considering human-robot co-working for production. These
are [1]

• increasing productivity by combining the strengths of
humans and robots and sharing work in situations in
which full automation of a process would be inefficient,

• increasing flexibility to reflect the trend towards
small-batch production for mass customization with-
out the long changeover times of classical automation
systems,

• and increasing job attractiveness to improve the repu-
tation of manufacturing work by reducing physical and
mental stress and fostering innovative technologies.

In line with these goals, we have clustered metrics
related to productivity as a profitability-oriented view on
mixed teams (Section III-A), those measuring flexibility
(Section III-B), and those suitable to quantify job qual-
ity (Section III-C). Seeking to achieve these goals can not
be thought of without ensuring occupational safety in line
with applicable laws and standards, e.g. defined by ISO/TS
15066 [36]. Therefore, we have also included metrics related
to worker safety (Section III-D). Figure 2 summarizes the
metrics considered hereinafter.

A. PRODUCTIVITY
Gaining productivity by leveraging individual human and
robot strengths and division of work is a major motivation
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FIGURE 2. Overview of relevant metrics for assessing human-robot
teaming methods with regard to common goals in industrial scenarios.

for introducing human-robot teams. We assume that work-
ers are generally skilled and that robots are also equipped
with appropriate manipulation and perception skills to work
effectively towards the correct completion of the shared task.
Based on these assumptions, the first cluster of metrics targets
the effects of hybrid teams on goal achievement with regard to
efficiency. Definitions of ‘‘efficient goal achievement’’ are,
of course, strongly application-dependent. For the manufac-
turing domain, we propose to consider the following aspects:
The overall time to completion D is the time needed to finish
a task [23], e.g. assembling one product instance. This time
span is also referred to as makespan [5] or cycle time [56]
in the terminology of production key performance indicators.
Let DH denote the duration of the purely manual process as
carried out by a humanworker H. Concrete values can then be
estimated with standard motion time systems (e.g.Methods-
Time Measurement (MTM) [57]). Further, let DH/R denote
the duration of the same task when partly automated by a
human-robot team.We then propose defining the cooperative
speed-up SH/R [10] as

SH/R =
DH

DH/R
. (1)

A desirable cobot system must achieve high speed-up values
across different tasks – reducing the time to completion car-
ries over to production costs induced by human labour as well
as robot energy consumption.

Reducing task durations by work sharing is not only a
matter of economic considerations but also from a perspective
of technology acceptance: Expectations of being relieved
from parts of a task have been found to influence workers’
attitudes towards robots positively [58] – this brings us to
the notion of helpful robots ‘‘trying to play a positive role
[for humans] with the task at hand’’ [37]. Therefore, a robot
co-worker should generally be perceived as a helpful partner.
Freedman et al. have lately proposed relative helpfulnessHR
as a quantitative metric that relates the decrease in generic
costs to achieve some goal by human-robot teaming to the
cost of human-only task execution [37]. With this definition,
HR is directly related to cooperative speed-up (Equation 1) if
we take time to completion as a measure for task costs:

HR =
DH − DH/R

DH
= 1 −

1
SH/R

(2)

Although dual to cooperative speed-up, relative helpfulness
provides a more worker-centred quantitative view on the
overall relief induced by robot teammates.

The alignment of subtask allocation with individual agent
capabilities is another central aspect of efficiency in human-
robot teaming. E.g., humans are still ascribed superior sen-
sorimotor abilities, whereas robots exceed in precision [1].
It would therefore be inefficient to allocate a strongly dexter-
ous subtask to a robot while the worker is assigned process
steps to place small workpieces with high precision in the
meantime – in this example, each subtask would likely be
performed far more quickly by the other agent in line with
respective capabilities. Structured methods to determine so-
called capability indicators have been proposed early [38].
These indicators rate to what extent subtasks τ are suitable for
execution by either human or robot. To this end, they typically
condense several criteria into real-valued scores cH(τ ) for
humans and cR(τ ) for robots, with higher indicator values
meaning better suitability of the corresponding agent. Static
planning approaches use capability indicators as optimization
criteria before task execution (e.g. [6], [38]). Yet, accumu-
lated capability indicators of subtasks assigned to each agent
can analogously be used to evaluate the quality of decisions
for dynamic teaming approaches after task execution.

Agile robots can make mistakes [59], especially when
humans are around and unpredictably modify parts in the
workspace. Consider e.g. manipulation failure [23], [59]
or erroneous robot task allocation decisions colliding with
human actions due to incomplete knowledge of the task
progress [10]: any human or robot error requires time to
resolve. This timespan is lost from the productivity point of
view. The number of errors should therefore be considered an
important metric for mixed teams [19]. As we are focussing
on the impact on productivity here, the concrete error source
is of no importance. Consequently, we can say that trying
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to execute a subtask can either succeed or fail. Overall, the
robot will successfully complete N success

R ≤ |T | of all |T |

subtasks. To this end, it will issue a cumulated number of
N attempt
R ≥ N success

R attempts to handle subtasks. The number
of attempts may exceed the number of completed subtasks,
as subtasks that failed may be retried several times. We can
then define the robot error rate ER as a relative metric:

ER = 1 −
N success
R

N attempt
R

(3)

This metric can analogously be used to measure human error.
Teaming fluency, as discussed by Hoffman [34], helps

to analyse the timing aspect during shared task execution
beyond makespans. The corresponding metrics are connected
with efficiency and productivity as follows: Human Idle
Time Didle

H accumulates timespans during which the human
was willing to contribute to task progress but was delayed,
e.g. while waiting for the robot to fulfil an ‘‘earlier-later’’-
constraint. Similarly, phases of Robot Idle Time Didle

R can
emerge while waiting for human input or action. Both sorts of
idle time indicate pure utilization of production resources and
should be minimized from the perspective of productivity.
By contrast, measuring long timespans Dcoop of Concurrent
Activity, during which human and robot are equally active,
and a small deviationDH/R − Dcoop between concurrent work
and overall task duration indicates a successful division of
work and efficient use of available agent capacities. Nor-
malizing the aforementioned measures by the task duration
DH/R renders them comparable across different tasks and
robot systems. Hoffman [34] furthermore proposed to track
the functional delay as the time between an agent’s action
and the beginning of her/his partner’s action. This metric is
particularly relevant for approaches where the agents take
turns one after another or in the context of collaborative
interaction (e.g. when waiting for a part to be handed over);
however, this metric is redundant from a productivity-centred
point of view, as idle time includes such timespans.

Concurrent activity Dcoop provides a basic understanding
of resource utilization. Still, this metric does not necessarily
indicate a proper division of labour amongst agents. Com-
pared to humans, robots may work slowly, e.g. due to safety
considerations or limited dexterity. Teamwork will then not
speed up tasks significantly. We have previously used the
robot participation rate PR [10] to capture this aspect. This
metric relates the number of subtasksNR handled by the robot
to the overall number of subtasks |T |:

PR =
NR

|T |
. (4)

Assuming subtasks of similar durations (as is the case in e.g.
pick-and-place tasks within the boundedworkspace of typical
cobots), a competitive robot co-worker should achieve PR
values close to the fraction of robot to human working speed.
Otherwise, the system is not performing as a partner up to its
potential. This may be caused by the performance of percep-
tion and planning components or by coordination schemes

with an overhead of interaction effort – such issues would
also be indicated by negative helpfulness scores (HR < 0)
and speed-up values SH/R < 1. When interpreting PR, one
must consider that its value is capped to the percentage of
subtasks the robot can contribute to – if subtasks exist that
only humans are capable of (Section I).

B. FLEXIBILITY
Low changeover times in small-batch production are a major
goal of industrial human-robot teaming [1] that we refer to
by task flexibility. Programming has been identified as the
most time-consuming activity in this context [60], and we
can hence assume this step to also constitute the major part
of overall changeover times in robot co-working systems.
To quantify this effort, Marvel et al. proposed using the
programming time as a metric for multi-robot teams. As there
are various programming approaches used for instructing
collaborative robots (e.g. visual programming with skills [10]
or learning from demonstration [61]), the more general term
teaching time Dteach will be used hereinafter. It is important
to notice that this term does not necessarily have to refer to
the teaching of robots only: safe and efficient co-working
is supported by well-trained employees [62], and qualifica-
tion times can thus additionally be taken into account when
measuring Dteach. This absolute metric is hard to compare
across tasks. We, therefore, propose the normalized teaching
time D̃teach: Assume TA(τ ) to break down a subtask τ ∈ T
of some task (T , ≺T) into a set of work items with equally
short durations using standard task analysis (TA) techniques
(e.g. MTM [57]). The normalized teaching time is then given
by

D̃teach =
Dteach

6τ∈T |TA(τ )|
. (5)

According to this definition, low teaching times per work
item (D̃teach → 0) indicate a robot teammate that can quickly
be adapted when partial automation of a new task is desired.

Ongoing operational costs are a key concern when intro-
ducing hybrid teams [1]. Even if low D̃teach scores are
achieved, the absolute effort for commissioning may still
prevent profitable system operation. Therefore, the duration
of teaching a new task must also be put in relation to the
subsequent use times [39]. This is achieved by the teaching-
to-use time rate T with

T =
Dteach

Nlot · DH/R
, (6)

where Nlot ∈ N denotes the lot size to produce. In line with
the effects of automated mass production, T tends towards
zero with increasing lot sizes. When comparing two human-
robot teaming approaches for small-scale partial automation,
lower T scores indicate better task flexibility. Teaching times
should, in any case, not exceed the gain in productivity as
expressed by a decrease DH − DH/R in production times
per task execution (Section III-A). This interplay between
productivity and task flexibility metrics can be expressed
with an alternative formulation H′ of relative helpfulness
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(Equation 2): As this metric is defined for generic costs [37],
the lot size and teaching time can be integrated by adding
the contribution Dteach

Nlot
of teaching per production cycle to the

expected human-robot time to completion DH/R:

H′
= 1 −

Dteach
Nlot

+ DH/R

DH
(7)

In analogy to Equation 2, high scores forH′ indicate a helpful
robot with regard to a given task. When we assume that
teamwork speeds up tasks (DH/R < DH, or respectivelyH >

0), negative values ofH′ carry the additional information that
teaching efforts exceed the achieved gain in productivity.

In addition to task flexibility, particularly dynamic team-
ing methods are also directed towards teaming flexibility,
i.e. towards adapting to variance during the joint execution
process. A need for such adaptations can e.g.arise in situa-
tions when a worker leaves temporarily, e.g. at shift changes,
or when handling a more important intermediate task is
necessary [10], [13]. Further aspects can be derived from
considerations on robot agility in general [59]: To what
extent can a robot handle (self- or human-induced) failure
in the process? Can it adapt to environmental changes, e.g.
a tool moved to a different position by workers? All these
aspects of teaming flexibility can be covered by classify-
ing the autonomy level of a robot co-worker. To this end,
early definitions of Levels of Automation (LOA) for the
division of work among humans and any sort of machines
in general (e.g. [63], [64]) have inspired more specialized
taxonomic frameworks for HRI. In particular, the Levels Of
Robot Autonomy (LORA) proposed by Beer et al. [40] are
suited for evaluating human-robot teaming [18]. Respective
frameworks enable a categorization of the overall system, e.g.
in the case of LORA by evaluating the function allocation
to either human or robot for the basic actions of sensing,
planning, and acting [40].

For the task-sharing scenarios under consideration in this
survey, answers to the question of whether certain functions
are allocated to the robot are not necessarily binary for a given
system – they may depend on the concrete task that a mixed
team works on: Consider e.g. a stationary robot manipulator
with a camera attached to the robot hand as the only sensor.
According to the LORA taxonomy, a task-sharing system
using this sensory setup will certainly implement sensing
capabilities for object detection in general. Still, the degree of
autonomywill depend on the concrete task design. If parts are
out of perception range, support by the partner is required to
gather information on these objects. Similarly, the capability
to act on parts may vary within a continuum depending on
part locations and robot reach. A quantitative placement along
this continuum of shared control in which humans, as well
as robots, are accountable for a (possibly sliding) amount of
allocated functions [41] can be achieved by measuring the
amount of intervention or using the related neglect tolerance
metric [40]:

The amount of intervention is defined as the fraction of
time during which a human controls the robot [41]. Yanco
and Drury have proposed it in the context of mobile robots
able to navigate with varying amounts of control by a human
supervisor – this is opposed to our task-sharing setting in
which the human task is not supervision but equally con-
tributing to a shared goal. We can still reframe this metric
accordingly: Human intervention can be assumed to occur as
punctual events of short duration in the context of produc-
tive robot co-workers, e.g. providing pieces of information,
supporting collaborative subtasks, or especially helping out
in case of robot failure. The amount of intervention can then
be measured implicitly via other metrics, e.g.the interaction
effort (Section III-C) or the robot error rate (Equation 3).

Yanco and Drury have further defined the autonomy level
as ‘‘the percentage of time that the robot is carrying out its
task on its own’’, complementary to the amount of interven-
tion [41]. Similarly, neglect tolerance has been introduced by
Olsen and Goodrich [35]. Neglect tolerance quantifies the
timespan that a system can work without human attention
or intervention on a level of effectiveness that is consid-
ered sufficient (so-called neglect time). Although originally
motivated by man-machine interface design for remote
robot operation, neglect tolerance has semantics well-suited
for industrial co-working: High neglect tolerance expresses
a productive, failure-proof robot even in situations when
humans are not available or not willing to interact. Consider
e.g.a cobot which needs humans to explicitly confirm each
subtask they completed (e.g. [65], [66]). Systems relying on
this coordination scheme will stop working if the input on
task progress is no longer provided. They have low neglect
tolerance. By contrast, approaches with implicit coordination
by action or world state observation (e.g. [10], [11]) are more
neglect tolerant. Human attention is here only needed when
a subtask requires the collaboration of both agents simul-
taneously. For precise measurements of neglect tolerance,
Olsen et al.have proposed to observe the mean neglect
time D̄neg between two subsequent user interactions by
observing the points in time when users actually intervene,
or effectiveness drops below the acceptable threshold [35].
For our nomenclature regarding task sharing (Section I),
we can e.g.say that a robot is sufficiently effective as long
as it productively works on one of the subtasks and that
it is no longer effective when entering an idle time phase
(Section III-A). As with participation rates (Equation 4),
neglect tolerance must be carefully interpreted in the context
of the task at hand. For the same robot system, a task which is
dominated by subtasks that only humans are capable of might
lead to low neglect tolerance. In contrast, tasks with a high
potential for parallel work will yield high neglect times.

C. JOB QUALITY
In addition to productivity and flexibility, another goal of
cobot use is to enhance human job quality. There are two
major research fields which offer metrics to quantify working
conditions: physical ergonomics assesses loads impacting the
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human body to prevent disorders of muscles, nerves, and
joints (Section III-C1). By contrast, cognitive ergonomics
aims at mental health and perceived comfort (Section III-C2).
We will hereinafter review relevant metrics from both areas.

1) PHYSICAL ERGONOMICS
There are several established tools for assessing the phys-
ical ergonomics of a workplace: frameworks such as the
Strain Index (SI) [42], Revised Strain Index (RSI) [67],
Rapid Entire Body Assessment (REBA) [43], Rapid Upper
Limb Assessment (RULA) [44], European Assembly Work-
sheet (EAWS) [68], or the Washington Industrial Safety and
Health Act (WISHA) [69] have been used as indicators to
evaluate human-robot workflows with regard to human phys-
ical strain (e.g. [2], [3], [5], [18], [70], [71], [72], [73]).
These frameworks condense the information on the human
posture (encoded by limb angles, the weight of handled
parts etc.) into a single numerical score. Typically, lower
values indicate ergonomically favourable situations – accord-
ingly, unfavourable subtasks can be shifted to robot
co-workers to reduce the physical load by capability-based
task allocation. On top of the indicators for single pro-
cess steps or motions, attempts have been made to cumu-
latively rate the effects of sequences of actions, ultimately
taking muscle fatigue into consideration [71]. Aside from
the ergonomics scores based on observing limb angles with
the aforementioned frameworks, electromyography (EMG)
records of the electrical signals transmitted to muscles can
be used to estimate muscle activity and fatigue online [74],
[75], [76], [77]. We refer the reader to further literature that
discusses measurement methods for physical risk assessment
in depth [31], [78].

2) COGNITIVE ERGONOMICS
Improving cognitive ergonomics can influence productivity
and product quality positively [79], [80]. Hence, the benefits
of task sharing and enhanced physical ergonomics should
not be compensated by the negative impacts of cobots on
cognitive ergonomics, e.g. increased stress or fatigue as a
consequence of high mental workload [81], [82] or of resis-
tance to cooperating with the robot [83]. Contrasting to the
above productivity, flexibility, and physical ergonomics met-
rics, assessing concepts related to human factors is more
challenging as they concern subjective human impressions
during the teaming processes. These are investigated with two
predominant strategies, which the remainder of this section
puts emphasis on:

• Questionnaires are the most common tool for partici-
pant self-reporting in human factors analysis. They are
frequently composed of questions to rate one’s impres-
sion on a 5- or 7-point Likert scale and have been applied
to measuring a broad range of specific aspects.

• Physiological Measurements can be used to moni-
tor respiratory rates, heart activity (electrocardiography,
ECG), brain activity (electroencephalography, EEG),

eye activity (electrooculography, EOG), or the elec-
trodermal activity (EDA; also known as galvanic skin
response).

Aside from these methods, there are further, less frequent
strategies which we name for the sake of completeness:
(i) Direct Input Devices, such as joysticks or sliders, allow
subjects to input values continuously. The input data can
then e.g.be used to quantify emotions in terms of valence
and arousal [84], [85]. (ii) Behavioural Assessment relies on
video recordings of subjects to categorize their behaviour
after the actual experiment [27], [86], [87], [88]. (iii) Com-
putational Models relate quantitative values to human factor
concepts, e.g.trust to objective metrics [89], [90], [91], [92],
cognitive workload to physiological signals [93], [94], stress
to skin temperature [95], or anxiety to facial expressions [96].

These methods are used to collect data on a wide variety
of human factors. To identify concepts previously raised
in the context of human-robot task sharing, we reviewed
prior surveys of Baltrusch et al. [97], Hopko et al. [98],
Lorenzini et al. [31], Nelles et al. [21], Rubagotti et al. [52]
and Wurhofer et al. [99]. We unified their terminology and
extended them towards recent publications. This gave us the
below list of concepts with prominent examples of applied
measurement instruments (see Tables 1 and 2 for a com-
prehensive list of questionnaires and physiological measures
used with these concepts):

Cognitive Workload is a ‘‘multidimensional concept that
consists of four components: 1) task complexity; 2) men-
tal workload; 3) performance; and 4) depletion factors
(e.g.stress, fatigue, motivation) ’’ [143]. Reaching the limits
of one’s cognitive capacities can lead to stress and anxi-
ety [82]. In the long run, highmental workload causes fatigue,
increases error rates, and hence decreases performance. The
well-known NASA Task Load Index (NASA-TLX) [45] puts
emphasis on the perceived physical and cognitive workload
when using a system. Helton et al. have used an exten-
sion of the NASA-TLX towards perceived teaming work-
load (e.g. in terms of perceived effort for coordination and
communication, team support etc.) [100]. If only cognitive
workload is relevant, the Subjective Workload Assessment
Technique (SWAT) [102] is a validated alternative. When
only mental effort is relevant, the Rating Scale Mental Effort
(RSME) [103] is another established measurement instru-
ment. It gives users more guidance by providing descriptions
at certain scale levels [150]. These questionnaires can be
complemented with physiological signals related to cognitive
load (Table 2).

Affect refers to the experience of feelings, emotions,
or mood [151]. Negative emotions towards the robot and
the interaction with it may degrade trust and acceptance.
Frequently investigated sub-aspects of affect are anxiety, frus-
tration, emotional stress and (dis)comfort. Prominent scales
with a focus on measuring these sub-aspects are the State-
Trait Anxiety Inventory (STAI) [47], thePositive and Negative
Affect Schedule (PANAS) [105], and the Negative Attitudes
Towards Robots scale (NARS) [106], [107].
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TABLE 1. Aspects of job quality and psychological safety covered by questionnaires. Half circles indicate that only one question targets the concept or an
aspect of it. Full circles denote multiple questions.

TABLE 2. Overview of studies which target human-robot cooperation and use physiological measures for human factors analysis. References in grey
indicate that the study did not find statistically significant differences between conditions with respect to the concept.

43654 VOLUME 11, 2023



D. Riedelbauch et al.: Benchmarking Teamwork of Humans and Cobots

Satisfaction: Satisfaction is the ‘‘extent to which the
user’s physical, cognitive and emotional responses that result
from the use of a system (. . . ) meet the user’s needs and
expectations’’ [152]. Important factors influencing satisfac-
tion are feature consistency, robot support [100], content-
ment with the interaction [99], self-efficacy [108], trust, and
pleasure/frustration [152]. Satisfaction is (besides efficiency
and effectiveness) a core dimension of usability [152]. The
most prominent usability evaluation method is the System
Usability Scale (SUS) [46]. It accurately captures the usabil-
ity and learnability of a system [153] while only moderately
correlating with task performance [154]. A compact
variant is the Usability Metric for User Experience
(UMUX) [101].

Subjective Performance complements the objective per-
formance metrics (Section III-A). Respective questionnaires
capture how subjects perceive overall efficiency, effective-
ness, and output quality, as well as the individual contribution
of human and robot to the task. E.g., objective productivity
metrics as the concurrent activity have counterparts capturing
human subjective ratings of teaming performance in varia-
tions of the fluency questionnaire [34].

Acceptance encompasses a person’s attitude and behaviour
towards a robot [58], and behavioural acceptance may range
from commitment to refusal. Early models for measuring the
acceptability of automation are the Technology Acceptance
Model (TAM) [155] and the Unified Theory of Acceptance
and Use of Technology (UTAUT) [108]. When using more
recent extensions of these models, as proposed by Venkatesh
et al. [156], [157], it must be taken into account that interac-
tion with technology can be mandatory rather than voluntary
in industrial settings [158], [159]. A better-suited variant, par-
ticularly for human-robot cooperation, has been constructed
and validated by Bröhl et al. with ease of use, usefulness, and
intention to use as core factors [113].

Personality refers to the personality traits that humans
attribute to the robot based on its behaviour. Examples are
likeability, intelligence, appreciation, respect, cooperative-
ness or legibility of behaviour. The Godspeed questionnaire
is a well-known example of capturing these aspects [104].

Interaction Quality refers to the perceived fluency and
naturalness during joint task execution. Coordination, com-
munication, and time-sharing demands [100], as well as the
experienced teaming and waiting times, are important factors
influencing this concept. Similar to subjective performance,
some aspects of interaction quality can objectively be mea-
sured, e.g.with productivity-related fluency metrics such as
human idle times, functional delays [34], or the interac-
tion effort [35]. A questionnaire for the subjective fluency
of HRI has been introduced by Hoffman et al. [160] and
modified for several studies [48], [61], [109], [161]. Paliga
et al.have refined the concept into human-oriented, robot-
oriented, and team-oriented components [111]. Importantly,
subjective fluency scores do not necessarily correlate with
corresponding objective measures: a cumbersome interaction

which objectively increases efficiency can feel less fluent
than a natural but less performant interaction [34].

Trust is a multidimensional concept which emerges from
the interaction of two partners. Wurhofer et al. define it
as ‘‘the extent to which the user feels confident that the
system will behave as intended’’ [99]. An appropriate level
of trust forms a keystone towards efficient teamwork [89]:
Both overtrust (i.e.users overestimating robot capabilities)
and distrust (i.e.users underestimating a robot and, hence,
intervening too frequently) can degrade the overall team
performance [162]. Established measurement instruments
for trust in automation exist [163], [164], but these are
not directly usable for HRI [165], where robots can act
autonomously and humans may play the role of a team-
mate [166]. In consequence, modelling techniques (see
e.g.the surveys of Khavas et al. [167], Hancock et al. [168])
and items in several questionnaires (Table 1) have been pro-
posed to specifically target trust in HRI. Yet results must be
cautiously interpreted since subjects tend to put more trust
in robots when experiments are conducted in controlled lab
settings [48].

Situational Awareness (SA) is ‘‘the perception of the
elements in the environment within a volume of time and
space, comprehension of their meaning and the projection of
their status in the near future’’ [169]. High SA can thus help to
predict and prevent mistakes. We found three major strategies
to evaluate SA: (i) Freeze-probes freeze the task at some point
in time and ask the user questions about his/her understanding
of the situation [51], [110]. (ii) Attention can be measured
by observing for how long subjects’ gaze is directed towards
certain regions, either with an eye-tracking system [96], [136]
or with questionnaires [53]. (iii) Intervention can be observed
by intentionally creating exceptional situations and giving
users a small time window to understand and react [136].

D. SAFETY
Keeping humans safe at any time during HRI is a primary
obligation for ethical reasons in general and due to laws
and regulations in manufacturing environments in particular.
Two sorts of safety are commonly distinguished [20]: Physi-
cal safety is concerned with preventing unintended, forceful
human-robot contact, which might injure the human body.
Even if a robot is technically capable of stopping in time
to avoid such harm, too fast motions close to a human may
still cause discomfort [85] – this sort of psychological harm
as also induced by stress, anxiety, or the violation of social
norms renders an additional consideration of psychological
safety necessary. The achievement of safety can be measured
with the following metrics:

Regarding physical safety, the International Organization
for Standardization defines the protective separation distance
and force limits, which may not be exceeded in case of direct
contact [36]. The protective separation distance is defined as
the minimum distance that lets a robot stop before colliding
with a human based on speed, reaction times and positioning
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uncertainties. Accordingly, comparing the current distance
(and the currently exerted force in case of wanted human-
robot contacts) with the protective separation distance can
be used as a metric to judge the obtained level of physical
safety. This comparison requires estimating the human body
pose, e.g.by inertial measurement units (IMU) [170], [171],
[172], [173], by colour segmentation [174], by skeleton track-
ing in camera images [175], [176], with data gloves [177],
[178], or with dedicated markers attached to the body and
captured by a surrounding detection system [179], [180],
[181], [182], [183]. An alternative perspective on separation
distance is the time to collision [184]. We direct the reader
to Kumar et al. [33] for an in-depth discussion of speed and
separation monitoring and a list of measures.

According to Rubagotti et al., the core concepts related to
psychological safety are trust, comfort, stress, fear, anxiety,
and surprise. We have already encountered these aspects in
the context of cognitive ergonomics (Section III-C), where
we subsumed a part of them (comfort, stress, and emotions
like fear and surprise) under the notion of affect. As a con-
sequence of this similarity, perceived psychological safety
is often evaluated with questionnaire items in conjunction
with these aspects (e.g. [48], [51], [104], see Table 1), items
explicitly targeting safety (e.g. [49], [50], [112]), or, via
physiological measurements in the case of anxiety (Table 2).

E. COMBINED METRICS
A benchmark to comprehensively evaluate human-robot
teaming must ideally cover all relevant goals. By combining
complementary metrics, one better understands a system’s
overall impact on workers. We found two ways in literature
to achieve this: (i) Several goals can be combined into a sin-
gle numerical indicator. Zhang et al. [54] have proposed the
Throughput Rate per Unit of Work Effort Time. It combines
productivity and physical ergonomics by putting throughput
rates and the Strain Index into relation. Rephrased in the
formalization nomenclature of this paper, this measure is
defined by

C =
1/DH/R

DH/R · SI
(8)

with throughput rate 1/DH/R [56] and the overall
Strain Index [42] SI accumulated across all subtasks.
(ii) Alternatively, several measurement instruments can be
combined into more complex evaluation frameworks. Fol-
lowing this strategy, the framework of Gervasi et al. [18]
embeds established metrics from Sections III-A to III-D
(e.g.Levels of Robot Autonomy, NASA-TLX, EAWS, SUS)
into a higher-level rating scheme. Similarly, Wallström and
Lindblom [185] have proposed to combine measures for
productivity (e.g.effectiveness and efficiency) and for job
quality (e.g.trust and safety) into an HRI design process
inspired by user experience (UX) design goals. An important
feature of the latter method is that it does not require large
sample sizes – a convenience sample is often sufficient, hence

rendering the framework well-suited for early prototype
design [185].

F. DISCUSSION
Productivity, flexibility, job quality and safety are the main
goals for evaluating industrial human-robot applications.
Metrics to measure productivity (Section III-A) and flexi-
bility (Section III-B) are often objective and easily measur-
able by an observing experimenter (e.g.task completion time,
idle time, teaching time). There are also objective metrics
to quantify aspects of job quality (e.g.physical ergonomics
frameworks, Section III-C) and safety (e.g.separation dis-
tances, Section III-D), some of them requiring more sophis-
ticated measurements of physiological signals (e.g.anxiety).
However, particularly job quality is strongly linked to human
factors, which are predominantly evaluated with users’ self-
reports based on questionnaires. Physiological signals and
questionnaire-based metrics come along with specific chal-
lenges, as discussed below – more general guidelines for the
design and conduct of HRI studies to gather these metrics are
outlined in Section IV-E.

Particularly questionnaires need to prove their reliability
and validity, i.e.it must be shown that there is a ‘‘correla-
tion between respondent’s scores and the true level of the
concept being measured’’ [186] and that there is a high
‘‘degree to which evidence and theory support the interpre-
tations of test scores entailed by the proposed uses’’ [187].
Long-term established and well-known standard question-
naires often have a broad range of literature showing under
which circumstances reliability and validity can be assumed
(e.g.SUS [46], NASA-TLX [45]). Whenever using modified
or self-designed questionnaires, researchers should consider
newly proving the reliability and validity as a part of their
evaluation. This can e.g.be achieved by adhering to the struc-
tured design process for measuring new concepts as pro-
posed by Rueben et al. [186] (Figure 3). A popular way to
prove reliability is to investigate the internal consistency via
the tau-equivalent reliability (formally known as Cronbach’s
alpha) – see Cho et al.for detailed guidelines [188]. In their
work, Rueben et al.also discuss indicators related to valid-
ity in the process of creating and adapting questionnaires.
Despite following these guidelines, the response process can
still undermine the validity of the measurement instrument.
Different sorts of biases need to be considered when inter-
preting results, e.g.a bias towards the extremes of a scale, the
social desirability bias [189], or subjective biases resulting
from one’s personal (dis)likes [190]. Rosenthal et al. [191]
give detailed insights into study design for behavioural
assessment.

Compared to questionnaire-based self-reporting, physi-
ological signals promise less subjective bias and higher
sampling rates [121]. In turn, two other challenges arise:
(i) According measurements of the underlying physical prop-
erty must be obtained. This can partly be achieved with
consumer devices, such as smartwatches or chest-strap sen-
sors (e.g.for measuring the heart rate), but often requires
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FIGURE 3. Process of measuring a new concept in an HRI experiment [186].

specialized medical devices (e.g.EEG). For the latter, high
deployment costs, limitations of the human movement space,
accuracy issues, and the problem of choosing an appropri-
ate measurement horizon and baseline measurement must
be considered [192], [193]. (ii) The measured values must
relate to the concept under investigation, i.e.the question
of reliability and validity arises for questionnaires and
physiological measures alike. Finding a fitting measure
and categorization is still challenging: The current litera-
ture is e.g.still inconclusive regarding the best-suited com-
bination of physiological signals for measuring cognitive
workload [31], [143], [144], [145], [146] when physical
workload and anxiety towards the robot might change as
well during the same experiment. Models developed so far
might hence still be insufficient to match the results to be
obtained with self-reports [115], [144], [145], [146], or insuf-
ficient to discriminate different conditions (grey references in
Table 2).

A comprehensive evaluation needs more than one met-
ric to cover all concepts relevant to human-robot teaming
(Section III-E). However, using multiple measures and eval-
uation methods for a single concept within the same study
should also be considered. This can help to reduce measure-
ment errors and leads to more valid, reliable, and conflict-free
results with regard to some concept [194]. The strategy of
using three ormoremeasures is generally called triangulation
(see e.g. [195] for a general in-depth discussion). HRI studies
have e.g.combined questionnaires with objective physiolog-
ical measures [53], [196], [197] and/or task performance
metrics [115], [198].

IV. EVALUATION STRATEGIES
Insights on human-robot teaming can be gathered by applying
different evaluation strategies to a given system. We will
discuss these hereinafter: Starting with considerations on
research demonstrators in Section IV-A, Section IV-B gathers
recent works on user study design. Section IV-C then elab-
orates on simulation-based evaluation strategies where HRI
are observed (partly or fully) in virtual spaces. We conclude
with analytical performance models in Section IV-D and dis-
cuss the properties and interrelations of individual methods
in Section IV-E.

A. RESEARCH DEMONSTRATORS
Demonstrators play a vital role in research and develop-
ment processes. Moultrie has formulated a comprehensive
model that differentiates between several types of demon-
strators according to their purpose [199]. For basic research
on human-robot teams, physical prototypes are important

artefacts for advancements under laboratory conditions [200].
Yet, partially or fully virtual prototypes of hybrid worksta-
tions may also be built with modern simulation and virtual
reality techniques (e.g. [201], [202], [203]). Demonstrators
can moreover serve as ‘boundary objects’ between indi-
viduals with different expertise (e.g. academic researchers
and stakeholders from industry) [199] when approaching
higher technology readiness levels. They are then used as
common ground for structured interdisciplinary dialogue and
participative design steps, e.g. when jointly investigating
human-robot safety solutions [204]. Demonstrators are them-
selves an evaluation strategy as any proof-of-concept imple-
mentation directly measures ‘feasibility’ as a binary metric.
This is usually achieved by showcasing concrete use-cases
(e.g. [205]) or by reporting on the typical sequence of actions
when interacting with a cobot (e.g. [206], [207], [208]).

B. HUMAN-PARTICIPANT STUDIES
Based on a prototype system, human-participant stud-
ies (often also called user studies) are frequently used
experimental tools for evaluating HRI [209]. They enable
users to work with a system so that researchers can
observe and gather measures (cf. Section III) as required
for judging and comparing the performance of different
approaches. Human-participant studies will, hence, certainly
be part of future benchmarking protocols. This section is
intended to introduce a brief taxonomy of design char-
acteristics and methods (Figure 4). A more comprehen-
sive coverage of the field is provided by recent works
and guidelines of Hoffman [210], Bartneck et al. [209], and
Bethel et al. [211].

Three major study paradigms can be differentiated [212]:
Insight-driven studies are directed towards developing gen-
eral ideas or new theories in a problem context. Examples
from the field of industrial cobot use are e.g. understanding
(un-)desired job attributes to inform cobot deployment by
interviewing assembly line workers [213], finding aspects
relevant to trust in robots [50], or identifying challenges
associated with cobot deployment [214], [215]. In contrast
to the exploratory nature of insights-driven studies, a design
study is specifically directed towards designing concrete
robots or robot behaviours, e.g. during participatory work
on demonstrators [204]. Finally, hypothesis-driven studies
seek to objectively test hypotheses with statistically signifi-
cant, numerical data. In the context of industrial applications,
we can e.g. hypothesize that a mixed human-robot team
will enhance productivity, job quality etc., compared to the
baseline condition of the same process when performed by a
human.
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FIGURE 4. A brief taxonomy of goals and associated human-participant study design characteristics.

The above paradigms are pursued with qualitative and
quantitative experimental procedures according to the type of
data they provide [210], [212]. Qualitative methods, such as
(semi-)structured interviews, focus groups, generative activ-
ities, or reflective and narrative accounts, provide textual
participant responses, field notes, audio or video recordings
to be interpreted by the researcher. The resulting data can
typically not be expressed numerically [209] – qualitative
methods are, hence, predominantly used for insights-driven
and design studies [212]. By contrast, quantitative meth-
ods condense complex aspects into directly and objectively
comparable numerical measures as needed for statistical
hypothesis testing. The chosen measure defines the exper-
imental procedure during quantitative studies: Subjective
measures are gathered from participants by asking them to
self-report their experience with the system, e.g. by answer-
ing questionnaires. By contrast, objective measures can be
obtained through independent observations, e.g. measuring
task durations or human physiological variables [216]. With
most of the metrics discussed in this paper being numerical,
Section III is a catalogue of subjective and objective quanti-
tative measures.

Recruitment and involvement of participants are of cru-
cial importance in human-participant studies. It is not only
important to ensure a sufficient number of participants to
achieve an appropriate level of significance (e.g. using an
a priori power analysis [194]) but also how these partici-
pants are divided into groups to test a system under different
conditions. With regard to this design dimension, a separa-
tion into between-subject, within-subject, and mixed-model
studies is common [194]: In a between-subjects study, the
participants are randomly divided into several groups. Each
group will then take part in one variation of the experiment,
and results will be compared across the groups (e.g. [125],
[217], [218], [219], [220], [221]). By contrast, each subject
experiences several experimental conditions in a random-
ized ordering in within-subject studies (e.g. [119], [197],
[222], [223], [224], [225], [226], [227], [228]). Compared
to between-subject designs, this approach enables compar-
isons between participants and allows the collection of more
data per participant – this may, on the other hand, lead

to habituation and fatigue effects [194]. Finally, mixed-
model factorial designs (e.g. [229], [230]) combine the afore-
mentioned designs by running a within-subject study (e.g.
regarding interaction experience [229]) with each member
of groups in a between-subjects study (e.g. regarding robot
anthropomorphism [229]).

Independently of the assignment of participants to condi-
tions, user studies can further be distinguished regarding the
location where they are carried out: Experiments in the field
with demonstrators of productive use-cases are still rather
rare, especially when it comes to true task sharing rather
than mere human-robot coexistence [205], [231], [232].
Respectively, studies in laboratory settings are predominant
(e.g. [119], [197], [217], [218], [220], [221], [222], [223],
[225], [228], [229], [230]) albeit partly seeking to replicate
realistic industrial settings rather than relying on synthetic
tasks (e.g. [219], [224], [233]). Laboratory studies can be con-
ducted with physical or virtual prototypes. In the latter case,
different parts of the robot system under test can be virtual-
ized utilizing simulation: Virtual hardware can be accessed
by participants to share tasks with robots using virtual reality
techniques [197] (cf. Section IV-C). Likewise, the existence
of software components can be simulated by substituting
autonomous teaming capabilities with a researcher teleop-
erating an embodied robot in Wizard-of-Oz studies [220].
Finally, the potential for large, representative samples through
crowdsourcing has motivated using the internet as a study
context, e.g. by presenting videos [234] or by enabling the
aforementioned interaction in virtual spaces [235], [236].

C. VIRTUAL COMMISSIONING
The term virtual commissioning has traditionally been used
for procedures during which physical hardware is connected
to a realtime-capable simulation system, e.g. for program-
ming and testing Programmable Logic Controllers decoupled
from the physical production system [237]. Lechler et al.
have only recently pointed out that this technique also offers
a high potential for applications beyond this early use-case,
particularly for HRI [238] – indeed, simulations of robot as
well as human behaviour have been part of several HRI exper-
iments in recent years. This section frames corresponding
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evaluation strategies in the context of virtual commission-
ing terminology. As we are focussing on settings in which
humans and robots actively share a joint task (Section I),
approaches where humans passively observe simulated robot
behaviour (e.g. [227], [234]) will not be considered in depth.
Following the nomenclature of Erős et al. we distinguish
between immersed and virtual human-in-the-loop virtual
commissioning [239].

1) IMMERSED HUMAN-IN-THE-LOOP VIRTUAL
COMMISSIONING
Immersed Human-in-the-Loop virtual commissioning puts
study participants into a virtual space where they can interact
with a simulated robot system [239]. Humans perceive the
virtual cobot through virtual reality (VR) hardware. We can
here distinguish head-mounted displays (HMDs) [115],
[198], [201], [240], [241], [242], [243] from less frequently
used systems that project scenes onto walls of the room [196],
[197], [244]. Participants’ experience of the virtual world is
not limited to the visual modality but can also be enriched
with auditory cues, e.g.ambient noise in industrial facilities
(e.g. [240], [243]). The control loop is closed by providing
humans with an input channel to interact with the virtual
workspace. This can be achieved with the controllers, which
are usually deployedwithVRHMDs (e.g. [198], [201], [240],
[242]), with external cameras (e.g. [243]), or with marker-
based tracking systems (e.g. [115], [197], [245]). More
precise information, particularly on human hand motions,
is provided by data gloves [245], or by attaching a hand
tracking sensor to the HMD [241]. These input devices enable
a variety of collaborative jobs, ranging from pick-and-place
tasks with object handovers between agents [115], [197],
[242], [246] to high-fidelity assembly settings [198], [240],
[241], [243]. Virtual environments may also allow humans to
move on larger shop floors (e.g. [242], [246]). In addition to
task sharing, even kinaesthetic robot teaching can be virtually
tested using haptic devices with force feedback [244].

Human interaction influences the virtual environment, and
the control and planning algorithms under test produce cor-
responding robot reactions – just as in human-subject stud-
ies with physical robot prototypes. Accordingly, the design
dimensions outlined in Section IV-B equally apply to user
studies conducted by Immersed Human-In-The-Loop Virtual
Commissioning. Corresponding studies mostly seek to gather
quantitative data (e.g. [53], [115], [196], [197], [198], [240],
[241], [242], [243], [247]), but virtual reality also enables
insights-driven research [248]. A major difference is that
human safety during experiments is not an issue in virtual
environments as opposed to physical interaction in laboratory
setups. Consequently, we found that (possibly dangerous)
variations of robot trajectories in terms of speed or unex-
pected, jerky movements are a frequently manipulated vari-
able [115], [196], [197], [198], [242], either directly or indi-
rectly when testing different cobot safety mechanisms [243].
Other variables are, e.g., the use of different communication

channels [240], [247], robot morphology [197], or unforeseen
events in the surrounding of the shared task [246]. Depen-
dent measures cover the full spectrum of metrics outlined in
Section III: Productivity in terms of completion times, errors,
and fluency have been observed [115], [196], [198], [240],
[243] as well as the flexibility of humans regarding changes
to the robot working speed [198]. In terms of job qual-
ity, physical ergonomics scores have been calculated from
skeletal tracking data [241], and cognitive workload related
to stress has been evaluated with corresponding question-
naires (e.g. [115], [196], [247]). Lastly, the safety of planned
robot motions can be tested against true human motion data
(e.g. [201], [240], [243]). Constructs related to psychological
safety, including anxiety, trust, and behavioural patterns (e.g.
leaning back or stepping away from the robot), have also
been observed in VR-based experiments [53], [196], [197],
[198], [242]. All aforementioned studies have been conducted
in laboratories. However, VR technology is also a suitable
medium for crowdsourcing and remote participation in HRI
experiments via the internet, i.e. without having to invite
subjects to the laboratory [235].

2) VIRTUAL HUMAN-IN-THE-LOOP VIRTUAL
COMMISSIONING
Contrasting to Immersed Human-in-the-Loop virtual com-
missioning, Virtual Human-in-the-Loop Virtual Commission-
ing relies not only on virtual robot hardware but also on
simulated human behaviour – human subjects are thus not
part of corresponding experiments [239], but the HRI is fully
simulated. Related approaches can be classified according
to the expressiveness of underlying digital human models
(DHMs) used to replicate human behaviour:

Most DHMs emphasize physical aspects of human
action [249], e.g. regarding motion times and ergonomics.
Accordingly, systems for simulating manual work (e.g. ema
work designer [250]; IPS IMMA1) have been used to analyse
cycle times and ergonomic metrics of collaborative work-
flows [4], [203], [251]. In contrast to these 3D simulations
with realistically animated manikins and robots, 2D simula-
tions of workers and mobile robots on the shop floor [252] or
of hand motions above a working surface plane [242], [253],
[254] have been proposed to estimate task times. In addition
to productivity- and ergonomics-related metrics, simulations
are predestined to investigate safety mechanisms without
actually endangering human subjects. To this end, expected
contact forces can be estimated with biomechanical collision
models (e.g. according to ISO/TS 15066 [36]) to designwork-
stations that are prepared to pass the risk assessment after-
wards [203], [255]. Particularly approaches based on com-
mercial simulation tools are designed to iteratively draft and
test candidate HRC workflows by precisely entering work
items for all involved agents. In contrast, Antakli et al. [202]
have proposed a simulation architecture for more interactive
testing with coupled agent behaviours: Production planners

1https://industrialpathsolutions.se (Date accessed: 2022/03/28)
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can here create different situations by manipulating objects
and agent states at simulation runtime, hence influencing the
course of actions emerging from a near-optimal optimization
scheme and human motion synthesis.
Cognitive aspects of human behaviour are hard to model

and have less frequently been addressed in the context of
industrial HRC evaluation. There are practical models cap-
turing individual factors and dependencies, e.g. between

• fatigue, learning, and human error rates [256]
• robot performance, task complexity, human physical and
cognitive workload [257]

• trust and human-robot teaming performance [258]
• eye gaze and hand-reaching motions [259]
• consecutive decisions when choosing from several
assembly steps yet to be done [260].

These can be used as components in models of high-level
human decision behaviour to simulate non-deterministic but
plausible human action in industrial settings [10], [261].
Recent models include behaviours such as inter-agent com-
munication and leaving the workstation for a break [261],
e.g. by relating transition probabilities in a Markov Decision
Process to human fatigue [261], [262] or frustration [261]
accumulated over time.

D. ANALYTICAL MODELS
The final evaluation strategy that we are going to survey
makes use of analytical models. Such models seek to encode
parametric relationships in sets of mathematical equations.
They are primarily applied to observe cobot impacts on pro-
ductivity metrics when varying different economic parame-
ters. In this class, process-independent and process-oriented
approaches are distinguishable. Process-independent mod-
els are designed to estimate the minimum productivity gain
(e.g. in terms of assembly line throughput [263]) that must be
achieved to justify the introduction of cobots [263], [264].
To this end, expected cycle time reductions resulting from
teamwork are set in relation to the costs of cobot use. Beyond
initial hardware acquisition expenditures, the cost model pro-
posed by Calvo and Gil [264] also reflects product changes
during the operative lifetime, wage raises over time, and
social costs, such as welfare support for human workers
replaced by robots. In contrast, the approach of Cohen et
al. puts a stronger emphasis on cobot-based compensation of
productivity losses emerging from the temporal absenteeism
of experienced workers and replacement with less experi-
enced ones in assembly lines [263].

The applicability of such high-level models presumes that
estimates of cycle times for manual processes and particularly
of human-robot teams are already available. Although this
question is strongly product- and process-dependent, several
authors have shown how analytical process-oriented models
for hybrid workstations can be shaped. On this level of sys-
tem analysis, deterministic and stochastic models have been
proposed. Deterministic models such as the one proposed by
Faccio et al. [265] are applicable to a class of processes in

TABLE 3. Classification of evaluation strategies regarding their ease of
use, versatility, and impact on experiment reproducibility (�= low,

� = medium, �= high, — = not applicable).

which individual process steps do not depend on each other
and are assumed to have equal durations. More generally,
arbitrary processes with precedence relations between oper-
ations can be analysed by modelling human-robot teamwork
as a multi-agent scheduling problem [266]. This model can
then be solved for different HRC settings (e.g. varying num-
ber of humans and robots, discrepancy between human and
robot working speed, percentage of process steps that the
robot is capable of etc.), yielding the optimal workflow and
time savings compared to manual work. A consequence of
optimality is that this model does not capture the variance
of dynamic, flexible teams across different runs of the same
process. In contrast, stochastic models have been proposed
to account for uncertainties in manual operations. Similar
to the aforementioned model of Faccio et al., these models
rely on a limited process pattern. But they assume process
step durations which follow exponential distributions [54] or
gamma distributions [267] – it is this way possible to calculate
the expected value of the overall process duration and even
derive formulas for the probability of a product to be finished
within given time bounds [267], [268].

E. DISCUSSION
From our point of view, which is based on prior considera-
tions on benchmarking in the computing domain [269], there
are three major goals to be satisfied by benchmark protocols
to become an established part of the scientific method:

• Ease of use: Since benchmarks are merely a tool to
gather the data needed for investigating research ques-
tions, they should be designed as researcher-friendly,
easy-to-use testbeds which enable cost-effective, time-
efficient, and scalable experiments.

• Reproducibility: It must be feasible to repeat prior exper-
iments to the greatest possible extent, as this renders
research results transparent.

• Versatility: Benchmarking protocols should be designed
to gain information flexibly regarding various constructs
and relevant metrics to ensure versatility and foster high
acceptance in the community.
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TABLE 4. Suitability of different evaluation strategies for raising metrics as categorized in Section III.

Beyond this general, practicality-oriented view, another
important aspect of experimental setups must be discussed
in the particular context of humans interacting with robots:

• Participant Well-Being: During any benchmark or
experimental procedure, it must be easy to ensure that
human participants are safe and not harmed at any time.

Each of the strategies in Sections IV-A to IV-D has indi-
vidual properties, (dis)advantages, and best practices which
influence the above aspects – corresponding dependencies
are discussed in the below sections. A brief summary of the
resulting classification is given in Table 3, with the achievable
versatility in terms of metrics covered by individual strategies
being further elaborated in Table 4.

1) EASE OF USE
Building research demonstrators usually goes along with
significant engineering efforts, thus leading to limitations
in the ease of use: Intelligent robots require complex soft-
ware stacks to expose all skills necessary to collaborate
with humans. When seeking to evaluate novel planning and
interaction methods, it is e.g. also necessary to implement
state-of-the-art vision and manipulation algorithms – as these
system components are a necessity which mostly does not
directly contribute to individual research goals, correspond-
ing software and hardware are often closed-source, simpli-
fied, or specifically tailored to work in individual laborato-
ries. This does not only negatively impact reproducibility but
also leads to rather heavy-to-use systems [14].

When conducting human-participant studies with (phys-
ical) cobot setups, challenges beyond engineering efforts
and unstable, error-prone prototypes further reduce the
ease of use: (i) Particularly when relying on participant
self-assessment with questionnaires, various influences on
human behaviour with potential impacts on the validity of
results must be considered (e.g. social desirability bias; nov-
elty vs. habituation effects; side effects outside the study
protocol, such as robot failure [14], [194]). Accordingly,
conducting high-quality human-participant studies is chal-
lenging, and there has lately been profound criticism of a lack
of methodological rigour in the field. This concerns a lack of
reproducibility, critical conclusions from too small popula-
tions [14], a strong focus on convenience samples [210] with
corresponding biases (e.g. regarding participants’ age [270]),

or incorrect design and statistical testing of Likert scales
and associated data [271]. (ii) With field demonstrators for
human-robot task sharing still being rare [231], [232], most
experiments take place in laboratories [270] and are often
conducted with synthetic model sets and tasks – this raises
further questions regarding the trade-off between experimen-
tal control and external/ecological validity (see Section V).
All in all, achieving rigour in the design, execution, and
reporting of human-participant studies is a complex task.
We therefore want to refer the reader to further literature
which introduces best practices in depth [209], [210], [211],
[271], [272].
Immersed-HITL Virtual Commissioning is a special case

of human participant studies with virtual rather than physi-
cal robot prototype systems. Certainly, not needing to build
possibly expensive physical prototypes and not having to
ensure the safety of participants compared to the laboratory
operation of physical robots are favourable aspects regarding
the ease of use. Despite these advantages, we still judge
Immersed-HITL VC to be a similarly complex, hard-to-
use use evaluation strategy as studies with physical robots:
beyond the issues for rigorous studies, experiments con-
ducted in VR raise the question of transferability of results
from the virtual to the ‘real’ world. Although VR experiments
are already frequently used, this assumption is still discussed
in the literature (e.g. by Wijnen et al. [273]). Transferability
should thus not generally be assumed. It is widely accepted
that presence, i.e. the feeling or illusion of actually being in
an immersive virtual environment [274], is a key prerequi-
site to ensure realistic participant responses when subjects
interact with a virtual robot [275]. Presence is therefore
often measured and discussed as a part of VR user stud-
ies to justify the validity of results (e.g. [53], [115], [196],
[198], [246], [247], [276]). A comprehensive list of available
questionnaires covering the presence concept has been com-
piled by Schwind et al. [277]. With presence being related
to the fidelity [274], [278] and validity [278] of a virtual
world, these aspects should already be considered during
a structured design phase for high-quality virtual environ-
ments [245].

The complexities associated with human subject han-
dling do not arise for Virtual-HITL Virtual Commission-
ing with simulated humans: Building and running fully
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virtual human-robot tasks is supported by commercial tooling
(see [279] for a listing) as well as by freely available simu-
lation platforms with physics, sensor simulation, and human
motion animation capabilities (e.g. gazebo,2 Webots3). Once
a simulation environment has been prepared, adjustments
to the layout, to the human-robot task assignment etc. can
be arbitrarily evaluated. It has been shown that workflow
variations can also be generated automatically [10], [261],
hence enabling large-scale experiments without needing to
recruit human subjects and even without an experimenter’s
active supervision. These factors increase the ease of use
compared to human-participant studies with physical or vir-
tual prototypes. However, we still consider the gathering
and integration of realistic simulation environment assets
(CAD models) a task which needs a certain degree of expert
knowledge and experience (e.g. when modelling complex
assembly processes with professional tools as the ema Work
Designer [250]). This sets a limit to the ease of use.

Lastly, we consider Analytical Models – the most
experimenter-friendly tooling in this survey. Such models
can be compiled by ‘pen-and-paper’-work without realizing
complex robot software stacks. They provide reliable and
verifiable results without effortful system implementations
or demanding user studies. Different scenarios can easily
be evaluated within the bounds of aspects considered in the
model by determining suitable input parameter values and
solving for the output metrics.

2) REPRODUCIBILITY
The aforementioned aspects related to closed-source, sim-
plified, and specifically tailored hardware and software of
laboratory research demonstrators render reproduction of
most robotics experiments hardly feasible [280] – they are
seen as a major source of the so-called ‘replication crisis’
in HRI [14]. We consequently consider the overall repro-
ducibility of research demonstrators as low at the time
being (Table 3). These issues directly propagate to human-
participant studies as these are usually based on prototype
cobot implementations. Yet there is even more to repro-
ducible human-participant studies than the reproduction of
the mere experimental platform (hardware and software): It is
here moreover necessary to make the experimental setup (e.g.
the benchmark task, cf. Section V) as well as the experimental
procedure (study design, questionnaires etc.) available [281].
These issues are addressed by initiatives to foster publications
with extended, detailed information on the used hardware
and software implementation: So-called ‘R-Articles’ must
be accompanied by mandatory, in-depth system descriptions,
code, and further data relevant for reproducing experimental
setups [282]. This step towards more transparent experiments
is supported by online platforms to publish the required data

2https://gazebosim.org/home (Date accessed: 2022/06/15)
3https://cyberbotics.com/ (Date accessed: 2022/06/15)

(e.g. CodeOcean,4 IEEE DataPort5). From a technical point
of view, the situationmay be enhanced in the future by unified
architectures for experimental cobot systems [283] and by the
use of containerization techniques [284], [285]. Yet, to the
best of our knowledge, these approaches have not yet been
applied to complex HRI user studies – we hence classify the
reproducibility of human-participant studies as low.

When transitioning from human-participant studies with
physical prototypes to Immersed-HITL VC, the experimental
platform is reduced to software to be built for and run on
commercially available standard VR hardware. Beyond this
reduction of required hardware, questionnaires (see [286] for
design guidelines of in-VR-questionnaires) and the overall
experimental procedure can be embedded into the code base
(e.g. by means of ‘mini games’ [287]). In our ranking, the
reproducibility that such integrated VR experiments could
offer is only superseded by fully simulated Virtual-HITL VC
and analytical models. Structured containerization of simu-
lation components has been proposed [288], and closed-form
analytical performance models may not even need additional
materials for reproduction. In both cases, it may not only
be possible to easily reproduce the experiment but even to
precisely replicate and verify prior results.

3) VERSATILITY
The experimental versatility enabled by building a research
demonstrator is limited to proving technical feasibility of
a novel approach. Demonstrators can certainly be used to
measure technical aspects of individual system components
(e.g. object classification accuracy, positional accuracy etc.) –
but to acquire any further metrics, laboratory prototypes
must be embedded into human-participant studies to mea-
sure aspects related to HRI. The user studies surveyed in
Section IV-B report metrics across all relevant cate-
gories outlined (Table 4). The versatility when conducting
human-participant studies is, thus, very high, and metrics to
be raised are only bounded by two limiting factors: (i) The
physical integrity of participants is a requirement during
human-participant studies, and physical safety metrics can
thus not be evaluated. (ii) Guiding participants through a
laboratory HRI user study usually needs time to introduce
the topic, to perform tasks together with a cobot, and to
query feedback with questionnaires. This expenditure of time
is limited by the capacities of experimenters and partici-
pants. In consequence, the number of different workflows
and scenarios to be tested is equally limited. This restricts
the applicability of human-participant studies to productivity
metrics under the influence of team flexibility.

These limitations can be overcome with Virtual Commis-
sioning methods. When applying Immersed-HITL VC, user
studies can measure physical safety metrics (e.g. the sepa-
ration distance) without taking the risk of harmful human-
robot collisions. VRmoreover enables crowdsourcing, which

4https://www.codeocean.com (Date accessed: 2022/05/16)
5https://ieee-dataport.org (Date accessed: 2022/05/16)
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can help to increase sample sizes and reduce the required
time by moving user studies to participants’ homes [235].
Virtual-HITL VC enables experiments ranging from tests of
single, fixed workflows [203], [251] to large-scale evalua-
tions of automatically varied human-robot co-working pro-
cesses [10], [261] and structured situation coverage [289];
not building experiments around human subjects as a limited
resource means in particular that team flexibility and the
effects of dynamic task sharing can fully be covered. Yetmod-
elling plausible human behaviour which reflects the indeter-
minism in human actions is still an open challenge [290]. As a
consequence, we see the simulation-based evaluation of qual-
itative human factors (cognitive ergonomics, psychological
safety etc.) still in its infancy. Due to the high importance of
human factors metrics, we assign a medium versatility to this
approach despite the broad range of scenarios and metrics
covered. Still, Virtual-HITL VC is already a versatile tool,
which should especially be considered during early prepara-
tory steps of enabling technologies research prior to future
detailed human subject experiments [291].

Compared to the above strategies, Analytical Models are
less versatile. To our knowledge, existing models target esti-
mating productivity gains as the key output metric. Aspects
related to team flexibility (e.g. absenteeism of workers [263],
number of humans/robots in the team [253], [266]) or to
task flexibility (e.g. switching costs for programming and
exchanging hardware components [264], structure of the
task [254]) are not evaluated but used as input parameters or
constants tailored to specific use-cases. The high-level view
on whole processes or abstract process steps enables complex
economic considerations on the long-term implications of
human-robot teaming [264] – yet, concrete system details
can not be modelled on this high level of abstraction, hence
preventing detailed evaluations of human factors or safety.

4) PARTICIPANT WELL-BEING
The issue of participants’ well-being emerges for the two
human-subject-based strategies. It is here important to guar-
antee that human subjects are not harmed, neither psycho-
logically nor physically, for ethical and legal reasons. When
working with hardware prototypes, physical integrity can the-
oretically be retained by safety mechanisms in line with rele-
vant norms and standards on occupational safety (see e.g. [60]
for a comprehensive overview). Yet compliance with the still
rigid risk assessment procedures is hard to realize for flexible
robot systems which plan and behave dynamically [292].
This leaves us with the strategy of an experimenter care-
fully overseeing the situation and operating the dead man’s
button [228]. When combined with lightweight, intrinsi-
cally less harmful robots as practised in recent user studies
(e.g. [207], [218], [219], [222], [223], [225], [229]), this strat-
egy is an acceptable solution. Simulator sickness is a prob-
lem related to Immersed-Human-in-the-Loop VC without a
similarly common solution. Despite the technical improve-
ments to VR hardware in recent years, this phenomenon

still frequently affects humans during and even after using
VR hardware [293]. The influence of technical and tem-
poral aspects [293] as well as of the content displayed in
VR [294] should therefore be considered when designing
the virtual HRI environment. Established tools such as the
Simulator Sickness Questionnaire (SSQ) [295] can be used to
validate one’s setup with regard to this aspect. Additionally,
a debriefing phase with each participant can help to iden-
tify unforeseen harms and offer assistance if needed [210].
Overall, any experimental procedure (virtual or with physical
robots) should be reviewed by institutional ethics committees
or review boards (see e.g. [211]). This is not only a necessary
prerequisite for publishing results with some venues, but it
will also ensure a holistic view on potential dangers that
researchers used to robots might overlook.

V. BENCHMARK TASKS
With metrics (Section III) and experimental strategies
(Section IV), we have so far covered twomain components of
benchmarks for human-cobot teamwork. The definition of the
actual task is the last component. More formally, benchmark
problems in terms of object model sets and associated actions
are ‘‘designed or used to establish a point of comparison
for the performance or effectiveness of something’’ [296]
are needed. Accordingly, several model sets have already
been proposed in the general field of robotics research. They
range from household settings [16], [17], [297] to industrial
bin-picking [298], [299] and assembly scenarios [15], [300],
[301]. Corresponding tasks are mainly designed to chal-
lenge robot grasping and manipulation skills based on robot
performance metrics (e.g. time to completion and success
rates [15]). Raising such metrics is also important in the field
of HRI (Section III-A). Yet, the scalability of manipulation
complexity is not sufficient to evoke human- and team-related
effects with an impact on job quality, safety etc. By con-
trast, appropriate reference tasks for collaborative scenarios
require scalability regarding (i) individual agent capabilities
and contributions to the tasks, (ii) complexity of the required
interaction and coordination, also in terms of communication,
and (iii) applicability to the different teaming modes still
under investigation (e.g. predefined task allocation, negoti-
ation, implicit mutual adaptation) [302]. There have been
a few attempts to define reference collaboration tasks and
model sets with these requirements in mind (Section V-A).
Beyond these works, we have comprehensively surveyed the
individual tasks used in previous experiments to provide fur-
ther inspiration (Section V-B).

A. DEDICATED MODEL SETS AND REFERENCE TASKS
The number of publications with an explicit focus on dedi-
cated model sets and reference tasks for human-robot task-
sharing benchmarks is rather limited. Zeylikman et al.have
proposed a modular model set including plywood panels,
dowels, and freely available 3D-printed connectors [302].
From these components, differently complex pieces of
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TABLE 5. Tasks and objects used in joint action experiments, grouped by
domain and experiment location (in physical space or virtual reality).

furniture can be assembled. Besides this scalability of task
complexity and duration, a mixture of actions feasible for
both human and robot agents (e.g. bringing and holding
certain parts) and actions which exclusively require human
dexterity (e.g. screwing) enable scaling the interaction in
terms of role assignment. Our prior work [25] has a simi-
lar focus on easy-to-reproduce, task-centred interaction. The
model set spans a broader range of domains (simple build-
ing blocks, abstracted electrical circuitry, gear meshing). All
parts are designed for robust manipulation by humans and
particularly by robots using specific shapes and adhesive
forces. This way, confounds as a consequence of robot fail-
ure during user studies are actively prevented. Contrasting
to these assembly-inspired model sets [25], [302], the task
described by Sarthou et al.is based on the ‘Director Task’ as
known from psychology studies and hence fosters cognitive
and behavioural aspects more strongly based [303]. Involved
agents are here facing each other with a shelf in between.
From this shelf, cube-shaped objects have to be picked –
this approach offers less scalability regarding task-centred
complexity (e.g. coordination due to assembly precedence
relations [25]), but intrinsically challenges referential com-
munication, perspective taking etc.

B. TASKS USED IN JOINT ACTION EXPERIMENTS
In addition to the initial attempts towards establishing ref-
erence tasks as common ground for comparable, repeatable
experiments (Section V-A), a broad range of tasks has been
used in HRI experiments. We have clustered those tasks by
domain in Table 5 which fall within the scope of this survey,
i.e. which target scenarios in which subtasks are allocated to
different agents in line with our definitions in Section I:

Tasks during which agents have to pick-and-place several
objects from start to goal locations are frequently used in
experiments with physical robots and in virtual reality. The
parts to manipulate range from primitively shaped, often
distinctly coloured objects (e.g. [25], [125], [223], [303])
to everyday life objects (e.g. apples [304], USB keys [9])
and paper cut-outs [217]. Tasks composed of pick-and-place
subtasks are often intended to represent packaging jobs as an
underlying use-case [9], [10], [217], [304]. They may also
incorporate parts stacking as a strongly abstracted form of
assembly (e.g. [10], [25], [115]).

Another widespread category of tasks, whichwe identified,
is toy assemblies. Building 2D (e.g. [7], [226], [305]) or
3D structures (e.g. [90]) from interlocking plastic bricks is
similar to pick-and-place tasks but requires a slightly higher
level of manipulation skills, especially on the robot side.
Other construction toy sets (e.g.‘Baufix’withwooden screws,
nuts, and bolts [174], [306]) bring experiments closer to the
next group, which we have named product mock-up assem-
blies. This category covers artificial products intended to
simulate realistic assembly processes. In contrast to the real
process, products are here built from specially constructed,
often strongly simplified parts. Several HRI experiments
have applied human-robot teamwork to scaled pieces of
furniture [11], [302], [307], [308], [309]. Other exemplary
tasks are gear meshing and gearboxes [72], [219], electrical
circuitry [310], a jet engine mock-up [315], bicycle sub-
assembly [314], sanding machine [313], or flange assembly
frommetal parts and standard screws [12]. In addition to these
tasks created by abstracting systematically from real products
and production processes, fully synthetic tasks such as the
Cranfield Benchmark [312], Bourjault’s Pen [311], or simple
3-component products [222] have been used.

Compared to product mock-up assemblies, our final cate-
gory of realistic product assemblies summarizes tasks which
involve joint work with real parts taken from industrial pro-
cesses. Within this scope, we found a group of experimental
setups in which humans and robots needed to coordinate
while placing and fastening screws [65], [198], [221], [316].
Aside from this cluster, use-cases are highly individual. They
include the assembly of desktop PCs [8], candy tins [224],
emergency buttons [318], a filament winding head [241], car
engine sub-assemblies [233], [317], pin-back buttons [240],
USB adapters [320], or carbon fibre shells [243].

C. DISCUSSION
When investigating aspects of human-robot task sharing, the
model set and tasks used are strongly linked with the chosen
experimental strategy (Section IV). We will therefore discuss
the matter of benchmark tasks in the context of the same
goals as defined for experimental strategies (ease of use,
reproducibility, and versatility; see Section IV-E):
Ease of Use:Research prototypes in the HRI field are often

based on simplifications to ease robot system implementation
(see subsection ‘Realistic Product Assembly’ in Table 5).
Robot vision is often supported by attaching a fiducial marker
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to each object (e.g. [302], [303], [311], [312]) or by using
distinctly coloured objects for more robust segmentation
(e.g. [7], [10], [25], [223]). Similarly, robot manipulation
can be rendered more robust based on the design of parts
and supporting structures in the environment: simply shaped
parts geometries (e.g.cubes [223], [303]) or extra handles
added to objects [25], [72], [218] facilitate obtaining a stable
grasp. Markings on the workbench (e.g.grids [222], [223]),
as well as fixtures, foster more precise parts placing and
alignment [9], [72], [176], [219], [222], [307], [310]. Fur-
thermore, embedding magnets into objects can help to reduce
the required positioning precision and enhance the stability of
jointly built structures [25], [125].

Certainly, all the aforementioned simplifications mean
stepping away from realistic tasks and cobot use-cases –
realism and fidelity are traded for robustness and, hence,
increased experimental control. This abstraction step is an
important feature, particularly in the context of user studies
with physical prototypes: unintended robot failure due to
unstable robot vision and manipulation would here mean
confounds. These confounds reduce internal validity and
can even render samples invalid. However, experiments with
abstract model sets and tasks raise the question of validity
and transferability of results to the real world. Regarding
this question, we can draw on insights from experimenting
with synthetic task environments in the field of human factors
research: Synthetic tasks inherit the relevant functional rela-
tionships from real-world tasks [321], but they have reduced
physical fidelity regarding the equipment, environment etc.
Still, investigations related to high-level human skills (e.g.
teamwork, dynamic problem-solving) can be valid as long as
they were conducted with high psychological fidelity regard-
ing functional, cognitive, and construct-related aspects of the
tasks under consideration [322]. To this end, synthetic tasks
should emerge from a systematic abstraction and validation
process based on identifying research objectives and the con-
crete field of practice [323].
Reproducibility: Highly realistic research demonstrators

are important to prove the value of human-robot teaming in
practice. However, highly realistic assembly station environ-
ments (e.g. [319], [320]) are hard to replicate due to high
costs and a lack of information and plans in corresponding
publications. Even if experiments are not conducted in fully
developed assembly cells, replication can be prevented if
the parts involved in joint tasks are taken from industrial
processes (e.g. [233], [317]) and, hence, are not broadly
available. As discussed in Section IV-E, these problems can
be reduced by shifting experiments into virtual spaces. In case
of user studies with physical demonstrators, synthetic tasks
offer further beneficial properties also with regard to repro-
ducibility: Product mock-ups can easily be made with 3D
printers [25], [72], [219], [302], [311], [312], [315] which
are a broadly available resource in the meantime. Unfortu-
nately, prior publications with interesting model sets are not
always accompanied by the required CAD models (e.g. [72],

[219], [315]) – the replication of experimental setups could,
hence, be strengthened by using specifically designed,
online-available model sets [25], [302] (Section V-A),
or by referring to online repositories with free CAD models
as e.g.done by Cramer et al. [311]. As an alternative to 3D
printing, parts as standard aluminium profiles [313], [314]
or toy sets [7], [90], [226], [305], [306] are commercially
available and easy to acquire. When relying on such parts,
it is important from a reproducibility point of view to pro-
vide precise measures of screws and other metal components
(as e.g.in [12]), to report on the concrete workspace layout
(e.g.in [7], [217], [304], [305]), and to specify the patterns
or structures to assemble (e.g. [7], [90], [223], [226], [305],
[306]) with according referential graphics or photographs.
Versatility: Lastly, we will discuss properties which tasks

should possess to be suited as a versatile-to-use bench-
mark problem for different HRI experiments. Versatility is
achieved if a benchmark problem has variables which can
be manipulated to create individual tasks with differently
scaled characteristics, ideally related to various constructs
and metrics under investigation. We extracted the following
important dimensions of scalability from the tasks we con-
sidered in our analysis (Table 5): It is important to be able
to scale the amount of work of a task. This can easily be
achieved in the pick-and-place or toy assembly domains –
additional parts and associated subtasks can here be added
as needed. This also opens the possibility of arranging parts
in the workspace and creating settings that encourage par-
allel working or provoke conflicts during reaching motions
in spatially narrow situations [10], [223]. Similarly, product
mock-ups with a higher degree of abstraction and a design
specifically focused on scalability enable various options to
configure tasks (e.g. [25], [302]). Other mock-ups (e.g. [72],
[219]), as well as realistic demonstrators and case studies
with high fidelity (e.g. [319], [320]), replicate exactly one
product and can thus hardly be scaled regarding the nec-
essary subtasks. A necessity to employ individual agents’
capabilities can be created implicitly by adding particularly
heavy parts (e.g. [9], [233], [319]). This also establishes
a link to embedding physical contact between humans and
robots by means of hand-guiding [233], [319]. Another way
of implicitly introducing complementary capabilities is lim-
iting robot manipulation skills to certain parts [9], [72],
[233], [302], [310], [313]. Alternatively, capability-aligned
contributions within an assembly process can explicitly be
enforced by assigning a specific sort of process steps to
certain agents (e.g.one teammate placing and the other fas-
tening screws [65], [198], [221], [316]). It is here common
to restrict robots to picking/placing/handing over parts [12],
[174], [240], [306], [307], [308], [315], [317], [324] and
holding sub-assemblies, whereas the human partner performs
dexterous manipulations [241], [243], [309], [314], [324] or
operates tools [240], [317]. On the one hand, embedding this
distribution of work statically into experimental tasks has two
advantages: it reflects the situation ‘as is’ with robots still
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being less skilled than humans in dexterous manipulation;
and it contributes to the ease of use as picking, placing,
and holding actions can easily be implemented and enable
robust execution during user studies. On the other hand,
fixed roles can limit the interaction to a single, fixed task
allocation [176], [219], [224], [319], [320] or even mean
that robots merely deliver kits for humans to assemble with-
out further interaction during the actual assembly process
(e.g. [88], [110], [229]). As opposed to these limitations,
it has been shown that especially the easier-to-implement
pick-and-place tasks [125], [217], [218], [223], [303], [304],
toy assemblies [7], [226], [305], and abstract product mock-
ups [11], [25] can also be realized in a way that enables the
other extreme case of equal, symmetric capabilities. In con-
sequence, these tasks can be used to benchmark the full range
of HRC modes from statically planned optimal schedules
to fixed ‘leader-follower’ role distributions and, ultimately,
fully dynamic mutual adaption among equal peers. Indepen-
dently of the HRC mode under investigation, the cognitive
load can be scaled by superimposing an additional cognitive
task on the original assembly task (e.g.solving Towers of
Hanoi [222], product quality inspection [196]).

VI. CONCLUSION
Standardized benchmarks are an important foundation of
reproducible research and comparable performance evalua-
tions. From our point of view, such benchmarks are yet to
emerge in the field of collaborative human-robot task sharing.
Towards this target, our survey seeks to give an overview
of aspects related to HRI experiments. Compared to prior
literature reviews with a focus on HRI metrics, we provide
a broader overview of the field: we have surveyed metrics
more specifically in the context of the currently most frequent
use-case of human-robot collaboration in industrial settings
by investigating their suitability to measure productivity,
flexibility, job quality, and safety in Section III. Evaluation
strategies to raise these metrics, particularly when dynamic
teaming approaches and mutual adaptation would require
large numbers of test runs or subjects, are discussed in Sec-
tion IV (e.g.human-participant studies, variations of virtual
commissioning). Lastly, we have gathered dedicated object
model sets and tasks previously used in HRI experiments in
Section V. We hope this comprehensive overview will serve
the community as a starting point and inspiration for the
future design of scalable benchmark problems, protocols, and
evaluation procedures.
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