IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 20 February 2023, accepted 16 March 2023, date of publication 27 March 2023, date of current version 3 April 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3262138

== RESEARCH ARTICLE

Machine Learning Operations (MLOps):
Overview, Definition, and Architecture

DOMINIK KREUZBERGER', NIKLAS KUHL"'2, AND SEBASTIAN HIRSCHL!'
'IBM, 71139 Ehningen, Germany
2Information Systems and Human-Centric Artificial Intelligence, University of Bayreuth, 95447 Bayreuth, Germany

Corresponding author: Niklas Kiihl (kuehl @uni-bayreuth.de)

This work was supported in part by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Grant 491183248, and
in part by the Open Access Publishing Fund of the University of Bayreuth.

ABSTRACT The final goal of all industrial machine learning (ML) projects is to develop ML products
and rapidly bring them into production. However, it is highly challenging to automate and operationalize
ML products and thus many ML endeavors fail to deliver on their expectations. The paradigm of Machine
Learning Operations (MLOps) addresses this issue. MLOps includes several aspects, such as best practices,
sets of concepts, and development culture. However, MLOps is still a vague term and its consequences
for researchers and professionals are ambiguous. To address this gap, we conduct mixed-method research,
including a literature review, a tool review, and expert interviews. As a result of these investigations,
we contribute to the body of knowledge by providing an aggregated overview of the necessary principles,
components, and roles, as well as the associated architecture and workflows. Furthermore, we provide a
comprehensive definition of MLOps and highlight open challenges in the field. Finally, this work provides
guidance for ML researchers and practitioners who want to automate and operate their ML products with a

designated set of technologies.

INDEX TERMS CI/CD, DevOps, machine learning, MLOps, operations, workflow orchestration.

I. INTRODUCTION

Machine Learning (ML) has become an important technique
to leverage the potential of data and allows businesses to
be more innovative [1], efficient [2], and sustainable [3].
However, the success of many productive ML applications
in real-world settings falls short of expectations [4]. A large
number of ML projects fail—with many ML proofs of con-
cept never progressing as far as production [5]. From a
research perspective, this does not come as a surprise as the
ML community has focused extensively on the building of
ML models, but not on (a) building production-ready ML
products and (b) providing the necessary coordination of
the resulting, often complex ML system components and
infrastructure, including the roles required to automate and
operate an ML system in a real-world setting [6]. For instance,
in many industrial applications, data scientists still manage

The associate editor coordinating the review of this manuscript and

approving it for publication was Alberto Cano

ML workflows manually to a great extent, resulting in many
issues during the operations of the respective ML solution [7].

To address these issues, the goal of this work is to examine
how manual ML processes can be automated and operational-
ized so that more ML proofs of concept can be brought into
production. In this work, we explore the emerging ML engi-
neering practice ‘““‘Machine Learning Operations”—MLOps
for short—precisely addressing the issue of designing and
maintaining productive ML. We take a holistic perspective to
gain a common understanding of the involved components,
principles, roles, and architectures. While existing research
sheds some light on various specific aspects of MLOps,
a holistic conceptualization, generalization, and clarification
of ML systems design are still missing. Different perspectives
and conceptions of the term “MLOps” might lead to misun-
derstandings and miscommunication, which, in turn, can lead
to errors in the overall setup of the entire ML system. Thus,
we ask the research question:

RQ: What is MLOps?

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

31866

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 11, 2023

https://orcid.org/0000-0001-6750-0876
https://orcid.org/0000-0001-9027-298X

D. Kreuzberger et al.: Machine Learning Operations (MLOps): Overview, Definition, and Architecture

IEEE Access

To answer that question, we conduct a mixed-method
research endeavor to (a) identify important principles of
MLOps, (b) carve out functional core components, (c) high-
light the roles necessary to successfully implement MLOps,
and (d) derive a general architecture for ML systems design.
In combination, these insights result in a definition of
MLOps, which contributes to a common understanding of the
term and related concepts.

Therefore, we hope to positively impact academic and
practical discussions by providing clear guidelines for pro-
fessionals and researchers alike with precise responsibilities.
These insights can assist in allowing more proofs of concept
to make it into production by having fewer errors in the
system’s design and, finally, enabling more robust predictions
in real-world environments.

The remainder of this article is structured as follows.
We will first elaborate on the necessary foundations and
related work in the field. Next, we will give an overview of
the utilized methodology, consisting of a literature review,
a tool review, and an interview study. We then present the
insights derived from the application of the methodology
and conceptualize these by providing a unifying definition.
We conclude the paper with a short summary, limitations, and
outlook.

Il. FOUNDATIONS OF DEVOPS

In the past, different software process models and develop-
ment methodologies surfaced in the field of software engi-
neering. Prominent examples include waterfall [8] and the
agile manifesto [9]. Those methodologies have similar aims,
namely to deliver production-ready software products. A con-
cept called “DevOps” emerged in the years 2008/2009 and
aims to reduce issues in software development [10], [11].
DevOps is more than a pure methodology and rather repre-
sents a paradigm addressing social and technical issues in
organizations engaged in software development. It has the
goal of eliminating the gap between development and oper-
ations and emphasizes collaboration, communication, and
knowledge sharing. DevOps promotes automation through
the tactic of continuous integration, continuous delivery, and
continuous deployment (CI/CD), enabling fast, frequent, and
reliable releases. Moreover, it is designed to ensure con-
tinuous testing, quality assurance, continuous monitoring,
logging, and feedback loops. Due to the commercialization
of DevOps, many DevOps tools are emerging, which can be
differentiated into six groups [12], [13]: collaboration and
knowledge sharing (e.g., Slack, Trello, GitLab wiki), source
code management (e.g., GitHub, GitLab), build process (e.g.,
Maven), continuous integration (e.g., Jenkins, GitLab CI),
deployment automation (e.g., Kubernetes, Docker), mon-
itoring and logging (e.g., Prometheus, Logstash). Cloud
environments are increasingly equipped with ready-to-use
DevOps tooling that is designed for cloud use, facilitating
the efficient generation of value [14]. With this novel shift
towards DevOps, developers need to care about what they
develop, as they need to operate it as well. As empirical

VOLUME 11, 2023

Literature Review

Interview Study

Tool Review

(27 articles) (11 tools) (8 interviewees)

Methodology

MLOps

Results

Principles
Components
Roles
Architecture

FIGURE 1. Overview of the methodology.

results demonstrate, DevOps ensures better software qual-
ity [15]. People in the industry, as well as academics, have
gained a wealth of experience in software engineering using
DevOps. This experience is now being used to automate and
operationalize ML.

lll. METHODOLOGY

To derive insights from the academic knowledge base while
also drawing upon the expertise of practitioners from the
field, we apply a mixed-method approach, as depicted in
Figure 1. As a first step, we conduct a structured literature
review [16], [17] to obtain an overview of relevant research.
Furthermore, we review relevant tooling support in the field
of MLOps to gain a better understanding of the technical
components involved. Finally, we conduct semi-structured
interviews [18], [19] with experts from different domains.
On that basis, we conceptualize the term “MLOps’’ and elab-
orate on our findings by synthesizing literature and interviews
in the next chapter (‘“‘Results”).

A. LITERATURE REVIEW

To ensure that our results are based on scientific knowledge,
we conduct a systematic literature review according to the
method of Webster and Watson [16] and Kitchenham et al.
[17]. After an initial exploratory search, we define our search
query as follows: (((“DevOps” OR “CICD” OR “Continuous
Integration” OR “Continuous Delivery” OR “Continuous
Deployment”) AND “Machine Learning”) OR “MLOps” OR
“CD4ML”).

We query the scientific databases of Google Scholar, Web
of Science, Science Direct, Scopus, and the Association for
Information Systems eLibrary. It should be mentioned that
the use of DevOps for ML, MLOps, and continuous prac-
tices in combination with ML is a relatively new field in
academic literature. Thus, only a few peer-reviewed stud-
ies are available at the time of this research. Neverthe-
less, to gain experience in this area, the search included
non-peer-reviewed literature as well. The search was per-
formed in May 2021 and resulted in 1,864 retrieved articles.
Of those, we screened 194 papers in detail. From that group,

31867

IEEE Access

D. Kreuzberger et al.: Machine Learning Operations (MLOps): Overview, Definition, and Architecture

TABLE 1. List of evaluated technologies.

Technology Description Sources
Name
Open-source | TensorFlow TensorFlow Extended (TFX) is a configuration framework | [7], [23], [28], [5, 0]
examples Extended providing libraries for each of the tasks of an end-to-end ML
pipeline. Examples are data validation, data distribution
checks, model training, and model serving.
Airflow Airflow is a task and workflow orchestration tool, which can | [7], [26], [27], [a, B, §,]
also be used for ML workflow orchestration. It is also used
for orchestrating data engineering jobs. Tasks are executed
according to directed acyclic graphs (DAGs).
Kubeflow Kubeflow is a Kubernetes-based end-to-end ML platform. | [6], [7], [23], [26], [27], [a, B, ¥, 6, &,
Each Kubeflow component is wrapped into a container and | n, 6]
orchestrated by Kubernetes. Also, each task of an ML
workflow pipeline is handled with one container.
ML flow MLflow is an ML platform that allows for the management | [6], [31], [39], [a, ¥, €, C, M, O]
of the ML lifecycle end-to-end. It provides an advanced
experiment tracking functionality, a model registry, and
model serving component.
Commercial | Databricks The Databricks platform offers managed services based on | [6], [7], [27], [31], [a, C]
examples managed other cloud providers’ infrastructure, e.g., managed
MLflow MLflow.
Amazon Amazon CodePipeline is a CI/CD automation tool to | [66] [Y]

CodePipeline

facilitate the build, test, and delivery steps. It also allows one
to schedule and manage the different stages of an ML
pipeline.

Amazon
SageMaker

With SageMaker, Amazon AWS offers an end-to-end ML
platform. It provides, out-of-the-box, a feature store,
orchestration with SageMaker Pipelines, and model serving
with SageMaker endpoints.

(6], [33], [39], [66], [a, B, v, G, 6]

Azure DevOps

Azure DevOps Pipelines is a CI/CD automation tool to | [36], [66], [y, €]

Pipelines facilitate the build, test, and delivery steps. It also allows one
to schedule and manage the different stages of an ML
pipeline.
Azure ML Microsoft Azure offers, in combination with Azure DevOps | [6], [35]-[37], [45], [a, v, €, {, 1, 6]
Pipelines and Azure ML, an end-to-end ML platform.
GCP - Vertex | GCP offers, along with Vertex Al a fully managed end-to- | [6], [26], [27], [37], [a, ¥, 6, C, 6]
Al end platform. In addition, they offer a managed Kubernetes
cluster with Kubeflow as a service.
IBM Cloud | IBM Cloud Pak for Data combines a list of software in a | [26], [y]
Pak for Data package that offers data and ML capabilities.

(IBM Watson
Studio)

27 articles were selected based on our inclusion and exclusion
criteria (e.g., the term MLOps or DevOps and CI/CD in
combination with ML was described in detail, the article
was written in English, etc.). All 27 of these articles were
peer-reviewed.

31868

B. TOOL REVIEW

After going through 27 articles and eight interviews, vari-
ous open-source tools, frameworks, and commercial cloud
ML services were identified. These tools, frameworks, and
ML services were reviewed to gain an understanding of the

VOLUME 11, 2023

D. Kreuzberger et al.: Machine Learning Operations (MLOps): Overview, Definition, and Architecture

IEEE Access

TABLE 2. List of interview partners.

Interviewee Job Title Years of Years of Industry Company Size
pseudonym experience with experience with (number of
DevOps ML employees)
Alpha (a) Senior Data Platform 3 4 Sporting Goods / Retail | 60,000
Engineer
Beta (B) Solution architect / 6 10 IT Services / Cloud 25,000
Specialist for ML and Al Provider / Cloud
Computing
Gamma () Al Architect / Consultant | 5 7 Cloud Provider 350,000
Delta (3) Technical Marketing & 10 5 Cloud Provider 139,995
Manager in ML / Al
Epsilon (g) Technical Architect - Data | 1 2 Cloud Provider 160,000
& Al
Zeta (§) ML engineering 5 6 Consulting Company 569,000
Consultant
Eta (1) Engineering Manager in 10 10 Conglomerate (multi- 400,000
A/ Senior Deep industry)
Learning Engineer
Theta (0) ML Platform Product 8 10 Music / audio 6,500
Lead streaming

technical components of which they consist. An overview of
the identified tools is depicted in Table 1.

C. INTERVIEW STUDY

To answer the research questions with insights from practice,
we conduct semi-structured expert interviews according to
Myers and Newman [18]. One major aspect in the research
design of expert interviews is choosing an appropriate sample
size [20]. We apply a theoretical sampling approach [21],
which allows us to choose experienced interview partners to
obtain high-quality data. Such data can provide meaningful
insights with a limited number of interviews. To get an ade-
quate sample group and reliable insights, we use LinkedIn—a
social network for professionals—to identify experienced
ML professionals with profound MLOps knowledge on a
global level. To gain insights from various perspectives,
we choose interview partners from different organizations
and industries, different countries, and nationalities, as well
as different genders. Interviews are conducted until no new
categories and concepts emerge in the analysis of the data.
According to Glaser and Strauss [21], this stage is called
“theoretical saturation.”” In total, we conduct eight interviews
with experts (pseudonymized with o -), whose details are
depicted in Table 2. All interviews are conducted between
June and August 2021.

VOLUME 11, 2023

With regard to the interview design, we prepare a semi-
structured guide with several questions, documented as an
interview script [18]. During the interviews, ‘“soft ladder-
ing” is used with “how” and “why” questions to probe
the interviewees’ means-end chain [19]. This methodical
approach allowed us to gain additional insight into the
experiences of the interviewees when required. All inter-
views are recorded and then transcribed. To evaluate the
interview transcripts, we use an open coding scheme [20].
The open coding process allows the data to be broken
down in an analytical manner so that conceptually sim-
ilar topics can be grouped into categories and subcate-
gories. These categories are called “codes’. Concepts were
identified when they appeared multiple times in different
interviews [21].

IV. RESULTS

We apply the described methodology and structure our result-
ing insights into a presentation of important principles, their
resulting instantiation as components, the description of nec-
essary roles, as well as a suggestion for the architecture and
workflow resulting from the combination of these aspects.
Finally, we derive the conceptualization of the term and pro-
vide a definition of MLOps.

31869

IEEE Access

D. Kreuzberger et al.: Machine Learning Operations (MLOps): Overview, Definition, and Architecture

W
orkflow
® Orchestration Model

Component Registry

] ® ®
3 Source Code clecb Model Training Monitoring Model Serving
Repository Component Infrastructure Component Component
PRINCIPLES ®
Feature ML Metadata
P1 CI/CD automation Stores Stores

P2 Workflow orchestration

P3 Reproducibility

P4 Versioning of data, code, model

P5 Collaboration

P6 Continuous ML training & evaluation
P7 ML meta data tracking

P8 Continuous monitoring

P9 Feedback loops

COMPONENT

FIGURE 2. Implementation of principles within technical components.

A. PRINCIPLES

A principle is viewed as a general or basic truth, a value, or a
guide for behavior. In the context of MLOps, a principle is
a guide to how things should be realized in MLOps and is
closely related to the term ‘‘best practices’ from the profes-
sional sector. Based on the outlined methodology, we iden-
tified nine principles required to realize MLOps. Figure 2
provides an illustration of these principles and links them to
the components with which they are associated.

P1 CI/CD automation. CI/CD automation provides con-
tinuous integration, continuous delivery, and continuous
deployment. It carries out the build, test, delivery, and deploy
steps. It provides fast feedback to developers regarding the
success or failure of certain steps, thus increasing the over-
all productivity. CI/CD puts ideas of DevOps into prac-
tice. Therefore, CI/CD can be seen as a DevOps tactic [6],
(71, [22], [23], [ex, B, O1.

P2 Workflow orchestration. Workflow orchestration
coordinates the tasks of an ML workflow pipeline according
to directed acyclic graphs (DAGs). DAGs define the task
execution order by considering relationships and dependen-
cies [7], [24], [25], [26] [«, B, v, b, ¢, m].

P3 Reproducibility. Reproducibility is the ability to
reproduce an ML experiment and obtain the exact same
results [23], [27] [«, 3, 8, €, 1].

P4 Versioning. Versioning ensures the versioning of data,
model, and code to enable not only reproducibility, but also
traceability (for compliance and auditing reasons) [23], [27]
[x, B, 0, &,M].

PS5 Collaboration. Collaboration ensures the possibility to
work collaboratively on data, model, and code. Besides the
technical aspect, this principle emphasizes a collaborative and
communicative work culture aiming to reduce domain silos
between different roles [7], [25], [27], [«, 0, O].

P6 Continuous ML training & evaluation. Continuous
training (CT) means periodic retraining of the ML model
based on new feature data. Continuous training is enabled
through the support of a monitoring component, a feedback
loop, and an automated ML workflow pipeline. Continu-
ous training always includes an evaluation run to assess the
change in model quality [23], [24], [28], [29], [P, o, 1, 6O].
In general, to manage costs of retraining, it should be care-
fully considered, which update frequency is necessary for the

31870

use case (e.g., daily vs. weekly). A powerful tool to decrease
cost of retraining is the use of online learning in large scale
web applications, benefiting from iterative training steps
compared to a full training data set. This way the model can
also reflect recent impactful events like catastrophes. There
is a magnitude of online learning optimization algorithms
available [30].

P7 ML metadata tracking/logging. Metadata is tracked
and logged for each orchestrated ML workflow task. Meta-
data tracking and logging is required for each training job
iteration (e.g., training date and time, duration, etc.), includ-
ing the model specific metadata—e.g., used parameters and
the resulting performance metrics, model lineage: data and
code used—to ensure the full traceability of experiment
runs [6], [7], [31], [32], [«, B, 3, €, ¢, 1, 6.

P8 Continuous monitoring. Continuous monitoring
implies the periodic assessment of data, model, code, infras-
tructure resources, and model serving performance (e.g., pre-
diction accuracy) to detect potential errors or changes that
influence the product quality [7], [23], [28], [32], [33], [«,
B.v. 8, ¢ ¢ ml

P9 Feedback loops. Multiple feedback loops are required
to integrate insights from the quality assessment step into
the development or engineering process (e.g., a feedback
loop from the experimental model engineering stage to the
previous feature engineering stage). Another feedback loop
is required from the monitoring component (e.g., observing
the model serving performance) to the scheduler to enable the
retraining [7], [23], [24], [34], [35], [«, B3, O, ¢, 1, ©].

B. TECHNICAL COMPONENTS

After identifying the principles that need to be incorporated
into MLOps, we now elaborate on the precise components
and implement them in the ML systems design. In the fol-
lowing, the components are listed and described in a generic
way with their essential functionalities. The references in
brackets refer to the respective principles that the technical
components are implementing.

C1 CI/CD Component (P1, P6, P9). The CI/CD com-
ponent ensures continuous integration, continuous deliv-
ery, and continuous deployment. It takes care of the
build, test, delivery, and deploy steps. It provides rapid
feedback to developers regarding the success or failure
of certain steps, thus increasing the overall productivity
[61, [7], [22], [23], [24], [28], [«, B, 7V, €, C,]. Examples
are Jenkins [7], [24], and GitHub actions (17). For implement-
ing an MLOps workflow, this means the automated linting,
assembly and registry of training inference and application
code into a shippable format (e.g., Python Wheel) as well as
execution of unit and integration test cases. This automation
should be an idempotent process using dynamically assigned
resources from the CI/CD tool, that results in a binary or
archive-based package.

C2 Source Code Repository (P4, P5). The training, infer-
ence and application source code is versioned in a repository.
It allows multiple developers to commit and merge their

VOLUME 11, 2023

D. Kreuzberger et al.: Machine Learning Operations (MLOps): Overview, Definition, and Architecture

IEEE Access

code [23], [24], [36], [37], [38] [«, B, v, ¢, O]. Exam-
ples include Bitbucket [39], [¢], GitLab [24], [39], [C],
GitHub [37], [C, 1], and Gitea [23].

C3 Workflow Orchestration Component (P2, P3, P6).
The workflow orchestration component offers task orchestra-
tion of an ML workflow via directed acyclic graphs (DAGs).
These graphs represent execution order and artifact usage of
single steps of the workflow. A workflow uses for example
packaged code artifacts in the respective process step, like
extracting data, training, inference or embedding of a model
binary into an application [6], [7], [23], [26], [31], [«, 3, Y, O,
€, ¢,). Examples include Apache Airflow [«,], Kubeflow
Pipelines [(], Watson Studio Pipelines [y], Luigi [(], AWS
SageMaker Pipelines [(3], and Azure Pipelines [¢]. In theory,
CI/CD tools could also be used to schedule the triggering of
specific tasks sequentially, however the complexity of data
engineering- or ML-pipeline tasks has increased the need for
a tool specifically designed for the purpose of workflow or
task orchestration. These workflow orchestration tools make
it easier to efficiently manage interrelated and interdependent
tasks, because they are specifically designed to manage com-
plex task chains [40].

C4 Feature Store System (P3, P4). A feature store system
ensures central storage of commonly used features. It has two
databases configured: One database as an offline feature store
to serve features with normal latency for experimentation,
and one database as an online store to serve features with
low latency for predictions in production [25], [28], [«, B,
¢, €, 0]. Examples include Google Feast [(], Amazon AWS
Feature Store [(3, (], Tecton.ai and Hopswork.ai [(]. This is
where most of the data for training ML models will come
from. Moreover, data can also come directly from any kind of
data store. A feature store poses complex requirements, which
are highly dependent on the use case. Databases of it can be
hosted on on-premises infrastructure or in the cloud. How-
ever, scalability is typically realized with cloud infrastructure.
Most use cases have a read-heavy workload, combined with
a batch or streaming-based ingestion pattern on (very) large
data sets. Such high scalability can be achieved on distributed
file systems [41], [42], or distributed databases [43], [44]
combined with parallel and distributed data processing algo-
rithms (e.g., MapReduce or a more high-level API like
Spark).

C5 Model Training Infrastructure (P6). The model
training infrastructure provides the foundational computation
resources, e.g., CPUs, RAM, and GPUs. The provided infras-
tructure can be either distributed or non-distributed. In gen-
eral, a scalable and distributed infrastructure is recommended
(71, [23], [27], [28], [32], [33], [37], [45], [46], [6, C, m, 61].
Examples include local machines (not scalable) or cloud
computation [33] [n, 0], as well as non-distributed or dis-
tributed computation (several worker nodes) [7], [37]. Frame-
works supporting computation are Kubernetes [n, 8] and
Red Hat OpenShift [y]. Typically, deep learning workloads
(training and inference) are matrix-multiplication-heavy and

VOLUME 11, 2023

therefore computation bound. GPUs are optimized towards
this type of workload and should be the primary focus for
compute node specification. In edge devices, where stor-
age and computation power are limited, Quantized Neural
Nets with low-precision floating-point operations [47] in
combination with pruning and Hofmann Coding should be
investigated [48].

C6 Model Registry (P3, P4). The model registry stores
centrally the trained ML models together with their metadata.
It has two main functionalities: storing the ML artifact and
storing the ML metadata (see C7) [7], [24], [25], [34], [35],
[e, B, v, €, C, M, 6]. Advanced storage examples include
MLflow [«, 1, C], AWS SageMaker Model Registry [(],
Microsoft Azure ML Model Registry [(], and Neptune.ai [«].
Simple storage examples include Microsoft Azure Storage,
Google Cloud Storage, and Amazon AWS S3 [23].

C7 ML Metadata Stores (P4, P7). ML metadata stores
allow for the tracking of various kinds of metadata, e.g.,
for each orchestrated ML workflow pipeline task. Another
metadata store can be configured within the model registry for
tracking and logging the metadata of each training job (e.g.,
training date and time, duration, etc.), including the model
specific metadata—e.g., used parameters and the resulting
performance metrics, model lineage: data and code used [7],
[25]1,[31],[37], [49], [«, B, 8, C, O]. Examples include orches-
trators with built-in metadata stores tracking each step of
experiment pipelines [] such as Kubeflow Pipelines [«, (],
AWS SageMaker Pipelines [«, (], Azure ML, and IBM Wat-
son Studio [y]. MLflow provides an advanced metadata store
in combination with the model registry [6], [31].

C8 Model Serving Component (P1). The model serving
component can be configured for different purposes. Exam-
ples are online inference for real-time predictions or batch
inference for predictions using large volumes of input data.
The serving can be provided, e.g., viaa REST API. As a foun-
dational infrastructure layer, a scalable and distributed model
serving infrastructure is recommended [23], [27], [33], [37],
[39], [46], [«, B, 8, C, 1, B]. One example of a model serving
component configuration is the use of Kubernetes and Docker
technology to containerize the ML model, and leveraging a
Python web application framework like Flask [24] with an
API for serving [«]. Other Kubernetes supported frameworks
are KServing of Kubeflow [«], TensorFlow Serving, and
Seldion.io serving [27]. Inferencing could also be realized
with Apache Spark for batch predictions [6]. Examples of
cloud services include Microsoft Azure ML REST API [¢],
AWS SageMaker Endpoints [, 3], IBM Watson Studio [y],
and Google Vertex Al prediction service [8]. The actual
deployment of the model depends on the use case and
falls typically into one of these categories: real-time, batch,
or serverless inference. Real-time inference can be achieved
by hosting the model in a RESTful web-service, batch infer-
ence can be an idempotent MapReduce workflow, and server-
less inference is used when cost-efficient and scalable serving
is required.

31871

IEEE Access

D. Kreuzberger et al.: Machine Learning Operations (MLOps): Overview, Definition, and Architecture

C9 Monitoring Component (P8, P9). The monitoring
component takes care of the continuous monitoring of the
model serving performance (e.g., prediction accuracy). Addi-
tionally, monitoring of the ML infrastructure, CI/CD, and
orchestration are required [7], [23], [24], [28], [32], [33],
[50], [«, C,m, 0]. Examples include Prometheus with Grafana
[n,], ELK stack (Elasticsearch, Logstash, and Kibana) [c,
1, (], and simply TensorBoard [0]. Examples with built-in
monitoring capabilities are Kubeflow [8], MLflow [1], and
AWS SageMaker model monitor or cloud watch [].

C. ROLES

After describing the principles and their resulting instanti-
ation of components, we identify necessary roles in order
to realize MLOps in the following. MLOps is an interdis-
ciplinary group process, and the interplay of different roles
is crucial to design, manage, automate, and operate an ML
system in production. In the following, every role, its purpose,
and related tasks are briefly described:

R1 Business Stakeholder (similar roles: Product Owner,
Project Manager). The business stakeholder defines the
business goal to be achieved with ML and takes care of
the communication side of the business, e.g., presenting
the return on investment (ROI) generated with an ML
product [7], [24], [45] [«, B3, O, 6].

R2 Solution Architect (similar role: IT Architect).
The solution architect designs the architecture and defines
the technologies to be used, following a thorough
evaluation [7], [24], [«, C].

R3 Data Scientist (similar roles: ML Specialist,
ML Developer). The data scientist translates the business
problem into an ML problem and takes care of the model
engineering, including the selection of the best-performing
algorithm and hyperparameters [7], [25], [32], [33], [«, B, Y,
5, ¢, (1,01

R4 Data Engineer (similar role: DataOps Engineer).
The data engineer builds up and manages data and fea-
ture engineering pipelines. Moreover, this role ensures
proper data ingestion to the databases of the feature store
system [25], [26], [32], [«, B, Y, d, €, ¢, M, O].

R5 Software Engineer. The software engineer applies
software design patterns, widely accepted coding guidelines,
and best practices to turn the raw ML problem into a well-
engineered product [32], [«, Y].

R6 DevOps Engineer. The DevOps engineer bridges
the gap between development and operations and ensures
proper CI/CD automation, ML workflow orchestra-
tion, model deployment to production, and monitoring
(71, [22], [25], [51], [«, B, v, €, C,m, 6]

R7 ML Engineer/MLOps Engineer. The ML engineer
or MLOps engineer combines aspects of several roles and
thus has cross-domain knowledge. This role incorporates
skills from data scientists, data engineers, software engineers,
DevOps engineers, and backend engineers (see Figure 3).
This cross-domain role builds up and operates the ML infras-
tructure, manages the automated ML workflow pipelines

31872

o

ML Engineer /
~ MLOps Engineer

(cross-functional management
of ML environment and assets:
ML infrastructure,

ML models,

ML workflow pipelines,
“data ingestion,
monitoring)

| |

FIGURE 3. Roles and their intersections contributing to the MLOps
paradigm.

and model deployment to production, and monitors both the
model and the ML infrastructure [7], [24], [25], [32], [«, 3,
Y., ¢ ¢, 6]

V. ARCHITECTURE AND WORKFLOW
On the basis of the identified principles, components, and
roles, we derive a generalized MLOps end-to-end architecture
to give ML researchers and practitioners proper guidance.
It is depicted in Figure 4. Additionally, we depict the work-
flows, i.e., the sequence in which the different tasks are
executed in the different stages. The artifact was designed to
be technology-agnostic. Therefore, ML researchers and prac-
titioners can choose the best-fitting technologies and frame-
works for their needs. This means the MLOps process and
components can either be built out of ““best-of-breed”” open-
source tools, but also with enterprise solutions. Also, a mix
and match combination of enterprise and open-source tools
to realize MLOps is possible. Enterprise softwares / cloud
services often allow the connection to open-source tools via
their APIs and vice versa. Thus, it should be considered to
have a look at newest developments as the open source tool
market is growing rapidly. There are frequently new options
for combinations possible. However, there are certainly also
some constraints when it comes to APl interfaces connections
and combinations. In general, it is hard to say which technolo-
gies are good to combine and which aren’t. However, with the
newly introduced examples of applications and the precise
mentioning of tools, we demonstrate possible combinations.
As depicted in Figure 4, we illustrate an end-to-end pro-
cess, from MLOps product initiation to the model serv-
ing. It includes (A) the MLOps product initiation steps;
(B) the feature engineering pipeline, including the data
ingestion to the feature store; (C) the experimentation; and
(D) the automated ML workflow pipeline up to the model
serving.

VOLUME 11, 2023

D. Kreuzberger et al.: Machine Learning Operations (MLOps): Overview, Definition, and Architecture

IEEE Access

MLOps Product Initiation

2 LY E

2 AND (L

o AND 8k

derives ML

designs architecture problem from

Business problem

regression)

analysis and defines business goal
ay! —* technologies tobe [> 9oa
(define goal) used (e.g., classification,

Understand required
data to solve problem
(data available?, where
is it?, how to get it?)

Connect to raw data
for initial data analysis
(distribution analysis,
data quality checks,
validation checks)

Feedback Loop

.........................)_ 4 Requirements for]§. @. i .ﬁ.’
feature engineering) AND)
pipeline defines define feature

transformation | —»

& cleaning rules

engineering rules

feature requirements (iterative)

Data Sources

streaming data

@) =y Feature Engineering Pipeline L{J L_{J

¥
(] o !
GoEFAND @@~ < orchestration

—
—————— >

batch data data
Connect to data — | transformation | —
> extraction i
& cleaning

cloud storage

feature engineering
(e.g., calc. of new

component

data Ingestion

job (batch or
streaming)

= artifact store

features)

[data preprocessing |

(labeled data)

Experimentation

data processing computation infrastructure

CI/CD component

o or

i
I
I
'
I
I
I
'
I
I
I
'
I
I
I
'
I
I
'
i
i raw data
'
I
'
I
I
I
'
I
I
I
'
I
I
I
'
I
I
'
'
I

model engineering (best algorithm selection, hyperparameter tuning)”~~ @, . [18}
sy Sy
data

data analysis | —»| preparation & | model - model —-> export ‘D—>
o - validation training validation model R qﬂ
: epository (3
I
versioned e t runtime environment
feature data
ML metadata store Cl/CD component
[] model training computation infrastructure continuous integration

Feature store
system

offline DB

/ continuous delivery

versioned artifacts: model + ML training & workflow code (build, test and push)

continuous deployment
(build, test and deploy model)

new versioned feature data (batch or streaming data)

I
I
I
'
'
I
I
'
'
'
I
'
'
'
I
i
'
! Scheduler i
! (normal (trigger when ¥ Workflow orchestration component Sifac
latenc: 99 store :
' y) Model Registry
! new data (e.g., Image ., o [1)
| available, Registry) ML metadata store £19~|OR (M=
i online DB event-based or| I L metfadatrz: ;Itfre i K model status {staging or prod)
i (low-latency) periodical) (metadata logging of each ML workflow task) parameter & perf. metrics
i l ry r
h v v
! PR best algorithm selection, parameter & perf. metric logging) @ []
' _ E Automated ML Workflow Pipeline 9 lice eclion jparameierilp 9ging) o or IML%
' versioned v |
| feature data data h del
H data N model training model export push to model
'
' extraction prepgratl_on & |=> / refinement - validation model - registry
! validation
' | 7y = 5
Y e runtime environment oc L
' model training computation infrastructure =
E Monitoring component li.m@ OR @ Model serving component
_ i ini ini i i = rediction on new batch or
i Feedback Loop — enables continuous training / retraining & continuous improvement | _ continuous monitoring of model serving performance | ____ & steaming data) ¢
[

runtime environment sa

model serving computation

[]
mm@@ infrastructure
LEGEND r?sﬁ &{ .gg .@ ..) é@ [15} ——» General Process flow ... Feedback Loop flow
Business IT Solution Data Data Software DevOps ML Engineer Data Engineering flow Versioned Feature flow
Stakeholder Architect Scientist Engineer Engineer Engineer —— Model/ Code flow

FIGURE 4. End-to-end MLOps architecture and workflow with functional components and roles.

(A) MLOps product initiation. (1) The business stake-
holder (R1) analyzes the business and identifies a potential
business problem that can be solved using ML. (2) The
solution architect (R2) defines the architecture design for the
overall ML system, and decides on the technologies to be
used after a thorough evaluation. (3) The data scientist (R3)
derives an ML problem—such as whether regression or clas-
sification should be used—from the business goal. (4) The

VOLUME 11, 2023

data engineer (R4) and the data scientist (R3) work together
to understand which data is required to solve the problem.
(5) Once the answers are clarified, the data engineer (R4) and
data scientist (R3) collaborate to locate the raw data sources
for the initial data analysis. They check the distribution, and
quality of the data, as well as performing validation checks.
Furthermore, they ensure that the incoming data from the
data sources is labeled, meaning that a target attribute is

31873

IEEE Access

D. Kreuzberger et al.: Machine Learning Operations (MLOps): Overview, Definition, and Architecture

known, as this is a mandatory requirement for supervised ML.
In this example, the data sources already had labeled data
available as the labeling step was covered during an upstream
process.

(B1) Requirements for feature engineering pipeline.
The features are the relevant attributes required for model
training. After the initial understanding of the raw data and
the initial data analysis, the fundamental requirements for the
feature engineering pipeline are defined, as follows: (6) The
data engineer (R4) defines the data transformation rules (nor-
malization, aggregations) and cleaning rules to bring the data
into a usable format. (7) The data scientist (R3) and data
engineer (R4) together define the feature engineering rules,
such as the calculation of new and more advanced features
based on other features. These initially defined rules must be
iteratively adjusted by the data scientist (R3) either based on
the feedback coming from the experimental model engineer-
ing stage or from the monitoring component observing the
model performance.

(B2) Feature engineering pipeline. The initially defined
requirements for the feature engineering pipeline are taken
by the data engineer (R4) and software engineer (RS) as a
starting point to build up the prototype of the feature engi-
neering pipeline. The initially defined requirements and rules
are updated according to the iterative feedback coming either
from the experimental model engineering stage or from the
monitoring component observing the model’s performance in
production.

As a foundational requirement, the data engineer (R4)
defines the code required for the CI/CD (C1) and orches-
tration component (C3) to ensure the task orchestration of
the feature engineering pipeline. This role also defines the
underlying infrastructure resource configuration. (8) First,
the feature engineering pipeline connects to the raw data,
which can be (for instance) streaming data, static batch data,
or data from any cloud storage. (9) The data will be extracted
from the data sources. (10) The data preprocessing begins
with data transformation and cleaning tasks. The transforma-
tion rule artifact defined in the requirement gathering stage
serves as input for this task, and the main aim of this task
is to bring the data into a usable format. These transforma-
tion rules are continuously improved based on the feedback.
(11) The feature engineering task calculates new and more
advanced features based on other features. The predefined
feature engineering rules serve as input for this task. These
feature engineering rules are continuously improved based
on the feedback. (12) Lastly, a data ingestion job loads
batch or streaming data into the feature store system (C4).
The target can either be the offline or online database (or
any kind of data store). An example of the implementation
of an entire feature engineering pipeline can be found in
Esmaeilzadeh et al. [52], who implemented an NLP pipeline
with Apache Spark. As another example, Xu [53] demon-
strates how a financial institution may use Spark to process
and analyze large amounts of customer credit data, such as

31874

credit history, income, and demographics. The data is then
transformed and cleaned using Spark’s DataFrame and SQL
functionality, and various feature engineering techniques are
applied to create a set of relevant features for the credit risk
model. These features can be then passed through an ML
pipeline, also implemented in Spark, to train and evaluate a
predictive model for assessing credit risk. In addition, Apache
Kafka can be used for near real-time streaming data ingestion
into the Spark-based feature engineering pipeline [54]. How-
ever, to some extent, a traditional ETL tool can be used to
build a feature engineering pipeline [55].

(C) Experimentation. Most tasks in the experimentation
stage are led by the data scientist (R3) including the initial
configuration of the hardware and runtime environment. The
data scientist is supported by the software engineer (RS).
(13) The data scientist (R3) connects to the feature store
system (C4) for the data analysis. (Alternatively, the data
scientist (R3) can also connect to the raw data for an initial
analysis.) In case of any required data adjustments, the data
scientist (R3) reports the required changes back to the data
engineering zone (feedback loop). (14) Then the preparation
and validation of the data coming from the feature store
system is required. This task also includes the train and test
split dataset creation. (15) The data scientist (R3) estimates
the best-performing algorithm and hyperparameters, and the
model training is then triggered with the training data (C5).
The software engineer (R5) supports the data scientist (R3)
in the creation of well-engineered model training code. (16)
Different model parameters are tested and validated interac-
tively during several rounds of model training. Once the per-
formance metrics indicate good results, the iterative training
stops. The best-performing model parameters are identified
via parameter tuning. The model training task and model
validation task are then iteratively repeated; together, these
tasks can be called “‘model engineering.” The model engi-
neering aims to identify the best-performing algorithm and
hyperparameters for the model. (17) The data scientist (R3)
exports the model and commits the code to the repository.
As a foundational requirement, either the DevOps engineer
(R6) or the ML engineer (R7) defines the code for the (C2)
automated ML workflow pipeline and commits it to the repos-
itory. Once either the data scientist (R3) commits a new ML
model or the DevOps engineer (R6) and the ML engineer (R7)
commits new ML workflow pipeline code to the repository,
the CI/CD component (C1) detects the updated code and
triggers automatically the CI/CD pipeline carrying out the
build, test, and delivery steps. The build step creates artifacts
containing the ML model and tasks of the ML workflow
pipeline. The test step validates the ML model and ML work-
flow pipeline code. The delivery step pushes the versioned
artifact(s)—such as images—to the artifact store (e.g., image
registry).

Typical technologies used for the experimentation step
are notebook-based solutions like the ones from Jupyter.
One example of an industry case where ML experiments

VOLUME 11, 2023

D. Kreuzberger et al.: Machine Learning Operations (MLOps): Overview, Definition, and Architecture

IEEE Access

are performed with a notebook-based environment is in the
field of natural language processing (NLP) [56]. A com-
pany that provides NLP-based services such as sentiment
analysis, text summarization, and named entity recognition,
may use Jupyter notebooks to perform ML experiments on
large amounts of text data. The company’s data scientists use
Jupyter notebooks to prepare the data. Then, they can train,
evaluate, and optimize different ML models, such as deep
learning models, and test the results. To track the experiments
with the textual data, i.e., the tracking of meta data and storing
the resulting models, common-used solutions in combination
with Jupyter are, among others, MLflow (i.e., Obeid [57]
for assessing the risk of COVID-19 based on health records)
or Neptune.Al (i.e., Aljabri [58] for NLP-based fake news
detection).

(D) Automated ML workflow pipeline. The DevOps
engineer (R6) and the ML engineer (R7) take care of the
management of the automated ML workflow pipeline. They
also manage the runtime environments, the underlying model
training infrastructure in the form of hardware resources
and frameworks supporting computation such as Kubernetes
(C5). The workflow orchestration component (C3) orches-
trates the tasks of the automated ML workflow pipeline.
For each task, the required artifacts (e.g., images) are pulled
from the artifact store (e.g., image registry). Each task can
be executed via an isolated environment (e.g., containers).
Finally, the workflow orchestration component (C3) gathers
metadata for each task in the form of logs, completion time,
and so on.

Once the automated ML workflow pipeline is triggered,
each of the following tasks is managed automatically: (18)
automated pulling of the versioned features from the fea-
ture store systems (data extraction). Depending on the use
case, features are extracted from either the offline or online
database (or any kind of data store). (19) Automated data
preparation and validation; in addition, the train and test split
is defined automatically. (20) Automated final model training
on new unseen data (versioned features). The algorithm and
hyperparameters are already predefined based on the settings
of the previous experimentation stage. The model is retrained
and refined. (21) Automated model evaluation and iterative
adjustments of hyperparameters are executed, if required.
Once the performance metrics indicate good results, the auto-
mated iterative training stops. The automated model training
task and the automated model validation task can be itera-
tively repeated until a good result has been achieved. (22) The
trained model is then exported and (23) pushed to the model
registry (C6), where it is stored e.g., as code or containerized
together with its associated configuration and environment
files.

For all training job iterations, the ML metadata store (C7)
records metadata such as parameters to train the model and
the resulting performance metrics. This also includes the
tracking and logging of the training job ID, training date
and time, duration, and sources of artifacts. Additionally, the

VOLUME 11, 2023

model specific metadata called “model lineage” combin-
ing the lineage of data and code is tracked for each newly
registered model. This includes the source and version of
the feature data and model training code used to train the
model. Also, the model version and status (e.g., staging or
production-ready) is recorded.

Once the status of a well-performing model is switched
from staging to production, it is automatically handed over
to the DevOps engineer or ML engineer for model deploy-
ment. From there, the (24) CI/CD component (C1) triggers
the continuous deployment pipeline. The production-ready
ML model and the model serving code are pulled (initially
prepared by the software engineer (RS)). The continuous
deployment pipeline carries out the build and test step of
the ML model and serving code and deploys the model for
production serving. The (25) model serving component (C8)
makes predictions on new, unseen data coming from the
feature store system (C4). This component can be designed
by the software engineer (R5) as online inference for real-
time predictions or as batch inference for predictions con-
cerning large volumes of input data. For real-time predictions,
features must come from the online database (low latency),
whereas for batch predictions, features can be served from
the offline database (normal latency). Model-serving applica-
tions are often configured within a container and prediction
requests are handled via a REST API. When deploying an
ML/ALI application, it’s a good practice to use A/B testing
to determine in a real-world scenario which model performs
better compared to another model, for example, deploying
a “challenger model” in addition to an existing ‘“‘champion
model” to find out which one performs better by collecting
feedback, for example, when predicting hotel booking can-
cellations [61].

As a foundational requirement, the ML engineer (R7)
manages the model-serving computation infrastructure. The
(26) monitoring component (C9) observes continuously the
model-serving performance and infrastructure in real-time.
Once a certain threshold is reached, such as detection of
low prediction accuracy, the information is forwarded via
the feedback loop. The (27) feedback loop is connected to
the monitoring component (C9) and ensures fast and direct
feedback allowing for more robust and improved predic-
tions. It enables continuous training, retraining, and improve-
ment. With the support of the feedback loop, information is
transferred from the model monitoring component to several
upstream receiver points, such as the experimental stage, data
engineering zone, and the scheduler (trigger). The feedback
to the experimental stage is taken forward by the data scientist
for further model improvements. The feedback to the data
engineering zone allows for the adjustment of the features
prepared for the feature store system. Additionally, the detec-
tion of concept drifts as a feedback mechanism can enable
(28) continuous training. Concept drifts occur in real-world
applications when the input data changes over time e.g.,
when a sensor breaks. Decreased prediction accuracy due

31875

IEEE Access

D. Kreuzberger et al.: Machine Learning Operations (MLOps): Overview, Definition, and Architecture

to concept drift can be detected by a certain concept drift
detection algorithm [59]. Once the model-monitoring com-
ponent (C9) detects a drift in the data [60], the information is
forwarded to the scheduler, which then triggers the automated
ML workflow pipeline for retraining (continuous training).
As explained, a change in adequacy of the deployed model
can be detected using distribution comparisons to identify
drift. Retraining is not only triggered automatically when
a statistical threshold is reached; it can also be triggered
when new feature data is available, or it can be scheduled
periodically.

Typical technologies supporting the automated ML work-
flow pipeline are, among others, Apache Airflow, Kubeflow
Pipelines, IBM Watson Studio Pipelines, or SageMaker
Pipelines. One example of an industry use case for an auto-
mated machine learning workflow pipeline using Airflow is
in the field of online advertising [62]. A company may use
Airflow to automate the process of training and deploying
machine learning models for ad targeting and optimization.
The pipeline starts by extracting, transforming, and loading
large amounts of data from various sources, such as website
clickstream data, user demographics, and campaign perfor-
mance data. This data is then passed through a series of
preprocessing and feature engineering steps, implemented
as Airflow operators. Next, different machine learning mod-
els are trained and evaluated on the processed data, also
using Airflow operators. The best-performing model is then
deployed to a production environment, where it is used to
make real-time ad targeting decisions. In this case, Apache
Airflow is used to automate the entire process, including
scheduling, monitoring, and re-running failed tasks.

VI. CONCEPTUALIZATON

With the findings at hand, we conceptualize the literature
and interviews. It becomes obvious that the term MLOps is
positioned at the intersection of machine learning, software
engineering, DevOps, and data engineering (see Figure 5).
We define MLOps as follows:

MLOps (Machine Learning Operations) is a paradigm,
including aspects like best practices, sets of concepts, as
well as a development culture when it comes to the end-to-
end conceptualization, implementation, monitoring, deploy-
ment, and scalability of machine learning products. Most
of all, it is an engineering practice that leverages three
contributing disciplines: machine learning, software engi-
neering (especially DevOps), and data engineering. MLOps
is aimed at productionizing machine learning systems by
bridging the gap between development (Dev) and operations
(Ops). Essentially, MLOps aims to facilitate the creation of
machine learning products by leveraging these principles:
CI/CD automation, workflow orchestration, reproducibility;
versioning of data, model, and code; collaboration; con-
tinuous ML training and evaluation;, ML metadata track-
ing and logging; continuous monitoring; and feedback
loops.

31876

Machine
Learning

Pipeline
Code

"ML Model

FIGURE 5. Intersection of disciplines of the MLOps paradigm.

VIl. OPEN CHALLENGES

Several challenges for adopting MLOps have been identified
after conducting the literature review, tool review, and inter-
view study. These open challenges have been organized into
the categories of organizational, ML system, and operational
challenges.

A. ORGANIZATIONAL CHALLENGES

The mindset and culture of data science practice is a typical
challenge in organizational settings [63]. As our insights
from literature and interviews show, to successfully develop
and run ML products, there needs to be a culture shift
away from model-driven machine learning toward a product-
oriented discipline [y]. The recent trend of data-centric Al
also addresses this aspect by putting more focus on the data-
related aspects taking place prior to the ML model building.
Especially the roles associated with these activities should
have a product-focused perspective when designing ML
products [y]. A great number of skills and individual roles
are required for MLOps (3). As our identified sources point
out, there is a lack of highly skilled experts for these roles—
especially with regard to architects, data engineers, ML engi-
neers, and DevOps engineers [26], [32], [38], [«, €]. This is
related to the necessary education of future professionals—
as MLOps is typically not part of data science education [33]
['Y]. Posoldova [6] further stresses this aspect by remarking
that students should not only learn about model creation, but
must also learn about technologies and components necessary
to build functional ML products.

Data scientists alone cannot achieve the goals of MLOps. A
multi-disciplinary team is required [25], thus MLOps needs to
be a group process [«]. This is often hindered because teams
work in silos rather than in cooperative setups [«]. Addition-
ally, different knowledge levels and specialized terminolo-
gies make communication difficult. To lay the foundations
for more fruitful setups, the respective decision-makers

VOLUME 11, 2023

D. Kreuzberger et al.: Machine Learning Operations (MLOps): Overview, Definition, and Architecture

IEEE Access

need to be convinced that an increased MLOps maturity
and a product-focused mindset will yield clear business
improvements [y].

B. ML SYSTEM CHALLENGES

A major challenge with regard to MLOps systems is design-
ing for fluctuating demand, especially in relation to the
process of ML training [33]. This stems from potentially
voluminous and varying data [28], which makes it difficult
to precisely estimate the necessary infrastructure resources
(CPU, RAM, and GPU) and requires a high level of flexibility
in terms of scalability of the infrastructure [7], [33], [8].

C. OPERATIONAL CHALLENGES

In productive settings, it is challenging to operate ML
manually due to different stacks of software and hardware
components and their interplay as well as the selection of
both ([64], [65]. Therefore, robust automation is required
[24], [33]. Also, a constant incoming stream of new data
forces retraining capabilities. This is a repetitive task which,
again, requires a high level of automation [66], [0]. These
repetitive tasks yield a large number of artifacts that require
a strong governance [27], [32], [45] as well as versioning
of data, model, and code to ensure robustness and repro-
ducibility [7], [32], [39]. Lastly, it is challenging to resolve
a potential support request (e.g., by finding the root cause),
as many parties and components are involved. Failures can
be a combination of ML infrastructure and software within
the MLOps stack [7].

VIil. CONCLUSION

With the increase of data availability and analytical capabil-
ities, coupled with the constant pressure to innovate, more
machine learning products than ever are being developed.
However, only a small number of these proofs of concept
progress into deployment and production. Furthermore, the
academic space has focused intensively on machine learning
model building and benchmarking, but too little on operating
complex machine learning systems in real-world scenarios.
In the real world, we observe data scientists still managing
ML workflows manually to a great extent. The paradigm
of Machine Learning Operations (MLOps) addresses these
challenges. In this work, we shed more light on MLOps.
By conducting a mixed-method study analyzing existing
literature and tools, as well as interviewing eight experts
from the field, we uncover four main aspects of MLOps: its
principles, components, roles, and architecture. From these
aspects, we infer a holistic definition. The results support a
common understanding of the term MLOps and its associated
concepts, and will hopefully assist researchers and profes-
sionals in setting up successful ML products in the future.

REFERENCES

[1] M. Aykol, P. Herring, and A. Anapolsky, ‘“Machine learning for continuous
innovation in battery technologies,” Nature Rev. Mater., vol. 5, no. 10,
pp. 725-727, Jun. 2020.

VOLUME 11, 2023

[2]

[3]

[4

=

[5]

[6

—

[71

[8]
[9]

(10]

(11]

[12]

(13]

(14]

[15]

(16]

[17]

(18]

[19]

[20]

(21]

(22]

(23]

M. K. Gourisaria, R. Agrawal, G. M. Harshvardhan, M. Pandey, and
S. S. Rautaray, “Application of machine learning in industry 4.0,” in
Machine Learning: Theoretical Foundations and Practical Applications.
Cham, Switzerland: Springer, 2021, pp. 57-87.

A.D. L. Heras, A. Luque-Sendra, and F. Zamora-Polo, “Machine learning
technologies for sustainability in smart cities in the post-COVID era,”
Sustainability, vol. 12, no. 22, p. 9320, Nov. 2020.

R. Kocielnik, S. Amershi, and P. N. Bennett, “Will you accept an imperfect
AI?: Exploring designs for adjusting end-user expectations of Al systems,”
in Proc. CHI Conf. Hum. Factors Comput. Syst., May 2019, pp. 1-14.

R. van der Meulen and T. McCall. (2018). Gartner Says Nearly Half
of CIOs Are Planning to Deploy Artificial Intelligence. Accessed:
Dec. 4,2021. [Online]. Available: https://www.gartner.com/en/newsroom/
press-releases/2018-02-13-gartner-says-nearly-half-of-cios-are-planning-
to-deploy-artificial-intelligence

A. Posoldova, ‘““Machine learning pipelines: From research to production,”
IEEE Potentials, vol. 39, no. 6, pp. 3842, Nov. 2020.

L. E. Lwakatare, I. Crnkovic, E. Rénge, and J. Bosch, ‘‘From a data science
driven process to a continuous delivery process for machine learning
systems,” in Product-Focused Software Process Improvement (Lecture
Notes in Computer Science), vol. 12562. Springer, 2020, pp. 185-201, doi:
10.1007/978-3-030-64148-1_12.

W. W. Royce, “Managing the development of large software systems,” in
Proc. IEEE WESCON, Aug. 1970, pp. 1-9.

K. Beck et al.,, “The agile manifesto,” 2001. [Online]. Available:
http://agilemanifesto.org/

P. Debois. (2009). Patrick Debois Devopsdays Ghent. Accessed:
Mar. 25, 2021. [Online]. Available: https://devopsdays.org/events/2019-
ghent/speakers/patrick-debois/

S. Mezak. (Jan. 25, 2018). The Origins of DevOps: What’s in a
Name? DevOps.com. Accessed: Mar. 25, 2021. [Online]. Available:
https://devops.com/the-origins-of-devops-whats-in-a-name/

L. Leite, C. Rocha, F. Kon, D. Milojicic, and P. Meirelles, “A survey of
DevOps concepts and challenges,” ACM Comput. Surv., vol. 52, no. 6,
pp. 1-35, Nov. 2020, doi: 10.1145/3359981.

R. W. Macarthy and J. M. Bass, “An empirical taxonomy of DevOps in
practice,” in Proc. 46th Euromicro Conf. Softw. Eng. Adv. Appl. (SEAA),
Aug. 2020, pp. 221-228, doi: 10.1109/SEAA51224.2020.00046.

M. Riitz, “DEVOPS: A systematic literature review,” Inf. Softw. Technol.,
FH-Wedel, Aug. 2019. [Online]. Available: https://www.researchgate.
net/publication/335243102_DEVOPS_A_SYSTEMATIC_LITERATURE
_REVIEW

P. Perera, R. Silva, and I. Perera, “Improve software quality through
practicing DevOps,” in Proc. 17th Int. Conf. Adv. ICT Emerg. Regions
(ICTer), Sep. 2017, pp. 1-6.

J. Webster and R. Watson, “Analyzing the past to prepare for the
future: Writing a literature review,” MIS Quart., vol. 26, no. 2,
pp. 8-23,2002. [Online]. Available: https://www.jstor.org/stable/4132319,
doi: 10.1.1.104.6570.

B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey, and
S. Linkman, “Systematic literature reviews in software engineering—A
systematic literature review,” Inf. Softw. Technol., vol. 51, no. 1, pp. 7-15,
Jan. 2009, doi: 10.1016/j.infsof.2008.09.009.

M. D. Myers and M. Newman, “The qualitative interview in IS research:
Examining the craft,” Inf. Org., vol. 17, no. 1, pp. 2-26, Jan. 2007, doi:
10.1016/j.infoandorg.2006.11.001.

U. Schultze and M. Avital, “Designing interviews to generate rich data
for information systems research,” Inf. Org., vol. 21, no. 1, pp. 1-16,
Jan. 2011, doi: 10.1016/j.infoandorg.2010.11.001.

J. M. Corbin and A. Strauss, “Grounded theory research: Procedures,
canons, and evaluative criteria,” Qualitative Sociol., vol. 13, no. 1,
pp- 3-21, 1990, doi: 10.1007/BF00988593.

B. Glaser and A. Strauss, The Discovery of Grounded Theory: Strate-
gies for Qualitative Research. London, U.K.: Aldine, 1967, doi:
10.4324/9780203793206.

T. Granlund, A. Kopponen, V. Stirbu, L. Myllyaho, and T. Mikkonen,
“MLOps challenges in multi-organization setup: Experiences from two
real-world cases,” 2021, arXiv:2103.08937.

Y. Zhou, Y. Yu, and B. Ding, “Towards MLOps: A case study of ML
pipeline platform,” in Proc. Int. Conf. Artif. Intell. Comput. Eng. (ICAICE),
Oct. 2020, pp. 494-500, doi: 10.1109/ICAICE51518.2020.00102.

31877

http://dx.doi.org/10.1007/978-3-030-64148-1_12
http://dx.doi.org/10.1145/3359981
http://dx.doi.org/10.1109/SEAA51224.2020.00046
http://dx.doi.org/10.1.1.104.6570
http://dx.doi.org/10.1016/j.infsof.2008.09.009
http://dx.doi.org/10.1016/j.infoandorg.2006.11.001
http://dx.doi.org/10.1016/j.infoandorg.2010.11.001
http://dx.doi.org/10.1007/BF00988593
http://dx.doi.org/10.4324/9780203793206
http://dx.doi.org/10.1109/ICAICE51518.2020.00102

IEEE Access

D. Kreuzberger et al.: Machine Learning Operations (MLOps): Overview, Definition, and Architecture

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

I. Karamitsos, S. Albarhami, and C. Apostolopoulos, “Applying devops
practices of continuous automation for machine learning,” Information,
vol. 11, no. 7, pp. 1-15, 2020, doi: 10.3390/info11070363.

A. Goyal, “MLOps machine learning operations,” Int. J. Inf.
Technol. Insights Transformations, vol. 4, no. 2, 2020. Accessed:
Apr. 15, 2021. [Online]. Available: http://technology.eurekajournals.com/
index.php/IJITIT/article/view/655

D. A. Tamburri, “Sustainable MLOps: Trends and challenges,” in Proc.
22nd Int. Symp. Symbolic Numeric Algorithms Sci. Comput. (SYNASC),
Sep. 2020, pp. 17-23, doi: 10.1109/SYNASC51798.2020.00015.

O. Spjuth, J. Frid, and A. Hellander, “The machine learning life
cycle and the cloud: Implications for drug discovery,” Expert Opin-
ion Drug Discovery, vol. 16, no. 9, pp.1071-1079, 2021, doi:
10.1080/17460441.2021.1932812.

B. Derakhshan, A. R. Mahdiraji, T. Rabl, and V. Markl, “Continuous
deployment of machine learning pipelines,” in Proc. EDBT, Mar. 2019,
pp. 397408, doi: 10.5441/002/edbt.2019.35.

R. R. Karn, P. Kudva, and I. A. M. Elfadel, “Dynamic autoselection and
autotuning of machine learning models for cloud network analytics,” IEEE
Trans. Parallel Distrib. Syst., vol. 30, no. 5, pp. 1052-1064, May 2019, doi:
10.1109/TPDS.2018.2876844.

S. Shalev-Shwartz, “Online learning and online convex optimization,”
Found. Trends Mach. Learn., vol. 4, no. 2, pp. 107-194, 2012.

A. Molner Domenech and A. Guillén, “Ml-experiment: A Python frame-
work for reproducible data science,” J. Phys., Conf. Ser., vol. 1603, no. 1,
Sep. 2020, Art. no. 012025, doi: 10.1088/1742-6596/1603/1/012025.

S. Makinen, H. Skogstrom, E. Laaksonen, and T. Mikkonen, “Who needs
MLOps: What data scientists seek to accomplish and how can MLOps
help?” in Proc. IEEE/ACM 1st Workshop Al Eng. Softw. Eng. Al (WAIN),
May 2021, pp. 109-112.

L. C. Silva, F. R. Zagatti, B. S. Sette, L. N. dos Santos Silva,
D. Lucredio, D. F. Silva, and H. de Medeiros Caseli, ‘“Benchmark-
ing machine learning solutions in production,” in Proc. 19th IEEE
Int. Conf. Mach. Learn. Appl. (ICMLA), Dec. 2020, pp. 626-633, doi:
10.1109/ICMLAS51294.2020.00104.

A. Banerjee, C. C. Chen, C. C. Hung, X. Huang, Y. Wang, and
R. Chevesaran, “Challenges and experiences with MLOps for perfor-
mance diagnostics in hybrid-cloud enterprise software deployments,” in
Proc. OpML USENIX Conf. Oper. Mach. Learn., 2020, pp. 7-9.

B. Benni, M. Blay-Fornarino, S. Mosser, F. Precioso, and G. Jungbluth,
“When DevOps meets meta-learning: A portfolio to rule them all,” in
Proc. ACM/IEEE 22nd Int. Conf. Model Driven Eng. Lang. Syst. Com-
panion (MODELS-C), Sep. 2019, pp. 605-612, doi: 10.1109/MODELS-
C.2019.00092.

C. Vuppalapati, A. Ilapakurti, K. Chillara, S. Kedari, and V. Mamidi,
“Automating tiny ML intelligent sensors DevOPS using Microsoft azure,”
in Proc. IEEE Int. Conf. Big Data (Big Data), Dec. 2020, pp. 2375-2384,
doi: 10.1109/BigData50022.2020.9377755.

A. L. Garcia, J. M. D. Lucas, M. Antonacci, W. Z. Castell, and
M. David, “A cloud-based framework for machine learning workloads
and applications,” IEEE Access, vol. 8, pp. 18681-18692, 2020, doi:
10.1109/ACCESS.2020.2964386.

C. Wu, E. Haihong, and M. Song, “An automatic artificial intelligence
training platform based on kubernetes,” in Proc. 2nd Int. Conf. Big Data
Eng. Technol., Jan. 2020, pp. 58-62, doi: 10.1145/3378904.3378921.

G. Fursin, “Collective knowledge: Organizing research projects as a
database of reusable components and portable workflows with common
interfaces,” Phil. Trans. Roy. Soc. A, Math., Phys. Eng. Sci., vol. 379,
no. 2197, May 2021, Art. no. 20200211, doi: 10.1098/rsta.2020.0211.

M. Schmitt, “Airflow vs. Luigi vs. Argo vs. MLFlow vs. KubeFlow,”
Tech. Rep., 2022. [Online]. Available: https://www.datarevenue.com/en-
blog/airflow-vs-luigi-vs-argo-vs-mlflow-vs-kubeflow

K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop dis-
tributed file system,” in Proc. IEEE 26th Symp. Mass Storage Syst. Tech-
nol. (MSST), May 2010, pp. 1-10.

S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,” in
Proc. 19th ACM Symp. Operating Syst. Princ., Oct. 2003, pp. 29-43.

A. Lakshman and P. Malik, “Cassandra: A decentralized structured stor-
age system,” ACM SIGOPS Oper. Syst. Rev., vol. 44, no. 2, pp. 35-40,
Apr. 2010.

J. C. Corbett, “Spanner: Google’s globally distributed database,” ACM
Trans. Comput. Syst. (TOCS), vol. 31, no. 3, pp. 1-22, 2013.

31878

(45]

[46]

[47]

(48]

[49]

(50]

(51]

[52]

(53]

(54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

Y. Liu, Z. Ling, B. Huo, B. Wang, T. Chen, and E. Mouine, “Building
a platform for machine learning operations from open source frame-
works,” IFAC-PapersOnLine, vol. 53, no. 5, pp. 704-709, 2020, doi:
10.1016/j.ifacol.2021.04.161.

G. S. Yoon, J. Han, S. Lee, and J. W. Kim, DevOps Portal Design for
SmartX Al Cluster Employing Cloud-Native Machine Learning Workflows,
vol. 47. Cham, Switzerland: Springer, 2020, doi: 10.1007/978-3-030-
39746-3_54.

1. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Quan-
tized neural networks: Training neural networks with low precision weights
and activations,” J. Mach. Learn. Res., vol. 18, no. 1, pp. 6869-6898,2017.
S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural networks with pruning, trained quantization and Huffman coding,”
2015, arXiv:1510.00149.

L. E. Lwakatare, I. Crnkovic, and J. Bosch, “DevOps for Al—
Challenges in development of Al-enabled applications,” in Proc. Int. Conf.
Softw., Telecommun. Comput. Netw. (SoftCOM), Sep. 2020, pp. 1-6, doi:
10.23919/SoftCOM50211.2020.9238323.

C. Renggli, L. Rimanic, N. M. Giirel, B. Karlas, W. Wu, and C. Zhang,
“A data quality-driven view of MLOps,” 2021, arXiv:2102.07750.

W. J. van den Heuvel and D. A. Tamburri, Model-Driven ML-Ops for
Intelligent Enterprise Applications: Vision, Approaches and Challenges,
vol. 391. Cham, Switzerland: Springer, 2020, doi: 10.1007/978-3-030-
52306-0_11.

A. Esmaeilzadeh, M. Heidari, R. Abdolazimi, P. Hajibabaee, and
M. Malekzadeh, ‘““Efficient large scale NLP feature engineering with
Apache spark,” in Proc. IEEE 12th Annu. Comput. Commun. Workshop
Conf. (CCWC), Jan. 2022, pp. 274-280.

J. Xu, “MLOps in the financial industry: Philosophy, practices, and tools,”
in Future and Fintech, the, Abcdi and Beyond. Singapore: World Scientific,
2022, p. 451, doi: 10.1142/9789811250903_0014.

F. Carcillo, A. D. Pozzolo, Y.-A. L. Borgne, O. Caelen, Y. Mazzer, and
G. Bontempi. SCARFF?: A Scalable Framework for Streaming Credit
Card Fraud Detection With Spark 1. Accessed: Feb. 17, 2023. [Online].
Available: https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html

J. Dhanalakshmi and N. Ayyanathan, “A dynamic web data extraction from
SRLDC (southern regional load dispatch centre) and feature engineering
using ETL tool,” in Proc. 2nd Int. Conf. Artif. Intell., Adv. Appl. Springer,
2022, pp. 443-449, doi: 10.1007/978-981-16-6332-1_38.

J. Foster and J. Wagner, “Naive Bayes versus BERT: Jupyter notebook
assignments for an introductory NLP course,” in Proc. 5th Workshop
Teaching (NLP), 2021, pp. 112-114.

J. S. Obeid, M. Davis, M. Turner, S. M. Meystre, P. M. Heider,
E. C. O’Bryan, and L. A. Lenert, “An artificial intelligence approach to
COVID-19 infection risk assessment in virtual visits: A case report,”
J. Amer. Med. Inform. Assoc., vol. 27, no. 8, pp. 1321-1325, Aug. 2020.
M. Aljabri, D. M. Alomari, and M. Aboulnour, “Fake news detection
using machine learning models,” in Proc. 14th Int. Conf. Comput. Intell.
Commun. Netw. (CICN), Dec. 2022, pp. 473-477.

L. Baier, N. Kiihl, and G. Satzger, “How to cope with change?—Preserving
validity of predictive services over time,” in Proc. Annu. Hawaii Int. Conf.
Syst. Sci., 2019, pp. 1-10.

L. Baier, T. Schlor, J. Schoffer, and N. Kiihl, “Detecting concept drift with
neural network model uncertainty,” 2021, arXiv:2107.01873.

N. Antonio, A. de Almeida, and L. Nunes, ““Predicting hotel bookings
cancellation with a machine learning classification model,” in Proc. 16th
IEEE Int. Conf. Mach. Learn. Appl. (ICMLA), Dec. 2017, pp. 1049-1054,
doi: 10.1109/ICMLA.2017.00-11.

T. Cui, Y. Wang, and B. Namih, “Build an intelligent online marketing
system: An overview,” IEEE Internet Comput., vol. 23, no. 4, pp. 53-60,
Jul. 2019.

L. Baier and S. Seebacher, “Challenges in the Deployment and,” in Proc.
27th Eur. Conf. Inf. Syst. (ECIS), Stockholm, Sweden, Jun. 2019, pp. 1-15.
[Online]. Available: https://aisel.aisnet.org/ecis2019_rp/163

P. Ruf, M. Madan, C. Reich, and D. Ould-Abdeslam, ‘“Demystifying
MLOps and presenting a recipe for the selection of open-source tools,”
Appl. Sci., vol. 11, no. 19, p. 8861, Sep. 2021.

N. Hewage and D. Meedeniya, ‘“Machine learning operations: A survey on
MLOps tool support,” 2022, arXiv:2202.10169.

B. Karlas, M. Interlandi, C. Renggli, W. Wu, C. Zhang, D. M. 1. Babu,
J. Edwards, C. Lauren, A. Xu, and M. Weimer, “Building continuous
integration services for machine learning,” in Proc. 26th ACM SIGKDD
Int. Conf. Knowl. Discovery Data Mining, Aug. 2020, pp. 2407-2415, doi:
10.1145/3394486.3403290.

VOLUME 11, 2023

http://dx.doi.org/10.3390/info11070363
http://dx.doi.org/10.1109/SYNASC51798.2020.00015
http://dx.doi.org/10.1080/17460441.2021.1932812
http://dx.doi.org/10.5441/002/edbt.2019.35
http://dx.doi.org/10.1109/TPDS.2018.2876844
http://dx.doi.org/10.1088/1742-6596/1603/1/012025
http://dx.doi.org/10.1109/ICMLA51294.2020.00104
http://dx.doi.org/10.1109/MODELS-C.2019.00092
http://dx.doi.org/10.1109/MODELS-C.2019.00092
http://dx.doi.org/10.1109/BigData50022.2020.9377755
http://dx.doi.org/10.1109/ACCESS.2020.2964386
http://dx.doi.org/10.1145/3378904.3378921
http://dx.doi.org/10.1098/rsta.2020.0211
http://dx.doi.org/10.1016/j.ifacol.2021.04.161
http://dx.doi.org/10.1007/978-3-030-39746-3_54
http://dx.doi.org/10.1007/978-3-030-39746-3_54
http://dx.doi.org/10.23919/SoftCOM50211.2020.9238323
http://dx.doi.org/10.1007/978-3-030-52306-0_11
http://dx.doi.org/10.1007/978-3-030-52306-0_11
http://dx.doi.org/10.1142/9789811250903_0014
http://dx.doi.org/10.1007/978-981-16-6332-1_38
http://dx.doi.org/10.1109/ICMLA.2017.00-11
http://dx.doi.org/10.1145/3394486.3403290

D. Kreuzberger et al.: Machine Learning Operations (MLOps): Overview, Definition, and Architecture

IEEE Access

DOMINIK KREUZBERGER received the B.Sc.
degree in business information systems as part of
a dual study program from Baden-Wuerttemberg
Cooperative State University (DHBW), Stuttgart,
and the M.Sc. degree in information systems
engineering and management with a focus on
digital services and machine learning operations
(MLOps) from the Karlsruhe Institute of Technol-
ogy (KIT). He is currently an IT architect, spe-

: cializing in hybrid cloud computing and artificial
intelligence solutions. He is also with IBM with a focus on client success,
where he designs and builds enterprise-grade data and machine-learning
products based on IBM technology. Before joining IBM, he worked for
nearly a decade with the multinational sports company adidas. During this
time, he held various positions in the area of e-commerce and data and
analytics.

NIKLAS KUHL received the Ph.D. degree (summa
cum laude) in information systems with a focus
on applied machine learning. In his studies, he is
working on conceptualizing, designing, and imple-
menting artificial intelligence (AI) products with
a focus on inter-organizational learning as well as
fair and effective collaboration within human—Al
teams. He is currently a Full Professor of infor-
mation systems and human-centric Al with the
University of Bayreuth. He is also a Group Lead
with Fraunhofer FIT for business analytics as well as a Senior Expert in
artificial intelligence with IBM. In the past, he was a Managing Consultant
for Data Science with IBM, which complemented his theoretical knowledge
with practical insights from the field. He has been working on machine
learning (ML) and Al in different domains, since 2014. He is internationally
collaborating with multiple institutions such as the University of Texas and
the MIT-IBM Watson Al Laboratory.

VOLUME 11, 2023

SEBASTIAN HIRSCHL is currently a Senior
Engineer/Architect with IBM and leads the
ML engineering and platform activities for the
machine learning practice in Germany. He com-
bines his computer science background in machine
learning and artificial intelligence. He developed
the discipline of machine learning (ML) engi-
neering within IBM over the last five years,
including best practices, methods, roles, and tools.
He designs and leads the implementation of
enterprise-grade data and ML products for clients in Germany and Europe.
Together with a team, he publishes the IBM Data Science Best Practices as
well as shapes the IBM Data and Al reference architecture. In his role as an
ML engineering expert, he drives the evolution of the paradigm of MLOps
internally and externally.

31879

