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Abstract
We establish a new extension result for twisted canonical forms defined on a hyper-
surface with simple normal crossings of a projective manifold. Some of the examples
presented in the appendix show that the bounds we obtain for the extension are sharp.

Keyword Extension theorems

1 Introduction

Since it was established in [28], the Ohsawa–Takegoshi extension theorem turned out
to be a fundamental tool in complex geometry. As of today, there are uncountable
many proofs and refinements of the original result and even more applications to both
complex analysis and algebraic geometry. Very roughly, the set-up is as follows: u is
a canonical form defined on a sub-variety Y ⊂ X with values in a Hermitian bundle
F → X . We are interested in the following two main questions:

Q1. Does the section u extend to X?
Q2. If the answer to the previous question is “yes,” can one construct an extension

whose L2 norm is bounded by the L2 norm of u, up to an universal constant?

If Y is non-singular, then the results in e.g., [23] give—practically optimal—
curvature conditions for the bundle F such that the answer to both questions above is
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affirmative. We refer to the articles [2, 3, 5, 8, 11, 13, 14, 17, 24–27, 29–34, 36] for
many interesting developments and applications.

The case of a singular sub-variety Y turns out to be significantly more difficult
and the most complete results obtained so far only treat the qualitative aspect of the
extension problem, that is to say the question Q1, cf. [7].

In this article we are concerned with the question Q2. We obtain a few quantitative
results for extension of twisted forms defined on sub-varieties Y , which have simple
normal crossings. Our main motivation is the Conjecture in [14]. To begin with we fix
some notations/conventions.

Let X be a non-singular, projective manifold and let Y := ∑N
i=1 Yi be a divisor

with simple normal crossings. Let (L, hL) be a Hermitian line bundle on X , endowed
with a metric hL . The following assumptions will be in force throughout this article:

(a) The usual curvature requirements are satisfied

�hL (L) ≥ 0, �hL (L) ≥ δ�hY (Y ),

where δ > 0 is a positive real number and hY is a smooth metric on the bundle cor-
responding toO(Y ). Let s be the canonical section ofO(Y )with the normalization
condition |s|2hY ≤ e−δ .

(b) We write locally hL = e−ϕL and hY = e−ϕY . The singularities of the metric hL
of L are of the following type:

ϕL =
∑

j

r j log | f j |2 + τL ,

where f j are local holomorphic functions such that they are not identically zero
when restricted to any of the components of Y and r j > 0 is positive number.
Moreover, we assume that τL is non-singular.

(c) Let u ∈ H0
(
X , (KX + Y + L) ⊗ OX/OX (−Y )

)
be a twisted canonical form

defined over Y . There exists a covering (�i ) of X with coordinate sets such that the
restriction of the section u|�i of u admits an extensionUi ∈ H0(�i , KX +Y +L),
which belongs to the multiplier ideal of hL , i.e.,

∫

�i

|Ui |2e−ϕL−ϕY < +∞. (1.0.1)

We note that near a non-singular point of Y the existence of Ui follows from the
usual L2 hypothesis of OT theorem provided that u belongs to the multiplier ideal
sheaf of hL |Y . But this may no longer be true in a neighborhood of singular point of
Y .

In addition to the natural hypotheses (a), (b), and (c) above we collect next two
other requirements we need to impose for some of our statements to hold.

(i) We assume that there exists an open subset Vsing of X containing the singularities
of Y such that the following hold.
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(i.α) There exists a snc divisor W = ∑
Wj on X such that the singularities of the

restriction of the metric hL of L to Vsing are as follows:

ϕL =
∑

j

(

1 − 1

k j

)

log |z j |2 + τL ,

where k j are positive integers, and z j are the local equations of W . The local
weight τL above is assumed to be bounded.

(i.β) The curvature of the restriction of hL |Vsing is greater than CsingωC |Vsing , where
Csing is a positive constant, and ωC is a fixed Kähler metric with conic singu-
larities on

(
X ,
∑

(1 − 1/ki )Wi
)
, i.e., locally we have

ωC 	
r∑

i=1

√−1dzi ∧ dzi

|zi |2−
2
ki

+
∑

i≥r+1

√−1dzi ∧ dzi (1.0.1)

that is to say,ωC is quasi-isometric with the RHS of (1.0.1), where z1 . . . zr = 0
is the local equation of the divisor W = ∑r

i=1 Wi .

(ii) There exists an open subset Vsing of X containing the singularities of Y such that
the curvature of the restriction of hL |Vsing is identically zero.

In this context our first result states as follows:

Theorem 1.1 We assume that the metric hL = e−ϕL of L and the section u verifies
the requirements (a), (b), (c) as well as (i) above. Then u extends to X, and for each
1 ≥ α > 0 there exists a section U ∈ H0(X , KX + Y + L) such that U |Y = u and
we have the estimates

1

C

∫

X\Vsing
|U |2e−ϕY−ϕLdVωC ≤

∫

Y\Vsing

∣
∣
∣
u

ds

∣
∣
∣
2
e−ϕL

+
∑

i

(∫

Yi∩Vsing

∣
∣
∣
u

ds

∣
∣
∣

2
1+α

ωC
e− ϕL

1+α dVωC

)1+α

(1.1.1)

where ωC is the reference metric on X and the constant C depends on α, the geometry
of (Vsing, ωC), the positivity constant and the upper bound for Tr ωCdd

cτL in (i.α).

Remark 1.2 The precise dependence of the constant C in (1.1.1) of the quanti-
ties mentioned in Theorem 1.1 can be easily extracted from the proof we present
in Sect. 5.

Remark 1.3 It is very likely that our arguments work under more general circum-
stances, e.g., one can probably establish the same result in the absence of the hypothesis
(b) (via the regularization procedure due to Demailly, cf. [12]). But so far it is unclear
to us how to remove the local strict positivity hypothesis in (i.β), or the fact that the
singularities of hL |Vsing are assumed to be of conic type.
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A result pointing in the direction of the preceding Remark 1.3 is the following.

Theorem 1.4 Let X be a projective manifold and let (L, hL) be a line bundle such
that the usual conditions (a)–(c) are satisfied, respectively. We assume moreover that
�hL (L) ≤ C1ω on Vsing for some constant C1. Hereω is a non-singular Kähler metric
on X. Then there exists a section U ∈ H0(X , KX + Y + L) such that U |Y = u with
the estimates

1

C

∫

X\Vsing
|U |2e−ϕY−ϕL ≤

∫

Y\Vsing

∣
∣
∣
u

ds

∣
∣
∣
2
e−ϕL +

(∫

Y∩Vsing

∣
∣
∣
u

ds

∣
∣
∣ e− ϕL

2 dVω

)2

where C depends only on the geometry of (Vsing, ω) and C1.

Remark 1.5 We stress on the fact that in the statement Theorem 1.4 the strict positivity
of the curvature of (L, hL) on Vsing is not part of hypothesis.

In conclusion, Theorems 1.1 and 1.4 are providing an extension of u whose L2

norm is bounded by the usual quantity outside the singularities of Y , and by an ad hoc
L p norm near Ysing, for any p ∈ [1, 2[. The example proving Claim 4 in Appendix
shows that this type of estimates are sharp.

However, the constant Cα(Vsing, ωC) in Theorem 1.1 involves the geometry of the
local pair (Vsing, ωC), or if one prefers, the restriction of hL to Vsing. Moreover, we
only allow singularities of conic type for hL |Vsing . In order to try to “guess” the type
of estimates one could hope for in general, we make the following observation. Let
� ⊂ Vsing be a coordinate open subset. The restriction of the RHS of (1.1.1) to � is
given by the following expression:

∫

�∩Yi
1

∏
j 
=i | f j |

2
1+α

| fu | 2
1+α dλ

∏
i |zi |2(1−1/ki )

(1.5.1)

where
∏

f j = 0 is the local equation of Y ∩ � and
∏

zi = 0 is the equation of W .
Therefore the second term of RHS of (1.1.1) is equivalent to

∫

Yi∩�

∣
∣
∣
∣
u

dsY

∣
∣
∣
∣

2
1+α

ω

e−ϕLdVω, (1.5.2)

where ω is a smooth Kähler metric on X . So from this point of view the following
important—and very challenging—problem is natural.

Conjecture 1.6 We assume that the metric hL = e−ϕL of L and the section u verifies
the requirements (a), (b), (c). Then for each 1 ≥ α > 0, there exists an section
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U ∈ H0(X , KX + Y + L) such that U |Y = u with the estimates

1

Cα(Vsing)

∫

X\Vsing
|U |2e−ϕY−ϕLdVω ≤

∫

Y\Vsing

∣
∣
∣
u

ds

∣
∣
∣
2

ω
e−ϕLdVω

+
∑

i

(∫

Yi∩Vsing

∣
∣
∣
u

ds

∣
∣
∣

2
1+α

ω
e−ϕLdVω

)1+α

(1.6.1)

where ω is a reference smooth Kähler metric on X and Cα(Vsing) only depends on
(Vsing, ω) and the restriction of the metric hL |Y to Y .

It is our belief that the most subtle part of the previous conjecture would be to have
an accurate estimate for the constant Cα(Vsing).

Our next two results are of experimental nature and therefore we have decided
to formulate them for surfaces only, so that we have dim(X) = 2. The same type
of statements hold in arbitrary dimension, as one can easily convince oneself. The
method of proof is completely identical to the case we explain here in detail, so for
simplicity’s sake we stick to the case of surfaces.

We fix next few more notations adapted to the pair (X ,Y ).
Let (�i )i∈I be covering of X with open coordinate subsets. By the simple normal

crossing hypothesis we can choose coordinates zi = (z1i , z
2
i ) such as

Y ∩ �i = (z1i . . . z pi = 0) (1.6.2)

for each i ∈ I and some p (depending on i). Let (θi )i∈I be a partition of unity
subordinate to (�i )i∈I .

Since we assume that X is a complex surface, the components of Y are smooth
curves. The singular set of Y (i.e., the mutual intersections of its components) consists
of a finite number of points of X , denoted by p1, . . . , ps .

We assume that �i is refined enough so that the section u|�i is given by

fi dz
1
i ∧ dz2i (1.6.3)

for some holomorphic function fi . On overlapping open subsets, different expressions
(1.6.3) are gluing only modulo a 2-form divisible by the equation of the divisor Y .

Let p be one of the singular points of Y , assumed to be the center of some �i . We
denote by ti := z1i · z2i ; this is—by our previous conventions—the local equation of
the cross Y ∩ �i . We can interpret the function (= n − 2-form in general) fi as a local
section of the bundle L|�i , and as such we can consider its derivative

∂ϕL fi (1.6.4)

with respect to the Chern connection of L . The result is a 1-form on �i .
Given the hypothesis in our following statement, it is possible to construct an

extension of u by applying the result in [23]. However, here we obtain different types
of estimates.
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Theorem 1.7 Let X be a smooth projective surface, and let (L, hL) be a line bundle
such that the usual curvature conditions (a) and (c) are satisfied. Assume moreover
that hL is non-singular and for each i ∈ Ising we have fi ∈ (z1i , z

2
i ), in other words

our section vanishes on the set singular points of Y .
Then there exists a section U ∈ H0(X , KX + Y + L) enjoying the following

properties:

(1) U |Y = u.
(2) There exists a constant C(X , Vsing) > 0 such that we have

1

C(X , Vsing)

∫

X
|U |2e−ϕY−ϕL ≤

∫

Y\Vsing
log2(max |s j |2)

∣
∣
∣
u

ds

∣
∣
∣
2
e−ϕL

+
∫

Y∩Vsing
log2(max |s j |2)|∂ϕL u|2e−ϕL .

(1.7.1)

We obtain the same type of result provided that the bundle (L, hL) is flat near Ysing,
as follows.

Theorem 1.8 Let X be a smooth projective surface, and let (L, hL) be a line bundle
such that the curvature and L2 conditions (a), (b), (c) as well as the additional property
(ii) are satisfied.

Then there exists a section U ∈ H0(X , KX + Y + L) enjoying the following
properties:

(1) U |Y = u.
(2) We have

1

C(X , Vsing)

∫

X\Vsing
|U |2e−ϕY−ϕL ≤

∫

Y\Vsing
log2(max |s j |2)

∣
∣
∣
u

ds

∣
∣
∣
2
e−ϕL

+
∫

Y∩Vsing
log2(max |s j |2)|∂ϕL u|2e−ϕL .

(1.8.1)

Our next statement is confined to the two-dimensional case.

Theorem 1.9 Let X be a smooth projective surface, and let (L, hL) be a line bun-
dle such that the usual curvature and L2 conditions (a), (b), and (c) are satisfied,
respectively. We assume moreover that the following hold.

(1) There exists a component Y1 of Y which intersects ∪ j 
=1Y j in a unique point p1,
such that u(p1) 
= 0.

(2) The restriction (L, hL)|Y1 is Hermitian flat.
Then the section u admits an extension U satisfying the same estimates as in Theorem
1.7.
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The raison d’être of the previous Theorems 1.7, 1.8, and 1.9 is that the inequality
(1.8.1) is meaningful even in the absence of the additional hypothesis these statements
contain. Because of the variety of contexts in which an extension of u verifying the
estimates of type (2) of Theorem 1.8 can be obtained, it is very tempting to formulate
the following.

Conjecture 1.10 Let (X ,Y ) be a smooth projective pair, where X is a surface and Y
is an snc divisor. Let (L, hL) be a line bundle such that the properties (a), (b), and
(c) are satisfied. Then there exists a section U ∈ H0(X , KX + Y + L) enjoying the
following properties:

(1) The section U is an extension of u.
(2) We have

1

C(X , Vsing)

∫

X\Vsing
|U |2e−ϕY −ϕL ≤

∫

Y\Vsing
log2(max |s j |2)

∣
∣
∣
u

ds

∣
∣
∣
2
e−ϕL

+ lim
ε→0

∫

Y∩Vsing
log2(max |s j |2)|∂ϕL,ε

u|2e−ϕL,ε ,

(1.10.1)

where ϕL,ε := log
(
ε2eφ + eϕL

)
is a non-singular approximation of hL .

In the sequel of this article wewill formulate the precise higher dimensional version
of this conjecture, and wewill explain its impact on the extension of the pluricanonical
forms.

In Appendix A by Bo Berndtsson some examples are given that indicate that the
estimates (2) in Conjecture 1.10 are most likely the best one could hope for: without
the log factor, this conjecture is simply wrong. Moreover, the example given in order
to prove Claim 4 shows that the factor e−ϕL in (1.6.1) cannot be replaced by the
slightly less singular weight e−(1−ε)ϕL , for any ε > 0. Finally, Appendix contains a
comparison with a one-dimensional problem (the fat point), intended to highlight the
origin of the difficulties in a very simple setting.

1.1 Organization of the Paper

In the second sectionwe explain themain ideas involved in the proof of our results. The
next section is dedicated to the revision and slight improvement of the usual a-priori
inequalities. Our principal contribution to the Ohsawa–Takegoshi artisan industry is
in Sect. 4, where the necessary tools from geometric analysis are recalled/developed.
The proof of the results stated above is presented in Sect. 5.

1.2 In MemoriamNessim Sibony

This article is dedicated to a mentor and colleague, Nessim Sibony, who has left us
in 2021. His untimely death has affected us all deeply, leaving a void in the complex
geometry community. He was a highly accomplished mathematician and a colleague
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25 Page 8 of 47 J. Cao et al.

who was inspirational to generations. He will be remembered not only as a revered
collaborator with his profound understanding of the field of complex geometry but
also as a dear friend with his sharp grasp of a wide range of subjects from literature,
history, and to life in general.

2 An Overview of the Arguments

Our results are obtained by combining the method in [28] with the method in [2].
In order to highlight the main arguments as well as some of the difficulties, we only
discuss here the case of a non-singular metric hL on L . In general the whole scheme of
the proof becomes more technical, since the regularization procedure we have to use
for the metric is quite tricky to implement in the presence of the singular hypersurface
Y .

We start with a quick review of the usual case.

2.1 The Case of a Non-singular Hypersurface Y

Let ξ be a L-valued form of type (n, 1). We denote by γξ := �ξ its Hodge dual
(induced by an arbitrary Kähler form on X ).

Consider the functional

F(ξ) =
∫

X
∂

(
u

sY

)

∧ γξ e
−ϕL (2.0.2)

associated to the current ∂
(

u
sY

)
.

We decompose ξ = ξ1 + ξ2 according to Ker(∂) and Ker(∂)⊥. It turns out that we
have the equality

F(ξ) =
∫

Y

u

dsY
∧ γξ1e

−ϕL (2.0.3)

which is not completely obvious, given that the current defining F is not in L2.
We have u

dsY
∈ L2(e−ϕL ), hence it is enough to find an upper bound for

cn−1

∫

Y
γξ1 ∧ γξ1e

−ϕL . (2.0.4)

This is done by the next estimate, which is derived in [4] via the ∂∂—Bochner method
due to Siu cf. [39]

cn−1

∫

Y
γξ1 ∧ γξ1e

−ϕL ≤ C
∫

X
log2(|sY |2)|∂�

ξ1|2e−ϕLdVω. (2.0.5)
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In conclusion, we have

∣
∣
∣
∣

∫

X
∂

(
u

sY

)

∧ γξ e
−ϕL

∣
∣
∣
∣

2

≤ C
∫

X
log2(|sY |2)|∂�

ξ |2e−ϕLdVω (2.0.6)

and the “estimable” extension will be obtained by using the solution of the equation

∂
(

u
sY

)
= ∂v. We define U := sY v and then we have

U |Y = u,

∫

X

|U |2
|s|2 log2 |s|2 e

−ϕY−ϕL ≤ C
∫

Y
| u

dsY
|2e−ϕL . (2.0.7)

2.1.1 Difficulties in the Case of an snc Hypersurface Y

In our setting we have Y = ⋃
Yi , and the difficulty steams from the fact that the

functional
∫

Y

u

dsY
∧ γξ1e

−ϕL =
∑

i

∫

Yi

u
∏

j 
=i s jdsYi
∧ γξ1e

−ϕL (2.0.8)

becomes a sum of expressions involving forms with log poles. We have

u
∏

j 
=i s jdsYi
/∈ L2(e−ϕL |Yi ) (2.0.9)

in general, so the previous arguments are breaking down.
Nevertheless we do have

∣
∣
∣
∣
u

dsY

∣
∣
∣
∣

2
1+α

ω

∈ L1(Y , ω|Y ) (2.0.10)

near the singularities of Y for any reasonable metric ω. This means that we have to
find an estimate of the L∞ norm of γξ1 |Vsing∩Y in terms of the RHS of (2.0.5).

To this end, we use a procedure due to Donaldson–Sun in [15]. This consists in the
following simple observation. Assume that the support of ξ is contained in X \ Vsing.
Then we have

∂̄ξ1 = 0, ∂̄�ξ1|Vsing = 0 (2.0.11)

in other words, the restriction of ξ1 to Vsing is harmonic. As we learn from function
theory, harmonic functions satisfy themeanvalue inequality: this iswhatwe implement
in our context, and it leads to the proof of Theorem 1.1.

The drawback of this method is that in the end, the constant measuring the L2 norm
of the extension is far from being as universal as in the case Ysing = ∅. This is due to
the fact that the quantity �′′|ξ1|2 has a term with wrong sign involving the trace of the
curvature of (L, hL) with respect to the metric ω on X . This trace is not bounded e.g.,
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if hL is singular and ω is a fixed, non-singular Kähler metric. It is for this reason that
the singularities of hL and those of ωC must be the same in Theorem 1.1.

3 A-Priori Inequalities Revisited

We first recall the following estimate, which is essentially due to [4].

Theorem 3.1 Let (X , ω) be a Kähler manifold, and Y be simple normal crossing
divisor in X. Let L be a line bundle on X with a non-singular metric hL such that

�hL (L) ≥ 0, �hL (L) ≥ δ�hY (Y )

for some δ > 0 small enough, where hY is a smooth metric on OX (Y ) such that
|sY |2hY ≤ e−δ . Let ξ be a smooth (n, 1) form with compact support and with values in
L. We denote by γξ := �ξ the image of ξ by the Hodge operator. Then we have

cn−1

∫

X

τ 2

(τ 2 + |sY |2)2 γξ ∧ γξ e
−ϕL ∧ √−1∂sY ∧ ∂sY

≤ C
∫

X
log2(τ 2 + |sY |2)

(
|∂̄�ξ |2 + |∂̄ξ |2

)
e−ϕLdVω

where C is a numerical constant and τ is an arbitrary real number.

Before giving the proof of Theorem 3.1 we notice that it implies the following
statement:

Theorem 3.2 Let (X , ω) be a Kähler manifold, and Y be simple normal crossing
divisor in X. Let L be a line bundle on X with a non-singular metric hL such that

�hL (L) ≥ 0, �hL (L) ≥ δ�hY (Y )

for any δ > 0 small enough, where hY is a smooth metric onOX (Y ). Let ξ be a smooth
(n, 1) form with compact support and with values in L. We denote by γξ := �ξ the
image of ξ by the Hodge operator. Then we have

cn−1

∫

Y
γξ ∧ γξ e

−ϕL ≤ C
∫

X
log2(|sY |2hY )

(
|∂̄�ξ |2 + |∂̄ξ |2

)
e−ϕLdVω, (3.2.1)

where sY is the canonical section of O(Y ), normalized in a way that works for the
proof.

Proof of Theorem 3.1 Wenote that this improves slightly the estimate ofBoBerndtsson
in [4], but the proof is virtually the same. Nevertheless, we will provide a complete
treatment for the convenience of the reader.

To start with, we recall the following "∂∂̄-Bochner formula.”
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Lemma 3.3 ([38]) Let ξ be a (n, 1)-form with values in (L, hL) and compact support.
We denote by γξ = �ξ the Hodge � of ξ with respect to a Kähler metric ω. Let

Tξ := cn−1γξ ∧ γ ξ e
−ϕL (3.3.1)

be the (n − 1, n − 1)-form on X corresponding to ξ , where cn−1 = √−1
(n−1)2

is the
usual constant. Then we have the equality

√−1∂∂̄Tξ =
(
−2�〈∂̄ ∂̄�

ϕξ, ξ 〉 + ‖∂̄γξ‖2 + ‖∂̄�
ϕξ‖2 − ‖∂̄ξ‖2

)
dVω

+ �hL (L) ∧ Tξ . (3.3.2)

We apply this in the following context. Consider the function w := log 1
|sY |2+τ 2

. A
quick computation gives

√−1∂∂̄w = |sY |2
|sY |2 + τ 2

θY − τ 2

(|sY |2 + τ 2)2

√−1∂sY ∧ ∂sY (3.3.3)

where θY := �hY (O(Y )) is the curvature of the bundle O(Y ) with respect to the
metric hY .

We multiply the equality (3.3.2) with w and integrate the resulting top form over
X . The left-hand side term is equal to the difference of two terms

cn−1

∫

X

|sY |2
|sY |2 + τ 2

θY ∧ γξ ∧ γ ξ e
−ϕL (3.3.4)

and

cn−1

∫

X

τ 2

(|sY |2 + τ 2)2
γξ ∧ γ ξ ∧ √−1∂sY ∧ ∂sY . (3.3.5)

and we see that (3.3.5) is the term we have to estimate.
We drop the positive terms on the right-hand side of (3.3.2) and we therefore get

cn−1

∫

X

τ 2

(|sY |2 + τ 2)2
γξ ∧ γ ξ ∧ √−1∂sY ∧ ∂sY ≤

∫

X
w|∂̄ξ |2e−ϕLdVω

+ 2�
∫

X
w〈∂�

ϕ∂ϕγξ , γξ 〉e−ϕLdVω

− cn−1

∫

X

(

w�hL (L) − |sY |2
|sY |2 + τ 2

θY

)

γξ ∧ γ ξ e
−ϕL (3.3.6)
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A first observation is that the curvature term (3.3.6) is negative, by the hypothesis
of Theorem 3.1. Moreover, by Stokes formula we have

∫

X
w〈∂�

ϕ∂ϕγξ , γξ 〉e−ϕdVω =
∫

X
w|∂ϕγξ |2e−ϕdVω

+
∫

X
〈∂ϕγξ , ∂w ∧ γξ 〉e−ϕdVω (3.3.7)

so we see that modulo the second term on the RHS of (3.3.7), we are done.
In order to take care of it we use Cauchy–Schwarz inequality and we obtain

∣
∣
∣
∣

∫

X
〈∂ϕγξ , ∂w ∧ γξ 〉e−ϕLdVω

∣
∣
∣
∣ ≤

∫

X
w2|∂ϕγξ |2e−ϕLdVω

+ cn−1

∫

X
γξ ∧ γ ξ ∧

√−1∂w ∧ ∂̄w

w2 e−ϕL .

(3.3.8)

Thus the new term to bound is

cn−1

∫

X
γξ ∧ γ ξ ∧

√−1∂w ∧ ∂̄w

w2 e−ϕL (3.3.9)

and as observed in [4], the quantity (3.3.9) is less singular that the LHS of (3.3.6),
which was our initial problem.

In order to obtain a bound for (3.3.9) we consider the function

w1 := logw.

We have

√−1∂∂̄w1 =
√−1∂∂̄w

w
−

√−1∂w ∧ ∂̄w

w2 (3.3.10)

and we use the same procedure as before, but with w1 instead of w. The analog of
(3.3.4) and (3.3.5) read as

cn−1

∫

X

√−1∂∂̄w

w
∧ γξ ∧ γ ξ e

−ϕL − cn−1

∫

X
γξ ∧ γ ξ ∧

√−1∂w ∧ ∂̄w

w2 ,

(3.3.11)

and this is good, because the second term in (3.3.11) is the one we are now after. We
skip some intermediate steps because they are absolutely the same as in the preceding
consideration, except that w1 appears instead of w. After integration by parts, the new
“bad term,” i.e., the analog of the RHS of (3.3.7) in our current setting is

∫

X
〈∂ϕγξ , ∂w1 ∧ γξ 〉e−ϕLdVω (3.3.12)
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for which we use Cauchy–Schwarz inequality and the observation is that ∂w1 ∧ ∂w1

coincides with
√−1∂w∧∂̄w

w2 .
As a result of this second part of the proof we infer that we have

cn−1

∫

X
γξ ∧ γ ξ ∧

√−1∂w ∧ ∂̄w

w2

≤ C
∫

X
log2(|sY |2 + τ 2)

(
|∂̄�ξ |2 + |∂̄ξ |2

)
e−ϕLdVω (3.3.13)

Then Theorem 3.1 follows, by combining (3.3.13) with (3.3.8). ��

Remark 3.4 Actually we can use the second part of the proof of Theorem 3.2 in order
to get the estimates

cn−1

∫

X
γξ ∧ γξ e

−ϕL ∧ ∂σ ∧ ∂σe−ϕF

|σ |2 log2 |σ |2
≤ C

∫

X
log2(|σ |2)

(
|ξ |2 + |∂̄�ξ |2 + |∂̄ξ |2

)
e−ϕLdVω (3.4.1)

where σ is a holomorphic section of a line bundle (F, hF ) endowed with a non-
singular metric hF . The constant “C” in (3.4.1) depends on the norm of the curvature
of (F, hF ). Thus, we obtain an estimate of the norm of γξ in the tangential directions
of σ = 0 with respect to the Poincaré-type measure associated to σ . If the curvature
of (L, hL) is greater than the some (small) multiple of �hF (F), then we can remove
the term |ξ |2 in the formula (3.4.1).

4 Geometric Analysis Methods and Results

In this section, we follow the notations in Theorem 1.1. Moreover, we ask that the
metric ϕL satisfies the requirements (a), (b), (c) and (i .α). In particular, we don’t
assume (i .β) for ϕL .

Let ξ be a L-valued form of (n, 1) type such that Supp(ξ) ⊂ X \ (Vsing ∪ |H |). We
recall that here Vsing is an open subset of X containing the singularities of Y , and H
is a hyperplane section containing the singularities of the metric hL .

We consider the orthogonal decomposition

ξ = ξ1 + ξ2 (4.0.2)

where ξ1 ∈ Ker(∂̄) and ξ2 ∈ Ker(∂̄)⊥ with respect to the fixed Kähler metric ωC with
conic singularities on X and the given metric hL on L .

• The convention during the current section is that we denote by “C” any constant
which depends in an explicit way of the quantities we will indicate.
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4.1 Orthogonal Decomposition, I: Approximation

In the following sectionswewill use an approximation statement, forwhich the context
is as follows:

We can write

X \ H =
⋃

�m (4.0.3)

where each�m is a Stein domain with smooth boundary. Let ωm be a complete metric
on �m . Corresponding to each positive δ we introduce

ωm,δ := ωC + δωm; (4.0.4)

it is a complete metric on �m such that ωm,δ > ωC and limδ→0 ωm,δ = ωC for each
m.

We remark that the L2 norm of ξ with respect to ωm,δ and hL |�m is finite, given
the pointwise monotonicity of the norm of (n, 1)-forms. Then we can decompose the
restriction of ξ to each �m as follows:

ξ |�m = ξ
(m,δ)
1 + ξ

(m,δ)
2 . (4.0.5)

We establish next the following statement.

Lemma 4.1 We have

ξ1 = lim
m,δ

ξ
(m,δ)
1 (4.1.1)

uniformly on compact sets of X \ H.

The proof is based on the monotonicity of the L2 norms

|ρ|2ωm,δ
dVωm,δ < |ρ|2ωdVω (4.1.2)

for each m, δ and for any form ρ of type (n, 1) with values in L . The details are as
follows:

Proof Let K ⊂ X \ (ϕL = −∞) be a compact subset. In what follows we are using
the notation “ε” to indicate the set of parameters (m, δ), and we assume that m � 0
so that K ⊂ �m .

We first notice that for each parameter ε the form ξ
(ε)
1 is smooth, and that it verifies

the equation

�′′
ε (ξ

(ε)
1 ) = ∂̄ ∂̄�(ξ), (4.1.3)
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where �′′
ε is the Laplace operator on (n, 1)-forms with values in (L, hL) and

(�m, ωm,δ). We also have

∫

�m

∣
∣
∣ξ

(ε)
1

∣
∣
∣
2

ωε

e−ϕLdVωε ≤
∫

X
|ξ |2ωC e−ϕLdVωC = ‖ξ‖2 (4.1.4)

given the fact that (4.1.1) is orthogonal. It follows that the family

ξ
(ε)
1 |K (4.1.5)

is uniformly bounded in C∞ norm. We can therefore extract a limit ξ
(0)
1 as ε → 0,

uniform on compact subsets by the usual diagonal process. We remark that we have

∂̄ξ
(0)
1 = 0,

∫

X

∣
∣
∣ξ

(0)
1

∣
∣
∣
2

ω
e−ϕLdVω < ∞ (4.1.6)

given that each form ξ
(ε)
1 is ∂̄-closed, combined with (4.1.4).

On the other hand, let ρ be a ∂̄-closed form of (n, 1)-type with values in L . We
assume moreover that ρ is L2 with respect to ωC and hL . Then we equally have

∫

�m

|ρ|2ωε
e−ϕLdVωε <

∫

�m

|ρ|2ωC e−ϕLdVωC < ∞ (4.1.7)

for each ε = (m, δ), and open subset �m . We infer that

∫

�m

〈ξ (ε)
2 , ρ〉ωεe

−ϕLdVωε = 0 (4.1.8)

for each value of m and ε.
Let (Kl) be an increasing exhaustion of X\(ϕL = −∞) by relatively compact sets.

If m � 0 (depending on l) then we have

∣
∣
∣
∣

∫

�m\Kl

〈ξ (ε)
2 , ρ〉ωe−ϕLdVω

∣
∣
∣
∣

2

≤ C(ξ)

∫

X\Kl

|ρ|2ω e−ϕLdVω (4.1.9)

by Cauchy inequality combined with (4.1.7). It follows that

∣
∣
∣
∣

∫

Kl

〈ξ (ε)
2 , ρ〉ωεe

−ϕLdVωε

∣
∣
∣
∣

2

≤ C(ξ)

∫

X\Kl

|ρ|2ωC e−ϕLdVωC . (4.1.10)

By letting ε → 0 we infer that for each fixed l we have

∣
∣
∣
∣

∫

Kl

〈ξ (0)
2 , ρ〉ωCe

−ϕLdVωC

∣
∣
∣
∣

2

≤ C(ξ)

∫

X\Kl

|ρ|2ωC e−ϕLdVωC . (4.1.11)
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Next, the inequality (4.1.6) shows that ξ
(0)
2 is L2-integrable with respect to (L, hL)

and (X , ωC). It follows that we have

∫

X\Kl

〈ξ (0)
2 , ρ〉ωCe

−ϕLdVωC → 0 (4.1.12)

as l → ∞ since both ρ and ξ
(0)
2 are in L2.

In other words, the form ξ
(0)
2 is orthogonal to Ker ∂̄ and since we have

ξ = ξ
(0)
1 + ξ

(0)
2 (4.1.13)

our lemma is proved (thanks to the uniqueness of such decomposition). ��

4.2 Orthogonal Decomposition, II: MeanValue Inequality

We analyze here the behavior of ξ1 restricted to the set Vsing. During the current
subsection we make the following conventions.

(i) We work with respect to the Kähler metric ωC exclusively on Vsing ⊂ X (this
will be understood even if we do not mention it explicitly) and with respect to
the Hermitian metric hL defined in the previous section on L .

(ii) We denote by ξ a (n, 1) form with values in L such that we have

Supp(ξ) ⊂ X \ (Vsing ∪ |H |).

We use the notations in (4.0.2) for its orthogonal decomposition with respect
to (ωC, hL).

(iii) We fix 1
2Vsing � Vsing an open set of compact support in Vsing, and 1

2Vsing
contains the singular locus of Y .

In this subsection we establish the next result.

Theorem 4.2 We have the mean value type inequality

sup
1
2 Vsing

|ξ1|2e−ϕL ≤ C(Vsing)
∫

Vsing
|ξ1|2e−ϕLdVωC (4.2.1)

where C(Vsing) here is a constant which only depends on the allowed quantities, i.e.,
the geometry of (Vsing, ωC) as well as τL in the assumption (i.α).

The norm of ξ1 in (4.2.1) is measured with the conic metric ωC .
The proof of Theorem 4.2 unfolds as follows (cf. [15, 22] for similar computations).

In order to simplify the notations, we drop the e−ϕL in (4.2.1), andwrite |ξ1|2 to express
the pointwise norm of ξ1 with respect to ωC and hL . First we show that there exists a
constant C such that

sup
Vsing\|W |

|ξ1|2 ≤ C < ∞ (4.2.2)

123



On the Ohsawa–Takegoshi Extension Theorem Page 17 of 47 25

where we denote by |W | the support of the divisor W . This is the main reason why
we have to assume that the singularities of hL and ω are “the same” in Theorem 1.1.

After this, we establish a differential inequality satisfied by the function |ξ1|2 in the
complement of the set

(ϕL = −∞) ∩ Vsing.

This is standard, and it combines nicely with (4.2.2) and Moser iteration process to
give (4.2.1).

Proof of (4.2.2) Firstwe establish the crucial boundedness result (4.2.2). Let z1, . . . , zn
be a set of local coordinates defined on a open subset � ⊂ Vsing. We assume that the
(zi )i=1...n are adapted to the pair (X ,W ), meaning that the local equation of � ∩ W
is

z1 . . . z p = 0

for some p ≤ n. By hypothesis, the weight of the metric hL can be written as

ϕL =
p∑

i=1

(
1 − 1

ki

)
log |zi |2 + τ, (4.2.3)

where ki are positive integers and τ is a smooth function defined on �.
The restriction of ξ1 to � has the following properties:

∫

�

|ξ1|2ωCe
−ϕLdVωC < ∞, ∂̄ξ1 = 0,

∫

�

〈ξ1, ∂̄φ〉ωCe
−ϕLdVωC = 0

(4.2.4)

where φ is any smooth (n, 0) form with compact support in � which is L2-integrable,
and such that ∂̄φ is in L2 as well.

These properties have a very neat interpretation in terms of ramified covers, as
follows. Let

π : �̂ → �, π(w1, . . . , wn) = (w
k1
1 , . . . , w

kp
p , wp+1, . . . , wn) (4.2.5)

be the usual local covering map corresponding to the divisor
∑p

i=1

(
1 − 1

ki

)
Wi . We

define the (n, 1)-form η on �̂ as follows:

η := 1
∏p

j=1 w
k j−1
j

π�ξ1, (4.2.6)

and a first remark is that we have
∫

�̂

|η|2ge−τ◦πdVg < ∞, (4.2.7)
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where g is the inverse image of the conic metric g := π�ωC . The relation (4.2.7)
is an immediate consequence of the change of variables formula, combined with the
expression of ϕL in (4.2.3). It follows that

∂̄η = 0 (4.2.8)

on �̂ (this is true pointwise outside the support ofW , and it extends acrossW by using
[12, Chap VIII, Lemma 7.3]).

Let α be a smooth (n, 0)-form on �̂ with compact support. We claim that we have

∫

�̂

〈η, ∂̄α〉ge−τ◦πdVg = 0. (4.2.9)

Indeed this is clear, given the equality

∫

�̂

〈η, ∂̄α〉ge−τ◦πdVg =
∫

�̂

〈π�ξi , ∂̄α̂〉ge−ϕL◦πdVg (4.2.10)

where α̂ := ∏p
j=1 w

k j−1
j α. On the right-hand side of (4.2.10) we can assume that α̂

is the inverse image of a (n, 0) form with compact support on �. Indeed, let f be an
element of the group G acting on �̂. Then we have

∫

�̂

〈π�ξi , ∂̄α̂〉ge−ϕL◦πdVg =
∫

�̂

〈π�ξi , ∂̄( f �α̂)〉ge−ϕL◦πdVg (4.2.11)

since all the other objects involved in the integral in question are invariant by inverse
image. It follows that

∫

�̂

〈π�ξi , ∂̄α̂〉ge−ϕL◦πdVg =
∫

�̂

〈π�ξi , ∂̄(π�φ)〉ge−ϕL◦πdVg (4.2.12)

whereπ�φ := 1
|G|
∑

f ∈G f �α̂. Then our claim follows by the third property in (4.2.4).

In conclusion, the form η is harmonic on �̂ with respect to the metric g and the
weight e−τ◦π . It is in particular bounded, and this is equivalent to (4.2.2). ��

We choose geodesic local coordinates (zi )i=1,...,n for the Kähler metric ωC locally
near a point x0 ∈ Vsing\W . Let eL be a local holomorphic frame of L , such that the
induced weight φ of hL verifies the relations

φ(x0) = 0, dφ(x0) = 0. (4.2.13)

We express ξ1 locally with respect to these coordinates

ξ1 =
∑

ξαdz ∧ dzα ⊗ eL (4.2.14)
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where dz := dz1 ∧ · · · ∧ dzn . We then have

|ξ1|2ωC =
∑

α,β

ξαξβg
αβ e−φ

det g
. (4.2.15)

The formula for the Laplace operator is �′′ = Tr ωC
√−1∂∂̄ and so we have

�′′(|ξ1|2) = |∇ξ1|2 + 2
∑

α,β

�
(
ξα,pqg

q pξβg
αβ
) e−φ

det g
(4.2.16)

+
∑

α,β

ξαξβg
αβ

,pqg
q p e−φ

det g
(4.2.17)

−
∑

α,β

ξαξβ(φ + log det g),pqg
q pgαβ e−φ

det g
(4.2.18)

wherewe denote by
(
gpq
)
the coefficients of themetricωC with respect to the geodesic

coordinates (zi ) and by g the corresponding matrix.
In order to obtain an intrinsic expression of the terms containing the second deriva-

tive in the RHS of (4.2.16), we recall that we have

∂̄�
ϕL

ξ1 = (−1)n
(

− ∂ξα

∂zβ
gαβ − ∂gαβ

∂zβ
ξα + ξαg

αβ ∂ϕL

∂zβ

)

dz ⊗ eL (4.2.19)

hence the next equality holds at x0

〈�ξ1, ξ1〉 =
(
−ξα,pqg

qβξβg
α p − ξαξβg

αδ
,δγ g

γβ + ξαξβϕL,δγ g
αδgγβ

) e−φ

det g
(4.2.20)

where � := [∂̄, ∂̄�] is the Laplace operator acting on L-valued forms of (n, 1) type.
The formula (4.2.20) is only valid for closed forms, which is the case for ξ1. Also, we
have ξα,pq = ξq,pα and therefore (twice the real part of) the first term on the RHS of
(4.2.20) coincides with the second one on the RHS of (4.2.16).

Next, since the metric ωC is Kähler we have gαδ
,δγ = −gαγ ,δδ hence we obtain

ξαξβg
αδ
,δγ g

γβ = Rαβξαξβ (4.2.21)

where Rαβ are the coefficients of the Ricci tensor of ωC .
The last term in (4.2.20) is simply θαβξαξβ where θαβ are the coefficients of�hL (L).
Again by the Kähler hypothesis the term (4.2.17) is equal to

Rαβξαξβ (4.2.22)
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and therefore we obtain

�′′(|ξ1|2) = |∇ξ1|2 − 2�〈�ξ1, ξ1〉 (4.2.23)

+ 2
∑

α,β

(
θαβ − Rαβ

)
ξαξβ +

∑

α,β

Rαβξαξβ (4.2.24)

−
∑

α,β

(
θαβ − Rαβ

)
gβα|ξ1|2 (4.2.25)

by collecting the previous equalities at x0.
The Ricci curvature of the metric ωC is uniformly bounded, so the function

f 2 := |ξ1|2 (4.2.26)

(where the norm is measured with respect to ωC and hL ) verifies the following prop-
erties:

(1) We have supVsing\W f < ∞, and moreover f is smooth on Vsing \ W .
(2) The following differential inequality holds true

�′′ f 2 ≥ |∇ f |2 − C f 2 (4.2.27)

where C is a constant depending on the Ricci curvature of the metric ωC and the
trace of ddcτ with respect to it.

Indeed the inequality at the point (2) follows from (4.2.23), since we have

|∇ξ1|2 = ∣
∣∇|ξ1|

∣
∣2.

Based on (1) and (2) we can conclude in two ways: either show that Schoen–Yau
mean value inequality holds for functions f which verify these properties (the proof
would be a simple adaptation of the arguments presented in [37]), or use the Moser
iteration procedure. In what follows, we use Moser procedure.

We show next that the following statement holds true.

Lemma 4.3 Let f be the function defined in (4.2.26). Then there exists a constant C1
depending on C and (Vsing, ωC) only such that we have

sup
1
2 Vsing\W

f 2 ≤ C1

∫

Vsing
f 2dVωC . (4.3.1)

Remark that the main point here is that the constant C1 is independent of the sup
norm in (1). After establishing this statement we are basically done, i.e., this implies
Theorem 4.2 announced at the beginning of the current section.
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Proof of Lemma 4.3 Let ρ be a function which is equal to 1 on 1/2Vsing and whose
support is in Vsing. Then we have

|�ρ| ≤ C, |dρ| ≤ C (4.3.2)

where the norm of the differential in (4.3.2) is measured with respect to the reference
metric ω on X .

Following [3], there exists a family of functions (�ε)ε>0 associated to the analytic
subset W = (hL = ∞) ∩ Vsing such that Supp(�ε) ⊂ Vsing\W and for each compact
subset K ⊂ X \ W we have �ε|K = 1 if ε < ε(K ) is small enough. Moreover we
have

∫

X
|d(�ε)|2dVω → 0,

∫

X
|�(�ε)|dVω → 0 (4.3.3)

as ε → 0. We recall very briefly the construction: let ρε be a function which is equal
to one on the interval [0, ε−1] and which equals zero on [1+ε−1,∞[. Then we define

�ε := ρε

(

log
(
log

1

|sW |2
)
)

(4.3.4)

where sW is the sections whose zero set is W . Then with respect to the conic metric
ωC we have

|d(�ε)|2ωC ≤ ρ′
ε

log2 |sW |2
∑ 1

|z j |2/k j
, (4.3.5)

up to a constant, from which (4.3.3) follows (we get a similar inequality for the
Laplacian of �ε).

The existence of (�ε)ε>0 combined with the second property in (4.3.2) allows us
to deal with the fact that f is not necessarily smooth.

The proof which follows is rather standard, but we will nevertheless provide a
complete treatment for convenience. We refer to [16] for a general discussion about
Moser iteration method, and more specifically to [22] where this is implemented in a
context which is very similar to ours here.

We multiply the differential inequality (4.2.27) with �ερ
2 and integrate the result

over X ; we infer that we have

∫

X
�ερ

2�( f 2)dVωC ≥
∫

X
�ερ

2|d( f )|2dVωC . (4.3.6)

On the LHS we integrate by parts. The terms containing derivatives of �ε are

∫

X
|�(�ε)|ρ2 f 2dVωC ,

∫

X
〈d�ε, d(ρ2)〉 f 2dVωC (4.3.7)
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and they tend to zero precisely because of the uniform boundedness property (1) of f ,
together with (4.3.3). These terms are vanishing as ε → 0, and the inequality (4.3.6)
becomes

∫

X
f 2�(ρ2)dVωC ≥

∫

X
ρ2|d( f )|2dVωC . (4.3.8)

On the other hand we write
∫

X
ρ2|d f |2dVωC ≥ 1

2

∫

X

∣
∣d(ρ f )

∣
∣2dVωC −

∫

X
f 2|dρ|2dVε, (4.3.9)

which combined with (4.3.8) gives

∫

X

∣
∣∇(ρ f )

∣
∣2dVωC ≤ C

∫

Vsing
f 2dVωC , (4.3.10)

where the constant C in (4.3.10) only depends on the norm of the first and second
derivatives of ρ.

The following version of Sobolev inequality is a direct consequence of [21], page
153.

Theorem 4.4 There exists a constant C > 0 such that the following holds

1

C

(∫

X
| f | 2n

n−1 dVωC

) n−1
n ≤

∫

X
| f |2dVωC +

∫

X
|∇ f |2dVωC (4.4.1)

for any function f on X.

We therefore infer that we have

(∫

1/2Vsing
| f | 2n

n−1 dVωC

) n−1
n

≤ C
∫

Vsing
| f |2dVωC . (4.4.2)

In order to obtain estimates for higher norms, we use (4.4.1) for f := �ερ f
p
2 and

we obtain

1

C

(∫

X
(�ερ)

2n
n−1 f

pn
n−1 dVωC

) n−1
n ≤

∫

X
(�ερ)2 f pdVωC

+
∫

X

∣
∣
∣∇
(
�ερ f

p
2

)∣
∣
∣
2
dVωC . (4.4.3)

We show now that the second term of the right-hand side of (4.4.3) verifies the inequal-
ity

∫

X

∣
∣
∣∇
(
ρ f

p
2

)∣
∣
∣
2
dVωC ≤ Cp

∫

X
(ρ2 + |∇ρ|2) f pdVωC . (4.4.4)
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This is done using integration by parts: we have

∇
(
ρ�ε f

p
2

)
= f

p
2 ∇(ρ�ε) + p

2
�ερ f

p−2
2 ∇ f ,

so we have to obtain a bound for the term

∫

X
(ρ�ε)

2 f p−2|∇ f |2dVωC = 1

2

∫

X
(ρ�ε)

2 f p−3〈∇ f 2,∇ f |〉dVωC . (4.4.5)

We have

(p − 2)
∫

X
(ρ�ε)

2 f p−3〈∇ f 2,∇ f 〉dVωC

= −
∫

X
(ρ�ε)

2 f p−2� f 2dVωC − 2
∫

X
f p−2〈(ρ�ε)∇ f , f ∇(ρ�ε)〉dVωC

≤ −
∫

X
(ρ�ε)

2 f p−2|∇( f )|2dVωC − 2
∫

X
f p−2〈(ρ�ε)∇ f , f ∇(ρ�ε)〉dVωC

+ C
∫

X
(ρ�ε)

2 f pdVωC

≤ C
∫

X
((ρ�ε)

2 + |∇(ρ�ε)|2) f pdVωC (4.4.6)

and as before, the terms involving ∇(�ε) tend to zero as ε → 0. We therefore get the
inequality (4.4.4). Remark that we are using the inequality (4.2.27) in order to obtain
(4.4.6).

We define Vi := (1/2+ 1/2i )Vsing and let ρi be a cutoff function such that ρi = 1
on Vi+1 and such that Supp(ρi ) ⊂ Vi . Then we have |∇ρi | ≤ C2i , and by using
(4.4.4) combined with the usual iteration process, Lemma 4.3 follows. ��

Theorem 4.2 is proved. ��

Remark 4.5 Actually a careful examination of the proof shows that one can obtain a
constant “C” in Lemma 4.3 as follows:

C = C(X , ω)

Vol (Vsing)
. (4.5.1)

If necessary, this can be obtained by adapting the arguments of Schoen–Yau in [37, p.
75].
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5 Proof of theMain Results

5.1 Proof of Theorem 1.1

We consider the “usual” family of cutoff functions

ρε : X → R, ρε(z) = ρ

( |sY |2
ε2

)

(5.0.2)

where ρ is a function defined on the set of positive real numbers such that ρ = 1 on
[0, 1] and ρ = 0 on [2,∞[.

We will show here that the following a-priori inequality holds

∣
∣
∣
∣

∫

X
∂̄ (ρεU0) ∧ γξ e

−φL

∣
∣
∣
∣

2

≤ Cε(U0)

∫

X

∏
log2(|sY j |2 + ε2)|∂̄�ξ |2e−φLdVω

(5.0.3)

where ξ is a (n, 1)-form with values in Y + L whose support is contained in the
complement of Vsing ∪ H , and U0 is an arbitrary holomorphic extension of u, cf. [7].
Also, we denote by φL the metric

φL := ϕL + log | fY |2 (5.0.4)

on the bundle L + Y . We will see that the constant Cε(U0) in (5.0.3) is explicit, and
it converges to the RHS of (1.6.1) as ε → 0. Note that all the integrals above are at
least well defined, given the condition we impose on the support of ξ .

The proof of (5.0.3) will be presented along the following line of arguments.
• Consider a (n, 1)-form ξ as above together with the orthogonal decomposition

ξ
sY

= ξ1 + ξ2 we have already discussed in detail in the previous section. Then we
show that we have

cn

∫

X

ε2

(ε2 + |sY |2)2 γξ1 ∧ ∂sY ∧ γξ1 ∧ ∂sY e
−ϕL

≤
∫

X

∏
log2(|sY j |2 + ε2)|∂̄�ξ |2e−φLdVωL . (5.0.5)

up to a numerical constant. This will be done by an approximation argument, using
Lemma 4.1 as well as Theorem 3.1.

• The norm of the functional on the LHS of (5.0.3) is evaluated in two steps on
the set Vsing we use Theorem 4.2, combined with a few simple calculations. In the
complement X \ Vsing the arguments are rather standard: we will use (5.0.5).

The remaining part of the current section is organized as follows. We first show that
(5.0.3) implies the existence of an “estimable extension” of u. Then we prove that the
estimate (5.0.3) holds true.
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5.1.1 Functional Analysis

Our method relies on the next statement.

Theorem 5.1 Let u ∈ H0(Y , (KX + Y + L)|Y ) be a holomorphic section. We assume
that there is a constant Cε(U ) such that for any L-valued smooth test form ξ of type
(n, 1) with compact support in X \ (Vsing ∪ |W |) the a-priori inequality (5.0.3) holds.
Then u admits an extension U ∈ H0(X , KX + Y + L) such that

∫

X\Vsing
|U |2

|sY |2∏ log2(|sY j |2)
e−ϕL−ϕY dVω ≤ lim

ε→0
Cε(U ). (5.1.1)

Proof This is done as in the classical case, by considering the vector subspace

E := {
∂̄�ξ : ξ ∈ C2

c

(
X \ (Vsing ∪ H)

)}
(5.1.2)

of the L2
n,0(X ,Y + L) forms, endowed with the scalar product induced by

‖ρ‖2 :=
∫

X
|ρ|2e−φL

∏
log2(|sY j |2 + ε2)dVω. (5.1.3)

The functional

∂̄�ξ →
∫

X
∂̄ (ρεU0) ∧ γξ e

−φL (5.1.4)

is well defined and bounded on E by (5.0.3), hence it extends by Hahn–Banach. The
representation theorem of Riesz implies that there exists some form

v ∈ L2
n,0(X ,Y + L)

such that we have

∫

X

〈
∂̄ (ρεU0) , ξ

〉
e−φL =

∫

X

〈
v, ∂̄�ξ

〉
e−φL

∏
log2(|sY j |2 + ε2)dVωL (5.1.5)

for all test forms ξ ∈ E and such that

∫

X
|v|2e−φL

∏
log2(|sY j |2 + ε2)dVωL ≤ Cε(U0). (5.1.6)

Equation (5.1.5) shows that we have

∂̄ (ρεU0) = ∂̄
(∏

log2(|sY j |2 + ε2)v
)

(5.1.7)
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on X \ Vsing. On the other hand, the form

ρεU0 −
(∏

log2(|sY j |2 + ε2)
)

v (5.1.8)

is in L2(X\Vsing): this is clear for the first term, as for the second one it is a consequence
of (5.1.6).

We infer that the form

Uε := ρεU0 −
(∏

log2(|sY j |2 + ε)
)

v (5.1.9)

extends holomorphically on X \ Vsing. This implies that v|X\Vsing is non-singular, in
particular v equal zero when restricted to Y\Vsing—given the estimates in (5.1.6).

Therefore we infer the equality

Uε|Y\Vsing = u. (5.1.10)

We remark thatUε extends to X by theorem of Hartog’s. This is clear if X is a surface
cf. e.g., [19, Theorem 2.3.2]. The general case follows as a consequence of this, by a
simple argument of slicing which we will not detail here.

Finally, the estimate for the L2 norm of U is deduced from (5.1.6): we have

∫

X\Vsing
|Uε|2

|sY |2∏ log2(|sY j |2 + ε)
e−ϕL−ϕY ≤ Cε(U0) (5.1.11)

modulo a quantity which tends to zero as ε → 0. The conclusion follows. ��

5.1.2 End of the Proof

We prove now the inequality (5.0.3). As we have already mentioned, one of the main
part of the proof is based on the a-priori estimate (5.0.5) which we derive here from
Theorem 3.2 combined with the results established in the first part of Sect. 3.

We start with the following technical result, which plays a key role in the arguments

to come. In order to simplify the notations, we write ξ instead of the quotient
1

sY
ξ .

Proposition 5.2 Consider the orthogonal decomposition ξ = ξ1 + ξ2. Then the fol-
lowing hold: for each positive ε we have

∑

i

cn−1

∫

X

ε2

(ε2 + |sY |2)2 γξ1 ∧ γξ1e
−ϕL ∧ √−1∂si ∧ ∂si

≤ C
∫

X

∏
log2(ε2/N + |s j |2)

(
|∂̄�ξ |2

)
e−ϕLdVωL (5.2.1)

where N is the number of components of Y .
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Remark that we have the equality |∂̄�μ|2e−ϕL = |∂̄�ξ |2e−φL if μ = 1
sY

ξ , so the
estimate (5.2.1) is precisely what we have to prove.

Proof We recall the context in Sect. 3: we have considered an exhaustion

X \ H =
⋃

�m (5.2.2)

where each �m was a Stein domain with smooth boundary, endowed with the family
of complete metrics ωm,δ cf. (4.0.4). The restriction of ξ to each �m decomposes as
follows:

ξ |�m = ξ
(m,δ)
1 + ξ

(m,δ)
2 (5.2.3)

according to (�m, ωm,δ) and (L, hL).
We apply the inequality in Theorem 3.1 for ξ

(m,δ)
1 and we get

∑

i

cn−1

∫

�m

ε2

(ε2 + |sY |2)2 γ
ξ

(m,δ)
1

∧ γ
ξ

(ε)
1
e−ϕL ∧ √−1∂sY ∧ ∂sY

≤ C
∫

�m

∏
log2(ε2/N + |s j |2)

∣
∣
∣∂̄�(ξ

(m,δ)
1 )

∣
∣
∣
2
e−ϕLdVωm,δ . (5.2.4)

Indeed we can use Theorem 3.1 in this context even if the form does not have
compact support because the metric ωm,δ is complete. This has another consequence:
we have the equality ∂̄�(ξ

(m,δ)
1 ) = ∂̄�(ξ). For the inequality (5.2.4) we have used the

inequality

log2(ε2 + |sY |2) ≤ C
∏

log2(ε2/N + |s j |2),

where N is the number of components of Y .
Let K ⊂ X be any open set with compact closure in X\H ; for any m ≥ m0(K )

we have K ⊂ �m so the inequality (5.2.4) implies

∑

i

cn−1

∫

K

ε2

(ε2 + |sY |2)2 γ
ξ

(m,δ)
1

∧ γ
ξ

(m,δ)
1

e−ϕL ∧ √−1∂sY ∧ ∂sY

≤ C
∫

�m

∏
log2(ε2/N + |s j |2)

∣
∣∂̄�ξ

∣
∣2
ωm,δ

e−ϕLdVωm,δ . (5.2.5)

Now the support of ξ is a compact contained in X \ H , so if m is large enough the
boundary of �m is disjoint from Supp(ξ). A limit process (i.e., δ → 0,m → ∞),
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together with Lemma 4.1 implies that we have

∑

i

cn−1

∫

K

ε2

(ε2 + |sY |2)2 γξ1 ∧ γξ1e
−ϕL ∧ √−1∂sY ∧ ∂sY

≤ C
∫

X

∏
log2(ε2/N + |s j |2)

∣
∣∂̄�ξ

∣
∣2
ωC e−ϕLdVωC . (5.2.6)

The compact subset K in (5.2.6) is arbitrary, so Proposition 5.2 is proved. ��
We are now ready to finish the proof of Theorem 1.1. Consider the integral

∫

X

〈
∂̄ (ρεU0) , ξ

〉
e−φLdVωC (5.2.7)

which up to a sign equals

∫

X
ρ′
( |sY |2

ε2

)〈

U0 ∧ ∂sY
ε2

,
ξ

sY

〉

e−ϕLdVωC . (5.2.8)

We decompose as usual ξ
sY

= ξ1 + ξ2 and then (5.2.8) becomes

∫

X
ρ′
( |sY |2

ε2

)〈

U0 ∧ ∂sY
ε2

, ξ1

〉

e−ϕLdVωC =
∫

X
ρ′
( |sY |2

ε2

)

U0 ∧ ∂sY ∧ γξ1

e−ϕL

ε2

(5.2.9)

We split its evaluation into two parts. The first one is

∫

X\Vsing
ρ′
( |sY |2

ε2

)

U0 ∧ ∂sY ∧ γξ1

e−ϕL

ε2
(5.2.10)

and by Cauchy–Schwarz inequality the square of its absolute value is smaller than

∫

Kε

|U0|2 e
−ϕL

ε2
dVωC ·

∫

Kε

|∂sY ∧ γξ1 |2ωC
e−ϕL

ε2
dVωC , (5.2.11)

where Kε is the support of the function ρ′
( |sY |2

ε2

)
. We remark that we have

1

ε2
	 ε2

(ε2 + |sY |2)2 (5.2.12)

on the set Kε. Therefore, the second factor of the product (5.2.11) is smaller than

C
∫

X

∏
log2(ε2 + |s j |2)

(
|∂̄�ξ |2

)
e−ϕLdVωC (5.2.13)
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by Proposition 5.2.
The rest of the integral (5.2.9) is analyzed as follows. For simplicity we assume

that Vsing = � is a coordinate subset and the expression we have to evaluate is

∣
∣
∣
∣
1

ε2

∫

�

ρ′
( |sY |2

ε2

)

U0 ∧ ∂sY ∧ γξ1e
−ϕLdVωC

∣
∣
∣
∣ . (5.2.14)

This is bounded by the quantity

sup
�

(|ξ1|α)

∣
∣
∣
∣
1

ε2

∫

�

ρ′
( |sY |2

ε2

)

|∂sY |α|U0|ωC |∂sY ∧ γξ1 |1−αe−(1−α/2)ϕLdVωC

∣
∣
∣
∣

(5.2.15)

and Hölder inequality shows that (5.2.15) is smaller than the product of

sup
�

(|ξ1|α)

(∫

�∩Kε

|∂sY ∧ γξ1 |2
e−ϕL

ε2
dVωC

) 1−α
2

(5.2.16)

with

(∫

�

ρ′
( |sY |2

ε2

)

|∂sY | 2α
1+α |U0|

2
1+α
ωC

e− ϕL
1+α

ε2
dVωC

) 1+α
2

(5.2.17)

The limit of the quantity (5.2.17) as ε → 0 is equal to

(∫

�∩Y

∣
∣
∣
∣
u

∂sY

∣
∣
∣
∣

2
1+α

ωC
e− ϕL

1+α dVωC

) 1+α
2

. (5.2.18)

As for the (5.2.16), we use Theorem 4.2 together with our previous considerations and
it follows that it is smaller than

C

(∫

�

|ξ1|2dVωC

)α/2 (∫

X

∏
log2(ε2/N + |s j |2)

(
|∂̄�ξ |2

)
e−ϕLdVωC

) 1−α
2

.

(5.2.19)

It is at this point that we are using the positivity assumption (i): we have

∫

Vsing
|ξ1|2e−ϕLdVωC ≤ 1

Csing

∫

Vsing

〈[�hL (L),�ωC ]ξ1, ξ1
〉
e−ϕLdVωC ,

(5.2.20)

123



25 Page 30 of 47 J. Cao et al.

whereCsing is the (positive) lower bound for the positivity of (L, hL)|Vsing . By Bochner
formula we get

∫

Vsing
|ξ1|2e−ϕLdVωC ≤ 1

Csing

∫

X

∣
∣∂̄�ξ1

∣
∣2 e−ϕLdVωC . (5.2.21)

Thus we obtain the expected estimate for the functional (5.2.9) and Theorem 1.1
is proved. We remark that the contribution of the singularities of Y to the estimate in
this result is

C

(

1 + 1

Cα
sing

)(∫

�∩Y

∣
∣
∣
∣
u

∂sY

∣
∣
∣
∣

2
1+α

ωC
e− ϕL

1+α dVωC

)1+α

, (5.2.22)

where C is a constant depending on (X , Vsing, ωC) and α ∈ [0, 1] is an arbitrary
positive real which is smaller than 1.

Remark 5.3 The quantity (5.2.22) is part of the term estimating

∫

X\Vsing
|U |2

|sY |2∏ log2(|s j |2)
e−ϕL−ϕY dVωC . (5.3.1)

A slight modification of the proof shows that we can get a similar estimate for the
integral

∫

X\Vsing
|U |2

|sY |2 log2+τ (1/|sY |2)e
−ϕL−ϕY dVωC (5.3.2)

for any strictly positive real τ .

Remark 5.4 Actually one can replace the curvature condition (i) with the following:
there exists a constant Csing > 0 such that we have

�hL (L) ≥ Csing

log 1
|sY |2

ωC (5.4.1)

pointwise on Vsing. The estimate for the extension we obtain in the end is the same,
but we are using a twisted Bochner formula instead of (5.2.21).

5.2 Proof of Theorem 1.4

We follow the notations in Theorem 1.8. Since ∂̄ξ1 = 0, the Hodge relation ∂�
ϕL

=
[∂̄, �ω] implies that

∂̄(γξ1) = ∂�
ϕL

ξ1 on X .
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Let ∪�i be a small Stein cover of Vsing. The standard L2-estimate as well as the
Bochner inequality (5.5.7) imply that we can find Gi satisfying

∂̄Gi = ∂�
ϕL

ξ1 on �i and
∫

�i

|Gi |2ω,hL dVω ≤ C
∫

X
|∂̄�ξ1|2ω,hLdVω,

(5.4.2)

where C is a uniform constant independent of hL .
We would like to control theC0-norm of Gi . Note first that, as i�hL (L) is bounded

on Vsing, we can found a bounded function ϕ′
L on �i such that

ddcϕL = ddcϕ′
L .

Therefore ϕL − ϕ′
L is the real part of some holomorphic function fi on �i . Replacing

ξ1 by ξ1 · e− fL
2 , we can suppose in the beginning that the C2-norm of ϕL is bounded

by the constant C1.
Thanks to (5.4.2), Fi := γξ1 − Gi is a holomorphic (n − 1, 0)-form on �i . Recall

that ξ1 is �
′′
-harmonic on Vsing . Then

�
′′
(ω ∧ Gi ) = �

′′
(ω ∧ Fi ) on �i . (5.4.3)

Using (5.4.2), the H−2-normof�
′′
(ω∧Fi ) on 3

4�i is bounded byC
∫
X |∂̄�ξ1|2ω,hL

dVω.

Since Fi is holomorphic and theC2-norm of ϕL is bounded,�
′′
(ω∧Fi ) is continuous.

Therefore the C0-norm of �
′′
(ω ∧ Fi ) on 3

4�i is bounded by C
∫
X |∂̄�ξ1|2ω,hL

dVω. As
a consequence, the elliptic regularity implies that the

sup
1
2�i

|Gi |2ω,hL ≤ C

⎛

⎝
∫

�i

|Gi |2ω,hL dVω + sup
3
4�i

|�′′
(ω ∧ Fi )|2ω,hL

⎞

⎠

≤ C ′
∫

X
|∂̄�ξ1|2ω,hLdVω, (5.4.4)

where C ′ is a uniform constant.
Now we can prove the theorem. Theorem 3.2 and (5.4.4) imply that

∫

Y∩ 1
2�i

Fi ∧ Fie
−ϕL ≤ C ′

∫

X
log2 |sY |2|∂̄�ξ1|2ω,hLdVω.

Then the mean value inequality for holomorphic functions implies that

sup
Y∩ 1

3�i

|Fi |Y |2ωe−ϕL ≤ C ′
∫

X
log2 |sY |2|∂̄�ξ1|2ω,hLdVω.
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Together with (5.4.4), we have thus

sup
Y∩ 1

3�i

|γξ1 |Y |2ωe−ϕL ≤ C ′
∫

X
log2 |sY |2|∂̄�ξ1|2ω,hLdVω. (5.4.5)

As a consequence, we have

∣
∣
∣
∣
∣

∫

Y∩Vsing
u

dsY
∧ γξ1e

−ϕL

∣
∣
∣
∣
∣
≤ C ′

∫

Y∩Vsing
| u

dsY
|ωe− ϕL

2 dVω

×
(∫

X
log2 |sY |2|∂̄�ξ1|2ω,hLdVω

) 1
2

.

Like the arguments as in the above theorems, this implies the existence of an holo-
morphic extension U with the estimates

1

C ′

∫

X\Vsing
|U |2e−ϕY−ϕL ≤

∫

Y\Vsing

∣
∣
∣
u

ds

∣
∣
∣
2
e−ϕL +

(∫

Y∩Vsing

∣
∣
∣
u

ds

∣
∣
∣ e− ϕL

2 dVω

)2

,

(5.4.6)

where C ′ depends only on the geometry of (Vsing, ω) and C1.

5.3 Proof of Theorem 1.7

We are using the notations from the previous section, so ω is a fixed reference Kähler
metric on X .

By hypothesis, the metric hL is non-singular and in this case the equality

∫

Y

u

dsY
∧ γξ e

−ϕL =
∫

Y

u

dsY
∧ γξ1e

−ϕL (5.4.7)

is immediate.
We remark that the restriction

u

dsY

∣
∣
∣
Y j

is holomorphic, for each component Y j of

Y . This is where the vanishing of u on the singularities of Y is used. We decompose
the restriction of γξ1 to Y j as follows:

γξ1 |Y j = α j + β j (5.4.8)

where α j is holomorphic and β j is orthogonal to the space of L-valued holomorphic
top forms on Y j . Then we have

∫

Y j

u

dsY
∧ γξ1e

−ϕL =
∫

Y j

u

dsY
∧ α j e

−ϕL (5.4.9)
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Let x0 be a singular point of Y . We then have coordinates (z1, z2) defined on a open
subset x0 ∈ V , centered at x0 and such that (zk = 0) = Yk ∩ V for each k = 1, 2.
We equally fix a trivialization of L|V and let ϕL be the corresponding weight of the
metric hL . We write

u|V = fudz1 ∧ dz2 ⊗ eL (5.4.10)

and let θ be a function which is equal to 1 near x0 and such that Supp(θ) ⊂ V .
Thus we have

u

dsY

∣
∣
V∩Y1 = fu

dz2
z2

⊗ eL (5.4.11)

together with a similar equality on V ∩ Y2. We can write

∂ϕL

(
θ fu log |z2|2 ⊗ eL

)
= θ fu

dz2
z2

⊗ eL

+ θ log |z2|2∂ϕL ( fu ⊗ eL) + fu log |z2|2∂θ ⊗ eL
(5.4.12)

and then we observe that the left-hand side term of (5.4.12) is ∂ϕL—exact on Y1.
Therefore we have

∫

Y1
∂ϕL

(
θ fu log |z2|2 ⊗ eL

)
∧ α1e

−ϕL = 0 (5.4.13)

since α1 is holomorphic. We infer that we have

−
∫

Y1
θ

u

dsY
∧ α1e

−ϕL =
∫

Y1
θ log |z2|2∂ϕL ( fu ⊗ eL) ∧ α1e

−ϕL

+
∫

Y1
fu log |z2|2∂θ ⊗ eL ∧ α1e

−ϕL

and all that we still have to do is to apply the Cauchy–Schwarz inequality to each of
the two terms of the RHS of the inequality above.

A last remark is that we have

∫

Y1
|α1|2e−ϕL ≤

∫

Y1
|γξ1 |2e−ϕL (5.4.14)

by the definition of α1 and β1. We use the a-priori inequality and we conclude as in
Theorem 1.1. ��
Remark 5.5 In the absence of hypothesis u|Ysing 
≡ 0 the evaluation of the term (5.4.7)
near the singularities of Y is problematic. In the decomposition (5.4.8), we write
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β j = ∂̄�(τ j ), and then the question is to estimate the quotient

f j := τ j

ω

at the points of Ysing. This does not seem to be possible, since we only have the norm
W 1,2 of f j at our disposal. Indeed, the quantity ∂̄β j is equal to the restriction of the
form ∂̄γξ1 to Y j . In Question 5.7 we provide a few more precisions about this matter.

5.4 Proof of Theorem 1.8

This is another set-up in which the considerations above work, as follows. We recall
that the metric of hL of L satisfies the hypotheses (a) and (b) at the beginning and
moreover (L, hL) is flat near the singularities of Y , i.e.,

�hL (L)
∣
∣
Vsing

= 0. (5.5.1)

Then we get an estimable extension as follows. Let ω be a fixed Kähler metric on
X . As in the proof of the preceding result Theorem 1.7, we will use the method of
Berndtsson [2], so the quantity to be bounded is

∫

Y∩Vsing
u

dsY
∧ γξ1e

−ϕL . (5.5.2)

Integration by parts shows that it is enough to obtain a mean value inequality for the
function

sup
1/2Vsing

|∂̄γξ1 |2 = sup
1/2Vsing

|∂�
ϕL

ξ1|2. (5.5.3)

This is done according to the same principle as before. In the first place the differential
inequality satisfied by |∂�

ϕL
ξ1|2 is as follows:

�′′ (|∂�
ϕL

ξ1|2
)

≥ |∇ (∂�
ϕL

ξ1
) |2 − C |∂�

ϕL
ξ1|2 (5.5.4)

for some constant C > 0 which only depends on (the curvature of) ω|Vsing . We will
not detail the calculation here because this is very similar with the one in the proof of
Theorem 1.1. However, we highlight next the main differences:

(1) It is not necessary to introduce any regularization of themetric, since by hypothesis
(5.5.1) the restriction hL |Vsing is non-singular.

(2) Without any additional information about (L, hL), the term
〈
∂�
ϕL

ξ1,�∂�
ϕL

ξ1
〉
is

problematic. Actually (5.5.1) is needed precisely in order to deal with it: the cur-
vature of (L, hL)|Vsing equals zero, then we have �∂�

ϕL
ξ1 = 0 pointwise on Vsing.
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In general we have the term

〈
[∂̄, ��hL (L)]ξ1, ∂�

ϕL
ξ1

〉

which appears in the computation and seems impossible to manage.
(3) In the evaluation of the Laplacian of the norm of a harmonic tensor we have two

terms: the gradient of the tensor, and several curvature terms corresponding to the
metric on the ambient manifold and to the twisting, respectively. Here we do not
have any contribution from L , and the term involving the curvature of ω is taken
care by the constant −C in (5.5.4).

Anyway, the inequality (5.5.4) can be re-written as

�′′ (|∂�
ϕL

ξ1|2
)

≥ ∣
∣∇ ∣∣∂�

ϕL
ξ1
∣
∣
∣
∣2 − C |∂�

ϕL
ξ1|2 (5.5.5)

and this combined with Moser iteration procedure shows that we have

sup
1/2Vsing

|∂�
ϕL

ξ1|αω,hL ≤ C
∫

Vsing
|∂�

ϕL
ξ1|αω,hLdVω. (5.5.6)

Finally, the term that one (almost) never uses in Bochner formula shows that we
have

∫

X
|∂�

ϕL
ξ1|2ω,hLdVω ≤

∫

X
|∂̄�ξ1|2ω,hLdVω (5.5.7)

and we thus obtain the inequality

sup
1/2Vsing

|∂�
ϕL

ξ1|αω,hL ≤ C
∫

Vsing
|∂̄�

ϕL
ξ1|αω,hLdVω. (5.5.8)

Then we conclude as in Theorem 1.7. ��
Remark 5.6 Actually in the proof of Theorem 1.8 only needs to evaluate the L2 norm

∫

Y
|∂̄γξ1 |2dVω (5.6.1)

of ∂̄γξ1 |Y . One might try to use a similar method as the one in Sect. 2, but there are
serious difficulties to overcome.

5.5 Proof of Theorem 1.10

By hypothesis we know that Y has one component Y1 which only intersects ∪i 
=1Yi in
a unique point p0 such that u(p0) 
= 0. We also assume that L|Y1 is flat, in the sense
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that there exists a section τ such that τ(p0) 
= 0 and ∂ϕL τ = 0. Then we argue as
follows:

Let ω be a fixed, reference metric on X . On each component Y j of Y we solve the
equation

γξ1 |Y j = α j + ∂̄�β j , (5.6.2)

where α j is holomorphic (1, 0) form and β j is of type (1, 1) on Y j . We note that by
elliptic regularity the form β j is smooth.

We have β j = f jω|Y j and then the equality

∫

Y j

〈 u

σ jdsY j

, ∂̄�β j
〉
ω
e−ϕLdVω =

∑

x∈Ysing∩Y j

fu(x) f j (x)e
−ϕL (x) (5.6.3)

follows by the residues formula. Here we denote by σ j :=
∏

i 
= j

sYi .

In case j = 1, the sum above only has one term, by hypothesis. Since we have
∂̄�(τω) = 0, we can modify the solution f1 so that the global sum of residues is zero.

Question 5.7 Let p be one of the intersection points of two curves Y1 ∩ Y2 in X . The
analog of the a-priori inequality in Sect. 2 gives

| f j (p)|2e−ϕL (p) ≤ C
∫

X

log2 ‖s‖2
‖s‖2 |∂ϕL f j |2e−ϕLdVω (5.7.1)

provided that the bundle (L, hL) has the right curvature hypothesis, let us assume this
holds for the moment. In (5.7.1) we denote by C a constant which we can compute
explicitly. This a-priori inequality is obtained by considering the (2, 2)-form with
values in L

f jω
2 (5.7.2)

whose � coincides with the section f j , and use the procedure Theorem 2.1 for the
function w := 1

|s1|2+|s2|2 . The curvature requirements this induces will most likely be

1

δ
�hL (L) ∧ ω ≥ |s1|2�(Y1) + |s2|2�(Y2)

|s1|2 + |s2|2 ∧ ω. (5.7.3)

We have

∂̄ f jω
2 = 0, ∂̄� f jω

2 = −�
(
∂ϕL f j

)
(5.7.4)

which explains (5.7.1).
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Anyway, by equality (5.6.2) we control the norm

∫

Y
|∂ϕL f j |2e−ϕLdVω. (5.7.5)

Then the question is: can we find a smooth section f̃ j of L such that it equals f j on
Y and such that

∫

X

log2 ‖s‖2
‖s‖2 |∂ϕL f̃ j |2e−ϕLdVω ≤ C

∫

Y
|∂ϕL f j |2e−ϕLdVω, (5.7.6)

where C in (5.7.6) is universal?
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Appendix A: Further Results and Examples (by Bo Berndtsson)

In this appendix we will study two very simple model examples of L2-extension from
a non-reduced or singular variety. It is the second example (in Sect. 3) that is most
relevant to the subject of the main paper. The main point is to show that it is not
possible to obtain an estimate that is substantially better than Theorems 1.1 and 1.7.
The role of the first example is to show that similar difficulties appear already in an
even simpler situation, that can be analyzed in a more complete way.

In the first example we consider the space

A2
φ(�) = {h ∈ H(�);

∫

�

|h|2e−φdλ := ‖h‖2 < ∞}

of holomorphic functions in the disk � that are square integrable against a weight
e−φ . Given numbers ak , k = 0, 1, ...N − 1, we will compute the minimal norm of a
function h ∈ A2 that satisfies h(k)(0) = ak . The formula we give is exact but not very
explicit; it contains the Bergman kernel for the space and various metrics derived from
it. Therefore we will also discuss to what extent it is possible to estimate it in more
concrete terms, and show that the most optimistic estimates fail.

In the second example we consider the unit polydisk U in C2 and the singular
variety V = {z ∈ U ; z1z2 = 0} in U . We again denote by A2

φ(U ) the Bergman space

of holomorphic functions in U that are square integrable against the weight e−φ . The
extension problem is now to find a function h ∈ A2 that restricts to a given function
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on V , i.e., satisfies h = f1 when z1 = 0 and h = f2 when z2 = 0, where f1 and f2 are
holomorphic functions of one variable satisfying f1(0) = f2(0). In this case we get
only an estimate for the minimal extension, and we conclude by an example (basically
due to Ohsawa, [35]) which (perhaps) can serve as a motivation for the statement in
Theorem 1.4.

Extension from a (Fat) Point in the Unit Disk

Let A2 = A2
φ(�) be defined as above and let for k = 0, 1, 2...

Ek = {h ∈ A2; h( j)(0) = 0, j < k}.

It follows from elementary Hilbert space theory that there is a unique function h of
minimal norm in A2 satisfying h(k)(0) = ak for k = 0, ...N − 1. Write

h = h0 + r1,

where r1 ∈ E1 and h0 ⊥ E1. Then we write

r1 = h1 + r2,

with r2 ∈ E2 and h1 ⊥ E2. Continuing this way we get

h = h0 + h1 + ...hN−1 + rN ,

with hk ∈ Ek � Ek+1 and rN in EN . That h has minimal norm means that h is
orthogonal to EN , so rN = 0. By orthogonality we have

‖h‖2 =
N−1∑

0

‖hk‖2,

so the problem amounts to estimating the norms of hk .
The spaces Ek � Ek+1 are one dimensional. Let ek be an element of unit length.

We start with a simple lemma from [18] whose proof follows almost directly from the
definitions.

Lemma A.1

|e(k)
k (0)|2 = sup

f ∈Ek

| f (k)(0)|2
‖ f ‖2 .

For k = 0, |e0(0)|2 = B0(0), the (diagonal) Bergman kernel at the origin. For k ≥ 1
|e(k)
k (0)|2 =: Bk(0) can be viewed as a ‘higher order Bergman kernel’ and we refer to
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[18] for interesting applications of this idea. By a classical formula of Bergman, [1],
we have

B1(0) = |e′
1(0)|2 = B0(0)

∂2 log B0(z)

∂z∂ z̄
=: B0ωB, (A.1.1)

so the first-order Bergman kernel is strongly related to the Bergman metric. (We are
abusing notation by identifying the metric with its density; more properly we should
write

ωB = ∂2 log B0(z)

∂z∂ z̄
idz ∧ dz̄.)

Since h(k)(0) = ak and h(k)
j (0) = 0 for j > k, we get

h0(0) =: b0 = a0, h′
1(0) =: b1 = a1 − h′

0(0),

h′′
2(0) =: b2 = a2 − h′′

1(0) − h′′
0(0), ...

Then, since hk is a multiple of ek and h(k)
k (0) = bk , we have

hk = bk

e(k)
k (0)

ek .

Recalling that ek has norm 1 and that |e(k)
k (0)|2 = Bk(0) we find that the norm of the

minimal extension is given by

‖h‖2 =
N−1∑

0

|bk |2/Bk(0). (A.1.2)

When N = 1 this is just the standard formula

‖h‖2 = |a0|2/B0(0),

which shows that estimates from above of the norm of the minimal extension are
equivalent to estimates from below of the (usual) Bergman kernel. The next case is
N = 2. Then we use (A.1.1) and find (since h0 = (a0/e0(0))e0)

‖h‖2 = (|a0|2 + |a1 − a0e
′
0(0)/e0(0)|2ωB

)/B0(0).

Here we think of a1 − a0e′
0(0)/e0(0) as a 1-form and the second term in the right-

hand side is its norm for the Bergman metric. Since the off-diagonal Bergman kernel
B0(z, w) is holomorphic in z and antiholomorphic in w, and e0(z) = B0(z, 0), we
have

e′
0(0)/e0(0) = (∂/∂z)|0 log B0(z, z).
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Hence we can also write

‖h‖2 = (|a0|2 + |a1 − a0∂ log B0(0)|2ωB
)/B0(0).

By the standard Ohsawa–Takegoshi theorem, B0(0) ≥ C−1eφ(0), with a universal
constant C , so we get the slightly more explicit estimate

‖h‖2 ≤ C(|a0|2 + |a1 − a0∂ log B0(0)|2ωB
)e−φ(0). (A.1.3)

Because of the following lemma we can replace the norm with respect to the Bergman
metric by the Euclidean norm.

Lemma A.2 For any (1-form) a, we have at the origin of �

|a|2ωB
≤ |a|2,

where |a|2 denotes the norm with respect to the Euclidean metric.

Proof By (A.1.1) and Lemma A.1, at the origin

ωB = B1(0)/B0(0) = sup
f ∈E1

| f ′(0)|2
‖ f ‖2B0(0)

.

Now choose f = ze0. Since |z| < 1 and e0 has norm 1, f has norm less that 1.
Moreover, f ′(0) = e0(0). Hence ωB ≥ 1, which proves the lemma. ��

Thinking of log B0(z) as an approximation of φ, (A.1.3) suggests that one might
also have the inequality

‖h‖2 ≤ C(|a0|2 + |a1 − a0∂φ(0)|2e−φ(0),

but we shall see later that this does not hold.
We next discuss briefly estimates for larger values of N . We first note that there is

a version of Lemma A.2 for all k, which is proved in much the same way.

Lemma A.3

Bk(0) ≥ (k!)2B0(0).

Proof Recall that

Bk(0) = |ek(0)|2 = sup
f ∈Ek

| f (k)(0)|2
‖ f ‖2 .

Take f = zke0. Then f has norm less than 1 and f (k)(0) = k!e0(0). Thus

Bk(0) ≥ (k!)2|e0(0)|2 = (k!)2B0(0).
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��
From the lemma and (A.1.2) we get the estimate for the norm of the L2-minimal
extension

‖h‖2 ≤
(
N−1∑

k=0

|bk |2
)

/B0(0) ≤ C
(∑

|bk |2
)
e−φ(0),

where

bk = ak −
k−1∑

j=0

h(k)
j (0) = ak −

k−1∑

j=o

b j

e j (0)
e(k)
j (0).

As we have seen, this is difficult to estimate even when N = 2 and it is clear that the
complexity grows with higher values of k and N .

Examples

We focus on the estimates for N = 2, i.e., extension of a first-order jet. The most naive
conjecture for an explicit estimate would be

‖h‖2 ≤ C(|a0|2 + |a1|2)e−φ(0). (A.3.1)

Claim 1: There is no constant C independent of φ such that for all subharmonic
φ, (A.3.1) holds.

For this, take φ(z) = −2m�(z) and put g = emzh. Take a0 = 1, a1 = 0. If (A.3.1)
held we would get

‖h‖2 ≤ Ce−φ(0) = C .

Hence

∫

�

|g|2dλ = ‖h‖2 ≤ C,

and g′(0) = m. This contradicts Cauchy’s estimates for the derivative.
The estimate

‖h‖2 ≤ C(|a0|2 + |a1 − a0∂φ(0)|2)e−φ(0). (A.3.2)

might seem more plausible since we estimate ‖h‖2 by the connection in A2
φ , h

′ − h∂φ

instead of just h′(0).
Claim 2: There is no constant C independent of φ such that for all subharmonic φ

the minimal extension satisfies (A.3.2).

123



25 Page 42 of 47 J. Cao et al.

Assume that φ(0) = 0 and that φ is smooth. Then there is a small annulus U =
{r1 < |z| < r2} around the origin, where φ > −1. Choose ε > 0 so small that
φ + ε log |z| > −1 in the annulus too. Define a function ψ in the disk by ψ =
max(φ + ε log |z|,−1), in the disk where |z| < r2, and ψ = φ + ε log |z| where
|z| > r1. Since the two definitions agree on overlaps,ψ is a well-defined subharmonic
function, and ψ = −1 in a small neighborhood of the origin.

If (A.3.2) holds for ψ , then (A.3.1) also holds for ψ since ∂ψ vanishes near the
origin. Letting ε → 0 (or just taking ε sufficiently small) we get an extension that
satisfies (A.3.1) for φ. By the first claim, this is impossible.

A Singular Variety in the Bidisk

In this section we study L2-extension from the variety

V = {z ∈ U ; z1z2 = 0}

in the unit bidisk U , and we use the notation from the introduction. Following the
scheme in the previous section we let

E1 = {h ∈ A2
φ(U ); h(0) = 0},

and

E2 = {h ∈ A2
φ(U ); h|V = 0}.

Let f be a holomorphic function on V , and let h be the holomorphic extension of f
to U of minimal norm. Again we write

h = h0 + r1,

where h0 ⊥ E1 and r1 ∈ E1. Continuing as before we write

r1 = h1 + r2

where h1 ∈ E1 � E2 and r2 ∈ E2. Then h = h0 + h1 + r2 = h0 + h1 since, by
minimality, h is orthogonal to E2. Moreover, h0 ⊥ h1, so

‖h‖2 = ‖h0‖2 + ‖h1‖2.

The holomorphic function f on V is given by a pair ( f1, f2), where f1 is holomorphic
on {z1 = 0} and f2 is holomorphic on {z2 = 0}, and f1(0) = f2(0) =: a0.

Since h0 is orthogonal to E1 and h0(0) = a0 we have that

h0 = a0
e0(0)

e0,
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whereas in the previous section e0 is a function of unit norm orthogonal to E1. Then
|e0(0)|2 = B0(0), the (diagonal) Bergman kernel at the origin, and we get

‖h0‖2 = |a0|2/B0(0),

just as before.
We next turn to h1, which is the L2-minimal extension of f̃ := f − h0. We can

not give an exact formula for the norm of h1 but it is easy to give an estimate. Since f̃
vanishes at the origin we have f̃ = ( f1 − h0, f2 − h0) =: (z2g1, z1g2), where g1(z2)
and g2(z1) are holomorphic functions of one variable. Let G1 and G2 be the minimal
extensions of g1 and g2, from V1 = {z1 = 0} and V2 = {z2 = 0}, respectively. By the
Ohsawa–Takegoshi theorem

‖Gi‖2 ≤ C
∫

Vi
|gi |2e−φdλ.

Let H = z2G1 + z1G2. This is an extension of f̃ and

‖H/|z|‖2 ≤ ‖G1‖2 + ‖G2‖2 ≤ C
∫

V
| f − h0|2/|z|2e−φdλ.

Hence

‖H‖2 ≤ ‖H/|z|‖2 ≤ C
∫

V
| f − h0|2/|z|2e−φdλ.

All in all we get the estimate for the minimal extension h of f ,

‖h‖2 ≤ C(|a0|2/B0(0) +
∫

V
| f − h0|2/|z|2e−φdλ). (A.3.3)

Whencomparing this to the classicalOhsawa–Takegoshi theorem, let usfirst assume
that a0 = f1(0) = f2(0) = 0, so we get

‖h‖2 ≤ C
∫

V
| f |2/|z|2e−φdλ.

Translating this to the notation in the main text of this article, | f |2/|z|2 = |u/ds|2, so
this means that

‖U‖2 ≤ C
∫

V
| u
ds

|2e−φdλ,

which is exactly what the Ohsawa–Takegoshi theorem predicts. The problemwith this
estimate is that if the right-hand side is finite, it conversely forces a0 to be zero, so
the ‘classical’ theorem deals only with this case. The purpose of the theorems in the
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introduction is to weaken the norm in the right-hand side so that this can become finite
even if f = u does not vanish on the singular set.

Here one might hope that the quotient | f−h0|2
|z|2 in the right-hand side could be

replaced by the squared norm of a derivative acting on f . Asymptotically as z → 0
on e.g., V2,

f − h0
z1

→ f ′(0) − h′
0(0) = f ′(0) − a0

e′
0(0)

e0(0)
= ∂ f (0)

∂z1
− a0

∂ log B0(0)

∂z1

(the last equality follows as in the discussion leading to (A.1.3)). Again, thinking of
the logarithm of the Bergman kernel, log B0 as an approximation of φ, one is led to
look for estimates in terms of ∂φ f , like in Theorem 1.7. Theorem 1.7, however, also
contains a factor log2(max |z j |2), andwe next give an example showing that something
of this kind is necessary.

More Examples

We first give a counterexample (cf. [35]) to the most naive conjecture that the same
estimate as for smooth varieties holds.

Claim 3: There is no universal constant, independent of the plurisubharmonic
weight φ, such that the minimal extension satisfies

‖h‖2 ≤ C
∫

V
| f |2e−φdλ (A.3.4)

for all functions f that vanish at the origin.
To see this, take f = z1 when z2 = 0 and f = 0 when z1 = 0. Take φ =

log |z1 − z2|2. Any extension H must have the form H = z1G. If H has finite norm,
then G = 0 when z1 = z2. Hence H vanishes to second degree at the origin, which is
not possible. This example also motivates the choice of weight e−φL in the last term
of the right-hand side in formula (1.6.1). Indeed, replacing that by the more natural
e−φL/(1+α), the right-hand side would be finite for our choice of f , and as we have
seen extension is not possible.

This same example also shows that it does not help to add the L2-norm of the
twisted derivative of f in the right-hand side. We use the notation

∂φ f = eφ∂e−φ f = ∂ f − f ∂φ.

Claim 4: There is no universal constant, independent of the plurisubharmonic weight
φ, such that the minimal extension satisfies

‖h‖2 ≤ C

(∫

V
| f |2e−φdλ +

∫

V
|∂φ f |2e−φdλ

)

(A.3.5)

for all functions f that vanish at the origin.
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Indeed, with the same choice of φ and f as above, we have on V2 outside the origin

∂φ f = dz1 − z1(1/z1)dz1 = 0.

Since the weight φ has a singularity at the origin we look at regular approximations.
Let φε be the convolution of φ with (πε2)−1χε, where χε is the characteristic function
of the disk with radius ε. Explicitly,

φε(ζ ) = |ζ |2 − ε2

ε2
+ log ε2

when |ζ | < ε and φε(ζ ) = log |ζ |2 when |ζ | ≥ ε. This gives a sequence of subhar-
monic functions decreasing to φ on V2. We have

∂φε = ζ̄

ε2
dζ

when |ζ | < ε. Hence

∂φε f = ε2 − |z1|2
ε2

χεdz1

on V2. Since e−φε is of size roughly ε−2 when |ζ | < ε, the right-hand side in (A.3.5)
stays bounded as ε → 0. Hence, if (A.3.5) held, we would again get an extension
of finite norm in L2(e−φ), which we have seen is impossible. This motivates the
logarithmic factor in the estimate (1.7.1) of Theorem 1.7.

It is easy to construct a compact analog of the example used to prove the claims 3
and 4 above, as we briefly indicate next.

Consider two transverse lines L1 and L2 in X := P
2, and the adjoint bundle

KX + L1 + L2 + O(2). We define the metric h on O(2) by its weights

ϕε := log(ε2eφFS + | f1 − f2|2) + φFS, (A.3.6)

where fi is the local expression of the section σi which defines the line Li .
We define the section u which equals σ2 on L1 and zero on L2. By Theorem 1.1

we can construct an extension Uε of u for whose L2 norm is bounded by

∫

(C,0)

∣
∣
∣
∣
u

z

∣
∣
∣
∣

2
1+α

e−ϕε

which equals
∫
(C,0)

1
ε2+|z|2 dλ. In particular, we see that the bound (1.6.1) cannot be

improved by replacing the weight e−ϕL with e−(1−δ0)ϕL , for any positive δ0.
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