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Abstract An organization’s ability to develop Machine

Learning (ML) applications depends on its available

resource base. Without awareness and understanding of all

relevant resources as well as their impact on the ML life-

cycle, we risk inefficient allocations as well as missing

monopolization tendencies. To counteract these risks, the

study develops a framework that interweaves the relevant

resources with the procedural and technical dependencies

within the ML lifecycle. To rigorously develop and eval-

uate this framework the paper follows the Design Science

Research paradigm and builds on a literature review and an

interview study. In doing so, it bridges the gap between the

software engineering and management perspective to

advance the ML management discourse. The results extend

the literature by introducing not yet discussed but relevant

resources, describing six direct and indirect effects of

resources on the ML lifecycle, and revealing the resources’

contextual properties. Furthermore, the framework is useful

in practice to support organizational decision-making and

contextualize monopolization tendencies.

Keywords ML management � Machine learning lifecycle �
Artificial intelligence � Resource-based view � Design

science research

1 Introduction

The current momentum in Machine Learning (ML)

development and adoption is making companies to reflect

on their positioning and the associated configuration of

their resource bases. Some companies try to stand out with

leading ML models (e.g., OpenAI with ChatGPT) or to

capture the market with resource-integrating service plat-

form offerings (Geske et al. 2021). Others heavily invest in

data collection as data is a critical resource when training

an ML model (Mikalef and Gupta 2021). We can even
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observe that infrastructure resources are no longer neces-

sarily a commodity, but companies are scrambling to

develop and deploy specific hardware, such as tensor pro-

cessing units (Jouppi et al. 2018).

As with other digital technologies, companies face once

again the challenge of finding their place in the market and,

correspondingly, configuring their resource base. Above

all, ML applications are most notable in that their perfor-

mance evolution is non-deterministic because ML ‘‘is a

subfield of AI, which tries to acquire knowledge by

extracting patterns from raw data and solve some problems

using this knowledge’’ (Giray 2021, p. 2). Recent research

has acknowledged ML development’s specificity (Giray

2021; Iansiti and Lakhani 2020; Kumeno 2020; de Souza

Nascimento et al. 2020) and begun investigating which

resources are relevant to achieving business value through

artificial intelligence (AI) in general (Mikalef and Gupta

2021) or more technology-specifically through ML (Ash-

more et al. 2021; Amershi et al. 2019; Idowu et al. 2021).

However, we lack explanations for how resource allo-

cations affect the ML lifecycle, specifically in light of the

resources’ interwovenness manifesting in both horizontal

and vertical ways Horizontally, resources must integrate

into the specific ML lifecycle activities. The ML lifecycle

structures all activities required to develop, train, and

deploy ML models (Hummer et al. 2019). Therefore,

companies that arbitrarily invest in resources or that give

everyone a slice of the cake do not necessarily solve the

specific process problems that they face in the ML lifecy-

cle. Vertically, resources must functionally integrate into

the technology stack. For instance, training an ML model

requires the appropriate data and infrastructure.

This knowledge gap of not understanding how the pro-

visioning or usage of resources affect the ML lifecycle

causes two concerns: For one, the knowledge gap limits

companies’ ability to make sound strategic decisions con-

sidering the configuration of their resource bases and the

resulting potential for ML use and offerings. In specific, a

recent survey identified that a lack of internal resources

represents one of the most common pitfalls for successful

ML adoption. However, at the same time, many organi-

zations are lacking the knowledge of how to overcome the

challenge of configuring their internal resources for suc-

cessful ML adoption (Hartmann et al. 2019). IBM (2021)

found that 7 out of 10 organizations cannot account for

returns on their investments. Also, we might overlook

monopolization tendencies or resource dependencies, lim-

iting fair access to transformative technology. In conse-

quence, practical evidence demonstrates that tech

companies such as Microsoft or Google are at the ML

forefront, while in-house development is difficult or even

impossible for others (Davenport 2018). In sum, we lack

relevant knowledge for efficient and effective resource

allocation decisions throughout the ML lifecycle although

they are of strategic relevance for ML adoption. Thus, we

ask:

How do resource allocations impact the ML

lifecycle?

To answer our research question, we followed the design

science research (DSR) paradigm (Hevner et al. 2004;

Peffers et al. 2007) and designed and evaluated a frame-

work that introduces and conceptualizes the relevant

resources and their effects on the ML lifecycle. Specifi-

cally, we applied the DSR process of Peffers et al. (2007),

executing five design iterations. Within the design process,

we relied on knowledge gathered from a literature review

and 12 expert interviews. Regarding our theoretical lens,

we followed the resource based-view (RBV) (Barney 1991;

Grant 1991; Powell 1992) as it is suitable for assessing the

strategic value of resources (Bharadwaj 2000; Melville

et al. 2004).

Our research bridges the gap between the software

engineering discourse (Amershi et al. 2019) and the AI/ML

management discourse (Berente et al. 2021; Buxmann et al.

2021). The software engineering discourse offers in-depth

insights into the processes and technical dependencies

within the ML lifecycle that could benefit the AI/ML

management discourse. Thus, we contribute to the ML

management discourse by providing a software engineer-

ing-informed framework that systematizes ML resources as

well as their effects on the ML lifecycle. The users of the

framework could be both organizational decision-makers

and politicians who may use the framework to understand

monopolization tendencies and foster the democratization

of technology access.

The rest of the paper is structured as follows. In the

following section, we present the foundations of our work,

and subsequently outline the research method used in this

paper. Thereafter, we present the resulting framework

including the resources and their effects before presenting

the evaluation of the results. Afterward, we discuss our

results and conclude in the last section.

2 Foundations

Previous knowledge underlies, explains and informs the

design of artefacts (Jones and Gregor 2007). In the fol-

lowing, we outline the ML lifecycle as well as the RBV,

which serve as justificatory knowledge for the design of

our artefact.
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2.1 Machine Learning Development and Application

Before introducing the foundations of the ML lifecycle

(i.e., a horizontal perspective) and the stack model (i.e., a

vertical perspective), we present our understanding of ML

applications and their development: An ML application ‘‘is

said to learn from experience E with respect to some class

of task T and performance measure P, if its performance at

tasks in T, as measured by P, improves with experience E’’

(Mitchell 1997, p. 2). Accordingly, ML applications are

non-deterministic, but are based on statistical patterns

extracted from the data. Enhancements along the ML

lifecycle can improve the performance of ML applications

(Giray 2021).

From a horizontal perspective, the literature provides

different breakdowns of the ML lifecycle’s process phases,

which differ in their depth and concerning the problem

under consideration. The representations of the ML life-

cycle have in common that they describe a highly iterative

process in which feedback loops (validation and verifica-

tion) are essential to meet the predefined objectives

(Gharibi et al. 2021). Thus, developing ML applications

could be ‘‘viewed as searching through a large space of

candidate programs, guided by training experience, to find

a program that optimizes the performance metric’’ (Jordan

and Mitchell 2015, p. 255). While common ML lifecycle

process representations differ only in a few details, we

draw on Amershi et al.’s (2019) well-acknowledged work.

We illustrate our understanding of the ML lifecycle in

Fig. 1, as per Amershi et al. (2019). The feedback arrows

indicate typical feedback loops. While the arrows pointing

to the left describe the loop back to any preceding activity,

the upward-pointing arrow describes only the loop between

model training and feature engineering (Amershi et al.

2019; Ashmore et al. 2021).

Data collection aims at accumulating and integrating

heterogeneous (real-world) data (Baier and Seebacher

2019). The data subsequently undergo data cleaning to

enhance data quality. For instance, tools support data

cleaning by clearing wrong or noisy data points (Amershi

et al. 2019). In the case of supervised ML, one proceeds

with complementing each record with ground truth labels

(data labeling) (Amershi et al. 2019; Kotsiantis et al.

2006). To prepare the pre-processed data for training the

ML model, one proceeds with feature engineering, i.e.,

extracting and selecting informative features (Amershi

et al. 2019). Features are a set of attributes, often repre-

sented by vectors (Akkiraju et al. 2018; Mohri et al. 2012).

However, not all ML models require the same features. For

instance, while support vector machines require well-de-

veloped features, other models, such as deep learning

models, automate this step during ML model training

(Amershi et al. 2019; Lins et al. 2021). The model training

step includes selecting, configuring, and optimizing an ML

model (Ashmore et al. 2021; Akkiraju et al. 2018). It is

possible to create and train the ML model from scratch or

rely on transfer learning to make existing pre-trained ML

models applicable in the new domain (Gharibi et al. 2021).

In the model evaluation step, the ML model’s performance

with previously defined metrics is evaluated (Amershi et al.

2019). The trained and validated model is then transferred

to the target infrastructure in the model deployment step

(Amershi et al. 2019; Ashmore et al. 2021; Gharibi et al.

2021). In this step, the model is integrated into traditional

software and offered to the users (Ashmore et al. 2021).

Subsequently, in the model monitoring step, the deployed

model is continuously monitored to detect errors during the

real-world execution (Gharibi et al. 2021; Amershi et al.

2019).

Besides, our paper relies on the work of Lins et al.

(2021) to conceptualize the vertical perspective. While

previous authors have investigated stack models in the

context of cloud services (Liu et al. 2011; Mell and Grance

2011), we chose Lins et al.’s (2021) model as the authors

represent the full depth of functional integration and cover

ML services, which makes the model highly suitable for

our work. Based on Liu et al.’s (2011) as well as Mell and

Grance’s (2011) work, Lins et al. (2021) hierarchically

distinguish between three layers (software services,

developer services, and infrastructure services) and specify

their components. While the software services layer

includes ‘‘ready-to-use AI applications and building

blocks’’, the developer services layer includes all tools ‘‘for

assisting developers in implementing code’’ (Lins et al.

2021, p. 442). The infrastructure services comprise com-

putational power as well as network and storage capacities

(Lins et al. 2021).

Model 
Requirements

Data 
Collection

Data 
Cleaning

Data 
Labeling

Feature 
Engineering

Model 
Training

Model 
Evaluation

Model 
Deployment

Model 
Monitoring

Fig. 1 The machine learning lifecycle (Amershi et al. 2019)
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2.2 A Resource-Based View on Machine Learning

Resources

The RBV substantiates the origin of sustainable competi-

tive advantage, whereas the object of investigation focuses

on the heterogeneity of the resource base of companies

(Barney 1991; Grant 1991; Powell 1992; Das and Teng

2000). Accordingly, the RBV is a suitable perspective for

assessing the strategic value of resources (Bharadwaj 2000;

Melville et al. 2004). Particularly, our research benefits

from the conceptualization of resources and the explana-

tion of competitive advantage arising from the ownership

or control of resources (Barney 2001). Penrose (1959) and

Wernerfelt (1984) define resources as a company’s col-

lection of tangible resources such as infrastructure as well

as intangible assets such as licenses. However, as

Bharadwaj (2000) notes, tangible and intangible resources

alone do not create a competitive advantage: Human

resources determine an organization’s ability to coordinate

and integrate tangible and intangible resources. As such,

the combination of three resource classes leads to organi-

zational capabilities, which in turn, can result in a com-

petitive advantage: tangible (e.g., physical resources),

intangible (e.g., strategy or licenses), and human skills

(e.g., technical and managerial skills of employees)

(Bharadwaj 2000).

To generate a sustainable competitive advantage,

resources must be valuable, rare, immobile, difficult to

imitate, and non-substitutable (Peteraf 1993; Barney 1991;

Bharadwaj 2000; Powell 1992). If developing the neces-

sary resources in-house is too costly or time-consuming,

companies may draw on resources controlled by others

(Madhok 1997). For instance, emerging AI service plat-

forms aim to address the need to develop appropriate

resources (Geske et al. 2021). However, the RBV does not

specify the underlying mechanisms that explain how

companies gain a competitive advantage through resources

(Melville et al. 2004). As a theoretical answer, research

came up with the capabilities concept. Capabilities

describe a company’s abilities to integrate or combine

resources to achieve a competitive advantage (Grant 2010).

Capabilities develop through the interaction of resources

(Amit and Schoemaker 1993).

In the context of ML, organizations can benefit from

resource-oriented decision-making as well. To become and

remain competitive, decision-makers need to purposefully

allocate available resources to enhance the ML lifecycle,

enhance its output, and/or reduce associated costs. Deci-

sion-makers need to understand how resources impact the

ML lifecycle to consider the consequences of resource

allocations. Thus, the effects of resource allocations on the

ML lifecycle are relevant for sound strategic decision-

making.

However, while the following research has already taken

on deriving resources relevant for levering the potential of

ML or associated technologies, their impact on the ML

lifecycle remains neglected. The existing literature offers

only selective insights into the consequences of resource

allocations (Shams 2018). In specific, the academic dis-

course on relevant resources and capabilities for (big) data

analytics is remarkably prevalent (Gupta and George 2016;

Mikalef et al. 2018). Nonetheless, we cannot only rely on

(big) data analytics frameworks since software engineering

research suggests a re-investigation, as existing research

specifically addresses certain domains and states that ‘‘on

this topic, many research questions remain unanswered’’

(Giray 2021, p. 28; de Souza Nascimento et al. 2020;

Shimagaki et al. 2018; Kumeno 2020; Wan et al. 2020).

Having already explored (big) data analytics resources and

capabilities in recent studies, Mikalef and Gupta (2021)

have also developed a capabilities model for AI. As the

authors ‘‘identify several key types of resources’’ (Mikalef

and Gupta 2021, p. 2), they provide a comprehensive

overview of resource categories, e.g., technology or data,

required for building organizational capabilities. In paral-

lel, Weber et al. (2022) refer to data, AI-specific infras-

tructure, and IT infrastructure when it comes to technical

resources. At the same time, the level of detail in previous

research does not allow to draw conclusions with regards to

the categories’ specific items as well as their dependencies.

Also, Papagiannidis et al. (2021) orchestrate AI resources

and refer to the resources data, infrastructure, and human

skills, as well as further intangibles. As the authors focus

on the transformation of resources into capabilities, they do

not systematize the dependencies of resources. Thus, we

conclude that existing research has successfully identified

relevant resources in related fields (e.g., big data analytics),

however, we lack explanations on how and where ML-

related resources contribute to a company’s capabilities to

approach the ML lifecycle. Specifically, the current liter-

ature does not provide a systematic analysis of the

resources needed for ML and their impact on the ML

lifecycle. By focusing on the ML lifecycle, we spotlight the

ML lifecycle’s resource peculiarities including their

dependencies and, thus, bridge the gap between established

research strands in management (resource-based view) and

computer science (software engineering).

3 Research Method

We followed the DSR paradigm, as the approach allows us

to rigorously develop and evaluate artifacts (Hevner et al.

2004; Peffers et al. 2007). As such, the DSR paradigm

provides us with a methodological frame that enables us to

iteratively incorporate both the extant literature and the
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expert knowledge of decision-makers in the rigorous

design and evaluation of an artifact whose relevance stems

from solving real-world problems (Hevner 2007). We

applied the DSR process of Peffers et al. (2007), executing

five design iterations (see Fig. 2 as well as Appendix A.

Appendices available online via http://link.springer.com).

The DSR process of Peffers et al. (2007) starts with

problem identification and motivation followed by the

definition of the solution objectives. While we refer to the

paper’s introduction for the detailed problem description

and motivation, we summarize the problem space accord-

ing to Maedche et al. (2019) as follows:

• Stakeholders: We aim to support decision-makers who

make resource allocation decisions regarding the ML

lifecycle as well as politicians who want to foster the

democratization of technology access.

• Needs: Organizational and political decision-makers

need the ability to make sound decisions considering

the configuration of organizational resource bases.

However, in order to do so, decision-makers need to

know what resources are potentially relevant and how

they affect the ML lifecycle.

• Goals: We aim to identify and conceptualize the

relevant resources and their impact on the ML lifecycle

in a consistent and useful framework.

• Requirements: Our framework should meet the eval-

uation criteria for models (the level of detail, internal

consistency, fidelity with real-world phenomena,

robustness, completeness, and understandability) as

per March and Smith (1995) as well as Sonnenberg

and vom Brocke (2012).

In the following, we first describe how we conducted our

data collection and analysis. We then describe the design

iterations in detail.

3.1 Data Collection and Analysis

3.1.1 Literature Review

We started our methodological process from scratch and

collected justificatory knowledge from a literature review

to inform the artifact design. For identifying relevant lit-

erature, we followed the guidelines of Webster and Watson

(2002) and carried out a structured literature search. The

search string consists of two parts: The first part ensures the

focus on ML and associated terms. The second part ensures

the focus on resources and service offerings related to ML.

We used the following search string:

(‘‘machine learning’’ OR ‘‘artificial intelligence’’ OR

‘‘deep learning’’)

AND

(‘‘resource based view’’ OR ‘‘resource-based view’’

OR ‘‘value network’’ OR ‘‘resource orchestration’’

OR ‘‘resource dependency’’ OR ‘‘business value’’ OR

‘‘infrastructure as a service’’ OR ‘‘infrastructure-as-a-

service’’ OR ‘‘inference-as-a-service’’ OR ‘‘inference

as a service’’ OR ‘‘machine learning as a service’’ OR

IaaS OR ‘‘machine learning as a service’’ OR AIaaS

OR ‘‘software engineering’’).

We searched in the databases Web of Science (WoS),

the Association for Information Systems eLibrary (AISeL),

Business Source Premier, IEEE Xplore, and the Associa-

tion for Computing Machinery (ACM). The selected

databases hold both technical and business research papers,

which is necessary to identify the entire variety of

resources. We applied the inclusion criteria of (1) English

papers published in (2) journals or conference proceedings.

The resulting literature search initially yielded a total of

3,024 papers with duplicates (WoS: 1,521; AISeL: 33;

Fig. 2 Overview of the research method
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IEEE: 705; Business Source Premier: 413; ACM: 352).

Also, papers should (3) not represent a duplicate. The latter

inclusion criteria resulted in a set of 2,354 papers. During

the subsequent screening of the title, abstract, and full-text,

we applied the exclusion criteria of relevance. We deemed

papers relevant if they included a differentiated consider-

ation of resources needed throughout the ML lifecycle.

During the title and abstract screening, we removed 2,278

papers, leaving a number of 76 papers. After applying our

exclusion criterion during the full-text screening, we

excluded 38 further papers. By forward and backward

search, we identified six additional papers. Accordingly,

our final set includes 44 papers. The concept matrix used

for analyzing the final data set is shown in Appendix A.

3.1.2 Expert Interviews

To access new knowledge and to further evaluate the

framework, we conducted an interview study. Thus, prac-

titioners’ feedback through a qualitative interview study

(expert evaluations) represents the basis for the artifact

revisions in Iterations 3, 4, and 5. The interview guide

consists of four parts: (1) We started with an opening and

introduction, in which both parties introduced themselves,

the interviewer clarified organizational conditions (e.g.,

audio recording, anonymity), and briefly introducedthe

research project’s goal. (2) The interviewer then asked

which resources the interviewee utilized in past ML pro-

jects. (3) In the third part, the interviewer introduced the

framework, requested feedback on the interviewee’s first

impression, and subsequently asked whether the frame-

work fulfills the evaluation criteria. (4) Subsequently, the

interviewer asked the interviewee to assess the availability

and accessibility of the resources. To ensure the consis-

tency and understandability of our questions as well as a

smooth procedure and an appropriate time frame, we pre-

tested the interview guide by conducting a mock interview

with a data analytics professional. We used purposive

expert sampling in the selection of interviewees (Bhat-

tacherjee 2012).

When beginning to examine the experts’ feedback, we

took every comment into account even though they had

different implications for the framework. The first inter-

view part (opening and introduction) did not yield impli-

cations for the framework. When analyzing the second

interview part (open question about which resources the

interviewee utilized in past ML projects), we first checked

whether each resource mentioned was already part of our

framework. If that was not the case, we considered the

resource(s) in the next design iteration (cf. the description

of design iterations and Appendix B). In the third interview

part, we asked for feedback on the interviewee’s first

impression and subsequently assessed whether the

framework fulfilled the evaluation criteria. Here, every

critical comment wasn taken into account in the next

design iteration (cf. the description of design iterations and

Appendix B). The fourth interview part (assessing the

availability and accessibility of the resources) helped us to

better understand the experts’ context but did not help us to

improve the framework.

3.2 Artifact Design Iterations

3.2.1 Iteration 1: Initial Framework Draft

In the following full-text analysis, we extracted all

resources and influencing factors mentioned in the papers.

Therefore, we started with a broad categorization of

resources according to data, infrastructure/hardware, tech-

nical implementation (i.e., resources needed for the exe-

cution of the learning process), and a residual category. We

used this outline of possible resources to familiarize our-

selves with the subject area for obtaining an overview of

the literature. However, we revised this categorization

during each design iteration. In the first design iteration, we

decided to adopt the structure of Lins et al. (2021) stack

model (see the foundations section). Thus, the first design

iteration is based on the hypothesis that the individual

resources may be assigned to the service layers of the stack

model and are available to the market as a service if they

cannot be provided internally. Accordingly, we assigned

resources along the categories AI software services, AI

developer services, and AI infrastructure services, which in

turn consist of AI compute and AI data. In addition, we

distinguished whether resources represent an action and or

a factor influencing other resources. Therefore, our first

draft represented an overview of the resources mentioned

in the literature without timely dependencies. We evaluated

our first draft with the help of a formative criteria-based

evaluation (Cater-Steel et al. 2019; Venable et al. 2016)

and applied the evaluation criteria for models proposed by

Sonnenberg and vom Brocke (2012). Our evaluation shows

that the framework lacked internal consistency (e.g.,

resources on different abstraction levels or an inconsistent

conceptualization of effects) and comprehensibility (e.g.,

unclarity of how to read the framework or information

overload), as well as a coherent level of detail. Moreover,

the first draft did not fulfill the evaluation criteria of

completeness (e.g., the framework did not cover all activ-

ities of the ML lifecycle and resources’ effects).

3.2.2 Iteration 2: Mapping of Resources Along the ML

Lifecycle

Based on these drawbacks, we further overhauled the

framework during the second iteration. Most importantly,
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we improved the inconsistency of effects between resour-

ces, e.g., by introducing two effect classes (direct and

indirect effects) and six effect types (supplementing, iter-

ating, reusing, automating, informing, creating). Further-

more, we horizontally mapped resources according to the

nine process steps of an ML lifecycle as proposed by

Amershi et al. (2019). In parallel to the first iteration, we

conducted a formative evaluation method by applying a

criteria-based evaluation (Cater-Steel et al. 2019; Venable

et al. 2016). The latter showed that while the introduction

of classes and types as well as the structuring along the ML

lifecycle allowed us to improve the information overload,

the framework still faced some drawbacks regarding

understandability. Furthermore, we could not yet compre-

hensively map the resources along the ML lifecycle. Thus,

the second iteration of the framework still faced several

drawbacks, especially understandability, comprehensibil-

ity, internal consistency, and varying level of detail.

3.2.3 Iteration 3–5: Incorporating the Feedback

from the Interviews

We conducted an interview study to access new knowledge

and to further evaluate the framework. In particular, we

interviewed six experts during Iteration 3, two experts

during Iteration 4, and four experts during Iteration 5 (see

Table 1). Thus, experts evaluated an updated framework

after Iterations 3 and 4.

Based on the feedback of E1–E6, we revised the

demarcation of resources (e.g., introducing the glue/reu-

sable code and division of tools into more precise func-

tional groups), rearranged data resources, and specified the

types of relationships. We evaluated the third iteration’s

results with E7 and E8. During the fourth iteration, we

reworked the vertical arrangement of the resources, sim-

plified the framework’s presentation, specified resources in

primary and secondary resources, and introduced missing

resources (e.g., data repositories and data generation tools).

During the fifth iteration, the feedback of E9-E12 required

slight adjustments of the existing tools and the addition of

human skills and strategy, resulting in the framework as

described in the results section. The changes conducted in

each iteration are summarized in Appendix B.

4 Results

4.1 Overview of the Framework

Before we describe the framework’s resources and effects

in more detail, we first provide an overview of the

framework (see Fig. 3). The framework’s purpose is to

introduce relevant resources and describe their effects

throughout the ML lifecycle. Hence, we provide descrip-

tive and explanatory knowledge for the configuration of an

organization’s resource base to leverage the ML lifecycle.

Although the framework is considered a blueprint for the

configuration of an organization’s resource base, we

emphasize that organizations should apply the framework

specifically to their context.

The framework arranges primary and secondary

resources horizontally according to the ML lifecycle (see

Sect. 2). Accompanying the ML lifecycle, we acknowledge

people- and business-related resources. Primary resources

(grey boxes) are involved as input and output factors in the

ML lifecycle (i.e., the improvement of one resource posi-

tively affects the succeeding resource). The primary

resources match the ML lifecycle starting with the

Table 1 Overview of the Experts

Phase Expert Position Years of experience Duration

Iteration 3 E1 Senior ML Software Engineer 6 years 52 min

E2 ML Engineer 4 years 54 min

E3 Senior Product Manager for ML 6 years 53 min

E4 ML Team Lead & Product Manager 3 years 52 min

E5 Data Analyst 5 years 48 min

E6 CEO, ML startup 6 years 50 min

Iteration 4 E7 Team Lead, Data Science 5 years 56 min

E8 Team Lead, Data Science 5 years 44 min

Iteration 5 E9 Data Scientist 3 years 33 min

E10 Senior Manager, Digital Transformation Data & Analytics 9 years 37 min

E11 ML Engineer 2 years 41 min

E12 Team Lead, Data Science 8 years 56 min
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collection of raw data through to provisioning the results to

the user. The ML lifecycle does not have a singular

direction, but may iterate at various points, depicted with

the arrows in the left direction. Secondary resources

(white boxes) affect the ML lifecycle’s ability to transform

input to output resources.

We follow Bharadwaj’s (2000) conceptualization of

relevant resources for the creation of competitive advan-

tages, thus, our framework considers tangible resources

(e.g., hardware resources), intangible resources (e.g., the

organization’s strategy), and human resources (e.g., data

scientists). Following Bharadwaj (2000), human resources

are specifically relevant for coordinating and integrating

tangible and intangible ML resources. Thus, despite vary-

ing in volume, the graphical size is not related to the

importance of human resources.

Furthermore, the value-creating dependencies along the

lifecycle reflect a temporal dependency. While a clear

estimation of the required time to move along the lifecycle

is highly context-dependent, research highlights that most

time is dedicated to data management (Haakman et al.

2021; Abubakar et al. 2020).

For mapping the effects of resources (illustrated as

arrows), we introduce different effect classes: Direct effect

classes (solid arrows) connect the primary resources along

the ML lifecycle. The arrow’s direction indicates its value-

creating direction. Thus, one might move back and forth

along the process relationships, as the ML lifecycle’s

experimental nature expects.

Joints of process relationships symbolize the imperative

that two input resources must match (e.g., training data

must match the configured or pre-trained ML model).

Indirect effect classes (dashed arrows) moderate the ML

lifecycle’s ability to transform input to output resources.

4.2 Resources

In Table 2, we introduce the identified resources and

describe them according to their function in the ML life-

cycle. Organizations may instantiate a resource differently:

For one thing, there might be different approaches to fulfill

a purpose (e.g., self-developed code vs. a third-party

application). For another thing, an organization might

bundle resources differently (e.g., independently imple-

mented data pipelines vs. a full-featured ML service plat-

form). For example, SciKit-Learn1 provides, among others,

the functionality of the configuration tools and the ML

training tools.

Following the RBV, the resources’ contribution to the

ownership or control of a unique and effective resource

base for leveraging the ML lifecycle explains the resour-

ce’s strategic value. We do not only consider the existence

of resources but their contextual properties in the expla-

nation of competitive advantages. When assessing ML

Fig. 3 The machine learning effects framework

1 SciKit-Learn (scikit-learn.org) is an ML library in Python that

among others supports various ML algorithms and feature engineer-

ing tools and also provides raw data.
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resources, we emphasize their context-dependency for

three reasons:

First, the contribution of resources to leveraging the ML

lifecycle depends on the context. For example, a business

intelligence (BI) department might not need model moni-

toring tools when they only perform a one-time ad-hoc

analysis.

Second, we also recommend refraining from making

context-independent statements about resource properties

beyond the value property (i.e., rareness, imitation diffi-

culty, or non-substitutability) as our interviewees’ assess-

ment of resources’ characteristics varied highly. For

instance, while E8 highlighted that appropriate data is rare,

E11 negates data rareness.

Table 2 Definitions of the identified resources

Resource Explanation

Data Repositories Internal and external storage of (un-)structured data

Raw Data Input data in a form as originally retrieved from its source

Pre-Processed Data Cleaned, transformed, and normalized data with features suitable for training a configured ML model

Data Labels Informative tags describing individual data points for supervised learning

Split Training Data Ready-to-use data for the training of configured ML model (usually) split into three parts: training data, test

data, and validation data

Pre-Trained ML Models A configured ML model that has been trained and can be further trained with additional data

Configured ML Model The training algorithm and a set of related hyperparameters that specify the structure and learning process of

an ML model

Trained ML Model A configured ML model with parameter values learned from data

Deployed ML Model A ML model that can be used for predictions in the production environment

Production Data The data suitable for the deployed ML model for prediction

Results The outcome of the prediction based on the production data

Application and User Interface The interface to an application or to the user that allows one to display the deployed ML model’s output and/

or input production data

Data Extraction, Lineage, and

Catalog Tools

Tools that allow one to retrieve, maintain data, and trace their processing journey and its influencing factors

Data Augmentation and

Generation Tools

Tools to modify existing and to create new data for training a configured ML model

Data Exploration Tools Tools to investigate the existing data to improve data understanding (e.g., visualization)

Data Quality Enhancing Tools Tools that detect and handle missing, noisy and invalid data to enhance their quality for training a configured

ML model

Data Annotation Tools Tools that allow one to annotate and process raw data into a form suitable for training a configured ML

model

Feature Engineering Tools Tools that allow one to extract, select, and construct features suitable for training a configured ML model

Data Splitting Tools Tools that provide approaches and algorithms to split the data into training, test, and validation data

Configuration Tools Tools helping to select well-performing hyperparameters for ML models to enhance their performance

ML Training Tools Tools that allow one to perform the learning process suitable for the configured ML model

Experiment Tracking Tools Tools that allow one to trace all information arising from the experimental process of training an ML model

Model Testing Tools Tools that test the functionality and performance of models

Model Lineage Tools Tools that allow one to trace trained ML models’ development journey and its influencing factors

Model Monitoring Tools Tools that allow one to track and assess the deployed ML models’ activity

Explanatory Tools Tools that provide additional information that explains the result to the user

Glue / Reusable Code Supporting and reusable code, which manages tools and resources along the ML lifecycle

Data Infrastructure An infrastructure fulfilling the storage and computation requirements of the ML lifecycle’s activities and

tools for managing data

Training Infrastructure An infrastructure fulfilling the storage and computation requirements of the ML lifecycle’s activities and

tools for training and verifying the model

Deployment Infrastructure An infrastructure fulfilling the storage and computation requirements of the ML lifecycle’s activities and

tools for deploying and running the ML application
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Third, the capabilities literature (Amit and Schoemaker

1993; Grant 2010) underpins the necessity to consider the

interaction of resources and, thus, their integration or

combination. We will present the identified effect classes

and effects resulting from resource interactions in detail in

the next section.

4.3 Effects in the Framework

We identified two superordinate effect classes, direct and

indirect, systematizing the influences between resources

throughout the ML lifecycle. Direct effects describe the

influence of resources on other resources. Indirect effects

describe the moderation of relationships between other

resources. Before explaining each effect, we provide a

summary of the effects in Table 3. The column ‘Examples’

lists the resources that exert the respective effect.

4.3.1 Direct Effects

Resources may directly affect succeeding resources in the

ML lifecycle in three ways: supplementing, iterating, and

reusability effects.

4.3.1.1 Supplementing Supplementing effects throughout

the ML lifecycle have been well-researched in the past. For

example, Amershi et al. (2019) and Arpteg et al. (2018)

point out that resources directly influence the succeeding

resources’ value. For example, split training data serves as

input for the training of ML models and, thus, directly

affects the subsequent resource. As another example, the

infrastructure directly affects the ML lifecycle throughout

its phases. For instance, while managing the data, the data

infrastructure provides both storage capacity and compu-

tational power for data processing (Jöhnk et al. 2021;

Mikalef et al. 2019).

‘‘What helps us are data pipelines: The data infras-

tructure hosts all structured data we have in data-

bases. [..] Also, we have data lakes where we can just

dump the data.’’ (E8).

4.3.1.2 Iterating Iterating effects constitute in resources

affecting other resources in succeeding iterations of the

same ML lifecycle. As a result, iterating effects improve a

product/outcome developed in an ML lifecycle. Unlike all

other effects, the iterating effects’ value-creating direction

plays out in succeeding iterations in the ML lifecycle. For

example, production data can be stored in the internal data

repository after its use. As a result, the stored production

data increases the amount of available raw data for the re-

training of the ML model in a subsequent iteration of the

ML lifecycle. Thus, ML models can be continuously

improved over the course of an ML lifecycle.

‘‘What we also see often is productive data, which at

the same time is also fed back into pre-processed data

to serve as new features [..] That’s why it can also

flow directly into pre-processed data.’’ (E8).

4.3.1.3 Reusability Reusability effects differ from itera-

tive effects in terms of which ML lifecycle they influence:

While iterating effects play out in iterations of the same

ML lifecycle, reusability effects influence another ML

lifecycle. For example, pre-trained models from previous

ML lifecycles can be used and improve the development of

other products (Yang et al. 2017). As a result, in contrast to

Table 3 Overview of the Identified Forms of Effects

Effect

class

Effects Direction Examples (non-exhaustive)

Direct

effect

Supplementing Resources serving as input for succeeding

resources within an ML lifecycle iteration

All gray resources along the ML lifecycle; infrastructure

Iterating Resources affecting resources in the

succeeding iterations of the same ML

lifecycles

Production data; results

Reusability Resources affecting resources in other ML

lifecycles

Production data; trained ML models

Indirect

effect

Automating Resources automating process steps Feature engineering tools; data catalog, extraction, and lineage tools,

data quality-enhancing tools; configuration tools, ML training tools;

model testing tools

Extending Resources extending or creating new

resources

Data augmentation and generation tools; data annotation tools

Informing Resources providing additional

information

Data exploration tools; experiment tracking tools; model lineage tools;

model monitoring tools, explanatory tools

123

S. Duda et al.: The Impact of Resource Allocation..., Bus Inf Syst Eng



iterating effects, reusability effects do not continuously

improve a specific product but reinforce the value of

available resources for developing further ML applications

as these can rely on resources from previous ML lifecycles.

Our interviewees highlighted the fact that an integrated

development of resources is beneficial as storing and

reusing resources leads to significant time and cost savings:

‘‘If you can first take a pre-trained model and adapt it,

your own development time is simply shorter until

you see whether a use case works.’’ (E7).

4.3.2 Indirect Effects

Besides directly affecting other resources, resources may

also indirectly influence the ML lifecycle by moderating

the relationship between resources. For example, improv-

ing feature engineering tools enhances the ability to gen-

erate Split Training Data based on pre-processed data. As

resources indirectly influence the ML lifecycle, they sup-

port organizations in their ability to use and integrate

resources and, thus, enhance their organizational capabili-

ties for ML development (Kogut and Zander 1992; Peppard

and Ward 2004). We distinguish between three indirect

effects: automating, informing, and extending.

4.3.2.1 Automating First, tools may indirectly influence

the ML lifecycle by supporting the automation of tasks.

For example, data quality-enhancing tools support devel-

opers in cleaning and preparing data for the model learning

and verification (Haakman et al. 2021; Kumeno 2020), e.g.,

by conducting automatic fixes such as automated sugges-

tions for missing values (Reimann and Kniesel-Wünsche

2020). Similarly, Data Extraction, Catalog, and Lineage

Tools support managing data dependencies, e.g., by run-

ning automated checks to ensure that dependencies are

annotated and by visualizing dependency trees (Sculley

et al. 2015):

‘‘To somehow ensure that the data arrives in this data

lake in very good quality and that it is regularly kept

up to date, that it is accessible, usable; this is

incredibly valuable if it’s the case.’’ (E12).

4.3.2.2 Informing Furthermore, tools may increase the

attention developers pay to errors that cannot be fixed

automatically (Polyzotis et al. 2018), which represents the

second categorization of indirect effects: providing addi-

tional information. On the one hand, tools providing

additional information support understanding the status quo

(e.g., Data Exploration Tools, Model Monitoring Tools,

Explanatory Tools) as E10 highlights:

‘‘I first integrate all the data [..] and analyze it visu-

ally to get a first grasp of the data.’’ (E10).

On the other hand, tools providing additional informa-

tion support iterations or subsequent ML lifecycles by

tracking and managing changes over the course of ML

lifecycle (e.g., Experiment Tracking Tools, Model Lineage

Tools). As such, tracking and lineage tools can help

developers to make the exploitation of iterating and

reusability effects more effective. For example, Data

Extraction, Catalog, and Lineage Tools support the man-

agement of continuously added data:

‘‘This is a very, very, very, very important tool, [so]

that I know when I have done all this data manage-

ment and pre-processing and something: How are

different data actually connected? What types of

transformations have happened? So that I can trans-

parently track the whole [extract-transform-load]

routes. This is very important.’’ (E10).

4.3.2.3 Extending Third, indirect effects extend or cre-

ate new resources. Thus, resources with an indirect

extending effect represent the basis for the creation of other

resources (e.g., ML models generalize from training data).

For example, Data Annotation Tools help to create the

resource data labels (Agrawal et al. 2019; Amershi et al.

2019; Haakman et al. 2021; Whang and Lee 2020). Simi-

larly, Data Augmentation & Generation Tools allow for

generating additional data. As a result, they support

developers in improving the accuracy of ML models

(Polyzotis et al. 2018; Whang and Lee 2020):

‘‘[..] you actually also do data generation to specifi-

cally generate edge cases, so we see whether our

model can handle this, what the limit is, when it

breaks.’’ (E8).

5 Evaluation

We evaluate the proposed framework as proposed by

Hevner et al. (2004) and Peffers et al. (2007). We further

follow the evaluation criteria for DSR artifacts as proposed

by Sonnenberg and vom Brocke (2012). Accordingly, we

validated the framework’s completeness, understandability,

level of detail, robustness, internal consistency, and fidelity

with real-world phenomena (March and Smith 1995;

Sonnenberg and vom Brocke 2012).

Overall, the experts mostly stated that the framework is

understandable. To achieve this, we improved improved

minor aspects accordingly throughout the iterations. Sev-

eral experts, however, agree that explanations would be

helpful for understanding (E1, E2, E7, E8). During
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iteration five, all interview partners agreed on the unre-

served understandability of the framework. In the third

iteration, some interviewees found that the framework

required a higher level of detail (E1, E3, E6). Thus,

throughout the iteration, we particularized some resources

to align the level of detail across the framework. As a

result, during iterations four and five, five out of six

interview partners stated that the level of detail was

appropriate. The interviewees also agreed on the fulfillment

of the criteria robustness, as the experts stated that the

framework is universally applicable across domains and

applications. Also, we extended the framework to capture

various perspectives on ML, such as BI units, which use

ML models’ results for internal business processes rather

than exposing them to customers. In parallel, the experts

agreed that the framework is internally consistent.

Regarding the framework’s completeness, the interviewees

highlighted some additional resources used in practice,

which we had not identified in the reviewed literature, i.e.,

data lineage tools, data generation tools (E8), and data

exploration tools (E9).

As providing utility represents the utmost goal of design

science researchers (Hevner et al. 2004), we also consid-

ered the fidelity with real-world phenomena in the

evaluation. Specifically, we evaluated the problem state-

ment as well as the framework’s applicability. The inter-

viewed experts also agreed with the problem statement.

Accordingly, a lack of knowledge regarding the relation-

ships and interconnectedness of the resources throughout

the ML lifecycle prevails. As E7 puts it, there is ‘‘nothing

to hold on to’’ when it comes to identifying how one’s

organization is positioned. As a consequence, ML often is

reduced to the model’s training and verifying. In contrast,

managing data is often ignored in hiring and resource

allocation decisions even though it provides the foundation

for the subsequent ML lifecycle (E9). Against this back-

drop, most interviewees agreed that the framework enables

the consideration and evaluation of individual resources.

For example, E4 noted that the framework can serve as a

tool for evaluating the required resources to set up an ML

service from a business owner’s perspective. With regard

to the application of the framework, the interviewed

experts agreed that the framework would support them in

understanding their organization’s positioning against the

backdrop of the dependencies of resources in the ML

lifecycle (E7, 8, 9, 10, 11). In particular, they stated that

they could apply the framework to analyze their organi-

zation’s portfolio to then subsequently discuss the next

steps and resource allocations (E7), especially during the

planning of an upcoming project (E10). For example, E8

explains that the framework represents a shopping list for

organizations. Thus, we conclude that our framework

provides utility for solving real-world problems. However,

E9 points out that the organization’s maturity regarding

ML affects its ability to apply the framework. While the

interviewees pointed out the framework’s capacity to

generate a portfolio view, they also highlighted the com-

plexity of organizational decision-making regarding

strategic resource allocations. Accordingly, the framework

cannot capture the complexity in terms of the requirements

of the underlying organizations (E1, E3, E5) as well as

regarding the dimensions of a certain resource (E4, E5).

6 Discussion

Making organizational or political decisions about resour-

ces relevant to ML requires a solid understanding of

resource requirements and their impact on the ML lifecy-

cle. Without awareness of all relevant resources as well as

their effects, we risk inefficient resource allocations as well

as missing monopolization tendencies. To address this

concern, we have broken new ground by building on

software engineering knowledge from the literature and

experts to extend the AI/ML discourse (Berente et al. 2021;

Buxmann et al. 2021). We incorporate resource require-

ments into the ML lifecycle by interweaving the identified

resources with the procedural and technical dependencies

within the ML lifecycle. As a result, we provide a novel

perspective on resource allocations that is both relevant for

strategic decision-making and applicable to the processes

actually taking place in organizations. Existing ML life-

cycle models, such as Ashmore et al. (2021), mainly focus

on the activities taking place during the development and

deployment of an ML application. In contrast, our frame-

work describes the resources and their effects on the ML

lifecycle. We argue that our framework does not only

provide utility for practitioners by solving practice-oriented

problems, but also provides utility to other researchers by

theorizing on resources and their effects. In specific, we

advance the extant literature in three ways:

First, our identified resources extend the list of relevant

resources previously discussed in the context of (big) data

analytics (Gupta and George 2016; Mikalef et al. 2018) or

AI (Mikalef and Gupta 2021; Weber et al. 2022). The

newly found resources resulted either from ML-specifics

(e.g., pre-trained model or ML training tools) or an applied

software engineering perspective. Notably, our framework

is rich and specific in the secondary resource of tools,

which predominantly resulted from our interviewees’

insights and have been neglected so far in extant literature.

As such, our framework emphasizes that one should take

tools into account that enable humans to create and coor-

dinate resources and not only consider hiring more experts.

Second, we contribute to the theory body by introducing

and describing direct and indirect effects classes, which can

123

S. Duda et al.: The Impact of Resource Allocation..., Bus Inf Syst Eng



each take the form of three effects along the ML lifecycle.

Theorizing on resources’ effects allows us to understand

the consequences of resource allocation, bundling, and

scaling as we categorize and explain the implications and

long-term consequences caused by specific resources. For

example, feeding back production data in data repositories

may allow for increasing the accuracy of ML models in

subsequent ML lifecycles. However, this effect only comes

into play when an organization scales its ML output. In

contrast, if an organization is unable to manage its trained

ML models, these models cannot be fed into a stock of pre-

trained ML models in subsequent ML lifecycles, limiting

the available resources for training. This example high-

lights that the marginal utility of resources is not neces-

sarily linear. As such, organizational decision-making

regarding the resource allocation should never be free from

internal contextualities, such as the existing organizational

resource portfolio, as well as from external contextualities,

such as self-reinforcing effects.

Third, our observation through the RBV lens revealed

that there is no standard resource base for leveraging the

ML lifecycle to gain competitive advantages. Instead, we

underpinned the importance of considering a resource’s

contextual properties. Specifically, the application domain

and purpose affect the value, rareness, inimitability, and

substitutability of resources.

In order to allow researchers and practitioners to quickly

grasp the above-mentioned implications, we summarize

them as follows:

1. A context-specific resource portfolio perspective is

important for purposeful resource allocation decisions,

as there are technical and procedural dependencies

between resources along the ML lifecycle. However,

resource allocation decisions should not only consider

the isolated effects of resources, but also their

integration via glue code.

2. The technical and procedural dependencies determine

six effect types, which differ regarding the affected

resource(s) or the activities in the ML lifecycle and the

time at which value is created.

3. The scope of resource allocation decisions must not be

limited to the current ML lifecycle iteration but may

also affect succeeding ML lifecycle iterations and

other ML lifecycles.

4. Investments in secondary resources do not necessarily

add value to primary resources due to the non-

deterministic nature of ML model development, but

increase the effectiveness and efficiency of experi-

mentation and, thus, the likelihood of value creation.

From a managerial perspective, our framework reduces

the uncertainty in organizational and political decision-

making. We reduce the risk of inefficient resource

allocations that may result from being unaware of relevant

resources and the specific effects of a resource on the ML

lifecycle (i.e., the resource’s specific potential to either

solve or cause a software engineering problem) as well as

the risk of ignoring the context-dependency of the identi-

fied resources. Our framework serves as a decision-sup-

porting model of the ML lifecycle’s resource space but is

not a blueprint for resource allocation decisions. In con-

trast, it serves to benchmark organizations’ positioning

regarding the availability and accessibility of resources.

Specifically, organizations can ‘‘consider which compo-

nents there are, how the organizations [are] positioned, and

where [they] currently stand’’ (E7). Hence, our framework

guides the assessment of an organization’s readiness and

maturity for developing and deploying ML applications.

Moreover, our systematic categorization offers indica-

tions regarding the democratization of ML resources.

While our interviewees did not indicate access restrictions

at this point in time, our findings make it possible to deduce

the strategic importance of specific resources and the

implications if their access were restricted in the future. For

example, an organization that can rely on a large stack of

trained ML models from previous iterations can generate

more accurate results in the future. Thus, based on our

findings, we predict that continuous development of ML

applications scales in terms of a widening gap in available

resources between large- and small-scale customers.

Besides these demand-sided advantages of hyper-scalers,

we also found indications for supply-sided advantages. For

example, interviewee E8 indicated that infrastructure ser-

vice providers prioritize demands of large-scale customers

for additional infrastructure capacities over small-scale

customers. This prioritization affects the flexibility of

small-scalers (e.g., startups) to cope with increasing

demand on their side. Additionally, E7 worries about the

market power of the hyper-scalers that provide the infras-

tructure in the cloud. ‘‘You can quickly become a pawn of

the big players. They can raise prices from one day to the

next, comparable to gasoline prices’’ (E7). Thus, we con-

clude that the democratization of ML resources does not

represent a major challenge just yet but will become of

increasing importance with the further development of ML

applications and an according increase in ML resources

and capabilities.

7 Conclusion

We followed a DSR approach involving a systematic lit-

erature review and 12 expert interviews to design and

evaluate a framework that introduces and conceptualizes

the relevant resources and their effects on the ML lifecycle.

We discovered different classes of direct and indirect
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effects. The direct effect class can take the form of sup-

plementing, iterating, and reusability effects. Indirect effect

classes may affect relationships between resources in three

different ways: by providing additional information,

automating process steps, or extending resources.

Our study contributes to the academic discourse in IS

research on the management of the ML lifecycle. While

Mikalef et al. (2018) and Weber et al. (2022) explored

capabilities for AI, the current academic discourse on the

ML lifecycle lacks a portfolio view of ML resources, which

includes the interaction and integration of resources. This

lack of knowledge causes uncertainty in organizational as

well as political decision-making when it comes to efficient

resource allocation decisions and the detection of monop-

olization tendencies. To bridge this gap, we provide theo-

retical insights into how the effects of ML resources can be

systematized. In specific, we explain how resource allo-

cation decisions affect the ML lifecycle. This theoretical

knowledge guides decision-making regarding the sourcing,

bundling, and scaling of resources.

Despite following a rigorous research approach, our

study is subject to limitations, which are mostly reflected in

our method of data collection. First, we rely on a literature

review as well as interviews for the identification of ML

resources. While this allows us to provide a portfolio view

of the resources as well as their effects, it limits our find-

ings to the function and features of resources. Future

studies could conduct a deep dive, e.g., by conducting case

studies, into organizations using ML, which would make it

possible to observe the use of resources in action and, thus,

derive the form and configuration of resources. Second, we

rely on a purposive interview sample of 12 experts who

work for organizations developing ML applications. While

we identified the importance of context-specific consider-

ation of resources, our sampling did not allow us to derive

further insights concerning the factors explaining this

context dependency. An explicit focus on sampling specific

types of organizations would enable future researchers to

address this limitation: For example, laggers which are

unable or have failed to develop in-house ML applications,

would further enrich our findings. In parallel, an explicit

focus on organizations with limited means, such as star-

tups, would provide further insights into the criticality of

certain resources. Specifically, we expect that an explicit

focus on these organizations would further sharpen our

understanding of resources representing a barrier to the

market entry of ML development and, thus, the democra-

tization of the access to ML resources.
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