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1 | INTRODUCTION

The bottom-up assembly is a promising nature-inspired
strategy for designing functional biomaterials (Gaspar
et al., 2020; Weisenberger & Deans, 2018). The building

Recombinant core spidroin eADF4(C16) has received increasing attention due
to its ability to form micro- and nano-structured scaffolds, which are based on
nanofibrils with great potential for biomedical and biotechnological applica-
tions. Phosphate anions have been demonstrated to trigger the eADF4(C16)
self-assembly into cross-beta fibrils. In the present work, we systematically
addressed the effect of nine sodium anions, namely SO,*~, HPO,*>~ (Pi), F,
Cl, Br, NO;, I', SCN, and ClO, from the Hofmeister series on the
in vitro self-assembly kinetics of eADF4(C16). We show that besides the phos-
phate anions, only kosmotropic anions such as sulfate and fluoride can initiate
the eADF4(C16) fibril formation. Global analysis of the self-assembly kinetics,
utilizing the platform AmyloFit, showed the nucleation-based mechanism with
a major role of secondary nucleation, surprisingly independent of the type of
the kosmotropic anion. The rate constant of the fibril elongation in mixtures of
phosphate anions with other studied anions correlated with their kosmotropic
or chaotropic position in the Hofmeister series. Our findings suggest an impor-
tant role of anion hydration in the eADF4(C16) fibrillization process.
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blocks of these materials are arranged in a bottom-up
manner into complex nano- to macroscale hierarchical
architectures, which allow for preparation of sustainable,
multifunctional materials with unique combinations of
strength and toughness (Lendel & Solin, 2021; Ling
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et al., 2018; Lombardo et al., 2020; Olson et al., 2021;
Percebom et al., 2018; Shen et al., 2021; Wegst et al., 2015).
There is a growing focus on proteinaceous nanofibrils
made of recombinant spider silk proteins or silk fibroin
from Bombyx mori, which can be manufactured into gels
and intensively applied in 3D printing and tissue engineer-
ing techniques (de Oliveira et al., 2023; Humenik
et al., 2014; Kamada et al., 2023; Kim et al, 2021;
Lamberger et al., 2022; Schacht et al., 2015; Scheibel
et al., 2022; Steiner et al., 2021; Sun & Marelli, 2020).

The recombinant spider silk protein, eADF4(C16), pos-
sesses the ability to form diverse nanostructures based on
nanofibrils. The protein structure mimics the core domain of
fibroin 4 from the dragline silk of the European garden spi-
der Araneus diadematus, containing a 16-times repeating
C-module that includes polyalanine and glycine-proline-rich
motives (Huemmerich et al., 2004; Humenik et al., 2014;
Rammensee et al., 2008; Slotta et al., 2007). The eADF4(C16)
is already known for its remarkable mechanical properties,
biocompatibility, biodegradability, and low immunogenicity,
making it an interesting subject of study (Humenik
et al, 2011, 2021; Leal-Egana & Scheibel, 2010; Muller-
Herrmann & Scheibel, 2015; Steiner et al, 2019;
Trossmann & Scheibel, 2023). In contrast to numerous other
proteins, which form fibrils under harsh denaturing condi-
tions, such as high temperature, acidic pH, and/or vigorous
shaking (Ponikova et al., 2015; Rahamtullah & Mishra, 2021;
Raman et al., 2005; Su & Chang, 2001), the eADF4(C16) self-
assembles into nanofibrils in the presence of <300 mM phos-
phate ions (Pi) under quiescent conditions and at room tem-
perature (Humenik et al., 2014). It has been shown that
phosphates, and with slightly lower efficiency, also sulfates
induce eADF4(C16) fibril formation, suggesting an impor-
tant role of the kosmotropic nature of the anions in the self-
assembly process (Collins, 2004; Kang et al., 2020). Neverthe-
less, the impact of kosmotropic and chaotropic anions from
the Hofmeister series on the transition of the protein into
insoluble fibrils has not been systematically addressed yet.

In 1888, Franz Hofmeister divided ions into kosmotropes
and chaotropes based on their capacity to either “fit into” or
“break” the ordered structure of water, and their capability
to salt out or salt in proteins, respectively (Hofmeister, 1888).
By arranging selected anions according to their impact on
various protein properties, such as solubility, stability, or
activity (Baldwin, 1996; Cacace et al., 1997, Dusekova
et al., 2022; Sedlak et al., 2008), the so-called Hofmeister
series of anions can be arranged in the following order:

SO4*” > HPO,>  >F >Cl” >Br >I" >NO;~

>ClO;~ >SCN™.

In this series, chloride is considered ‘“neutral” in
terms of the Hofmeister effect. On the left side of

chloride, the strongly hydrated anions are referred to as,
“kosmotropic anions” due to the historical belief in pro-
moting the structure of water and stabilizing the native
structure of proteins. On the right side of chloride,
weakly hydrated “chaotropic anions” are grouped; these
anions disrupt the water structure and denature proteins.
Omta et al. (2003) have shown that the effect of anions on
water structure is negligible outside the hydration shell of
an ion. Accordingly, numerous findings suggest that ions
can interact directly with the first hydration shell of mac-
romolecules and proteins in correlation with their position
in the Hofmeister series, referred to as the Hofmeister
effect (Hofmaier et al., 2023; Hofmeister, 1888; Kang
et al., 2020; Mittal et al., 2019; Zhang & Cremer, 2006).
Hydration of proteins affected by ion-specific and ion-
unspecific effects plays a critical role in protein self-
assembly kinetics (Camino et al., 2021; Mittal et al., 2019;
Sharma et al., 2018).

In the present work, the effect of nine sodium anions,
namely, SO,>~, HPO,>~ (Pi), F, CI", Br, NO;~, I,
SCN™, and ClO,", on the in vitro assembly of eADF4
(C16) is examined. We show that only kosmotropic
anions (SO42*, Pi, F7) trigger fibril formation. To deter-
mine the self-assembly mechanism of the eADF4(C16),
we utilized the platform AmyloFit (Meisl et al., 2016)
with integrated law kinetics. Global analysis elucidates a
critical role of the secondary pathway represented by sec-
ondary nucleation for self-assembly in the presence of
kosmotropic anions at a concentration of 150 mM. On
the contrary, the addition of chaotropic anions suppresses
the self-assembly in the presence of kosmotropic anions.

The mechanism of eADF4(C16) self-assembly into
fibrillar structures in presence of kosmotropic anions can
be harnessed for designing scaffolds at micro- and nanos-
cales. These scaffolds can be utilized in tissue engineer-
ing, and regenerative medicine, as well as for a range of
technical applications.

2 | MATERIALS AND METHODS

All chemicals were purchased from (Carl Roth,
Germany). Ultrapure water from a Millipore system
(Merck KGaA, Germany) was used in the experiments.

2.1 | Protein solubilization

The protein, eADF4(C16), was expressed in E. coli and
purified as reported by Huemmerich et al. (2004). The
structure of this protein is based on the C-module with
the amino acid sequence: GSSAAAAAAAASGPGGYG
PENQGPSGPGGYGPGGP, which repeats 16 times. The
protein was dissolved in a 6 M guanidinium thiocyanate

85U801 SUOWIOD AIIID) 8|l jdde ay) Aq peusencb 8. 9o VO ‘8sN JO S9N I0) ARIq1T 8UIUQ AB]1M UO (SUONIPUOD-PUR-SLLIBI WD A8 1M ARe.q 1 jpulUo//Sdny) SUONIPUOD pue Swie | 8y} 88s *[Z0z/£0/90] uo Akiqiauluo Ao ‘Uineideq Be1seAIIN AQ Zegy'0.d/Z00T OT/I0p/W00 A8 | Ale.d 1 pul|uoy/:Sdny Woi) pepeojumod ‘ZT ‘€202 ‘X968697T



HOVANOVA Er AL.

PROTEIN 30f13
@ SOCIETY_WI LEY.

solution and dialyzed against 10 mM Tris/HCI, pH 8.0 at
room temperature. The buffer was changed four times
every 2.5 h and once overnight. The protein solution was
centrifuged using the ultracentrifuge (Optima MAX-XP,
Beckman-Coulter, USA) at 185,000 g at 4°C for 50 min,
and the protein concentration was determined using the
UV-VIS spectrophotometer (NanoDrop 1000, Thermo
Fisher, USA).

2.2 | Kinetic measurements

Protein samples were prepared with a final concentration
between 10 and 40 pM. Assays were initiated by adding
150 mM salts, namely, NaPi, KPi, Na,SO,, K,SO,, NaF,
NacCl, Nal, NaBr, NaNO3, NaClO,4, NaSCN, or in a com-
bination of 150 mM KPi with other 150 mM, 300 mM, or
500 mM salt. For turbidity measurements, absorption at
340 nm was recorded on the spectrophotometer (Varian
Cary 50 UV-Vis Spectrophotometer, Germany) at 20°C
and in the 96-well plate reader (SpectraMax iD5 Molecu-
lar Devices, USA) at 30°C every 10 min.

2.3 | Pre-formed fibrils (seeds)

Protein eADF4(C16) (at a final concentration of 20 uM)
was incubated in 150 mM NaPi, at room temperature for
48 h to complete the fibril formation. Assembled fibrils
were then sonicated using an ultrasonic homogenizer
(Sonopuls HD 3200, Germany, MS73 tip set, 10% ampli-
tude) for 15 s with six cycles while keeping the samples on
ice to produce seeds. The seeds were added at 0.5% (w/w,
seed/soluble protein) to protein solutions in the presence
of 150 mM Na,SO, or 150 mM NaF, and the change in the
solution turbidity over time was recorded.

2.4 | Curve fitting with Amylofit

Kinetic datasets of protein eADF4(C16) (10-40 pM) in
the presence of 150 mM kosmotropic salt (Na,SO,, NaF)
with or without seeds were fitted using the online plat-
form AmyloFit (www.amylofit.ch.cam.ac.uk) (Meisl
et al., 2016). The entire analysis was performed according
to the protocol of Meisl et al. (2016). A detailed descrip-
tion is presented in the Supporting Information.

2.5 | Circular dichroism
spectroscopy (CD)

The far-UV CD spectra were recorded by a spectropolari-
meter (JASCO J-815, Japan) with a Peltier cuvette holder

at 20°C. The protein samples were diluted with water to
a final concentration of 4 pM. Scans were obtained by
averaging three individual spectra recorded between
190 and 250 nm, with points taken every 0.1 nm. Spectra
of the buffers were subtracted from the spectra of the pro-
tein samples.

2.6 | Fluorescence measurements

Thioflavin T (ThT) and 1-anilino-8-naphthalene sulfonate
acid (ANS) were prepared by dissolving in Milli-Q water,
followed by filtration utilizing a 0.2 mm syringe filter, with
their concentrations determined through absorbance read-
ings at 412 nm for ThT and 388 nm for ANS via a UV-
visible spectrophotometer (Cary 50 UV, Varian, Germany).
The molar extinction coefficients employed were
36,000 M L.cm™! for ThT and 5,200 M ‘.cm™! for ANS
(Groenning et al., 2007; Ziaunys et al., 2019). Utilizing a
plate-reader (SpectraMax iD5, Molecular Devices, USA),
fluorescence intensity was recorded for 30 pM Thioflavin-T
(ex. at 485 nm, em. at 528 nm) alongside a 15 pM protein
solution and 150 mM kosmotropic or chaotropic salt, at
intervals of 10 min at 30°C. Individual ANS spectra were
obtained at a protein concentration of 10 pM, 150 mM
chaotropic or kosmotropic salt, and 1 mM ANS, with exci-
tation at 355 nm. Fluorescence spectra were documented
utilizing a Shimadzu RF-5000 spectrofluorimeter.

2.7 | Transmission electron
microscopy (TEM)

The protein samples (10 pL) were deposited on
Pioloform-carbon-coated 200-mesh copper grids (Plano
GmBH, Germany) and incubated for 1 min at room tem-
perature. The grids were washed with 5 pL MilliQ water
and negatively stained with 2% uranyl acetate for 1 min.
Images were recorded using a Zeiss LEO EM922 Omega
microscope (Zeiss Microscopy, Jena, Germany), which
operated at 200 kV accelerating voltage. The images were
recorded by a bottom-mounted CCD camera system
(Ultrascan 1000, Gatan, Muenchen, Germany) and pro-
cessed using a digital imaging processing system (Digital
Micrograph GMS 1.9, Gatan, Muenchen, Germany).

3 | RESULTS

3.1 | Self-assembly of the protein eADF4
(C16) with kosmotropic or chaotropic salts

Self-assembly of the protein eADF4(C16) in the presence of
150 mM kosmotropic or chaotropic salts was investigated
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FIGURE 1 Aggregation kinetics of 20 pM eADF4(C16) protein
in the presence of 150 mM kosmotropic or chaotropic salt at 20°C.
Sigmoidal change of the turbidity at 340 nm corresponds to the self-
assembly of eADF4(C16) into nanofibrils. The presented data are
an average of three replicates. Chaotropic salts (NaSCN, NaCl, Nal,
NaBr, NaClO,4, NaNQ,) did not induce fibrillization. The
kosmotropic salts were required to trigger nucleation, as well as
fibril growth. The shaded area corresponds to standard deviation of
the data. In some cases, the standard deviation is smaller than a
symbol size. The curves were normalized between 0 and 1.

by change of turbidity at 340 nm over at 20°C (Figure 1)
as well as by detecting changes in Thioflavin-T (ThT)
fluorescence (Figure S1). ThT is a widely utilized fluores-
cent dye for monitoring the formation of cross-beta sheet
fibrils, owing to its substantial fluorescence enhancement
upon attaching to the fibrils (Naiki et al., 1989; Sulatsky
et al., 2020). Change of turbidity serves as another com-
mon method for studying protein fibrillization (Zhao
et al., 2016). In this context, the similarity of the ThT and
turbidity signals (Figure S1) validates the use of turbidity
in the exploration of eADF4(C16) self-assembly as it has
been found out in a previous study by Humenik et al.
(2014). It has been reported that a higher concentration
of phosphate ions (>300 mM) led to the precipitation of
the protein eADF4(C16) into particles, while low concen-
trations of Pi (<400 mM) trigger self-assembly into nano-
fibrils (Humenik et al., 2015; Oktaviani et al., 2019; Slotta
et al., 2008). Therefore, in the present study, a low con-
centration of phosphate salt (150 mM) was used to trigger
the protein fibrillization. An analogous concentration
effect on the protein fibril formation was observed for
sulfate ions.

Sigmoidal turbidity evolution was recorded in the
presence of kosmotropic ions (Pi, SO,*~, F"), indicating
nucleated aggregation, independently of the cation
(sodium or potassium) counterpart (Figure S2). This

result is in good agreement with the observations of
Humenik et al. (2015). Phosphate ions had the most pro-
nounced effect on the process rate. No aggregation was
detected upon the addition of chaotropic sodium anions
(NO;—, Br, I, ClO,, SCN") or even the neutral Cl~
(from the Hofmeister effect point of view), indicating
their stabilization effect on the soluble monomeric form
of the eADF4(C16) protein (Figure 1).

3.2 | Global analysis of eADF4(C16)
aggregation at different concentrations in
the presence of kosmotropic salts

The effect of kosmotropic ions (Pi, SO,>~, F) on the self-
assembly of eADF4(C16) was studied in more detail. The
change of turbidity at 340 nm was monitored across a
range of protein concentrations (10-40 pM) in the pres-
ence of 150 mM phosphate, sulfate, or fluoride salts.
Good reproducibility of experimental data measurements
has been achieved by precisely defined experimental con-
ditions (pH of the buffer, constant temperature of envi-
ronment 20°C, and highly purified protein eADF4(C16)
in monomeric form Hovanova et al., 2023). The kinetic
measurements were performed in parallel using a single
stock of protein solution.

A deeper understanding of the ion-induced fibrilliza-
tion of recombinant spider silk protein at the molecular
level was provided by the analysis of kinetic data using
the online platform Amylofit (Meisl et al., 2016), which
enables the determination of the dominant mechanism of
aggregation by global fitting. Based on the protocol
(Meisl et al., 2016), the log-log plot of the half-time (the
data point corresponds to half of the signal between the
initial line and the final plateau) against the monomer
protein concentration for individual salts was created
(Figure S3). The plots obtained for systems containing
fluoride and sulfate ions were similar to those obtained
for phosphate ions (Hovanova et al., 2023). Based on the
corresponding power-law dependence in log-log plots
and negative scaling exponent, the simplest model of
nucleation-elongation (Figure 2a, d) was used to describe
the self-assembly of the protein eADF4(C16). Since the
fitting result was unsatisfactory, a model that considers
secondary pathways was used. The model of secondary
nucleation fitted the kinetic curves with sufficient accu-
racy (Figure 2b, e), indicating its dominant role.

To verify the dominant secondary processes, a set of
kinetic measurements was performed with the addition
of nucleation seeds. The obtained data (Figure 2c, f) on
10-40 pM protein with the addition of 0.5% seeds in the
presence of 150 mM NaF or 150 mM Na,SO, were fitted
with the same model of secondary nucleation as the set
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FIGURE 2
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Time [ hours ]

Kinetic measurements of 10-40 pM protein eADF4(C16) in 150 mM (a)-(c) Na,SO,, (d)-(f) NaF, without (a), (b), (d), (e) or

with (c), (f) seeds at 20°C. Seeds concentration is 0.5% from the initial monomer protein concentration. For fitting of (a) and (d), a model of
nucleation-elongation was used, for (b), (), (e), and (f), a model of secondary nucleation was employed. The normalized sigmoidal curves
represent fibril formation, measured by turbidity at 340 nm. Note the different scales on the time axes. The presented data are the average of
three replicates for each condition. The filled area corresponds to the standard deviation of the data, which in some cases is smaller than the

symbol size.

without seeds. The global fit of the given model accu-
rately described the curves. The accuracy of the selected
model was verified by the significant acceleration of
fibrillization kinetics following the introduction of seeds,
without capturing the initial lag phase. The dominance
of the secondary nucleation mechanism was also shown
by power function-fits on a log-log graph with a linear
slope (Figure S3c, d) and negative scaling exponents, with
a —1 value in each case (Figure S3c, d). In the fitting pro-
cedure, the value of n, was set to 1, according to the
equation y = —(n, + 1)/2 (Meisl et al., 2016), and n, to
2, which is a recommended value in the Amylofit manual
(https://amylofit.com/static/fitter_manual.pdf) and is
also commonly used (Hovanova et al., 2023; Linse, 2021;
Zhao et al., 2016). The model of secondary nucleation
correctly described the course of measured kinetics with
these parameter settings. Even when these parameters
were set free, the fitting process resulted in converging to
comparable values near 1 for n, and 2 for n,, respectively.

The integral rate law (Cohen et al., 2011, 2012)
enabled us to determine the values of the rate constants
that control the reaction in the presence of fluoride and
sulfate anions (Table 1). Although protein fibrillization

involves rate constants for primary nucleation (k,), elon-
gation (k, ), and secondary nucleation (k,), the integrated
rate law showed that the macroscopic reaction profiles
for reactions beginning with monomeric protein are con-
trolled by a combination of rate constants, k,k, and
k. k,. The global analyses shown in Figure 2b, e provided
values for the combined rate parameters k, k, and k k,
(Table 1), which were shared globally. The absence of
parameter errors is due to the convergence to the same
value during the fitting procedure.

To determine the individual rate constants of the
entire process from the combined rate parameters k k,
and k k,, the self-assembly experiments from solutions
containing not only protein monomers but also pre-
formed seeds were necessary to perform. The individual
parameters, namely (i) k,—rate constant for nucleation,
(ii) k,—rate constant for elongation and, (iii) k,—rate
constant for secondary nucleation, were obtained by fit-
ting the seeded datasets (Figure 2c, f) using the AmyloFit
(Meisl et al., 2016) and are shown in Table 1. From the
obtained values, it is seen that while elongation is
the dominant event for fibrillization with 150 mM Pi and
F~, in the case of SO,*7, it is secondary nucleation.
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TABLE 1

Figure 2.
Anion ki k, [M 2s?] kik, [M %577
api 5.00 x 10° 13.32 x 107
SO~ 1.35 x 10° 9.04 x 107
F~ 0.42 x 10° 3.34 x 107

Rate constants corresponding to the primary and secondary processes in the fibrillization of protein eADF4(C16) are shown in

ki [M's™] ko [M s kp [M s
12.48 x 107 0.0401 1.578

2.85 x 107 1.416 7.08

7.26 x 107 0.00585 0.5982

#Values of rate constants corresponding to the protein self-assembly in the presence of 150 mM Pi were taken from our recent work (Hovanova et al., 2023).

FIGURE 3 TEM images of fibrils formed after 48 h incubation
in the presence of 150 mM (a) sodium phosphate, pH 8.0,

(b) sodium sulfate, (c) sodium fluoride, at 20°C, without shaking.
The image (d) shows short segments of fibrils, also called seeds,
used in kinetic measurements for verification of the correct
selection of the dominant mechanism (Figure 2c, f).

3.3 | Morphology of nanofibrils

The structures formed in the presence of 150 mM Pi, F~,
and SO,>~ were visualized using TEM after reaching the
stationary phase (Figure 1). Clearly, regardless of the type
of salt used, the resulting aggregates appear as fibrous,
branched nanofibrils (Figure 3a-c). Figure 3d shows
freshly prepared nucleation seeds that were used for veri-
fication of the chosen mechanism.

3.4 | Competing effect of selected anions
on Pi-triggered eADF4(C16) fibrillization.

The effects of (Hofmeister) neutral (C17) and chaotropic
anions (Br, NO;, I, ClO,, and SCN") on the self-
assembly of eADF4(C16) in the presence of Pi, a commonly
used trigger for protein fibril formation (Huemmerich

et al., 2004; Slotta et al., 2008), were studied. As shown in
Figure 4, only NaCl accelerated the self-assembly process,
while NaBr, NaNO;, Nal, NaClO,, and NaSCN suppressed
it in a concentration-dependent manner (150, 300, and
500 mM). Complete inhibition of protein self-assembly
occurred at 500 mM NaClO, and 300 mM as well as
500 mM NaSCN. In these cases, the strong chaotropic
anions eliminated the effect of kosmotropic phosphate
anions. For comparison purposes, Figure S4 summarizes the
effects of 500 mM studied salts in the mixture with 150 mM
KPi on eADF4(C16) fibrillization: protein self-assembly was
fastest in the presence of Cl, significantly slowed in the
presence of Br~ > NO;~ > 1", and completely suppressed
by SCN™ and ClO, . These results are consistent with the
position of anions in the Hofmeister series.

Anion effect on the aggregation kinetics was quantified
in terms of elongation rate constants, as summarized in
Table S1 and Figure 5. To determine whether there is a
correlation between ion properties and their efficiency in
affecting the rate of the eADF4(C16) fibril elongation, we
plotted the slope of dk. /d[salt] from Figure 5a, within the
concertation range of 0-150 mM salt, against selected
intrinsic properties of the anions. Many parameters reflect
different anion properties, but as we pointed out in our
previous work, some of these parameters correlate with
each other, significantly reducing the number of meaning-
ful dependencies (Dusekova et al., 2022). As a result, we
plotted the parameter dk,/d[salt] versus charge density
(Figure 5b) (which also correlates with surface tension and
air/water partition coefficient of anions), polarizability
(Figure 5d), and viscosity B-coefficient (which also corre-
lates with partition coefficient at hydrocarbon surface)
(Figure 5c). The dependencies indicate there are two rela-
tively good correlations described by correlation coeffi-
cients R* > 0.7 of the parameter dk,/d[salt] versus the
charge density and the viscosity B-coefficient of anions.

3.5 | Structural characterization of
formed aggregates

The far-UV CD spectra offer crucial insights into the pro-
teins' secondary structure. The CD spectra of protein
eADF4(C16) in the mixture of 150 mM KPi with sodium
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FIGURE 4 Influence of the 075r
chaotropic anions of the eADF4 0.8
(C16) self-assembly. The kinetic 061
measurements at 15 pM protein and 04

150 mM KPi were performed in the
presence of NaCl, NaNOs, NaBr,
Nal, NaClO,, and NaSCN at 30°C.
Every dataset comprises the
condition with 150 mM KPi (green)
and a combination of 150 mM KPi
with 150 mM (gray), 300 mM (red),
and 500 mM salt (blue). The
normalized sigmoidal curves
represent the turbidity evolution of
the protein-salt mixtures at 340 nm.
Data were averaged over five
replicates at each condition.
Obtained dependencies were fitted
by sigmoidal curves (Nielsen
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chloride (150, 300, 500 mM) and perchlorate (150, 300 mM)
show the presence of p-sheets by a pronounced negative
ellipticity signal at ~220 nm and positive ellipticity at
~200 nm (Figure S5). The spectrum of the eADF4(C16)
fibrils in 150 mM KPi solution was used for comparison, as
the cross-beta structure has been described previously
under these conditions (Humenik et al., 2014, 2015; Slotta
et al., 2008). The CD spectra strongly indicate: (i) the self-
assembly process of eADF4(C16) in the presence of KPi
and chloride and perchlorate, representative of “neutral”
and chaotropic anions, respectively, does not differ structur-
ally and (ii) sodium perchlorate at 500 mM concentration
stabilizes the unfolded water-soluble conformation of the
eADF4(C16), as indicated by the comparison of the spec-
trum to the freshly dialyzed protein. The effect of bromide,
nitrate, iodide, and thiocyanate on the protein could not be
analyzed due to high absorption in the far-UV region.

To examine the presence of hydrophobic regions in
the protein, eADF4(C16), incubated in the presence of
kosmotropic or chaotropic salt, ANS-induced fluores-
cence was employed since it binds to hydrophobic sites.
ANS (8-anilinonaphtalene-1-sulfonic acid) serves as a
fluorescent probe for detecting hydrophobic regions on
proteins (Sulatsky et al., 2020). The binding of ANS to
hydrophobic patches on the protein's surface or to amor-
phous aggregates results in an emission shift from
approximately 520 nm to about 465 nm, accompanied by
a significant increase in fluorescence intensity. When the
monomeric form of protein was introduced to ANS, only
a minor increase in ANS fluorescence intensity was
observed without a significant shift in the fluorescence
peak (Figure S6). Similar signals were detected when the
protein was incubated in chloride or perchloride anions.
In contrast, the addition of eADF4(C16) fibrils led to a
slight blue shift around 482 nm and a roughly three-fold
increase in ANS fluorescence intensity. These results
infer that the monomeric form of eADF4(C16) lacks
prominent binding sites for ANS, and there is only a
modest increase in ANS binding to eADF4(C16) fibrils, in
agreement with the conclusion of our very recent work
(Hovanova et al., 2023).

4 | DISCUSSION

The structural rearrangement of soluble, negatively
charged, intrinsically disordered eADF4(C16) monomers
into folded p-sheet-rich structures (Humenik et al., 2014)
can occur through several different molecular processes
in which ions can play a crucial role. Although
Hofmeister-ion effects on intrinsically disordered proteins
are usually observed at higher salt concentrations
(=0.5 M), at lower concentrations (<0.5 M), nonspecific

electrostatic screening is considered dominant (Gokarn
et al., 2011; Maity et al., 2022). In case of eADF4(C16),
the higher concentration of phosphate salt (>400 mM)
typically lead to precipitation of protein into particles due
to a decrease in the local flexibility of protein monomers
caused by intermolecular interactions; low Pi concentra-
tions (<300 mM) trigger self-assembly into nanofibrils
(Humenik et al.,, 2015; Oktaviani et al., 2019; Slotta
et al., 2008). This study revealed that not only phosphate
anions, but also other kosmotropic anions, such as sulfate
and fluoride anions, promote self-assembly with similar
concentration limitations. A qualitative comparison
showed previously that sulfate anions were slightly less
efficient in triggering the eADF4(C16) fibril formation
than phosphate anions (Humenik et al., 2015). Here, we
confirmed this observation by quantification of the rate
constants. Moreover, we showed for the first time that
fluoride anions have surprisingly similar effects on pro-
tein self-assembly as Pi and SO,>~, suggesting the size of
the charge carried by anions is not the decisive feature
of the anions' ability to trigger the fibrillization of eADF4
(C16). In our very recent study on protein self-assembly
triggered by phosphate, we proved that, in addition to the
typical primary pathways (primary nucleation and
the fibril growth), a secondary nucleation pathway,
where the monomers interact with the fibril surface
played an important role in the assembly mechanism
(Hovanova et al., 2023). The present investigation on the
fibril formation in the presence of sulfate or fluoride ions
confirmed the presence of the secondary pathway
(Table 1). The accuracy of the selected model was backed
by the successful global analysis of kinetic datasets of
protein fibrillization with and without seeds. The absence
of curvature in the log-log plots (Figure S3) further sup-
ported the involvement of only one dominant mechanism
in the cross-beta fibril formation. Observation of the
fibrils using TEM showed that the resulting fibrils
branched and differed slightly in diameter depending on
the triggering ion. The obtained rate constants from the
fitting of the kinetic datasets indicate that the proportion
of individual events is different. During fibril formation
with the addition of phosphate or fluoride, the primary
elongation process dominated, although it was not possi-
ble to fit kinetic data without the secondary nucleation
event. However, in the case of sulfate anions, the rate
constant k, increased by about one order of magnitude
compared to fluoride and about five-fold compared to
phosphate. From these data, one can assume the result-
ing fibril morphology (branching density and the length
of the branched fibrils) should differ. However, due to
the highly entangled appearance of the fibril bundles in
all three cases of the kosmotropic ion, statistically rele-
vant evaluation of branching was impossible. On the
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other hand, attempts to disperse the fibrils from the clus-
ter by ultrasonication or vigorous stirring induce ener-
getic or shear forces, hence impacting fibril appearance.
Nevertheless, sulfate ions can play a role in the prepara-
tion of fibril-based hydrogels made of eADF4(C16) at
higher protein  concentrations (>1%) (Lechner
et al., 2022; Schacht et al., 2015), resulting in branching
into higher E-moduli of the gels, impacting their proces-
sing via 3D printing or even cell differentiation in biofab-
rication procedures.

Although we determined a similar mechanism in all
the studied cases of kosmotropic anions involved in
eADF4(C16) self-assembly, the question arises how these
anions trigger the process of eADF4(C16) self-assembly.
The relatively low salt concentration (~150 mM)
required to start the process suggests a direct protein-
anion interaction. On the other hand, the fact that the
ions are structurally different and eADF4(C6) has polya-
nionic character given the negatively charged glutamic
acid residue in the protein module, it weakens the argu-
ment for the direct protein—anion interaction. A recent
detailed NMR study by Oktaviani et al. (2019) indicates
the effect of kosmotropic anions on eADF4(C16) proper-
ties. In that work, the authors showed that kosmotropic
anions increase the rigidity of the glycine region, promot-
ing internal hydrogen bond interaction that leads to the
formation of fB-sheet in the polyalanine region of the spi-
der silk sequence. The findings of this study support the
argument for an indirect anion interaction with protein
through the Hofmeister effect. In the presence of kosmo-
tropic anions, eADF4(C16) likely attains a specific self-
assembly-prone conformation as a result of the preferen-
tial hydration of kosmotropic anions. In fact, for the for-
mation of crystal-like fibrils, the process requires proper
protein conformation, in contrast to aggregation, which
results in a protein amorphous structure (Ponikova
et al., 2015; Zurdo et al., 2001). It needs to be stressed that
the role of kosmotropic anions in this case principally dif-
fers from their role in the process of fibrillization or
aggregation at acidic pH. In such cases, sulfate binds to
the positively charged polypeptide chain and by counter-
balancing strong repulsive electrostatic interactions, alle-
viates protein-protein interactions. Depending on the
properties of the polypeptide chain and salt concentra-
tion, it can lead to the accelerated formation of amor-
phous aggregates and/or ordered fibrils (Buell
et al, 2013; Klement et al., 2007; Owczarz &
Arosio, 2014; Pedersen et al., 2006; Ruzafa et al., 2013).
Another characteristic feature of anion-induced fibrilliza-
tion at acidic pH, which is different in the case of eADF4
(C16) at neutral pH, is the efficiency of anion follows the
electrosensitivity series, which orders the salts according
to their retention times on anion exchange column

(Gjerde et al., 1980), SO, >ClOs, >SCN > I >
NO; > Br~ > Cl” > H,PO, > F, rather than the Hof-
meister series, SO, > H,PO,” >F >Cl” >Br >
I >NO; >ClO, >SCN.

Our results on the effect of salt mixtures suggest the
chaotropic anions stabilize the eADF4(C16) water-soluble
form and prevent the formation of p-sheet structure
prone to self-assembly. It has been demonstrated in
numerous works that chaotropic anions likely bind to the
peptide backbone of proteins and/or to the nonpolar
group on the protein surface (Nandi & Robinson, 1972a,
1972b; Okur et al., 2017; Sedlak et al., 2008; Takekiyo
et al., 2022). The direct binding of chaotropic anions to
polypeptide chains is also supported by a correlation plot
of the parameter dk, /d[salt] with intrinsic properties of
anions, such as charge density and viscosity B-coefficient
(Figure 5), which indicates their partition at the water/
protein interface and an important role of anion hydra-
tion for the protein-anion interaction (Sedlak et al., 2008;
Zhang & Cremer, 2010). This mechanism explains the
inhibition and significant deceleration of fibril formation
in the presence of chaotropic salts. As we showed, the
efficiency of anions to decelerate the eADF4(C16) fibrilli-
zation correlates with their charge density, which likely
corresponds to the affinity of anions to bind to the pro-
tein. Strong binding to the eADF4(C16) will stabilize the
monomeric water-soluble form of the protein and thus
inhibits its fibrillization process. As such, we assume the
deceleration of the eADF4(C16) fibrillation by salts and
osmolytes can serve as an analytical tool for assessing the
ability of these agents to bind to the protein structure as a
result of their hydration properties. Following this line of
reasoning, an intriguing exception was observed in the
case of the chloride anions accelerating the self-assembly
of eADF4(C16) in the KPi buffer, unable to trigger but
efficiently (positively) modulate the protein fibrillization.
This observation is especially interesting in relation to
the natural spinning process. In several studies, the role
of chloride anions in the storage ampule of the spinning
gland has been explained by their stabilizing effect on the
soluble spidroins at high concentrations (50% w/v pro-
tein). Consequently, during the subsequent formation of
the fiber in the channel, the exchange of chaotropic Na™
and Cl~ for kosmotropic K* and Pi occurs (Arakawa
et al, 2022; Knight & Vollrath, 2001; Oktaviani
et al., 2019; Scheibel, 2004). However, the natural repeti-
tive spidroin domains are flanked by folded, highly solu-
ble C- and N-terminal domains, which most probably
significantly contribute to the stabilization of the whole
protein in solution (Heidebrecht et al., 2015; Saric
et al., 2021). Apparently, the neutral nature of chloride
anions (from the Hofmeister effect point of view) did not
influence the folding of the recombinant eADF4(C16) in
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SCHEME 1 A schematic overview of the presented research illustrates the influence of kosmotropic and chaotropic anions, according
to the Hofmeister order, on the self-assembly of the protein, eADF4(C16). The water molecules form a structured arrangement around the
kosmotropic anions, leading to the self-assembly of the protein. The sigmoidal curves correspond to fibrillization process. In contrast,
chaotropic anions stabilize the protein, possibly by binding to the protein structure as it remains dissolved in the solution. No increase in the
intensity of the turbidity signal is observed during this event. The results of this study indicate that the addition of chloride anions to the
kosmotropic phosphate salt accelerates the formation of fibrils. On the contrary, chaotropic anions slow down the fibrillization process or

even inhibit it.

the presence of Pi; increased Na* concentration shielded
the negative protein charge resulting in faster self-
assembly kinetic. As the natural spidroin involved globu-
lar terminal domain, as well as a much longer repetitive
core comprising heterogeneous repetitive sequences, the
self-assembly of natural spider silk at physiological condi-
tions, is a result of a complex interplay not only of the
presence of kosmotropic/chaotropic ions but also other
parameters, such as pH, water, and shear forces of the
spinning process (Andersson et al., 2014; Knight &
Vollrath, 2001; Scheibel, 2004).

5 | CONCLUSION

Our work provides a systematic in vitro study of the effect
of Hofmeister anions on the fibrillization of the recombi-
nant core spidroin eADF4(C16). We showed that similarly
to phosphate anions, other kosmotropic anions such as
sulfate and fluoride also trigger the fibrillization of the pro-
tein, and secondary nucleation plays an important role in
the self-assembly process. This result is likely achieved
through the stabilization of fibrillization-prone conformers
of eADF4(C16) by anion hydration intermediates, in
accordance with the Hofmeister effect. In contrast, chao-
tropic anions stabilize water-soluble conformers that are

unable to form fibrils, likely due to direct interaction with
the polypeptide chain of eADF4(C16). Reported results
further suggest that a hydrated cosolvent, for example,
osmolytes, or crowding agents, may accelerate protein
fibrillization (Scheme 1).
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