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Abstract

In the landscape of generative artificial intelligence, diffusion-based models present challenges for
socio-technical systems in data requirements and privacy. Traditional approaches like federated learning
distribute the learning process but strain individual clients, especially with constrained resources (e.g.,
edge devices). In response to these challenges, we introduce COLLAFUSE, a novel framework inspired
by split learning. Tailored for efficient and collaborative use of denoising diffusion probabilistic models,
COLLAFUSE enables shared server training and inference, alleviating client computational burdens.
This is achieved by retaining data and computationally inexpensive GPU processes locally at each client
while outsourcing the computationally expensive processes to the shared server. Demonstrated in a
healthcare context, COLLAFUSE enhances privacy by highly reducing the need for sensitive information
sharing. These capabilities hold the potential to impact various application areas, such as the design of
edge computing solutions, healthcare research, or autonomous driving. In essence, our work advances
distributed machine learning, shaping the future of collaborative GenAI networks.
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1 Introduction

In the realm of Information Systems Research, the emergence of generative artificial intelligence (GenAI)
technologies like ChatGPT and DALL-E has marked a significant milestone. These advancements,
as detailed by Feuerriegel et al. (2023), have broadened public access to GenAI and catalyzed its
integration into diverse sectors. Among GenAI innovations, the denoising diffusion probabilistic model
(DDPM) stands out for its ability to generate high-quality images through an advanced denoising process,
outperforming earlier methods such as generative adversarial networks (GANs) (Goodfellow et al., 2020)
or variational autoencoders (VAEs) (Kingma and Welling, 2014) in terms of diversity and convergence
guarantees (Dhariwal and Nichol, 2021; Nichol and Dhariwal, 2021). However, the implementation of
DDPMs in business analytics and other fields is not without challenges. These models demand extensive
data sets and computational resources (Z. Wang et al., 2023), which are often limited, especially in
decentralized systems (Hirt and Kühl, 2018). The healthcare sector exemplifies these constraints, where
data scarcity, privacy concerns, and high costs of data collection are present (Veeraragavan and Nygård,
2023; Y. Wang T. G. and Choo, 2023). To address these challenges, researchers have explored various
strategies, including patch-wise training (Z. Wang et al., 2023), few-shot learning (Lu et al., 2023; Ruiz
et al., 2023; Zhang et al., 2023), and notably, federated learning (FL) (Fan and Liu, 2020; McMahan et al.,

Thirty-Second European Conference on Information Systems (ECIS 2024), Paphos, Cyprus 1



Zipperling et al. : Collaborative Diffusion Models

2017). FL enhances data accessibility, yet raises privacy concerns (Shokri et al., 2017; Zhu et al., 2019)
and the need for significant local computational capabilities.
In response, we introduce COLLAFUSE, a new collaborative learning and inference framework for
DDPMs, inspired by split learning (Gupta and Raskar, 2018). COLLAFUSE aims to balance the computa-
tionally intensive denoising process between local clients and a shared server, with a focus on optimizing
the trade-off between performance, privacy, and resource utilization—which are crucial requirements for
real-world information systems implementations. This framework transforms the optimization challenge
into a multi-criteria problem, addressing the core requirements of such applications in practice. Building
upon these criteria, our research investigates the impact of different degrees of collaboration defined by a
cut-ratio c ∈ [0,1], formulating two key hypotheses:

Hypothesis 1. In our framework COLLAFUSE, collaborative learning of DDPMs positively influences
the fidelity of generated images compared to non-collaborative local training (c = 1).

Hypothesis 2. Increasing collaborative effort (c ↓) improves performance (a) and the amount of disclosed
information (b) while implicitly reducing the locally consumed GPU energy (c).

Our initial analysis, including a healthcare-focused experiment with MRI brain scans, supports these hy-
potheses. As a consequence, COLLAFUSE holds promise for applicants such as small medical institutions
or even individual practitioners with edge devices to engage in collaborative model training and inference,
e.g., medical training. Beyond healthcare, the framework exhibits potential in domains like autonomous
driving, where edge computing resources are constrained, yet computational demands and privacy con-
siderations are high. Moving forward, our research will delve deeper into the COLLAFUSE framework,
analyzing its performance in terms of image fidelity and diversity, assessing potential privacy risks, and
exploring resource efficiency in additional scenarios. In pursuit of a more comprehensive understanding
and depth our scenarios are characterized by a parameter grid: number of clients, data domain, absolute
amount of client data, conditional inference, as well as client-dependent variance scheduler and cut-ratio.
This comprehensive investigation aims to advance our understanding of (distributive) GenAI within
socio-technical systems as demanded by related literature (Abbasi et al., 2023; Feuerriegel et al., 2023).
Consequently, our ongoing research on COLLAFUSE can offer guidelines on how to apply DDPMs
collaboratively and work as a blueprint for future GenAI networks designs in various domains.

2 Background

The foundations of our work are built by the collaborative concepts of distributed learning as well as the
architectural principles of diffusion models. Federated Learning (FL) was first introduced by McMahan
et al. (2017) as a solution to make distributed data accessible for training without storing it centrally. Since
then, FL has been on a triumphant march and received a lot of attention (Hard et al., 2019; Karnebogen
et al., 2023). At its core, FL iteratively composes locally trained models into a global model requiring
clients to share model updates and gradients, thereby increasing the privacy risk of, e.g., membership
inference (Shokri et al., 2017) or reconstruction attacks (Zhu et al., 2019). Furthermore, FL comes with
high computational requirements at the client-side (Thapa et al., 2022).
Another paradigm for collaborative learning is Split Learning (SL), which was introduced by Gupta and
Raskar (2018) exploiting the sequencing of operations in neural networks. In general, SL splits a neural
network among multiple clients and a shared server. This is especially intriguing as clients can use a
server to train most of the model while keeping the data and labels locally.
In 2020, research advanced diffusion models with the introduction of Denoising Diffusion Probabilistic
Models (DDPM) (Ho et al., 2020), offering an alternative to GANs (Goodfellow et al., 2020) for image
generation. DDPMs involve two processes: diffusion and denoising. The diffusion process adds noise
from a Gaussian distribution incrementally to an image over T steps. In the denoising process, the model
estimates the noise added at each step t ∈ [0,T ]. While training the model, weights are updated, calculating
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the loss based on the difference between true and estimated noise. Accordingly, the initial training image
is not necessary for the denoising process. On this basis, DDPMs are able to generate new images from
pure Gaussian noise, which closely resemble the images of the training data set. Fidelity metrics, like
the Kernel-Inception distance (KID) (Binkowski et al., 2018), gauge diffusion model performance by
quantifying the difference between the distributions of real and generated images.

3 Related Work

With Generative Adversarial Networks (GANs) being composed of two components, a generator and
discriminator, research demonstrates different integration of the two components within the collaboration
process. Hardy et al. (2019), being among the first to use distributed data sets to train GANs, propose
MD-GAN. The approach consists of one central generator while clients hold discriminators locally.
In contrast, J. Wang et al. (2023) apply FL for GANs to cross-modality brain image synthesis. Using
differential privacy gradient descent, only the generators of each client are aggregated. The discriminators
remain local. Fan and Liu (2020) offer empirical results for FL-GANs indicating that synchronizing
discriminator and generator across clients yields the best results for two data sets. On this basis, W. Li
et al. (2022) offer IFL-GAN, an improved version of the FL-GAN, enabling local GANs to hold different
weights resulting in faster convergence of the global model. As FL exhibits privacy concerns, there have
been efforts to address these issues within collaborative training of GANs. Augenstein et al. (2020) apply
an algorithm for differentially private federated GANs to effectively tackle commonly occurring data
issues. Veeraragavan and Nygård (2023) address trust-related weaknesses of existing federated GAN
solutions by combining three building blocks federated GANs, consortium blockchains, and Shamir’s
Secret Sharing algorithm enabling generation of synthetic data in decentralized settings. Additionally, Yin
et al. (2023) propose a hybrid federated split learning framework for wireless networks and analyze the
trade-off between training time and energy consumption, showing efforts to combine FL and SL.
Research on collaborative training methods is still scarce in the domain of Diffusion Models. Jothiraj
and Mashhadi (2023) introduce the Phoenix technique for training unconditional diffusion models in a
horizontal FL setting. The objective is to address mode coverage issues often seen in non-independent
and identically distributed datasets. The data-sharing approach achieves a performance boost by sharing
only 4-5% of the data among clients, minimizing communication overhead. Personalization and threshold
filtering techniques outperform comparison methods in terms of precision and recall but fall short in
image quality compared to the proposed technique. The paper suggests further exploration to enhance
image quality in future work.
By mainly focusing on FL, current literature on collaborative GenAI, especially for DDPMs, neglects
benefits from different collaborative paradigms. Adapting principles from SL can bring typical advantages
such as reduced local resources and increased privacy to collaborative GenAI. In proposing COLLAFUSE

we want to tap into these advantages and push GenAI to its next evolutionary level.

4 Framework

We propose COLLAFUSE, a framework facilitating collaborative GenAI for image generation with
DDPMs across clients. Inspired by SL, the less resource-intensive diffusion process is computed locally
by each client, whereas the computationally intensive denoising process is strategically split at step
tc = (1− c)T during both training and inference. This results in a shared model (backbone) hosted on a
shared server, coupled with individual local models for each client. The unique design of COLLAFUSE

allows clients to retain potentially sensitive data locally while outsourcing the majority of computationally
intensive denoising operations to a centralized server. The split is governed by the cut-ratio c, dictating the
computational load for each client and the extent of disclosed information. For example, if T = 50 and
c = 0.8, 20% of the denoising process (from t = 1 to tc = 10) is trained and stored on the shared server,
while the remaining 40 denoising steps (80%) are trained locally, ensuring privacy of these steps.
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Figure 1. The training procedure of COLLAFUSE comprises six steps from client perspective (a) and
system (b): Server triggers diffusion process of clients (1), clients apply diffusion (2), clients
send diffused images and noise to server (3), server denoises the images until tc (4), server
sends the partially denoised images to client (5), and clients locally finish denoising process
(6).

As illustrated in Figure 1a, from the client’s perspective, the training sequence orchestrated by COLLAFUSE

comprises six key steps. The server initiates the client’s diffusion process (1), after which the client
computes its image data’s diffusion process batch-wise (2) and forwards the resulting noised images,
along with the corresponding added random noise ε = (ε0, ...,εtc) for each image, back to the server (3).
Utilizing the noised images, the server undertakes the initial phase of the denoising process, computing the
loss between the estimated and provided random noise (4). The partially denoised images are subsequently
transmitted back to the client (5), where the remaining denoising process is executed (6).
The multi-client perspective is depicted in Figure 1b, showcasing two clients providing noised images to
the shared server and receiving partially denoised images for further training. Similarly, each client has
the capability to generate new images by bypassing the diffusion process of existing images and solely
denoising them from pure random noise.

5 Experimental Evaluation

To assess our framework, COLLAFUSE, we simulate a healthcare-related scenario involving three clients
and one server. Every client data set is independent comprising 4,920 MRI scans from 123 patients each.
The hold-out test data set contains 5,000 images from 125 further patients (Bakas et al., 2017). The applied
DDPM employs an identical cosine variance scheduler, T = 100 steps, and maintains a fixed image size
of (128×128) across clients. The training process spans 300 epochs with a fixed learning rate of 0.001
and a batch size of 150.
Our experimental investigation delves into the impact of the cut-ratio c on the trade-off between
performance, disclosed information, and GPU energy consumption considering cut-ratio values c ∈
[0.0,0.2,0.4,0.6,0.8,1.0]. Performance is assessed using the common fidelity metric KID (Binkowski
et al., 2018) on both the client-dependent training and hold-out data sets, employing the feature extractor
from the clean-fid library (Parmar et al., 2022). GPU energy consumption is measured using the codecar-
bon Python package 1. Disclosed information for each client is approximated through the mean squared

1 https://mlco2.github.io/codecarbon/

Thirty-Second European Conference on Information Systems (ECIS 2024), Paphos, Cyprus 4



Zipperling et al. : Collaborative Diffusion Models

error (MSE) for a pixel-by-pixel comparison and KID scores between partially denoised images at the
split step tc and real images of clients. To effectively simulate a distributed healthcare-related scenario,
the experiment runs on a cluster with four NVIDIA A100-SXM4-40GB GPUs. Computation tasks are
distributed across clients and the server, with each client utilizing a single GPU.

𝑡 = 0 𝑡 = 100𝑡 = 80𝑡 = 60𝑡 = 40𝑡 = 20

𝑐 = 1.0 𝑐 = 0.0𝑐 = 0.2𝑐 = 0.4𝑐 = 0.6𝑐 = 0.8

Figure 2. Illustration of the denoising process in DDPMs: Exemplary images generated at denoising
step t for various cut-ratios c. The distinguishing features of the generated images remain
effectively concealed behind noise during the majority of denoising steps.

6 Results

Our findings delve into the nuanced trade-off among all three dimensions: the performance, gauged by the
fidelity of generated images; the extent of disclosed information, verifying whether images at the split
point equal original images within respective client data sets; and the GPU power usage across clients
and server. Figure 3 illustrates the trade-off between performance and disclosed information. Both are
presented featuring stacked KID scores composed of all three clients. Additionally, disclosed information
is assessed with the MSE metric. Lower KID scores signify enhanced performance, underscoring fidelity
in generated images. Conversely, the investigation of disclosed information operates in the opposite
direction. Here, the objective is to maximize KID and MSE scores, ensuring the revelation of as few
characteristics as possible on the shared server to uphold stringent data privacy.
The analysis of Figure 3 unveils two significant observations. Firstly, the stacked KID scores of perfor-
mance exhibit a U-shaped pattern concerning the cut-ratio, particularly evident for client data. Conse-
quently, collaborative efforts in our experiment lead to a reduced aggregated KID score compared to
the scenario where clients exclusively train the model locally (100%). Interestingly, the performance is
reduced, if a large part of the global denoising process is conducted on the shared server (0%−40%),
thereby contributing to the observed U-shaped trend. With regard to the disclosed information, both
pixel-wise comparison and the KID score imply that, despite conducting up to 80% of computationally
intensive denoising steps on the server, a substantial portion of information associated with the images
remains concealed in comparison to total global denoising (0%). Figure 2 exemplary illustrates the
denoising process for different cut-ratios, which increases the comprehension of our results. Moreover,
GPU power usage of the diffusion process exhibits limited computational intensity in the experiment,
and the relocation of denoising steps to the server correlates positively with reduced local GPU energy
demand.

Overall, our experiment supports Hypothesis 1, showing that collaborative learning with COLLAFUSE

improves image fidelity compared to non-collaborative local training (c = 1). Hypothesis 2 is evident in
disclosed information, and reduced local computational intensity when denoising steps are moved to the
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Figure 3. Experimental outcomes for performance and disclosed information in the COLLAFUSE

framework based on our healthcare-related experiment: Figures include KID scores and MSE
from pixel-wise comparisons. Collaborative efforts, illustrated by the U-shaped pattern of
stacked KID scores, lead to better performances compared to exclusive local or global model
training. Despite conducting up to 80% of the computationally intensive denoising steps on
the server, a significant amount of information in the images remains concealed.

server. Fascinatingly, concerning performance, the hypothesis only holds to some extent as the results
indicate a tipping point where further collaboration does not lead to an increase in performance.

7 Conclusion and Outlook

In this paper, we introduce COLLAFUSE, an innovative collaborative learning and inference framework
designed for denoising diffusion probabilistic models. The primary objective is to address the trade-off
between performance, privacy, and resource utilization—an imperative aspect for the practical implemen-
tation of information systems in real-world scenarios. Drawing inspiration from split learning (Gupta
and Raskar, 2018), COLLAFUSE aims to balance the computationally intensive denoising process across
local clients and a shared server. The framework is particularly beneficial in domains where data is scarce,
private, and computational resources on local devices are limited at the client level, e.g., edge devices.
This especially includes scenarios of industry (S. Li et al., 2022) and healthcare (Sivarajah et al., 2023).
COLLAFUSE innovatively partitions the computationally extensive denoising process into two indepen-
dently trainable components. The latter remains with the client, ensuring data privacy, while the initial part
is shared among clients and collaboratively learned on a server, amplifying the amount of data utilized for
training and inference. Our experiment demonstrates that clients can execute numerous denoising steps
on the server before client data is disclosed. The findings further indicate that a decreasing cut-ratio c
effectively shifts computational effort to a shared server backbone, enhancing performance generalizability.
In summary, our experiment provides initial evidence supporting the advantages of collaborative learning
within COLLAFUSE across performance, disclosed information, and local GPU energy. This highlights
COLLAFUSE as a practical solution to the challenges of collaborative training and inference. Looking
ahead, our research roadmap involves a more in-depth analysis of COLLAFUSE. We plan to explore
the performance, encompassing both fidelity and diversity in the generated images. Additionally, our
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analysis includes challenging disclosed information using threat models, incorporating potential attacks
like reconstruction inference. Extending our investigation, we will examine resource-related aspects,
measuring floating-point operations and training durations. This thorough examination will contribute to a
deeper understanding of the transformative potential of COLLAFUSE influencing applications in industry
and healthcare and paving the way for future advancements in collaborative generative AI applications.
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