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ABSTRACT. It has been known since the 1970’s that the difference of the non-zero weights of a projective
Fq-linear two-weight has to be a power of the characteristic of the underlying field. Here we study non-
projective two-weight codes and e.g. show the same result under mild extra conditions. For small dimensions
we give exhaustive enumerations of the feasible parameters in the binary case.
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1. INTRODUCTION

It has been known since the 1970’s that the two non-zero weights of a projective Fq-linear two-weight
code C can be written as w1 = upt and w2 = (u+1)pt, where u ∈ N≥1 and p is the characteristic of the
underlying finite field Fq , see [15, Corollary 2]. So, especially the weight difference w2 − w1 is a power
of the characteristic p. Here we want to consider Fq-linear two-weight codes C with non-zero weights
w1 < w2 which are not necessarily projective. In [10] it was observed that if w2 − w1 is not a power of
the characteristic p, then the code C has to be non-projective, which settles a question in [26]. Here we
prove the stronger statement that C is repetitive, i.e., C is the l-fold repetition of a smaller two-weight
code C ′, where l is the largest factor of w2 − w1 that is coprime to the field size q, if C does not have
full support, c.f. [9]. Moreover, if a two-weight code C is non-repetitive and does not have full support,
then its two non-zero weights can be written as w1 = upt and w2 = (u + 1)pt, where again p is the
characteristic of the underlying finite field Fq , see Theorem 5.14

Constructions for projective two-weight codes can be found in the classical survey paper [14]. Many
research papers considered these objects since they e.g. yield strongly regular graphs and we refer to [12]
for a corresponding monograph on srgs. For a few more recent papers on constructions for projective two-
weight codes we refer e.g. to [20, 23, 27, 31]. In e.g. [27] the author uses geometric language and speaks
of constructions for two-character sets, i.e., sets of points in a projective space PG(k−1, q) with just two
different hyperplane multiplicities, call them s and t. In general each (full-length) linear code is in one-
to-one correspondence to a (spanning) multiset of points in some projective space PG(k−1, q). Here we
will also mainly use the geometric language and consider a few general constructions for two-character
multisets of points corresponding to two-weight codes (possibly non-projective). For each subset H of
hyperplanes in PG(k − 1, q) we construct a multiset of points M(H) such that all hyperplanes H ∈ H
have the same multiplicity, say s, and also all other hyperplanes H /∈ H have the same multiplicity, say t.
Actually, we characterize the full set of such multisets with at most two different hyperplane multiplicities
given H, see Theorem 5.11 and Theorem 5.13. Using this correspondence we have classified all two-
weight codes up to symmetry for small parameters. For projective two-weight codes such enumerations
can be found in [6].

Brouwer and van Eupen give a correspondence between arbitrary projective codes and arbitrary two-
weight codes via the so-called BvE-dual transform. The correspondence can be said to be 1-1, even
though there are choices for the involved parameters to be made in both directions. In [11] the dual
transform was e.g. applied to the unique projective [16, 5, 9]3-code. For parameters α = 1

3 , β = −3 the
result is a [69, 5, 45]3 two-weight code and for α = − 1

3 , β = 5 the results is a [173, 5, 108]3 two-weight
code. This resembles the fact that we have some freedom when constructing a two-weight code from a
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given projective code, e.g. we can take complements or add simplex codes of the same dimension. Our
obtained results may be rephrased in the language of the BvE-dual transform by restricting to a canonical
choice of the involved parameters. For further literature on the dual transform see e.g. [4, 7, 11, 28]. For
a variant that is rather close to our presentation we refer to [8].

With respect to further related literature we remark that a special subclass of (non-projective) two-
weight codes was completely characterized in [22]. A conjecture by Vega [29] states that all two-weight
cyclic codes are the “known” ones, c.f. [17]. Another stream of literature considers the problem whether
all projective two-weight codes that have the parameters of partial k-spreads indeed have to be partial
k-spreads. Those results can be found in papers considering extendability results for partial k-spreads or
classifying minihypers, see e.g. [18]. Several non-projective two-weight codes appear also as minimum
length examples for divible minimal codes [25].1 Two-weight codes have also been considered over rings
instead of finite fields, see e.g. [13].

The remaining part of this paper is structured as follows. In Section 2 we introduce the necessary pre-
liminaries for linear two-weight codes and their geometric counterpart called two-character multisets in
projective spaces. In general multisets of points, corresponding to general linear codes, can be described
via so-called characteristic functions and we collect some of their properties in Section 3. Examples and
constructions for two-character multisets are given in Section 4. In Section 5 we present our main results.
We close with enumeration results for two-character multisets in PG(k − 1, q) for small parameters in
Section 6. We will mainly use geometric language and arguments. For the for the ease of the reader we
only use elementary arguments and give (almost) all proof details.

2. PRELIMINARIES

An [n, k]q-code C is a k-dimensional subspace of Fn
q , i.e., C is assumed to be Fq-linear. Here n is called

the length and k is called the dimension of C. Elements c ∈ C are called codewords and the weight
wt(c) of a codeword is given by the number of non-zero coordinates. Clearly, the all-zero vector 0 has
weight zero and all other codewords have a positive integer weight. A two-weight code is a linear code
with exactly two non-zero weights. A generator matrix for C is an k×n matrix G such that its rows span
C. We say that C is of full length if for each index 1 ≤ i ≤ n there exists a codeword c ∈ C whose ith
coordinate ci is non-zero, i.e., all columns of a generator matrix of C are non-zero. The dual code C⊥ of
C is the (n − k)-dimensional code consisting of the vectors orthogonal to all codewords of C w.r.t. the
inner product ⟨u, v⟩ =

∑n
i=1 uivi.

Now let C be a full-length [n, k]q-code with generator matrix G. Each column g of G is an element
of Fk

q and since g ̸= 0 we can consider ⟨g⟩ as point in the projective space PG(k − 1, q). Using the
geometric language we call 1-, 2-, 3-, and (k− 1)-dimensional subspaces of Fk

q points, lines, planes, and
hyperplanes in PG(k − 1, q). Instead of an l-dimensional space we also speak of an l-space. By P we
denote the set of points and by H we denote the set of hyperplanes of PG(k− 1, q) whenever k and q are
clear from the context. A multiset of points in PG(k− 1, q) is a mapping M : P → N, i.e., to each point
P ∈ P we assign its multiplicity M(P ) ∈ N. By #M =

∑
P∈P M(P ) we denote the cardinality of

M. The support supp(M) is the set of all points with non-zero multiplicity. We say that M is spanning
if the set of points in the support of M span PG(k − 1, q). Clearly permuting columns of a generator
matrix G or multiplying some columns with non-zero elements in F⋆

q := Fq\{0} yields an equivalent
code. Besides that we get an one-to-one correspondence between full length [n, k]q-codes and spanning
multisets of points M in PG(k − 1, q) with cardinality #M = n. Moreover, two linear [n, k]q-codes C
and C ′ are equivalent iff their corresponding multisets of points M and M′ are. For details we refer e.g.
to [16]. A linear code C is projective iff its corresponding multiset of points satisfies M(P ) ∈ {0, 1} for

1Minimal codes are linear codes where all non-zero codewords are minimal, i.e., whose support is not properly contained in the
support of another codeword.
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all P ∈ P . We also speak of a set of points in this case. The multisets of points with M(P ) = 0 for all
P ∈ P are called trivial.

Geometrically, for a non-zero codeword c ∈ C the set c · F⋆
q corresponds to a hyperplane H ∈ H

and wt(c) = #M−M(H), where we extend the function M additively. i.e., M(S) :=
∑

P∈S M(P )
for every subset S ⊆ P of points. We call M(H) the multiplicity of hyperplane H ∈ H and have
M(V ) = #M for the entire ambient space V := P . The number of hyperplanes #H, as well as the
number of points #P , in PG(k−1, q) is given by [k]q := qk−1

q−1 . A two-character multiset is a multiset of
points M such that exactly two different hyperplane multiplicities M(H) occur. I.e., a multiset of points
M is a two-character multiset iff its corresponding code C is a two-weight code. If M actually is a set
of points, i.e. if we have M(P ) ∈ {0, 1} for all points P ∈ P , then we speak of a two-character set. We
say that an [n, k]q-code C is ∆-divisible if the weights of all codewords are divisible by ∆. A multiset of
points M is called ∆-divisible if the corresponding linear code is. More directly, a multiset of points M
is ∆-divisible if we have M(H) ≡ #M (mod ∆) for all H ∈ H.

A one-weight code is an [n, k]q-code C such that all non-zero codewords have the same weight w.
One-weight codes have been completely classified in [2] and are given by repetitions of so-called simplex
codes. Geometrically, the multiset of points M in PG(k − 1, q) corresponding to a one-weight code C
satisfies M(P ) = l for all P ∈ P . I.e., we have #M = n = [k]q · l, M(H) = [k − 1]q · l for all
H ∈ H, and w = #M−M(H) = qk−1 · l. We say that a linear [n, k]q-code C is repetitive if it is the
l-fold repetition of an [n/l, k]q-code C ′, where l > 1, and non-repetitive otherwise. A given multiset of
points M is called repeated if its corresponding code is. More directly, a non-trivial multiset of points
M is repeated iff the greatest common divisor of all point multiplicities is larger than one. We say that
a multiset of points M or its corresponding linear code C has full support iff supp(M) = P , i.e., if
M(P ) > 0 for all P ∈ P . So, for each non-repetitive one-weight code C with length n, dimension
k, and non-zero weight w we have n = [k]q and w = qk−1. Each non-trivial one-weight code, i.e.,
one with dimension at least 1, has full support. The aim of this paper is to characterize the possible
parameters of non-repetitive two-weight codes (with or without full support). For the correspondence
between [n, k]q-codes and multisets of points M in PG(k − 1, q) we have assumed that M is spanning.
If M is not spanning, then there exists a hyperplane containing the entire support, so that M is two-
character multiset iff M induces a one-character multiset in the span of supp(M) cf. Proposition 4.1.
The structure of the set of all two-character multisets where the larger hyperplane multiplicity is attained
for a prescribed subset of the hyperplanes is considered in Section 5.

3. CHARACTERISTIC FUNCTIONS

Fixing the field size q and the dimension k of the ambient space, a multiset of points in PG(k − 1, q)
is a mapping M : P → N. By F we denote the Q-vector space consisting of all functions F : P → Q,
where addition and scalar multiplication is defined pointwise. I.e., (F1+F2)(P ) := F1(P )+F2(P ) and
(x ·F1)(P ) := x ·F1(P ) for all P ∈ P , where F1, F2 ∈ F and x ∈ Q are arbitrary. For each non-empty
subset S ⊆ P the characteristic function χS is defined by χS(P ) = 1 if P ∈ S and χS(P ) otherwise.
Clearly the set of functions χP for all P ∈ P forms a basis of F for ambient space PG(k − 1, q) for all
k ≥ 1. Note that there are no hyperplanes if k = 1 and hyperplanes coincide with points for k = 2. We
also extend the functions F ∈ F additively, i.e., we set F (S) =

∑
P∈S F (P ) for all S ⊆ P . Our next

aim is to show the well-known fact that also the set of functions χH for all hyperplanes H ∈ H forms a
basis of F for ambient space PG(k−1, q) for all k ≥ 2. In other words, also M(P ) can be reconstructed
from the M(H):

Lemma 3.1. Let M ∈ F for ambient space PG(k − 1, q), where k ≥ 2. Then, we have

M(P ) =
∑

H∈H :P∈H

1

[k − 1]q
· M(H) +

∑
H∈H :P /∈H

1

qk−1
·
(

1

[k − 1]q
− 1

)
· M(H) (1)
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for all points P ∈ P .

PROOF. W.l.o.g. we assume k ≥ 3. Since each point P ′ ∈ P is contained in [k − 1]q of the #H = [k]q
hyperplanes and each point P ′ ̸= P is contained in [k − 2]q of the [k − 1]q hyperplanes that contain P ,
we have∑

H∈H :P∈H

M(H) = [k − 2]q · |M|+ ([k − 1]q − [k − 2]q)M(P ) = [k − 2]q · |M|+ qk−2M(P )

so that ∑
H∈H :P∈H

M(H)− [k − 2]q
[k − 1]q

·
∑
H∈H

M(H) = qk−2M(P )

using [k − 1]q ·#M =
∑

H∈H M(H). Thus, we can conclude the stated formula using

1

qk−2
·
(
1− [k − 2]q

[k − 1]q

)
=

1

qk−2
· [k − 1]q − [k − 2]q

[k − 1]q
=

1

[k − 1]q

and

− [k − 2]q
[k − 1]q · qk−2

=
1− [k − 1]q
[k − 1]q · qk−1

=
1

qk−1
·
(

1

[k − 1]q
− 1

)
.

□

As an example we state that in PG(3− 1, 2) we have

M(P ) =
1

3
·

∑
H∈H :P∈H

M(H)− 1

6
·

∑
H∈H :P /∈H

M(H).

Lemma 3.2. Let M ∈ F for ambient space PG(k − 1, q), where k ≥ 2. Then there exist αH ∈ Q for
all hyperplanes H ∈ H such that

M =
∑
H∈H

αH · χH . (2)

Moreover, the coefficients αH are uniquely determined by M.

PROOF. From ∑
H∈H :P∈H

χH − [k − 2]q
[k − 1]q

·
∑
H∈H

χH = qk−2 · χP

for each point P ∈ P and
M =

∑
P∈P

M(P ) · χP

we conclude the existence of the αH ∈ Q. Since the functions (χP )P∈P form a basis of the Q-vector
space F , which is also generated by the functions (χH)H∈H, counting #P = [k]q = #H yields that
also (χH)H∈H forms a basis and the coefficients αH are uniquely determined by M. □

If M ∈ F is given by the representation

M =
∑
P∈P

αP · χP

with αP ∈ Q we can easily decide whether M is a multiset of points. The necessary and sufficient
conditions are given by αP ∈ N for all P ∈ P (including the case of a trivial multiset of points). If a
multiset of points is characterized by coefficients αH for all hyperplanes H ∈ H as in Lemma 3.2 then
some αH may be fractional or negative. For two-character multisets we will construct a different unique
representation involving the characteristic functions χH of hyperplanes, see Theorem 5.11.

Let us state a few observations about operations for multisets of points that yield multisets of points
again.
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Lemma 3.3. For two multisets of points M1,M2 of PG(k− 1, q) and each non-negative integer n ∈ N
the functions M1 +M2 and n · M1 are multisets of points of PG(k − 1, q).

In order to say something about the subtraction of multisets of points we denote the minimum point
multiplicity of a multiset of points M by µ(M) and the maximum point multiplicity by γ(M). Whenever
M is clear from the context we also just write µ and γ instead of µ(M) and µ(γ).

Lemma 3.4. Let M1 and M2 be two multisets of points of PG(k − 1, q). If µ(M1) ≥ γ(M2), then
M1 −M2 is a multiset of points of PG(k − 1, q).

Definition 3.5. Let M be a multiset of points in PG(k− 1, q). If l is an integer with l ≥ γ(M), then the
l-complement Ml−C of M is defined by Ml−C(P ) := l −M(P ) for all points P ∈ P .

One can easily check that Ml−C is a multiset of points with cardinality l · [k]q−#M, maximum point
multiplicity γ

(
Ml−C

)
= l − µ(M), and minimum point multiplicity µ

(
Ml−C

)
= l − γ(M). Using

characteristic functions we can write Ml−C = l ·χV −M, where V = P denotes the set of all points of
the ambient space.

Given an arbitrary function M ∈ F there always exist α ∈ Q\{0} and β ∈ Z such that α ·M+β ·χV

is a multiset of points.

4. EXAMPLES AND CONSTRUCTIONS FOR TWO-CHARACTER MULTISETS

The aim of this section is to list a few easy constructions for two-character multisets of points M in
PG(k−1, q). We will always abbreviate n = #M and denote the two occurring hyperplane multiplicities
by s and t, where we assume s > t by convention.

Proposition 4.1. For integers 1 ≤ l < k let L be an arbitrary l-space in PG(k − 1, q). Then χL is a
two-character set with n = [l]q , γ = 1, µ = 0, s = [l]q , and t = [l − 1]q .

Note that for the case l = k we have the one-character set χV , which can be combined with any
two-character multiset.

Lemma 4.2. Let M be a two-character multiset of points in PG(k − 1, q). Then, for each integer
0 ≤ a ≤ µ(M), each b ∈ N , and each integer c ≥ γ(M) the functions M− a ·χV , M+ b ·χV , b ·M,
and c · χV −M are two-character multisets of points.

For the first and the fourth construction we also spell out the implications for the parameters of a given
two-character multiset:

Lemma 4.3. Let M be a multiset of points in PG(k−1, q) such that M(H) ∈ {s, t} for every hyperplane
H ∈ H. If M(P ) ≥ l for every point P ∈ P , i.e., l ≤ µ(M), then M′ := M− l · χV is a multiset of
points in PG(k−1, q) such that M′(H) ∈ {s− [k−1]q · l, t− [k−1]q · l} for every hyperplane H ∈ H.

Lemma 4.4. Let M be a multiset of points in PG(k−1, q) such that M(H) ∈ {s, t} for every hyperplane
H ∈ H. If M(P ) ≤ u, i.e. ≤ γ(M) for every point P ∈ P , then the u-complement M′ := u · χV −M
of M is a multiset of points in PG(k − 1, q) such that M′(H) ∈ {u[k − 1]− s, u[k − 1]− t} for every
hyperplane H ∈ H.

We can also use two (almost) arbitrary subspaces to construct two-character multisets:

Proposition 4.5. Let a ≥ b ≥ 1 and 0 ≤ i ≤ b − 1 be arbitrary integers, A be an a-space and B be an
b-space with dim(A∩B) = i in PG(k−1, q), where k = a+ b− i, Then, M = χA+ qa−b ·χB satisfies
M(H) ∈ {s, t} for all H ∈ H, where s = [a − 1]q + qa−b · [b − 1]q and t = s + qa−1. If i = 0, then
γ = qa−b and γ = qa−b + 1 otherwise. In general, we have n = [a]q + qa−b · [b]q and µ = 0.

PROOF. For each H ∈ H we have M(H ∩ A) ∈ {[a− 1]q, [a]q} and M(H ∩ B) ∈ {[b− 1]q, [b]q}.
Noting that we cannot have both M(H ∩ A) = [a]q and M(H ∩ B) = [b]q we conclude M(H) ∈{
[a− 1]q + qa−b · [b− 1]q, [a]q + qa−b · [b− 1]q, [a− 1]q + qa−b · [b]q

}
= {s, t}. □
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A partial k-spread is a set of k-spaces in PG(v − 1, q) with pairwise trivial intersection.

Proposition 4.6. Let S1, . . . ,Sr be a partial parallelism of PG(2k − 1, q), i.e., the Si are partial k-
spreads that are pairwise disjoint. Then

M =

r∑
i=1

∑
S∈Si

χS

is a two-character multiset of PG(2k−1, q) with n = r ·[k]q and hyperplane multiplicities s = r ·[k−1]q ,
t = r · [k − 1]q + qk−1, where r =

∑r
i=1 |Si|.

C.f. Example SU2 in [14]. Field changes work similarly as explained in [14, Section 6] for two-
character sets.

Based on hyperplanes we can construct large families of two-character multisets:

Lemma 4.7. Let ∅ ≠ H′ ⊊ H be a subset of the hyperplanes of PG(k − 1, q), where k ≥ 3, then

M =
∑

H∈H′

χH (3)

is a two-character multiset with n = r[k−1]q , s = r[k−2]q+qk−2, and t = r[k−2]q , where r = #H′.

By allowing H′ to be a multiset of hyperplanes, we end up with (τ + 1)-character sets, where τ is the
maximum number of occurrences of a hyperplane in H′.

Applying Lemma 4.3 yields:

Lemma 4.8. Let ∅ ̸= H′ ⊊ H be a subset of the hyperplanes of PG(k − 1, q), where k ≥ 3. If each
point P ∈ P is contained in at least µ ∈ N elements of H′, then

M =
∑

H∈H′

χH − µ · χV (4)

is a two-character multiset with n = r[k − 1]q − µ[k]q , s = r[k − 2]q + qk−2 − µ[k − 1]q and t =
r[k − 2]q − µ[k − 1]q , where r = |H′|.

In some cases we obtain two-character multisets where all point multiplicities have a common factor
g > 1. Here we can apply the following general construction:

Lemma 4.9. Let M be a multiset of points in PG(k−1, q) such that M(H) ∈ {s, t} for every hyperplane
H ∈ H. If M(P ) ≡ 0 (mod g) for every point P ∈ P , then M′ := 1

g · M is a multiset of points in

PG(k − 1, q) such that M′(H) ∈
{

1
g · s, 1

g · t
}

for every hyperplane H ∈ H. Moreover, we have

#M′ = 1
g ·#M, µ(M′) = 1

g · µ(M), and γ(M′) = 1
g · γ(M).

Interestingly enough, it will turn out that we can construct all two-character multisets by combining
Lemma 4.7 with Lemma 4.2 and Lemma 4.9, see Theorem 5.11 and Theorem 5.13.

5. GEOMETRIC DUALS AND SETS OF FEASIBLE PARAMETERS FOR TWO-CHARACTER MULTISETS

To each two-character multiset M in PG(k − 1, q), i.e., {M(H) : H ∈ H} = {s, t} for some s, t ∈ N
we can assign a set of points M by using the geometric dual, i.e., interchanging hyperplanes and points.
More precisely, fix a non-degenerated billinear form ⊥ and consider pairs of points and hyperplanes
(P,H) that are perpendicular w.r.t. to ⊥. We write H = P⊥ for the geometric dual of a point. We define
M via M(P ) = 1 iff M(H) = s, where H = P⊥, and M(P ) = 0 otherwise, i.e., if M(H) = t.2 Of
course we have some freedom how we order s and t. So, we may also write M(P ) = (M(H)− t) /(s−

2A generalization of the notion of the geometric dual has been introduced by Brouwer and van Eupen [11] for linear codes and
formulated for multisets of points by Dodunekov and Simonis [16].
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t) ∈ {0, 1} for all P ∈ P , where H = P⊥. Noting the asymmetry in s and t we may also interchange
the role of s and t or replace M by its complement. Note that in principle several multisets of points with
two hyperplane multiplicities can have the same corresponding point set M.

For the other direction we can start with an arbitrary set of points M, i.e., M(P ) ∈ {0, 1} for all
P ∈ P . The multiset of points with two hyperplane multiplicities M is then defined via M(H) = s if
M(P ) = 1, where H = P⊥, and M(H) = t if M(P ) = 0. I.e., we may set

M(H) = t+ (s− t) · M(H⊥). (5)

While we have M(H) ∈ N for all s, t ∈ N, the point multiplicities M(P ) induced by the hyperplane
multiplicities M(H), see Lemma 3.1, are not integral or non-negative in general. For suitable choices of
s and t they are, for others they are not.

Definition 5.1. Let M be a set of points in PG(k − 1, q). By L(M) ⊆ N2 we denote the set of all
pairs (s, t) ∈ N2 with s ≥ t such that a multiset of points M in PG(k − 1, q) exists with M(H) = s if
M(H⊥) = 1 and M(H) = t if M(H⊥) = 0 for all hyperplanes H ∈ H.

Directly from Lemma 4.2 we can conclude:

Lemma 5.2. Let M be a set of points in PG(k − 1, q). If (s, t) ∈ L(M), then we have

⟨(s, t)⟩N + ⟨([k − 1]q, [k − 1]q)⟩N = {(us+ v[k − 1]q, ut+ v[k − 1]q) : u, v ∈ N} ⊆ L(M). (6)

Before we study the general structure of L(M) and show that it can generated by a single element
(s0, t0) in the above sense, we consider all non-isomorphic examples in PG(3 − 1, 2) (ignoring the
constraint s ≥ t).

Example 5.3. Let M be a multiset of points in PG(2, 2) uniquely characterized by M(L) = s ∈ N for
some line L and M(L′) = t ∈ N for all other lines L′ ̸= L. For each point P ∈ L we have

M(P ) =
s+ 2t

3
− 4t

6
=

s

3
(7)

and for each point Q /∈ L we have

M(Q) =
3t

3
− s+ 3t

6
=

3t− s

6
. (8)

Since M(P ),M(Q) ∈ N we set x := M(P ) = s
3 and y := M(Q) = 3t−s

6 , so that s = 3x and
t = 2y + x. With this we have n = 3x+ 4y, γ = max{x, y}, and s− t = 2(x− y). If x ≥ y, then we
can write M = y · χE + (x− y) · χL. If x ≤ y, then we can write M = y · χE − (y − x) · χL.

For Example 5.3 the set of all feasible (s, t)-pairs assuming s ≥ t is given by ⟨(3, 1)⟩N + ⟨(3, 3)⟩N. If
we assume t ≥ s, then the set of feasible (s, t)-pairs is given by ⟨(0, 2)⟩N + ⟨(3, 3)⟩N. The vector (0, 2)
can be computed from (3, 1) by computing a suitable complement.

Due to Lemma 4.3 we can always assume the existence of a point of multiplicity 0 as a normalization.
So, in Example 5.3 we may assume x = 0 or y = 0, so that M = y · χE − y · χL or M = x · χL.

Due to Lemma 4.9 we can always assume that the greatest common divisor of all point multiplicities
is 1 as a normalization (excluding the degenerated case of an empty multiset of points). Applying both
normalizations to the multisets of points in Example 5.3 leaves the two possibilities χL and χE − χL,
i.e., point sets.

Due to Lemma 4.4 we always can assume #M ≤ γ(M)·[k]q/2. Applying also the third normalization
to the multisets of points in Example 5.3 leaves only the possibility χL, i.e., a subspace construction, see
Proposition 4.1, where s = 3, t = 1, n = 3, and s− t = 2.
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Example 5.4. Let M be a multiset of points in PG(2, 2) uniquely characterized by M(L1) = M(L2) =
s ∈ N for two different lines L1, L2 and M(L′) = t ∈ N for all other lines L′ /∈ {L1, L2}. For
P := L1 ∩ L2 we have

M(P ) =
2s+ t

3
− 4t

6
=

2s− t

3
, (9)

for each point Q ∈ (L1 ∪ L2) \{P} we have

M(Q) =
s+ 2t

3
− s+ 3t

6
=

s+ t

6
, (10)

and for each point R /∈ L1 ∪ L2 we have

M(R) =
3t

3
− 2s+ 2t

6
=

2t− s

3
. (11)

Since M(Q),M(R) ∈ N we set x := M(Q) = s+t
6 and y := M(R) = 2t−s

3 , so that s = 4x − y and
t = 2x+ y. With this we have n = 6x+ 7y and s− t = 2(x− y). Of course we need to have y ≤ 2x so
that M(P ) ≥ 0, which implies s ≥ 0.

• M(P ) = 0: y = 2x, so that M(P ) = 0, M(Q) = x, M(R) = 2x, and the greatest common
divisor of M(P ), M(Q), and M(R) is equal to x. Thus, we can assume x = 1, y = 2, so that
s = 2, t = 4, n = 8, γ = 2, t − s = 2, and M = 2χE − χL1 − χL2 for two different lines
L1, L2.

• M(Q) = 0: x = 0, so that also y = 0 and M is the empty multiset of points.
• M(R) = 0: y = 0, M(P ) = 2x, M(Q) = x, so that gcd(M(P ),M(Q),M(R)) = x and we

can assume x = 1. With this we have s = 4, t = 2, n = 6, γ = 2, s−t = 2, and M = χL1
+χL2

for two different lines L1, L2.

So, Example 5.4 can be explained by the construction in Proposition 4.5.

Example 5.5. Let M be a multiset of points in PG(2, 2) uniquely characterized by M(L1) = M(L2) =
M(L3) = s ∈ N for three different lines L1, L2, L3 with a common intersection point P = L1∩L2∩L3

and M(L′) = t ∈ N for all other lines. We have

M(P ) =
3s

3
− 4t

6
= s− 2t

3
(12)

and
M(Q) =

s+ 2t

3
− 2s+ 2t

6
=

t

3
(13)

for all points Q ̸= P . Since M(P ),M(Q) ∈ N we set x := M(P ) = s− 2t
3 and y := M(Q) = t

3 , so
that s = x+ 2y and t = 3y. With this we have n = x+ 6y and s− t = x− y.

• M(P ) = 0: x = 0, so that we can assume y = 1, which implies s = 2, t = 3, γ = 1, n = 6,
t− s = 1, and M = χE − χP for some point P .

• M(Q) = 0: y = 0, so that we can assume x = 1, which implies s = 1, t = 0, γ = 1, n = 1,
s− t = 1, and M = χP for some point P .

So, also Example 5.5 can be explained by the subspace construction in Proposition 4.1.

Example 5.6. Let M be a multiset of points in PG(2, 2) uniquely characterized by M(L1) = M(L2) =
M(L3) = s ∈ N for three different lines L1, L2, L3 without a common intersection point,i.e. L1 ∩ L2 ∩
L3 = ∅, and M(L′) = t ∈ N for all other lines. For each point P that is contained on exactly two lines
Li we have

M(P ) =
2s+ t

3
− s+ 3t

6
=

3s− t

6
, (14)

for each point Q that is contained on exactly one line Li we have

M(Q) =
s+ 2t

3
− 2s+ 2t

6
=

t

3
, (15)
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and for the unique point R that is contained on none of the lines Li we have

M(R) =
3t

3
− 3s+ t

6
=

5t− 3s

6
. (16)

Since M(P ),M(Q) ∈ N we set x := M(P ) = 3s−t
6 and y := M(Q) = t

3 , so that s = 2x + y and
t = 3y. With this we have n = 2x+ 5y and s− t = 2(x− y).

• M(P ) = 0: x = 0, so that we can assume y = 1, which implies s = 1, t = 3, t− s = 2, γ = 2,
n = 5, and M = χL + 2χP for some line L and some point P /∈ L.

• M(Q) = 0: y = 0, so that x = 0 and M is the empty multiset of points.
• M(R) = 0: x = 2y, so that we can assume y = 1, which implies x = 2, s = 4, t = 6, t−s = 2,

γ = 2, n = 9, and the 2-complement of M equals M = χL + 2χP for some line L and some
point P /∈ L, see the case M(P ) = 0.

So, also Example 5.6 can be explained by the construction in Proposition 4.5.

In Examples 5.3–5.6 we have considered all cases of 1 ≤ #M ≤ 3 up to symmetry. The cases
#M ∈ {0, 7} give one-character multisets. By considering the complement M′ = χV −M we see that
examples for 4 ≤ #M ≤ 6 do not give something new. Since the dimension of the ambient space is odd,
we cannot apply the construction in Proposition 4.6.

Now let us consider the general case. Given the set M of hyperplanes with multiplicity s we get an
explicit expression for the multiplicity M(P ) of every point P ∈ P depending on the two unknown
hyperplane multiplicities s and t.

Lemma 5.7. Let M be a set of points in PG(k − 1, q), where k ≥ 3, and M be a multiset of points in
PG(k − 1, q) such that M(H) = s if M(H⊥) = 1 and M(H) = t if M(H⊥) = 0 for all hyperplanes
H ∈ H. Denoting the number of hyperplanes H ∋ P with M(H) = s by φ(P ) and setting r := #M,
∆ := s− t ∈ Z, we have

M(P ) =
t+∆ · φ(P )

[k − 1]q
− ∆

qk−2
· [k − 2]q
[k − 1]q

· (r − φ(P )) . (17)

PROOF. Counting gives that [k − 1]q − φ(P ) hyperplanes through P have multiplicity t, from the qk−1

hyperplanes not containing P exactly r−φ(P ) have multiplicity M(H) = s and qk−1 − r+φ(P ) have
multiplicity M(H) = t. With this we can use Lemma 3.1 to compute

M(P ) =
∑

H∈H :P∈H

1

[k − 1]q
· M(H) +

∑
H∈H :P /∈H

1

qk−1
·
(

1

[k − 1]q
− 1

)
· M(H)

=
∑

H∈H :P∈H

1

[k − 1]q
· M(H)−

∑
H∈H :P /∈H

1

qk−1
· q[k − 2]q
[k − 1]q

· M(H)

= t+
∆

[k − 1]q
· φ(P ) − q[k − 2]q

[k − 1]q
· t− ∆

qk−1
· q[k − 2]q
[k − 1]q

· (r − φ(P ))

=
t+∆ · φ(P )

[k − 1]q
− ∆

qk−2
· [k − 2]q
[k − 1]q

· (r − φ(P )) .

□

Note that φ(P ) = M(P⊥) for all P ∈ P .

Lemma 5.8. Let M be a set of points in PG(k − 1, q), where k ≥ 3, and M be a multiset of points in
PG(k − 1, q) such that M(H) = s if M(H⊥) = 1 and M(H) = t if M(H⊥) = 0 for all hyperplanes
H ∈ H. Denote the number of hyperplanes H ∋ P with M(H) = s by φ(P ) and uniquely choose
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m ∈ N, I ⊆ N with 0 ∈ I such that {φ(P ) : P ∈ P} = {m+ i : i ∈ I}. If s > t and there exists a
point Q ∈ P with M(Q) = 0, then we have

t =
∆

qk−2
· [k − 2]q · (r −m)−∆ ·m (18)

and

M(P ) =
∆ · i
qk−2

(19)

for all points P ∈ P where i := φ(P )−m, r := #M, and ∆ := s− t ∈ N≥1. If M is non-repetitive,
then ∆ divides qk−2.

PROOF. Using ∆ > 0 we observe that the expression for M(P ) in Equation (17) is increasing in φ(P ).
So, we need to choose a point Q ∈ P which minimizes φ(Q) to normalize using M(Q) = 0 since
otherwise we will obtain points with negative multiplicity. So, choosing a point Q ∈ P with φ(Q) = m
we require

0 = M(Q) =
t+∆ ·m
[k − 1]q

− ∆

qk−1
· q[k − 2]q
[k − 1]q

· (r −m) ,

which yields Equation (18). Using i := φ(P )−m and the expression for t we compute

M(P ) =
t+∆ · (m+ i)

[k − 1]q
− ∆

qk−2
· [k − 2]q
[k − 1]q

· (r −m− i)

=
∆

qk−2
· [k − 2]q
[k − 1]q

· (r −m)− ∆ ·m
[k − 1]q

+
∆ · (m+ i)

[k − 1]q
− ∆

qk−2
· [k − 2]q
[k − 1]q

· (r −m− i)

=
∆ · i

[k − 1]q
+

∆ · i
qk−2

· [k − 2]q
[k − 1]q

=
∆ · i
qk−2

for all P ∈ P . Note that if f > 1 is a divisor of ∆ that is coprime to q, then all point multiplicities of M
are divisible by f . If ∆ = qk−2 · f for an integer f > 1, then all point multiplicities of M are divisible
by f . Thus, we have that ∆ divides qk−2. □

Note that I =
{
M(H)−M(H ′) : H ∈ H

}
, where H ′ ∈ H is a minimizer of M(H).

Lemma 5.9. Let M be a set of points in PG(k − 1, q), where k ≥ 3 and M be a multiset of points in
PG(k − 1, q) such that M(H) = s if M(H⊥) = 1 and M(H) = t if M(H⊥) = 0 for all hyperplanes
H ∈ H. Using the notation from Lemma 5.8 we set

g = gcd
(
{i ∈ I} ∪ {qk−2}

)
, (20)

∆0 = qk−2/g, (21)

t0 =
1

g
· [k − 2]q · (r −m)−∆0 ·m, and (22)

s0 = t+∆0. (23)

If s > t, then we have
L(M) = ⟨(s0, t0)⟩N + ⟨([k − 1]q, [k − 1]q)⟩N .

PROOF. Setting µ = µ(M) ∈ N we have that M′ := M − µ · χV is a two-character multiset corre-
sponding to (s′, t′) := (s − µ[k − 1]q, t − µ[k − 1]q) ∈ L(M) and there exists a point Q ∈ P with
M′(Q) = 0. Clearly, we have (s′, t′) ∈ N2 and s′ > t′. From Lemma 5.8 we conclude the existence of
an integer ∆′ ∈ N≥1 such that t′ = ∆′

qk−2 · [k− 2]q · (r −m)−∆′ ·m, s′ = t′ +∆′, and M′(P ) = ∆′·i
qk−2

for all P ∈ P . Since M′(P ) ∈ N for all P ∈ P we have that qk−2 divides ∆′ · g, so that ∆0 ∈ N divides
∆′. For f := ∆′/∆0 ∈ N≥1 we observe that M′(P ) is divisible by f and we set M′′ := 1

f · M′. With
this, we can check that M′′ is a two-character multiset corresponding to (s0, t0) ∈ L(M). □
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Note that it is not necessary to explicitly check t0 ∈ N since M′′(P ) ∈ N is sufficient to this end.
Before we consider the problem whether L(M) ⊆ N2 contains an element (s, t) with s > t we treat

the so far excluded case k = 2 separately.

Lemma 5.10. Let M be a set of points in PG(1, q). Then, we have

L(M) = ⟨(s0, 0)⟩N + ⟨(q + 1, q + 1)⟩N ,

where s0 = 0 if #M ∈ {0, q + 1} and s0 = 1 otherwise.

PROOF. If #M ∈ {0, q + 1}, then a two-character multiset M corresponding to (s, t) ∈ M actually is
a one-character multiset and there exist some integer x ∈ N such that M = x · χv .

Otherwise we observe that in PG(1, q) points and hyperplanes coincide and the image of M is {0, 1}.
Note that we have M = t · χV +

∑
P∈P(s − t) · M(P ) · χP for each two-character multiset M

corresponding to (s, t) ∈ L(M) by definition. We can easily check (s, t) ∈ ⟨(1, 0)⟩N+⟨(q + 1, q + 1)⟩N.
The proof is completed by choosing s = 1 and t = 0 in our representation of M. □

Theorem 5.11. Let M be a set of points in PG(k − 1, q) with #M /∈ {0, [k]q}, where k ≥ 2. Then

M :=
∑
H∈H

M(H⊥) · χH (24)

is a two-character multiset corresponding to (s, t) ∈ L(M) with n = #M = r[k−1]q , where r := #M,
t = r[k− 2]q , and s = r[k− 2]q + qk−2. Setting µ := µ(M) and g := gcd({M(P )− µ : P ∈ P}) the
function

M′ :=
1

g
·

(
−µ · χV +

∑
H∈H

M(H⊥) · χH

)
=

1

g
· (M− µ · χV ) (25)

is a two-character multiset corresponding to (s0, t0) ∈ L(M) with n′ = #M′ = 1
q ·(r[k − 1]q − µ[k]q),

where r := #M, t0 = 1
g · (r[k − 2]q − µ[k − 1]q), and s0 = 1

g ·
(
r[k − 2]q − µ[k − 1]q + qk−2

)
, and g

divides qk−2. Moreover, we have

L(M) = ⟨(s0, t0)⟩N + ⟨([k − 1]q, [k − 1]q)⟩N , (26)

PROOF. We can easily check M(H) = r[k−2]q = t if M(H⊥) = 0 and M(H) = r[k−2]q+qk−2 = s
if M(H⊥) = 1 for all H ∈ H as well as #M = r[k − 1]q directly from the definition of M. Using
Lemma 4.3 and Lemma 4.9 we conclude that M′ is a two-character multiset with the stated parameters.

For k = 2 Lemma 5.10 our last statement. For k ≥ 3 we can apply Lemma 5.8 to conclude g =
gcd({i ∈ I}) and use the proof of Lemma 5.9 to conclude our last statement. Since s, t ∈ N and s > t
we have that g divides g(s− t) = qk−2. □

Using the notation from Lemma 5.8 applied to to the multiset of points M−µ ·χV from Theorem 5.11
we observe #I ≥ 2 for #M /∈ {0, [k]q}. Using the fact that g := gcd({M(P )− µ : P ∈ P}), that g
divides qk−2, and Equation (19) we conclude

g = gcd({i ∈ I}) = gcd
({

M(H)−M(H ′) : H ∈ H
})

, (27)

where H ′ ∈ H is a minimizer of M(H).
Using the classification of one-character multisets we conclude from Theorem 5.11:

Corollary 5.12. Let M be a set of points in PG(k − 1, q), where k ≥ 2. Then, there exist (s0, t0) ∈ N2

such that L(M) = ⟨(s0, t0)⟩N + ⟨([k − 1]q, [k − 1]q)⟩N.

Theorem 5.13. Let M̃ be a two-character multiset in PG(k − 1, q), where k ≥ 2. Then, there exist
unique u, v ∈ N such that M̃ = u · M′ + v · χV , where M′ is given by Equation (25).
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PROOF. Let s > t be the two hyperplane multiplicities of M̃. With this define M such that M(H⊥) = 1

if M̃(H) = s and M(H⊥) = 0 if M̃(H) = t for all H ∈ H. So, (s, t) ∈ L(M) and Theorem 5.11
yields the existence of u, v ∈ N with (s, t) = u · (s0, t0) + v · ([k − 1]q, [k − 1]q), where s0, t0 are as
in Theorem 5.11. From Lemma 3.1 we then conclude M̃ = u · M′ + v · χV . Note that µ(M′) and
µ(χV ) = 1 imply µ(M̃) = v, so that u can be computed from γ(M̃) = u · γ(M′) + v. □

Note that for a one-character multiset M̃ there exists a unique v ∈ N such that M̃ = v ·χV . Given a set of
points M we call M′ the canonical representant of the set of two-character multisets M corresponding
to (s, t) ∈ L(M). If M = M′ we just say that M is the canonical two-character multiset.

Theorem 5.14. Let w1 < w2 be the non-zero weights of a non-repetitive [n, k]q two-weight code C
without full support. Then, there exist integers f and u such that w1 = upf and w2 = (u+ 1)pf , where
p is the characteristic of the underlying field Fq .

PROOF. Let M be the two-character multiset in PG(k − 1, q) corresponding to C. Choose unique
u, v ∈ N such that M = u · M′ + v · χV as in Theorem 5.13. Since C does not have full support, we
have v = 0 and since C is non-repetitive we have u = 1. With this we can use Theorem 5.11 to compute

w1 = n− s = 1
g ·
(
r · qk−2 − µ · qk−1 − qk−2

)
= (r − qµ− 1) · pf (28)

and
w2 = n− t = 1

g ·
(
r · qk−2 − µ · qk−1

)
= (r − qµ) · pf , (29)

where f is chosen such that qk−2

g = pf . I.e., we can choose u = r − qµ− 1. □

We have seen in Equation (27) that we can compute the parameter g directly from the set of points
M. If we additionally assume that M is spanning, then we can consider the corresponding projective
[n, k]q-code C, where n = #M.3 Note that we have M(H) ≡ m (mod g) for all H ∈ H and that g is
maximal with this property. If m ≡ n (mod g), then g would simply be the maximal divisibility constant
of the weights of C. From [21, Theorem 7] or [30, Theorem 3] we can conclude m ≡ n (mod g). Thus,
we have

g = gcd
({

wt(c) : c ∈ C
})

. (30)

The argument may also be based on the following lemma (using the fact that C is projective):

Lemma 5.15. Let C be an [n, k]q-code of full length such that we have wt(c) ≡ m (mod ∆) for all
non-zero codewords c ∈ C. If ∆ is a power of the characteristic of the underlying field Fq , then we have
m ≡ 0 (mod min{∆, q}). Moreover, if additionally q divides ∆ and k ≥ 2, then the non-zero weights
in each residual code are congruent to m/q modulo ∆/q.

PROOF. Let M be the multiset of points in PG(k − 1, q) corresponding to C. For each hyperplane H
we have n−M(H) ≡ m (mod ∆), which is equivalent to M(H) ≡ n−m (mod ∆). The weight of
a non-zero codeword in a residual code is given by a subspace K of codimension 2 and a hyperplane H
with K ≤ H . With this, the weight is given by M(H)−M(K) ≡ n−m−M(K) (mod ∆). Counting
the hyperplane multiplicities of the q + 1 hyperplanes that contain K yields∑

H∈H :K≤H

M(H) = #M+ q · M(K) = #M+ q · M(K) (31)

and ∑
H∈H :K≤H

M(H) ≡ (q + 1)(n−m) (mod ∆), (32)

so that
m ≡ q · (n−m−M(K)) (mod ∆). (33)

□

3If M is not spanning then we can consider the lowerdimensional subspace spanned by supp(M).
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Given Equation (30) we might be interested in projective divisible codes (with a large divisibility con-
stant). For enumerations for the binary case we refer to [19] and for a more general survey we refer
to e.g. [24]. Note that the only point sets M in PG(k − 1, q) that are qk−1-divisible are given by
#M ∈ {0, [k]q}, i.e., the empty and the full set. All other point sets are at most qk−2-divisible, as
implied by Theorem 5.11.

6. ENUMERATION OF TWO-CHARACTER MULTISETS IN PG(k − 1, q) FOR SMALL PARAMETERS

Since all two-character multisets in PG(1, q) can be parameterized as M = b · χV +
∑

P∈P(a− b) ·
M(P ) ·χP for integers a > b ≥ 0 and a set of points M in PG(k− 1, q), see Lemma 5.10 and its proof,
we assume k ≥ 3 in the following. Due to Theorem 5.13 every two-character multiset in PG(k − 1, q)
can be written as u · M′ + v · χV , where u, v ∈ N and M′ is characterized in Theorem 5.11. So, we
further restrict out considerations on canonical two-character multisets where we have u = 1 and v = 0.
For k = 2 all canonical two-character multisets in PG(k − 1, q) are indeed sets of points and given by
the construction in Proposition 4.6 (with r = 1).

It can be easily checked that two isomorphic sets of points in PG(k−1, q) yield isomorphic canonical
two-character multisets M′. So, for the full enumeration of canonical two-character multisets in PG(k−
1, q) we just need to loop over all non-isomorphic sets of points M in PG(k−1, q) and use Theorem 5.11
to determine M, M′, and their parameters. We remark that the numbers of non-isomorphic projective
codes per length, dimension, and field size are e.g. listed in [1, Tables 6.10–6.12] (for small parameters).
For the binary case and dimensions at most six some additional data can be found in [3]. Here we utilize
the software package LINCODE [5] to enumerate these codes.

g µ r n γ s t s0 t0 n′ γ′

2 1 3 9 3 5 3 1 0 1 1
1 0 1 3 1 3 1 3 1 3 1
1 2 6 18 3 8 6 2 0 4 1
2 0 4 12 2 6 4 3 2 6 1
1 1 4 12 3 6 4 3 1 5 2
1 0 2 6 2 4 2 4 2 6 2
1 1 5 15 3 7 5 4 2 8 2
1 0 3 9 2 5 3 5 3 9 2

TABLE 1. Feasible parameters for canonical two-character multisets in PG(2, 2).

In Table 1 and in Table 2 we list the feasible parameters for canonical two-character multisets in
PG(2, 2) and in PG(3, 2), respectively, where n′ := #M′ and γ′ := γ(M′). For PG(2, 2) we can also
state more direct constructions:

• (n′, s0, t0, γ
′) = (1, 1, 0, 1): characteristic function of a point (not spanning)

• (n′, s0, t0, γ
′) = (3, 3, 1, 1): characteristic function of a line (not spanning)

• (n′, s0, t0, γ
′) = (4, 2, 0, 1): complement of the characteristic function of a line

• (n′, s0, t0, γ
′) = (6, 3, 2, 1): complement of the characteristic function of a point

• (n′, s0, t0, γ
′) = (5, 3, 1, 2): χL + 2χP for a line L and a point P with P /∈ L

• (n′, s0, t0, γ
′) = (6, 4, 2, 2): χL + χ′

L for two different lines L and L′

• (n′, s0, t0, γ
′) = (8, 4, 2, 2): χV − χL − χ′

L for two different lines L and L′

• (n′, s0, t0, γ
′) = (9, 5, 3, 2): 2χV − χL +−χP for a line L and a point P with P /∈ L

Of course, also for PG(3, 2) some of the examples have nicer descriptions:
• (n′, s0, t0, γ

′) = (1, 1, 0, 1): characteristic function of a point (not spanning)
• (n′, s0, t0, γ

′) = (3, 3, 1, 1): characteristic function of a line (not spanning)
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g µ r n γ s t s0 t0 n′ γ′

4 3 7 49 7 25 21 1 0 1 1
2 1 3 21 3 13 9 3 1 3 1
2 4 10 70 6 34 30 3 1 5 1
2 2 6 42 4 22 18 4 2 6 1
1 0 1 7 1 7 3 7 3 7 1
1 6 14 98 7 46 42 4 0 8 1
2 3 9 63 5 31 27 5 3 9 1
2 1 5 35 3 19 15 6 4 10 1
2 4 12 84 6 40 36 6 4 12 1
4 0 8 56 4 28 24 7 6 14 1
2 2 8 56 6 28 24 7 5 13 2
1 0 2 14 2 10 6 10 6 14 2
2 0 4 28 4 16 12 8 6 14 2
1 5 13 91 7 43 39 8 4 16 2
2 3 11 77 7 37 33 8 6 16 2
2 1 7 49 5 25 21 9 7 17 2
1 1 4 28 4 16 12 9 5 13 3
1 4 11 77 7 37 33 9 5 17 3
1 3 9 63 6 31 27 10 6 18 3
1 2 7 49 5 25 21 11 7 19 3
1 1 5 35 4 19 15 12 8 20 3
1 0 3 21 3 13 9 13 9 21 3
1 4 12 84 7 40 36 12 8 24 3
1 3 10 70 6 34 30 13 9 25 3
1 2 8 56 5 28 24 14 10 26 3
1 1 6 42 4 22 18 15 11 27 3
1 0 4 28 3 16 12 16 12 28 3
1 3 11 77 6 37 33 16 12 32 3
1 3 8 56 7 28 24 7 3 11 4
1 2 6 42 6 22 18 8 4 12 4
1 3 9 63 7 31 27 10 6 18 4
1 2 7 49 6 25 21 11 7 19 4
1 1 5 35 5 19 15 12 8 20 4
1 3 10 70 7 34 30 13 9 25 4
1 2 8 56 6 28 24 14 10 26 4
1 1 6 42 5 22 18 15 11 27 4
1 2 9 63 6 31 27 17 13 33 4
1 1 7 49 5 25 21 18 14 34 4
1 0 5 35 4 19 15 19 15 35 4
1 2 10 70 6 34 30 20 16 40 4
1 1 8 56 5 28 24 21 17 41 4
1 0 6 42 4 22 18 22 18 42 4
1 1 9 63 5 31 27 24 20 48 4
1 0 7 49 4 25 21 25 21 49 4

TABLE 2. Feasible parameters for canonical two-character multisets in PG(3, 2).
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• (n′, s0, t0, γ
′) = (7, 7, 3, 1): characteristic function of a plane (not spanning)

• (n′, s0, t0, γ
′) = (5, 3, 1, 1): projective base; spanning projective 2-weight code

• (n′, s0, t0, γ
′) = (6, 4, 2, 1): characteristic function of two disjoint lines; spanning projective

2-weight code
• (n′, s0, t0, γ

′) = (14, 10, 6, 2): characteristic function of two different planes
• (n′, s0, t0, γ

′) = (21, 13, 9, 3): characteristic function of three planes intersecting in a common
point but not a common line

Note that we may restrict our considerations to r < [k]q/2 since if M′ is the a canonical two-character
multiset for a set of points M with #M = r, then the complement of M′ is the the a canonical two-
character multiset for a set of points which is the complement of M and has cardinality [k]q − r.

From the data in Table 1 and Table 2 we can guess the the maximum possible point multiplicity γ(M′)
of M′:

Proposition 6.1. Let M be a canonical two-character multiset in PG(k − 1, q), where k ≥ 2. Then, we
have γ(M) ≤ qk−2.

PROOF. Choose a suitable set H′ ⊆ H and g, ν ∈ N such that

M =
1

g
·

( ∑
H∈H′

χH − µ · χV

)
.

Let P ∈ P be a point with M(P ) = γ and Q ∈ P be a point with M(Q) = 0. With this we have
λ ≥ |{H ∈ H′ : Q ≤ H}|. Since P is contained [k − 1]q hyperplanes in H and ⟨P,Q⟩ is contained in
[k − 2]q hyperplanes in H we have M(P ) ≤ qk−2. □

We can easily construct an example showing that the stated upper bound is tight. To this end let
P , Q be two different points in PG(k − 1, q), where k ≥ 3,and H ′ be an arbitrary hyperplane neither
containing P nor Q. With this, we choose H′ as the set of all qk−2 hyperplanes that contain P but do
not contain Q and additionally the hyperplane H ′. For the corresponding multiset of points M we then
have M(P ) = qk−2 and M(Q) = 0, so that µ(M) = 0. For an arbitrary point R ∈ H ′ we have
M(R) = qk−2 − qk−3 + 1 = (q − 1)qk−3 + 1, so that gcd(M(R),M(P )) = 1 if k ≥ 4 or k = 3
and q ̸= 2. For (k, q) = (3, 2) we have already seen examples of canonical two-character multisets with
maximum point multiplicity 2.

In Table 3 and Table 4 we list the feasible parameters for canonical two-character multisets in PG(4, 2)
with point multiplicity at most 4.
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g µ r n γ s t s0 t0 n′ γ′
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4 3 7 105 7 57 49 3 1 3 1
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1 12 28 420 15 204 196 24 16 48 3
2 7 21 315 13 155 147 25 21 49 3

TABLE 3. Feasible parameters for canonical two-character multisets in PG(4, 2) with
γ′ ≤ 4 – part 1.
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g µ r n γ s t s0 t0 n′ γ′

2 5 17 255 11 127 119 26 22 50 3
2 3 13 195 9 99 91 27 23 51 3
2 8 24 360 14 176 168 28 24 56 3
2 6 20 300 12 148 140 29 25 57 3
2 4 16 240 10 120 112 30 26 58 3
2 2 12 180 8 92 84 31 27 59 3
1 11 27 405 14 197 189 32 24 64 3
2 7 23 345 13 169 161 32 28 64 3
2 5 19 285 11 141 133 33 29 65 3
2 3 15 225 9 113 105 34 30 66 3
2 6 22 330 12 162 154 36 32 72 3
2 0 10 150 6 78 70 39 35 75 3
2 5 21 315 11 155 147 40 36 80 3
2 4 12 180 12 92 84 16 12 28 4
1 2 6 90 6 50 42 20 12 28 4
2 3 11 165 11 85 77 20 16 36 4
2 4 14 210 12 106 98 23 19 43 4
1 2 7 105 6 57 49 27 19 43 4
1 1 5 75 5 43 35 28 20 44 4
1 11 26 390 15 190 182 25 17 49 4
1 10 24 360 14 176 168 26 18 50 4
1 9 22 330 13 162 154 27 19 51 4
1 8 20 300 12 148 140 28 20 52 4
1 7 18 270 11 134 126 29 21 53 4
1 5 14 210 9 106 98 31 23 55 4
2 6 20 300 14 148 140 29 25 57 4
1 3 10 150 7 78 70 33 25 57 4
2 4 16 240 12 120 112 30 26 58 4
1 2 8 120 6 64 56 34 26 58 4
1 1 6 90 5 50 42 35 27 59 4
1 0 4 60 4 36 28 36 28 60 4
1 11 27 405 15 197 189 32 24 64 4
1 10 25 375 14 183 175 33 25 65 4
2 3 15 225 11 113 105 34 30 66 4
1 9 23 345 13 169 161 34 26 66 4
2 1 11 165 9 85 77 35 31 67 4
1 8 21 315 12 155 147 35 27 67 4
1 6 17 255 10 127 119 37 29 69 4
1 4 13 195 8 99 91 39 31 71 4
1 3 11 165 7 85 77 40 32 72 4
1 2 9 135 6 71 63 41 33 73 4
1 1 7 105 5 57 49 42 34 74 4
1 0 5 75 4 43 35 43 35 75 4
1 10 26 390 14 190 182 40 32 80 4
2 3 17 255 11 127 119 41 37 81 4
1 9 24 360 13 176 168 41 33 81 4
2 4 20 300 12 148 140 44 40 88 4
2 3 19 285 11 141 133 48 44 96 4
1 9 25 375 13 183 175 48 40 96 4

TABLE 4. Feasible parameters for canonical two-character multisets in PG(4, 2) with
γ′ ≤ 4 – part 2.



18 SASCHA KURZ

[11] A. E. Brouwer and M. v. Eupen. The correspondence between projective codes and 2-weight codes. Designs, Codes and
Cryptography, 11:261–266, 1997.

[12] A. E. Brouwer and H. Van Maldeghem. Strongly regular graphs, volume 182. Cambridge University Press, 2022.
[13] E. Byrne, M. Greferath, and T. Honold. Ring geometries, two-weight codes, and strongly regular graphs. Designs, Codes and

Cryptography, 48(1):1–16, 2008.
[14] R. Calderbank and W. M. Kantor. The geometry of two-weight codes. Bulletin of the London Mathematical Society, 18(2):97–

122, 1986.
[15] P. Delsarte. Weights of linear codes and strongly regular normed spaces. Discrete Mathematics, 3(1-3):47–64, 1972.
[16] S. Dodunekov and J. Simonis. Codes and projective multisets. The Electronic Journal of Combinatorics, 5:1–23, 1998.
[17] T. D. Duc. Non-projective cyclic codes whose check polynomial contains two zeros. arXiv preprint 1903.07321, 2019.
[18] P. Govaerts and L. Storme. On a particular class of minihypers and its applications. I. The result for general q. Designs, Codes

and Cryptography, 28:51–63, 2003.
[19] D. Heinlein, T. Honold, M. Kiermaier, S. Kurz, and A. Wassermann. Projective divisible binary codes. In The Tenth Interna-

tional Workshop on Coding and Cryptography, pages 1–10, 2017. arXiv preprint 1703.08291.
[20] Z. Heng, D. Li, J. Du, and F. Chen. A family of projective two-weight linear codes. Designs, Codes and Cryptography,

89(8):1993–2007, 2021.
[21] T. Honold, M. Kiermaier, and S. Kurz. Partial spreads and vector space partitions. In M. Greferath, M. O. Pavčević, N. Silber-
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