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Superanomalous skin‑effect 
and enhanced absorption of light 
scattered on conductive media
A. Vagov 1,4*, I. A. Larkin 2, M. D. Croitoru 3,4 & V. M. Axt 1

Light scattering spectroscopy is a powerful tool for studying various media, but interpretation of its 
results requires a detailed knowledge of how media excitations are coupled to electromagnetic waves. 
In electrically conducting media, an accurate description of propagating electromagnetic waves is a 
non‑trivial problem because of non‑local light‑matter interactions. Among other consequences, the 
non‑locality gives rise to the anomalous (ASE) and superanomalous (SASE) skin effects. As is well 
known, ASE is related to an increase in the electromagnetic field absorption in the radio frequency 
domain. This work demonstrates that the Landau damping underlying SASE gives rise to another 
absorption peak at optical frequencies. In contrast to ASE, SASE suppresses only the longitudinal field 
component, and this difference results in the strong polarization dependence of the absorption. The 
mechanism behind the suppression is generic and is observed also in plasma. Neither SASE, nor the 
corresponding light absorption increase can be described using popular simplified models for the non‑
local dielectric response.

Propagation and scattering of electromagnetic (EM) wave in conductive media, e.g. in metals, is a physical prob-
lem of fundamental importance. Delocalized charged carriers in such media screen the EM field modifying both 
reflection and absorption. The screening is referred to as skin effect1,2. Two types of the skin effect are commonly 
distinguished: the normal (NSE) one with the exponential spatial decay of the field, and the anomalous (ASE) 
skin effect with the power law decay. The field profile inside the media is not directly accessible in experiment, 
but the skin effect determines the penetration interval, where the field interacts with the media and loses its 
energy. This changes the surface impedance and, thus, the light scattering.

In the Hagen-Rubens regime of lower frequencies ω ≪ 1/τ ( τ is the decay time), the dielectric response is 
essentially local, and the permittivity is well approximated by the Drude  expression3–5. This leads to the normal 
skin effect with the exponential field decay E ∝ exp(−z/a) , where z is the distance from the metal surface, and 
a is the characteristic decay  length6,7. In this regime, the frequency dependence of the surface impedance fol-
lows the law ∝ ω1/2.

At higher frequencies of ωτ � 1 , which corresponds to the microwave range for normal metals, the dielectric 
response is non-local, and one observes the ASE with the power law field decay E ∝ 1/z38–12. The frequency 
dependence for the surface impedance becomes ∝ ω2/3 . The increasing field penetration length in the ASE 
regime enhances the field losses leading to a larger absorption of the scattered light, manifested as a peak in the 
logarithmic frequency  spectrum8,9,11,12.

When the frequency increases further, to the optical range in normal metals, the absorption demonstrates 
another peaked  enhancement13, which is usually connected to the ASE as  well14. However, in the interval of 
frequencies and wave vectors that corresponds to the scattered light, the dielectric response of the metal is prac-
tically local, and the skin effect is  normal6. Also, unlike the absorption increase at lower frequencies, the higher 
frequency second peak depends strongly on the field polarization and on the scattering angle. It disappears for 
the normal angle scattering.

It has been recently shown that in the optical frequency range a metal can demonstrate the so-called super-
anomalous skin effect (SASE), where the field decays as E ∝ 1/(z ln z2)15,16. However, the SASE takes place only 
for large wave vectors q ∼ ω/vF , where vF is the Fermi velocity of metallic electrons. This interval of q and ω 
corresponds to surface plasmons. It is thus unclear how the SASE can influence the scattering of light with much 
smaller wave vectors, q ∼ ω/c ( c ≫ vF , c is the speed of light).

OPEN

1Theoretische Physik III, Universität Bayreuth, 95440 Bayreuth, Germany. 2Institute of Microelectronics 
Technology, Russian Academy of Sciences, 142432 Chernogolovka, Russia. 3Universidade Federal de Pernambuco, 
Recife, PE 50670-901, Brazil. 4HSE University, 101000 Moscow, Russia. *email: alexei.vagov@hotmail.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-31478-y&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2023) 13:5103  | https://doi.org/10.1038/s41598-023-31478-y

www.nature.com/scientificreports/

In this work we revisit the classical problem of scattering of EM waves on a metallic surface using an exact 
solution of the EM problem with the non-local Lindhard-Reuter-Sondheimer permittivity. We demonstrate that 
despite the mismatch of the wave vectors, the second absorption peak is directly connected to the SASE not ASE. 
It is shown that the two absorption peaks are facilitated by different loss mechanisms that depend on the field 
polarization. While the ASE losses affect the transverse field component, the SASE suppresses the longitudinal 
one, similarly to the conventional Landau damping. This explains the polarization dependence of the second 
absorption peak and the fact it disappears for the normal scattering.

It is also shown that popular approximations for the non-local dielectric response, such as hydrodynamic 
and single-pole  models17–22, fail to capture the SASE absorption peak and one needs more advanced models that 
take into account kinetic properties of metallic  electrons8,13,22,23. This fact is very important for modelling optical 
properties of conductive media when the non-locality in the dielectric response plays a significant  role24, e.g. to 
study propagation of plasmons in  nanostructures25–28, near-field radiative heat  transfer29, thermal and zero-point 
EM energy and forces on curved metallic  boundaries30, losses in EM emitters placed near a metallic  surface31, 
and propagation of EM waves in  plasma14.

The results are presented as follows. We first outline the solution for the light scattering problem for a metallic 
surface with an arbitrary dielectric response of the metal. Then, using this solution, we calculate the absorptivity 
frequency spectrum, introduce the SASE and ASE and discuss their relation to the scattering characteristics. 
We demonstrate that a popular single-pole approximation fails to describe the SASE and its contribution to the 
absorption. A generic nature of the SASE- as well as ASE-related loss mechanisms is illustrated by considering 
a classical Maxwellian plasma. Finally, we summarize the results and discuss their significance.

Theory
Scattering problem and its solution. The absorption spectrum is obtained by solving the scattering 
problem for an EM wave reflected from a metal-dielectric interface as shown in Fig. 1, where the interface at 
z = 0 separates the metal at z < 0 from the insulating media at z > 0 . The wave approaches the surface from the 
half-space z > 0 at incident angle θ and has the wave vector kin = kin(sin(θ), 0,− cos(θ)) with kin = √

εh ω/c , 
and εh is the dielectric constant of the insulating half-space, assumed εh = 1 (vacuum) for simplicity. The scatter-
ing problem is solved by matching solutions of the Maxwell equations at the metal-insulator interface assuming 
the total solution is a mixture of the incoming and reflected waves at infinity z → +∞1.

The dielectric response of the metal will be taken into account by using results for the kinetic model that 
describes metal electrons. Further, we assume the metal-vacuum interface is infinitely thin. Thereby, we neglect 
the finite-width effects such as depletion of the electron density in the vicinity of the interface. We also consider 
a specular reflection model (SRM) for metal electrons scattering at the interface )diffusion  parameter13,32 p = 1 ), 
which is widely employed in studying surface related  effects6,8,10,18,19,21,33. A model where weakly interacting 
metallic electrons are described by the Boltzman equation with the SRM for the scattering at the  interface8,13 
is also referred to as the semiclassical model (SCM) in the  literature22,23 Although the adopted model appears 
simplified, it captures essential physics of the the SASE for as long as the characteristic skin length much exceeds 
the actual width of the interface. In normal metals the microscopic width of the interface is estimated as the 
inverse of the Fermi wave number a ≃ 1/kF � 1nm34, which much smaller than other pertinent characteristic 
lengths in the problem, including the skin width, estimated as l � 10 nm. We also argue that surface roughness 
and the violation of the SRM should not change our main conclusions.

The adopted model for the electrons and the interface means the normal component of the electrical current 
at the interface vanishes, which implies a certain boundary condition for the respective polarization component 
Ṗ⊥ = 0 [see Supplemental Material]. The scattering problem can thus be solved using an approach in the spirit 
of the ABC  method35, where the Maxwell equations are complemented with the additional boundary condition 
[see Supplemental Material]. The solution to the Maxwell equations is obtained in a general form once the bulk 
dielectric response (permittivity tensor) of the metal is known (the magnetic response can be neglected in this 
 case36). The consistency of this approach requires the boundary conditions for the polarization correspond to 
the kinetic model for metallic electrons. It is ensured for the SCM model, for which one obtains an exact solu-
tion of the EM problem. However, in many other situations, in particular, for semiconductors with excitons, the 
validity of the ABC is  debated22,23,37–41.

Solving Maxwell equations on each side of the interface and matching the solutions at it is relatively straight-
forward albeit tedious. An interested reader can find details of the calculations in the Supplemental Material. 
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Figure 1.  Illustration of the problem geometry. A wave approaching at the incident angle θ is reflected from 
a surface of a metal at z = 0 . TM (p) and TE (s) polarizations differ by the orientation of the electric field 
with respect to the surface, the field penetrating the sample is schematically illustrated by green and yellow, 
representing ASE and SASE contributions.
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The problem admits two independent solutions that differ by the field polarization relative to the  interface42. 
For TM (p) polarized waves, the magnetic field is parallel to the interface, while for TE (s) polarized waves, the 
electric field is parallel. The reflection coefficient for both cases is given as 

(a) s-wave polazrization: 

(b) p-wave polarization: 

 where 

Here we use notations ω̄ = ω/c , k =
√

q2 + k2z  , q = (q, 0, 0) is an in-plane wavevector that, without loss of 
generality, is assumed to have x-component only, and other quantities are related to the incoming wave as 
kinz = kin cos(θ) , q = kin sin(θ) , kin =

√

q2 + kin 2z  . Finally, the transverse εtr
ωk and longitudinal εℓ

ωk components 
define the permittivity tensor of the bulk metal. We note, that the contribution proportional to the difference 
εℓ
ωk − εtr

ωk in Eq. (1e) is negligible in the non-relativistic limit where the average velocity of the carriers is much 
smaller than the velocity of light ( vF ≪ c ). In what follows, we will neglect this contribution.

Dielectric permittivity of a metal. The dielectric response of a normal metal is a sum of ion polarization 
and a contribution of freely moving charge carriers (electrons). The latter comprises the part due to interband 
electronic transitions and the part induced by electrons moving within the same conduction band - intraband 
scattering. In this work, we are interested in the latter because it yields the non-local dielectric response. It is 
well described using the model of weakly interacting particles with a quadratic energy dispersion and a spheri-
cal Fermi surface. This model gives a permittivity tensor with the longitudinal (Lindhard)18–21 and transverse 
(Reuter & Sondheimer)8,10 components given as 

 which will be referred to as the Lindhard-Reuter-Sondheimer (LRS) model. The expressions are written using 
scaled quantities � → �/�p , k → kvF/�p , �p the plasma frequency, and � = ω + iγ  . The temperature 
dependent decay rate γ = 1/τ takes into account all electronic relaxation processes, e.g., electron-electron and 
electron-phonon scattering. Note, that accounting of the relaxation in Eqs. (2) follows from the perturbation 
theory of the kinetic equation describing charge carriers in metals as prescribed in Ref.43, and does not reduce 
to a simple substitution ω → ω + iγ.

The LRS model contains three material parameters, �p , vF , and τ , that determine the dielectric response. 
Strictly speaking, Eq. (2) are valid only when k is not too large, and need to be changed to the full expressions 
when k becomes comparable to the Fermi wave number kF . However, those large k corrections introduce only 
relatively small quantitative changes (less than  20%) to the results and do not modify the conclusions.

The non-locality of the dielectric response is manifested by the k-dependence of εtr,ℓ
ωk  . In a bulk sample, this 

gives rise to that the permittivity is a function of the coordinate difference r − r′ , where r is the position at which 
the polarization is measured, and r′ is where the electric field is applied. In the limit k → 0 both components of 
the permettivity tensor reduces to the same Drude expression
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which neglects the non-locality.
In our numerical calculations below, we consider silver as the prototype metal with the following parameters 

(taken at T ≃ 4 K ): ��p = 8.6 eV  , γ = 0.026 eV  and vF = 1.39× 106 m/sec44,45.

Absorption and skin effect
Absorptivity spectrum. The squared absolute value of the reflection coefficient is smaller than unity due 
to field absorption inside the metal. To quantify the loss we introduce the polarization dependent absorptivity as

Figure 2 plots the frequency dependence (spectrum) of this quantity in the logarithmic frequency scale, calcu-
lated for p-polarized waves for a few incident angles θ . Solid lines ”Full” are obtained using the complete LRS 
model in Eq. (2), while the dashed ”Drude” lines are calculated using the local Drude approximation in Eq. (3) 
for both permittivity components. The difference between the two is accentuated by the color filing where the 
green and yellow colours are used to mark, respectively, the frequency intervals of the ASE and SASE.

For the normal angle θ = 0◦ scattering Fig. 2a reproduces a seminal work of Reuter and  Sondheimer8. The 
difference between the Drude approximation and the full LRS model has a pronounced peak in the interval 
10−3 � ω � 10−1 with the maximum at ω ≃ 10−2 . This peak is closely related to the ASE, and for silver, it takes 
place in the domain of microwave frequencies. Clearly, the absorptivity for p and s polarizations are the same 
at θ = 0◦.

For other reflection angles, the difference between the LRS model and the Drude approximation appears at 
higher frequencies ω � 0.1 as well [Fig. 2b–d], but only for p-polarized waves. The difference is observed for all 
angles, but is most notable at θ ≃ 50◦ where one sees is a second peak with the maximum at ω ≃ 0.4 [Fig. 2c]. 
At small and large angles the peak is absent although the difference is still visible [Fig. 2b and d].

To highlight the non-locality role we consider the relative absorptivity

where absorptivity ap and reflection coefficient Rp are calculated for the full LRS model in Eq. (2), while aDp  and RD
p  

are obtained using Drude approximation. A black solid line marked ”Full” in Fig. 3 demonstrates the logarithmic 
frequency dependence of rp calculated at θ = 50◦.

The result demonstrates two clearly visible peaks of comparable amplitude, with the maxima at ω ≃ 0.005 
and ω ≃ 0.4 . The two-peak structure of the spectrum holds in a large interval of the incident angles. It is also 
illustrated by a colour-density Fig. 4, which plots rp as a function of ω and θ . It shows clearly that the lower 
frequency peak is practically independent of the angle, whereas the higher frequency one decreases at smaller 
θ disappearing at θ → 0.

Connections between the first absorption peak at lower frequencies and the ASE was first noted in the original 
work of Reuter and  Sondheimer8. The second higher frequency peak observed in later  studies13 was similarly 
attributed to the  ASE14. However, this explanation contradicts to the fact in metals the ASE is restricted to the 

(4)as,p = 1− |Rs,p|2.

(5)rp =
ap

aDp
=

1− |Rp|2

1− |RD
p |2

,

Figure 2.  Frequency dependence of the absorptivity ap for p-polarized waves, calculated for incident angle 
values of θ = 0

◦ (a), 40◦ (b), 50◦ (c), and 60◦ (d). Results for the LRS model in Eq. (4) are given by the solid like 
”Full”, the Drude approximation is shown by the dashed line ”Drude”. Green/yellow colour filling represents the 
ASE/SASE frequency ranges.
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interval ω � 0.05 , whereas at ω � 0.05 and q ≃ ω/c the permittivity is well approximated by the local Drude 
expression, and the skin effect is normal. In principle, the frequency interval ω � 0.1 of the second peak cor-
responds to the  SASE15. However, the latter takes place at wave vectors q ≃ ω much larger than those for the 
scattered light qL ≤ αω , α = vF/c ≪ 1.

SASE vs ASE. We now briefly discuss the origin of SASE and ASE and differences between them. The elec-
tric field parallel to the interface in the Fourier k-space is found as (see Supplemental Material)

where one needs to substitute ω̄ = αω . To obtain spatial decay of the field inside the metal one needs to calculate 
the inverse Fourier transform of the solution over kz . The type of the skin effect is defined by the field asymptotic 
at large z, which is determined by singularities of Eq. (6) in the k-space15. At the same time, the surface imped-
ance in Eq. (1d) is given by the field amplitude at the interface z = 0 , calculated by integrating Eq. (6) over kz.

Equation (6) can be split using the following identity

where
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Figure 3.  Relative absorptivity rp = ap/a
D
p  , where aDp  is obtained for the Drude model. The black line 

”Full” gives ap , calculated for the full model in Eqs. (2), the solid blue line ”Anomalous” and the red line 
”Superanomalous” give ap obtained using A and S approximations in Eqs. (9) and (10), respectively. The dotted 
black line ”Single-pole” gives ap obtained using the single-pole approximation in Eq. (11). Red dashed line 
”Estimate” give the estimation for ap given by Eq. (17). The colour filling corresponds to the ASE and SASE 
frequency ranges. The incident angle is θ = 50

◦ .
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Figure 4.  Colour-density plot of the relative absorptivity rp as a function of frequency ω and incident angle θ for 
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It is possible to demonstrate that the longitudinal and transverse contributions to the field inside the metal are 
proportional, respectively, to 1/εℓ

ωk and Gωk in Eq. (7), where the latter depends on εtr
ωk only.

In the Hagen-Rubens regime of low frequencies, both permittivity components are approximated by the 
Drude expression, which gives an exponential NSE asymptotic for the field. At larger frequencies, the Drude 
approximation breaks down, and Eqs. (2) must be used. The ASE asymptotic E ∝ 1/z3 is obtained from the 
transverse field component, which depends on εtr

ωk only. In contrast, the SASE asymptotic E ∝ 1/z ln z2 is given 
by the longitudinal field component that depends on εℓ

ωk
15.

From the mathematical perspective, the difference between the ASE and SASE appears due to different sin-
gularity types in the transverse and longitudinal field components. To demonstrate this we note that the ASE is 
observed at small frequencies ω ≪ α , where one can expand Eq. (2a) assuming also ω ≪ k . Keeping the largest 
contributions containing ω to the Green function and neglecting γ one obtains

a well known approximation in the theory of  ASE6. The imaginary part of the k-dependent denominator describes 
the losses, appearing physically due to the energy transfer to a bath of collisionless electrons. This aspect of the 
ASE loss mechanism is similar to the Landau damping, and is sometimes referred to as  such6,46,47. However, in 
contrast to the standard Landau damping, here the energy is transferred to electrons moving perpendicular to 
the vector k of the wave propagation. Notice also, that the imaginary part in Eq. (8) is small when ω/k ≪ 1.

As a simple example, we consider the normal scattering at θ = 0 . The Green function in Eq. (8) has a pole 
at kz = (iπ3α2ω/4)1/3 . The inverse Fourier integral over kz yields the well known ASE frequency asymptotic 
δ ∝ α−2/3ω−1/3 for the skin depth δ6. However, when the frequency increases to ω � α , the non-locality becomes 
negligible, and one can use the Drude expression for the permittivity, which gives the NSE.

In contrast, the SASE contribution, which is proportional to 1/εℓ
ωk in Eq. (7), does not have poles in the vicin-

ity of real kz . This can be easily seen from the fact that the equation for the poles εℓ
ωk = 0 gives the frequency 

dispersion of bulk plasmons, which has (almost) real solutions only if ω > �p . A non-zero imaginary part of 
εℓ
ωk , appearing at at ω < k , is a manifestation of the Landau damping acting on the longitudinal field component.

The logarithmic branch-cut of εℓ
ωk in the LRS model (2) yields the largest contribution to the integral over 

kz of the inverse Fourier transform of Eq. (6). It gives a non-exponential SASE field asymptotic but only if the 
in-plane wave vector is not small, i.e. at q ≃ ω15. In the limit of small q the dielectric response is well described 
by the Drude model, and the field decays exponentially at large z6. Notice, the s-polarized solution contains only 
Gωk , and thus does not exhibit the SASE.

ASE and SASE contribution to absorption. The relation between the transverse and longitudinal per-
mittivity components on one side and the ASE and SASE on the other provides one a simple tool to separate 
the respective contributions to the absorptivity. We make use of that the SASE is determined by the longitudinal 
component of the permittivity tensor only. This follows from a possibility to separate the solution for the elec-
tric field as shown in Eq. (7) into the parts depending on εtr

ωk and εℓ
ωk . The latter contribution gives rise to the 

SASE long range asymptotic for the electric field inside the metal, whereas the former yields the standard ASE 
 asymptotic15. Using the Drude expression for εtr

ωk or εℓ
ωk eliminates the ASE and SASE power law asymptotic, 

correspondingly.
We use this observation and introduce two approximations we call A (”Anomalous”) and S (”Superanoma-

lous”). In A approximation, we assume εtr
ωk is given by the LRS model (2a), and for εℓ

ωk we use the Drude expres-
sion (3). The surface impedance in this case reads as

This approximation keeps the ASE contribution to the field, but eliminates the SASE one.
In S approximation, we take, respectively, the LRS model (2b) for εℓ

ωk , and the Drude approximation for εtr
ωk . 

This yields the impedance as

This approximation keeps the SASE contribution to the field, and the ASE one is omitted.
We now use A and S approximations are to calculate the relative absorptivity rp . The results are shown in 

Fig. 3 by blue and red lines, respectively. Approximation A excellently reproduces the lower frequency peak, but 
fails to capture the higher frequency one completely. In contrast, approximation S captures the higher frequency 
peak but misses the lower frequency one completely. This establishes a direct relation between the absorptivity 
peaks on one side, and the ASE and SASE on the other.

Single‑pole approximation. Qualitative differences between the two peaks can be also clearly demon-
strated by adopting a popular Silin-Klimontovich-Lindhard model for the  permittivity18–21. This model takes a 
non-local nature of the metal dielectric response into account by amending the Drude expression with an addi-
tional k-dependence of its pole position, which is also referred to as the single-pole approximation. Formally, 
this approximation can be derived from Eqs. (2) by applying the perturbation expansion to the permittivity ten-
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sor at small k ≪ ω , where only the leading order corrections are kept. Collecting all k-dependent terms into the 
denominator one obtains the transverse permittivity as

where ctr = ω/5� and cℓ = 3ω/5� . It is, however, restricted only to small k’s. This expression can be also 
obtained using a popular hydrodynamic model for the dielectric  response22,34, which, however, yields different 
coefficients ctr,ℓ = ω/3� . In this case, the obtained the model has no limitation on values of k48 It is commonly 
assumed that the single-pole approximation describes all physically relevant effects due to non-locality in the 
dielectric  response22. However, as we will demonstrate it is not the case with the SASE and the related absorption 
peak at higher frequencies.

The relative absorptivity rp calculated with the single-pole model (11) is shown in Fig. 3 by a dotted black 
line. The model qualitatively reproduces the first ASE peak but fails to capture the second one completely. This 
deficiency of the model is closely related to the origin of the SASE and deserves a closer look. As shown above, 
the ASE contribution to the impedance in Eq. (1d) is defined by singularities of Gωk . Using the single-pole 
approximation in Eq. (11) and taking the limit ω ≪ γ , one obtains the following approximate expression

Comparing this expression with Eq. (8) obtained from the original LRS model (2) one sees that it also has a pole 
singularity in the vicinity of the real kz axis. Using this approximation one obtains the frequency asymptotic of 
the surface impedance as Zp ∝ ω3/4 , which overestimates the result Zp ∝ ω2/3 obtained from Eq. (8). Nevether-
less, the single-pole approximation yields the maximum of the absorptivity peak at ω ≃ α , which is close to the 
result obtained with the LRS model [cf. Fig. 3].

In contrast, the SASE contribution to the impedance ( ∝ 1/εℓk,ω ) has a different singularity type. It does not 
have a pole close to the real kz axis, and the main part of the corresponding integral for the impedance comes 
from the logarithmic branch-cut. The single-pole approximation does not reproduce this type of singularity 
and, as a consequence, fails to capture the SASE peak. We note in passing that the result cannot be improved by 
using many-pole extensions of the model.

SASE‑induced absorptivity peak. It is important to explain how the SASE, which takes place in the 
domain of plasmons q ≃ ω15, affects scattering of light waves with much smaller q ≃ αω ≪ ω . Notice, that there 
is no such problem for the ASE peak, because ASE takes place at very small q as well. An explanation of this 
inconsistency for SASE is that scattering of long EM waves on the interface generates plasmon modes of much 
shorter wavelength, which are damped more efficiently.

To demonstrate this, we estimate the SASE contribution to the surface impedance using S approximation in 
Eq. (10), which we split into two parts as

Here ZD
p  is the Drude contribution to the impedance, where Eq. (3) is used for both permittivity components, 

while correction δZS
p writes as

Taking into account that α ≪ 1 we consider the quasistatic approximation of α = 0 . We also recall the inequality 
q ≪ ω for the reflected light wave and apply the series expansion with respect to q for the integrand, where we 
keep only the leading order contributions. This yields

This integral is estimated using the steepest descent approach [see Supplemental Material]. Assuming the result 
is small one obtains the corresponding relative absorptivity as

The Drude part ZD
p  is easily calculated analytically. Substituting the result of the saddle-point calculations for 

δZS
p one obtains

This approximation, represented by the red dashed line in Fig. 3, gives a reasonably good agreement with with 
both the LRS model and S approximation for the second peak.
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According to Eq. (17), the maximal deviation from the Drude result depends on the ratio of two small 
constants, α/γ , and can thus have an appreciable value. The result agrees with the intuitive expectation that the 
relative SASE contribution to the absorptivity increases at smaller values of γ . This is supported by numerical 
calculations for the full LRS model that are shown in Fig. 5, where both ASE and SASE relative contributions 
are calculated for several values of γ . We note in passing an interesting trend that the relative amplitude of the 
SASE peak grows at larger γ compare to that of the ASE peak.

Details of the analytical calculations of the integral in Eq. (15) reveal the exact relation between the SASE 
and the second absorptivity peak. The absorptivity enhancement is determined by Re[δZS

p] , i.e. by the imaginary 
part of the integral in Eq. (15). The latter depends on Im[εℓ

ωkz
] , which is non-zero at k > ω , i.e. when the Landau 

damping sets in. The calculation shows that the main contribution to the integral in Eq. (15) is given by the 
interval kz � ω , which is precisely the domain of surface plasmons where the SASE is  observed15. To summarize 
the damping mechanism works as follows. When the light is reflected from a surface at a non-normal angle, a 
wide continuum of surface plasmon waves is generated. It includes plasmons with k � ω , for which the damping 
is significant due to SASE. However, it affects only the longitudinal field component and, therefore, the damping 
increase at larger reflection angles where the longitudinal component grows.

It is of interest to note that for the SASE contribution Eq. (17) yields the frequency asymptotic of ω5/3 , which 
differs from both ω1/2 of the NSE and ω2/3 of the ASE. This result, however, is to be taken with a grain of salt 
because for small ω the integral for the impedance contains an additional logarithmic  contribution16. Neverthe-
less, in the SASE frequency interval ω � 0.1 , the estimate fits the numerical result with a reasonable accuracy.

s and p polarizations. Form a practical point of view, it is interesting to consider two quantities where the 
SASE contribution can be seen most clearly. Note, that SASE affects only p-polarized waves, while for s polariza-
tion the effect is absent. To highlight this difference between the polarizations, one can consider the ratio of the 
p and s polarization reflectivities defined  as49

This quantity is not sensitive to the radiation intensity, which is very advantageous in experiment.
The frequency dependence of r is shown in Fig. 6 for a few scattering angles θ . Results for the full LRS model 

(2) are given by black solid lines, while dashed lines represent the Drude approximation. The results confirm 
the two-peak structure. The highest visibility of the second peak is observed at ω ≃ 50◦ , where both peaks have 
almost the same amplitude. At θ � 60◦ the second peak gradually disappears even though the difference between 
the full and Drude models remains large [cf. Fig. 3]. Thus, appearance of the second peak in this quantity at higher 
frequencies, which changes with the scattering angle, is a clear manifestation of the SASE effect.

One can also consider another quantity where the influence of the SASE is seen even more directly

The frequency dependence of a calculated at different scattering angles is shown in Fig. 7. The dependence is 
practically constant in the ASE frequency domain, because the ASE enhances the absorptivity for both s and p 
polarizations similarly. However, this changes at higher frequencies, where a demonstrates a notable deviation 
from the constant. The SASE manifests itself via the appearance of the peak in the frequency dependence. The 

(18)r = 1−
|Rp|2

|Rs|2
.

(19)a =
ap

as
=

1− |Rp|2

1− |Rs|2
.

Figure 5.  Relative absorptivity rp , calculated for selected values of the decay rate γ (shown in units of �p ) for 
incident angle θ = 60

◦.
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peak is absent when only the Drude contribution is taken into account, although it leads to the rise/decrease of 
a depending on the scattering angle [see Fig. 7].

Visibility of the SASE peak. Finally, we comment on experimental observability of SASE peaks. In metals, 
the ASE and the corresponding peak takes place at relatively low frequencies where the influence of other factors 
on the absorption, like interband transitions, is minimal. This makes comparison of the theoretical predictions 
based of the LRS model with experimental measurements much  easier11,12 In contrast, the SASE peak is found at 
much higher frequencies where the contribution of the interband transitions cannot be neglected. For the latter 
we adopt a standard model, where the LRS model (2) of the permittivity is supplemented with additional Lorentz 
 contributions50 In the local limit of k → 0 its yields the Drude-Lorentz model, frequently adopted to investigate 

Figure 6.  Reflectivities ratio r = 1− |Rp|2/|Rs|2 subtracted from unity for p and s polarizations, for θ = 40
◦ 

(a), θ = 50
◦ (b), θ = 60

◦ (c) and θ = 65
◦ (d). Results for the full LRS model (solid line ”Full”) are compared 

with the Drude approximation (dashed line ”Drude”). Blue lines give the results calculated with the interband 
transitions, solid and dashed lines represent the full and Drude models, respectively.

Figure 7.  Absorptivities ratio a = ap/as for p and s polarizations, for θ = 40
◦ (a), θ = 45

◦ (b), θ = 50
◦ (c) and 

θ = 60
◦ (d). Results for the full model (solid line ”Full”) are compared with the Drude approximation (dashed 

line ”Drude”). Blue lines give the result with the interband transitions, solid and dashed lines represent the full 
and Drude models, respectively
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 plasmons51 For the calculations we use material parameters for  silver50,52,53. An interested reader can find details 
of the model and calculations in the Supplemental Material. The results are shown in Figs. 6 and 7 by blue lines. 
They demonstrate that the SASE peak is still visible in both r and a quantities, although the transitions diminish 
its amplitude.

Classical Maxwellian plasma
As demonstrated above, the additional absorptivity peak at higher frequencies is related to SASE. The mecha-
nism underlying the absorptivity enhancement is the Landau damping of the longitudinal field, appearing due 
to surface plasmons generated by the light scattering on a surface. Mathematically, the losses are a consequence 
of the Fermi distribution of metallic electrons. However, both SASE and the related absorption peak are more 
general phenomena. The necessary requirement is the non-local dielectric response and collisionless Landau 
damping. We will show that SASE and the absorption peak are observed also in plasma as long as the surface 
plasmonic modes mix transverse and longitudinal field  components47

We demonstrate it using a model of a classical non-relativistic plasma of electrons and ions with the Maxwell 
temperature distribution. Apart from the illustrative purposes, this analysis is useful for applications, because 
the problem of EM wave scattering of a plasma has practical aspects. For example, it has recently gained much 
attention in connection with the so-called plasma mirrors, designed to achieve high harmonic generation and 
even bring the Schwinger limit within  reach54.

For the calculations, we assume a standard approximation where one neglects movements of heavier ions, 
which are regarded as stationary scattering centres introducing an additional decay rate γ for rapidly moving 
electrons. The permittivity tensor for this model are given by its  components6,55 

 where

is defined using imaginary error function Erfi56,57. The temperature velocity vT of electrons, the Debye radius a, 
and the electronic plasma frequency �e are defined as

where Ne is the electronic density, me is the electron mass, � = ω + iγ , and the loss constant for a fully ionized 
hydrogen plasma is estimated  as6,58–60

As above, we introduced the scaled quantities ω → ω/�e , k → kvT/�e , where vT and �e plays the same role 
as vF and �p in metals. For the calculations we assume parameters of a dense hot plasma accessible under labo-
ratory  conditions60 with the density Ne = 2× 1017 cm−3 and T = 2× 106 K . These parameters correspond to 
the temperature velocity α = vT/c = 1.84× 10−2 and the loss rate of γ = 10−4 . The effective plasma frequency 
for this density is �e = 16.6meV .

Figure 8 plots the relative absorptivity rp (5), calculated using the full model (20), and results of A and S 
approximations, defined by Eqs. (9) and (10), respectively. As in metals, rp has two peaks. The maximum of the 
lower frequency (ASE) peak is found at ω ≃ α , while the higher frequency (SASE) peak has its maximum at 
ω ≃ 0.5.

As for metals, the ASE peak is determined by the transverse component of the permittivity tensor. For the 
corresponding frequency interval one obtains an approximate expression for the Green function similar to that 
in Eq. (8), but with different numerical coefficients. The SASE peak is related to the longitudinal field component 
and is determined by singularities in 1/εℓ

ωk . For plasma, the permittivity does not have logarithmic branching 
point and is complex for any (real) k. One sees this from the asymptotic expressions for the longitudinal permit-
tivity that are 

(20a)εℓωk = 1+
1

(ak)2
�

ω

[

1+ F

(

�√
2kvT

)]

,

(20b)εtrωk = 1+
�2

e

�ω
F

(

�√
2kvT

)

,

(21)F(x) = −
√
πxe−x2 [i+ Erfi(x)].

(22)vT =

√

T

me
, a =

√

T

4πNee2
, �e =

vT

a
,

(23)γ

�e
=

2
√
2e3

√
Ne ln

(

a
√
mT/�

)

3T3/2

(24a)εℓωk ≃ 1− i

√

π

2

�2

ωk3
exp

(

−
ω2

2k2

)

, k ≪ ω,

(24b)εℓωk ≃ 1+
1

k2
− i

√

π

2

ω

k3
, k ≫ ω.



11

Vol.:(0123456789)

Scientific Reports |         (2023) 13:5103  | https://doi.org/10.1038/s41598-023-31478-y

www.nature.com/scientificreports/

 In contrast to the Lindhard expression (2b) for metals, here the small-k asymptotic is always complex. Its imagi-
nary part is exponentially small at k → 0 , which implies the SASE contribution to the absorptivity vanishes in 
the limit ω → 0 . However, the non-zero imaginary part increases the SASE contribution to the absorptivity at 
low frequencies, which explains the asymmetry of the corresponding peak [cf. Figs. 3 and 8]. For plasma, the left 
boundary of the SASE peak is found as ω ≃ 10−2 , whereas in metal (silver) it is located at ω ≃ 0.1.

Notice, the transverse permittivity has a non-vanishing imaginary part at small k as well, which results in 
that the ASE peak decays slower at larger ω , so that the ASE peak extends almost to ω ≃ 1 . A combination of 
these tendencies produces a larger intersection of the ASE and SASE peaks, which are still well separate. Larger 
amplitudes of the peaks for plasma are due to a much smaller decay rate γ.

A colour-density Fig. 9 plots the dependence of rp on the ω and θ , which appears qualitatively similar to Fig. 3 
for metals. Quantitative differences include a notable blue shift of the ASE peak due to increased α = v/c and 
a much larger amplitude. Finally, the absorptivity ratio a, plotted in Fig. 10, reveals a large SASE peak whose 
amplitude is sensitive to the incident angle.

Summary and conclusion
This work reveals the relation between the superanomalous skin effect (SASE) and the enhanced absorption of 
light scattered on a surface of a conductive medium. The analysis is done by using an exact scattering solution 
for the chosen model for the dielectric response of the medium. We use the solution to extract both the SASE 
and the light scattering spectrum, and demonstrate that the SASE manifests itself in the additional enhancement 
of the light absorption in the optical frequency range 0.1 < ω/�p < 1 . The latter is well distinguished from the 
interval where the standard anomalous skin effect (ASE) is observed. The ASE and SASE enhancement peaks 
merge only in the extreme case of ultra-relativistic charge carriers.

The origin of both peaks is related to the non-locality of the dielectric response and collisionless damping of 
EM waves in an electrically conductive medium. However, the loss mechanisms due to SASE and ASE differ: the 
ASE suppresses the transverse field component, whereas the SASE affects the longitudinal one. This difference 

Figure 8.  Relative absorptivity rp = ap/a
D
p  calculated for a Maxwell plasma, aDp  is the result of the Drude 

model. The black line ”Full” gives ap of the full model in Eqs. (20), the solid blue line ”Anomalous” and the 
red line ”Superanomalous” show rp obtained using the A and S approximations, defined by Eqs. (9) and (10), 
respectively. The cyan and magenta colour filling shows the frequency intervals of the ASE and SASE. The 
incident angle is θ = 50

◦.
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Figure 9.  Colour-density plot for absorptivity ratio rp as a function of frequency ω and scattering angle θ in 
plasma for α = 1.84× 10

−2.
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gives rise to strong dependence of the absorption spectrum on the polarization and incident angle of scattered 
light waves.

It is important to note that the SASE increases the energy loss even though the domain of frequencies and 
wave lengths where the SASE is observed is well outside those of the scattered light. The reason is that the light 
scattering generates a continuum of surface plasmons modes including those lying in the frequency/wave number 
interval where the SASE takes place. The generation of surface plasmons in the SASE domain leads to a deeper 
field penetration and, therefore, larger energy losses of the scattered light. The loss mechanism is related to the 
Landau damping where the energy of the longitudinal plasmon wave is transferred collisionlessly to the kinetic 
energy of charge carriers. The mechanism takes place in any electrically conductive medium. It requires the 
Landau damping and the longitudinal component of the electric field in the propagating EM wave. The latter is 
ensured by the scattering geometry when the light is scattered at a non-normal angle.

A generic origin of the loss mechanism leads us to a conclusion that the same or even larger SASE absorptivity 
enhancement is expected when the metal surface is not perfect. Surface irregularities randomize the scattering 
angle for both the EM wave and electrons in the metal. This results in a larger contribution of the longitudinal 
field component of ab EM wave propagating inside the metal and in a larger contribution of the waves with large 
k. These factors enhance a generation of surface plasmons leading to a larger energy loss. It is known that the 
light-plasmon coupling can be increased by scratching the metal surface or by placing small light scatterers in 
its vicinity. Also, numerical calculations using phenomenological models for the diffusive electron scattering on 
imperfect surfaces demonstrated only quantitative but not qualitative changes in the absorptivity  spectrum33. 
However, further analysis is needed as the SASE-related effects are not accounted in those models.

Finally, we note that the visibility of the SASE peak in experiments depends on many factors, in particular, 
the decay rate of the carrier states. The calculations for silver demonstrate that interband transitions in the opti-
cal frequency range do not suppress the SASE peak, which remains visible at intermediate incident angles. The 
SASE-induced effects should, thus, reveal themselves by comparing absorption spectra for different polarization 
and scattering angle of the incoming light. These differences cannot be described using popular hydrodynamic 
models or single-pole approximations for the dielectric permittivity function.

Data availability
The datasets used during the current study are available from the corresponding author on reasonable request.
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