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Abstract
This review presents an upgraded wave theory adapted to the high fluctuation level 
of driven realistic, i.e., non-idealized plasmas. Based on the author’s early publica-
tion (H. Schamel, Plasma Phys. 14 (1972) 905) and supported by recent Vlasov–
Poisson (VP) simulations, an extended theoretical framework is presented which not 
only covers the essential features of coherent hole structures, but which also enables 
to make the necessary corrections to the current wave theory. A linear stability anal-
ysis for single harmonic waves that successfully incorporates trapped particle effects 
(in contrast to previous analyses) shows an unconditional marginal stability inde-
pendent of the drift between electrons and ions, which irrevocably contradicts Lan-
dau’s theory. Moreover, holes of negative energy are of particular interest because 
they act as attractors in the dynamic system. They are the source for the release of 
further modes and thus increase the level of intermittent turbulence. In summary, 
pattern formation in collision-free plasmas is inherently nonlinear, kinetic, and 
extremely diverse. However, to have a satisfactory, if not yet complete understanding 
of its processes, a twofold paradigm shift is imperative: one from the conventional 
linear, discrete wave models to the nonlinear wave models dealing with continuous 
spectra due to trapping and a second from the BGK to the present method for the 
correct handling of equilibria.
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1  Introduction

First, the reader should be aware that they are unlikely to recognize much of what 
they have learned about electrostatic plasma waves so far, especially from textbooks. 
One reason for this is that textbooks mainly refer to linear waves but are less com-
municative when it comes to the real world of pattern formation that is strictly non-
linear without limitation. This reference to linearity is definitely suitable for waves 
in the fluid description, in which higher amplitude nonlinear waves emanate from 
the linear ones. In the kinetic Vlasov description, however, the connection between 
linear and nonlinear solution is lost due to the phase locking of the coherent struc-
tures and the associated trapping nonlinearity, which is absent in fluid theory, but 
kinetically ubiquitous for structures with phase velocities that are not too high. This 
premise gives the description a new, largely unexplored dimension.

A second reason is that in the past the wrong method was preferred by the com-
munity in the nonlinear regime, namely the BGK method (Bernstein et  al. 1957). 
This method has definitely historical merits as it was the first time that a correct 
Vlasov–Poisson (VP) solution could be obtained by introducing the trapped particle 
concept. However, as is explained in more detail also later, the BGK method cannot 
provide a complete solution, since the phase velocity, the second part of a nonlinear 
solution of not less importance, remains indefinite. A correct phase velocity is, for 
example, necessary to set up the decisive evolution equation or to decide on the pre-
dominant wave energy. In addition, the shape of the electrical wave potential �(x) , 
which is a prerequisite for handling the BGK method, can no longer be specified 
mathematically for a typical solution namely when more than one trapping scenario 
is involved.

Linear theory is thus reserved and applicable for specially prepared, calm plas-
mas. The first experimental verification of Landau/Langmuir waves by (Derfler 
and Simonen (1966)), by measuring of the Bohm–Gross dispersion and the damp-
ing rate, for example, could only be carried out successfully after they had pains-
takingly (1) created the prerequisites for the validity of the Landau theory, namely 
a quiet background plasma and a perturbation that satisfies the “topological con-
straint” |𝜕vf1| << |𝜕vf0| valid at every moment of evolution. For the “nonlinear Lan-
dau damping” (NLD) scenario linear theory only applies in the early phase of evolu-
tion, i.e. before saturation on a much lower, but nonlinear level (Manfredi 1997). To 
the surprise of many, the structure is nonlinear in this late, lowest energy state. Note 
that this latter, dynamically calmer state is absent from the perturbation analysis by 
(Mouhout and Villani (2011), Villani (2014)2) since trapping effects are neglected 
by them. The scenario of the NLD is hence only completely solved if coherent non-
linear structures, as we will develop in this article, are included, even if Landau’s 
prerequisites apply initially. Therefore, to achieve consistency in the NLD scenario, 
it is imperative to consider trapping.

1  After a lecture by H. Derfler in Munich at the end of the sixties.
2  Its small amplitude existence can be seen as a further hint for the need of analytical studies like this, 
especially in the perturbative trapping regime ( �, �).
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Because of the paramount importance of this observation, we pause briefly to 
note the following: This development is in blatant contradiction to the standard wave 
theory practiced up to now, according to which waves with sufficiently small ampli-
tudes can be described linearly and non-linearity only has to be taken into account 
for larger amplitudes.

If the topological condition is violated, the damping can be very different or even 
missing (Korn and Schamel 1996a).

In (Bauer and Schamel (1992)), to present a second well-known example, the 
two-stream instability, the early phase of linearly dominated, but rather violent 
nonlinear development (described by mode coupling, including mode slaving and 
the tendency to wave collapse) is replaced by a sudden calming and saturation of 
the evolution through particle trapping. This calm phase in the structure formation 
caused by trapping, to say it again, is our concern in a general context beyond the 
Landau scenario.

In general, linear wave theory describes pretty well incoherent waves of small 
amplitudes and random phases but has no chance of meeting the abundance of 
coherent structures that establish in driven, noisy plasmas triggered for example by 
seeds or eddies. By localized seeds particle trapping is involved from the very begin-
ning and an a priori linearization of the VP system is no longer useful. The Landau 
theory is therefore not suitable for describing pattern formation caused by seeds.

The correct view, therefore, is that the Vlasov equation, as a nonlinear equation, 
must first be solved before the small amplitude limit is taken, and not the other way 
around. In other words: The smallness of a wave has to be seen as a limiting case of 
the nonlinear solution and not by solving a wrong equation, the linearly truncated 
Vlasov equation.The good solvability of the linear Vlasov equation does not neces-
sarily offer a valid ticket to the realm of nonlinear structures.

In the current-driven plasma situation, this premise is justified by comparing both 
solutions, the linear and the nonlinear. In Fig. 2 of (Schamel (2012)), in which the 
two distributions are compared with one another in the resonant region, the differ-
ences are clearly visible. While the nonlinear solution behaves well, the linear solu-
tion involves principal value and delta function singularities in the van Kampen case 
or manipulations of the background distribution(s) at resonance in the Landau case 
that should mimic trapped particles. These manipulations are artificial, i.e. not car-
ried out correctly to the end and hence miss nonlinear self-consistency. These differ-
ences are retained and do not disappear in the infinitesimal amplitude limit. We will 
address this point again in Section 3.1.

The main goal of the present paper therefore is to provide the reader with the nec-
essary components of a correct nonlinear wave theory.

In this article, the theory of electron-hole equilibria is unfolded in detail, with 
an emphasis on its occurrence in collision-free, current-carrying, noisy plasmas. It 
offers new insights into the dynamics of holes triggered by tiny seeds particularly in 
linearly subcritical plasmas as seen in the numerical simulations of (Schamel et al. 
(2017), Mandal et al. (2018), Mandal et al. (2020), Schamel et al. (2020a), Schamel 
et al. (2020b)). It explains why a hole is suddenly accelerated during its evolution 
and why it settles on the high energy tail of the distribution where the slope is nega-
tive, rather than on the low energy, positively inclined tail, i.e. between the ion and 
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the electron peak, as one would expect from a linear perspective. The existence of 
privileged electron holes, which exist as nonlinear structures up to the infinitesimal 
amplitude limit, is discussed in detail and further simplified modes are recovered. 
The appearance of intrinsic substructures in the trapped particle distribution and 
in the macroscopic particle densities are further new elements that can be under-
stood as well (Schamel et al. 2017; Mandal et al. 2018, 2020; Schamel et al. 2020a, 
b). Several new solitary wave types are presented and it is proved that the majority 
of possible solitary wave solutions refer to mathematically undisclosed potentials 
�(x) (Schamel 2020a, b). Finally, the negative energy concept associated with these 
modes offers a new avenue of plasma instability triggered by tiny seeds.

2 � Theory of electron hole equilibria

To describe the theory as transparently as possible we study in a first step a two-
component, current-driven plasma in which trapping effects refer only to the elec-
trons, i.e. we focus firstly on electron trapping effects for electron holes (EHs) 
propagating in the electron thermal range. In order not to appear too inflated, ions 
are allowed to be mobile, but without ion trapping (reflection) effects, which are 
included in a second step later. Instead, we want to get to know the influence of elec-
tron trapping as well as possible.The wavelength of the structure is arbitrary at the 
beginning, but is later assumed to be infinite in the solitary wave limit.

As said, the Schamel method consists in first solving the Vlasov equation before 
taking the small amplitude limit, and not vice versa. We therefore start with a sta-
tionary solution of the full electron Vlasov equation, which reads in the wave frame 
where the structure is at rest: (v�x + ��(x)�v)fe(x, v) = 0 . It is solved by any function 
of the single particle energy � ∶=

v2

2
− �(x) valid for the whole velocity range. For 

free particles there is another (discrete) constant of motion, the sign of the velocity 
� ∶= v∕|v| , which is needed for traveling holes having a nonzero phase velocity v0 . 
This, together with the requirement that the electrons without loss of generality obey 
a shifted Maxwellian in the undisturbed case, results in the following Schamel dis-
tribution (Schamel 1972a, 2000, 2020a, b) :

where � ,�1,�2, �, � are free parameters representing the contributions of the trap-
ping scenarios under consideration. The corresponding part of fe(x, v) is further on 
called fet(

√
−�) . In this equation �(x) represents the Heavyside step function. We 

(1)

fe(x, v) =
1 + k2

0
𝜓∕2

√
2𝜋

�
𝜃(𝜀)e−(𝜎

√
2𝜀−ṽD)

2∕2

+ 𝜃(−𝜀)e−ṽ
2
D
∕2

�
1 +

�
𝛾 + 𝜒1 ln(−𝜀)

+ 𝜒2 ln(−𝜀)
2

�
(−𝜀)1∕2 − 𝛽𝜀 + 𝜁(−𝜀)3∕2

��
,
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use normalized quantities such that the velocity is normalized by the (unperturbed) 
electron thermal velocity, the electron potential energy by the electron thermal 
energy, and the space by the Debye length.

Note that (1) is preceded by two distribution functions. One of them was presented 
by (Gurevich (1968)), another one by (Montgomery and Joyce (1969)). With his con-
stant distribution for trapped electrons, Gurevich could at least anticipate the sech4 pro-
file of a solitary wave, although the chosen distribution later turned out to be unsuitable 
for getting a phase velocity. Montgomery and Joyce, on the other hand, referred for the 
first time to shifted Maxwell distributions for untrapped electrons and derived double-
layer solutions. Due to the application of the BGK method, however, their solutions 
appear less significant.

Equation (1), to continue, comes from the Galilean shift ṽD of the Maxwellian given 
in the unperturbed case by fM(v) =

1√
2𝜋
e−(v−ṽD)

2∕2 and from the replacement of v by 
�
√
2� as an effect of the perturbation. This holds for 𝜀 > 0 , which represents the free 

electron region. The gap in between 𝜎 > 0 and 𝜎 < 0 , when � ≤ 0 , refers to trapped 
electrons. The distribution fe(x, v) is thus a function of the two constants of motion, � 
and � , and consists of two parts, the contribution of untrapped particles, 𝜀 > 0 , and the 
one of trapped particles, � ≤ 0 . Trapping is therewith controlled by the five parameters 
� , � , � , �1 , �2 , the first three refer to a perturbative treatment of trapped particle effects 
and represent the first three elements of a Taylor expansion around 

√
−� = 0 of a more 

general, exponential fet(
√
−�) , whereas the fourth and fifth, �1 and �2 , are definitely 

non-perturbative in nature. Note that fe(x, v) is continuous across the separatrix and it is 
assumed that 0 ≤ 𝜙(x) ≤ 𝜓 << 1.

The electron density ne(�) is obtained by a velocity integration.
We mention in passing that studies of finite amplitude, � ≃ O(1) , electron holes and 

strong double layers (Bujarbarua and Schamel 1981; Schamel and Bujarbarua 1983) 
use a similar but unexpanded distribution of trapped electrons in which case Schamel’s 
functions K(x, y),H(x, a, b) , defined, e.g. in (Schamel (1972a), Bujarbarua and Scha-
mel (1981), Schamel (1982b), Das and Schamel (2005)), are involved. Here we restrict 
our analysis to weak solutions, 𝜓 << 1 . It can either be done by the velocity integration 
of (1) first and a subsequent Taylor expansion, using 𝜙 << 1 , as done, e.g. in (Schamel 
(1972a), Schamel (1979), Schamel (1982b), Schamel (1986)) or by the Taylor expan-
sion of (1) first, followed by the velocity integration, as done, e.g. in (Schamel (1973), 
Schamel (1975), Korn and Schamel (1996a), Schamel (2020b)). Both cases yield the 
same result:

where A ∶= (Γ +
a1

2
D1 + a2D2) , B ∶=

16

15
b(𝛽, ṽD)

√
𝜓  with b(𝛽, ṽ

D
) ∶=

1√
𝜋

(1 − 𝛽 − ṽ
2

D
)e−ṽ

2

D
∕2 and

(2)

ne(𝜙) =
�
1 +

1

2
k2
0
𝜓

��
1 +

�
A −

1

2
Z�
r

�
ṽD√
2

�

−
5B

4
√
𝜓

√
𝜙 + C𝜙 + (D1 + a1D2) ln𝜙 + D2 ln

2 𝜙

�
𝜙 +

1

16
Z���
r

�
ṽD√
2

�
𝜙2 + ...

�
,



	 Reviews of Modern Plasma Physics (2023) 7:11

1 3

11  Page 6 of 41

(Γ,C,D1,D2) ∶=
√
𝜋

2
e
−

ṽ2
D

2 (𝛾 ,
3𝜁

4
,𝜒1,𝜒2) . The constants are given by 

a1 = 2(1 − 2 ln 2) = −0.773 and a2 = −2 + ln 4(ln 4 − 2) + �2∕3 = 0.439 . The 
other quantities are defined by

The function Z�
r
(x) represents the derivative with respect to x of the real part of the 

plasma dispersion function (Fried and Conte 1961) and is plotted for real x in Fig. 1:
Its zero at x = 0.924 will play later an important role in the definition of the 

“Slow Acoustic Modes”. As usual, prime is defined in the present context as the 
first derivative with respect to the argument.

Note that all trapping parameters (A,B,C,D1,D2;Γ) in (2) carry the factor 
e−ṽ

2
D
∕2 , i.e. they vanish in the large |ṽD| limit.They therefore only influence the pat-

tern formation for moderate and small values of |ṽD| . As expected, their influence 
on high-speed Langmuir waves is therefore negligible.

Before we go any further, let us secure this density expression by referring to 
known special cases.

In case of k0 = 0 , ṽD =0 and of zero trapping parameters we find by utilizing 
−

1

2
Z�
r
(0) = 1 and − 1

2
Z���
r
(0) = −4 the well-known Boltzmann expression for ne(�) : 

ne(�) = 1 + � +
1

2
�2 + .. . This particularly confirms the last term in (2) contrary 

to a different statement found in the literature (Hutchinson 2017).
If we keep ( k0 , ṽD , B) but neglect ( Γ,C, D1,D2 ) we get

ṽD ∶= vD − v0, u0 ∶=

√
Temi

Time

v0, 𝜃 ∶=
Te

Ti
.

Fig. 1   The function − 1

2
Z�
r
(x) as a function of x
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which is identical with (3.9) of Korn and Schamel (1996a). And last but not least, if 
we just keep (Γ,D1,D2) as non-zero, we get

which is the expression (2) of (Schamel (2020a)).
For the ion density we take an expression that incorporates O(�2) terms but neglect 

ion trapping effects and refer to a straightforward extension that reduces to the known 
expressions in limiting cases:

It reduces in the u0 → 0 limit to ni = 1 − �� +
(��)2

2
≈ e−�� , the expected Boltzmann 

value. On the other hand, in the “cold ion” or large u0 limit we receive 

ni = 1 +
��

u2
0

+
3(��)2

2u4
0

≈
1√

1−
2��

u2
0

 valid under the constraint |𝜃𝜙∕u2
0
| << 1.

Later in Section 7 we will turn to a more general ion density that also includes ion 
trapping effects. Notice that the immobile ion case is automatically included in ni , 
namely by setting � = 0.

It should be emphasized that these density expressions are permissible since they 
are derived from solutions of the Vlasov equation. This is in contrast to some previous 
publications where the �-dependence is simply imposed without guaranteeing that a 
valid distribution, especially that for free and trapped particles, stands behind. As long 
as this justification is lacking, these theories remain essentially unfounded (Cairns et al. 
1995; Mamun and Cairns 1996; Guio et al. 2003). Nevertheless, such “theories” may 
be sometimes useful and more sensitive of an issue and provide good approximations 
and even predictions of later experimental observations, despite missing more or less 
justification behind each and every hypothesis.

As said, in case of finite amplitudes and Maxwellian plasmas Schamel’s functions 
K(x, y),H(x, a, b) (Schamel 1972a; Bujarbarua and Schamel 1981; Schamel 1982b; 
Schamel and Bujarbarua 1983; Das and Schamel 2005; Goswami et  al. 2008) are 
involved; for nonextensive distributions, however, such as �-distributions (e.g. Tribeche 
et al. 2012), a corresponding extension is still missing.

After insertion of the densities (2) and (3) into Poisson’s equation, 
���(x) = ne(�) − ni(�) =∶ −V�(�) , where in the last step the pseudo-potential V(�) has 
been introduced, we get (ignoring a term of O(�2) connected with k2

0
)

ne(𝜙) =
�
1 +

1

2
k2
0
𝜓

��
1 −

1

2
Z�
r

�
ṽD√
2

�
𝜙 −

5B

4
√
𝜓
𝜙3∕2 +

1

16
Z���
r

�
ṽD√
2

�
𝜙2 + ...

�

ne(𝜙) =

�
1 +

�
A −

1

2
Z�
r

�
ṽD√
2

�
+(D1 + a1D2) ln𝜙 + D2 ln

2 𝜙

�
𝜙 + ...

�
,

(3)ni(�) = 1 +
��

2
Z�
r

�
u0√
2

�
+

�2�2

16
Z���
r

�
u0√
2

�
+ ...
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and by integration with V(0) = 0

which we abbreviate as: −V0(�) since it is used only temporarily. In (5) we have also 
introduced the quantity C̃ which is defined by

(5) reduces to the known expression (4) of (Schamel (2020b)) in case of immobile 
ions ( � = 0 ), of ( D1 = D,D2 = 0 ) and of a negligible O(�3) term.

The necessary constraint of a second zero of V0(�) , at � = � , yields

This expression is identical with (5) of (Schamel (2020a)) and (5) of (Schamel 
(2020b)) in the appropriate limits. It represents the equation for determining the 
phase velocity v0 as a function of the other parameters and is hence the nonlinear 
dispersion relation (NDR), a relation of eminent importance.

Replacing the first big bracket of (5) by (6) we get:

where r is r ∶= 1 − a1 − 2 ln� = 1.773 − 2 ln� . In this form V(�) automatically 
satisfies V(�) = 0 , a form we will call canonical.

(4)

− V
�(𝜙) =

k2
0
𝜓

2
+ 𝜙

��
A −

1

2
Z�
r

�
ṽD√
2

�
−

𝜃

2
Z�
r

�
u0√
2

��

−
5B

4
√
𝜓
𝜙1∕2 + C𝜙 + (D1 + a1D2) ln𝜙 + D2 ln

2 𝜙

+
1

16

�
Z���
r

�
ṽD√
2

�
− 𝜃2Z���

r

�
u0√
2

��
𝜙

�

(5)

− V(𝜙) =
k2
0
𝜙𝜓

2
+

𝜙2

2

��
A −

1

2
Z�
r

�
ṽD√
2

�
−

𝜃

2
Z�
r

�
u0√
2

��

− B

�
𝜙

𝜓
+ [D1 + (a1 − 1)D2]

�
−

1

2
+ ln𝜙

�
+ D2 ln

2 𝜙 + C̃𝜙

�

C̃ ∶=
2C

3
+

1

24

�
Z���
r

�
ṽD√
2

�
− 𝜃2Z���

r

�
u0√
2

��
.

(6)

k2
0
+

�
A −

1

2
Z�
r

�
ṽD√
2

�
−
𝜃

2
Z�
r

�
u0√
2

��

− B+

�
D1 + (a1 − 1)D2

��
−
1

2
+ ln𝜓

�
+D2 ln

2 𝜓 + C̃𝜓

�
= 0.

(7)
−V(𝜙) =

k2
0

2
𝜙(𝜓 − 𝜙) +
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[
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1 −

√
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𝜓
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𝜙

𝜓
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To obtain finally the shape �(x) we have to invert

which follows by a quadrature from the pseudo-energy : �
�(x)2

2
+ V(�) = 0 . The latter 

itself is derived from Poisson’s equation.
While (6) is the equation that determines the phase velocity v0 , it is (7) that deliv-

ers through (8) the wave structure �(x) , provided that the integral in (8) and the 
inversion can be accomplished by known mathematical functions otherwise one has 
to deal with a numerical evaluation of them.

An important feature of this system is that Γ (or A, respectively) no longer occurs 
in (7). This special trapping scenario therefore has no influence on the shape. Rather, 
it is this continuous variable that accounts for the phase velocity v0 that accordingly 
belongs to a continuous dispersion relation.

The presence of Γ (or A) in the NDR (and its disappearance in V(�) ) has an inter-
esting consequence. For a given shape �(x) that is determined by the pseudopoten-
tial, it provides a continuous band of phase velocities v0 around the Landau reso-
nance ( Γ = 0 ), i.e. it broadens the resonance similar but different to the continuous 
van Kampen spectrum. In other words, our theory provides the coherent, nonlinearly 
admissible version of Dupree’s (Dupree 1966, 1972) and Weinstock’s (Weinstock 
1968 Weinstock (1968)) resonance broadening and clump theory, which is a pertur-
bation theory that is based on linear, random waves and involves wave-particle scat-
tering and mode coupling effects (Krommes 2015).

It is easily seen that the parameter k0 stands for periodic waves, namely either 
from V(�) or directly from Poisson’s equation. The curvature of � : ���(x) = ne − ni , 
which becomes → k2

0
� as � → 0 , vanishes in the solitary wave limit k0 → 0 , not-

ing that � = 0 is the potential minimum. Otherwise the structure is periodic. It is, 
however, not necessarily the actual wave number k which is defined by k = �

L
 where 

2L is the actual wavelength. The correct relation between k and k0 is found by the 
overall charge neutrality condition and becomes (Das et al. 2018; Borah et al. 2018):

where N(k0,B, ...;�) ∶=
1

�

√
−2V(��) =

�
k2
0
�(1 − �) + �2[B(1 −

√
�) + ...] and 

where the dots stand for the remaining terms in V(� = ��).
Equations (6)–(9) constitute our main result in its most general form.
We emphasize that V(�) consists of 5 independent contributions, each of which 

stands for a certain mode structure. Whereas k0 alone stands for the harmonic wave 
(or more generally in combination with the other parameters for periodic waves, as 
said), the other 4 themselves represent specific solitary waves.

It is this central functionality that gives us the opportunity to denote them by an 
own name: elementary modes. With all 5 terms, however, when playing 

(8)x(𝜙) = ∫
𝜓

𝜙

d𝜙̃√
−2V(𝜙̃)

.

(9)1 =
1

2L ∫
L

−L

nedx =
1

L ∫
�

0

d�√
−2V(�)

=
k

� ∫
1

0

d�

N(k0,B, ...;�)
,
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independently an active role in V(�) , we have through all possible combinations a 
manifold of 31 ( 

∑5

i=1

5!

i!(5−i)!
 ) wave modes of different provenance (5 single, 10 dou-

ble, 10 triple, 5 quadruple and 1 quintuple combination(s)), a rather astonishing and 
up to now unknown variety. In principle the number of modes is doubled by the fact 
that besides k0 = 0 there exists a second limit for k0 which provides solitary modes 
(see Sect.4.1 and Sect.5).

Unfortunately most of them are mathematically undisclosed because �(x) can no 
longer be found analytically. This typically holds when 3 or more combinations are 
involved, but also some of the double combinations suffer the same fate. Fortunately, 
all of the elementary modes �(x) can be expressed and analyzed mathematically, an 
additional signature of their fundamental role. We should however stress that the 
choice of elementary functions is not unique, as for example other non-perturbative 
trapping scenarios could be selected and added as well (Schamel 2020a, b).

In the context of the nonlinear world of structure formation, these elementary 
modes offer via these possible combinations a kind of superposition principle 
on the V(�) level that enable us to get new members, somehow analogous to the 
superposition principle in linear wave theory. Or more precisely, within the class of 
potential structures �(x) of given �min = 0 and �max = � , the linear combination of 
two different pseudo-potentials V1(�) and V2(�) with corresponding �1(x) and �2(x) 
result in a third, �3(x) , which is provided by V3(�) = V1(�) + V2(�) . This applies as 
long as the differences in �1(x) and �2(x) caused by different trapping parameters are 
also taken into account in the new NDR valid for �3(x).

3 � The gallery of elementary modes

3.1 � The harmonic mode (single wave)

The harmonic, monochromatic or single wave is obtained when (B, C̃,D1,D2) → 0 . 
In all five examples, however, we will keep the Γ trapping term which appears in the 
NDR only. We then have from (7), (8) and by inversion of (8)

The surprising property of this mode is that it remains nonlinear up to the infini-
tesimal amplitude limit � → 0+ (Schamel et al. 2020b). The reason is that as long 
as � ≠ 0 , there exists a non-vanishing trapping area of width 2

√
2� in phase space 

in which fet behaves regularly. As seen from (1) fet neither collapses to a �-function 
(van Kampen) nor does it become a singular principal value function or the more 
regularized perturbed function that is forced by an artificial and therefore unrealistic 

(10)
−V(�) =

k2
0

2
�(� − �) x(�) =

1

k0

[
�

2
+ sin−1

(
1 −

2�

�

)]

�(x) =
�

2

[
1 + cos(k0x)

]
.
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flattening of f0(v) at resonance (Landau). In our theory, in which these singularities 
or artificial interventions are obviously missing, the functional space is well posed.

Consequently, all linearly based single-wave models, as examined exemplarily in 
(Balmforth, Morrison, Thiffeault 2013 [1]) as an extension of Landau or van Kampen, 
belong to this category of nonlinearly invalid models and must therefore be discarded.

The NDR (6) becomes in this non-perturbative harmonic wave limit:

Our mode is therefore the correctly upgraded, nonlinear counterpart to Lan-
dau ( Γ = 0 ) and to van Kampen ( −Γ = � ). It is moreover for Γ = 0 the well-known 
“Thumb-Teardrop” DR which has been studied for vD = 0 in detail by (Trivedi and 
Ganesh (2018)) mistakenly believing that it is a linear DR. As explained by the author 
in a comment in (Schamel (2019)), it makes sense only in the nonlinear regime, 
although formally it exists linearly, too.

On the other hand, a Γ ≠ 0 provides a new parameter resulting in a continuous spec-
trum of possible solutions, analogous but of course different to the continuous linear 
spectrum of van Kampen.

The existence condition for the harmonic wave is that all trapping parameters are 
zero (except Γ ). This particularly means that B ∼ (1 − 𝛽 − ṽ2

D
)e−ṽ

2
D
∕2 = 0 . This is sat-

isfied either for large |ṽD| by the exp-function (Langmuir mode) or by 𝛽 = 1 − ṽ2
D
 in 

case of finite or small values of |ṽD| . Since the latter is typically larger than unity the 
trapping parameter � is a negative quantity corresponding to a hole in phase space. The 
assumption of a flat trapped region, � = 0 , as often anticipated in the literature (e.g. 
Landau–Lifshitz and related literature), is hence generally inconsistent.

We hence have to conclude that there is no linear analogon of the harmonic wave 
that can account for the microscopic details.

The two worlds of linear and nonlinear Vlasov equilibria are disconnected with no 
connection (bridge) between them.

The fact that they agree macroscopically (in shape and velocity for vanishing Γ ) 
does not imply that they are also identical microscopically.

As will be pointed out in detail later (Sect.7.2) this mode is linearly marginally sta-
ble (Schamel 2018) for all vD in strong contradiction to Landau’s theory. There is no 
critical drift velocity vD ∗ which discriminates between damped and growing perturba-
tions of harmonic equilibria. All harmonic or single mode equilibria, due to their non-
linear character, turn out robust to linear perturbations and propagate undamped with 
respect to small linear perturbations independent of vD . If there is any growth it must be 
due to the higher harmonic part of the spectrum, such as in cnoidal or solitary waves.

It is moreover easily seen that k = k0 for this harmonic mode, i.e. k0 is already the 
exact wavenumber.

(11)k2
0
−

1

2
Z�
r

�
ṽD√
2

�
−

𝜃

2
Z�
r

�
u0√
2

�
= −Γ.
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3.2 � The privileged sech 4
(x)‑solitary mode

The four remaining modes are obtained by setting k0 = 0 . They are hence solitary 
in character. We get from (7),(8), by letting (C̃,D1,D2) → 0 the following three 
expressions:

where the last term represents the shape and follows by inversion of x(�) . It must 
hold: B > 0 which determines for given ṽD the parameter �.

This special shape has been known since the earliest times of structure formation 
(Gurevich 1968; Schamel 1972a, 1973, 1979, 1982b, 1986).

In contrast to the next two solitary modes, which rest on a logarithmic trapping 
scenario, it stays existent in the low amplitude limit, representing a privilege for this 
mode.

The phase velocity v0 is obtained by the NDR (6)

which has depending on B and Γ a wide range of particularly interesting solutions for 
current-carrying plasmas, as shown next. The only condition is that B > 0 whereas 
Γ can carry either sign. The general solution requires numerical means especially 
for the continuous branches which, due to B and Γ , are a bit more complex than the 
already complex Thumb-Teardrop DR.

We choose for demonstration two branches that are far apart. 

(i)	 the slow electron acoustic wave branch (SEAW)

This branch is obtained by assuming |ṽD| ∼ O(1) and |B − Γ| << 1 in which case all 
three terms in (13) are small. Making use of the Taylor expansion of the Z�

r
(x) function:  

−
1

2
Z�
r
(
ṽD√
2
) ∼

1.307−�ṽD�
1.307

 and of 1
2
Z�
r
(
u0√
2
) ∼

𝛿

𝜃v2
0

<< 1 we get |ṽD| = 1.307(1 − B + Γ) . 
This mode is hence placed on both sides of the shifted Maxwellian at a distance of 
1.307 and the phase velocity v0 is given by v0 = vD ± 1.307(1 − B + Γ).

This mode is acoustic-like and was termed slow electron acoustic wave 
(SEAW) in analogy to the slow ion acoustic wave (SIAW) occurring in the ion 
case, where the notion “ion acoustic wave” (IAW) has already been taken for the 
known linear branch (Schamel 1986). Hence the expression “electron acoustic 
wave” for this mode, as used in the literature, is at least misleading. But it is also 

(12)

−V(�) =B
�2

2

�
1 −

�
�

�

�
, x(�) =

4√
B
tanh−1

⎛⎜⎜⎝

����
1 −

�
�

�

⎞⎟⎟⎠
,

�(x) =� sech 4

�√
B

4
x

�
,

(13)−
1

2
Z�
r

�
ṽD√
2

�
−

𝜃

2
Z�
r

�
u0√
2

�
= B − Γ,
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wrong because no linear electron acoustic wave exists, as long as one disregards 
anisotropic temperatures or other background deviations.

In Sect. 4.1 we will treat the periodic extension of this solitary hole, the cnoi-
dal electron hole, for which k2

0
≠ 0 . 

	 (ii)	 the ion acoustic wave branch (IAW)

In this case �ṽD� ∼ O(
√
𝛿) << 1 and u0 ∼

√
𝜃 >> 1 , i.e. we assume 𝜃 >> 1 . The 

Taylor expansions yield − 1

2
Z�
r
(
ṽD√
2
) = 1 − ṽ2

D
 and 1

2
Z�
r
(
u0√
2
) ∼ u−2

0
 from which fol-

lows u0 =
√
�(1 +

B−Γ

2
),

which is the ion acoustic branch corrected by B and Γ.
The evolution equation for which (12) is a stationary solution is of Schamel 

type and becomes (assuming vD = 0 ) for the SEAW branch (see (17) of Schamel 
(2020b))

and for the IAW branch (see(49) of (Schamel (1972a)) or (15) of (Schamel (1973))

in which we renormalized t ( t →
√
�t ), i.e. time is now normalized by the ion 

plasma frequency. Both equations are of Schamel type and make it possible to 
track evolutionary changes in the privileged solitary wave during its propagation, 
especially when overtaking processes or frontal collisions in case of several humps 
occur.

We, moreover, quote that with (13) the electron density gets the simpler form:

The density expressions for ne in (16) and for ni in (3) make it easier to approach the 
measured structures already on the macroscopic level by considering the curvature 
of ne,i at potential maximum.

Since it holds n�
s
(x) = n�

s
(�)��(x) and n��

s
(x) = n��

s
(�)��2(x) + n�

s
(�)���(x) , s = e, i , 

it follows that n��
s
(x = 0) = n�

s
(�)���(0) which is true because of ��(0) = 0 . With 

𝜙��(0) < 0 we see that the sign of n�
s
(�) determines the curvature of ns(0) in the 

center, s = e, i.
For the ion density we get from (3): n�

i
(�) =

�

2
Z�
r
(
u0√
2
) and for the electron density 

from (16): n�
e
(�) =

�

2
Z�
r
(
u0√
2
) −

7

8
B . When the SEH is propagating at ion acoustic 
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speed, i.e. 1
2
Z�
r
(
u0√
2
) > 0 , the curvature of ni(x) is unconditionally negative at x=0, 

whereas ne(x = 0) changes its sign from negative to positive when B exceeds 
Bc ∶=

4𝜃

7
Z�
r
(
u0√
2
) > 0.

The ion density is therefore bell-shaped in x under all circumstances, while the 
electron density gets a central depression when B exceeds Bc.

As an application we refer to the series of subcritical plasma simulations by 
(Schamel et al. (2017), Mandal et al. (2018), Mandal et al. (2020), Schamel et al. 
(2020a), Schamel et  al. (2020b)), in which the latter case was omnipresent in all 
cases considered. As an example we refer to Fig. 1 of (Schamel et al. (2020b)) and 
the corresponding data:

The NDR (13) is satisfied for B = 0.48 + Γ which, due to the presence of a central 
depression in ne , has to be larger than Bc = 0.59 from which we conclude that Γ has 
to exceed 0.11: Γ > 0.11 . In theses simulations the Γ trapping scenario was auto-
matically activated in all runs, which we hence can conclude already on the density, 
i.e. on the macroscopic level.

The microscopic details still depend on the parameter B. For B = 1 > Bc = 0.59 
we get from the B formula:

B ∶=
16

15
b(𝛽, ṽD)

√
𝜓  with b(𝛽, ṽD) ∶=

1√
𝜋
(1 − 𝛽 − ṽ2

D
)e−ṽ

2
D
∕2 and by use of the 

above data the corresponding value for � : � = −230 . The electron distribution is 
therefore rather strongly depressed at resonance, a fact that has also be seen numeri-
cally, see, e.g. Fig. 5 of (Schamel et al. (2020b)).

However, we should remind the reader that this is not evidence that the identifica-
tion of the structure is unambiguous, as other trapping scenarios, or combinations 
thereof, may also be responsible for the settled structure (Schamel et al. 2020a; see 
also later Sect.4.3, Figs. 4 and 5).

3.3 � The Gaussian e−x
2

‑solitary mode

In this case Γ and D1 are the only non-vanishing parameters and we get (Schamel 
et al. 2020a, b)

𝜃 = 10, 𝛿−1 = 1836, vD = 0.01 < vD ∗= 0.053,

cs ∶=

�
Te

mi

= 3.16, u0 = 4.74, v0 = 0.035,M ∶=
u0

cs
= 1.5,

1

2
Z�
r

�
u0√
2

�
= 0.52,𝜓 = 5.2 × 10−5,Bc = 0.59.
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valid for D1 < 0 . This special solitary wave which has mainly been used by space 
plasma physicists to interpret their data are non-perturbative in nature. This implies 
that it has no zero-amplitude limit in contrast to the previous privileged sech 4(x) sol-
itary electron hole (SEH) as seen by the nonlinear dispersion relation (NDR) which 
becomes:

B in (13) is, therefore, replaced by B̂ ∶= −D1(ln𝜓 − 0.887) in (18), which is a nega-
tive quantity for small � . The discussion of the NDR is, therefore, pretty much the 
same as the previous one. The only difference is that the new B̂ is negative instead of 
positive which can, however, easily be compensated by Γ.

Again we can attribute a SEAW branch for which v0 = vD ± 1.307(1 − B̂ + Γ) and 
an IAW branch for which u0 =

√
𝜃(1 +

B̂−Γ

2
) , and discuss the role of Γ.

The evolution equation that relates to the SEAW branch is (see (17) of (Schamel 
(2020b)))

and similarly for the IAW branch.
Note that the competition between the two solitary structures, B and B̂ , was dis-

cussed in (Schamel et al. (2020a)) to explain a numerically measured structure. The 
first indication of a logarithmic dependence of the trapped electron distribution in the 
case of a Gaussian SEH was given by (Schamel (1972b)). To distinguish it from other 
evolution equations we may call it logarithmic Schamel-type equation.

3.4 � The second‑order Gaussian e− sinh
2
(x)‑solitary mode

In this case Γ and D2 > 0 are non-zero and we get (Schamel 2020a)

where r ∶= 1.773 − 2 ln� . This mode was first considered by the author in (Scha-
mel (2020a)). With this solution we can compare a second, independent, non-pertur-
bative trapping scenario with the usual Gaussian scenario. The effect is that x in the 
latter simply has to be replaced by sinh(x) to arrive at the new structure. That’s why 
we call it quasi-Gaussian. As extensively investigated in (Schamel (2020a)), it has 
essentially the same properties as the usual Gaussian SEH and can therefore explain 
an observation in the same way as the Gaussian.

(18)−
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ṽD√
2

�
−

𝜃

2
Z�
r

�
u0√
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�
= D1(0.887 − ln𝜓) − Γ =∶ B̂ − Γ.
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The NDR becomes:

where ̂̂B ∶= D2(−1.326 + 1.773 ln𝜓 − ln2 𝜓) . This variable now takes on the role 
of B in the NDR discussion, which we leave to the reader. It is clear again that a 
transition � → 0 is impossible. Seeds of this type do not allow solutions with infini-
tesimal amplitudes.

The second-order logarithmic Schamel-type evolution equation reads in this case 
for the SEAW branch

where r̂ = 1 + 2 ln
𝜓

4
 and Â is an extension of the constant, D2 independent term in 

the factor of �x in (19) inclusively Γ , to be derived by the reader.
In the next chapter we will show that the simultaneous presence of D1 and D2 

belongs to the class of disclosed solutions �(x) , i.e. an explicit �(x) can be presented 
for this pair of trapping scenarios (see Sect.4.3).

3.5 � The sech 2
(x) soliton

In this final case, all trapping terms are assumed zero except ( Γ, C̃ ). We hence get:

where q ∶= −C̃𝜓 and a solution exists as long as q > 0.
The corresponding NDR reads:

The discussion of the NDR therefore proceeds as in III.2 including the two branches 
SEAW and IAW. We just need to replace B with q, both of which must be positive. 
Of particular interest is the case of no �-trapping scenario (C = 0) for which we get: 

q =
1

24

�
𝜃2Z���

r
(
u0√
2
) − Z���

r
(
ṽD√
2
)

�
𝜓.

For the SEAW branch, �ṽD� = O(1), u0 >>
√
𝜃 , we then get 

q =

(
𝜃2

u4
0

+
1

6

)
𝜓 ≈

𝜓

6
> 0  which means that a positive q is automatically satisfied.
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For the IAW branch, when it holds �ṽD� = O(
√
𝛿), u0 ∼

√
𝜃 and vD = 0 , we have 

q = (
𝛿2

v4
0

−
1

3
)𝜓 = 2𝜓∕3 > 0 which is positive either. The common ion acoustic soliton 

is hence represented by (23). In this case, ne = 1 + � + �2∕2 + .. and 
ni = 1 + � + 3�2∕2 + ... and we have a complete match with the macroscopic fluid 
result which is thus recovered within the limits taken. The evolution equation in the 
IAW case, for which (23) is a solution, is given by

where again time is renormalized by the ion plasma frequency (i.e. t →
√
�t ). This 

is (for Γ = 0 ) the well-known, integrable Korteweg–de Vries equation.
We however stress that microscopically we have an abundance of sech 2-solutions 

belonging to the continuous spectrum not only because Γ may be nonzero but also 
because of the various additional continuous solutions to the NDR that supplement the 
SEAW and IAW analytical approach. Moreover, since q = −C̃𝜓 = −𝜓�
2C

3
+

1

24
[Z���

r
(
ṽD√
2
) − 𝜃2Z���

r
(
u0√
2
)]

�
 there is through the Z′′′

r
 terms always a nonzero 

contribution to V(�) which stems from the free electron and ion distributions, respec-

tively, even when C = 2�∕3 is negligible. Therefore, even if all trapping scenarios are 

negligible ( � = � = �1 = �2 = � = 0 ) we still have a finite trapped electron region of 

width 2
√
2� where fet ∼ {1 + ...} is nonzero and the sech2 - solution keeps his micro-

scopic nature. In VP plasmas inhomogeneous equilibria are intrinsically nonlinear and 
of course microscopic. The embedding of the sech 2-fluid solution in the continuous 
spectrum has to be seen this way, namely as a special microscopic solution. A proof of 
its existence can hence only be given kinetically.

This section was devoted to isolated single trapping scenarios yielding to what we 
called elementary modes. As said, by combinations new solutions can be obtained. In 
the next section examples are presented in which two trapping scenarios are in action 
at the same time and which lead to new patterns through suitable combinations. As 
before, Γ is treated independently, since it has disappeared in V(�) . Three of the pos-
sible combinations will have disclosed potentials �(x) , whereas one will appear with an 
undisclosed �(x).

4 � Holes caused by two trapping scenarios

4.1 � The cnoidal electron hole (CEH) and the solitary hole (SEH) of negative 
polarity

Periodic EH solutions are obtained by non-zero ( k0,B ) in (7) with vanishing 
( D1,D2, C̃) . The trapping scenario Γ in A is retained to obtain maximum variability of 
the possible phase velocities. We then have from (7):

(25)�t +
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�x +
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As shown in (Korn and Schamel (1996a)), equations (3.24)-(3.29), there exist three 
different regions in which �(x) is represented by Jacobian elliptic functions. They 
are distinguished by the parameter L̂ ∶=

k2
0

4B
 and are given by : L̂ < −

1

8
 , 0 ≤ L̂ ≤ 1 , 

and 1 < L̂ . This implies that negative Bs are now admitted.
Before we continue with the discussion of possible potential profiles �(x) , we 

briefly discuss the nonlinear dispersion relation (NDR) belonging to (26). It reads in 
the case of immobile ions ( � = 0 ), vanishing drift ( vD = 0, |ṽD| = v0 ) and vanishing 

trapping parameters ( Γ,A,D1,D2, C̃ ) (see (6)): k2
0
−

1

2
Z�
r
(
v0√
2
) = B and has been dis-

cussed thoroughly in Schamel (2012). Fig. 2 (which is identical with Fig. 5 of Scha-
mel (2012)) shows �0 ∶= k0v0 as a function of 

√
2k0.

The special case B = 0 represents the Thumb-Teardrop dispersion relation in the 
immobile ion limit. Note that for B > 0 there is a cut-off at lower k0 given by √
B = k0 . The dashed line separates fast from slow waves and is defined by the mini-

mum of − 1

2
Z�
r
(
v0√
2
) = −0.28 (see Fig. 1) and yields v0∕

√
2 = 1.5 . For the slow mode 

branch we get in the small k0 limit and for B > 0 the phase velocity v0 = 1.307(1 − B) 
which is termed Slow Electron Acoustic Wave (SEAW).

Another characterization, with which we continue our potential profile discus-
sion, can be done by the “steepening” parameter S ∶= L̂−1 , (Schamel (1972a)), 
which varies between -8 and infinity : −8 ≤ S ≤ ∞ . From ne it is seen that one has 
rarefactive waves when S ≥ 0 and compressional waves when S < 0 . S → 0 yields 

(26)−V(�) =
k2
0

2
�(� − �) + B

�2

2

(
1 −

√
�

�

)

Fig. 2   The nonlinear dispersion relation of cnoidal electron holes for positive and negative trapping 
parameters B
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the harmonic wave (10) (no steepening!), and S → ∞ results in the hump-shaped 
solitary EH (12) (maximum steepening!).

Of interest is the lower limit of S: S = −8 or B = −2k2
0
 , in which case (26) 

becomes
−V(�) =

k2
0

2
√
�
(��3∕2 − 3�2�1∕2 + 2�5∕2) =

k2
0
�2

2
�(1 −

√
�)(1 +

√
� − 2�) 

where � ∶= �∕� . The last expression shows that V has a double zero at � = 1.
The corresponding �(x) becomes for x ≥ 0:

�(x) = �

�
2 sinh � (2 sinh �+

√
3 cosh � )

(sinh �+
√
3 cosh �

�2
 where � ∶=

√
3k0x

4
 . It is given by (3.33) in (Korn 

and Schamel (1996a)) and is rederived in Appendix A, in which we offer an expression 
that is valid for arbitrary x:

where �0 ∶= tanh−1(
1√
3
) = 0.65848.

Figure 3, in which � = �∕� is plotted in the interval −3 ≤ � ≤ +3 , shows that it has 
an unexpected negative polarity like a solitary ion hole (Schamel and Bujarbarua 1980; 
Bujarbarua and Schamel 1981).

We mention that in a recent statistical analysis of more than two thousand “bipo-
lar electrostatic solitary waves” (ESW) Wang et al. (2021) collected from ten quasi-
perpendicular Earth’s bow crossings, about 95% of the ESWs were found of negative 
polarity. Since the phase velocities were in the order of the local ion-acoustic velocity, 
the authors argued that these must have been solitary ion holes (Schamel and Bujar-
barua 1980; Bujarbarua and Schamel 1981). This determination is too premature, 
however, as SEHs of negative parity can also come into question, as presented in this 
section. This interpretation is possibly as relevant as the ion hole interpretation since 
linear ion–ion streaming instabilities are not necessarily required for both. We remind 
the reader that Landau theory must not necessarily hold for holes growing out of seeds, 
but of course larger drifts facilitate their excitation.

(27)�(�) =
1

4

[
3 tanh2(|� | + �0) − 1

]2

Fig. 3   Solitary electron hole of negative polarity �(� ) as a function of �
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Altogether, there is, therefore, an abundance of cnoidal hole solutions that are char-
acterized by a single parameter S and that become solitary-like at both borders with 
opposite polarity.

The phase velocity v0(u0) follows from the NDR (6), which becomes

It is, therefore, of the same type as the previously discussed cases and the continu-
ous spectrum is again controlled and expanded by the additional trapping parameter 
Γ.

The last step in (28) applies to S = −8 , to which we now turn our attention. 
We provide the corresponding densities and phase velocities for the two analytic 
branches SEAW and IAW.

For SEAW, when to lowest order |ṽD| ∼ 1.307 and u0 ∼
√
�∕� , we have 

ne = 1 + k2
0
(�∕2 − 3� +

5

2
�
√
�∕�) and ni ≈ 1 , whereas in the IAW case, when 

�ṽD� ∼ O(
√
𝛿) and u0 ∼

√
� , we have ne = 1 + k2

0
(�∕2 − 3� +

5

2
�
√
�∕�) + � 

and ni = 1 + � . In both cases ne is hump-like and the electrons experience com-

pression, whereas the ion densities are either nearly constant for SEAW (a too fast 
phase velocity for the ions to react!) or dip-like for IAW (note that � = � is then at 
infinity!).

To obtain the corresponding evolution equation, for which �(x − v0t) is a solu-
tion, we use the method proposed in (Schamel (2020b)) by “adding two zeros” via a 
coupling constant c : [�t + v0�x] + c[−V��(�)�x − �xxx] = 0.

We only treat a current-less plasma vD = 0.
For SEAW we get with v0 = 1.307(1 + Γ + 3k2

0
) and c=1.307 the Schamel-type 

evolution equation for this special solitary EH of negative polarity:

which is nearly identical with (14) despite the different physical background.

For IAW we get with v0 =
√
�(1 −

Γ+3k2
0

2
) and c = −

√
�

2
 the following Schamel 

evolution equation:

which is equivalent to (15) if we again renormalize time: t →
√
�t . Note that in both 

cases the different polarity of �(x) is reflected in the sign of the nonlinear term.

(28)−
1

2
Z�
r

�
ṽD√
2

�
−

𝜃

2
Z�
r

�
u0√
2

�
= B − Γ − k2

0
= −3k2

0
− Γ.

(29)�t + 1.307

(
1 + Γ +

15k2
0

4

√
�

�

)
�x − 1.307�xxx = 0,

(30)�t +
√
�

�
1 −

Γ

2
−

15k2
0

8

�
�

�

�
�x +

√
�

2
�xxx = 0,
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In both regimes, the corresponding trapping parameter � is a function of k2
0
 and � 

and follows from −2k2
0
= B =

16

15
b(�, v0)

√
�  with b(�, v0) ∶=

1√
�
(1 − � − v2

0
)e−v

2
0
∕2.

We note that if B is replaced by one of D1,D2 or C̃ , three new series of periodic 
hole solutions with solitary wave character at the two boundaries for each parameter 
are obtained.

In Sect. 5, we shall briefly address the whole class solitary electron holes of nega-
tive polarity.

4.2 � The Schamel–Korteweg–de Vries solitary electron hole (SKdV‑SEH)

For the next two-parametric solution we choose B and q = −C̃𝜓 ≡ 2𝜓

3
 in (7) as the 

only non-zero parameters and obtain

The corresponding NDR reads

This case has already been treated as early 1972 in (Schamel (1972a)), equations 
(47), (48), with the result that �(x) is given by

where y ∶= x

2

√
�

6
(1 +

B

q
) and −q < B.

For 1 <<
B

q
 and |B

q
| << 1 , respectively, this expression reduces to the known 

cases (12) and (23), respectively, the privileged sech 4(x) and the KdV solitary 
wave. The NDR (32) can be discussed like the previous cases.

In the IAW limit, the following evolution equation, which has (33) as the equi-
librium solution, can be easily derived ( t →

√
�t):

which is (49) of (Schamel (1972a)). This Schamel–Korteweg–de Vries equation 
reduces in the appropriate limits to (15) and (25), respectively, as expected.

(31)−V(�) =
�2

2

[
B

(
1 −

√
�

�

)
+q

(
1 −

�

�

)]
.

(32)−
1

2
Z�
r

�
ṽD√
2

�
−

𝜃

2
Z�
r

�
u0√
2

�
= B − Γ − q.

(33)�(x) = �
sech 4(y)[

1 +
tanh2(y)

1+B∕q

]2 ,

(34)�t +

�
1 + Γ +

5
√
3B

8
√
2
√
q

√
� + �

�
�x −

1

2
�xxx = 0,
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4.3 � The modified second‑order Gaussian SEH

In this part we refer to the Gaussian SEH in its first- and second-order version 
and use

where r ∶= 1.773 − 2 ln� Schamel (2020a), and get for x(�) with s ∶= r −
D1

D2

> 0

Its inversion yields

It reduces to the ordinary Gaussian SEH (17) in the limit D2 → 0 ( sD2 → −D1 , 
resp.), and to the second order Gaussian SEH (20) in the limit D1 → 0.

Figures  4 and 5 show the potential distribution �(x) and the correspond-
ing trapped electron distribution fet(v) at � = � , respectively, for two values of 
D2 ∶ D2 = 0.112 and D2 = 0.037 (Schamel 2020a). The corresponding values of s 
are: s = 21.54 and s = 64.02 . The other selected parameters are given by � = 10 , 
vD = 0.01 < vD ∗= 0.053 (subcritical region), � = 5.2x10−5.

Although they differ by a factor of 3, there is hardly any measurable difference. 
The simultaneous presence of two trapping generations hence establishes a one-
parameter continuum spectrum of solitary electron holes that can by appropriate fit-
ting be potential candidates for identifying structures. However, since they lead to 
macroscopically and microscopically almost identical structures they can no longer 
be distinguished experimentally. A unique identification of structures, the desired 

(35)−V(�) =
�2

2

[
(D1 − rD2) ln

(
�

�

)
+D2 ln

2

(
�

�

)]
,

(36)
√
D2x(�) = −2 ln

� √
s�

s − ln
�

�
+
�

− ln
�

�

�
.

(37)�(x) = �e
−s sinh2 (

√
D2x

2
).

Fig. 4   The potential �(x) as a function of x for two different D2
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goal expressed in the literature, is therefore not achievable. Origin of this intrinsic 
ambiguity is the loss of mathematical stringency in the kinetic regime through chaos 
triggered by the ergodic particle trajectories in the resonant region.

We continue our intention to derive an evolution equation for this second order 
modified Gaussian SEH. The NDR (6) is simplified in this case of k0 = B = C̃ = 0 
and becomes

where B̂ and ̂̂B had been defined in connection with equations (18) and (21), 
respectively.

The evolution equation for the SEAW branch becomes

where ̂̂A ∶= Â + D1(2 + ln
𝜓

4
).

We note that in the three cases treated so far we were able to solve the deci-
sive equation (8) to obtain x(�) by inversion �(x) , i.e. our solution �(x) could be 
expressed by known mathematical functions. It was disclosed. In our final example, 
we will encounter a situation where this disclosure no longer exists. It represents the 
general case.

4.4 � The undisclosed logarithmic Schamel SEH

This is the case when the two basic trapping scenarios (B,D1) and only the two are 
in action simultaneously. The pseudo-potential V(�) then reads

(38)−
1

2
Z�
r

�
ṽD√
2

�
−

𝜃

2
Z�
r

�
u0√
2

�
= −Γ + B̂ + ̂̂

B,

(39)

𝜙t + 1.307

(
1 + Γ +

̂̂
A + (D1 + r̂D2) ln

𝜙

𝜓
+ D2 ln

2 𝜙

𝜓

)
𝜙x − 1.307𝜙xxx = 0,

Fig. 5   The trapped electron distribution f
et
(v) as a function of v for two different D2 at � = �



	 Reviews of Modern Plasma Physics (2023) 7:11

1 3

11  Page 24 of 41

a case which has been treated thoroughly in (Schamel (2020b)). The integral for 
x(�) , given by (9) in (Schamel (2020b)), cannot be solved anymore. We can con-
clude from this that these two trapping channels lead us into an unknown terrain, 
into an area where only numerically an image of the potential �(x) can be obtained.

This is fortunately not the case for the NDR and the evolution equation, which 
become

and

with A given by

the latter being valid for the SEAW branch. It may be named for clear identifica-
tion logarithmic Schamel equation. It is, therefore, worth noting that although the 
explicit form of �(x) is not known, an evolution equation can still be assigned.

We conclude that a large number of new structures are already coming into play for 
two trapping channels in action. This is all the more true when more than two scenarios 
are involved. This abundance of electrostatic structures is a consequence of the nonlin-
ear treatment of the Vlasov equation (s) with no chance of a linear approximation.

In the following two special cases are discussed before their setting in a more gen-
eral context will be discussed.

5 � The class of negatively polarized solitary electron holes (SEHs)

In Sect. 4.1 we learned that by setting the two parameters B and k2
0
 adequately, SEHs 

with negative polarity can be obtained. Motivated by its ubiquity in extraterrestrial 
space (Wang et  al. 2021) we extend this two-parametric solution to all five parame-
ters to get the general class of SEHs with negative polarity. The condition for the five 
parameters (k0,B,D1,D2, q) to achieve a negatively polarized SEH is obtained by set-
ting V�(�) = 0 , such that the double zero point goes from � = 0 over to � = �.

This constraint follows from (4) in which we replace the first bracket by (6) and by 
setting V�(�) = 0 to get

(40)−V(�) =
�2

2

(
B

(
1 −

√
�

�

)
+D1 ln

(
�

�

))
,

(41)−
1

2
Z�
r

�
ṽD√
2

�
−

𝜃

2
Z�
r

�
u0√
2

�
= B − Γ − D1

�
1

2
− 2 ln 2 + ln𝜓

�
,

(42)�t + 1.307

[
A − B

15

8

√
�

�
+ D1 ln

�

�

]
�x − 1.307�xxx = 0

(43)A = 1 + A + D1(1 + ln�) = 1 + Γ + D1

(
2 + ln

�

4

)
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where q ∶= −C̃𝜓 . Replacing k2
0
 in (7) for V(�) by (31) we get

By replacing k2
0
 in (6) through (31) we get the associated NDR

With the two equations (45) and (46) we have all the ingredients for a complete the-
ory of SEHs with negative polarity. With four independent parameters (B,D1,D2, q) 
we have a 15-fold manifold of different solutions ( 

∑4

i=1

4!

i!(4−i)!
= 15 ). Most of them 

appear as mathematically undisclosed solutions.
Only two special cases are treated further.

One simple case is when only q is present. For B = D1 = D2 = 0 we then 

have V(�) = q�2

2
�(1 − �)2 . Since it must be negative we have q = −C̃𝜓 < 0 or 

C̃ > 0 as a requirement for the existence of a solution. The potential is given by 

�(x) = 1 − sech 2(
√
−qx

2
) , an expected result (see equation (23) where � has to 

replaced by 1 − � to yield the new result).

The other simple case is that only D1 is present, in which case we have 

−V(�)∕�2 =
D1

2
�(1 − � + � ln�) . Insertion into x(�) = ± ∫ �

0

dt√
−2V(t)

 (see Appen-

dix B) yields 
√
D1x = ±2 ∫ �

0

dy√
1−y2+2y2 ln y

 , D1 > 0 . In contrast to Sect.  3.3, the 

Gaussian solitary mode, where D1 < 0 , D1 must now be positive for a solution to 
exist. However, we have not been able to solve this latter integral. So it seems that 
this particular negatively polarized SEH that definitely exists is already part of the 
plethora of undisclosed potential patterns like most others are.

We will not pursue any further details, leaving it up to the reader to use them in 
any particular case.

We finally note that this class was obtained by imposing the additional constraint 
V
�(�) = 0 . By setting further restrictions, new structures with different characteristic 

shapes can be created. An example is the additional constraint V�(0) = 0 which leads 

(44)k2
0
= −

B

2
+ D1 + (a1 − 1 + ln�)D2 − q,

(45)

− V(�)∕�2 =
−B

4
�(1 − 3� + 2�3∕2) +

D1

2
�(1 − � + � ln�)

+
D2

2
�

[
(a1 − 1 + ln�)(1 − �) + � ln2 �)

]

−
q

2
�(1 − �)2.

(46)

�
A −

1

2
Z�
r

�
ṽD√
2

�
−
𝜃

2
Z�
r

�
u0√
2

��

−
3B

2
+ D1

�
1

2
+ ln𝜓

�
+D2

�
a1 − 1

2
+ a1 ln𝜓

�
− ln2 𝜓

�
− 2q = 0.



	 Reviews of Modern Plasma Physics (2023) 7:11

1 3

11  Page 26 of 41

to well-known double layer (DL) (Schamel and Bujarbarua 1983; Schamel 1986). 
The more trapping parameters are involved, the more constraints can be imposed. So 
it would be interesting to see which structures the additional conditions V��(0) = 0 
and V��(�) = 0 lead to. Future scientific generations may take up this problem.

6 � The class of ultra‑slow SEHs

For a given occasion, we would like to draw our attention to another issue, that of 
the extremely slow SEHs. In a recently published article (Hutchinson 2021), the 
opinion was spread that the current theory has flaws which is particularly evident 
in the lack of ultra-slow SEHs for single humped ion distributions. Here, equipped 
with the correct method, we show the opposite, namely the existence of ultra-slow 
SEHs for a single-humped fi.

For the sake of simplicity, in the following we assume an ordinary SEH, namely 
one with a positive hump and take k2

0
= 0.

The NDR in (6) therefore becomes 
�
A −

1

2
Z�
r
(
ṽD√
2
) −

𝜃

2
Z�
r
(
u0√
2
)

�
− B + D̂ = 0 

where D̂ ∶= [D1 + (a1 − 1)D2](−
1

2
+ ln𝜓) + D2 ln

2 𝜓 + C̃𝜓

]
 , which in case of a 

non-propagating structure: v0 = 0 = u0 simplifies to

We remember that A was defined by A ∶= (Γ +
a1

2
D1 + a2D2) . With given vD and � 

this equation represents the condition which the remaining parameters 
(Γ,B,D1,D2, C̃ (or q)) have to fulfill. This corresponding 5-parameter solution set 
again has 31 members and is therefore not insignificant. So there can be no question 
of a missing solution. Especially due to the presence of Γ , a solution can always be 
found. In case of a vanishing drift vD = 0 and of vanishing parameters (Γ,D1,D2, q) 
except B we have 1 + � = B =

16

15

1√
�
(1 − �) which holds for any � inclusively 

𝜃 =
Te

Ti
< 1 . Hence, a � = −(0.66 + 1.66

Te

Ti
) and with it a sufficiently excavated 

trapped electron distribution will do the job. We do not need ion trapping effects to 
get a solution. (In parenthesis, we state that this does not mean the absence of ion 
trapping, only the absence of its effects, ( � = 1 see later)). In a recently conducted 
VP simulation, such structures could undoubtedly be demonstrated (Mandal et  al. 
2020).

If ion trapping/reflection effects come into play the NDR is modified and we 
have to look at altered solutions. But there is no doubt that solutions do exist as 
well.

The continuous spectrum is extremely rich in elements and provides holes with 
almost arbitrary phase velocities, which are sustained by appropriately adapted 
trapping scenarios.

(47)

�
A −

1

2
Z�
r

�
vD√
2

�
+𝜃

�
= B − D̂.
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7 � Ion trapping effects and ion holes

7.1 � Ion trapping effects

In this section, we briefly discuss the effects of ion trapping, which can be impor-
tant, for example, for the slow propagation of electron holes in the ion thermal 
range. In addition, we will briefly address the existence of ion holes. The incor-
poration of ion trapping (reflection) effects can be straightforwardly performed 
by the following replacements in (1) to get fi(x, u) , namely � ∶=

v2

2
− � by 

� ∶=
u2

2
− �(� − �) ; ṽD by u0 ; a change in the normalization 1 + k2

0
�

2
 by 1 + Ki and 

by attaching an index i to the new ion trapping parameters: Γi,Bi,Ci,D1i,D2i . Note 
that � becomes � . The details of this procedure are found in (Schamel (2000)), 
especially in Sect.4. We then have

The corresponding density then becomes

where we defined Ai ∶= Γi +
a1

2
D1i + a2D2i , Bi ∶=

16

15
b(�, u0)

√
�  with 

b(�, u0) ∶=
1√
�
(1 − � − u2

0
)e−u

2
0
∕2 and (Γi,Ci,D1i,D2i) ∶=

√
�

2
e−u

2
0
∕2

�
�i,

3�i

4
,�1i,�2i

�

.
The normalization constant Ki is determined by the requirement that in the soli-
tary wave limit k0 → 0 both densities ne and ni should be equal (namely unity) at 
infinity when � → 0 , which yields:

(48)

fi(x, u) =
1 + Ki√

2�

�
�(�) exp

�
−
1

2
(�
√
2� − u0)

2

�

+ �(−�) exp

�
−
u2
0

2

��
1 +

�
�i + �1i ln(−�)

+ �2i ln(−�)
2

�
(−�)1∕2 − �� + �i(−�)

3∕2

��
.

(49)

ni(�) = (1 + Ki)

�
1 +

�
Ai −

1

2
Z�
r

�
u0√
2

�
−

5Bi

4
√
�

√
�(� − �)

+ Ci�(� − �) + (D1i + a1D2i) ln �(� − �)

+ D2i ln
2 �(� − �)

�
�(� − �) +

1

16
Z���
r

�
u0√
2

�
�2(� − �)2

�
,
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To check this expression we take the zero limit of (Ai,D1i,D2i, Z
���
r
(
u0√
2
)) and get 

1 = (1 + Ki)

�
1 +

�
−

1

2
Z�
r
(
u0√
2
) −

5Bi

4
√
�

√
��

�
��

�
 from which follows 

Ki =

�
1

2
Z�
r
(
u0√
2
) +

5Bi

4
√
�

√
��

�
�� which is identical with (21) of (Schamel (2000)).

Replacing Ki in ni by this general expression obtained from (50), we can pro-
ceed as before: we determine through ���(x) = ne − ni = −V�(�) the preliminary 
form of V(�) : V0(�) (such as in (5)) to get through V0(�) = 0 the NDR analogue 
of (6), we may call (6’). Removing finally the bracket in V(�) which involves 
(v0, u0) through (6’), we can finally find the desired expression for V(�) , called 
(7’), in which both the electron and ion trapping effects are incorporated on equal 
footing.

We will neither write it down [but may call it (7 ’)] nor deduce the general 
consequences, leaving this interesting and straightforward but cumbersome pro-
cedure to the reader (and perhaps later generations).

Without ionic trapping effects we had 1+4=5 individual terms in V(�) corre-
sponding to 

∑5

i=1

5!

i!(5−i)!
= 31 possible combinations and hence 31 patterns that 

can be distinguished. With ion trapping effects the number of free trapping 
parameters is enhanced by further 4 such that 

∑9

i=1

9!

i!(9−i)!
= 494 individual modes 

become vivid, without taking into account the double counting of the solitary 
waves of positive and negative polarity.

What we finally want to show in this section is the existence of ion holes of 
positive polarity.

7.2 � Ion holes of negative and positive polarity

In the limit of vanishing parameters (As,Cs,D1s,D2s) , s = e, i, where the index e 
refers to the previous electron parameters, and of Zr(ṽD∕

√
2) ≃ 0 ≃ Z���

r
(u0∕

√
2) , 

the governing equations simplify to

and

(50)

1 = (1 + Ki)
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1 +

�
Ai −

1

2
Z�
r

�
u0√
2

�
−

5Bi

4
√
�

√
��

+ Ci�� +

�
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�
ln ��

+ D2i ln
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1
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�2�2

�
.
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where again � =
�

�
 , which coincide with (44) and (45) of (Schamel (2000)), respec-

tively. They reduce in case of Bi = 0 to our (26), (28) of Sect.4.1. With (51), (52) we 
now have a situation in which all three trapping scenarios (k2

0
,Be,Bi) contribute 

simultaneously.
From (52), it follows by differentiation

It then follows that at � = 0 it holds −V�(0) ≃ 0 and at � = � : 

−V�(�) ≃ −2k2
0
− Be + Bi�

3∕2 . A positively polarized hole is then given by k2
0
= 0 

and Be − Bi𝜃
3∕2 > 0 . This yields an extension of our previous elementary sech 4(x) 

solitary electron hole mode (Sect.3.2) by the �-trapping scenario of ions.
If we only limit ourselves to ion trapping, a positively polarized ion hole is 

provided by k2
0
= 0 , Be = 0 and

Together with the corresponding NDR, this forms the basis for positively-polarized 
ion holes, a previously unknown and unexplored area. Some more details could be 
further explored, such as the corresponding Schamel-type evolution equation, but 
we would like to leave that up to the reader and/or later generations.

Finally, we just want to show that the present formalism includes the usual (nega-
tively) polarized ion hole.

This is achieved by setting k2
0−

∶= 2k2
0
+ Be − Bi�

3∕2 ≡ 0 (see (48) of (Schamel 
(2000))). In case of Bi = 0 we get back the negatively polarized SEH (27), and for 

Be = 0 we obtain −V(�)∕�2 = Bi
�3∕2

2
(1 − �)2

�
1 −

√
1 − �

�
 . This is obviously our 

familiar negatively polarized ion hole (see (7), (8) of (Schamel and Bujarbarua (1980)) 
which holds for the dependent variable 𝜑̂ ∶= 𝜑 − 1 ≤ 0.

8 � Stability

For understandable reasons, the last word cannot be said on the stability of these struc-
tures. The dynamics that are triggered by perturbations depend too much on what is 
happening in the resonance region for a general, conclusive statement to be made. This 

(52)
− V(�)∕�2 =

k2
0

2
�(1 − �) + Be

�2

2
(1 −

√
�)

+ Bi

�3∕2

2

�
1 − (1 − �)5∕2 −

1

2
�(5 − 3�)

�
,

−V�(�)∕�3 =
k2
0

2
(1 − 2�) + Be�

�
1 −

5

4

√
�

�
+Bi

5�3∕2

4

�
(1 − �)3∕2 −

�
1 −

6

5
�

��
.

(53)
− V(�)∕�2 = Bi

�3∕2

2

(
1 − (1 − �)5∕2 −

�

2
(5 − 3�)

)

= Bi

�3∕2

2
(1 − �)

[
1 −

3�

2
− (1 − �)3∕2

]
.
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applies all the more to studies in which such an equilibrium solution was not available. 
Since the mathematical endeavor turns out to be too complex, we can only outline its 
general properties, but solve it in the case of a single wave.

To make the analysis as transparent as possible, let us focus on trapping of elec-
trons in its simplest, nontrivial version and on � = 0 corresponding to immobile 
ions(n_i = 1).

By the ansatz

where f0e(�) and �0(x) are our equilibrium functions, we get by linearizing the VP 
system and using the integration technique along unperturbed orbits (characteristics) 
of (Lewis and Symon (1979), Schamel (1982a)) a non-local eigenvalue problem for 
( �,�1(x) ) of the following form:

which is (26) of (Schamel (2018)). We restrict the analysis to the cnoidal electron 
hole case of Sect.4.1, in which V(�0) is represented by (26), i.e. we ignore for con-
venience all the other electron trapping scenarios. It then holds to first order in 
S =

4B

k2
0

V ��(�0) = k2
0
− B

(
1 −

15

8

√
�0

�

)
= k2

0

(
1 −

S

4
[1 −

15

8
cos

k0x

2
]

)
 , where in the last 

step we used S << 1.
The eigenvalue problem (55) then becomes

In the harmonic (single) wave limit, when S = 0 and �1 ∼ eikx + c.c. , it reduces to 
the algebraic equation

which is (27) of (Schamel (2018)). The moment Mn(�0) is defined by 
Mn(�0) = ∫ dvvn��f0e and it holds the recursion formula 

M
�
n+2

(�0) = (n + 1)Mn(�0) , which is (29) of (Schamel (2018)). From 

M2(�0) = − ∫ dvf0e = −ne0(�0) and the recursion formula we obtain 

M0(𝜙0) = −n�
e0
(𝜙0) =

1

2
Z�
r
(
ṽD√
2
) + O(

√
𝜙0, S) . Whereas the odd moments vanish, 

the other even moments are of O(�0) or of higher order. We then get to lowest order 

(54)
fe(x, v, t) =f0e(�) + f1(x, v)e

−i�t + c.c.

�(x, t) =�0(x) + �1(x)e
−i�t + c.c,

(55)Λ�1(x) ∶=

(
�2
x
+ V

��(�0(x))

)
�1(x) = ∫ dv��f0e

n=∞∑
n=0

(
−i

�
v�x

)n

�1(x),

(56)

(
�2
x
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0
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8
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�1(x) = ∫ dv��f0e
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�
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)n

�1(x).
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0
) = ∫ dv��f0e
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�

)n

=
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(
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�

)n

Mn(�0),
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−k2 + k2
0
= M0 + (

k

𝜔
)2M2 =

1

2
Z�
r
(
ṽD√
2
) − (

k

𝜔
)2 , which is (31) of (Schamel (2018)). 

Application of the NDR (11) with � = 0 = Γ we hence find � = 1.
The perturbed eigenmode is an undamped, infinite wavelength Langmuir mode 

(or a pure plasma oscillation, respectively, (Schamel et al. (2017))), being independ-
ent of ṽD.

A harmonic (single-wave) EH is therefore marginally stable, no matter how 
strong ṽD is, a result which contradicts Landau theory, where marginal stability 
holds at threshold vD = vD ∗ only.

Sentences like “the single-wave model ... describes the behavior near the 
threshold and subsequent nonlinear evolution of unstable plasma waves” (Balm-
forth et  al 2013 [1]) rest on the unproven ad hoc assumption of the validity of 
the linear Vlasov concept which can, however, not be retained. The underlying 
single-wave model therein is too simple and simply not applicable. These authors 
underestimate the effectiveness and need of particle trapping in the real world 
of coherent structures, an unmistakably nonlinear effect. A similar misunder-
standing of the importance of trapped particles is encountered in (Valentini et al. 
(2012)) (see also (Schamel 2013,3)). Here the authors did not realize that their 
analysis is based on nonlinearly incorrect modes. As in the case of the “Thumb-
Teardrop DR”, see Section 3.1, the on- and off-dispersion modes only make sense 
and become real modes when trapping is built in. The fact that they are also 
encountered as linear Vlasov modes is correct, but overlooks the fact that the 
associated distribution functions are no longer valid nonlinearly, as they should.

In contrast to the currently favored wave theory, which is based on Landau’s anal-
ysis and is vehemently defended by its protagonists, a nonlinearly permitted single 
wave is unconditionally marginally stable.

For mobile ions we get as an extension of (57):

with � =
√

�

�
 and a corresponding recursion formula for Mi

n
(�0) . It is found that 

M
i
0
(�0) =

1

�
n�
i0
(�0) =

1

2
Z�
r
(
u0√
2
) + O(�0) and Mi

2
(�0) = −ni0(�0) such that to lowest 

order we have: −k2 + k2
0
=

1

2
Z�
r
(
ṽD√
2
) − (

k

𝜔
)2 + 𝜃

�
1

2
Z�
r
(
u0√
2
) − (

k

𝜔𝜇
)2
�
 , from which fol-

lows � =
√
1 + � . This is the undamped Langmuir mode with infinite wavelength 

corrected for the mass ratio as it should be.
In the opposite limit of a maximum distortion, k0 → 0 and S → ∞ , which is the 

solitary wave limit, this linear stability problem was attacked by (Schamel (1982b), 
Hutchinson (2018)). A solution was obtained by an artificial truncation of the series 

(58)(−k2 + k2
0
) =

n=∞∑
n=0

(
k

�

)n[
Mn(�0) +

�

�n
M

i
n
(�0)

]
,

3  It is a misunderstanding of the effectiveness of particle trapping to believe Landau’s onset point of 
instability can be justified by assuming f �

0
(v) = 0 for v0 − Δv ≤ v ≤ v0 + Δv , Δv ≥ 0 . Even if this topo-

logical constraint applies to a given f0(v) , which would correspond to a severe restriction of the permit-
ted background distributions, a f(x, v) of type (1) is nevertheless essential to model the resonant region 
correctly in a nonlinear manner.
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in (55) at n = 2 , the so-called fluid limit (Lewis and Symon 1979), and by a subse-
quent representation of �1(x) in terms of the eigenstates of the Λ operator, which is 
the operator on the left hand side of (55). The result of a longitudinal stability and a 
transversal instability has, however, to be questioned because there are hints (Scha-
mel 1986) that this artificial truncation of the series cannot be justified.

This, as well as the stability problem for any S and for all the other trapping sce-
narios, is hence a great challenge and can occupy many generations.

9 �  Negative energy states and spontaneous hole acceleration

Another important, if not the most important, aspect is the fact that the total energy 
of a plasma can be less than that of the undisturbed plasma due to the presence of 
a hole. This implies that when this state is approached, for example by achieving a 
higher phase velocity through acceleration, free energy is available which can be 
the source for the excitation of other modes and thus for a higher degree of intermit-
tent plasma turbulence. As an example I refer to the simulations of (Schamel et al. 
(2017), Mandal et  al. (2018), Mandal et  al. (2020)) and the corresponding video 
[https://youtu.be/-nxIokKORwU] (with gratitude to my coauthors (Schamel et  al. 
(2017), Mandal et al. (2018), Mandal et al. (2020), Schamel et al. (2020a), Schamel 
et al. (2020b))). A summary of these simulations of holes in subcritical, noisy plas-
mas will be published by Mandal and Sharma in an upcoming review (Mandal and 
Sharma 2023).

We see in this video an acceleration that is particularly efficient when 𝜃 > 1 , the 
existence condition for ion acoustic waves. This transition to a higher phase velocity 
must be a transient, unsteady process, because the NDR (5) written as − 1

2
Z�
r
(
u0√
2
) = c 

exhibits as a stationary NDR a forbidden area or a gap between the slow and the fast 
branch when −0.285 < c < 0 (see section III.B of (Mandal et al. (2020)) or section 4.1 
of (Mandal et al. (2018))). For energetic reasons the continuous process of ion sound 
wave emission during acceleration must hence be associated with a reduction in the 
hole energy. This process is somewhat similar to the radiation from KdV solitons and 
Langmuir solitons investigated by ((Karpman (1995)) and references therein) on the 
basis of an evolution equation. This, therefore, applies to all acoustic propagation struc-
tures for which an evolution equation can be set up.

Experimentally a spontaneous acceleration of periodic ion holes was detected by 
(Franck et al. (2001)) in a double plasma device.

Another process is worth mentioning, the excitation of an energetic plasma oscilla-
tion, as can be seen in the behavior of �(x, t) of the simulation. As explained in (Scha-
mel et  al. (2017)), this is a relic of two counter-propagating Langmuir waves of the 
same intensity which can already be understood by a linear fluid approach of the elec-
trons. This plasma oscillation carries most of the excess energy added to the plasma by 
the initial disturbance.

There is therefore great interest in learning more about the energy associated with 
a hole which is our last topic. It was developed in a series of papers (Schamel 2000; 
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Grießmeier and Schamel 2002; Grießmeier et al. 2002; Luque and Schamel 2005; Das 
et al. 2018), to which we refer for a more intensive evaluation. The total energy density 
w of a plasma that is structurally excited by an equilibrium hole is given in the labora-
tory system by

where x� = x − v0t and a stationary structure of periodicity 2L ( L → ∞ for solitary 
holes) is assumed. The distributions are given by (1) for electrons and by (48) for 
ions, respectively.

Using a straightforward calculation (Schamel 2000; Grießmeier and Schamel 2002; 
Grießmeier et al. 2002) w is found to be

which is (67) of Luque and Schamel (2005) (in which K stands for k2
0
�∕2 and A for 

Ki ). This expression reduces to wH ∶=
1

2
(1 + v2

D
+

1

�
) in the structureless, homogene-

ous plasma limit � → 0 . An appropriate renormalization of the electron quantities, 
which takes into account that 1

2L
∫ +L

−L
nedx = 1 + 𝜎̃ can deviate from unity ( |𝜎̃| << 1 ) 

yields wS ∶= (1 − 𝜎̃)w , which is (69) of (Luque and Schamel (2005)).
Defining finally Δw by Δw ∶= wS − wH we arrive at the energy (density) differ-

ence provided by the structure.
To simplify the further discussion we only consider the Be ( ≡ B ) and Bi trap-

ping scenarios (corresponding to (20a,b) of Schamel (2000) and get (see (73) of 
(Luque and Schamel (2005)))

with 𝜎̂ ∶=
𝜎̃
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2
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r
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ṽD√
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We note that in (61) terms of O(�2) have already been neglected which means 
that the field energy term, the last term in (60), does no longer contribute since it 
is O(�2).

In the solitary, positively polarized electron hole limit ( k2
0
→ 0 ) (61) becomes 

(see also (77) of (Luque and Schamel (2005)))

which extends (8) of (Grießmeier and Schamel (2002)).
We learn that Δw is only influenced by the ion response and by the ion trap-

ping scenario Bi whereas Be only participates implicitly through the back door via 
the NDR.

An inspection of (62) shows that to change the sign of Δw , u0 has to be larger 
than some u∗

0
 which is defined by Δw(u∗

0
) = 0 and which only depends on Bi∕� . In 

case of Bi = 0 it is given by u∗
0
= 2.124 . If Bi > 0 u∗

0
 will grow monotonically from 

1 ( � = 0 ) to 2.124 ( � = ∞ ). The dependence of u∗
0
 is plotted in Fig. 8 of (Luque 

and Schamel (2005)) whereas the region of Δw < 0 in the ( vD, � ) plane is exposed 
in Fig. 10 (for Bi = 0).

This brings us to three basic properties of a structurally excited plasma: 

1	 ] wS − wH = Δw = O(�) , the difference in the total energy density is O(�) rather 
than O(�2) as found e.g. by standard linear wave analyses (see Appendix A5 of 
arXiv:2110.01433v3, (Kruskal and Oberman 1958; Gardner 1963; Morrison and 
Pfirsch 1994)). The influence of a coherent structure on the energy budget is hence 
much stronger than predicted by linearly based concepts.

2	 ] By acceleration, a hole can penetrate into areas with negative energy and thus 
release energy that the plasma can use to generate further waves and hence to 
increase the level of intermittent turbulence.

3	 ] Due to the multitude of different trapping scenarios, there is a vast, untapped 
field that many generations of plasma theorists can still benefit from.

10 � Two related topics: anomalous transport and holes 
in synchrotrons

10.1 � Coarse grained distributions and anomalous resistivity

The point to be addressed is that the current equilibria still have a weak singularity 
of cusp type in phase space. At least the free part of the distributions fe (and fi ) 
exhibits an infinite slope at the separatrix, |�vfe(�)| ∼ 1

|�| as |�| → 0 (and similarly for 
the ions), which is an integrable singularity. In other words, collisional aspects enter 
near the separatrix and higher moments of the BBGKY hierarchy have to be consid-
ered in this region (Krall and Trivelpiece 1973).
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Numerically this problem was attacked by the authors (Korn and Schamel 1996a, 
b; Schamel and Korn 1996; Luque and Schamel 2005) who added a Lorentz-col-
lision operator, 𝜈e𝜕v[𝜕v + (v − ṽD)]fe , on the right-hand side of the kinetic equation 
where �e is the electron collision frequency. By the inclusion of a homogeneous 
electric field on the left-hand side, E0 = −�evD , they got dissipative structural equi-
libria of the so-extended Vlasov–Fokker–Planck–Poisson system. We refer to Fig. 6 
of (Korn and Schamel (1996b)) for fluid ions and to Sect.2.5 of (Luque and Schamel 
(2005)) for kinetic ions.

The distribution on the separatrix was smooth in all cases, which corresponded 
to a coarse-grained distribution, and a single-humped curve could be obtained in 
the (�e, vD) space, below which dissipative hole equilibria were time-asymptotically 
established (see Fig. 9 of (Korn and Schamel (1996b)) and Fig. 23 of (Luque and 
Schamel (2005))). In turn, ion mobility played a decisive role for the existence of 
these dissipative structural equilibria. Accordingly, an anomalous resistivity (or con-
ductivity, respectively) could be presented, introduced the quantity.10 and equation 
(5.13) of (Korn and Schamel (1996b)), which was determined and controlled by the 
surviving hole structure.

Holes, therefore, play a crucial role in anomalous transport and it is expected that 
this area will receive more attention in the future.

This approach to intermittent plasma turbulence with surviving structures and 
coarse grained distributions is supported by another investigation (Schamel and 
Luque 2005). In this numerical study of a current-carrying, subcritical pair plasma 
( vD = 2.0 < vD ∗= 2.6 ), the nonlinear growth (rather than damping!) of holes in the 
positive species, which were initially triggered by tiny seeds, could be demonstrated. 
After saturation a new, steady-state, collisionless, intermittent plasma turbulence 
state is approached with persistent, albeit somewhat less energetic, holes in it.

We note that in VP simulations and/or PIC simulations such a coarse graining is 
automatically involved by the artificial phase space diffusion, especially at the sepa-
ratrix, that is triggered by the numerically necessary discretization of space. We may 
therefore speculate that the current collisionfree equilibria could be of fundamental 
importance for the derivation of improved and specially adapted collision operators 
in weakly collision-free plasmas such as fusion or space plasmas.

10.2 � Solitary structures on hadron beams in synchrotrons

Another field of application of our theory of VP structures are the structures that 
were measured on continuous (coasting) as well as bunched particle beams in circu-
lar accelerators, e.g. at RHIC (Blaskiewicz et al. 2003). Our theory, which has been 
developed over almost a decade (Luque and Schamel 2005; Schamel 1997, 1998; 
Schamel and Fedele 2000; Grießmeier et al. 2000; Blaskiewicz et al. 2004; Schamel 
and Luque 2004) combined with the present experience, does predict 

a)	 no threshold for nonlinear structure formation in case of a coherent initial fluctua-
tion spectrum provided that the system is above the transition energy and
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b)	 the existence of long-living stabilized structures that belong to a continuous rather 
than a discrete spectrum.

The loss of Landau damping, which is seen within these accelerators when at higher 
intensities the collective frequencies lie outside the incoherent spectrum, is, how-
ever, wrongly explained by the beam community (see, e.g. (Burov 2021)) through 
a tune shift in the sense that there are no longer any particles that can interact reso-
nantly with the wave structure, instead of correctly interpreting this phenomenon 
through a loss of Vlasov linearity.

In addition, another incorrect interpretation is given (see e.g. (Karpov et  al. 
2021)) that the observed continuous spectrum after saturation is of the discrete van 
Kampen type, instead of recognizing that the linearity no longer applies and con-
tinuous spectra of the type presented in this work should instead be implied.

We conclude with the expectation that particle trapping, the associated nonlin-
earities and the various trapping scenarios will certainly find their way into beam 
physics in the future as well.

11 � Summary and conclusions

The aim of this review was to prove that coherent electrostatic structures are due 
to the (trapping) nonlinearity of the Vlasov–Poisson system. By comparison of exact 
nonlinear with approximative linear wave solutions of current-carrying plasmas 
with drift velocity vD two fundamentally new results could be obtained: 

	 (i)	 nonlinearly proper single (harmonic) waves are linearly marginally stable inde-
pendent of vD (see harmonic mode, section 3.1 and stability, section 8) and

	 (ii)	 a spontaneous acceleration of a tiny hole is observed, triggered by a gap in 
the velocity caused by the nonlinear dispersion relation and accompanied by 
its subsequent approach to a more negative energy state (see section 9).

This necessarily implies that any linear treatment of this system, such as that of 
Landau or van Kampen (Case), turns out unsuitable for approximating them. Their 
diversity and mathematical subtleties are a direct result of the various trapping sce-
narios that are caused by the resonant wave–particle interaction, a problem which is 
mathematically known to be nonlinear and nonintegrable.

Moreover, due to the occurrence of the Γ-trapping scenario in the nonlinear dis-
persion relation, the linearly based Dupree-Weinstock resonance broadening and 
clump theory has received a nonlinear revaluation and justification (see sections 2, 
3).

With this work we have thereby laid the basis for a comprehensive description of 
coherent patterns in current-driven, noisy plasmas, which brings structure and order 
into the manifold of hole equilibria. They originate from six different electron trap-
ping scenarios that reflect the chaotic single-particle trajectories in the vicinity of 
the resonance. Thirty-one qualitatively different solutions for the electrostatic wave 
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potential �(x) can be composed which are achieved by all possible combinations of 
five elementary modes, a manifold that includes thirty different modes of solitary 
wave character, namely fifteen of positive and fifteen of negative polarity. These ele-
mentary modes are: sin(x), sech 4(x), e−x

2

, e−sinh
2(x), sech 2(x) . When, in addition, ion 

trapping effects are taken into account, the result is a three-digit number of modes 
around five hundred.

In general, however, two combinations of them are already sufficient to pre-
vent the electric wave potential �(x) from being disclosed, i.e. it can no longer be 
described mathematically by known functions. A distinction between these struc-
tures is still possible, however, on the level of the pseudo-potential V(�) , which is 
the central variable in the present theory, leading to a nonlinear version of the linear 
superposition principle.

Its utmost generality has the consequence that earlier investigations presented 
so far are either included as special cases or appear in a corrected, updated form. 
It offers a profound foundation since it provides a mathematically precise in-depth 
microscopic derivation. This is in contrast to many studies presented so far, in which 
such a deepened phase space study is missing. A well-founded study is absent either 
because for example, the densities are simply given as functions of � rather than 
being derived, or the studies are wrongly performed without realization that the 
phase velocity is a necessary part of a complete wave theory. In addition, an intrinsi-
cally microscopic process can in generality not be adequately addressed by prescrib-
ing a macroscopic potential �(x) as done by the BGK method.

The shortcomings of current methods such as the BGK method (Bernstein 
et al. 1957) and especially those based on the linear Vlasov theory (van Kampen, 
Landau) have hence been identified and corrected in favor of the present theory. 
In noisy plasmas, which are characterized by localized fluctuation nuclei or eddy-
like seeds of non-topological character, the linear Landau theory fails, contrary 
to the popular opinion. The linear Landau theory is undermined by particle trap-
ping, the sibling of coherence, and fails to correctly contribute to the formation 
of coherent patterns in realistic plasmas because of its resonantly inconsistent 
distributions.

The present status report was limited to continuous distributions, to a Maxwellian 
background plasma, to non-relativistic electrons and to non-magnetized plasmas. 
Various extensions were carried out in the literature with regard to discontinuous 
distributions by (Schamel (2015), Schamel et al. (2018), Das et al. (2018)), to � or 
Fermi–Dirac distributions by (Tribeche et  al. (2012), Haas (2021)) and (Schamel 
and Eliasson (2016)), respectively, to relativistic electrons by (Eliasson and Shukla 
(2005), Eliasson and Shukla (2006)) and to magnetized plasmas by (Jovanović et al. 
(2002)).

As pointed out, however, a continuation is still called for because of the cusp 
singularity at the separatrix, which is inherent in all solutions and which requires an 
extension of the kinetic Vlasov–Poisson description by incorporation of the higher 
moments of the BBGKY-hierarchy. This is definitely a new adventure awaiting us 
in which the mutually dependent chaotic particle behavior and the pair correlations 
at resonance enter into a liaison with an open outcome, especially for intermittent 
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plasma turbulence and anomalous transport. Such an implementation is still pending 
and will certainly keep many generations busy.

Other non-trivial challenges are 3D generalization of holes (Jovanović et  al. 
2002; Chen and Parks 2002) or the incorporation of a second potential, the vector 
potential, to take into account the additional magnetic island formation, the latter 
being required, for example, for the propagation of coherent kinetic Alfvé n waves 
(Karimabadi et al. 2013).

The proximity to the incompressible, non-viscous shear flow in 2D (Rayleigh 
problem) and more generally to the general fluid theory (Schamel 2012) yields a 
further application. The “puffs” observed in long pipe flows at high Reynolds num-
bers (Hof et  al. 2008) seem to be closely related to the mentioned phase of hole 
acceleration and sound emission. The latter is caused by the approach of the system 
to an energetically lower hole state. This similarity of the coherent vortex dynamics 
in phase and real space physics, respectively, should definitely deserve further atten-
tion in future investigations.

In addition, this analysis can be extended point by point to include collisionfree 
shocks or double layers. This is achieved in the solitary wave case of k0 = 0 by the 
further constraint: V�(�) = 0 or ne(�) = ni(�) with ne(�) from (2) and ni(�) from 
(49). Accordingly, the variety of shock solutions is unlimited, as in the solitary wave 
case, being determined by particle trapping.

And of course finite amplitude extensions like that in (Schamel (1972a), Schamel 
and Bujarbarua (1980), Bujarbarua and Schamel (1981), Schamel and Bujarbarua 
(1983), Schamel (1982b), Schamel (1986)) remain a gigantic challenge for future 
generations.

In the case of a bump-in-tail driven plasma such a comparison is still missing 
because, to my knowledge, no suitable nonlinear solution for comparison is cur-
rently available. However, there is no obvious reason why linear wave theory should 
surprisingly be applicable to coherent structures in this second case, as is practically 
assumed in the (especially experimental) literature.

We finish by concluding that Landau’s theory is inapplicable to driven plasmas 
with a non-negligible background of fluctuations. To describe the 1D instability of 
those plasmas that violate the topological constraint of Landau’s theory, one has to 
solve the full unabridged Vlasov equation, i.e. without linearization. The pattern for-
mation induced by minute seed fluctuations in collision-free plasmas is thus intrinsi-
cally nonlinear since it is governed by particle trapping.

Final note: More details on the loss of the linear Vlasov dynamics are documented 
in an expanded version of this review, which can be found in arXiv:2110.01433v3.

APPENDIX A: Derivation of (27)

We start with −V(�) = k2
0

2
√
�
(��3∕2 − 3�2�1∕2 + 2�5∕2) but use instead of (8) the 

equivalent expression
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x(�) = ± ∫ �

0

dt√
−2V(t)

 which is better suited because � = � occurs at infinity rather 
than at zero. The +(-) sign holds for x ≥ 0 ( x < 0 ). We then have with � = �∕� :

With the abbreviations � ∶=

√
3k0x

4
 and �0 ∶= tanh−1(

1√
3
) = 0.65848 we then have

where again the +(-) sign holds for � ≥ 0 (𝜁 < 0) . This corresponds to (27) and is 
our main result in this Appendix B. It is easily seen by making use of 
tanh(x + y) =

tanh(x)+tanh(y)

1+tanh(x) tanh(y)
 that this main formula agrees with (3.33) of (Korn and 

Schamel (1996a)) if � ≥ 0 . (We mention in parenthesis that the application of (3.33) 
also for negative � would result in a small additional hump at � = −�0 which is 
unphysical because it comes from a wrong handling of the equations.)
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