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Abstract
The strength of a Ni-base superalloy depends strongly on its microstructure consisting of cuboidal � ′ precipitates surrounded 
by narrow channels of � matrix. According to the theory of Orowan, a moving dislocation has to crimp through the minimal 
inter-precipitate spacing to admit the plastic deformation. We present a novel approach to evaluate the matrix channel width 
distribution of a matrix/� ′ microstructure in binary representation. Our method relies on precise determination of the matrix/
precipitate interfaces and requires no additional user input. For each matrix channel between two neighboring precipitates, 
we identify the minimal interface to interface distance vector with its length being the channel width. The performance of 
this method is demonstrated on the example of the commercial alloy CSMX-4. We show that, in contrast to conventional 
line sectioning approaches, the approach consistently handles experimental 2D micrographs and 3D phase-field simulation 
data. The identified distance vectors correlate to the underlying crystal symmetry independent of the image orientation. The 
obtained channel width distributions compare well between the 2D and 3D data. This is in terms of similar median and � 
of a log-normal distribution. The presented method overcomes limitations of the conventional line slicing approaches and 
provides a versatile tool for automated microstructure characterization.

Keywords Automated image analysis · Quantification of microstructure · Feature extraction · �∕� �-microstructure · Ni-Base 
superalloys · Channel width

Introduction

Superalloys are the material of choice regarding high tem-
perature and high mechanical stress environments. Typical 
applications are turbine blades in jet engines and station-
ary gas turbines. The efficiency of turbines is improved by 
increasing the turbine entry temperature, leading to growing 
demands on the materials. Superalloys and their manufactur-
ing processes thus need to be optimized to further improve 
mechanical stability at higher temperatures. Typically, �∕� � 
Ni-base superalloys are found in such applications. They 
consist of a face centered cubic (fcc) Ni solid solution matrix 
phase ( � ) containing L12 ordered coherent precipitates ( � ′ ). 
This microstructure leads to high strength at high homolo-
gous temperatures due to different mechanisms influencing 
the dislocation movement and stabilizing the microstructure. 

This work will focus on the Ni-base superalloy CMSX-4, 
but the same �∕� � microstructure is also found in Co-base 
and Pt-base superalloys, as well as compositionally complex 
alloys, where similar mechanisms are utilized to improve 
high temperature strength [1–3].

The extent of strengthening depends on the morphol-
ogy of the �∕� � microstructure which can be described 
by distributions of key microstructure parameters, such as 
precipitate sizes d and the channel widths L , that are the 
inter-precipitate spacings. Instead of distributions, mean 
or median values are often used as a model input, which 
could be improved upon by using distributions directly. 
Connected with these two distributions, the � ′ volume frac-
tion V

�
′ is another influence parameter. The relationship 

between the precipitation microstructure of �∕� � Ni-base 
superalloys and its mechanical properties, such as the yield 
strength [4–8] or creep resistance [9, 10], is topic of many 
research works. The total influence of the precipitates is 
split into multiple mechanisms, relating to different dis-
location-precipitate interactions. Considered are the lat-
tice parameter misfit between the two coherent phases, 
leading to coherency stresses, as well as the anti-phase 
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boundary shearing mechanism, when a dislocation shears 
a L12 ordered � ′ precipitate. These contributions depend 
on the � ′ phase volume fraction V

�
′ and the distribution of 

�
′ precipitate sizes d , respectively.

The focus of this work is on the experimental and simu-
lated determination of the minimal matrix channel width 
distribution L . This distribution is relevant when predict-
ing the strengthening contribution through the Orowan 
mechanism as described in the following equation [11]

where G is the shear modulus and b the magnitude of the 
Brugers vector. The shear stress �Oro must be exceeded for a 
dislocation to thread and bend through the spacing between 
two precipitates. The dislocations do not cut through the pre-
cipitates by shearing, but rather pass by the precipitates by 
bowing through the narrow matrix channels, as long as the 
local stress state is too small to shear the � ′ precipitates. The 
passing of a narrower matrix channel involves an increased 
dislocation bending, that is energetically costlier and thus 
requires �Oro to be larger. Considering the path of a disloca-
tion through a particular channel within an extended micro-
structure, the dislocation bowing is maximized at the place 
of minimal channel width. Therefore, if precipitate shearing 
can be excluded, it is the minimal matrix channel width L 
in the glide plane, which determines the total energy barrier 
height for the dislocation to pass that particular channel.

Within the extended microstructure the dislocations 
always choose the path of minimal resistance through all 
the different matrix channels. However, in conventional 
models, the mechanical behavior of precipitate strength-
ened alloys is usually described in terms of the mean chan-
nel width Lmean or the median value L50 of a measured 

(1)�Oro =
Gb

L
,

distribution. The distribution of channel widths plays a 
critical role in the temperature-dependent plastic deforma-
tion. When the channel widths show a very narrow distri-
bution, for a dislocation every channel is equally costly 
to cross. The external stress required for dislocations to 
move through the microstructure can then be calculated 
by Eq. (1). A wider distribution of channel widths leads 
to a different picture. The external stress required to pass 
narrow channels is high and dislocations may choose to 
circumvent those obstacles by choosing a path through a 
wider channel. The total resistance of dislocation move-
ment is becoming more of a serial and parallel connection 
of the stresses needed for the dislocations to pass through 
individual channels rather than a function of the mean 
values. For this reason, to classify the strength of a Ni-
base superalloy based on its precipitate microstructure, 
information on the distribution of channel widths is cru-
cial. [12, 13]

Channel width distributions need to be extracted from 
digital representations of the �∕� � microstructure, which 
include micrographs from scanning electron microscopy 
(SEM) but also simulation results, often in the form of three-
dimensional datasets. Techniques for extracting these micro-
structure parameters from such digital representations focus 
mostly on the analysis of micrographs. The goal behind all 
techniques is to achieve results with high accuracy, high 
reproducibility between different input images of similar 
content, and a high degree of automation, to allow for rapid 
evaluation of large datasets with as little human interaction 
and influence as possible. The last point goes hand in hand 
with reproducibility and comparability between similar data, 
as human bias and assessment are minimized.

Figure 1 shows the main steps in evaluating microstruc-
ture parameters starting from a greyscale SEM micrograph 
of the precipitation microstructure in a). The first step in 

Fig. 1  a Section of a SEM micrograph depicting the �∕� �  micro-
structure of CMSX-4 in grey scale, b binarized representation of the 
section in a, with white pixels representing � matrix, and black pix-
els representing � ′ precipitates, the red dashed square indicates the 

equivalent area-based method for evaluating precipitate sizes. c Visu-
alization of line slicing for channel width analysis by horizontal and 
vertical lines only, d visualization of the minimal nearest neighbor 
distance channel width analysis
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the microstructure analysis is to decide whether a certain 
image pixel belongs to precipitate or matrix. This step is 
called the image segmentation process and denotes a pre-
requisite for the subsequent quantitative image analysis, 
which is independent from the different methods for the 
image analysis discussed below. For distinguishing two 
phases this segmentation step is generally referred to as 
binarization, which is the denomination used in this work 
going forward. In Fig. 1 b) the result of a binarization step 
is shown, distinguishing between the two phases � (white) 
and � ′ (black).

Classically, the analysis of particle sizes from binarized 
images can be conducted using line-intersect methods [14, 
15], which count the number of particles cut by a line laid 
over the image. Another option are chord-length analysis 
methods that lay vertical and horizontal lines through the 
image, counting consecutive pixels that were identified as 
the phase of interest. This method can be enhanced by eval-
uating more directions resulting in orientation dependent 
diameter distribution, as recently used by Kim et al. [16].

More commonly, particles completely surrounded by 
other phases are evaluated by measuring their area [17] or 
assuming a certain geometric shape and calculating e.g. 
the diameter of a circle, or the edge length of a cube with 
equivalent area [17–23], as indicated in Fig. 1b. Improved 
methods measure two diameters of ellipsoidal particles and 
therefore also evaluate the aspect ratio [24]. Taking the 
shape evaluation even further moment invariants can be used 
to quantify the shape of precipitates independent of orienta-
tion and size [25–27]. It was also shown that a quantitative 
comparison between 2D experimental and 3D phase-field 
particle shapes is possible using this method [27].

Figure 1c and d show the results of two different methods 
for evaluating the � channel width distribution L based on the 
binary microstructure representation. Shown in Fig. 1c is the 
line slicing method, which is conducted along a certain orien-
tation relative to the precipitate orientation [28, 29] or along 
two perpendicular directions in form of a grid [30, 31]. These 
techniques require knowledge about the orientation of the 
microstructure within the image to find a physically meaning-
ful measure for the precipitate spacing that effectively hinders 
dislocation movement through a matrix channel. Additionally, 
the positioning and spacing of the individual lines need to 
be adjusted based on the precipitate size found in the image. 
Alternatively, errors that might arise from random placement, 
like the line coinciding with a parallel matrix channel, need 
to be corrected. This makes these methods difficult to fully 
automate. Figure 1d gives a glimpse of the performance of 
the method introduced in this work that is independent on the 
misorientation between the pixel grid of the binary data and 
the underlying crystallographic orientation. It renders a well-
defined definition of the minimal channel width within the 

viewed plane that relates to the inter-precipitate spacing that 
moving dislocations have to overcome.

Beside micrographs, we need to also analyze 3D simula-
tion results using a consistently comparable method. These 
simulations are using the phase-field method. Phase-field 
simulations of microstructure evolution in general are fre-
quently employed for the description and optimization of the 
physical and mechanical material behavior at mesoscale [32]. 
With respect to the present context, we mention the successful 
simulation application to the solidification of Ni-base super-
alloys [33–35] as well as to microstructure evolution during 
heat treatment [36–38]. Phase-field simulations operate with 
explicit microstructures, based on a diffuse interface descrip-
tion. In principle, the simulation results are very similar to seg-
mented images from experimental micrographs. One impor-
tant difference is the fact that phase-field simulations can be 
performed in the 3D space, thus providing 3D microstructural 
information. Further, the diffusive character of the �∕� � inter-
faces impacts on the accuracy of the quantitative analysis of 
the simulations results. Depending on the width of the diffuse 
interface, we find systematic deviations in the resulting micro-
structure properties, such as the particle size [26]. By numeri-
cal resolution issues, conventional phase-field models require 
the diffuse interface width to be chosen at least four times 
larger than the grid spacing. This limitation can be overcome 
by advanced discretization techniques [39] or by employing 
the newly proposed sharp phase-field method, which allows 
the operation with interface widths on the scale of a single 
distance between two neighboring grid points [40, 41].

In this work we propose an automated procedure to con-
sistently extract key parameters from both types of micro-
structure representations, 2D micrograph images and 3D 
simulation domains. More specifically, we focus on the 
evaluation of the matrix channel widths L . The procedure 
combines identifying nearest neighbor particles and finding 
their minimal distance into one step. It provides accurate 
statistical descriptions of L in form of distributions that can 
be used to predict mechanical properties, reducing the need 
for time and material intensive test series, and thus speeding 
up development of new alloys and processes. This is shown 
as an example for the alloy CMSX-4 for which micrographs 
and phase flied simulations are readily available. The quality 
of the results of the new method is compared to respective 
results using conventional techniques such as slicing, or line 
intersect methods.

Methods

Experimental Microstructure Imaging

The alloy investigated in this work is CMSX-4. The corre-
sponding chemical composition, as also used as simulation 
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input parameter, is listed in Table 1. CMSX-4 is a second-
generation single crystal (SX) Ni-base superalloy, which 
is characterized by the addition of 3 wt.% Re, leading to 
improved creep properties compared to first generation 
alloys such as CMSX-3 [11, 42–44]. After standard heat 
treatment, its microstructure is characterized by a � ′ volume 
fraction V

�
� ≈ 70% and a mean � ′ precipitate size d ≈ 450 nm 

[42, 45–48]. These values are optimal for achieving high 
creep strength at high temperatures, leading to a deformation 
mainly constricted to matrix channels [49, 50].

Experimentally, the specimen was prepared by alloying 
granules with a purity greater than 99.9%. High melting 
elements were prealloyed with Ni and then positioned in a 
ceramic crucible along with the remaining granule shaped 
elements [43, 44]. Following the Bridgman method, the 
constituents are molten and cast single crystalline in an 
induction vacuum furnace, as described in detail by Konrad 
et al. [51].

After the casting process the composition of the result-
ing specimen is analyzed on a cross section of the cylinder 
using a Thermo Noran System Six EDX-system with a Zeiss 
1540ESB CROSS BEAM SEM. The composition of the cast 
single crystalline specimen was analyzed using EDS, the 
corresponding results are listed also in Table 1.

Figure 2 shows the results of ThermoCalc [52] calcu-
lations, that were conducted using the TCNI8 database, 

analyzing the temperature dependent volume fractions of 
the � and � ′ phases for the two different compositions. The 
results confirm the suspected discrepancy in � ′ volume 
fractions, likely due to the difference in Co and Ta content, 
leading to higher � volume fractions. At the temperature 
of the second precipitation heat treatment step of 870 °C a 
ΔV

�
� = 65% − 60% = 5% higher � ′ volume fraction is pre-

dicted for the phase-field composition compared to the 
experimentally measured composition. This discrepancy 
is within the experimentally expected range.

The cylindric specimen is oriented along the ⟨100⟩ 
directions, samples are then cut from it using electronic 
discharge machining. The samples are heat treated accord-
ing to a standard heat treatment that includes a solution 
heat treatment step at 1320 °C for 2 h followed by an aging 
heat treatment step at 1140 °C for 6 h and a second aging 
step at 870 °C for 20 h [47]. After the solution step and the 
first aging step, the samples were air-cooled.

To prepare the heat-treated specimens for SEM micro-
structure imaging, they are embedded into an electrically 
conducting polymer resin filled with carbon (PolyFast, 
Struers). The surface is then prepared by first grinding 
using SiC paper with grit 320. Subsequently the sample is 
polished using 6 µm and 3 µm diamond suspension, fol-
lowed by a final oxide polishing step using colloidal silica. 
The samples were then etched for 1 s using molybdic acid.

The �∕� �  microstructure micrographs are taken in a 
Zeiss SEM of type 1540ESB Cross Beam using the sec-
ondary electron detector (SE). An acceleration voltage of 
20 kV was used in conjunction with an aperture of 60 µm 
and a working distance of 5 mm.

Figure 3a shows an exemplary micrograph of the alloy 
CMSX-4, that was used in the analysis. The square shaped 
�

′ precipitates are clearly visible as the dark grey areas, 
separated by the light grey � matrix phase. In Fig. 3b the 
corresponding result of the binarization using a deep con-
volutional neural net, based on the SegNet architecture 
[54], is shown. Here, black pixels represent the points 
inside a precipitate, white pixels the matrix phase points. 
This binarization has been performed, using the optimized 
neural network by Stan et al. [55], which was laboriously 
trained for this purpose [26]. The diagonal bands of matrix 
phase are also identified well. The neural net binarization 
shows some difficulty identifying precipitates, where the 
edge of the precipitate smoothly transitions into the matrix 
phase. All together the binarization result using the neural 

Table 1  Composition of 
the alloy CMSX-4 in wt.% 
as used for simulation and 
experimentally measured by 
EDS

Element Cr Co W Al Ti Mo Ta Re Hf Ni

As simulated 6.5 9.0 6.0 5.6 1.0 0.6 6.5 3.0 0.1 bal
As produced 6.8 10.2 5.6 5.4 1.0 0.6 5.2 2.9 0.2 62.1

Fig. 2  Volume fractions V  of the phases � , � ′ , and liquid in the 
CMSX-4 compositions “as simulated” (dashed) and “as produced” 
(continuous), as taken from Thermo-Calc
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net delivers good performance and high reproducibility for 
the cost of time-consuming training.

In total we analyze 6 micrographs with a total number of 
430 � ′ precipitates. Their mean � ′ area fraction is F

�
� = 74% , 

from which a volume fraction of V
�
� = 64% can be estimated 

using [11]:

This assumes that the precipitates are prefect cubes. The 
�

′ volume fraction of 64% lies between the ThermoCalc esti-
mations for the nominal and measured composition of the 
material.

Phase‑Field Simulation of Microstructure Formation

Phase-field simulations of Ostwald ripening and anisotropic 
coarsening (“rafting”) of the � ′ phase in CMSX-4 have been 
performed using the software MICRESS® [56] following 
the aim to generate realistic 3D-microstructures for analy-
sis. Within a 3D domain of 112 × 84 × 84 grid cells with 
a resolution of Δx = 0.02 μm and starting from pure fcc-
phase with nominal alloy composition (Table 1), nucleation 
of � ′ upon cooling, isothermal holding at 1140 °C for 6 h, 
and, finally, rafting at 950 °C under a uniaxial tensile stress 
of 185 MPa was simulated. By using a finite-differences 
correction scheme [39] the numerical interface thickness 
could be reduced to only 2.84 cells, leading to a significant 
reduction of simulation time in comparison to other phase-
field models. During isothermal holding, due to the effects 
of elastic strain, cubic particles were formed. 3D-images 
were prepared based on the phase fraction of � ′ . More 
details on the simulation parameters can be found in [57]. 
MICRESS® is a commercial software which uses a multi-
component multiphase-field model [58] and which can be 

(2)V
�
� = F

3∕2

�
�

online-coupled to arbitrary thermodynamic databases using 
efficient extrapolation methods [59]. Coupling to elastic 
stresses can be performed including mechano-chemical con-
tributions [57]. These are of high importance in multicom-
ponent high-alloyed systems like Ni-base superalloys and 
describe partial dissipation of elastic energy by stress-driven 
diffusion, generally leading to a reduction of the stress lev-
els. The applicability of MICRESS® for scale-bridging and 
for simulation of process chains in ICME contexts has been 
recently demonstrated [38]. For the simulations, a difference 
in molar volume was assumed between the � and � ′ phases, 
leading to a lattice parameter misfit of � ≈ 0.17% , which 
is in good agreement with the experimentally determined 
value [37].

The microstructures of phase-field simulations are already 
segmented, as the phase-field variable � describes, which 
phase is present at each numerical grid point. The � ′ phase 
volume fraction can be easily evaluated by integrating over 
� over the whole domain. This results in � ′ phase volume 
fraction of V

�
� = 60.7% , which is in good agreement with 

the Thermo-Calc prediction for the nominal composition of 
CMSX-4 at 950 °C (see Fig. 2). The mean precipitate size 
was evaluated to be �d = 440nm with a standard deviation 
of �d = 170 nm , which is in good agreement to the distribu-
tion evaluated from the micrographs, featuring �d = 450nm 
and �d = 170nm.

Figure 4a shows the simulation domain colored according 
to the value of � , where black represents the � ′ particles at 
� = 1 and white represents the � matrix at � = 0 . The posi-
tion of the boundary between  � and � ′ phases at � = 0.5 can 
be interpolated with higher than numerical grid accuracy 
[60]. This interpolation is applied to the so-called march-
ing cube algorithm [61], to find the phase-field contour at 
� = 0.5 , that is then represented by a number of triangulated 
hulls. The resulting precipitate hulls are shown in Fig. 4b.

Fig. 3  Example of a CMSX-4 micrograph (a) and its segmentation result (b). In the segmented image, black pixels are inside � ′ precipitates, and 
white pixels are � matrix [53]
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Next, a unique label is attributed to each individual parti-
cle in the domain. In this respect, the individual particles are 
defined through their contiguous areas/volumes for which 
𝜑 > 0.5 holds.

The size of each individual precipitate can be derived 
from its volume, which is calculated through the use of cen-
tral moments as described in [62–64]. Due to the periodic 
boundaries of the simulation domain, particles that cross one 
or more of these boundaries are first recombined before their 
size is analyzed, as is exemplarily shown on the split pre-
cipitate marked pink in Fig. 4b and recombined in Fig. 4c.

Automated Channel Width Analysis

The microstructure analysis procedure described in the fol-
lowing sections is written in the Python programming lan-
guage [65], making use of the open source packages scipy 
(v. 1.7.3) [66], numpy (v. 1.12.5) [67], scikit-learn (v. 1.0.2) 
[68], pandas (v. 1.4.1)) [69, 70], and pyvista (v. 0.32.1) [71].

The first step in the evaluation of the channel width dis-
tribution L lies in finding the matrix/precipitate interfaces, 
also called the particle hulls. For the 2D pixel data from the 
micrographs, we define the hull points as all those precipi-
tate points having at least one direct neighbor points that 
belongs to the matrix phase. Here, we restrict to the case of 
a two-phase microstructure only consisting of matrix-phase 
and the precipitate particles. For the 3D phase-field data, 
the hull points are already identified during the segmenta-
tion step.

Figure 5a shows the schematic of the algorithm that is 
used to identify the nearest neighbor (NN) particles and 
the minimal distance between them in a single step based 

on the coordinates of all points on the particle hull, as 
indicated in the schematic in Fig. 5b. If we want to find 
the nearest neighbors of a certain particle P we extract a 
subset Slocal ⊂ S of all hull points surrounding P , where 
S represents all hull points. This reduces the number of 
points that need to be checked and thus increases the speed 
of the evaluation.

For every point on the hull of P we then find the nearest 
neighbor point among the points in the subset Slocal created 
above. The computational effort to search scales linearly 
with the number of points NP on the particle hull of P 
and the number of points in the subset NSlocal

 . To further 
improve the evaluation speed a so-called k-d tree as imple-
mented in the python library scikit-learn [68] is employed, 
that finds the nearest neighbor for any point on the hull 
with an average time complexity of O

(
logNSlocal

)
 . After a 

nearest neighbor point is found, as seen for the green pixel 
in Fig. 5c, we check if that neighbor has already been 
found before. If not, we add this particle as a new nearest 
neighbor, also storing the vector between the two points on 
the different particle hulls, as well as their Euclidian dis-
tance. If a nearest neighbor is already known, we check if 
the new distance is lower than the one already stored, and 
if that is true update the vector and Euclidian distance for 
this nearest neighbor particle. This results in a list of the 
nearest neighbor particles with the corresponding mini-
mal particle distances in vector form and as the Euclidian 
distance. This is schematically shown in Fig. 5d) for the 
partial precipitate labeled “1”. If the procedure is repeated 
for all other precipitates, nearest neighbor precipitates and 
their minimal surface distances are identified (Fig. 5e)).

Fig. 4  a Plot of the phase-field variable � on the surface of the simu-
lation domain. Black indicates the � ′ phase and white indicates the � 
phase. Grey regions mark phase-field boundaries. b Plot of the � ′ pre-
cipitate contour surfaces. The contour of a particle that crosses the 

simulation domain is highlighted in pink. c Plot of the � ′ precipitate 
contour surface of the precipitate marked in b, correctly combined 
considering the periodic boundary conditions
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Results and Discussion

The developed algorithm for evaluation of the minimal 
channel width distributions from 2D micrographs and 3D 
phase-field simulation results is applied to both data types 
and compared to the result of a standard slicing analysis.

Channel Width Definition

Figure 6 schematically shows the difference between the 
evaluated channel width from the slicing method in part a 
and the here introduced minimal nearest neighbor channel 
width method in part b. In the schematic, the crystal ⟨001⟩ 
directions and therefore also the sides of � ′ precipitates are 

not perfectly oriented along the horizontal ( x ) and vertical 
( y ) axes of the image. They differ from each other by a mis-
orientation � . The slicing method characterizes the channel 
width between two precipitates through multiple values in 
the directions of the image axes. This is represented by the 
red lines touching the two precipitates halves. The number 
of individual channel width values depends on the length of 
the channel and the distance between the slicing lines and is 
thus depended on a user input parameter that influences the 
resulting distribution. This means that the effectively meas-
ured channel width is a mean value over the cannel length, 
and longer channels have a bigger influence on the overall 
distribution. Further, the misorientation between the crystal 
directions and the image’s pixel grid leads to an overestima-
tion of the matrix channel width.

Fig. 5  a Flowchart for finding 
nearest neighbor (NN) particles 
as well as minimal distances 
between them, resulting in 
minimal channel widths of 
channels between neighboring 
precipitates. The figures on the 
right show a detailed state of an 
image after: b finding all pixels 
on the precipitate hull, c finding 
the nearest neighbor pixel on 
the hull of different precipitate, 
d finishing the iteration over 
the pixels on the surface of 
precipitate 1, e the algorithm 
has finished

Fig. 6  Schematic drawing of the 
difference of the channel width 
evaluation by the slicing method 
(a) and by the newly introduced 
minimal nearest neighbor 
distance method (b). The 
coordinate systems shown in the 
bottom left indicates a misorien-
tation � between the crystal-
lographic ⟨100⟩ directions of the 
material and the main coordi-
nate directions x and y of the 
orthogonal grid, e.g. the pixel 
grid of a micrograph
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In comparison, the minimal nearest neighbor distance 
method quantifies each channel with exactly one value, that 
is the minimal distance between two neighboring precipi-
tates and that is independent of the misorientation between 
the image’s pixel grid and the main crystallographic orien-
tations. This leads to overall lower channel width values, 
where the measured distribution is shifted towards the left, 
as well as narrower distributions. There are no parameters 
that need to be specified beforehand and influence the result-
ing distribution.

Statistical Evaluation of Channel Width 
Distributions

The results of the evaluations are distributions of channel 
widths due to local differences in materials microstructure. 
Such distributions are most commonly represented in the 
form of histograms, where values are sorted into bins of 
a certain width and the number or relative frequencies for 
every bin is plotted on the y axis over the value range of the 
parameter on the x axis. The result of this kind of represen-
tation is strongly depended on how the bin size and the bin 
border positions are chosen, especially for distributions with 
a low number of values per bin.

All analysis methods for the channel width used in the 
following sections resulted in right skewed distributions that 
feature a longer tail towards higher channel widths values. 
It was found that the measured distributions are represented 
well by logarithmic normal distributions, which were fit-
ted to the measured data using the Maximum Likelihood 
Estimation technique. The general form of the logarithmic 
normal distribution’s probability distribution function f  is 
given in Eq. (3), where L50 is the distributions median of L 
and �L is the standard deviation of ln(L).

The mean of the channel width distribution Lmean and the 
mode of the channel width distribution Lmode can be calcu-
lated from L50 and �L according to Eqs. (4) and (5).

If ideal distributions are fitted to the data, the fit might 
look unsatisfactory when overlaid onto the histogram, but 
in reality, feature a very high coefficient of determina-
tion, which can be better seen in other representations. A 
trend corrected pp-plot was chosen to visualize the quality 
of the fits. Here the deviation of the fit from the measured 

(3)f (L) =
1

L�L

√
2�

e
−
(ln(L)−ln(L50))

2

2�2
L

(4)Lmean = e
ln(L50)+

�
2

2

(5)Lmode = eln(L50)−�
2

distribution, defined as the differences of the measured per-
centiles pi and ideal percentiles of the fitted distribution ti , 
are plotted over the measured quantiles qi . The goodness of 
the fit is described by the distance of the points 

(
qi, ti − pi

)
 

to the line y = ti − pi = 0 . The smaller this distance is, the 
better the fit describes the data.

Channel Width Evaluation Results

Figure 7a and b show the qualitative results of the newly 
introduced minimal nearest neighbor distance method, 
where red lines indicate the identified minimal distance 
vectors between nearest neighbor particles. Another feature 
of this method can be identified when looking at the dis-
tributions of the misorientation angle between the distance 
vectors and the ⟨100⟩ directions of the crystal lattice, which 
are shown in Fig. 7c and d. It is clearly visible that the dis-
tance vectors are predominantly oriented in ⟨100⟩ directions 
without user input. This is an intrinsic feature of the algo-
rithm that finds the minimal distance. In combination with 
the orientation of the cuboid precipitates, which’s sides are 
oriented relative to the ⟨100⟩ crystal directions, this leads to 
an ⟨100⟩ orientation of the minimal distance vectors.

Figure 8 shows the results of the channel width analysis. 
The minimal nearest neighbor distance method is compared 
to the grid slicing method for both the 2D micrographs as 
well as the 3D simulation domain. The results of the micro-
graph analysis can be seen in Fig. 8a and c where the dis-
tributions resulting from the grid slicing and the minimal 
nearest neighbor distance method are shown as histograms. 
Note that the relative frequency on the y-axis is plotted loga-
rithmically to better highlight the amount of large channel 
width values found by the evaluations. Both distributions 
show a skew towards high values and are represented well 
by logarithmic normal functions, as can be seen by the 
corresponding red lines overlaid onto the histograms and 
the high COD values of 0.93 and 0.99, respectively. There 
are clear differences noticeable between the two analysis 
methods applied to the micrographs that can be found in 
the histograms as well as the fits. The slicing result fea-
tures a wider distribution, when looking at the histogram. 
A large number of channels wider than 500 nm are found 
using this technique. Reasons for this include the possibility 
of a slicing line being parallel inside a channel, as can be 
seen in Fig. 6a. Here a filter would be necessary to elimi-
nate these incorrectly measured channel width values. The 
presented minimal distance method delivers results with a 
higher degree of relevance for microstructural evaluation 
without the need for manual post-processing. This can also 
be seen in Table 2, where statistical descriptors for the two 
methods are compared for both the original dataset as well 
as the logarithmic normal distribution fits.
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The median is often used to characterize non-symmet-
rical distributions. If we compare the median of the raw 
data of the two analysis methods, we find that the result of 
the slicing method is 18% larger. This can be explained by 
the random position a channel is evaluated at by the slicing 
line that does not necessarily coincide with the minimal 
channel width, as is shown in the schematic in Fig. 6a. 
The width is averaged over the whole length of the chan-
nel. Our method finds the minimal distance between the 
nearest neighbor precipitate hulls that make up a channel. 
In terms of the application of the channel width distribu-
tion data for the use in a model describing the microstruc-
ture dependent strength of an alloy, the minimal channel 
width in the glide plane is the critical value, as the Orowan 
strengthening contribution depends on L reciprocally, see 
Eq. (1), and therefore the smallest distance provides the 
maximum Orowan stress.

When we compare the quality of the fits of the logarith-
mic normal distribution to the histograms, we see that the 
result of the minimal nearest neighbor distance method is 
represented more accurately by a logarithmic normal func-
tion. This can also be seen in corresponding trend corrected 
pp-plot in Fig.  8e. A much lower discrepancy between 

measured and fitted percentiles over the whole range of 
L can be seen for the minimal nearest neighbor distance 
method.

Figure 8b and d show the resulting distribution of channel 
width values for the simulation domain using grid slicing 
and minimal nearest neighbor distance method, respectively. 
Similar to the 2D result a skewed distribution of channel 
widths towards larger channels has been found in the 3D 
system. Again, a logarithmic normal function is fitted to the 
values, resulting in a good description of the measured dis-
tribution as proven by the trend corrected pp-plot in Fig. 8f. 
The result of the minimal nearest neighbor distance evalua-
tion is better represented by the logarithmic normal distribu-
tion than the result of the slicing evaluation, which becomes 
also clear when comparing the corresponding coefficients 
of determination. Compared to our evaluation method, the 
slicing method results in a distribution with a much larger 
median value. Further, the two analysis methods result in 
significant differences regarding the width of the distribu-
tion, as can be seen by the statistical descriptors listed in 
Table 2. The effects that cause the distortion of the evalua-
tion in 2D, namely misplacement and averaging, are further 
enhanced in the 3D case, as the chance for a slicing line 

Fig. 7  Visualization of the channel width evaluation results using 
the minimal nearest neighbor distance method, where the minimal 
distance vectors for every channel are overlaid onto the segmented 

micrograph a, and the � = 0.5 iso-surface b, respectively. c and d 
show the distribution of the misorientation angles between the mini-
mal distance vectors and the ⟨100⟩ direction
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falling into a channel is higher, and the precipitates feature 
a more rounded shape which is likely caused by the interplay 
of lattice parameter misfit and interface energy [26].

The evaluated medians of the raw data and the fit distribu-
tions, as well as the mean channel width of the raw data distri-
bution, are larger in the simulation than in the 2D micrograph. 

For the slicing technique this difference amounts to a factor 
of 2.1 to 2.3, overestimating the 3D channel widths. Possible 
reasons for these differences include the higher temperature of 
950 °C applied in the simulation, compared to the temperature 
of the last heat treatment step of 870 °C that the micrographs 
represent. This leads to a phase volume fraction lowered by 

Fig. 8  Statistical results of the channel width analysis of: a, c, e six 
micrographs of CMSX-4; b, d, f a phase-field simulation domain of 
CMSX-4. a, b, c, d show the evaluation result presented as a histo-
gram overlaid with the fitting result of a logarithmic normal distribu-
tion, the relative frequency is scaled logarithmically. a and b show 

the results of a slicing measurement, c and d the result of the minimal 
nearest neighbor distance evaluation. e, f plot the relative difference 
between the measured and ideal percentiles over the measured quan-
tiles, indicating the goodness of the fits
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3%, thus resulting in larger channel widths for the simulation. 
The precipitate size distribution was found to be nearly identi-
cal for both 2D and 3D data sets. Further the � ′ etching tends to 
also slightly etch away the � channels, leading to lower values 
for the micrograph, again. Never the less, such a stark differ-
ence of more than factor two between simulations and experi-
ments is not expected, as the phase-field simulations are suf-
ficiently resolved to deliver accurate results, and the difference 
in V

�
′ of 3% is not large enough to cause these deviations. The 

results of the minimal nearest neighbor channel width method 
show differences of factor 1.4 to 1.6 using the same data base. 
This is a much-improved agreement between the 2D and 3D 
evaluation results. The differences between the median values 
of the fit and the raw data can be explained by the rather low 
number of channels present compared to the 2D investigation.

The presented method shows a couple of improved prop-
erties compared to the grid slicing method. The difference 
between the 2D and 3D channel width results is significantly 
smaller for the minimal nearest neighbor distance evaluation 
compared to the slicing method. The median channel widths 
differ by a factor of 1.5 rather than 2.3. Compared to the 
slicing method, our method evaluates the minimal channel 
width, rather than an averaged channel width, which could 
clearly be seen in the evaluated distributions. This minimal 
channel width in the glide plane is the parameter of interest, 
when quantifying the Orowan strengthening contribution. 
Further, the presented method can be fully automated, with-
out the need for user input that would influence the resulting 
distributions and reduce reproducibility. This includes the 
orientation of the crystal lattice within the data set, which 
does not need to be known beforehand. Further, a filtering 
postprocessing step is not necessary. All in all, we see meas-
ured channel width distributions of high quality with high 
reproducibility.

Conclusion

We present a novel approach to evaluate the matrix chan-
nel width distribution in the �∕� �  microstructure of Ni-base 
superalloys. From a binary microstructure representation, 
the minimal surface to surface distance of two nearest 

neighbor precipitates is evaluated without requiring addi-
tional input. This definition of the matrix channel width 
has a direct relation to the materials strength through the 
Orowan relation, as it corresponds to the inter-precipitate 
spacing that moving dislocations must overcome. Contrary 
to the common slicing method, every matrix channel in the 
data is represented by exactly one value. The strength of 
the presented approach was successfully demonstrated on 
the example of 2D micrographs and 3D phase-field simu-
lation results, exemplified with the alloy CSMX-4. The 
slicing method finds significantly different channel width 
distributions when 2D and 3D data is compared. Slicing 
overestimates the channel width stronger in 3D than in 2D. 
The presented approach overcomes this limitation and shows 
significantly improved consistency as the obtained distribu-
tions from 2D experimental and 3D phase-field data com-
pare very well both in terms of median channel width and 
shape of the distribution.

Outlook

The measured distributions of channel widths will be used 
to estimate the material strength contribution through 
the Orowan mechanism. Here distributions in the {111} 
planes are of particular interest, as the slip system in Ni is  
a

2
⟨110⟩{111} [11]. For the measured channel width distribu-

tions in {100} planes, the distributions in {111} planes can 
be estimated by multiplying the measured values by a factor 
of 

√
3∕

√
2 ≈ 1.21 , which results from model calculations 

assuming perfect equisized cuboidal precipitates.
Figure 9 schematically shows how channel width distri-

butions will be correlated to distributions of local Orowan 
stresses that need to be overcome for dislocation move-
ment to proceed. This is done by scaling the measured 
{100} logarithmic normal distribution, as shown in (a) in 
grey, to represent a distribution in {111} planes, indicated 
by the red dashed line. The convolution of the resulting 
distribution with the relation of Orowan stress regarding 
to channel width, as depicted in (b) results then in a dis-
tribution of Orowan stresses, as is shown in (c). From this 

Table 2  Statistical descriptors 
of the channel width evaluations 
using grid slicing and the newly 
introduced method

The evaluations of raw data and logarithmic normal distribution fits are compared for 2D experimental 
micrograph and 3D phase-field simulation data. All values are given in nm

Raw data Fits

Nr. of values Min L
02

L
25

L
50

Mean L
75

L
98

Max L
50

�
L

COD

Slicing 2D 8351 5.2 16 42 68 150 130 170 2800 83 1.1 0.93
3D 707 9.9 33 81 160 310 380 1300 2400 180 1.1 0.86

Our method 2D 1236 7.4 16 37 58 73 95 250 490 59 0.7 0.99
3D 152 28 28 71 83 100 140 230 240 94 0.4 0.96
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distribution the material strength can be predicted in com-
bination with other strengthening contributions.
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