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me the opportunity to pursue this research project, for his excellent supervision

and support in academic matters, and for the many opportunities for international

scientific exchange. Moreover, I greatly appreciate our enlightening discussions, Prof.
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Abstract

Model predictive control (MPC) is an optimization-based method for the feedback

control of nonlinear systems. Since MPC can efficiently solve optimal control prob-

lems with constraints on large horizons, it enjoys great popularity in science and

industry. In the literature, different aspects, as well as possible extensions, are dis-

cussed. Moreover, motivated by many applications, considering multiple cost criteria

is a natural idea.

This thesis aims to enhance our understanding of multiobjective model predictive

control and to provide valuable control theoretical and algorithmic insights in this

field. To address this, we investigate multiobjective optimal control problems and

analyze their trajectory behavior. In particular, we examine multiobjective strict

dissipativity as one of the key ingredients for analyzing both MPC schemes and

performance results.

In multiobjective optimal control problems, multiple equilibria are more likely to

coexist. Similarly, this occurs in a discounted setting for which we provide a local

strict dissipativity and a local turnpike analysis. Since for solving multiobjective

optimal control problems, the weighted sum approach is commonly used, conditions

under which the convex combination of strictly dissipative stage cost remains strictly

dissipative are derived. To this end, we use nonlinear programming techniques and ex-

ploit the relationship between strict dissipativity and optimal steady-state problems.

Moreover, we present two multiobjective MPC schemes accompanied by assump-

tions on the problem data that extend the applicability to a broader class of optimal

control problems compared to existing literature. We show both (non-) averaged per-

formance results and the trajectory convergence. Inspired by single-objective MPC

results for optimal control problems without terminal conditions, we give performance

bounds for all cost criteria. Further, a stability analysis is provided by proving that

the objective function with strictly dissipative stage cost is a time-varying Lyapunov

function.

To substantiate our theoretical findings, we study several numerical examples in

each chapter. This thesis concludes by examining the impact of selection rules on the

solution behavior, highlighting an aspect specific to multiobjective model predictive

control that introduces an additional degree of freedom.
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Kurzzusammenfassung

Modellprädiktive Regelung (engl. model predictive control, kurz: MPC) ist ein op-

timierungsbasiertes Verfahren zur Regelung nichtlinearer Systeme. Da modellprädik-

tive Regelung effizient optimale Steuerungsproblem auf großen Horizont unter Berück-

sichtigung von nichtlinearen Beschränkungen lösen kann, erfreut es sich in Wis-

senschaft und Industrie großer Beliebtheit. Aufgrunddessen wurden in der Literatur

bereits verschiedenste Aspekte und mögliche Erweiterungen diskutiert. Angesichts

der vielen möglichen Anwendungen, ist es eine natürliche Erweiterung mehrere Kos-

tenkriterien anstelle von nur einer Zielfunktion zu berücksichtigen.

Diese Arbeit zielt darauf ab, das Verständnis der multikriteriellen modellprädik-

tiven Regelung zu verbessern und wertvolle systemtheoretische und algorithmische

Erkenntnisse auf diesem Gebiet zu liefern. Der Schwerpunkt liegt dabei auf der Un-

tersuchung von multikriteriellen optimalen Steuerungsproblemen und der Analyse des

zugehörigen Trajektorienverhaltens. Insbesondere präsentieren wir eine Formulierung

für multikriterielle strikte Dissipativität, die eines der wichtigsten Konzepte für die

Analyse von MPC-Schemata darstellt, sowie auf die Regelgüte. Bei multikriteriellen

optimalen Kontrollproblemen ist die Koexistenz mehrerer Gleichgewichte üblich. Ein

ähnliches Verhalten ist bei diskontierten Problemen zu beobachten, weshalb wir auch

eine lokale strikte Dissipativität und eine lokale Turnpike-Analyse durchführen. Da

für die Lösung von multikriteriellen optimalen Kontrollproblemen häufig der Ansatz

der gewichteten Summe verwendet wird, entwickeln wir Bedingungen, unter de-

nen die Konvexkombination von strikt dissipativen Stufenkosten strikt dissipativ

bleibt. Zu diesem Zweck verwenden wir Techniken der nichtlinearen Programmierung

und nutzen den Zusammenhang zwischen strikter Dissipativität und optimalen Gle-

ichgewichtsproblemen.

Darüber hinaus stellen wir zwei multikriterielle MPC-Schemata vor, zusammen mit

Annahmen zu den Problemdaten, die die Anwendbarkeit auf eine breitere Problem-

klasse im Vergleich zur bestehenden Literatur erlauben. Wir zeigen sowohl Resultate

für die (gemittelte) Regelgüte als auch für die Trajektorienkonvergenz. Inspiriert von

bekannten MPC-Ergebnissen für optimale Steuerungsprobleme ohne Endbedingun-

gen, geben wir auch Performance Schranken für alle Kostenkriterien an. Außerdem

wird eine Stabilitätsanalyse durchgeführt, indem wir beweisen, dass die Zielfunktion

mit streng dissipativen Stufenkosten eine zeitabhängige Lyapunov-Funktion ist.
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Zur Untermauerung unserer theoretischen Erkenntnisse untersuchen wir numerische

Beispiele in jedem Kapitel. Abschließend werden die Auswirkungen von Auswahlregeln

auf das Lösungsverhalten untersucht, was ein spezifischer Aspekt der multikriteriellen

prädiktiven Modellsteuerung ist, der einen zusätzlichen Freiheitsgrad darstellt.
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1 Introduction

1.1 Motivation and Scope of this Thesis

When considering autonomous driving, besides staying on the road, some other goals

come to mind, such as obeying traffic rules, ensuring driving comfort, and arriv-

ing at the destination within a specified timeframe, to name just a few. Of course,

the vehicle’s motion following physical laws must be considered. Additionally, the

vehicle can be controlled by acceleration and steering. Formulating this problem

using the language of optimal control leads to a multiobjective optimal control prob-

lem. Hence, in practical applications like chemical process engineering, electrical

engineering, aerospace engineering, and automotive engineering (see, for example,

[36, 61, 68, 82, 85]), it is desirable to consider not just a single cost criterion, but

multiple criteria.

A widely used control approach for solving optimal control problems over large

time horizons is model predictive control (MPC). The basic concept behind MPC is

to decompose the problem with a large or infinite time horizon into numerically more

handleable sub-problems on a finite horizon. Predictions are then made about the

future behavior of the controlled system over this finite time horizon, and an optimal

control is computed. This control minimizes the objective function while ensuring

the satisfaction of given constraints. Using the solutions of the sub-problems allows

the construction of a control sequence for the problem on the original horizon.

Furthermore, in economic MPC, it is well-known that strict dissipativity is the key

ingredient for asymptotic stability and (approximate) optimality of the closed-loop.

In recent years, dissipativity has become a highly useful concept for understanding

the qualitative behavior of optimally controlled systems. Roughly speaking, strict

dissipativity enables the construction of a Lyapunov function from an optimal value

function, even when the stage cost of the considered optimal control problem is not

positively definite.

When dealing with optimal control problems involving multiple objectives, it is nec-

essary to establish an appropriate notion of optimality. Using the concept of efficiency

(also known as Pareto optimality), a whole set of “optimal” solutions is obtained.

The generation of these solutions requires the application of multiobjective optimiza-

tion algorithms. These algorithms often rely on a scalarization approach such that

1



1 Introduction

the interplay between the objective functions becomes crucial for the analysis. The

occurrence of multiple optimal equilibria is more likely, or, in the case of combining

the objectives to one function, the optimal equilibrium can even change. However,

formulating a suitable notion of multiobjective dissipativity remains a challenge.

Additionally, due to the underlying concept of optimality in the multiobjective

setting, the question arises of how to select the solution from a set of optimal solutions.

This thesis aims to address this question by investigating if and how this selection

impacts the solution behavior. Further, this thesis contributes to providing more

insights into the dissipativity theory within the context of multiobjective optimal

control problems. The analysis also examines multiobjective MPC schemes, relaxing

the assumptions on problem data in contrast to recent literature. Lastly, this thesis

includes a numerical investigation of various application examples to enhance the

understanding of the discussed concepts further.

1.2 Contribution and Outline

Chapter 2

Fundamentals of Single-Objective and Multiobjective Optimal Control

In the next chapter, we briefly overview the basics of control theory and multiob-

jective optimization. We introduce optimal control problems and a model predictive

control algorithm for solving them. Additionally, we present definitions of strict

dissipativity and consider the well-known relation between strict dissipativity and

the steady-state problem. To exploit this relation, we use nonlinear programming.

Moreover, we recall stability results using Lyapunov functions.

Further, we introduce the multiobjective optimality notion we use in this thesis

and provide a possibility to solve multiobjective optimal control problems with the

weighted sum approach. Merging optimal control problems and multiobjective op-

timization concludes this chapter. Most of this introduction is based on the books

[11,23,46].

Chapter 3

Discounted Optimal Control Problems

Recent results in the literature provide connections between the so-called turnpike

property, near optimality of closed-loop solutions, and strict dissipativity. We extend

this fact to discounted optimal control problems. While we recall and extend existing

results in this field in the first part of the chapter, we investigate the local turnpike

property in the second part. In contrast to non-discounted optimal control problems,

2



1.2 Contribution and Outline

several asymptotically stable optimal equilibria are more likely to coexist. This is

because, due to the discounting and the transition cost from a local to the global

equilibrium, staying in a local equilibrium may be more favorable than moving to

the global – cheaper – equilibrium. We propose a local notion of discounted strict

dissipativity that depends on the discount factor and a local turnpike property. Using

these concepts, we investigate the local behavior of (near-)optimal trajectories and

develop conditions on the discount factor to ensure convergence to a local asymp-

totically stable optimal equilibrium. Several examples accompany the results in this

chapter.

Some results for infinite horizon problems in this chapter have been published

in [43]. In Section 3.3.3, we present previously unpublished results for the finite

horizon.

Chapter 4

Multiobjective Strict Dissipativity via the Weighted Sum Approach

We start our analysis of multiobjective optimal control problems by investigating

multiobjective strict dissipativity. Since the design of MPC algorithms for directly

solving multiobjective problems is rather complicated, particularly if terminal condi-

tions shall be avoided, we use an indirect approach via a weighted sum formulation for

solving multiobjective optimal control problems. Thus, we investigate under which

conditions a convex combination of strictly dissipative stage costs yields a stage cost

for which the system is again strictly dissipative. We first give conditions for problems

with linear dynamics and then move on to consider fully nonlinear optimal control

problems. We derive both necessary and sufficient conditions on the individual cost

functions and weights to conclude strict dissipativity and illustrate our findings with

numerical examples.

This chapter comprises results that were published in [50].

Chapter 5

Analysis of Multiobjective Model Predictive Control Schemes

In this chapter, we consider the multiobjective nonlinear model predictive control

scheme including terminal conditions presented in [54, 88] together with a relaxed

version of this algorithm. We significantly simplify and relax the assumptions made

in these works by assuming strict dissipativity and the existence of a compatible ter-

minal cost for only one of the competing objective functions. We give both averaged

and non-averaged performance guarantees associated with the strict dissipative cost

function for the resulting MPC closed-loop system. In addition, we impose conditions

that ensure the asymptotic stability of the closed-loop system. Moreover, considering

3



1 Introduction

the algorithm in [54] combined with our relaxed assumptions, we obtain performance

estimates for all cost criteria. Numerical simulations on various instances illustrate

our findings.

The majority of the results in this chapter have been published in [26].

Chapter 6

Numerical Simulations – The Impact of Selection Rules on the Solution

Behavior

The proposed algorithms in the previous chapter require selecting an efficient solution

in each iteration. Thus, in this chapter, we examine several selection rules and their

impact on the solution behavior. To achieve this, we introduce different selection

rules to choose the efficient solutions. First, we illustrate the impact of these selection

rules on the solution behavior of an isothermal reactor with two competing objective

functions. In contrast, we then show that for an economic growth example, the degree

of freedom in choosing the efficient solutions does not necessarily have an impact.

Moreover, we provide a path-following example and theoretically verify why this

problem fits into our setting. Then, we numerically discuss the solution behavior for

different cost criteria and selection rules. Here, we also illustrate the case of three

objective functions. All our examples were simulated with a program introduced in

the last part of this chapter.

Some numerical investigations in this chapter have been published in [26]. In

Section 6.3, we present previously unpublished results.

4



2 Fundamentals of Single-Objective and
Multiobjective Optimal Control

This chapter provides a brief overview of and introduction to the fundamentals of

optimal control, model predictive control, and multiobjective optimization. In the

last part of this section, we combine these concepts to establish the basis upon which

the findings of this thesis are derived.

2.1 Single-Objective Optimal Control Problems and Model

Predictive Control

We consider nonlinear systems in discrete time of the form

x(k + 1) = f(x(k), u(k)), x(0) = x0 (2.1)

with f : Rn × Rm → Rn continuous. We denote the solution of system (2.1) for

a control (or input) sequence u = (u(0), . . . , u(N − 1)) ∈ (Rm)N of length N and

initial value x0 ∈ Rn by xu(·, x0), or short by x(·) if there is no ambiguity about the

respective control sequence and the initial value. Additionally, we impose nonempty

state and control constraint sets X ⊆ Rn and U ⊆ Rm, respectively, as well as a

nonempty terminal constraint set X0 ⊆ X. Further, we denote the set of control

sequences of length N by UN and the set of admissible control sequences for x0 ∈ X
up to time N ∈ N by

UN (x0) := {u ∈ UN | xu(k, x0) ∈ X, ∀ k = 1, . . . , N − 1, and xu(N, x0) ∈ X0}

or by

UN (x0) := {u ∈ UN | xu(k, x0) ∈ X, ∀ k = 1, . . . , N}
if there are no terminal conditions.

The terminal constraint xu(N, x0) ∈ X0 can usually not be satisfied for all initial

values x0 ∈ X, such that we define the feasible set

XN := {x0 ∈ X | ∃ u ∈ UN : xu(k, x0) ∈ X, ∀ k = 1, . . . , N−1, and xu(N, x0) ∈ X0},
(2.2)

5



2 Fundamentals of Single-Objective and Multiobjective Optimal Control

noting that UN (x0) 6= ∅ if and only if x0 ∈ XN . Besides, XN = X holds if X = X0,

i.e., if no additional terminal constraints are imposed.

For a given stage cost function ` : X× U→ R and a horizon N ∈ N we define the

cost functional JN : X× UN → R by

JN (x0,u) =

N−1∑

k=0

`(xu(k, x0), u(k)).

If there is a continuous terminal cost F : X0 → R≥0 the cost functional JN is given

by

JN (x0,u) =
N−1∑

k=0

`(xu(k, x0), u(k)) + F (xu(N, x0)).

With this functional, following the standard notation, see [46], we can formulate an

optimal control problem without terminal conditions

min
u∈UN (x0)

JN (x0,u) =
N−1∑

k=0

`(xu(k, x0), u(k))

s.t. xu(k + 1, x0) = f(xu(k, x0), u(k)), k = 0, . . . , N − 1,

xu(0, x0) = x0

(OCPN )

and an optimal control problem with terminal conditions

min
u∈UN (x0)

JN (x0,u) =

N−1∑

k=0

`(xu(k, x0), u(k)) + F (xu(N, x0))

s.t. xu(k + 1, x0) = f(xu(k, x0), u(k)), k = 0, . . . , N − 1,

xu(0, x0) = x0

xu(N, x0) ∈ X0.

(OCPt)

In both cases, we minimize the cost functional over all admissible trajectories of the

system starting at the initial value x0.

Remark

The optimal control problem (OCPN ) can also be defined on the infinite horizon, i.e.,

for N = ∞. We denote this problem by (OCP∞). In this case, we optimize over the

set of admissible control sequences U∞(x0). We refer to [46, Section 4] for a detailed

discussion.

We sometimes abbreviate Y = X× U as combined state and input constraint set.

For some results, we need Y to be of the more general form

Y = {(x, u) ∈ Rn × Rm | g(x, u) ≤ 0} (2.3)

6



2.1 Single-Objective Optimal Control Problems and Model Predictive Control

for a function g : Rn × Rm → Rp, where “≤” in Rp is understood componentwise.

The optimal control problems above can be approximately solved using a model

predictive control algorithm. In the literature exists a large amount of work on

analyzing model predictive control schemes, cf. [3,70,80]. There is also great interest

in MPC in various contexts: robustness [72,97], distributed systems [15,55,74], data-

driven approaches [9, 69], uncertainties [13, 76], and various applications [56, 61, 90].

The basic model predictive control algorithm introduced below can be found, for

instance, in [46,81].

Algorithm 1 Basic MPC algorithm

Input: MPC Horizon N , initial value x(0) ∈ XN .

for j = 0, 1, 2, . . . :

(1) Measure the state of the system x(j) ∈ X.

(2) Set x0 := x(j) and solve the optimal control problem (OCPN ) or (OCPt).

We denote the obtained optimal control sequence by u?(·) ∈ UN (x0).

(3) Define the MPC-feedback value µN (x(j)) := u?(0) ∈ U and apply the feedback

to the system, i.e., evaluate x(j + 1) = f(x(j), µN (x(j))).

Output: MPC closed-loop trajectory xµ(j, x0) := x(j), j ∈ N0.

Observe that in this algorithm, we assume that an optimal control sequence u? ex-

ists. In general, this is not the case, but under continuity and compactness conditions,

the existence of u? can be shown, see, for instance, [20,62].

0

x(j)

j
1 2 3 4 5 6

predictions

(open-loop optimization)

predictions

(open-loop optimization)

MPC closed-loop

· · ·· · ·
· · ·

Figure 2.1: Illustration of the conceptual idea of MPC

Figure 2.1 illustrates the concept of model predictive control graphically and the

7



2 Fundamentals of Single-Objective and Multiobjective Optimal Control

construction of the closed-loop trajectory. The black lines are the open-loop trajec-

tories with shifted initial values, while the red line concatenates the first steps of the

open-loop solution to obtain the closed-loop solution.

In [84], we have published an implementation of the MPC algorithm in Python,

including several extensions, which can be used as a template to solve optimal control

problems with model predictive control.

The following theorem ensures that the resulting MPC closed-loop system

x+ = f(x, µN (x)) (2.4)

is admissible and, thus, satisfies the desired constraints.

Theorem 2.1 ([46, Theorem 3.5])

Consider the MPC Algorithm 1 and the optimal control problem (OCPN ) or (OCPt)

with constraint sets X, U, and X0. Assume,

• in the case without terminal condition, that for each x ∈ X there exists u ∈ U(x)

such that f(x, u) ∈ X holds (the so-called viability). Consider the nominal

closed-loop system (2.4) and suppose that xµ(0, x0) = x0 ∈ X.

• in the case with terminal condition, that for each x ∈ X0 there exists u ∈ U(x)

such that f(x, u) ∈ X0 holds. Consider the nominal closed-loop system (2.4)

and suppose that xµ(0, x0) = x0 ∈ XN .

Then,

(i) the constraints are satisfied along the solution of the system, i.e.,

(xµ(k, x0), µN (xµ(k, x0))) ∈ Y for all k ∈ N.

Thus, the MPC-feedback µN is admissible.

(ii) if a state x is feasible, then its closed-loop successor state f(x, µN (x)) is again

feasible. We refer to this property as the recursive feasibility of X or XN (in

the presence of terminal constraints).

In particular, part (i) of Theorem 2.1 implies part (ii) of this theorem. For a

detailed discussion see, for instance, [46,81].

8



2.1 Single-Objective Optimal Control Problems and Model Predictive Control

2.1.1 Dynamic Programming

This section provides one of the classical tools in optimal control: the dynamic pro-

gramming principle. We will first formulate the principle for the open-loop sequences

of the optimal control problem with terminal conditions (OCPt) on a finite hori-

zon N since the problem without terminal conditions can be obtained as a special

case of (OCPt). Further, we also consider the dynamic programming principle for

optimal control problems (OCPN ) on the infinite horizon and recall an immediate

consequence, which we will also need in the multiobjective setting. We follow Sec-

tions 3.4 and 4.2 from [46] and begin by defining the optimal value function.

Definition 2.2 (Optimal value function [46, Definition 3.14, Definition 4.1])

Consider the optimal control problem (OCPt) with initial value x0 ∈ XN and N ∈ N
and the optimal control problem (OCPN ) with initial value x0 ∈ X and N =∞.

In both cases, the function

V N (x0) := inf
u∈UN (x0)

JN (x0,u)

is called optimal value function. A control sequence u? ∈ UN (x0) satisfying

V N (x0) = JN (x0,u
?)

is called optimal control sequence for x0 and the corresponding trajectory xu?(·, x0)

is called optimal trajectory.

We assume the optimal value function is finite, i.e., V N (x0) 6= ±∞ for all x0 ∈ XN
or x0 ∈ X, respectively. The subsequent theorem is combined from [46, Theorem

3.15] and [46, Theorem 4.4].

Theorem 2.3 (Dynamic programming principle)

(i) Consider the optimal control problem (OCPt) on a finite horizon N ∈ N with

x0 ∈ XN .

Then, for all N ∈ N and all K = 1, . . . , N the equation

V N (x0) = inf
u∈UK(x0)

{
JK−1(x0,u) + V N−K(xu(K,x0))

}

holds. If an optimal control sequence u? ∈ UN (x0) exists for x0, then the

infimum is attained at the minimizer u?, i.e.,

V N (x0) = JK−1(x0,u
?) + V N−K(xu?(K,x0)).

9
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(ii) Consider the optimal control problem (OCPN ) on the infinite horizon with

x0 ∈ X.

Then, for all K ∈ N, the equation

V∞(x0) = inf
u∈UK(x0)

{
JK−1(x0,u) + V∞(xu(K,x0))

}

holds. If an optimal control sequence u? ∈ U∞(x0) exists for x0, then the

infimum is attained at the minimizer u?, i.e.,

V∞(x0) = JK−1(x0,u
?) + V∞(xu?(K,x0)).

We note that the existence of an optimal control sequence u? is not necessary

for the dynamic programming principle. An immediate consequence of dynamic

programming is that tails of optimal control sequences are again optimal control

sequences, cf. [46, Corollary 3.16] and [46, Corollary 4.5].

Corollary 2.4 (Tails of optimal solutions are optimal solutions)

(i) Provided u? is an optimal control sequence for initial value x0 ∈ XN and

N ∈ N≥2, then for each K = 1, . . . , N − 1 the sequence u?,K = u?(· + K),

i.e.,

u?K(k) = u?(K + k), k = 0, . . . , N −K − 1

is an optimal control sequence for initial value xu?(K,x0) and horizon N −K.

(ii) If u? is an optimal control sequence for initial value x0 ∈ X and infinite horizon,

then for each K ∈ N the sequence u?,K = u?(·+K), i.e.,

u?K(k) = u?(K + k), k = 0, 1, . . .

is an optimal control sequence for initial value xu?(K,x0).

2.1.2 Dissipativity and Nonlinear Programming

In recent years, dissipativity, as introduced into systems theory by Willems [93, 94],

has become a highly useful concept for understanding the qualitative behavior of

optimally controlled systems. Apart from the importance in model predictive control

[7, 19, 72, 73], dissipativity leads to a characterization of the turnpike property [51].

The turnpike property describes the phenomenon that a near-optimal trajectory of

an optimal control problem stays close to an optimal equilibrium most of the time.

Hence, this behavior is a way to generalize asymptotic stability properties of optimal

10
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equilibria to finite and infinite horizon optimal control problems. We will also use

this notion here and follow [46, Section 8.2]. To this end, we give a brief overview

of dissipativity theory for single-objective optimal control problems and some main

results that we will need in the remainder of this thesis. To render the presentation

concisely, we consider problems without terminal conditions. However, the theory

also applies to problems with terminal conditions since dissipativity refers to the

interplay between the system and the stage cost.

Definition 2.5 ((Optimal) equilibrium)

An admissible pair (xe, ue) ∈ Y is called an equilibrium or a steady-state if

xe = f(xe, ue)

holds. We say that an equilibrium (xe, ue) is a strictly globally optimal equilibrium

if

`(xe, ue) < `(x, u)

holds for all equilibria (x, u) ∈ Y with x 6= xe.

Note that all equilibria we consider are assumed to be admissible, i.e., to lie in Y.

Furthermore, we will make use of comparison functions, cf. [63].

Definition 2.6 (Comparison functions)

K := {α : R≥0 → R≥0 | α is continuous and strictly increasing with α(0) = 0}
K∞ := {α : R≥0 → R≥0 | α ∈ K, α is unbounded}
L := {δ : R≥0 → R≥0 | δ is continuous and

strictly decreasing with lim
t→∞

δ(t) = 0}

KL := {β : R≥0 × R≥0 → R≥0 | β is continuous, β(·, t) ∈ K ∀t ∈ R≥0,

β(r, ·) ∈ L ∀r ∈ R>0}.

Moreover, Bε(x0) ⊆ Rn denotes the open ball with radius ε > 0 around x0 ∈ Rn.

With intY and clY, we denote the interior and the closure of a set Y ⊂ Rn, respec-

tively. Further, ‖·‖ is an arbitrary norm in Rn. We denote the concatenation of two

vectors by (·, ·), and the corresponding norm by ‖(·, ·)‖.
We recall the definition of strict dissipativity, see for instance [46]. In addition, we

use the notion of strict pre-dissipativity, see [41], and of strict (x, u)-dissipativity.

11
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Definition 2.7 (Strict (pre-)dissipativity)

(i) A system (2.1) is called strictly pre-dissipative for the supply rate s(x, u) at an

equilibrium (xe, ue) if there exists a storage function λ : X → R, bounded on

bounded subsets of X, and a function α ∈ K∞, such that for all (x, u) ∈ Y with

f(x, u) ∈ X the inequality

s(x, u) + λ(x)− λ(f(x, u)) ≥ α(‖x− xe‖) (2.5)

holds.

(ii) The system (2.1) is called strictly dissipative if it is strictly pre-dissipative and

the storage function λ : X→ R is bounded from below on X.

(iii) The system (2.1) is called strictly (x, u)-(pre-)dissipative if (i) or (ii) hold with

the inequality

s(x, u) + λ(x)− λ(f(x, u)) ≥ α(‖(x− xe, u− ue)‖).

(iv) The system (2.1) is called locally strictly (pre/(x, u))-dissipative, if there exists

a neighborhood N of xe such that (i), (ii), or (iii), respectively, hold for all

(x, u) ∈ clN × U with f(x, u) ∈ X.

(v) If the supply rate is of the form s(x, u) = `(x, u) − `(xe, ue), with stage cost `

from the optimal control problem (OCPN ), then we say that the system (2.1)

is strictly dissipative (pre-dissipative,. . . ) for the stage cost ` at an equilib-

rium (xe, ue) and call

˜̀(x, u) := `(x, u)− `(xe, ue) + λ(x)− λ(f(x, u)) (2.6)

rotated stage costs.

Remark

(i) For simplification, we sometimes assume λ(xe) = 0. This can be made without

loss of generality because adding a constant to λ does not invalidate inequal-

ity (2.5).

(ii) The notion of strict pre-dissipativity we used above is quite similar to the notion

of cyclo-dissipativity, see for instance [58, 92]. However, there are also certain

differences. For example, cyclo-dissipativity allows the storage function to be

unbounded on bounded sets. Further, cyclo-dissipativity requires controllability

and detectability to ensure the existence of a storage function in each x. Since

12
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we assume such a storage function exists in the following, pre-dissipativity is

the more suitable property for us to work with, especially in Chapter 4 of this

thesis.

We exploit the connection between the strict dissipativity and convex functions.

Definition 2.8 (Convex set and function)

(i) A set D ⊂ Rn is called convex, if for all x1, x2 ∈ D and w ∈ [0, 1] the relation

wx1 + (1− w)x2 ∈ D holds.

(ii) Let D ⊂ Rn be convex. A scalar-valued function l : D → R is called convex if

l(wx1 + (1− w)x2) ≤ wl(x1) + (1− w)l(x2)

holds for all x1, x2 ∈ D with x1 6= x2 and all w ∈ [0, 1] and is called strictly

convex if this inequality is strict for all w ∈ (0, 1).

We now provide a couple of preliminary results on strict (pre-)dissipativity. From

the definition of strict (pre-)dissipativity, it is immediate that (xe, ue) is a globally

optimal equilibrium according to Definition 2.5 since λ(f(xe, ue)) = λ(xe), i.e., it

satisfies `(xe, ue) ≤ `(x̂, û) for all other equilibria (x̂, û). This means that (xe, ue) is

a minimizer of the so-called steady-state problem

min
(x,u)∈Y

`(x, u)

s.t. x− f(x, u) = 0.
(SSP)

If the minimizer (xe, ue) lies in intY, then it is also a local minimum of the steady-

state problem without state and control constraints

min
(x,u)∈Rn×Rm

`(x, u)

s.t. x− f(x, u) = 0.
(2.7)

We observe further that if the system (2.1) is strictly (x, u)-dissipative for the stage

cost ` at some equilibrium (xe, ue), then this equilibrium is the unique minimizer of

the constrained optimization problem (SSP) and the unique minimizer of the rotated

cost ˜̀. This is because, from the strict (x, u)-dissipativity, we can conclude that the

rotated stage cost is bounded from below by ˜̀(x, u) ≥ α(‖(x− xe, u− ue)‖) for all

(x, u) ∈ Y and, thus,

0 = ˜̀(xe, ue) = min
(x,u)∈Y

˜̀(x, u) < ˜̀(x, u)

13
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for all (x, u) ∈ Y with (x, u) 6= (xe, ue).

We briefly recall some definitions from nonlinear programming, see, for instance,

[11, Chapter 3]. Namely, we use the Karush-Kuhn-Tucker (KKT) optimality condi-

tions, cf. [11, 65], to solve the steady-state problems (SSP) and (2.7). To this end,

we consider the more general optimization problem

min
(x,u)∈Y

`(x, u)

s.t. h(x, u) = 0
(2.8)

with h : Rn × Rm → Rp describing the equality constraints and the inequality con-

straints defined via the set Y from (2.3) with function g : Rn × Rm → Rq.
The following are definitions from nonlinear programming and can be found in

[11, Chapter 3] for instance.

Definition 2.9 (Active constraint set, regular point)

Consider the optimization problem (2.8) with constraints of the form (2.3) and as-

sume that the functions `, h, g are continuously differentiable.

(i) For any feasible point (x, u), the set of active inequality constraints is denoted

by

A(x, u) = {j ∈ {1, . . . , q} | gj(x, u) = 0}.
If j /∈ A(x, u), we say that the j-th inequality constraint is inactive at (x, u).

(ii) The pair (x, u) is called regular if the vectors in

{∇hi(x, u) | i = 1, . . . , p} ∪ {∇gj(x, u) | j ∈ A(x, u)}
are linearly independent.

Theorem 2.10 (KKT necessary conditions, [11, Proposition 3.3.1])

Let `, h, g from problem (2.8) be continuously differentiable and assume that (xe, ue)

is regular and a local minimizer of the problem.

Then, there exist unique Lagrange multiplier vectors νe ∈ Rp and ηe ∈ Rq such

that the necessary optimality or KKT conditions

∇(x,u,ν,η)L(xe, ue, νe, ηe) = 0,

ηej ≥ 0, j = 1, . . . , q, (2.9)

ηej = 0 ∀j /∈ A(x?, u?)

for the Lagrange function

L(x, u, ν, η) = `(x, u) + νTh(x, u) + ηT g(x, u) (2.10)

hold.
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Remark 2.11

In the case of the steady-state problem (2.7), the KKT conditions simplify to

∂L

∂x
(xe, ue, νe) = 0,

∂L

∂u
(xe, ue, νe) = 0,

∂L

∂ν
(xe, ue, νe) = 0. (2.11)

The necessary KKT conditions are generally not sufficient, which is why we intro-

duce the second order sufficiency conditions.

Proposition 2.12 (Second order sufficiency conditions [11, Proposition 3.3.2])

Consider the problem (2.8) with f, h, and g twice continuously differentiable func-

tions, let (xe, ue) be a feasible point, and assume that (xe, ue, νe, ηe) satisfies the

KKT conditions (2.9) and

yT∇2
xL(xe, ue, νe, ηe)y ≥ 0,

for all y ∈ Rn such that

∇hi(xe, ue)T y = 0 ∀ i = 1, . . . , p,

∇gj(xe, ue)T y = 0 ∀ j ∈ A(xe, ue).

Assume further that

ηej > 0, ∀ j ∈ A(xe, ue).

Then, (xe, ue) is a local minimum of the problem (2.8).

The next two results apply to optimal control problems with linear dynamics

x+ = Ax+Bu (2.12)

with A ∈ Rn×n and B ∈ Rn×m and show how strict dissipativity can be verified.

Proposition 2.13

Consider the optimal control problem (OCPN ) with linear dynamics (2.12), strictly

convex stage cost `, and constraint set Y defined via (2.3) with a convex function g.

Assume that problem (SSP) has a global minimum (xe, ue) and satisfies the following

Slater condition: There exists a pair (x̂, û) ∈ Rn × Rm with

g(x̂, û) < 0 and x̂−Ax̂−Bû = 0.

Then, there exists a vector ν ∈ Rn such that the system is strictly pre-dissipative for

the stage cost ` and λ(x) = νTx.
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For a proof of this proposition, see [16, Proposition 4.3]. Note that the Slater

condition is satisfied with (x̂, û) = (xe, ue) for an equilibrium (xe, ue) satisfying

(xe, ue) ∈ intY.

The second result shows that strict dissipativity also holds if the stage cost is not

itself convex but can be appropriately bounded by a convex function.

Proposition 2.14

Consider the optimal control problem (OCPN ) with linear dynamics (2.12) and con-

straint set Y defined via (2.3) with a convex function g. Assume there is a strictly

convex function ˆ̀ with ˆ̀≤ ` and ˆ̀(xe, ue) = `(xe, ue) for the strictly globally optimal

equilibrium (xe, ue) ∈ Y of ˆ̀, and that the Slater condition from Proposition 2.13

holds.

Then, the system (2.1) is strictly pre-dissipative for the stage cost ` with linear

storage function.

Proof. From Proposition 2.13, it follows that there exists a linear, hence continuous

storage function λ for the stage cost ˆ̀. For this storage function, we thus obtain

λ(f(x, u)) ≤ λ(x) + ˆ̀(x, u)− ˆ̀(xe, ue)− α(‖x− xe‖)
≤ λ(x) + `(x, u)− `(xe, ue)− α(‖x− xe‖)

for all (x, u) ∈ Y. This proves strict pre-dissipativity for the stage cost `.

We note that both Proposition 2.13 and Proposition 2.14 yield strict dissipativity

if Y (in the form of (2.3)) is compact, since then X is compact, too, and the linear

storage function is bounded from below on X.

The next result shows that if (xe, ue) ∈ intY, then the linear part of the storage

function always coincides with the Lagrange multiplier ν from the necessary opti-

mality conditions (2.11). Here, no linearity assumption on f is needed. This result

has first been used in the proof of [72, Theorem 5] and has also been proven in

[35, Theorem 3].

Proposition 2.15

Consider the optimal control problem (OCPN ) and assume that the system is strictly

dissipative for the stage cost at an equilibrium (xe, ue) ∈ intY. Assume that f , ` and

λ are continuously differentiable.

Then, there exists a Lagrange multiplier νe satisfying (2.11) such that the identity

∇xλ(xe) = νe

holds.
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Proof. Strict dissipativity implies that xe is a strict minimizer of the map x 7→ ˜̀(x, ue),

with ˜̀ from (2.5). This implies that

0 =
∂ ˜̀

∂x
(xe, ue) =

∂`

∂x
(xe, ue) +

∂λ

∂x
(xe)

︸ ︷︷ ︸
=∇xλ(xe)T

(
I − ∂f

∂x
(xe, ue)

)

= L(xe, ue, νe),

which shows the first equation in (2.11). With an analogous computation, the fact

that ue is a (possibly non-strict) minimizer of the map u 7→ ˜̀(xe, u) implies the

second equation in (2.11). Finally, the third equation in (2.11) follows since (xe, ue)

is an equilibrium of f .

2.1.3 The Turnpike Property

In contrast to the previous section, where we derived conditions for strict dissipativity

to hold, we now focus on a property that can be concluded from dissipativity. The

so-called turnpike property is an important ingredient for understanding the behavior

of MPC schemes, c.f. [6, 7, 40, 48]. The turnpike property describes the phenomenon

that optimal trajectories stay close to an optimal equilibrium “most of the time”. It

was already observed and studied in [22,75], and since then used in various contexts

and notions [16,30,32,33,40,91].

Proposition 2.16 ([46, Proposition 8.15])

Assume system (2.1) is strictly dissipative for the stage cost ` at an equilibrium (xe, ue)

with bounded storage function λ.

Then, for each δ > 0 there exists σδ ∈ L such that for all N,P ∈ N, x0 ∈ X and

u ∈ UN (x0) with JN (x0,u) ≤ N`(xe, ue) + δ, the set

Q(x0,u, P,N) := {k ∈ {0, . . . , N − 1} | ‖xu(k, x0)− xe‖ ≥ σδ(P )}

has at most P elements.

In the context of model predictive control, the turnpike property is the basis to show

averaged and non-averaged performance estimates in various contexts, see [40,46,52,

54, 80]. In classical model predictive control, perhaps the most well-known result

is that stability of the MPC closed-loop trajectories can be expected, provided the

optimization horizon is sufficiently large and strict dissipativity holds. More precisely,

the turnpike behavior can be used to show that the MPC closed-loop feedback µN is

approximately optimal on the infinite horizon, see [40].
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2.1.4 Stability using Lyapunov Functions

Besides the performance results based on the dissipativity theory in the analysis of

model predictive control schemes, stability results are of great interest. Establishing

convergence of the MPC closed-loop trajectory xµ(·, x0) to an equilibrium relies on

the fact that the optimal value function V N is a Lyapunov function, which then

implies stability. We refer to [63, 87] for an introduction to Lyapunov theory in the

context of optimal control. For completeness, we first define asymptotic stability

[46, Definition 2.14] and practical asymptotic stability [48, Definition 2.2]. Since we

consider these properties for analyzing model predictive control schemes, we directly

formulate the definitions for the MPC closed-loop system (2.4).

Definition 2.17 ((Practical) asymptotic stability)

Let xe ∈ X be an equilibrium for the closed-loop system (2.4), i.e., xe = f(xe, µN (xe)).

(i) The equilibrium is locally asymptotically stable if there exist η > 0 and a

function β ∈ KL such that the inequality

‖x(k, x0)− xe‖ ≤ β(||x0 − xe‖, k)

holds for all x0 ∈ Bη(x0) and all k ∈ N0.

(ii) The equilibrium is called practically asymptotically stable for ε ≥ 0 on a set

S ⊆ X with xe ∈ S if there exists β ∈ KL such that

‖x(k, x0)− xe‖ ≤ max{β(‖x− xe‖ , k), ε} (2.13)

holds for all x ∈ S and all k ∈ N. The equilibrium is globally practically

asymptotically stable for ε ≥ 0 if inequality (2.13) holds on S = X.

Next, we introduce Lyapunov functions [46, Definition 2.18] and practical Lya-

punov functions [48, Definition 2.3].

Definition 2.18 ((Practical) Lyapunov function)

Consider the closed-loop system (2.4), a point xe ∈ X, and let S ⊆ X be a subset of

the state space.

(i) A function V : S → R≥0 is called a Lyapunov function on S if there exist

functions α1, α2 ∈ K∞ and α3 ∈ K such that

α1(‖x− xe‖) ≤ V (x) ≤ α2(‖x− xe‖) (2.14)

holds for all x ∈ S and

V (f(x, µN (x))) ≤ V (x)− α3(‖x− xe‖) (2.15)

holds for all x ∈ S with f(x, µN (x)) ∈ S.
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(ii) A function V : S → R≥0 is a practical Lyapunov function on S for δ > 0, if

there are α1, α2 ∈ K∞ and α3 ∈ K such that inequality (2.14) holds and

V (f(x, µ(x))) ≤ V (x)− α3(‖x− xe‖) + δ (2.16)

hold for all x ∈ S.

We now provide the well-known results that the existence of Lyapunov functions

implies stability. As above, we distinguish practical asymptotic stability and asymp-

totic stability.

Theorem 2.19 ([48, Theorem 2.4])

Let V be a practical Lyapunov function for some δ > 0 on a set S ⊆ X. Assume that

either S = X or S = V −1([0, L]) := {x ∈ X | V (x) ≤ L} for some L > α2(α−1
3 (δ))+δ.

Then, xe is practically asymptotically stable on S for ε = α−1
1 (α2(α−1

3 (δ)) + δ).

Remark

The proof of Theorem 2.19 relies on the fact that the set S is forward invariant, i.e.,

f(x(k, x0), µN (x(k, x0))) ∈ S for all x(k, x0) ∈ S, k ∈ N. Actually, the theorem still

holds true if the relation f(x(k, x0), µN (x(k, x0))) ∈ S holds for x(k, x0) ∈ S with

k ∈ {0, . . . ,M}, M ∈ N.

Theorem 2.20 ([46, Theorem 2.19])

Let xe be an equilibrium of system (2.1) and assume that there exists a Lyapunov

function V on S ⊂ X.

(i) If S contains a ball Bε(xe) with f(x, µN (x)) ∈ S for all x ∈ Bε(xe), then xe is

locally asymptotically stable with η = α−1
2 ◦ α1(ε).

(ii) If S = Y holds for some forward invariant set Y ⊆ X containing xe, then xe is

asymptotically stable on Y .

(iii) If S = X holds, then xe is globally asymptotically stable.

Additionally, we recall the definition of a uniform time-varying Lyapunov function,

which can be found in [46, Definition 2.21]. We will need this time-varying concept

to show the stability of our proposed multiobjective model predictive control scheme

in Chapter 5. We consider a general time-varying discrete time dynamical system

given by

x+ = f(x, µN (k, x)), (2.17)

where the feedback µN (k, x) also depends on a time instant k ∈ N.
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Definition 2.21 (Uniform time-varying Lyapunov function)

Consider system (2.17), an equilibrium xe ∈ X, i.e., xe = f(xe, µN (k, xe)) for all

k ∈ N0, subsets of the state space S(k) ⊆ X, k ∈ N0, and define

S := {(k, x) | k ∈ N0, x ∈ S(k)}.

A function V : S → R≥0 is called uniform time-varying Lyapunov function on S if

there exist functions α1, α2 ∈ K∞ and α3 ∈ K such that

α1(‖x− xe‖) ≤ V (k, x) ≤ α2(‖x− xe‖)

holds for all (k, x) ∈ S and

V (k + 1, f(x, µN (k, x))) ≤ V (k, x)− αV (‖x− xe‖)

holds for all k ∈ N0 and x ∈ S(k) with f(x, µN (k, x)) ∈ S(k + 1).

The following theorem shows that the existence of such a Lyapunov function en-

sures asymptotic stability. For a proof, we refer to [46, Theorem 2.22].

Theorem 2.22

Let xe be an equilibrium of system (2.17), i.e., xe = f(xe, µN (k, xe)) for all k ∈ N0,

and assume there exists a uniform time-varying Lyapunov function V on a

set S ⊂ N0 × Rn as defined in Definition 2.21.

(i) If each S(k) contains a ball Bν(xe) with radius ν > 0 with

f(x, µN (k, x)) ∈ S(k + 1) for all x ∈ Bν(xe), then xe is locally asymptotically

stable with η = α−1
2 ◦ α1(ν).

(ii) If the family of sets S(k) is forward invariant (i.e., if f(x, µN (k, x)) ∈ S(k+ 1)

for all (k, x) ∈ S) then xe is asymptotically stable on S(k).

(iii) If S(k) = Rn holds for all k ∈ N0 then xe is globally asymptotically stable.

2.2 Multiobjective Optimal Control

In many practical model predictive control applications, as in [61,68,85], it is a natural

idea to consider not only one but multiple cost criteria. These criteria might be

conflicting, so the resulting optimization problem is a multicriterion or multiobjective

optimization problem. In the MPC framework, multiobjective optimization has been

investigated in different contexts, e.g., in [36, 54, 88, 95, 96]. Before investigating

multiobjective optimal control problems, we present some definitions and results

from multiobjective optimization.
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2.2.1 Multiobjective Optimization

Multiobjective optimization is an indispensable tool for decision-makers if the ben-

efit of a decision does not depend on one objective only but if several competing

objectives are aspired simultaneously. In this section, we consider the multiobjective

optimization problem

min
x∈X

(l1(x), . . . , ls(x))

s.t. h(x) = 0,

g(x) ≤ 0

(2.18)

with given functions l : Rn → Rs, s ≥ 2, h : Rn → Rp, g : Rn → Rq, and X ⊂ Rn an

admissible constraint set.

Whenever multiple objective functions, i.e., cost criteria, are considered, one has

to agree on an optimality notion used for such problems. In general, there will

not be one optimal solution for minimizing all cost functionals simultaneously. The

formalization we will use here is based on the componentwise ordering in the image

space Rs and is summarized in the following definition. For this definition and for

an introduction to multiobjective optimization, we refer, for instance, to [23] or the

recent survey [25].

Definition 2.23 (Efficient solutions and nondominated points)

(i) A point x? ∈ X is called an efficient (or Pareto minimal) solution for the

multiobjective optimization problem (2.18) if there exists no other point x ∈ X
such that

li(x) ≤ li(x?), for all i ∈ {1, . . . , s},
lj(x) < lj(x

?), for at least one j ∈ {1, . . . , s}.

We denote the set of all efficient solutions by E ⊆ X.

(ii) A point x? ∈ E is called a weakly efficient solution for (2.18) if there exist no

other point x ∈ X such that

li(x) < li(x
?) for all i ∈ {1, . . . , s}.

(iii) If x? ∈ E is efficient, then l(x?) is called nondominated point.

(iv) The set of all nondominated points l(E) = {l(x?) | x? ∈ E} is called the non-

dominated set (Pareto front).
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2 Fundamentals of Single-Objective and Multiobjective Optimal Control

l1

l2

l(X)

l(E)

Figure 2.2: Illustration of l(X) and l(E)

The nondominated set l(E) is a part of the boundary of the set l(X) := {l(x) ∈
Rs | x ∈ X}. Figure 2.2 illustrates this relation in the case of two objective functions.

Further, we note that every efficient solution x? ∈ E is also weakly efficient. If all

objectives li, i = 1, . . . , s, are strictly convex and the set X is convex, then every

weakly efficient solution x? ∈ X is also an efficient solution.

The Weighted Sum Approach

A common way to solve multiobjective optimization problems (2.18) is to use a

weighted sum approach, see, for instance, [23]. This means we consider the sum

s∑

i=1

wili(x),

where w ∈ Rs denotes a weight vector with weights wi ∈ R≥0, i = 1, . . . , s, s ≥ 2,

and
∑s

i=1wi = 1. By solving the single-objective problem

min
x∈X

lw(x) :=
s∑

i=1

wili(x)

s.t. h(x) = 0,

g(x) ≤ 0,

(SOPw)

for each weight w, we can parametrize the efficient solutions of the multiobjective

optimization problem (2.18). While the weighted sum approach does not parametrize

all efficient solutions, it parametrizes many of them and yields a particularly simple

approach to multiobjective optimization, cf. [23, Chapter 3]. We use the following

definitions in the remainder of this thesis.
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Definition 2.24

(i) A vector-valued function l = (l1, . . . , ls)
T : D → Rs is called (strictly) convex if

all its component functions li : D → R, i = 1, . . . , s, are (strictly) convex.

(ii) For functions li : D → R, i = 1, . . . , s, we call

s∑

i=1

wili for wi ∈ [0, 1],
s∑

i=1

wi = 1

a convex combination. For two functions l1, l2 : D → R, this simplifies to

wl1 + (1− w)l2 for w ∈ [0, 1].

(iii) A multiobjective optimization problem (2.18) is called (strictly) convex if all

objective functions li, i = 1, . . . , s, are (strictly) convex.

In the case of a convex multiobjective optimization problem, the weighted sum

approach parametrizes all the efficient solutions. For the justification of doing so, we

follow [23,88].

Lemma 2.25 ([23, Proposition 3.9, Theorem 3.11])

Consider weights wi ∈ R≥0, i = 1, . . . , s, with
∑s

i=1wi = 1 and let x? be a solution

of the single-objective problem (SOPw).

(i) If wi > 0 for all i = 1, . . . , s, then x? is an efficient solution for the multiobjec-

tive optimization problem (2.18).

(ii) If x? is a unique solution of the single-objective problem (SOPw), then it is

an efficient solution for the multiobjective optimization problem (2.18), i.e.,

x? ∈ E.

Lemma 2.26 ([88, Lemma 3.9])

Let the multiobjective optimization problem (2.18) be convex with efficient solution

x? ∈ E.

Then, there exists a weight vector w = (w1, . . . , ws)
T with wi ∈ R≥0 and

∑
iwi = 1

such that x? is a solution to the corresponding single-objective problem (SOPw).

Corollary 2.27 ([23, Theorem 3.15])

Let the multiobjective optimization problem (2.18) be strictly convex.

Then, x? ∈ E is an efficient solution if and only if there exists w = (w1, . . . , ws)
T

with wi ∈ R≥0 and
∑

iwi = 1 such that x? is a solution to the single-objective

problem (SOPw).
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2 Fundamentals of Single-Objective and Multiobjective Optimal Control

From the results above, we can conclude that the nondominated set (Pareto front)

can be completely characterized via a weighted sum approach if the multiobjective

optimization problem (2.18) is strictly convex. The following theorem combines the

notion of efficiency with the KKT conditions from Section 2.1.2 and is Theorem 4.1

in [59], based on the work [65].

Theorem 2.28 ([59, Theorem 4.1])

Consider a multiobjective optimization problem (2.18) and a regular point x? ∈ X.

If x? is efficient, then there exist w ∈ Rs with wi ∈ R≥0 and
∑s

i=1wi = 1 and

λ ∈ Rp, ν ∈ Rq such that

s∑

i=1

wi∇li(x?) +

q∑

j=1

νj∇hj(x?) +

p∑

k=1

λk∇gk(x?) = 0

hj(x
?) = 0, j = 1, . . . , q

λk ≥ 0, gk(x
?) ≤ 0, λkgk(x

?) = 0, k = 1, . . . , p

hold.

We note that
∑s

i=1wi∇li(x) = ∇lw(x). In particular, the conditions in Theo-

rem 2.28 are equivalent to the claim that x? is a KKT point of the corresponding

scalar-valued optimization problem with the objective function lw.

Remark 2.29

In a certain way, the weighted sum approach is based on the result above. However,

the approach above does not generally yield the complete nondominated set because

the second-order conditions necessary for a point x? to be a local minimizer of the

scalar-valued function lw are not necessary for x? to be efficient.

2.2.2 Properties of Multiobjective Optimal Control Problems

This thesis is built on the findings from [54, 88], in which a multiobjective MPC

algorithm is presented and analyzed. We impose the setting and give an overview of

important properties of multiobjective optimal control problems, which we will use

in the remainder.

As in the single-objective case, we impose nonempty state and control sets X and

U and denote by

UN (x0) := {u ∈ UN | xu(k, x0) ∈ X ∀ k = 1, . . . , N}

the set of admissible control sequences for x0 ∈ X up to time N . Since we aim to

minimize all cost functionals JN1 , . . . , J
N
s simultaneously for a given initial value x0
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with respect to u and along a solution of system (2.1), this leads to the formulation

of a multiobjective optimal control problem

min
u∈UN (x0)

JN (x0,u) :=
(
JN1 (x0,u), . . . , JNs (x0,u)

)

s.t. xu(k + 1, x0) = f(xu(k, x0), u(k)), k = 0, . . . , N − 1

xu(0, x0) = x0,

xu(N, x0) ∈ X0.

(2.19)

Regarding the multiobjective optimal control problems, the notion of efficient solu-

tions reads as follows: A sequence u? ∈ UN (x0) is called efficient for (2.19) with

x0 ∈ X if there is no u ∈ UN (x0) such that

∀ i ∈ {1, . . . , s} : JNi (x0,u) ≤ JNi (x0,u
?)

and ∃ i ∈ {1, . . . , s} : JNi (x0,u) < JNi (x0,u
?).

As in Definition 2.23, the objective JN (x0,u
?) = (JN1 (x0,u

?), . . . , JNs (x0,u
?)) is

called nondominated. The set of all efficient solutions of length N for initial value

x0 ∈ X is denoted by UNE (x0), and we define the set of attainable values by

JN (x0) := {JN (x0,u) = (JN1 (x0,u), . . . , JNs (x0,u)) | u ∈ UN (x0)},

and the nondominated set by

JNE (x0) := {JN (x0,u) | u ∈ UNE (x0)}.

In this case, the min-operator is defined as

min
u∈UN (x0)

JN (x0,u) = JNE (x0)

and, accordingly

arg min
u∈UN (x0)

JN (x0,u) = UNE (x0).

We now provide basic definitions and results from the multiobjective optimization

theory, adapted from [23,83] to our setting.

Definition 2.30 (External stability)

The set JNE (x0) is called externally stable for JN (x0) if for all y ∈ J N (x0) there is

yE ∈ JNE (x0) such that y ≥ yE holds componentwise.

Definition 2.31 (Cone-Compactness)

The set JN (x0) is called Rs≥0-compact if for all y ∈ JN (x0) the set (y−Rs≥0)∩JN (x0)

is compact.

25
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Here, we write z − Rs≥0 for the difference of the sets {z} and Rs≥0 := {y ∈ Rs |
yi ≥ 0 ∀i = 1, . . . , s} in the Minkowski sense. The next theorem states a condition

for external stability of the set JNE (x0), and a proof can be found in [23,83].

Theorem 2.32

Given a horizon N ∈ N and an initial value x0 ∈ X, and if JN (x0) 6= ∅ and JN (x0)

is Rs≥0-compact, then the set JNE (x0) is externally stable for JN (x0).

Since the assumptions of Theorem 2.32 are difficult to verify in practice, the next

lemma provides easily checkable conditions for external stability, which we will need

for feasibility in Chapter 5. For a proof we refer to Lemma 2.5 in [54] or Lemma 4.8

in [88].

Lemma 2.33

Let U be compact, X and X0 be closed and let x0 ∈ X and N ∈ N.

Then, the set JNE (x0) is externally stable for JN (x0).

In the single-objective case, an immediate consequence of the dynamic program-

ming principle (DPP) is that tails of optimal control sequences are again optimal

control sequences (see Corollary 2.4). The same result holds for efficient solutions

and can be found in [88, Lemma 4.1].

Lemma 2.34 (Tails of efficient solutions are efficient solutions)

Let K < N . If u?,N ∈ UNE (x0), then u?,K ∈ UN−KE (xu?,N (K,x0)) with

u?,K := u?,N (·+K)

for all K < N , where

u?,N (·+K) := (u?,N (K), u?,N (K + 1), . . . , u?,N (N − 1)).
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3 Discounted Optimal Control Problems

In multiobjective optimal control problems, it is much more likely that several asymp-

totically stable optimal equilibria coexist in contrast to single-objective problems.

Since coexisting multiple optimal equilibria are also typical for discounted optimal

control problems, we use them to study the behavior of trajectories in the presence

of several asymptotically stable optimal equilibria.

Moreover, discounted problems are very popular in many areas, such as reinforce-

ment learning [10, 89], economics [2, 14, 79], and planning algorithms for optimal

control [66], which is an additional motivation to concentrate on discounted opti-

mal control problems in this section. The characteristic of this important class of

problems is that the cost function incorporates a multiplicative term βk at each time

step k ∈ N0, where β ∈ (0, 1] denotes the discount factor. Hence, the higher the

time step k, the less important the related costs. For optimal control problems on

the infinite horizon, discounting is a way to circumvent the infinite dimensionality.

Several works, for instance, [37, 39, 77, 78], have already discussed the stability and

the behavior of trajectories of discounted optimal control problems.

Due to the discounting, it may not be possible to compensate for the transition

cost from one equilibrium to the other with the lower cost of staying in the cheaper

equilibrium. Therefore, locally asymptotically stable equilibria with different costs

may coexist even for infinite horizon problems in the discounted case. Indeed, as-

suming complete controllability, in non-discounted optimal control, multiple optimal

equilibria can only coexist for arbitrary long (or infinite) horizons if they yield ex-

actly the same optimal cost. Otherwise, for a sufficiently long time, it will always

be beneficial to steer the system from the more expensive equilibrium to the cheaper

one. In mathematical economy, where discounted optimal control problems are an

important modeling tool, this trajectory behavior is a well-known fact, at least since

the pioneering work of Skiba [86] and Dechert and Nishimura [18]. Since then, this

behavior has been observed in many other papers, see, e.g., [56] and the references

therein.

In addition to discounted strict dissipativity and the discounted turnpike property

for a globally optimal equilibrium, we also study the strict dissipativity and the

convergence behavior at a locally optimal equilibrium in this chapter. More precisely,

we show that in the presence of local strict dissipativity and appropriate growth
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conditions on the optimal value functions, there exist bounds on the discount factor β

such that convergence of optimal trajectories to the locally optimal equilibrium occurs

locally.

3.1 Problem Statement

In this part of the thesis, we concentrate on infinite horizon discounted optimal

control problems, i.e., problems of the type

min
u∈U∞(x0)

J∞β (x0,u) =
∞∑

k=0

βk`(xu(k, x0), u(k))

s.t. xu(k + 1, x0) = f(xu(k, x0), u(k)), k ∈ N,
xu(0, x0) = x0,

(OCP(β))

where the number β ∈ (0, 1) is called the discount factor. We deliberately exclude

β = 1 as this case results in the optimal control problem (OCPN ). For the derivation

of our technical results, we make frequent use of the discounted dynamic programming

principle [5]

V∞β (x0) = inf
u∈U1(x0)

{`(x0, u) + βV∞β (f(x0, u))},

where

V∞β (x0) := min
u∈U∞(x0)

J∞β (x0,u)

denotes the optimal value function of problem (OCP(β)), see Section 2.1.1. If u? ∈
U∞(x0) is an optimal control sequence for an initial value x0 ∈ X, i.e. if

J∞β (x0,u
?) = V∞β (x0)

holds, then the identity

V∞β (x0) = `(x0, u
?(0)) + βV∞β (f(x0, u

?(0)))

holds. Proofs for these statements can be found, for example, in [46, Section 4.2].

We denote – as usual – the optimal trajectories by xu?(k, x0) with x0 ∈ X, k ∈ N.

Further, in the discounted case, an equilibrium is optimal if

V∞β (xβ) =
`(xβ, uβ)

(1− β)

holds, [45, Definition 5.1], and we denote an equilibrium of system (2.1) by (xβ, uβ)

since the equilibria are dependent on the discount factor β ∈ (0, 1). For more details,

we refer to [45] and the discussion and references therein.
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As shown in [37], for discounted optimal control problems, all optimal trajectories

converge to a neighborhood of xβ for sufficiently large β ∈ (0, 1) provided strict

dissipativity at an optimal equilibrium xβ holds. The optimal trajectories converge

even to the optimal equilibrium xβ itself and not only to a neighborhood either

assuming slightly stronger conditions on the problem data, cf. [37, Section 6] or

considering β → 1, cf. [37, Theorem 4.4]. We will express this result in the language

of turnpike theory in Theorem 3.4 below. While this global turnpike result follows

from a relatively straightforward modification of the arguments in [37], the main

question that we want to address in this chapter is more complex: Assume that strict

dissipativity does not hold globally but only in a neighborhood of a locally optimal

equilibrium xβl . Can we still expect to observe a turnpike property of trajectories

starting close to xβl ?

3.2 The Global Discounted Turnpike Property

We begin our investigation by assuming global strict dissipativity, i.e., the discounted

strict dissipativity inequality at the equilibrium (xβ, uβ) defined below holds for all

pairs (x, u) ∈ X. Then, we can conclude a global turnpike result for near-optimal

trajectories using similar technical assumptions and a similar proof technique as

in [37]. Therefore, we first formalize discounted strict dissipativity, from which we

conclude the turnpike property.

3.2.1 Global Discounted Strict Dissipativity

We give in the following a definition of discounted strict dissipativity, which is the

strict dissipativity Definition 2.7 adapted to the discounted case and is given in

[38,42,44] for instance.

Definition 3.1 (Discounted Strict Dissipativity)

Given a discount factor β ∈ (0, 1), the system (2.1) is discounted strictly dissipative

for the supply rate s : Y → R at an equilibrium (xβ, uβ) if there exists a storage

function λ : X → R bounded from below with λ(xβ) = 0 and α ∈ K∞ such that the

inequality

s(x, u) + λ(x)− βλ(f(x, u)) ≥ α(‖x− xβ‖) (3.1)

holds for all (x, u) ∈ Y with f(x, u) ∈ X.

If the supply rate s is given as `(x, u)− `(xβ, uβ), then we denote by

˜̀
β(x, u) := `(x, u)− `(xβ, uβ) + λ(x)− βλ(f(x, u))
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the rotated – or modified – stage cost.

The following lemma is Proposition 3.2 from [45]. It shows the advantage of con-

sidering the infinite horizon in the discounted case. Namely, replacing the stage cost `

in (OCP(β)) by the rotated stage cost ˜̀β that is positive definite does not affect the

optimal solutions and optimal trajectories. For this reason, we consider the modified

discounted optimal control problem

min
u∈U∞(x0)

J̃∞β (x0,u) :=

∞∑

k=0

βk ˜̀β(xu(k, x0), u(k))

s.t. xu(k + 1, x0) = f(xu(k, x0), u(k)), k ∈ N,
xu(0, x0) = x0.

(3.2)

Lemma 3.2

Consider the discounted optimal control problem (OCP(β)) with discount factor β ∈
(0, 1) and assume system (2.1) is discounted strictly dissipative for the supply rate

s(x, u) = `(x, u)− `(xβ, uβ) at an equilibrium (xβ, uβ) with bounded storage func-

tion λ.

Then, the optimal trajectories of (OCP(β)) coincide with those of the problem (3.2)

with rotated stage cost ˜̀β, which is positive definite in xβ at (xβ, uβ), i.e., it satisfies
˜̀
β(xβ, uβ) = 0 and the inequality ˜̀β(x, u) ≥ α(‖x− xβ‖) with α ∈ K∞ from (3.1) for

all (x, u) ∈ Y.

Proof. We follow the proof of [45, Proposition 3.2]. Rearranging

J̃∞β (x0,u) =
∞∑

k=0

βk ˜̀β(xu(k, x0), u(k))

=

∞∑

k=0

βk
(
`(xu(k, x0), u(k))− `(xβ, uβ) + λ(xu(k, x0))− βλ(xu(k + 1, x0))

)

and a straightforward calculation shows that

J̃∞β (x0,u) = J∞β (x0,u)− `(xβ, uβ)

1− β + λ(x0)− lim
k→∞

βkλ(xu(k, x0)). (3.3)

Since λ is bounded and β ∈ (0, 1), the last limit exists and equals 0. Hence, the

objectives J∞β and J̃∞β differ only by expressions that are independent of u, from

which the identity of the optimal trajectories immediately follows. The positive

definiteness of ˜̀β follows from its definition, using strict dissipativity and the fact

that λ(xβ) = 0 implies ˜̀β(xβ, uβ) = 0.
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Remark 3.3

The requirement that ˜̀(xβ, uβ) = 0 is the reason for imposing λ(xβ) = 0 as a con-

dition in Definition 3.1. As already discussed, in the undiscounted case, cf. Re-

mark 2.1.2, λ(xβ) = 0 can be assumed without loss of generality since if λ is a

storage function, then λ + c is a storage function for all c ∈ R. In the discounted

case, this invariance with respect to the addition of constants does not hold anymore.

3.2.2 The Global Turnpike Property

We have already discussed in Section 2.1.2 that strict dissipativity (together with

suitable regularity assumptions on the problem data) implies that optimal and near-

optimal trajectories exhibit the turnpike property in the non-discounted setting. In-

deed, the following theorem shows that this implication also holds in the discounted

case. However, we need an appropriate formalization of the discounted turnpike prop-

erty. To this end, we exploit Definition 4.2 from [49], which incorporates that for

merely near-optimal trajectories, the turnpike property can only be guaranteed on a

finite discrete interval {0, . . . ,M}. Below, we measure the deviation from optimality

by δ. Then, M and δ depend on each other, see the discussion in [49, Section 4]:

The smaller we choose δ, the larger M becomes and, conversely, the larger we want

M to be, the smaller we need to choose δ. Below, we fix M , choose δ accordingly,

and extend the statement in [37] from optimal to near-optimal trajectories. The

corresponding proof is a variation of Theorem 3.1 and Corollary 4.3 in [37].

Theorem 3.4

Consider the infinite horizon discounted optimal control problem (OCP(β)) with dis-

count factor β ∈ (0, 1) and assume the system (2.1) is discounted strictly dissi-

pative for the supply rate s(x, u) = `(x, u) − `(xβ, uβ) at an equilibrium (xβ, uβ).

Assume that the optimal value function Ṽ∞β of the modified problem (3.2) satisfies

Ṽ∞β (x) ≤ αV (‖x− xβ‖) and

Ṽ∞β (x) ≤ C inf
u∈U

˜̀
β(x, u) (3.4)

for all x ∈ X, a function αV ∈ K∞, and a constant C ≥ 1 satisfying

C < 1/(1− β). (3.5)

Then, the discounted optimal control problem has the following turnpike property (cf.

[49, Definition 4.2]):

For each ε > 0 and each bounded set Xb ⊂ X there exist a constant P > 0 such

that for each M ∈ N there is a δ > 0 such that for all x0 ∈ Xb and u ∈ U∞(x0) with
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J∞β (x0,u) ≤ V∞β (x0) + δ, the set

Q(x0,u, ε,M, β) := {k ∈ {0, . . . ,M} | ‖xu(k, x0)− xβ‖ ≥ ε}

has at most P elements.

Proof. We first show that Ṽ∞β is a practical Lyapunov function according to Defi-

nition 2.18. It follows from the proof of Lemma 3.2 that the inequality J∞β (x0,u) ≤
V∞β (x0) + δ implies J̃∞β (x0,u) ≤ Ṽ∞β (x0) + δ. Together with a shifting argument and

the discounted dynamic programming principle for Ṽ∞β , we obtain

δ ≥ J̃∞β (x0,u)− Ṽ∞β (x0)

= ˜̀
β(x0, u(0)) + βJ̃∞β (xu(1, x0),u(·+ 1))− inf

u∈U

{
˜̀
β(x0, u) + βṼ∞β (f(x0, u))

}

≥ ˜̀
β(x0, u(0)) + βJ̃∞β (xu(1, x0),u(·+ 1))−

(
˜̀
β(x0, u(0)) + βṼ∞β (f(x0, u(0)))

)

= β(J̃∞β (xu(1, x0),u(·+ 1))− Ṽ∞β (f(x0, u(0)))).

This implies J̃∞β (xu(1, x0),u(· + 1)) ≤ Ṽ∞β (xu(1, x0)) + δ/β, and proceeding induc-

tively results in

J̃∞β (xu(k, x0),u(·+ k)) ≤ Ṽ∞β (xu(k, x0)) +
δ

βk

for all k ∈ N. From this, we can conclude the descent condition

Ṽ∞β (xu(k + 1, x0))− Ṽ∞β (xu(k, x0))

=
1

β

(
βṼ∞β (xu(k + 1, x0))− βṼ∞β (xu(k, x0))

)

=
1

β

(
βṼ∞β (xu(k + 1, x0))− Ṽ∞β (xu(k, x0)) + (1− β)Ṽ∞β (xu(k, x0))

)

≤ 1

β

(
βJ̃∞β (xu(k + 1, x0),u(·+ k + 1))− J̃∞β (xu(k, x0),u(·+ k)) +

δ

βk

+(1− β)Ṽ∞β (xu(k, x0))
)

=
1

β

(
βJ̃∞β (xu(k + 1, x0),u(·+ k + 1))− J̃∞β (xu(k, x0),u(·+ k))

+(1− β)Ṽ∞β (xu(k, x0))
)

+
δ

βk+1

=
1

β

(
− ˜̀(xu(k, x0), u(k)) + (1− β)Ṽ∞β (xu(k, x0))

)
+

δ

βk+1
.
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Further, using condition (3.4) and κ = (1− β)− 1/C < 0 because of condition (3.5)

leads to

Ṽ∞β (xu(k + 1, x0))− Ṽ∞β (xu(k, x0))

≤ 1

β

(
− ˜̀(xu(k, x0), u(k)) + (1− β)Ṽ∞β (xu(k, x0))

)
+

δ

βk+1

≤ 1

β

(
− 1

C
Ṽ∞β (xu(k, x0)) + (1− β)Ṽ∞β (xu(k, x0))

)
+

δ

βk+1

=
κ

β
Ṽ∞β (xu(k, x0)) +

δ

βk+1
. (3.6)

Moreover, strict discounted dissipativity implies Ṽ∞β (x) ≥ ˜̀(x, u) ≥ α(‖x − xβ‖).
Together with the upper bound Ṽ∞β (x) ≤ αV (‖x − xβ‖) from the assumption this

yields that for fixed M ∈ N and k ∈ {0, . . . ,M} the function Ṽ∞β is a practical

Lyapunov function. Using Theorem 2.19 restricted to {0, . . . ,M} and the fact that

Xb is bounded we can conclude that there is a sequence ηk → 0 (depending on Xb)
and a function γ ∈ K∞ with

‖xu(k, x0)− xβ‖ ≤ ηk + γ(δ/βk+1) ≤ ηk + γ(δ/βM )

for all k ∈ {0, . . . ,M}. This implies the desired claim by choosing P ∈ N (depending

on ε and ηk, hence on Xb) such that ηk < ε/2 for all k ≥ P and δ > 0 (depending on

β, ε and M) such that γ(δ/βM ) < ε/2.

We refer to Figure 3.1 for an illustration of the described turnpike property. This

formulation of the discounted turnpike property implies the convergence

xu(k, x0)→ xe as k →∞,

because otherwise Q(x0,u, ε,M, β) would contain infinitely many elements for suf-

ficiently large P ∈ N, cf. [46, Chapter 8]. We note again that the level δ, which

measures the deviation from optimality of the trajectory xu(·, x0), depends on M .

For guaranteeing the turnpike property on {0, . . . ,M}, δ → 0 may be required if

M →∞, cf. also Remark 3.5 (iv).

The following remark discusses aspects of the assumptions of Theorem 3.4. The

system must be steerable to xβ, at least asymptotically, as discussed in part (i) of

the remark. Part (ii) shows that if the state can be steered to xβ fast enough, then

a constant C satisfying (3.4) for all β ∈ (0, 1) holds. Finally, part (iii) of the remark

discusses how inequality (3.4) can be relaxed if such a constant C cannot be found.
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M

xβ1

xβ2

Elements of Q(x0,u, ε,M, β)

ε

ε

k

xu(k, x0)

Figure 3.1: Illustration of the set Q(x0,u, ε,M, β)

Remark 3.5

(i) A necessary condition for the turnpike property to hold is that the trajectory

is steerable to a neighborhood of the equilibrium within at least P steps. More

precisely, for each ε > 0, each bounded subset Xb ⊆ X and each x0 ∈ Xb
there exists a control sequence u ∈ UP+1(x0) with xu(k, x0) ∈ Bε(xβ) for some

k ≤ P + 1, where P is the constant from the turnpike property in Theorem 3.4.

This is immediately clear because if such a control does not exist, then the

number of points with xu(k, x0) 6∈ Q(x0,u, ε,M, β) is larger than P for all u.

(ii) If a constant C satisfying inequality (3.4) for all β ∈ (0, 1) exists, then inequal-

ity (3.5) will hold for all sufficiently large β ∈ (0, 1). A sufficient condition

for the existence of such a constant C is the following exponential stabilizability

assumption of the cost at the equilibrium (xβ, uβ): There are constants σ, θ > 0

such that for each x0 ∈ X there is u ∈ U∞(x0) with

˜̀
β(xu(k, x0), u(k)) ≤ σe−θk inf

û∈U
˜̀
β(x0, û). (3.7)

Then, since ˜̀β ≥ 0 we obtain

Ṽ∞β (x0) ≤
∞∑

k=0

βk ˜̀β(xu(k, x0), u(k)) ≤
∞∑

k=0

˜̀
β(xu(k, x0), u(k))

≤
∞∑

k=0

σe−θk inf
û∈U

˜̀
β(x0, û) =

σ

1− e−θ inf
û∈U

˜̀
β(x0, û),
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3.3 The Local Discounted Turnpike Property

implying inequality (3.4) with C = σ/(1 − e−θ). We note that inequality (3.7)

holds in particular if the system itself is exponentially stabilizable to xβ with

exponentially bounded controls and ˜̀β is a polynomial1. In turn, the exponen-

tial stabilizability of the system follows locally around xβ from the stabilizabil-

ity of its linearization in xβ. If, in addition, the necessary condition from

part (i) of this remark holds, then local exponential stabilizability implies ex-

ponential stabilizability for bounded X. We refer to [37, Section 6] for a more

detailed discussion on these conditions. Note that if ˜̀β is continuous, then

infu∈U ˜̀β(x, u) ≤ α`(‖x− xβ‖) holds for an appropriate α` ∈ K∞. In this case,

inequality (3.4) implies the assumed upper bound αV on Ṽ∞β .

(iii) If a constant C meeting the conditions (3.5) and (3.4) for all x ∈ X does not

exist, then we may still be able to find a constant C satisfying (3.5) and (3.4)

for all x ∈ X with ϑ ≤ ‖x − xβ‖ ≤ Θ, for parameters 0 ≤ ϑ < Θ. In this case

we can follow the reasoning in the proof of [37, Corollary 4.3] to conclude that

we still obtain a turnpike property for ε > ε0 and Xb = B∆(xβ)∩X, with ε0 → 0

as ϑ→ 0 and ∆→∞ as Θ→∞.

(iv) Optimal trajectories, i.e., trajectories for which J∞β (x0,u) = V∞β (x0) holds,

satisfy the assumptions of Theorem 3.4 for each δ > 0. Hence, the assertion

of the theorem holds for each ε > 0 and each M ∈ N, implying that xu(k, x0)

converges to xβ as k → ∞. Thus, xβ behaves similarly to an asymptotically

stable equilibrium. However, whenever δ > 0, the trajectory will typically move

away from xβ for large times. This is more similar to the classical turnpike

phenomenon in optimal control than to asymptotic stability, which is why we

prefer this term over asymptotic stability or practical asymptotic stability.

3.3 The Local Discounted Turnpike Property

In the previous section, we have shown that an equilibrium at which the system is

globally discounted strictly dissipative has the discounted turnpike property. Now,

we move on to addressing the central question in this chapter. We consider an equi-

librium (xβl , u
β
l ) at which discounted strict dissipativity holds only locally. Because of

the local property, we study the trajectory behavior locally and examine under which

conditions the trajectory exhibits a turnpike property at the equilibrium (xβl , u
β
l ). For

this purpose, we assume invariance in the neighborhood where the local dissipativ-

ity holds and then analyze how to choose the discount factor β to enforce the local

1We could further relax this assumption to ˜̀
β being bounded by C1P and C2P from below and

above, respectively, for constants C1 > C2 > 0 and a polynomial P .
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turnpike behavior.

3.3.1 The Local Turnpike Property Assuming Invariance

We begin our considerations with an equilibrium denoted by (xβl , u
β
l ) at which dis-

counted strict dissipativity holds only locally, i.e., for all x in a neighborhood XN of

xβl , in the following sense.

Definition 3.6 (Local Discounted Strict Dissipativity)

Given a discount factor β ∈ (0, 1), we say that the system (2.1) is locally discounted

strictly dissipative for the supply rate s : Y → R at an equilibrium (xβl , u
β
l ) if there

exists a storage function λ : X→ R bounded from below with λ(xβl ) = 0 and αβ ∈ K∞
such that the inequality

s(x, u) + λ(x)− βλ(f(x, u)) ≥ αβ(‖x− xβ‖) (3.8)

holds for all (x, u) ∈ XN × U with f(x, u) ∈ X.

Further, we say that system (2.1) is locally discounted strictly (x, u)-dissipative at

the equilibrium (xβl , u
β
l ) with supply rate s : X × U → R if the same holds with the

inequality

s(x, u) + λ(x)− βλ(f(x, u)) ≥ αβ(‖(x− xβl , u− u
β
l )‖). (3.9)

As in the global case, we define the rotated stage cost as

˜̀
β(x, u) := `(x, u)− `(xβl , u

β
l ) + λ(x)− βλ(f(x, u)). (3.10)

This definition is local as we only require the dissipation inequalities (3.8) and (3.9)

to hold for x ∈ XN . However, the locality refers to the state since we also allow for

control values that drive the state out of the neighborhood XN of the equilibrium

xβl . This property will be important in the proof of Lemma 3.11 below.

Lemma 3.2 remains valid within this definition. Moreover, for x ∈ XN , the mod-

ified stage cost ˜̀β satisfies the same properties as in the globally dissipative case.

Exploiting these properties will enable us to derive a local turnpike property, pro-

vided the neighborhood XN contains an invariant set Xinv ⊂ XN for the optimally

controlled system. Recall that a set Xinv ⊂ X is forward invariant for the optimally

controlled system if for each x0 ∈ Xinv it follows that xu?(k, x0) ∈ Xinv for all k ≥ 0

and all optimal trajectories starting in x0. The following lemma gives a consequence

of this assumption for the modified optimal value function, which will be essential

for concluding the local turnpike property.

36



3.3 The Local Discounted Turnpike Property

Lemma 3.7

Consider the discounted optimal control problem (OCP(β)) with given discount fac-

tor β ∈ (0, 1) and assume that the system (2.1) is locally strictly dissipative at

(xβl , u
β
l ) ∈ XN ⊂ X. Consider a subset Xinv ⊂ XN such that all optimal solutions

xu?(k, x0) with x0 ∈ Xinv satisfy xu?(k, x0) ∈ Xinv for all k ≥ 0.

Then, the modified optimal value function Ṽ∞β satisfies

Ṽ∞β (x) ≥ αβ(‖x− xβl ‖) (3.11)

for all x ∈ Xinv.

Proof. For all x ∈ XN and u ∈ U the modified cost satisfies

˜̀
β(x, u) ≥ αβ(‖x− xβl ‖) ≥ 0.

This implies

Ṽ∞β (x0) =

∞∑

k=0

βk ˜̀β(xu?(k, x0), u?(k)) ≥
∞∑

k=0

βkαβ(‖xu?(k, x0)−xβl ‖) ≥ αβ(‖x0−xβl ‖),

which shows the claim.

The following theorem gives a local version of Theorem 3.4.

Theorem 3.8

Consider the infinite horizon discounted optimal control problem (OCP(β)) with dis-

count factor β ∈ (0, 1) and assume that the system (2.1) is locally strictly dissipative

at (xβl , u
β
l ) ∈ XN ⊂ X. Consider a subset Xinv ⊂ XN such that all optimal solutions

xu?(k, x0) with x0 ∈ Xinv satisfying xu?(k, x0) ∈ Xinv for all k ≥ 0 and suppose that

the assumptions of Theorem 3.4 hold for all x ∈ Xinv.

Then, the optimal control problem has the turnpike property on Xinv in the following

sense:

For each ε > 0 and each bounded set Xb ⊂ Xinv there exists a constant P > 0 such

that for each M ∈ N there is a δ > 0, such that for all x0 ∈ Xb, u ∈ U∞(x0) with

J∞β (x0,u) ≤ V∞β (x0) + δ and xu(k, x0) ∈ Xinv for all k ∈ {0, . . . ,M}, the set

Q(x,u, ε,M, β) := {k ∈ {0, . . . ,M} | ‖xu(k, x0)− xβl ‖ ≥ ε}
has at most P elements.

Proof. The proof proceeds completely identical to the proof of Theorem 3.4, using

the fact that all inequalities used therein remain valid as long as the considered

solutions stay in Xinv, which is guaranteed by the invariance of Xinv. We note that

Lemma 3.7 is needed for establishing the lower bound on Ṽ∞β required from a practical

Lyapunov function.
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Remark 3.9

Instead of assuming the existence of the invariant set Xinv we could also assume

inequality (3.11) to hold for all x0 ∈ XN . Then, by standard Lyapunov function

arguments, the largest sublevel set of Ṽ∞β contained in XN is forward invariant for the

optimal solutions and can then be used as set Xinv. Using the descent condition (3.6)

we can even ensure that this sublevel set is also forward invariant for all solutions

satisfying J∞β (x0,u) ≤ V∞β (x0) + δ provided δ > 0 is sufficiently small. Hence, for

this choice of Xinv the assumption that xu(k, x0) ∈ Xinv for all k ∈ {0, . . . ,M} in

Theorem 3.8 would be automatically satisfied if δ is not too large.

3.3.2 The Local Turnpike Property by Enforcing Invariance

Theorem 3.8 shows that near-optimal trajectories exhibit the local turnpike property

provided the trajectories start in a neighborhood of xβl stay in Xinv. We proceed

to show that this condition is “automatically” satisfied for appropriate discount fac-

tors. Hence, we enforce the trajectory to stay at the local equilibrium regarding

the discount factor β, enabling us to conclude a local turnpike property from local

strict dissipativity. To this end, we aim to show that there exists a range of dis-

count factors β for which it is more favorable to stay near the locally dissipative

equilibrium than to move to other parts of the state space. Exploiting the stronger

(x, u)-dissipativity leads to a property of trajectories that move out of a neighborhood

of a local equilibrium xβl .

Lemma 3.10

Consider a discounted optimal control problem (OCP(β)) subject to system (2.1)

with continuous f . Assume that the system (2.1) is locally strictly (x, u)-dissipative

at an equilibrium (xβl , u
β
l ) according to Definition 3.6 and let ρ > 0 be such that

Bρ(xβl ) ⊂ XN holds for the neighborhood XN from Definition 3.6.

Then, there exists η > 0 such that for each K ∈ N and any trajectory x(·) with

x0 = x(0) ∈ Bη(xβl ) and x(K) /∈ Bρ(xβl ) there is an M ∈ {0, . . . ,K − 1} such that

x(0), . . . , x(M) ∈ Bη(xβl ) and either

(i) x(M + 1) ∈ Bρ(xβl )\Bη(xβl ) or (ii) ‖u(M)− uβl ‖ ≥ η
holds.

Proof. The continuity of f implies that there exists ε > 0 such that

‖f(x, u)− xβl ‖ < ρ

for all (x, u) ∈ Y with ‖x − xβl ‖ < ε and ‖u − uβl ‖ < ε, and with ρ > 0 from the

assumption. We let Kmin be minimal with x(Kmin) /∈ Bρ(xβl ), set η := min{ε, ρ},
and claim that this implies the assertion for M = Kmin − 1.
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3.3 The Local Discounted Turnpike Property

We prove this claim by contradiction. To this end, we assume that for M =

Kmin − 1, neither assertion (i) nor assertion (ii) holds. This implies on the one hand

that ‖x(M) − xβl ‖ < η, since x(M) ∈ Bρ(xβl ) by minimality of Kmin and (i) is not

fulfilled. On the other hand, it implies ‖u(M)− uβl ‖ < η, because (ii) does not hold.

Since η ≤ ε, the continuity of f implies

‖x(Kmin)− xβl ‖ = ‖f(x(M), u(M))− xβl ‖ < ρ.

This means that x(Kmin) ∈ Bρ(xβl ), which is a contradiction to the choice of Kmin.

Consequently, either assertion (i) or assertion (ii) must hold for M = Kmin − 1.

Remark

Lemma 3.10 describes the trajectory behavior locally independent of a cost function.

Hence, whenever a trajectory “jumps” out of a neighborhood, there can only be the

reasons from the lemma. Further, since the proof is based on continuity arguments,

we use strict dissipativity to define the neighborhoods appropriately for the following

investigation.

The next lemma shows that the behavior characterized in Lemma 3.10 induces

a lower bound for the rotated discounted cost function J̃∞ from the modified dis-

counted problem (3.2) along trajectories that start in a neighborhood of xβl and leave

this neighborhood. We note that even if merely local strict dissipativity holds, the

modified stage cost ˜̀β from (3.10) is well-defined since λ is defined for all x ∈ X. How-

ever, the inequality ˜̀β(x, u) ≥ αβ(‖(x− xβl , u− u
β
l )‖) and, more generally, positivity

of ˜̀β are only guaranteed for x ∈ XN .

Lemma 3.11

Let the assumptions of Lemma 3.10 hold. In addition, assume that the storage func-

tion λ from Definition 3.6 is bounded and the stage cost ` is bounded from below.

Then, there exists β? ∈ (0, 1) with the following property: For any β ∈ (0, β?) and

any K ∈ N there is σ(β,K) > 0 such that for any trajectory x(·) with x0 = x(0) ∈
Bη(xβl ) and x(P ) /∈ Bρ(xβl ) for some P ∈ {1, . . . ,K} the inequality

J̃∞β (x0,u) ≥ σ(β,K) (3.12)

holds.

Proof. First, observe that boundedness from below of ` and boundedness of λ imply

boundedness from below of ˜̀β. Define ˜̀min := inf(x,u)∈Y ˜̀β(x, u). Since ˜̀β(xβ, uβ) = 0

holds, it follows that ˜̀min ≤ 0. Moreover, local dissipativity implies that ˜̀β(x, u) ≥ 0

for all x ∈ XN and all u ∈ U with f(x, u) ∈ X. We note that it is important for the
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remainder of the proof that this inequality holds for all these u ∈ U and not only

when f(x, u) ∈ XN .

Since the trajectory under consideration satisfies the assumptions of Lemma 3.10

withK = P , there existsM ∈ {0, . . . , P} such that either assertion (i) or assertion (ii)

of this lemma holds. Within the strict (x, u)-dissipativity, in case (i), we obtain that

˜̀(x(M), u(M)) ≥ αβ(‖x(M)− xβl ‖) ≥ αβ(η)

and in case (ii), we obtain

˜̀
β(x(M), u(M)) ≥ αβ(‖u(M)− uβl ‖) ≥ αβ(η).

Hence, we get the same inequality in both cases, and we abbreviate δ := αβ(η) > 0.

Moreover, Lemma 3.10 yields x(0), . . . , x(M) ∈ Bη(xβl ) ⊂ XN , which implies
˜̀
β(xu(k, x0), u(k)) ≥ 0 for all k = 0, . . . ,M − 1, and the lower bound on ˜̀β implies
˜̀
β(xu(k, x0), u(k)) ≥ ˜̀min for all k ≥M + 1. Together this yields

J̃∞β (x0, u) =
∞∑

k=0

βk ˜̀β(xu(k, x0), u(k))

=

M−1∑

k=0

βk ˜̀β(xu(k, x0), u(k))︸ ︷︷ ︸
≥0

+βM ˜̀β(xu(M,x0), u(M))︸ ︷︷ ︸
≥δ

+

∞∑

k=M+1

βk ˜̀β(xu(k, x0), u(k))︸ ︷︷ ︸
≥˜̀min

≥βMδ +
βM+1

1− β
˜̀
min =

βM

1− β
((
˜̀
min − δ

)
β + δ

)
.

We now claim that the assertion holds for σ = βKδ
2(1−β) ≤

βM δ
2(1−β) . To this end, it is

sufficient to show the existence of β? with

βM

1− β
((
˜̀
min − δ

)
β + δ

)
≥ βMδ

2(1− β)

for all β ∈ (0, β?). This can be reformulated to

βM

1− β

((
˜̀
min − δ

)
β +

δ

2

)
≥ 0 ⇔

(
˜̀
min − δ

)
β +

δ

2
≥ 0,

since ˜̀min−δ < 0. This inequality holds for all β ∈ (0, β?) if β? = δ/(2(δ− ˜̀min)).

Remark 3.12

The choice of the factor 1
2 for σ in the proof of Lemma 3.11 is arbitrary. We can

also use a more general fraction 1
k+1 with k ∈ N. Then, with the same calculation as

above, we get that β? =
k

k + 1

δ

δ − ˜̀min

.
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Based on the estimate from Lemma 3.11, we can now conclude that near-optimal

solutions starting near xβl stay in XN for a certain amount of time.

Lemma 3.13

Consider a discounted optimal control problem (OCP(β)) subject to system (2.1)

with f continuous and stage cost ` bounded from below. Assume the system is locally

strictly (x, u)-dissipative at an equilibrium (xβl , u
β
l ) according to Definition 3.6 with

bounded storage function λ. Assume furthermore that there is γ ∈ K∞ and β̂ ∈ (0, 1]

such that Ṽ∞β (x0) ≤ γ(‖x0 − xβl ‖) for all x0 ∈ XN and all β ∈ (0, β̂].

Then, there exists β2 ∈ (0, 1) with the following property: For any β ∈ (0, β2) and

any K ∈ N there exists a neighborhood Bε(β,K)(x
β
l ) and a threshold value θ(β,K) > 0

such that all trajectories with x0 ∈ Bε(β,K)(x
β
l ), u ∈ U∞(x0), and

J∞β (x0,u) < V∞β (x0) + θ(β,K) satisfy xu(k, x0) ∈ XN for all k ∈ {0, . . . ,K}.

Proof. We choose β2 as the minimum of β? from Lemma 3.11 and β̂. We further

use σ(β,K) > 0 from Lemma 3.11 to set ε(β,K) := γ−1(σ(β,K)/2) and θ(β,K) :=

σ(β,K)/2. Now consider a trajectory meeting the assumptions and observe that

since J∞β and J̃∞β differ only by a term that is independent of u, the assumption

J∞β (x0,u) ≤ V∞β (x0) + θ(β,K) together with the assumption on x0 implies

J̃∞β (x0,u) < Ṽ∞β (x0) + θ(β,K) < γ(ε(β,K)) + θ(β,K).

The definition of θ and ε then implies

J̃∞β (x0,u) < σ(β,K)/2 + σ(β,K)/2 = σ(β,K).

Since by Lemma 3.11 any trajectory leaving XN (and thus also Bρ(xβl )) up to time

K has a rotated value satisfying

J̃∞β (x0, u) ≥ σ(β,K),

the trajectory under consideration cannot leave XN for k ∈ {0, . . . ,K}.

We note that Ṽ∞β (x0) ≤ γ(‖x0 − xβl ‖) can be ensured if we can locally steer the

system to xβ fast enough and ˜̀ is continuous. For a more detailed discussion, we

refer again to Remark 3.5 (ii). Further, as in the proof of Theorem 3.4 we obtain a

lower K∞-bound on Ṽ∞β for x0 ∈ XN by local strict dissipativity.

Using the previous lemmas, we can now prove our main theorem on the existence

of a local turnpike property for discounted optimal control problems on the infinite

horizon.
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Theorem 3.14

Consider a discounted optimal control problem (OCP(β)) subject to system (2.1) with

f continuous and stage cost ` bounded from below. Assume that the system (2.1) is

locally strictly (x, u)-dissipative at an equilibrium (xβl , u
β
l ) according to Definition 3.6

with bounded storage function λ. Assume furthermore that there is γ ∈ K∞ and

β̂ ∈ (0, 1] such that Ṽ∞β (x0) ≤ γ(‖x0 − xβl ‖) for all x0 ∈ XN and all β ∈ (0, β̂),

and that there is an interval [β1, β
?] of discount rates with β1 < β̂ and β? from

Lemma 3.11, such that for each β ∈ (β1, β
?) the assumptions of Theorem 3.4 hold

for all x ∈ XN .

Then, there is β2 ∈ (0, 1) such that for all β ∈ (β1, β2), there exists a neighbor-

hood N of xβl on which the system exhibits a local turnpike property in the following

sense:

For each ε > 0 there exist a constant P > 0 such that for each M ∈ N there is a

δ > 0, such that for all x0 ∈ N and all u ∈ U∞(x0) satisfying J∞β (x0,u) ≤ V∞β (x0) + δ,

the set

Q(x,u, ε,M, β) := {k ∈ {0, . . . ,M} | ‖xu(k, x0)− xβ‖ ≥ ε}

has at most P elements.

Particularly, if J∞β (x0,u) = V∞β (x0), i.e., if the trajectory is optimal, then for each

ε > 0, the set

Q(x,u, ε,∞, β) :=
⋃

M∈N
Q(x,u, ε,M, β)

has at most P elements, implying the convergence xu(k, x0)→ xβ as k →∞.

Proof. We use β2 from Lemma 3.13. The idea of the proof is to construct for each

β ∈ (β1, β2) a neighborhood N of xβl and a δ > 0 such that all trajectories starting

in x0 ∈ N and satisfying J∞β (x0,u) ≤ V∞β (x0) + δ stay in N for all future times.

Then, the turnpike property follows from Theorem 3.8 applied with Xinv = N .

We fix β ∈ (β1, β2), and consider the neighborhood Bε(β,1)(x
β
l ) and the threshold

value θ(β, 1) from Lemma 3.13 for K = 1. We choose N as the largest sublevel set

of Ṽ∞β that is contained in Bε(β,1)(x
β
l ) and denote the level by η > 0, i.e.,

N = {x ∈ XN | Ṽ∞β (x) < η}.

Further, we abbreviate κ = (1− β)− 1/C, observing that κ < 0 because of inequal-

ity (3.5) (cf. also the proof of Theorem 3.4). Set

δ := βM min

{
θ(β, 1),−κη

2β
,
η

2

}
.
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3.3 The Local Discounted Turnpike Property

Now let x0 and u be as in the assertion, i.e., satisfying J∞β (x0,u) ≤ V∞β (x0) + δ, and

denote the corresponding trajectory by x(·). Just as in the first part of the proof of

Theorem 3.4, we obtain the estimate

J̃∞β (x(k),u(·+ k)) ≤ Ṽ∞β (x(k)) +
δ

βk

for all k ∈ N. By definition of δ this implies

J̃∞β (x(k),u(·+ k)) ≤ Ṽ∞β (x(k)) + θ(β, 1) (3.13)

for all k = 0, . . . ,M .

We prove by induction that x(k) ∈ N for all k = 0, . . . ,M .

For k = 0, this follows from the choice of x0.

For k → k+1, we make the induction assumption that x(k) ∈ N , i.e., Ṽ∞β (x(k)) < µ.

Then, because of inequality (3.13) and N ⊆ Bε(β,1)(x
β
l ), Lemma 3.13 (applied with

initial value x0 = x(k) and control u(·+ k)) implies that x(k + 1) ∈ XN . Hence, all

the (in)equalities leading to inequality (3.6) in the proof of Theorem 3.4 are valid

and, together with the definition of δ, this yields

Ṽ∞β (x(k + 1))− Ṽ∞β (x(k)) ≤ κ

β
Ṽ∞β (x(k)) +

δ

βk

≤ κ

β
Ṽ∞β (x(k)) + min

{
θ(β, 1),−κη

2β
,
η

2

}
.

If Ṽ∞β (x(k)) ≥ η/2, then the second term in the minimum defining δ implies

Ṽ∞β (x(k + 1))− Ṽ∞β (x(k)) ≤ κ

β

η

2
− κη

2β
= 0,

from which follows Ṽ∞β (x(k + 1)) ≤ Ṽ∞β (x(k)) < η and thus x(k + 1) ∈ N .

If Ṽ∞β (x(k)) < η/2, then the third term in the minimum defining δ implies

Ṽ∞β (x(k + 1))− Ṽ∞β (x(k)) ≤ κ

β
Ṽ∞β (x(k))

︸ ︷︷ ︸
≤0

+
η

2
≤ η

2
.

Here we have used that Ṽ∞β (x(k)) ≥ 0 which follows since x(k) ∈ N : If the optimal

trajectory starting in x(k) stays in N , then the statement follows from strict dissipa-

tivity on XN ⊃ N and if the optimal trajectory leaves N then the statement follows

from Lemma 3.11. This implies Ṽ∞β (x(k + 1)) ≤ Ṽ∞β (x(k)) + η/2 < η, i.e., again

x(k + 1) ∈ N . This proves the induction step, hence x(k) ∈ N for all k = 0, . . . ,M .

As discussed at the beginning of the proof, the turnpike property follows from

Theorem 3.8 applied with Xinv = N .
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Remark 3.15

The interval (β1, β2) may be empty. This is because

(i) the condition (3.4) needed for proving the turnpike property for trajectories

staying near xβl may require sufficiently large β to hold.

(ii) a trajectory starting near xβl will in general only stay near xβl for sufficiently

small β.

More precisely, the upper bound in (ii), as identified at the end of the proof of

Lemma 3.11, depends on the cost ˜̀ outside a neighborhood of xβl and the cost to

leave this neighborhood. In turn, the lower bound in (i) for observing the turnpike

property depends on the cost to reach the equilibrium xβl from a neighborhood. If this

cost is high and, in addition, the cost to leave the neighborhood and the cost outside

the neighborhood are low, then we do not expect a local turnpike behavior. Hence, the

set of discount rates for which a local turnpike behavior occurs may be empty.

Remark 3.16

The attentive reader may have noted that we apply Lemma 3.13 with K = 1 in this

proof rather than with K = M , which might appear more natural given that we want

to make a statement for {0, . . . ,M}. This is because the size of the neighborhood

Bε(β,K)(x
β
l ) delivered by Lemma 3.13 depends on K. If we applied Lemma 3.13 with

K = M to construct the neighborhood N , this neighborhood may shrink to {xβl } as

M increases. In contrast, the fact that Ṽ∞β is a (practical) Lyapunov function allows

us to construct a neighborhood N that does not depend on M .

3.3.3 Finite Horizon

Since the turnpike property can also be defined for finite horizon optimal control prob-

lems as in Proposition 2.16, we aim to investigate the turnpike behavior of discounted

optimal control problems on the finite horizon. Hence, we address the question of

whether Theorem 3.14 still holds for the discounted optimal control problem with

horizon N ∈ N:

min
u∈UN (x0)

JNβ (x0,u) =

N−1∑

k=0

βk`(xu(k, x0), u(k))

s.t. xu(k + 1, x0) = f(xu(k, x0), u(k)), k = 0, . . . , N − 1,

xu(0, x0) = x0.

(OCP(β, N))

For this purpose, we use Theorem 4.4 in [49], which shows that under mild conditions

on the problem data, the finite horizon turnpike property holds if and only if the
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3.3 The Local Discounted Turnpike Property

infinite horizon turnpike property holds. Consequently, from Theorem 3.14, we can

conclude the local turnpike property on the finite horizon. We provide a variation of

Theorem 4.4 from [49] adapted to our local setting.

Theorem 3.17

Consider the discounted optimal control problem on finite horizon (OCP(β, N)) with

bounded stage cost ` and suppose that the system (2.1) is locally strictly (x, u)-

dissipative at an equilibrium (xβl , u
β
l ) according to Definition 3.6.

Then, the discounted optimal control problem on finite horizon (OCP(β, N)) ex-

hibits a local turnpike property if and only if the discounted optimal control problem

on the infinite horizon (OCP(β)) exhibits a local turnpike property.

Proof. The argumentation in the proof of Theorem 4.4 in [49] remains valid if we

restrict ourselves to the subset XN ⊂ X: The turnpike property on infinite horizon

implies the turnpike property on finite horizon, and vice versa. We require the

boundedness of the stage cost ` to ensure the uniform convergence of V N
β → V∞β

as N → ∞ on bounded subsets of X. Further, the boundedness of the stage cost

` implies Assumption 4.3 (ii) in [49], namely that for near-optimal trajectories with

optimal value function V N
β bounded by a constant C it suffices to choose N ′ large

enough such that βN
′
C ≤ ε̃ holds for ε̃ > 0. However, we need to clarify whether

Theorem 4.4 in [49] is applicable to our local setting, i.e., applicable to a subset of

the admissible set XN ⊂ X. This is ensured because the proof of [49, Theorem 4.4]

only argues with bounded subsets of the set and does not need any property of the

whole admissible set.

We remark here that the assumption of bounded stage cost `, bounded cost func-

tion, and bounded optimal value function can be relaxed at the expense of the con-

ditions becoming more technical. For more details, we refer to the discussion below

Assumption 4.3 in [49]. However, if the stage cost ` is bounded along optimal tra-

jectories, then, due to the exponential decay of βk, the value of the tail becomes

arbitrarily small. In this case, we obtain the convergence of V N
β → V∞β . Further-

more, the boundedness of ` implies the boundedness of JNβ and V N
β , and, thus,

Assumption 4.3 (iii) in [49] which indicates how large the horizon is to choose.

To obtain a local discounted turnpike property on a finite horizon N , we now

transfer Theorem 3.14 to the finite horizon case by applying Theorem 3.17. This

leads to the next theorem.

Theorem 3.18

Consider a discounted optimal control problem on infinite horizon (OCP(β)) with

discount factor β ∈ (0, 1), and bounded stage cost `. Assume that the system (2.1)
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3 Discounted Optimal Control Problems

is locally discounted strictly(x, u)-dissipative at an equilibrium (xβ, uβ) with bounded

storage function λ and let ρ > 0 be such that Bρ(xβl ) ⊂ XN (xβl ). Assume further that

the assumptions of Theorem 3.14 hold.

Then, there is β2 ∈ (0, 1) such that for all β ∈ (β1, β2), there exists a neighborhood

N of xβl on which the system exhibits a local turnpike property on finite horizon N in

the following sense: For each ε > 0 there exist a constant P > 0 such that for each

M ∈ N there is a δ > 0 such that for all N ≥ M , x0 ∈ N and all u ∈ UN (x0) with

JNβ (x0,u) ≤ V N
β (x0) + δ the set

Q(x0,u, ε,M,N, β) := {k ∈ {0, . . . ,M} | ‖xu(k, x0)− xβl ‖ ≥ ε}

has at most P elements.

Proof. The discounted optimal control problem with β ∈ (0, 1) on the infinite hori-

zon and the near-optimal trajectories under consideration fulfill the assumptions of

Theorem 3.14. Hence, we can conclude a turnpike property on the infinite horizon.

Now, we apply Theorem 3.17 to obtain the desired local turnpike property on finite

horizon N .

3.4 Illustrative Examples

We conclude our investigation on discounted optimal control problems with examples

illustrating our theoretical results. All numerical solutions were obtained using a

dynamic programming algorithm as described in [53]. The first example exhibits a

local and a global optimal equilibrium independent of the discount factor β. This

example illustrates that we can numerically find the boundaries of the interval [β1, β
?]

from Theorem 3.14.

Example 3.19

Consider the dynamics f(x, u) = x+ u and the stage cost

`(x, u) = x4 − 1

4
x3 − 7

4
x2.

As visualized in Figure 3.2, the stage cost ` has a local minimum in x = 3−
√

905
32 ,

a maximum in x = 0, and a global minimum in x = 3+
√

905
32 . As discussed in Sec-

tion 2.1.2, we can calculate the storage function λ by using the optimality conditions

for optimal equilibria.

In [45, Section 4], it is shown that computing global storage functions this way is

possible for discounted problems. We remark that the procedure also works for the

local dissipativity in the case of local convexity, which is given in this example, cf.
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Figure 3.2: Stage cost `(x)

also the discussion after Example 3.20, below. By a straightforward calculation, we

get the local equilibrium

(xβl , u
β
l ) =

(
3−
√

905

32
, 0

)

and the storage function λ ≡ 0. Inserting this, we obtain the rotated stage cost

˜̀
β(x, u) = x4 − 1

4
x3 − 7

4
x2 − `(xβl , 0)

and local discounted strict (x, u)-dissipativity of the system f(x, u) = x + u at xβl
for any β ∈ (0, 1). Thus, the assumptions of Lemma 3.10 and Lemma 3.11 are

fulfilled. Hence, following the proof of Lemma 3.11 we can estimate β2 ≈ 0.67 with

δ ≈ 1 and ˜̀min ≈ −0.42. Further, since ‖˜̀β(x, u)‖ is bounded for x in a neighborhood

Bε(x0), ε > 0, Theorem 3.14 can be applied. We set U = [−0.75, 0.75] to illustrate

the theoretical results.
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Figure 3.3: Optimal trajectory and control of Example 3.19 with x0 = −0.8
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Figure 3.4: Domains of attraction of Example 3.19 with x0 = −0.8

In Figure 3.3, we show the behavior of the trajectory x and the control u for dif-

ferent discount factors β. In Figure 3.4, we can observe the optimal feedback control

values ux and, therefore, the domain of attraction of the equilibria dependent on β.

After a maximum of three time instants, the trajectory reaches the global equilibrium

for β large enough. In contrast, for β ≤ 0.67, we can observe that it is more favorable

to stay in a neighborhood of the local equilibrium xβl . We remark that it is sufficient

to depict β = 0.8 as a representative for all β ∈ (0.67, 1) since the trajectory behavior,

the control, and the stage cost do not change significantly. In this example, β1 can be

chosen arbitrarily close to 0 because it is always cheaper to approach xβ than to stay

elsewhere in the neighborhood of xβ due to the absence of u-dependent terms in ˜̀β.

Figure 3.5 shows the trajectory behavior for fixed β = 0.7 and different initial val-

ues x0. As we can see, the initial value determines to which equilibrium the trajectory

converges. This underpins the theoretical results of Theorem 3.14 and especially of

Lemma 3.11. We note that for a completely controllable system, such a behavior

cannot occur in undiscounted problems.
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Figure 3.5: Example 3.19 with β = 0.7 (left) and β = 0.6 (right) for different initial

values x0

The following example modifies Example 3.19 and illustrates the case that the

interval (β1, β2) is empty.

Example 3.20

Consider again the system f(x, u) = x+ u, but now with stage cost

`(x, u) = x4 − 1

4
x3 − 7

4
x2 + γ|u|

with γ 6= 0. As the added term γ|u| does not influence the conditions of Theorem 3.14,

we can again estimate β2 ≈ 0.67. Further, for γ = 0, we get the same stage cost as in

Example 3.19 above. In contrast to Example 3.19, for γ large enough we can observe

that (β1, β2) is empty. This fact is illustrated in Figure 3.6 for γ = 10. We use the

same setting for the numerical results as in Example 3.19.

In the graph with γ = 10, the trajectories no longer converge to the local equilibrium

independent of the discount factor β. If we introduce state constraints that restrict

the optimal solutions to a neighborhood of the local equilibrium xβl , then we only get

convergence to xβl for β ≈ 1. More precisely, we have numerically determined the

threshold of β1 ≈ 0.999. Without such state constraints, already for β ≈ 0.95, we

observe convergence to the optimal equilibrium, which suggests that β2 ≤ 0.95 and

thus (β1, β2) is empty.

In order to examine this behavior in more detail, we illustrate the behavior of

different values of γ for fixed discount factors β in Figure 3.7. For γ > 1 and

β . 0.95, we can observe that the trajectories stay near the initial value and do not
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Figure 3.6: Example 3.20 with γ = 10 for different discount factor β
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Figure 3.7: Example 3.20 with β = 0.7 (left) and β = 0.95 (right) for different γ

move away. Instead, for β ≈ 1, the trajectories converge to the global equilibrium.

Thus, we do not get convergence to the local equilibrium anymore.

The two examples above have the particular feature that the dynamics are affine,

and the stage cost ` is strictly convex in a neighborhood of the optimal equilibria.

In this case, similar arguments as used in the proof of Theorem 4.1 in [45] show that

local strict dissipativity always holds. More precisely, we can restrict the proof of

Theorem 4.1 in [45] to a bounded neighborhood XN ⊂ X of the local equilibrium
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xβl , e.g., Bε(xβl ), ε > 0, instead of X, and a local strict convex stage cost function `.

Following the proof, for the Jacobian D˜̀β(xβl , u
β
l ) = 0 holds in the neighborhood XN ,

which by the local strict convexity of ˜̀β implies that (xβl , u
β
l ) is a strict local minimum.

The boundedness of XN implies the existence of αβ ∈ K∞ and thus local discounted

strict dissipativity. We remark that the calculation of λ is the same as in the global

case and yields a linear storage function. In the particular case of Example 3.19,

it yields the storage function λ ≡ 0. In conclusion, local strict dissipativity always

holds if the dynamics are affine and the stage cost ` is strictly convex near the locally

optimal equilibrium.

With this observation, our dissipativity-based analysis provides a complementary

approach to the stable manifold-based analysis carried out, e.g., in [56]. Particularly,

we can conclude that the model from this reference exhibits two equilibria at which

the local turnpike property holds, which explains why the optimal trajectories are

correctly reproduced by nonlinear model predictive control as shown in [47, Section

5.1].

Our final example demonstrates that strict convexity of ` is unnecessary for ob-

taining strict dissipativity, thus showing that a dissipativity-based analysis allows for

strictly weaker assumptions than strict convexity of `.

Example 3.21

Consider the 1d control system

x+ = f(x, u) = 2x+ u

with state constraints X = [−1, 1], control constraints U = [−3, 3], and stage cost

`(x, u) = −x2/2 + u2.

The stage cost is obviously strictly concave in x and strictly convex in u. Neverthe-

less, we can establish discounted strict (x, u)-dissipativity in (xe, ue) = (0, 0) (in this

example even global) for β ≥ 3/5 with λ(x) = −x2. This follows from the fact that

with a = 2β/
√

1 + β and b =
√

1 + β we have

˜̀
β(x, u) = `(x, u) + λ(x)− βλ(f(x, u)) = −x2/2 + u2 − x2 + β(2x+ u)2

= (4β − 3/2)x2 + 4βxu+ (1 + β)u2

= (ax+ bu)2 +

(
4β − 3

2
− 4β2

1 + β

)
x2.

The case of ax+ bu ≥ b
2u implies (ax+ bu)2 ≥ b2

4 u
2, and since the term in the large

brackets is greater than zero for β ≥ 3/5 the strict (x, u)-dissipativity.
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Is ax+ bu < b
2u, it follows that |x| > b

2a
u. By plugging in, we can estimate

˜̀
β(x, u) ≥

(
4β − 3

2
− 4β2

1 + β

)
x2 =

1

2

(
4β − 3

2
− 4β2

1 + β

)
x2 +

1

2

(
4β − 3

2
− 4β2

1 + β

)
x2

≥ 1

2

(
4β − 3

2
− 4β2

1 + β

)
x2 +

1

2

(
4β − 3

2
− 4β2

1 + β

)
b2

8a2
u2,

implying the strict (x, u)-dissipativity for β ≥ 3/5.

Since the system is completely controllable in finite time, hence exponentially sta-

bilizable, Theorem 3.4 in conjunction with Remark 3.5(ii) implies that for sufficiently

large β turnpike behavior occurs at xe = 0. This is confirmed for β = 0.7 in the left

graph in Figure 3.8. In contrast, the right graph in Figure 3.8 shows that for β = 0.6,

the turnpike behavior for xe = 0 does not occur. Instead, the optimal solution con-

verges to the upper bound x = 1 of the state constraint set. In this example, the

numerical computations indicate that β = 3/5 = 0.6 is a relatively precise estimate

of the threshold for the occurrence of the turnpike property at xe = 0. However, for

β decreasing from 0.7 to 0.6, the set of initial values around xe = 0 for which the

turnpike behavior can be seen shrinks rapidly.

0 20 40 60 80 100
0
0.2
0.4
0.6
0.8
1

0 20 40 60 80 100
0
0.2
0.4
0.6
0.8
1

Figure 3.8: Optimal trajectories for Example 3.21 with β = 0.7 and x0 = 1 (left) and

with β = 0.59 and x0 = 0.004 (right)
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4 Multiobjective Strict Dissipativity via
the Weighted Sum Approach

Dissipativity, as introduced into systems theory by Willems [93, 94], has turned out

to be a highly useful concept for understanding the qualitative behavior of optimally

controlled systems. Motivated by the observation of the importance of dissipativity

concepts in model predictive control [7, 19, 72, 73] and for the characterization of

the turnpike property [51], cf. Section 2.1.2, extending the dissipativity concept to

multiobjective problems is a natural idea.

Recent literature has highlighted the difficulty in formulating a model predictive

control scheme for multiobjective optimal control problems without terminal con-

ditions, see, for instance, [88, Chapter 5] or [57]. One approach to overcome this

challenge is scalarizing multiobjective problems and solving single-objective prob-

lems instead as done, for example, in [82]. A common scalarization technique is the

weighted sum approach introduced and discussed in Section 2.2.1. Hence, by solving

single-objective optimal control problems with varying weight vectors w ∈ [0, 1]n,

we can compute efficient solutions (under some convexity assumptions). This way,

we can apply the theory and properties of MPC based on single-objective optimal

control problems without terminal conditions.

As already highlighted, strict dissipativity is a useful concept for deriving properties

of the closed-loop, cf. Section 2.1.2, or, e.g., [31], [46, Section 7]. In the context

of multiobjective optimal control problems without terminal conditions, we aim to

investigate the theoretical question: If the system is strictly dissipative for the s ≥ 2

stage costs `i, i = 1, 2 . . . , s, is it also strictly dissipative for the convex-combined

sum `w =
∑

iwi`i with wi ∈ [0, 1] and
∑

iwi = 1 of these costs?

By addressing this question, we seek to provide a basis for a better understanding

of the behavior of economic multiobjective optimal control problems without terminal

conditions. Our analysis yields strict dissipativity for convexly combined stage costs

under the assumptions derived below.

In order to render our presentation less technical, we give all results and proofs for

only two cost functions `1 and `2, in which case the weighted sum specializes to

` = w`1 + (1− w)`2, w ∈ [0, 1].
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After each main result, we provide a remark explaining how the assumptions and

assertions extend to the general setting with s > 2 stage costs.

Throughout this chapter, we consider an optimal control problem (OCPN ) with

stage cost `w = w`1 + (1 − w)`2, and we impose a non-empty combined state and

input constraint set Y ⊆ Rn × Rm. As in Section 2.1, we define the induced state

and input constraint sets X := {x ∈ Rn | ∃ u ∈ Rm with (x, u) ∈ Y} and U := {u ∈
Rm | ∃ x ∈ Rn with (x, u) ∈ Y}.

4.1 Strict Dissipativity of Convex Combined Stage Costs

with Linear Dynamics

We will proceed methodically by first examining the case of linear dynamics (2.12).

Hence, we consider an optimal control problem (OCPN ) with linear dynamics of the

form

x(k + 1) = f(x(k), u(k)) = Ax(k) +Bu(k), k = 0, . . . , N,

x(0) = x0,
(4.1)

with A ∈ Rn×n and B ∈ Rm×n. We recall the relation between strict dissipativity

and steady-state problems previously presented in Section 2.1.2. Additionally, we

take advantage of the fact that, in this case, the storage function can be represented

by the corresponding Lagrange multiplier. This insight allows us to establish strict

dissipativity for convexly combined strictly dissipative stage costs.

4.1.1 The Linear-Quadratic Case

In the case of linear dynamics, a common choice of stage costs is a quadratic cost

function

`i(x, u) = xTQix+ uTRiu+ sTi x+ vTi u, i = 1, 2 (4.2)

with Qi ∈ Rn×n, Ri ∈ Rm×m, si ∈ Rn and vi ∈ Rm. Here we assume that Qi and Ri
are symmetric, Qi is positive semidefinite, and Ri is positive definite. These stage

costs are called generalized quadratic costs, as they also contain linear terms. In

this setting, dissipativity characterizations and storage functions can be explicitly

computed using the techniques from [41], which leads to the following theorem.

Theorem 4.1

Consider the optimal control problem (OCPN ) with linear dynamics (4.1) and quadratic

costs `1 and `2 of the form (4.2). We assume that the constraint set Y is either

convex and compact or Y = Rn×Rm, i.e., there are no constraints, and that the sys-

tem (4.1) is strictly dissipative for both `1 and `2. In case Y is compact, we assume
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that the global optimal equilibria (xew, u
e
w) minimizing the steady-state problem (SSP)

for ` = `w := w`1 + (1− w)`2 satisfy (xew, u
e
w) ∈ intY for all w ∈ [0, 1].

Then, the system (4.1) is strictly dissipative for `w at (xew, u
e
w) for all w ∈ [0, 1].

Proof. We first observe that (xew, u
e
w) ∈ intY for w = 0 and w = 1. Then, by

Lemma 4.1 from [41], strict pre-dissipativity for `i, i = 1, 2 holds if and only if there

is a symmetric solution Pi of the matrix inequality

Qi + Pi −ATPiA > 0. (4.3)

In this case, the storage function can be chosen to be of the linear-quadratic form

λi(x) = xTPix+ pTi x

for an appropriate vector pi ∈ Rn (see the discussion after this proof). In case

Y = Rn × Rm, the matrix Pi must be positive semi-definite for λi to be bounded

from below. Then, however, we may choose Pi to be positive definite because when

a positive semi-definite matrix Pi satisfies inequality (4.3), then for sufficiently small

ε > 0, the positive definite matrix Pi + εI also satisfies inequality (4.3).

Thus, the strict dissipativity assumptions on `1 and `2 imply that we can find

symmetric solutions P1, P2 of the matrix inequality (4.3) for i = 1, 2, respectively,

which we can choose to be positive definite if Y = Rn×Rm. It is then easy to see that

Pw = wP1 + (1−w)P2 solves the inequality (4.3) for Qw = wQ1 + (1−w)Q2. Hence,

since (xew, u
e
w) ∈ intY, and using [41, Lemma 4.1] strict pre-dissipativity for the cost

`w with storage function λw(x) = xTPwx+pTwx (and again with an appropriate vector

pw ∈ Rn) follows.

If Y = Rn×Rm, Pw is positive definite, and thus boundedness from below of λw(x)

holds (regardless of what pw is). If Y is compact, λw is bounded from below on X by

its continuity. Thus, in both cases, λw is bounded from below on X, which, together

with strict pre-dissipativity, implies strict dissipativity.

Remark 4.2

Theorem 4.1 and its proof immediately generalize to s cost functions `1, . . . , `s of the

form (4.2), since it is easy to check that Pw =
∑

iwiPi solves (4.3) for Qw =
∑

iwiQi
if each Pi for i = 1, . . . , s solves matrix inequality (4.3) for Qi.

The construction in the proof implies that the matrix Pw in the quadratic storage

function λw is a convex-combined sum Pw = wP1 + (1 − w)P2 of the matrices P1

and P2 from the single storage functions λi, i = 1, 2. Moreover, it follows from
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4 Multiobjective Strict Dissipativity via the Weighted Sum Approach

Proposition 2.15 that the vector pw is the Lagrange multiplier νw = ν of the steady-

state problem

min
(x,u)∈Y

`(x, u)

s.t. x− f(x, u) = 0,
(SSP)

with ` = `w. In contrast to the matrix Pw, the vector pw can, in general, not

be chosen as a convex combination pw = wp1 + (1 − w)p2. Likewise, the optimal

equilibrium (xew, u
e
w) is in general not a weighted sum of (xe1, u

e
1) and (xe2, u

e
2). The

following one-dimensional example illustrates this fact.

Example 4.3

Consider the one-dimensional dynamics x+ = ax+ bu with Y = R×R and the costs

of the form

`i(x, u) = qix
2 + riu

2 + six+ viu

with qi, ri, si, vi > 0, i = 1, 2, and a, b ∈ R. Since qi > 0, the stage costs `i are

both strictly convex functions. Moreover, Pi = 0 solves the one-dimensional matrix

inequality (4.3) for Qi = qi and A = a, thus, we do not need a quadratic part in the

storage function. We do, however, in general, need a linear part, which we compute

as described above via the Lagrange multiplier νi of the optimization problem

min
(x,u)∈Y

`i(x, u) = qix
2 + riu

2 + six+ viu

s.t. x = ax+ bu.

For this purpose, we define the Lagrange function

Li(x, u, νi) = `i(x, u) + νi(x− ax− bu)

and calculate the corresponding derivatives

∂Li
∂x

(x, u, νi) = 2qix+ si + νi(1− a) (4.4)

∂Li
∂u

(x, u, νi) = 2riu+ vi − νib (4.5)

∂Li
∂νi

(x, u, νi) = x− ax− bu. (4.6)
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4.1 Strict Dissipativity of Convex Combined Stage Costs with Linear Dynamics

Solving the system (4.4)–(4.6) provides

xei =
(1− a+ b)b(−bsi − (1− a)vi)

(1− a+ b)(2qib2 + 2(1− a)2ri)
=
b(−bsi − (1− a)vi)

2(qib2 + (1− a)2ri)
,

uei =
(1− a)(−bsi − (1− a)vi)

2(qib2 + (1− a)2ri)

νi =
1

1− a+ b

(
(−bsi − (1− a)vi)(ri(1− a)− bqi)

qib2 + (1− a)2ri
+ vi − si

)

=
qivib− (1− a)risi
qib2 + (1− a)2ri

.

(4.7)

According to Proposition 2.13, the scalar optimal control problems are strictly dissi-

pative at (xei , u
e
i ) with storage function λi(x) = νix.

Next, we consider the combined stage cost

`w(x, u) = w`1(x, u) + (1− w)`2(x, u), (4.8)

which is again strictly convex for all w ∈ [0, 1], since a convex combination of strictly

convex functions is again strictly convex. As above, we define the Lagrange function

L(x, u, νw) = `w(x, u) + νw(x− ax− bu),

and solve

∂L

∂x
(x, u, νw) = w(2q1x+ s1) + (1− w)(2q2x+ s2) + νw(1− a) = 0

∂L

∂u
(x, u, νw) = w(2r1u+ v1) + (1− w)(2r2u+ v2)− νwb = 0

∂L

∂νw
(x, u, νw) = x− ax− bu = 0.

The solution is given by

xew =
−b(w(bs1 + (1− a)v1) + (1− w)(bs2 + (1− a)v2))

2(w(b2q1 + (1− a)2r1) + (1− w)(b2q2 + (1− a)2r2))

uew =
−
(
(1− a)b(ws1 + (1− w)s2) + (1− a)2(wv1 + (1− w)v2)

)

2 (w(b2q1 + (1− a)2r1) + (1− w)(b2q2 + (1− a)2r2))

νw =
b(wq1 + (1− w)q2)(wv1 + (1− w)v2)− (1− a)(wr1 + (1− w)r2)(ws1 + (1− w)s2)

b2(wq1 + (1− w)q2) + (1− a)2(wr1 + (1− w)r2)
.

A simple numerical example using the system x+ = 2x+ 4u with stage costs

`1(x, u) = 0.1x2 + 10u2 + 6x+ 7u and `2(x, u) = 4x2 + 3u2 + 3x+ 8u (4.9)
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4 Multiobjective Strict Dissipativity via the Weighted Sum Approach

shows that νw does indeed not depend linearly on w, cf. Figure 4.1. Hence, this

stresses that we can not simply combine the storage functions to deduce the strict

dissipativity for convex-combined stage costs.

0 0.2 0.4 0.6 0.8 1
2

3

4

5

Figure 4.1: Lagrange multiplier νw depending on w (blue) and convex combination

wν1 + (1− w)ν2 (red) for costs from (4.9)

In order to find out whether there are cases in which νw depends linearly on w, we

examine the equation

νw − wν1 − (1− w)ν2 = 0. (4.10)

Upon straightforward calculations, we find that sufficient conditions for this equation

to hold for all w ∈ [0, 1] are either a = 1 or q1r2 = q2r1. This observation demon-

strates that equality (4.10) holds only for highly specialized cases when considering

arbitrary w ∈ (0, 1). Therefore, even in the simple case of scalar-valued linear dy-

namics, the coefficients in the storage function for arbitrary w can generally not be

determined as a weighted sum of the coefficients for w = 0 and w = 1.

4.1.2 The Case of Non-Quadratic Costs

We extend our analysis of linear dynamics (2.12) by including non-quadratic costs,

assuming that the occurring cost functions are either convex or strictly convex. Then,

we can apply Proposition 2.13 to show strict dissipativity for the combined stage

costs.

Theorem 4.4

Consider the optimal control problem (OCPN ) with linear dynamics (4.1) and convex
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4.2 Strict Dissipativity of Convex Combined Stage Costs with Nonlinear Dynamics

stage costs `1 and `2, where at least one of the functions `1 and `2 is also strictly

convex. Assume that the constraint set Y is convex and compact and that the Slater

condition from Proposition 2.13 is satisfied.

Then, the system (4.1) is strictly dissipative for the stage cost `w = w`1 +(1−w)`2
at the optimal equilibrium (xew, u

e
w) for all w ∈ (0, 1).

Proof. From the strict convexity of either `1 or `2 together with the convexity of

the other stage cost, we can deduce the strict convexity of `w = w`1 + (1− w)`2 for

all w ∈ (0, 1). With this observation, the claim follows from Proposition 2.13.

Remark 4.5

If the assumptions of Theorem 4.4 hold, and both `1 and `2 are strictly convex, we

obtain strict dissipativity for all w in the closed-interval [0, 1]. The theorem general-

izes easily to s convex cost functions of which at least one is strictly convex, provided

at least one wi corresponding to a strictly convex `i is not zero.

4.2 Strict Dissipativity of Convex Combined Stage Costs

with Nonlinear Dynamics

We now turn our attention to optimal control problems with nonlinear dynamics.

Hence, we can not profit from Proposition 2.13 anymore, and, therefore, we do not

know how to determine the storage function properly. Still, considering the KKT

conditions will be crucial for our investigation. Before discussing sufficient condi-

tions for a convex combination of strictly dissipative stage costs to remain strictly

dissipative, we first present a necessary condition on the mapping w 7→ xew and a

sufficient condition for one weight w?.

4.2.1 A Necessary Condition

The following theorem examines the relation between the weight and the optimal

equilibrium. In the case of strict dissipativity, the mapping is continuous; otherwise,

the strict dissipativity no longer holds.

Theorem 4.6

Assume that the system (2.1) is strictly dissipative for the cost function `w = w`1 +

(1− w)`2 at the corresponding optimal equilibrium (xew, u
e
w) for all weights

w ∈ [w,w] ⊆ [0, 1] and assume that (xew, u
e
w) are contained in a compact set Ŷ ⊂ Y.

Then, the map

w 7→ xew

is continuous on [w,w].
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4 Multiobjective Strict Dissipativity via the Weighted Sum Approach

Proof. It follows directly from the strict dissipativity that

`w(xew, u
e
w) < `w(x, u) (4.11)

for all equilibria (x, u) ∈ Y with x 6= xew. We prove the claim by contradiction.

Assume that w 7→ xew is discontinuous at some w? ∈ [w,w]. Then, there is a sequence

wn → w? in [w,w], such that (xewn , u
e
wn) converges to (x̂ew? , û

e
w?) with x̂ew? 6= xew? .

Since f(xewn , u
e
wn) = xewn , by continuity of f we have that f(x̂ew? , û

e
w?) = x̂ew? , i.e., the

limit is an equilibrium. Using the continuity of `w and inequality (4.11) for w = wn
and (x, u) = (xew? , u

e
w?), for this equilibrium it holds that

`w?(x̂ew? , û
e
w?) = lim

n→∞
`wn(xewn , u

e
wn) ≤ lim

n→∞
`wn(xew? , u

e
w?) = `w?(x

e
w? , u

e
w?).

This, however, means that inequality (4.11) does not hold at w = w?, which yields a

contradiction.

Remark 4.7

The reasoning in the proof immediately carries over to higher dimensional w =

(w1, . . . , ws)
T . Thus, if the system is strictly dissipative for `w =

∑
iwi`i for w

from a subset Ω ⊂ {w ∈ [0, 1]s | ∑iwi = 1}, then w 7→ xew is continuous on Ω.

The theorem, in particular, implies that if the globally optimal equilibria xew change

discontinuously with w, then strict dissipativity cannot hold. While the theorem is

valid for general nonlinear dynamics, discontinuity of xew can occur even in the case

of linear dynamics, as demonstrated in the following example.

Example 4.8

Consider the dynamics x+ = x+ u and the stage costs

`1(x, u) =
1

2
x4 − 1

4
x3 − x2 +

3

4
x+ u2 and `2(x, u) = (x− 1)2 + u2,

see Figure 4.2, with compact constraint set Y = [−10, 10]2.
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4.2 Strict Dissipativity of Convex Combined Stage Costs with Nonlinear Dynamics
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Figure 4.2: Graphs of cost functions x 7→ `1(x, 0) (red) and x 7→ `2(x, 0)

(blue)

The stage cost `1 is bounded from below by the convex function

ˆ̀
1(x) = (x+ 1)2/10− 1 + u2.

The global minimum (−1, 0) of `1 and ˆ̀
1 coincides, and it is an equilibrium of the dy-

namics. Hence, the system is strictly dissipative for stage cost `1 by Proposition 2.14.

The system is strictly dissipative for cost `2 by Proposition 2.13 because of the con-

vexity of `2. Since every state x ∈ R is an equilibrium of the dynamics and the

corresponding equilibrium control u = 0 minimizes `i with respect to u, the globally

optimal equilibrium (xew, u
e
w) for cost w`1(x, 0) + (1 − w)`2(x, 0) + 02 coincides with

the global minimum of `w. This global minimum, however, changes discontinuously

at w? = 32/41, as Figure 4.3 shows.
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Figure 4.3: Graphs of cost functions x 7→ `w(x, 0) for w = 33/41, 32/41, 31/41 (left

to right)
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4 Multiobjective Strict Dissipativity via the Weighted Sum Approach

We note that choosing the cost `1 non-convex is crucial in this example, since for

linear dynamics, convex cost `1 and strictly convex cost `2, Theorem 4.4 shows strict

dissipativity for all `w, w ∈ [0, 1). Hence, Theorem 4.6 implies continuity of xew on

[0, 1− ε] for all ε > 0 and thus on [0, 1).

4.2.2 Sufficient Conditions on the Weight

Previously, we have observed that the optimal equilibria depend continuously on the

weight w provided strict dissipativity holds. Especially, Example 4.8 illustrates a

case in which the strict dissipativity gets lost. In this section, we investigate the

opposite perspective, namely, that strict dissipativity also depends – in a certain

sense – continuously on the weight w. More precisely, we establish conditions under

which strict dissipativity in w? ∈ (0, 1) implies strict dissipativity for small variations

of w?, i.e., for w ∈ (w? − ε, w? + ε). To this end, we assume that the constraint set

Y is defined in terms of inequality constraints (2.3), i.e.,

Y = {(x, u) ∈ Rn × Rm | g(x, u) ≤ 0}

for a function g : Rn × Rm → Rp.
Additionally, we recall the connection between strict (x, u)-dissipativity at an equi-

librium (xe, ue) and the steady-state problem (SSP). We refer to Section 2.1.2 for

a detailed discussion of this relation. Moreover, the relevant definitions and results

from nonlinear programming can also be found in Section 2.1.2. The following theo-

rem uses these results to establish sufficient conditions under which small changes in

the weight w do not affect the strict dissipativity.

Theorem 4.9

Assume that

(i) the functions f, `1, `2, g are twice continuously differentiable and Y is bounded.

(ii) the system (2.1) is strictly (x, u)-dissipative for the cost function `w? = w?`1 +

(1−w?)`2 at the equilibrium (xew? , u
e
w?) for some w? ∈ [0, 1] and the correspond-

ing storage function λw? is twice continuously differentiable.

(iii) the equilibrium (xew? , u
e
w?) is a regular point of the steady-state problem (SSP)

and satisfies the strong second order sufficiency conditions for the steady-state

problem (SSP), with ` = `w? and for min(x,u)∈Y ˜̀w? with Y, respectively, defined

as in (2.3), and ˜̀w? the rotated stage cost.

Then, there exists ε > 0 such that for all w ∈ (w? − ε, w? + ε) ∩ [0, 1], there exists

an equilibrium (xew, u
e
w) such that the system (2.1) is strictly (x, u)-dissipative for the

stage cost `w = w`1 + (1− w)`2 at the equilibrium (xew, u
e
w).
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This theorem is similar to other theorems in the literature, such as [72, Theorem 5],

where small changes in the constraints are considered, and [44, Theorem 8.2], where

small changes in the discount factor are considered. As explained in [72, Remark 8],

the proof of Theorem 4.9 follows by a slight modification of the proof of [72, Theorem

5]. Nonetheless, for the reader’s convenience, we provide the proof of Theorem 8.2 in

[44] adapted to the setting of our Theorem 4.9.

Proof. The proof exploits the fact that the strict (x, u)-dissipativity can be refor-

mulated as the equilibrium being the unique minimizer of the steady-state prob-

lem (SSP). In particular, we first determine a suitable equilibrium

candidate (xe(w), ue(w)) and a storage function candidate λw(x), and then show that

for ε > 0 small enough (xe(w), ue(w)) with w ∈ (w? − ε, w? + ε)∩ [0, 1] is the unique

minimizer of the corresponding optimization problem.

Let `w(x, u) = w`1 + (1− w)`2 with w ∈ (w? − ε, w? + ε) ∩ [0, 1] and consider the

set of equations

∇(x,u)`w(x, u) + νT∇(x,u)(x− f(x, u)) + ηT∇(x,u)g(x, u) = 0

x− f(x, u) = 0

gi(x, u) + z2
i = 0, i = 1, . . . , p

2ηizi = 0, i = 1, . . . , p

(4.12)

where ν ∈ Rn, η ∈ Rp, and z ∈ Rp. For each fixed weight w equation (4.12) is

a set of 2n + m + 2p equations for 2n + m + 2p unknowns x, u, ν, η, z. Since the

equilibrium (xew? , u
e
w?) is a regular point by assumption and minimizes the steady-

state problem (SSP) it follows that (x, u, ν, η, z) = (xew? , u
e
w? , ν

e, ηe, ze), with zei :=√
−gi(xew? , uew?), is a solution of the equations (4.12). This is due to the fact that

for these values, the equations (4.12) correspond to the KKT conditions of prob-

lem (SSP). Moreover, the corresponding Jacobian evaluated at the equilibrium is

given by

J =




H aT bT 0

aT 0 0 0

bT 0 0 2diag(ze)

0 0 2diag(ze) 2diag(µe)




where

H := ∇2
(x,u)`w(xew? , u

e
w?) +

n∑

i=1

νei∇e(x,u)hi(x
e
w? , u

e
w?) +

p∑

i=1

ηi∇2
(x,u)gi(x

e
w? , u

e
w?),

a := ∇(x,u)x
e
w? − f(xew? , u

e
w?),

b := ∇(x,u)g(xew? , u
e
w?).
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The Jacobian J is nonsingular since the second order sufficiency conditions for prob-

lem (SSP) are satisfied, see [44, Theorem 7.2] and Proposition 2.12. Hence, by using

the implicit function theorem we can conclude that for ε > 0 small enough there ex-

ists a solution (xe(w), ue(w), νe(w), ηe(w), ze(w)) to the set of equations (4.12) such

that the functions (xe(·), ue(·), νe(·), ηe(·), ze(·)) are continuously differentiable and

(xe(w?), ue(w?), νe(w?), ηe(w?), ze(w?)) = (xew? , u
e
w? , ν

e, µe, ze)

holds. Furthermore, by continuity of η(·) and z(·), the fourth equation of (4.12), and

assumption (iii), it follows that for ε > 0 small enough the Lagrange multiplier η(·)
and the active sets A(xe(w), ue(w)) and A(xew? , u

e
w?) coincide.

By assumption the equilibrium (xew? , u
e
w?) is a regular point of problem (SSP) and

a strict minimizer of ˜̀w? on the set Y. Hence, it holds that the KKT conditions

∇(x,u)
˜̀
w?(x

e
w? , u

e
w?) + η̃T∇(x,u)g(xew? , u

e
w?) = 0 (4.13)

are satisfied for some η̃ ∈ Rp≥0. Further, note the relation

∇(x,u) (λ(xew?)− λ(f(xew? , u
e
w?))) = ∇xλ(xew?)

T∇(x,u) (xew? − f(xew? , u
e
w?)) .

Thus, by the uniqueness of the Lagrange multipliers νe and ηe we can conclude that

∇xλ(xew?) = νe and η̃ = ηe.

In the next step, we define a storage function candidate

λ(x,w) := λw?(x)− λ(xe(w)) +
(
ν(w)T −∇xλ(xe(w))T

)
(x− xe(w)) (4.14)

with λ(xe(w), w) = 0. We show for this function that for ε > 0 small enough

(xe(w), ue(w)), w ∈ (w? − ε, w? + ε) ∩ [0, 1] is a (local) minimizer for the problem

min
(x,u)∈Y

˜̀
w(x, u). (4.15)

For this purpose, as in [44, Proof of Theorem 7.2], we can check that the KKT and

the second order sufficiency conditions for this problem are satisfied.

Since ∇xλ(xew?) = ηe, we obtain

∇(x,u)
˜̀
w(xe(w), ue(w))

= ∇(x,u)`w(xe(w), ue(w)) +∇(x,u) (λ(xe(w), w)− λ(f(xe(w), ue(w)), w))

= ∇(x,u)`w(xe(w), ue(w)) +∇xλ(xe(w), w)T∇(x,u) (xe(w)− f(xe(w), ue(w)))

= ∇(x,u)`w(xe(w), ue(w)) + νeT∇(x,u) (xe(w)− f(xe(w), ue(w))) .

From this and (xe(w), ue(w), νe(w), ηe(w)) being a solution of (4.12), we can conclude

that (xe(w), ue(w), νe(w), ηe(w)) satisfies equation (4.13). Together with η(w) ≥ 0
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and ηi(w) = 0 for all i /∈ A(xe(w), ue(w)) the KKT conditions of problem (4.15) are

satisfied at (xe(w), ue(w)). Because of the continuity of xe(·), ue(·), and νe(·) the

continuity of ∇(x,u)
˜̀·(xe(·), ue(·)) follows with

∇(x,u)
˜̀
w?(x

e(w?), ue(w?)) = ∇(x,u)
˜̀
w?(x

e
w? , u

e
w?).

The second order sufficiency conditions for problem (4.15) with `w = `w? hold by the

assumptions. Therefore, again by continuity and the fact that A(xe(w), ue(w)) =

A(xew? , u
e
w?) it follows that the second order sufficiency conditions for problem (4.13)

are also satisfied.

Thus, for ε > 0 small enough, (xe(w), ue(w)), w ∈ (w? − ε, w? + ε) ∩ [0, 1], is

a strict local minimizer of ˜̀w? . Because of the strict (x, u)-dissipativity of `w? at

(xew? , u
e
w?), for w sufficiently close to w? this equilibrium is the global minimizer

of ˜̀w on Y. Hence, by continuity ε > 0 can be chosen small enough such that

(xe(w), ue(w)) is the global minimizer of ˜̀w on Y, i.e., there exists α ∈ K∞ such

that ˜̀w(x, u) ≥ α(‖x− xe(w), u− ue(w)‖) for all (x, u) ∈ Y. Together with the

boundedness from below of λw on the compact set Y, this implies the strict (x, u)-

dissipativity.

Remark 4.10

Since the reasoning used in these proofs was already used for multi-dimensional pa-

rameters in [72, Theorem 5], the result extends readily to more than two cost functions

using a ball Bε(w?) instead of the interval (w? − ε, w? + ε).

4.2.3 Sufficient Conditions for all Weights w ∈ [0, 1]

While we have considered strict dissipativity for a fixed weight w? previously, we now

focus on sufficient conditions that ensure strict dissipativity for all w ∈ [0, 1] provided

we have strict dissipativity for w = 0 and w = 1. First, we turn our attention to the

rare case in which the optimal equilibrium does not depend on the weight w. Then,

we answer our introductory question by imposing appropriate conditions.

Theorem 4.11

Assume that the system (2.1) is strictly dissipative for the cost functions `1 and `2
at the same equilibrium xe.

Then, system (2.1) is strictly dissipative for the cost function `w = w`1 + (1−w)`2
for all w ∈ [0, 1].

Proof. For `1 and `2 there are storage functions λ1, λ2 as well as K∞-functions α1,

α2 such that we have the inequalities

λ1(f(x, u)) ≤ λ1(x) + `1(x, u)− `1(xe, ue)− α1(‖x− xe‖),
λ2(f(x, u)) ≤ λ2(x) + `2(x, u)− `2(xe, ue)− α2(‖x− xe‖).
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Adding w–times the first equation and (1− w)–times the second equation yields

wλ1(f(x, u)) + (1− w)λ2(f(x, u))

≤ wλ1(x) + (1− w)λ2(x) + w`1(x, u) + (1− w)`2(x, u)

− w`1(xe, ue)− (1− w)`2(xe, ue)

− wα1(‖x− xe‖)− (1− µ)α2(‖x− xe‖).

Defining λw = wλ1 + (1− w)λ2 and αw = wα1 + (1− w)α2 we, thus, obtain

λw(f(x, u)) ≤ λw(x) + `w(x, u)− `w(xe, ue)− αw(‖x− xe‖).

Since both λ1 and λ2 are bounded from below λw is also bounded from below. In

addition, the combination of two class K∞-functions are again K∞, see, for instance,

[63, Lemma 4.2], and, hence, we can conclude that αw ∈ K∞ for all w ∈ [0, 1].

Putting this together shows the strict dissipativity inequality (2.5) holds for all these

weights w.

Remark 4.12

The proof remains completely identical for more than two cost functions. Hence, the

statement holds accordingly in this case.

The situation becomes more challenging when the equilibrium (xew, u
e
w) depends on

the weight w, which is usually the case even for simple examples, as in Example 4.8.

In the remainder of this section, we present a construction motivated and inspired

by the linear quadratic result from Theorem 4.1. Hence, we aim to obtain a storage

function for `w by adding a linear term to the convex combination of the storage

functions for `1 and `2. It follows from Proposition 2.15 that this linear correction

must be such that the gradient of the resulting storage function at (xew, u
e
w) equals

the Lagrange multiplier νw of the optimal steady-state problem

min
(x,u)∈Y

w`1(x, u) + (1− w)`2(x, u)

s.t. x = f(x, u),
(4.16)

and also satisfies the necessary optimality conditions (2.10) for ` = `w. The idea and

concept were already used in [72, Theorem 5]. We provide the following theorem in

two versions. Theorem 4.13 yields only local strict dissipativity (cf. Part (iv) of Defi-

nition 2.7), while Theorem 4.18 yields global (i.e., not only local) strict dissipativity,

yet under stronger assumptions.

Theorem 4.13

Assume that the system (2.1) is strictly dissipative for the cost functions `1 and `2.
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Suppose that `1 and `2 as well as the corresponding storage functions λ1 and λ2 are

twice continuously differentiable. Furthermore, assume that for each w ∈ [0, 1] the

optimal equilibrium satisfies (xew, u
e
w) ∈ intY and that there exist m2(w) > m1(w) ≥ 0

such that

∇2
(x,u)

(
w˜̀1(xew, u

e
w) + (1− w)˜̀2(xew, u

e
w)
)
≥ m2(w)I (4.17)

for the rotated costs ˜̀
i from (2.5) and

∇2
(x,u)

(
λ̃Twf(xew, u

e
w)
)
≤ m1(w)I (4.18)

for all w ∈ [0, 1], where

λ̃w = νw − w∇xλ1(xew)− (1− w)∇xλ2(xew) ∈ Rn (4.19)

and νw is the Lagrange multiplier for problem (4.16).

Then, the system (2.1) is locally strictly dissipative for the cost function `w for all

w ∈ [0, 1] with storage function

λw(x) = wλ1(x) + (1− w)λ2(x) + λ̃Twx. (4.20)

Proof. Define

˜̀
w(x, u) := `w(x, u)− `w(xew, u

e
w) + λw(x)− λw(f(x, u)) (4.21)

with λw from (4.20). In the following, we show that (xew, u
e
w) is a strict local minimizer

of ˜̀w, implying local strict dissipativity of the system for the cost function `w. This

will be done by showing that ∇(x,u)
˜̀
w(xew, u

e
w) = 0 and ∇2

(x,u)
˜̀
w(xew, u

e
w) > 0 for

which we adapt the proof of [72, Theorem 5].

First, we define h(x, u) = x− f(x, u) and Λw(x, u) = λw(x)−λw(f(x, u)) and note

that

∇(x,u)Λw(xew, u
e
w) = ∇(x,u)λw(xew)−∇(x,u)λw(f(xew, u

e
w))

= [I 0]T∇xλw(xew)−∇(x,u)f(xew, u
e
w)∇xλw(f(xew, u

e
w))

=
(
[I 0]T −∇(x,u)f(x, u)

)
∇xλw(xew)

= ∇(x,u)h(xew, u
e
w)∇xλw(xew),

where the second equation follows from the chain rule and the third follows from

the equilibrium property of (xew, u
e
w). Further, by using the definitions of λw and λ̃w
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4 Multiobjective Strict Dissipativity via the Weighted Sum Approach

in equations (4.20) and (4.19), respectively, we obtain the derivative of the storage

function

∇xλw(xew) = ∇x(wλ1(xew) + (1− w)λ2(xew) + λ̃Twx
e
w)

= w∇xλ1(xew) + (1− w)∇xλ2(xew) + λ̃w

= w∇xλ1(xew) + (1− w)∇xλ2(xew) + νw − w∇xλ1(xew)− (1− w)∇xλ2(xew)

= νw.

Using the two equations above we get that

∇(x,u)
˜̀
w(xew, u

e
w) = ∇(x,u)`w(xew, u

e
w) +∇(x,u)Λµ(xew, u

e
w)

= ∇(x,u)`w(xew, u
e
w) +∇(x,u)h(xew, u

e
w)T∇xλw(xew)

= ∇(x,u)`w(xew, u
e
w) +∇(x,u)h(xew, u

e
w)T νw

= 0.

Here, the last equality follows since it corresponds to the KKT conditions of prob-

lem (4.16), similar to the proof of Proposition 2.15.

Furthermore, we obtain by rearranging

∇2
(x,u)

˜̀
w(xew, u

e
w) = ∇2

(x,u)`w(xew, u
e
w) +∇2

(x,u)Λw(xew, u
e
w)

= ∇2
(x,u)`w(xew, u

e
w) +∇2

(x,u)

(
wλ1(xew) + (1− w)λ2(xew) + λ̃Twx

e
w

)

−∇2
(x,u)

(
wλ1(f(xew, u

e
w)) + (1− w)λ2(f(xew, u

e
w)) + λ̃Twf(xew, u

e
w)
)

= ∇2
(x,u)

(
w˜̀1(xew, u

e
w) + (1− w)˜̀2(xew, u

e
w)
)

+∇2
(x,u)λ̃

T
wx

e
w −∇2

(x,u)λ̃
T
wf(xew, u

e
w)

= ∇2
(x,u)

(
w˜̀1(xew, u

e
w) + (1− w)˜̀2(xew, u

e
w)
)
−∇2

(x,u)λ̃
T
wf(xew, u

e
w)

≥ (m2(w)−m1(w))I > 0,

which finishes the proof of the theorem.

Remark 4.14

The assumption (xew, u
e
w) ∈ intY in Theorem 4.13 can be omitted if we assume that

the second order sufficiency conditions hold for the steady-state problem (4.16). Then,

we have to use similar assumptions as in Theorem 4.9 and the corresponding proof

of [72, Theorem 5].

Remark 4.15

The assertion and proof of Theorem 4.13 can be extended to s cost functions `1, . . . , `s
if all convex combinations with two functions (w ˜̀

1 +(1−w)˜̀
2, w∇xλ1 +(1−w)∇xλ2,

wλ1+(1−w)λ2, etc.) in the assumptions and in the proof are replaced by the respective

convex combinations of s cost functions
∑

iwi
˜̀
i,
∑

iwi∇xλi, etc.
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Remark 4.16

It follows from Proposition 2.15 that if a storage function of the form “ convex com-

bination of λ1 and λ2 plus linear correction” exists for a given value of w, then the

correction term must be of the form (4.19). However, as the following example shows,

this construction may fail to produce a valid storage function.

Example 4.17

Consider the nonlinear system

x+ = f(x, u) = 2x− x2 + u+ u2 + u3

with stage costs

`1(x, u) = 2x2 + 0.0001u2 and `2(x, u) = 2x2 + 0.9999u2 + 2u.

Strict dissipativity holds locally for both stage costs with storage function and optimal

equilibrium

λ1(x) = 0, (xe1, u
e
1) = (0, 0)

for `1 and

λ2(x) = 2.198609x, (xe2, u
e
2) = (0.2618259,−0.2357480)

for `2 (all values are rounded to 7 digits). For `1, this is obvious since the function is

strictly convex. Hence, strict dissipativity holds even globally, while for `2, we check

that the rotated cost ˜̀
2 has a positive definite second derivative in (xe2, u

e
2).

We compute the Lagrange multiplier of the steady-state problem (4.16) for w = 0.5

as ν0.5 = 1.111667. The corresponding optimal equilibrium is

(xe0.5, u
e
0.5) = (0.1786289,−0.1709482).

This means that if a linear storage function λ0.5 exists, then it must be of the form

λ0.5 = 1.111667x, which is the storage function constructed in equation (4.20) given

that λ1 and λ2 are linear. Further, we compute the second derivative

∂2

∂u2
˜̀
0.5(xe0.5, u

e
0.5) =

∂2

∂u2

(
2(xe0.5)2 + 0.5(ue0.5)2 + ue0.5 + ν0.5x− ν0.5f(xe0.5, u

e
0.5)
)

= −0.306538,

implying that there is no m2(w) > 0 such that condition (4.17) can hold. In partic-

ular, ˜̀0.5 is not convex in (xe0.5, u
e
0.5), which would be a necessary condition for local

strict dissipativity.
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We now proceed to a non-local version of Theorem 4.13, which is achieved by

extending the convexity assumptions from Theorem 4.13 to all (x, u) ∈ Y.

Theorem 4.18

Assume that the system (2.1) is strictly dissipative for both stage costs `1 and `2.

Suppose that `1 and `2 as well as the corresponding storage functions λ1 and λ2

are twice continuously differentiable. Furthermore, assume that for each w ∈ [0, 1]

the optimal equilibrium satisfies (xew, u
e
w) ∈ intY and that there exist m2(x, u, w) >

m1(x, u, w) ≥ 0 such that

∇2
(x,u)

(
w˜̀1(x, u) + (1− w)˜̀2(x, u)

)
≥ m2(x, u, w)I (4.22)

and

∇2
(x,u)

(
λ̃Twf(x, u)

)
≤ m1(x, u, w)I (4.23)

for all (x, u) ∈ Y, w ∈ [0, 1], where

λ̃w = νw − w∇xλ1(xew)− (1− w)∇xλ2(xew) ∈ Rn (4.24)

and νw is the Lagrange multiplier for the steady-state problem(4.16).

Then, the system (2.1) is strictly dissipative for the stage cost `w for all w ∈ [0, 1]

with storage function

λw(x) = wλ1(x) + (1− w)λ2(x) + λ̃Twx. (4.25)

Proof. To show that (xew, u
e
w) is a minimizer, we proceed exactly as in the proof of

Theorem 4.13. In order to conclude that (xew, u
e
w) is the strict minimizer, we show

that the function ˜̀w is strictly convex by considering the second derivative for all

(x, u) ∈ Y. With the same computation as in the proof of Theorem 4.13 for the

second derivative but now for all (x, u) instead of only for (xew, u
e
w), we obtain

∇2
(x,u)

˜̀
w(x, u) = ∇2

(x,u)

(
w˜̀1(x, u) + (1− w)˜̀2(x, u)

)
−∇2

(x,u)λ̃
T
wf(x, u)

≥ (m2(x, u, w)−m1(x, u, w))I > 0,

for all (x, u) ∈ Y and w ∈ [0, 1]. Hence, ˜̀w is strictly convex and continuous and

together with ˜̀w(xew, u
e
w) = 0 positive definite. Thus, we can conclude, that ˜̀w is

radially unbounded, see [8], and therefore, see [63, Lemma 4.3], that there exists a

K∞-function α such that ˜̀w(x, u) ≥ α(‖x− xew‖).

We note that Remark 4.15 applies accordingly to Theorem 4.18.
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Remark 4.19

We can relax inequality (4.22) by assuming that both ˜̀1 and ˜̀2 are lower bounded

by functions ¯̀
1 and ¯̀

2 such that ˜̀i(xew, uew) = ¯̀
i(x

e
w, u

e
w) for all w ∈ [0, 1]. Then,

inequality (4.22) only needs to hold with ¯̀
i in place of ˜̀i, i.e., we require that

∇(x,u)
¯̀
w(xew, u

e
w) = ∇(x,u)

˜̀
w(xew, u

e
w) = 0 and ∇2

(x,u)
¯̀(xew, u

e
w) > 0. Together with

the fact that ¯̀
w is a lower bound for ˜̀w and ˜̀i(xew, uew) = ¯̀

i(x
e
w, u

e
w) for all w ∈ [0, 1],

this yields the desired result.

Next, we illustrate Theorem 4.18 with an example inspired by an economic example

originally introduced in [14] and adapted to our setting.

Example 4.20

Consider the nonlinear system

x+ = x3 − 2x2 + u,

and the two stage costs

`1(x, u) = − ln(5x0.34 + u),

`2(x, u) = − ln(3x0.2 + u).

Further, we impose state and control constraint sets X = [0, 10] and U = [0.1, 5]. For

each stage cost `i, we determine the optimal equilibrium each given by (rounded to 7

digits)

(xe1, u
e
1) = (1.7482008, 2.5177510) and (xe2, u

e
2) = (1.6224804, 2.6162791).

The stage costs `i are strictly dissipative at their corresponding equilibrium (xei , u
e
i )

with storage functions

λ1(x) = −0.1167745x and λ2(x) = −0.1688854x

and rotated stage costs

˜̀
1(x, u) = − ln(5x0.34 + u)− 2.14751051− 0.1167745x+ 0.1167745(x3 − 2x2 + u),

˜̀
2(x, u) = − ln(3x0.2 + u)− 1.7785341− 0.1688854x+ 0.1688854(x3 − 2x2 + u).

It is easy to see that all occurring functions are twice continuously differentiable

and, thus, we can check numerically the first conditions of Theorem 4.18. For each

w ∈ [0, 1] the optimal equilibrium lies in the interior of Y, i.e. (xew, u
e
w) ∈ int (X×U).

Moreover, we can set m2(x, u, w) = 0.0013 by using the minimum of all calculated
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4 Multiobjective Strict Dissipativity via the Weighted Sum Approach

second derivatives of w˜̀1 + (1−w)˜̀2 with w ∈ [0, 1]. Next, we have to check the con-

dition on the correction term. To this end, we calculate the Lagrange multiplier of

the steady-state problem (4.16) as well as the first derivatives of the storage functions

∇xλ1(xew) and ∇xλ2(xew). Doing so, we can estimate m1(x, u, w) = 0.0005. There-

fore, we can conclude, that w`1 + (1−w)`2 is strictly dissipative at the corresponding

equilibrium (xew, u
e
w) for all w ∈ [0, 1] with storage function

λw(x) = wλ1(x) + (1− w)λ2(x) + λ̃Twx,

with λ̃w ∈ (−0.0002, 0).

Finally, we note that the previous results are not restricted to the weighted sum

approach.

Remark 4.21

The requirement
∑

iwi = 1 was not necessary for the validity of the previous results.

Assuming the weights to satisfy wi ≥ 0 for all i and wi > 0 for at least one i would

suffice. Nevertheless, since this thesis is motivated by multiobjective problems that

the weighted sum approach can solve, all our results were formulated with convex

combinations, i.e., assuming that
∑

iwi = 1.

Indeed, ensuring that all stage costs are strictly dissipative in application examples

may be challenging. That is why we impose a multiobjective model predictive control

scheme assuming the presence of terminal conditions in the next chapter.
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In many practical applications, it is desirable to consider several cost criteria in-

stead of a single criterion, as highlighted in [61, 68, 85]. For example, in chemical

process control, it may be desirable to stabilize a chemical process at a particular

set point while simultaneously maximizing the yield. Another application example

is autonomous driving: Besides following a given path, ensuring driving comfort or

maintaining a certain driving speed are also of interest. As these several criteria might

be conflicting, addressing multiobjective optimal control problems is a natural idea.

While we have considered the problem’s properties and especially discussed strict

dissipativity in the previous chapters, we now focus on examining MPC algorithms

for solving such problems in this chapter.

We combine the single-objective “standard” MPC algorithm, see [46], and multi-

objective optimization, see [23, 24, 71]. Whereas other approaches, see for instance

[36,82], reduce the multiobjective problem to a single-objective optimal control prob-

lem, we solve the whole multiobjective optimization problem in each MPC step and

choose then an efficient solution. This selection will give us an additional degree of

freedom, which we discuss in Section 6.1. Building upon and extending the results

from [54, 88, 96], we relax the assumptions in this chapter. Unlike in Chapter 4 we

now require strict dissipativity only for one stage cost. This relaxation broadens

the problem class, as proving strict dissipativity for all cost criteria in practice can

be challenging. Based on these relaxed assumptions, we introduce a multiobjective

model predictive control scheme with an additional constraint on the strict dissipa-

tive cost function. We show a performance bound for this objective function and

prove the asymptotic stability of the closed–loop. Requiring in the algorithm the ad-

ditional constraint for all objectives leads to performance estimates for all objective

functions. Finally, we illustrate our theoretical findings with numerical simulations.

To this end, we use the introductory example of a chemical reactor.
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5.1 Multiobjective Model Predictive Control Algorithms

We begin with analyzing multiobjective model predictive control schemes by intro-

ducing the problem class of multiobjective optimal control problems (MO OCPs)

with terminal conditions. To guarantee feasibility and the trajectory convergence to

a desired equilibrium, we impose Assumption 5.1, which requires strict dissipativity

and a compatibility condition of at least one cost criterion. Further, we introduce two

multiobjective model predictive control algorithms with Algorithm 2 being a relaxed

version of Algorithm 3.

5.1.1 Problem Class

As in Section 2.2, we consider multiobjective optimal control problems for a hori-

zon N ∈ N, N ≥ 2. Now, we define the cost functional JN1 : X× UN → R by

JN1 (x0,u) :=
N−1∑

k=0

`1(xu(k, x0), u(k)) + F1(xu(N, x0)), (5.1)

including a continuous terminal cost F1 : X0 → R≥0, with X0 the terminal constraint

set. For i ∈ {2, . . . , s}, s ≥ 2, we define continuous stage costs `i : X × U → R and

the corresponding cost functionals JNi : X× UN → R by

JNi (x0,u) :=

N−1∑

k=0

`i(xu(k, x0), u(k)) (5.2)

for N ∈ N with N ≥ 2. We note that we do not require any terminal costs for

i ∈ {2, . . . , s}, which allows for significantly more problems compared to the design

in [54,88].

Since we aim to minimize all cost functionals JN1 , . . . , J
N
s at the same time for

a given initial value x0 with respect to u and along a solution of system (2.1), we

consider multiobjective optimal control problems with terminal conditions

min
u∈UN (x0)

JN (x0,u) :=
(
JN1 (x0,u), . . . , JNs (x0,u)

)

s.t. xu(k + 1, x0) = f(xu(k, x0), u(k)), k = 0, . . . , N − 1,

xu(0, x0) = x0,

xu(N, x0) ∈ X0.

(MO OCPt)

In the following, we only consider multiobjective optimal control problems with ter-

minal conditions of the form (MO OCPt) with s ≥ 2 and N ≥ 2. Unless otherwise

mentioned, the abbreviation multiobjective optimal control problem (MO OCPt)
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always includes the terminal conditions. The terminal constraint xu(N, x0) ∈ X0 can

generally not be satisfied for all initial values x0 ∈ X, such that we recall the defini-

tion of the feasible set XN from (2.2) noting that UN (x0) 6= ∅ if and only if x0 ∈ XN .

Thus, we need to ensure that xu(N, x0) ∈ X0 and that JN1 (x0,u) is well-defined for

x0 ∈ XN and u ∈ UN (x0). Throughout this chapter, we use the following assump-

tions below to ensure feasibility and the convergence of the trajectory. Especially,

item (iv) of the assumption ensures X0 ⊆ XN for all N ≥ 2 and thus XN 6= ∅. We

show within the theoretical results in the subsequent sections why we need the termi-

nal conditions to guarantee the convergence of the trajectory towards the considered

equilibrium and, thus, the performance results.

Assumption 5.1

Consider a multiobjective optimal control problem (MO OCPt) and assume that

(i) there exists an equilibrium (xe, ue) ∈ X× U such that f(xe, ue) = xe.

(ii) the system (2.1) is strictly (x, u)-dissipative for the stage cost `1 at the equi-

librium (xe, ue), i.e., there is a storage function λ1 : X → R bounded from

below with λ1(xe) = 0 and a function α`,1 ∈ K∞ such that ∀(x, u) ∈ X× U the

inequality

`1(x, u)− `1(xe, ue) + λ1(x)− λ1(f(x, u)) ≥ α`,1(‖x− xe, u− ue‖) (5.3)

holds.

(iii) all stage costs `i, i = 1, . . . , s, are continuous.

(iv) xe ∈ X0 and there exists a local feedback κ : X0 → U satisfying

a) f(x, κ(x)) ∈ X0 for all x ∈ X0.

b) ∀x ∈ X0: F1(f(x, κ(x))) + `1(x, κ(x)) ≤ F1(x) + `1(xe, ue).

(v) the sets JNE (x0) are externally stable (see Definition 2.30) for JN (x0) for each

x0 ∈ XN , with XN from (2.2).

We only consider the equilibrium (xe, ue) and assume that the optimal control

problem is strictly dissipative for the first stage cost `1 at this equilibrium (xe, ue).

We note that item (iv b) is usually referred to as compatibility of the terminal cost F1.

Assumption 5.1 states that we require strict dissipativity for the multiobjective opti-

mal control problem only for the first stage cost. In contrast, for the remaining s− 1

stage costs, we do not impose any conditions nor the existence of terminal costs. Sta-

bilizing or positive definite stage costs are a special case of stage costs for which strict

dissipativity holds with λ ≡ 0. We introduce two multiobjective model predictive

control algorithms for which, under Assumption 5.1 above, we provide performance

estimates and show stability properties of the closed-loop.
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5.1.2 Two Multiobjective Model Predictive Control Algorithms

This section introduces two multiobjective model predictive control (MO MPC)

schemes that rely on solving multiobjective optimal control problems of the

type (MO OCPt). In the multiobjective case, however, there is more than one effi-

cient solution, see Section 2.2, and therefore we have to adapt the single-objective or

“standard” MPC algorithm, e.g., see [46], to our setting. To this end, we build on

the algorithm and the results in [54, 88], which we recall at the appropriate places

for completeness. However, in contrast to these references by Assumption 5.1, we

can allow for more general problems of the type (MO OCPt) than in [54] since we

get rid of the restrictive assumption of the existence of stabilizing stage and terminal

costs in all objective functions. In particular, the existence of terminal costs that are

jointly compatible with all the stage costs is no longer required.

Algorithm 2 MO MPC with terminal conditions and constraints on J1

Input: MPC horizon N , number of time steps K ∈ N ∪ {∞}, initial value x0 ∈ XN
and κ from Assumption 5.1 (iv).

for k = 0, . . . ,K:

(0) If k = 0, set x(0) = x0 and choose an efficient solution u?x(0) ∈ UNE (x(0))

of (MO OCPt). Go to (2).

(1) If k ≥ 1, choose an efficient solution u?x(k) of (MO OCPt) with x0 = x(k) so

that the inequality

JN1 (x(k),u?x(k)) ≤ JN1 (x(k),ux(k)) (5.4)

holds.

(2) For x := xu?
x(k)

(N, x(k)) set

ux(k+1) :=
(
u?x(k)(1), . . . , u?x(k)(N − 1), κ(x)

)
.

(3) Apply the feedback µN (k, x(k)) := u?x(k)(0), i.e., evaluate x(k + 1) =

f(x(k), µN (k, x(k))), set k = k + 1 and go to (1).

Output: MPC closed-loop trajectory xµ(k, x0) := x(k), k ∈ {0, . . . ,K}.

First, we introduce an algorithm that gives a relaxed variant of Algorithm 2 in [54],

in which the additional constraint on the efficient solution (5.4) is only imposed for

the first cost criterion JN1 , instead of for all cost criteria JNi , i = 1, . . . , s, as in [54].

We denote by u?x(k) ∈ UNE (x(k)) an efficient solution corresponding to the initial
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value x(k). We discuss possibilities to compute the efficient solutions in Section 6.1.

In step (2), the importance of the terminal conditions becomes evident: by using

the local feedback κ as part of the comparison control sequence in step (2), we enforce

the trajectory’s convergence through the first objective function, which also includes

terminal costs.

J1

J2 JN
1

(
x(k),ux(k)

)

Figure 5.1: Visualization of step (1) of Algorithm 2

In Figure 5.1, we have visualized the bound on the efficient solution in inequal-

ity (5.4). The dashed line represents the bound resulting from ux(k), and the red line

is the set of nondominated points of (MO OCPt) satisfying this bound. We like to

stress that we do not constrain the other objectives that may appear in the multi-

objective optimal control problem. Illustratively, we only cut off the nondominated

set in the direction of the first objective, i.e., towards the objective function that has

the strictly dissipative stage cost.

However, to establish performance estimates for all objective functions, we need

the additional constraint on the efficient solution for all objectives. To achieve this,

we draw on Algorithm 2 in [54], which includes these constraints as additional in-

equalities in step (2). We interpret these inequalities as descent conditions in each

objective.
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Algorithm 3 MO MPC with terminal conditions and constraints on J1, . . . , Js

Input: MPC Horizon N , number of time steps K ∈ N ∪ {∞}, initial value x0 ∈ XN
and κ from Assumption 5.1 (iv).

for k = 0, . . . ,K:

(0) If k = 0, set x(0) = x0 and choose an efficient solution u?x(0) ∈ UNE (x(0))

of (MO OCPt). Go to (2).

(1) If k ≥ 1, choose an efficient solution u?x(k) of (MO OCPt) with x0 = x(k) so

that the inequalities

JNi (x(k),u?x(k)) ≤ JNi (x(k),ux(k)), i = 1, . . . , s. (5.5)

hold.

(2) For x := xu?
x(k)

(N, x(k)) set

ux(k+1) :=
(
u?x(k)(1), . . . , u?x(k)(N − 1), κ(x)

)
.

(3) Apply the feedback µN (k, x(k)) := u?x(k)(0), i.e., evaluate x(k + 1) =

f(x(k), µN (k, x(k))), set k = k + 1 and go to (1).

Output: MPC closed-loop trajectory xµ(k, x0) := x(k), k ∈ {0, . . . ,K}.

Figure 5.2 visualizes the bounds of step (1) in Algorithm 3. The dashed lines rep-

resent the bounds (5.5), and the red line is the set of nondominated points satisfying

these inequalities. Thus, all cost criteria JNi are now bounded by the comparison

control sequence.

J1

J2 JN
1

(
x(k),ux(k)

)

JN
2

(
x(k),ux(k)

)

Figure 5.2: Visualization of step (1) of Algorithm 3
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We remark that for the subsequent theoretical results, it is not essential which

nondominated point on the red part of the nondominated set in Figure 5.1 or Fig-

ure 5.2, depending on the algorithm, we choose in step (1). The performance bounds

hold for any feasible choice of u?x(k) and only rely on the choice of u?x(0) in step (0).

However, this does not mean the choices for k ≥ 1 do not affect the MPC closed-loop

solutions. We thus investigate the development of the nondominated sets and the

effect of different selection rules for the efficient point via numerical simulations in

Section 6.1. Before we do this, we show in the subsequent sections that this MO

MPC algorithm has certain desirable theoretical properties: feasibility, convergence,

and performance bounds.

5.2 Performance and Stability Results

In the case of multiobjective model predictive control, we are interested in system

theoretic properties, such as feasibility and stability, just as in the single-objective

case. We can ensure feasibility and trajectory convergence due to Assumption 5.1.

Further, we give conditions that ensure the asymptotic stability of the closed-loop

solution. Because of the optimization-based nature of the multiobjective model pre-

dictive control method, we also state performance estimates for all objectives. More

precisely, we can obtain averaged and non-averaged performance estimates for all

considered objective functions by assuming strict dissipativity and the existence of

a compatible terminal cost for one of the competing objective functions only. In

particular, we show all the desirable properties of an MPC algorithm in this section.

5.2.1 Performance Results for the First Cost Function

We show the feasibility of Algorithm 2 and the convergence of the closed-loop tra-

jectory. By imposing additional conditions on the first cost criterion JN1 , we can

give performance bounds of the feedback µN defined in Algorithm 2. We use the

techniques and results from [54, 88] to accomplish this. To this end, we first show

a performance estimate for the so-called rotated cost function J̃N1 and conclude the

trajectory convergence as well as the main performance theorem of this section.

We recall the standard definitions of rotated stage costs, rotated terminal costs,

and rotated functionals for using these as auxiliary costs.

Definition 5.2 (Rotated costs)

For x ∈ X and u ∈ U we define the left side of inequality (5.3) as the rotated stage

cost
˜̀
1(x, u) := `1(x, u)− `1(xe, ue) + λ1(x)− λ1(f(x, u)) (5.6)
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with equilibrium xe and storage cost λ1 from Assumption 5.1, and rotated terminal

cost

F̃1(x) := F1(x) + λ1(x). (5.7)

The corresponding cost functional is given by

J̃N1 (x0,u) :=
N−1∑

k=0

˜̀
1(xu(k, x0), u(k)) + F̃1(xu(N, x0)). (5.8)

We remark that under Assumption 5.1, for all x ∈ X, u ∈ U the rotated stage

cost ˜̀1 is bounded from below by α`,1 from Assumption 5.1(ii) and, thus, the rotated

stage costs are positive definite, i.e., ˜̀1(x, u) ≥ 0.

Next, we use the above definitions to derive relations between rotated and original

costs. For the equilibrium (xe, ue) the equalities ˜̀1(xe, ue) = 0 and F̃1(xe) = 0 hold.

Further, for x0 ∈ XN and all admissible control sequences u ∈ UN (x0) the relation

J̃N1 (x0,u) =
N−1∑

k=0

˜̀
1(xu(k, x0), u(k)) + F̃1(xu(N, x0))

=

N−1∑

k=0

`1(xu(k, x0), u(k))− `1(xe, ue) + λ1xu(k, x0)− λ1(xu(k + 1, x0))

+F1(xu(N, x0))− λ1(xu(N, x0))

=
N−1∑

k=0

`1(xu(k, x0), u(k))− `1(xe, ue) + F1(xu(N, x0)) + λ1(x0)

= JN1 (x0,u)−N`1(xe, ue) + λ1(x0) (5.9)

holds. Moreover, we have that

F̃1(f(x, κ(x))) = F1(f(x, κ(x))) + λ1(f(x, κ(x)))

≤ F1(x) + `1(xe, ue)− `1(x, κ(x)) + λ1(f(x, κ(x)))

= F1(x) + λ1(x)−
(
`1(x, κ(x))− `1(xe, ue) + λ1(x)− λ1(f(x, κ(x)))

)

and, thus,

F̃1(f(x, κ(x))) ≤ F̃1(x)− ˜̀1(x, κ(x)) ≤ F̃1(x)− α`,1(‖x− xe‖) (5.10)

holds for all x ∈ XN and κ from Assumption 5.1 (iv).

Again, we refer to [88], especially Section 5.1.2, where similar results and proofs are

provided. The following lemma relates the cost functions on horizon N and N − 1.
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Lemma 5.3

For N ∈ N≥2, x0 ∈ XN , k = 0, . . . , N − 1, and u? ∈ UNE (x0) the relation

`1(xu(k, x0), u?x(k)(0)) = JN1 (xu?(k, x0),u?)− JN−1
1 (xu?(k + 1, x0),u?(·+ 1)) (5.11)

holds, where we use the notation u?(·+ 1) := (u?(1), u?(2), . . . , u?(N − 1)).

Proof. Let N ∈ N≥2, x0 ∈ XN , u? ∈ UNE (x0), and k = 0, . . . , N − 1. Then, the

relation

JN1 (xu?(k, x0),u?)

=
N−1∑

j=0

`1(xu?(k + j, x0), u?x(k)(j)) + F1(xu?(N, x0))

= `1(xu?(k, x0), u?x(k)(0)) +

N−1∑

j=1

`1(xu?(k + j, x0), u?x(k)(j)) + F1(xu?(k +N, x0))

= `1(xu?(k, x0), u?x(k)(0)) +
N−2∑

j=0

`1(xu?(k + 1 + j, x0), u?x(k)(j + 1))

+ F1(xu?(k +N, x0))

= `1(xu?(k, x0), u?x(k)(0)) + JN−1
1 (xu?(k + 1, x0),u?(·+ 1))

holds by a shifting index argument.

Using the definitions and relations above, we can state the following performance

estimate for the rotated stage cost ˜̀1, which we need to conclude the convergence of

the closed-loop trajectory.

Lemma 5.4 (Non-averaged rotated performance for J̃1)

Consider a multiobjective optimal control problem (MO OCPt), let Assumption 5.1

hold, and let x0 ∈ XN .

Then, the inequality

J̃∞1 (x0, µ
N ) := lim

K→∞

K−1∑

k=0

˜̀
1(xµ(k, x0), µN (k, xµ(k, x0))) ≤ J̃N1 (x0,u

?
x0)

holds with µN the MPC feedback defined in Algorithm 2.

Proof. The existence of the efficient solutions in steps (0) and (1) is concluded from

Assumption 5.1 (v) – the external stability of JNE (x). Feasibility of ux(k+1,x0) in (2)
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follows from Assumption 5.1 (iv). Recursive feasibility of XN , see Theorem 2.1, is an

immediate consequence.

Further, for each K ∈ N it holds, with u?x(k) denoting the efficient control sequence

from Algorithm 2,

K−1∑

k=0

˜̀
1(xµ(k, x0), µN (k, xµ(k, x0)))

=
K−1∑

k=0

`1(xµ(k, x0), µN (k, xµ(k, x0)))− `1(xe, ue) + λ1(xµ(k, x0))− λ1(xµ(k + 1, x0))

=

K−1∑

k=0

(
JN1 (xu?

x(k)
(k, x0),u?x(k))− JN−1

1 (xu?
x(k)

(k + 1, x0),u?x(k)(·+ 1))
)

−K`1(xe, ue) + λ1(x0)− λ1(xµ(K,x0)).

The first equality follows from the definition of ˜̀1, and the second equality holds with

Lemma 5.3 and the definition of the feedback µN . Further, because of step (1) in

Algorithm 2 and the strict dissipativity of `1 we can estimate

K−1∑

k=0

(
JN1 (xu?

x(k)
(k, x0),u?x(k))− JN−1

1 (xu?
x(k)

(k + 1, x0),u?x(k)(·+ 1))
)

−K`1(xe, ue) + λ1(x0)− λ1(xµ(K,x0))

≤
K−1∑

k=0

(
JN1 (xu?

x(k)
(k, x0),u?x(k))− JN1 (xux(k)(k + 1, x0),ux(k+1,x0)) + `1(xe, ue)

)

−K`1(xe, ue) + λ1(x0)− λ1(xµ(K,x0))

≤ JN1 (x0,u
?
x0)− JN1 (xux(K)

(K,x0),ux(K,x0)) + λ1(x0)− λ1(x(K,x0))

= J̃N1 (x0,u
?
x0)− J̃N1 (xux(K)

(K,x0),ux(K,x0))

≤ J̃N1 (x0,u
?
x0).

Finally, letting K tend to infinity and using that ˜̀1(x, u) ≥ 0, for all x ∈ X and u ∈ U
yields the statement.

From the lemma above, we can directly conclude the convergence of the closed-

loop trajectory to the considered equilibrium, which is also the key ingredient for our

following analysis. Corollary 5.5 below is the main auxiliary result for showing our

performance estimates.
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Corollary 5.5 (Trajectory convergence)

Consider a multiobjective optimal control problem (MO OCPt), let Assumption 5.1

hold, and let x0 ∈ XN .

Then, the closed-loop trajectory x(·) = xµ(·, x0) driven by the feedback µN from

Algorithm 2 converges to the equilibrium xe and the sequence ˜̀1(x(k), µN (k, x(k)))

converges to 0 as k →∞.

Proof. We follow the proof of Corollary 4.9 in [88]:

From Lemma 5.4 it follows that the sum
∑∞

k=0
˜̀
1(x(k), µN (k, x(k))) converges and,

thus, the sequence satisfies ˜̀1(x(k), µN (k, x(k))) → 0 as k → ∞. Hence, since the

optimal control problem with stage cost ˜̀1 is strictly dissipative and α`,1 ∈ K∞, we

get

0 = lim
k→∞

α`,1(‖x(k)− xe‖) = α`,1

(
lim
k→∞

‖x(k)− xe‖
)
,

which is equivalent to limk→∞ ‖x(k)− xe‖ = 0.

We now transfer the estimates for J̃∞1 to J∞1 . For this and for the subsequent

stability analysis in Section 5.2.3, we need an additional continuity assumption.

Assumption 5.6

There exist γF1 ∈ K∞ and γλ1 ∈ K∞ such that the following holds.

(i) For all x ∈ X0 it holds that

|F1(x)− F1(xe)| ≤ γF1(‖x− xe‖),

and it yields that F1(xe) = 0.

(ii) For all x ∈ X it holds that

|λ1(x)− λ1(xe)| ≤ γλ1(‖x− xe‖)

with λ1 from Assumption 5.1.

Using part (ii) of this assumption and the results above, we can show an infinite

horizon performance result on J1 similar to the one in [54,88].

Theorem 5.7 (Performance estimate for J1)

Consider the multiobjective optimal control problem (MO OCPt). Let Assump-

tions 5.1 and 5.6 (ii) hold and assume `1(xe, ue) = 0.

Then, the MPC feedback µN : N0×X→ U defined in Algorithm 2 renders the set XN
forward invariant and has the infinite-horizon closed-loop performance

J∞1 (x0, µ
N ) :=

∞∑

k=0

`1(xµ(k, x0), µN (k, xµ(k, x0))) ≤ JN1 (x0,u
?
x0) (5.12)
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in which u?x0 denotes the efficient solution of step (0) in Algorithm 2.

Proof. As in the proof of Lemma 5.4, the existence of the efficient solutions in

step (0) and (1) in Algorithm 2 is, again, concluded from the external stability of

JNE (x). Feasibility of ux(k+1,x0) in step (2) follows from Assumption 5.1 (iv). Forward

invariance of XN is an immediate consequence.

Using the definition of ˜̀1, the estimate from the proof of Lemma 5.4, the rela-

tion (5.9), and `(xe, ue) = 0, it holds that

K−1∑

k=0

`1(xµ(k, x0), µN (k, xµ(k, x0)))

= −λ1(x0) +

K−1∑

k=0

˜̀
1(xµ(k, x0), µN (k, xµ(k, x0))) + λ1(xµ(K,x0))

≤ −λ1(x0) + J̃N1 (x0,u
?
x0) + λ1(xµ(K,x0))

= JN1 (x0,u
?
x0) + λ1(xµ(K,x0)).

Now, we combine Assumption 5.6 (ii) together with the storage function λ1 from

Assumption 5.1 (ii) with λ1(xe) = 0 and the fact that by Corollary 5.5 we have

xµ(K,x0) → xe as K → ∞. This implies that λ1(xµ(K,x0)) → 0 as K → ∞ and

shows the assertion.

We argue in the aforementioned proof that we get feasibility because of the external

stability. We remark that Lemma 2.33 provides conditions such that external stability

can be guaranteed.

Remark 5.8

The proof of Theorem 5.7 also implies the averaged performance estimate

lim sup
K→∞

1

K

K−1∑

k=0

`1(xµ(k, x0), µN (k, xµ(k, x0))) = 0.

In case `1(xe, ue) 6= 0, this inequality holds for the shifted cost ˆ̀
1(x, u) = `1(x, u) −

`1(xe, ue) and, thus, we obtain the averaged performance estimate

lim sup
K→∞

1

K

K−1∑

k=0

`1(xµ(k, x0), µN (k, xµ(k, x0)))

= lim sup
K→∞

1

K

K−1∑

k=0

ˆ̀
1(xµ(k, x0), µN (k, xµ(k, x0))) + `1(xe, ue)

≤ `1(xe, ue).
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5.2.2 Averaged Performance Results for JNi

Besides the performance of J1 we are also interested in performance estimates for Ji,

i ∈ {2, . . . , s}. We still do not assume that the system (2.1) is strictly dissipative for

the stage costs `i, i ∈ {2, . . . , s}. Hence, we only use the continuity and the closed-

loop trajectory convergence from Corollary 5.5 to derive an averaged performance

estimate. Before imposing this estimate, we establish a relation between the first

stage cost `1, and the other costs `i by giving a bound on the stage cost `i employing

the first rotated stage cost ˜̀1 in the next lemma.

Lemma 5.9 (Bound on `i)

For each i = 2, . . . , s there is ωi ∈ K∞ such that |`i(x, u)− `i(xe, ue)| ≤ ωi(˜̀1(x, u)).

Proof. Since `i is continuous, there is ω̃i ∈ K∞ such that

|`i(x, u)− `i(xe, ue)| ≤ ω̃i(‖x− xe, u− ue‖).

Since ˜̀1(x, u) ≥ α`,1(‖x− xe, u− ue‖), the assertion follows with ωi = ω̃i ◦ α−1
`,1 .

By means of Lemma 5.9 and Corollary 5.5 we can show an averaged performance

estimate for the objectives Ji, i ∈ {2, . . . , s}.

Theorem 5.10 (Averaged performance estimate for Ji)

Consider the multiobjective optimal control problem (MO OCPt). Let Assump-

tions 5.1 and 5.6 hold.

Then, the MPC-feedback µN : N0 × X → U defined in Algorithm 2 has the infinite-

horizon averaged closed-loop performance

J̄∞i (x0, µ
N ) := lim sup

K→∞

1

K

K−1∑

k=0

`i(xµ(k, x0), µN (k, xµ(k, x0))) ≤ `i(xe, ue)

for all objectives i ∈ {2, . . . , s} and x0 ∈ XN .

Proof. The existence of efficient solutions and feasibility is ensured by Lemma 5.4

and Theorem 5.7. Further, from Corollary 5.5 and Lemma 5.9 it follows that there

exists M ∈ N0 such that for all k ≥M the relation

`i(xu?
x(k)

(k, x0),u?x(k)(0)) = `i(x
e, ue) + ε(k), i ∈ {2, . . . , s}

with ε(k)→ 0 as k →∞, holds. Thus, given any arbitrary ε̃ > 0, there exists k̃ ∈ N0,

K̃ ≥M , such that for k ≥ k̃ the error term satisfies ε(k) < ε̃.
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Then, for each fixed, but arbitrary K ∈ N with K > k̃

1

K

K−1∑

k=0

`i(xµ(k, x0), µN (k, xµ(k, x0)))

=
1

K



k̃−1∑

k=0

`i(xu?
x(k)

(k, x0),u?x(k)(0)) +

K−1∑

k=k̃

`i(xu?
x(k)

(k, x0),u?x(k)(0))




≤C
K

+
1

K

K−1∑

k=k̃

`i(x
e, ue) + ε(k)︸︷︷︸

≤ε̃

≤C
K

+

(
1− k̃

K

)
`i(x

e, ue) +

(
1− k̃

K

)
ε̃,

where C :=
∑k̃−1

k=0 `i(xu?x(k)(k, x0),u?x(k)(0)) is independent of K and u?x(k) denotes

the control from Algorithm 2. Letting K →∞, this implies

J̄∞i (x0, µ
N ) ≤ `i(xe, ue) + ε̃

and since ε̃ > 0 was arbitrary, this shows the assertion.

We analyze the closed-loop trajectory behavior before moving on with non-averaged

performance estimates for JNi , i ∈ {2, . . . , s}. In particular, in the next section, we

show that the equilibrium is asymptotically stable. This stability result we will also

need for our performance result.

5.2.3 Stability

In addition to the performance results, control theoretical properties are also of great

interest – especially stability results. Hence, we aim to show that Algorithm 2 has

a stability property. We use the strong strict dissipativity assumption on the first

stage cost `1, results, and calculations from the previous sections to formulate the

main theorem in this section, which adapts the classical stability result from the

single-objective case, see, e.g., Theorem 8.13 in [46].

Theorem 5.11 (Asymptotic Stability)

Consider the multiobjective optimal control problem (MO OCPt), which we assume

to be strictly dissipative for stage cost `1 at the equilibrium (xe, ue). Let Assump-

tions 5.1 (iv) and (v) and Assumptions 5.6 (i) and (ii) be satisfied. Let γJ ∈ K∞,

x0 ∈ XN , and choose the efficient solutions u?x0 in step (0) of Algorithm 2 such that

they satisfy the inequality

JN1 (x0,u
?
x0) ≤ γJ(‖x0 − xe‖) +N`1(xe, ue). (5.13)
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Then, the (optimal) equilibrium xe is asymptotically stable on XN for the MPC closed-

loop trajectory defined in Algorithm 2.

Proof. We follow the proof of the single-objective case [46, Theorem 8.13] and show

that the modified cost functional J̃N1 is a uniform time-varying Lyapunov function for

the closed-loop system for xe (see Definition 2.21). We conclude, using Theorem 2.22,

that the equilibrium xe is asymptotically stable.

Without loss of generality, we may assume `1(xe, ue) = 0 because replacing `1 by

`1 − `1(xe, ue) does not change the closed-loop solutions and thus not the stability.

In order to simplify the notation, we write x instead of x(k, x0) and x+ instead of

x(k + 1, x0) for the states on the MPC closed-loop solution. Then, for the control

sequences defined in Algorithm 2, it holds that

x+ = f(x,u?,Nx (0)), xux+ (N, x+) = f(xux+ (N − 1, x+), κ(xux+ (N − 1, x+)))

and

xux+ (·+1)(j, x
+) = xu?x(j + 1, x) for j = 0, . . . , N − 1.

Moreover, from Lemma 5.3 we observe the relation

J̃N1 (x,u?x)

=
N−2∑

j=0

˜̀
1(xu?x(·+1)(j, x

+),u?x(j + 1)) + ˜̀1(x,u?x(0)) + F1(xux+ (·+1)(N − 1, x+)).

Using these identities and inequality (5.4) it thus follows that

J̃N1 (x+,u?x+) ≤ J̃N1 (x+,ux+)

=

N−1∑

j=0

˜̀
1(xux+ (j, x+),ux+(j)) + F̃1(xux+ (N, x+))

=
N−2∑

j=0

˜̀
1(xu?x(·+1)(j, x

+),u?x(j + 1))

+ ˜̀
1(xu?x(·+1)(N − 1, x+), κ(xu?

x+
(·+1)(N − 1, x+))) + F̃1(xux+ (N, x+))

= J̃N1 (x,u?x)− ˜̀1(x,u?x(0)) + ˜̀1(xu?x(·+1)(N − 1, x+), κ(xu?
x+

(·+1)(N − 1, x+)))

+ F̃1(xux+ (N, x+))− F̃1(xu?
x+

(·+1)(N − 1, x+))

≤ J̃N1 (x,u?x)− ˜̀1(x, u?x(0)).

In the last step, we used inequality (5.10) with x = xu?
x+

(·+1)(N − 1, x+) and

`(xe, ue) = 0. We will now check that V (k, x) := J̃N1 (x,u?x), with u?x denoting
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the control from the k-th step of the MPC algorithm, is a uniform time-varying Lya-

punov function according to Definition 2.21 for f(x, µN (k, x)). To do this, we show

the existence of α1, α2, α3 ∈ K∞, such that the inequalities

(i) α1(‖x0 − xe‖) ≤ J̃N1 (x0,u
?
x0) ≤ α2(‖x0 − xe‖)

(ii) ˜̀1(x, u) ≥ α3(‖x− xe‖)

hold for all x ∈ X and x0 ∈ XN . Condition (ii) is satisfied by our strict dissipativity

assumption with α3 = α`,1. For the inequalities in condition (i), we first need to

establish a lower bound for F̃1. We recall Assumption 5.1 (iv) with local feedback κ

for each x ∈ X0 as well as α`,1 from Assumption 5.1 (ii) is a lower bound on F̃1

F̃1(f(x, κ(x))) ≤ F̃1(x)− ˜̀1(x, κ(x)) ≤ F̃1(x)− α`,1(‖x− xe‖),

see inequality (5.10), which is independent of the choice of the control as long as

the assumption is fulfilled. By induction along the closed-loop solution for the local

feedback κ, we then obtain

F̃1(xκ(K,x)) ≤ F̃1(x)−
K−1∑

k=0

α`,1(‖xκ(k, x)− xe‖).

By Assumptions 5.6 (i) and (ii) and Corollary 5.5 this implies

F̃1(xκ(K,x))→ F̃ (xe) = 0 as K →∞

from which, we can conclude

F̃1(x) ≥ lim
K→∞

K−1∑

k=0

α`,1(‖xκ(k, x)− xe‖) ≥ α`,1(‖x− xe‖) ≥ 0.

From this, the definition of J̃N1 immediately implies

J̃N1 (x0,u
?
x0) ≥ ˜̀1(x0, µ

N ) ≥ α`,1(‖x0 − xe‖)

and thus the inequality for α1 with α1 = α`,1.

Finally, since J̃N1 (xe, ue) = 0 and due to Assumption 5.6 (ii), the (in)equalities (5.13)

and (5.9), and `(xe, ue) = 0 it follows that α2 = γλ1 + γJN1
.

Note that stabilizing stage costs are a special case of strictly dissipative stage costs

with λ ≡ 0. Further, observe that in this case, we obtain λ1 ≡ 0 and `1(xe, ue) = 0,

and thus J̃N1 = JN1 . This implies that the objective function itself is a Lyapunov

function.
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Remark 5.12

(i) It is a priori unclear if inequality (5.13) is fulfillable. We consider near-optimal

trajectories in a multiobjective sense and bound their generated first cost func-

tion by a K∞-function. Further, we consider a terminal cost satisfying Assump-

tion 5.1 (iv). Hence, to guarantee inequality (5.13), we can use the techniques

used, e.g., in [46, Proposition 5.14] or [81, Propositions 2.15 or 2.16] for single-

objective MPC.

(ii) If inequality (5.13) can be satisfied, then it will reduce the degree of freedom in

choosing the efficient point in step (0) of Algorithm 2. In particular, enforc-

ing (5.13) will typically require putting more emphasis on the cost JN1 at the

expense that the performance of JNi for i ∈ {2, . . . , s} may deteriorate.

(iii) Even though condition (5.13) can be very restrictive, this inequality is essential

to establish an upper bound on the time-varying Lyapunov function J̃N1 .

5.2.4 A Non-averaged Performance Result for JNi

In order to derive non-averaged performance estimates for all objectives JNi ,

i ∈ {2, . . . , s}, we now use the stability of the closed-loop trajectory and combine

it with the idea of obtaining performance estimates for single-objective economic

MPC without terminal conditions, see [46]. To this end, we consider the trajec-

tories x driven by the first efficient solution u?x0 . We denote these trajectories by

x?(·) = xu?x0 (·, x0) and name them efficient trajectories.

First, we show that the endpoints of the efficient trajectories are close to the

equilibrium by using the strict dissipativity of the first stage cost `1. In doing this,

we recall that α`,1 from Assumption 5.1 is a lower bound on the rotated terminal

cost F̃1, as shown in the proof of Theorem 5.11.

Lemma 5.13

Let Assumptions 5.1 and 5.6 hold, x0 ∈ XN , and consider efficient trajectories

x?(j) = xu?x0 (j, x0), j = 0, . . . , N , for which there is γJ ∈ K∞ such that

JN−j1 (x?(j),u?x0(j+·))−(N−j)`1(xe, ue) ≤ γJ(‖x?(j)−xe‖) for all j = 0, . . . , N.

(5.14)

Then, there are ρ1, ρ2 ∈ K∞ such that for all N ∈ N the final points on the trajectories

satisfy

‖x?(N)− xe‖ ≤ ρ1(ρ2(‖x0 − xe‖)/N).

89



5 Analysis of Multiobjective Model Predictive Control Schemes

Proof. From inequality (5.14) and the relation between the first objective and the

first rotated objective (5.9) we obtain that

J̃N1 (x?(j),u?x0(j + ·)) ≤ γJ(‖x?(j)− xe‖) + γλ1(‖x?(j)− xe‖) =: ρ2(‖x?(j)− xe‖)

with γλ1 from Assumption 5.6 and λ(xe) = 0. Using this inequality for j = 0 implies

that there exists a time index j0 ∈ {0, . . . , N} such that

{˜̀
1(x?(j0),u?x0(j0)) ≤ ρ2(‖x?(j0)− xe‖)/N, if j0 < N,

F̃1(x?(N)) ≤ ρ2(‖x?(j0)− xe‖)/N, if j0 = N.

If j0 < N , then using the lower bound from the dissipativity α`,1 on ˜̀1 and, again,

from the inequality above it follows that

F̃1(x?(N)) ≤ J̃N−j01 (x?(j0),u?x0(j0 + ·)) ≤ ρ2

(
α−1
`,1 (ρ2(‖x?(j0)− xe‖)/N)

)
.

Since, α`,1 is also a lower bound on F̃1, see equation (5.10), we obtain

‖x?(N)−xe‖ ≤ max{α−1
`,1 (ρ2(‖x?(j0)−xe‖)/N), α−1

`,1 ◦ρ2◦α−1
`,1 (ρ2(‖x?(j0)−xe‖)/N)}.

This implies the assertion with ρ1(r) = max{α−1
`,1 (r), α−1

`,1 ◦ ρ2 ◦ α−1
`,1 (r)}.

Next, to establish a performance estimate on Ji, for all i = 2, . . . , s, we need

the decay condition (5.4) in Algorithm 2 for all i = 1, . . . , s. Hence, we consider

Algorithm 3 for the following performance analysis. We like to stress that we are still

not requiring additional properties of the stage cost `i for i ≥ 2. By exploiting that

the feedback from Assumption 5.1(iv) steers a state x to the equilibrium xe, we can

avoid additional conditions on the stage costs `i for i ≥ 2.

Assumption 5.14

For each i = 2, . . . , s there is γi ∈ K∞ such that

`i(x, κ(x)) ≤ `i(xe, ue) + γi(‖x− xe‖)

holds for all x ∈ X0 and κ from Assumption 5.1(iv).

Finally, we provide performance estimates for all objectives Ji, i ∈ {2, . . . , s}. For

this, we use the previous results and assumptions and adapt the single-objective case

from which we have been inspired. The following estimate is structurally similar to

estimates for the closed-loop performance of single-objective economic MPC without

terminal conditions, see, e.g., [46, Theorem 8.39].
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Theorem 5.15 (Performance estimate for Ji)

Let Assumptions 5.1, 5.6, and 5.14 hold and assume that the efficient solutions gen-

erated by Algorithm 3 with µN satisfy the inequalities (5.14) for some γJ ∈ K∞.

Then, for all i = 2, . . . , s and for any C > 0 there is a function δi ∈ L such that

JKi (x0, µ
N ) ≤ JNi (x0,u

?
x0) + (K −N)`i(x

e, ue) +Kδi(N) (5.15)

for all N,K ∈ N with K ≥ N and all x0 ∈ XN with ‖x0 − xe‖ ≤ C.

Proof. Consider the control sequences u?x(k) and

ux(k+1) = (u?x(k)(1), . . . , u?x(k)(N − 1), κ(x))

from Algorithm 3, where x(k) denotes the closed-loop solution generated by the

algorithm for k ∈ N. Then, Lemma 5.13 and Assumption 5.14 imply

JNi (x(k + 1),ux(k+1))

= JNi (x(k),u?x(k))− `i(x(k), u?x(k)(0)) + `i(x(k +N), κ(x(N)))

≤ JNi (x(k),u?x(k))− `i(x(k), u?x(k)(0)) + `i(x
e, ue) + γi(‖x(N)− xe‖)

≤ JNi (x(k),u?x(k))− `i(x(k), µN (k, x(k))) + `i(x
e, ue) + γi(ρ1(ρ2(C̃)/N)).

Here, we used that the asymptotic stability property of the closed-loop trajectory

from Theorem 5.11 implies that whenever the initial value is close enough to the

equilibrium, it satisfies ‖x0−xe‖ ≤ C, then there is C̃ > 0 such that ‖x(k)−xe‖ ≤ C̃
for all k ∈ N. This inequality together with inequalities (5.5) for i = 2, . . . , s implies

JKi (x0, µ
N ) =

K−1∑

k=0

`i(x(k), µN (k, x(k)))

≤
K−1∑

k=0

(
JNi (x(k),u?x(k))− JNi (x(k + 1),ux(k+1)) + `i(x

e, ue) + γi(ρ1(ρ2(C̃)/N))
)

≤
K−1∑

k=0

(
JNi (x(k),u?x(k))− JNi (x(k + 1),u?x(k+1)) + `i(x

e, ue) + γi(ρ1(ρ2(C̃)/N))
)

= JNi (x0,u
?
x0)− JNi (x(K),u?x(K)) +K`i(x

e, ue) +Kγi(ρ1(ρ2(C̃)/N)).

Now, again, the asymptotic stability and the boundedness of ‖x0 − xe‖ imply the

existence of a function χ ∈ L such that ‖x(k)−xe‖ ≤ χ(k). From this, together with

relation (5.9) and inequality (5.14), we can conclude that J̃N1 (x(k),u?x(k)) ≤ γJ(χ(k))

and the individual (nonnegative) terms of this sum also satisfy

˜̀
1(xu?

x(k)
(j, x(k)),u?x(k)(j)) ≤ γJ(χ(k)) for all j = 0, . . . , N − 1.
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By Lemma 5.9 this yields

`i(xu?
x(k)

(j, x(k)),u?x(k)(j)) ≥ `i(xe, ue)− ωi(γJ(χ(k))),

and we can estimate that

JNi (x(K),u?x(K)) ≥ N`i(xe, ue)−Nωi(γJ(χ(K))) ≥ N`i(xe, ue)−Kωi(γJ(χ(N))),

where we used K ≥ N and the monotonicity of χ ∈ L in the last step. This yields

the assertion with

δi(N) = ρ1(ρ2(C̃)/N) + ωi(γJ(χ(N))).

Again, the upper bounds for all objectives Ji, i ∈ {2, . . . , s}, in inequality (5.15)

mainly depend on the first chosen efficient solution u?x0 . The following remark dis-

cusses why these estimates are useful even though the upper bounds depend on K.

Remark 5.16

The fact that the error term Kδ(N) grows linearly with K might make the esti-

mate useless at first glance. However, unless we are in the exceptional case that

`i(x
e, ue) = 0, the term JNi (x0,u

?
x0) + (K − N)`i(x

e, ue) also grows affine linearly

with K. Hence, for all sufficiently large K, the relative error is proportional to δ(N)

and thus decreases to 0 as N →∞. Hence, in terms of the relative error, the estimate

gives a highly useful estimate.

We can observe the desired behavior in numerical examples, especially in Fig-

ure 5.13. However, finding appropriate L–functions depending on the horizon N is

not easy and obvious, see Example 5.18 and the discussion therein.

5.3 Illustrative Examples

We conclude this chapter with an application example to illustrate the theoretical

results of the previous sections. Therefore, we introduce the example of an isothermal

continuous stirred-tank reactor, see [95,96]. We begin our consideration by introduc-

ing the example with only two cost criteria to explain the results as simply as possible.

Then, we add a third objective to emphasize that our algorithms and theory are not

limited to the bi-objective case. In the remainder of this section, we distinguish be-

tween the efficient solutions chosen in the different steps of Algorithm 2 and 3. We

use the following denominations for the efficient solutions in the algorithms:

• The efficient solution u?x0 chosen in step (0), i.e., in the first step, we call the

first efficient solution.
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• The efficient solutions u?x(k) chosen in step (1), i.e., from time step k = 2

onwards, we name the subsequent efficient solutions.

Further, since the performance estimates only depend on the first efficient solution,

we always choose the subsequent efficient solutions in the same way by using the

global criterion method. This method is also known as the compromise program-

ming approach, see, for instance, [71], to find efficient solutions of the multiobjective

optimization problems in the subsequent iterations as proposed in a multiobjective

MPC context in [95, 96]. More precisely, the subsequent efficient solution u?x(k) is

chosen in each iteration such that

u?x(k) ∈ arg min

{( s∑

i=1

|JNi (x(k),u)− z?i |2
) 1

2
∣∣∣∣u ∈ UN (x0),

JN1 (x(k),u?x(k)) ≤ JN1 (x(k),ux(k))

}
, (5.16)

where

z?i = min
{
JNi (x(k),u)

∣∣ u ∈ UN (x0), JN1 (x(k),u?x(k)) ≤ JN1 (x(k),ux(k))
}
,

for all i = 1, . . . , s, is set as the so-called ideal point of the restricted problem, cf. [96];

i.e., u?x(k) is defined as the pre-image of the nondominated point that has the smallest

Euclidean distance to the ideal point. Whenever applying Algorithm 3 instead of

Algorithm 2, then JN1 (x(k),u?x(k)) ≤ JN1 (x(k),ux(k)) is replaced by JNi (x(k),u?x(k)) ≤
JNi (x(k),ux(k)) for all i = 1, . . . , s in the above optimization problems.

Moreover, here, we only discuss the numerical results in view of the theoretical

results. For implementation details such as used algorithms for solving multiobjective

optimization problems, we refer to Section 6.4.

The following example is based on the examples in [19,95].

Example 5.17 (Reactor Part 1)

We consider a single first-order, irreversible chemical reaction in an isothermal con-

tinuous stirred-tank reactor (CSTR). The material balances and the system data are

provided in [19] and given in discrete time by

cA(k + 1) = cA(k) +
1

2

(
u(k)

V
(cAf − cA(k))− krcA(k)

)
,

cB(k + 1) = cB(k) +
1

2

(
u(k)

V
(cBf − cB(k)) + krcB(k)

)
,

c(0) = c0 = (0.4, 0.2),
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where cA(k) ≥ 0 and cB(k) ≥ 0, k ∈ N, describe the molar concentrations, of A

and B respectively, the control 0 ≤ u(k) ≤ 20(L/min) is the flow through the reactor

at time k, and kr = 1.2 is the rate constant. The feed concentrations of A and B

are given by cAf = 1 mol/L, and cBf = 0 mol/L respectively. The volume of the

reactor is given by V = 10 L. Solving the equation (ceA, c
e
B) = f(ceA, c

e
B, u

e) delivers

the equilibrium under consideration (ceA, c
e
B, u

e) = (1
2 ,

1
2 , 12). Further, the stage costs

– a tracking type cost forcing the solutions to a desired equilibrium and an economic

stage cost maximizing the yield (by minimizing the negative yield) of the reaction –

are introduced in [95]. We abbreviate the states by c = (cA, cB), and we consider two

stage costs given by

`1(c, u) =
1

2
(cA −

1

2
)2 +

1

2
(cB −

1

2
)2 +

1

2
(u− 12)2,

`2(c, u) = −2ucB +
1

2
u,

where the second stage cost consists of the price of B and a separation cost. These

second costs, therefore, represent the (negative) economic yield of the reaction. More-

over, we set the terminal cost to zero, i.e., Fi ≡ 0 for i = 1, 2 and the terminal con-

straint set as the equilibrium point, i.e., X0 = {(ce, ue)}. Thus, the overall bi-objective

optimal control problem is given by

min
u∈UN (c0)

JN (c0,u) =

(
N−1∑

k=0

`1(c(k, c0), u(k)),
N−1∑

k=0

`2(c(k, c0), u(k))

)
,

s.t. cA(k + 1) = cA(k) +
1

2

(
u(k)

V
(cAf − cA(k))− krcA(k)

)
,

cB(k + 1) = cB(k) +
1

2

(
u(k)

V
(cBf − cB(k)) + krcB(k)

)
,

c(0) = c0 = (0.4, 0.2)

c(N, c0) ∈ X0 = {(ce, ue)}
X = [0, 20]× [0, 20], U = [0, 20]. (5.17)

This way, Assumption 5.1 is fulfilled since stabilizing stage costs always render the

optimal control problem strictly dissipative, and by setting κ = ue, there exists a

local feedback with the desired properties. Since the terminal cost and the storage

function, due to stabilizing stage cost, are equal to zero, Assumption 5.6 is also

satisfied. By imposing box constraints X and U we can conclude by Lemma 2.33

the external stability of JNE (c0) and, thus, the trajectory convergence as well as the

averaged and non-averaged performance of the first cost criterion J1 by Corollary 5.5

and Theorem 5.7.
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Figure 5.3: Visualization of the nondominated set in step (1)
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Figure 5.4: Closed-loop trajectory for N = 5 (left) and N = 15 (right)

In this example, we use

• Algorithm 2 to substantiate our theoretical results with numerical simulations.

Thus, we restrict only the first objective by the constraint in step (1) of the

algorithm. The resulting bound on the nondominated set in the second iteration

is visualized in Figure 5.3;

• as the first efficient solution the efficient solution for N = 5 with J5(x0,u
?
c0) =

(54.034, 9.500), and with J15(c0,u
?
c0) = (408.459,−478.459) for N = 15;

We note that, for this example, the optimization problems contained as subproblems

in MOMPC algorithms are non-convex. Hence, we have no theoretical guarantees

that the numerical optimization reached a globally optimal solution. However, the
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numerical results strongly suggest that globally optimal solutions were found in all

our numerical simulations.

The behavior of the closed-loop trajectory is visualized in Figure 5.4 for MPC-

horizons N = 5 and N = 15. We observe that the trajectories converge to the

equilibrium ce independently of the choice of MPC-horizon and the initial value. De-

spite this, the MPC-horizon N influences the convergence rate. On the left side, for

N = 5, the cB-trajectory converges faster to the equilibrium point ce = 1
2 than for

N = 15. We remark that this is a typical behavior of MPC with equilibrium terminal

constraints, see [46, Discussion after Ex. 7.23]. In addition, the components of the

trajectory show different transient behavior.
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Figure 5.5: J̄k1 for N = 5 and N = 15
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Figure 5.6: J̄k2 for N = 5 and N = 15

In contrast, the bound of the averaged performance of J1 is independent of N , the

initial value, and the choice of the efficient solutions in each iteration. According to

Remark 5.8 the bound is given by `1(ce, ue) = 0. This bound and the averaged costs J̄k1
in dependence of the time step k are visualized in Figure 5.5 for MPC-horizons N = 5

and N = 15. Additionally, the averaged cost of the cost criterion J2 is visualized in

Figure 5.6 with bound `2(ce, ue) = −6, according to Theorem 5.10, for MPC-horizon

N = 5 and N = 15. For both cost criteria, the averaged cost J̄ki , i = 1, 2, converges

for k →∞, whereas for N = 5, the convergence is significantly faster. Moreover, the

second averaged cost J̄k2 requires considerably more time to converge, highlighting the

conflict between the two cost criteria.

Since the upper bound on J∞1 (c0, µ
N ) from Theorem 5.7 depends on the first ef-

ficient solution u?c0 in Algorithm 2, we have visualized the performance result for

different choices of this efficient solution. In Figure 5.7 on the left side, the first

nondominated set JNE (c0) is shown with the different choices of the first efficient
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Figure 5.7: Choice of the efficient solution and the corresponding costs J1

solution. The red point corresponds to the efficient solution such that J5(c0,u
?
c0) =

(76.064,−13.435) and the blue point corresponds to J5(c0,u
?
c0) = (182.852,−26.267).

Further, the performance of the first cost criterion J1 for N = 5 is visualized in de-

pendence of the time step k and the choice of the first efficient solution (the red line

corresponds to the red efficient solution and the blue line respectively to the blue one).

The dashed lines mark the upper bounds derived by the values of the first objective

function for the chosen first efficient solution JN1 (c0,u
?
c0). Hence, we remark that the

choice of the first efficient solution has a big impact on the upper bound and on the

performance of J1. We remark that the upper bound is not tight for these choices of

the first efficient solution.

By choosing the efficient solution u?1 (red point), which has a relatively small value

in the first cost functional, we get an upper bound of about 76. In contrast, the

efficient solution u?2 (blue point) with a small value in the second cost delivers an upper

bound of approximately 182. Moreover, we observe that for both efficient solutions, the

values of the cost functional J1 reach a small neighborhood of their stationary values

53 (red) and 86 (blue), respectively, after less than 10 time steps. Additionally, the

theoretical upper bound, which depends on the choice of the first efficient solution and

is visualized as a dashed line, is adhered to as expected. Thus, we can confirm the

dependence of the performance of J1 on the choice of the first efficient solution.

The last result shown for Algorithm 2 is the asymptotic stability property of the

equilibrium (ce, ue). In contrast to the convergence, the condition for stability depends

on the initial value. For this reason, we have to ensure that inequality (5.13) is verified

for the initial value c(0) = c0 = (cA(0), cB(0)) and the corresponding first efficient

solution u?c0. With a suitable choice of the first efficient solution, we can ensure the

existence of γJ ∈ K∞ such that inequality (5.13) holds, since `1(c, u) is a quadratic

function, and the system is exponentially controllable to ce.

In Figure 5.8, the Euclidean norm ‖c(k)− ce‖2 of the closed-loop trajectory is

visualized for fixed MPC-horizon N = 15 in dependence of the time step k and for

different initial values c(0). There, we observe that the closer the initial value is to

the equilibrium, the smaller the peak of the norm of the trajectory. The numerical

97



5 Analysis of Multiobjective Model Predictive Control Schemes

0 10 20 30 40 50
0

0.5
1

1.5
2

2.5
3

3.5
4

Figure 5.8: ‖c(k)− ce‖2 for different initial values c(0)

results indicate that the stability result from Theorem 5.11 holds for this example.

After illustrating results for Algorithm 2, we move on with the reactor example,

but now we consider Algorithm 3 and check the stronger assumptions that we will

need to apply Theorem 5.15.

Example 5.18 (Reactor Part 2)

We consider again the isothermal reactor described in Example 5.17 with the same

constants and constraints. Now, we like to illustrate the performance result for the

second cost criterion J2. Therefore, we consider Algorithm 3 where inequality (5.5)

holds for all cost criteria. Since we have imposed the special case of an endpoint

constraint X0 = {(ce, ue)} the endpoint is fixed by c(N) = (cA(N), cB(N)) = (ceA, c
e
B)

and Assumption 5.14 is trivially satisfied for κ = ue. Thus, we can conclude the ex-

istence of δ ∈ L for which the performance estimate on J2 according to Theorem 5.15

holds.

For N = 5, numerical test show that for δ(5) = 1/5 the inequality

Jk2 (c(0), µ5) ≤ JN2 (c(0),u?c(0)) + (k − 5)`2(ce, ue) +
k

5
=:M(u?c0 , 5, k)

holds for k ≥ 5 large enough. The second cost J2 and the corresponding bound

M(u?c0 , 5, k) are visualized in Figure 5.9. For other MPC-horizons N and other

choices of the first efficient solution, finding appropriate values for the L−function δ

is not easy. For this reason, we only visualize the bound M for this special case in

Figure 5.9.

In Figure 5.10, the performance of the cost criterion J2 is visualized for MPC-

horizon N = 5 and for two different choices of the first efficient solution u?,Nc(0). The

98



5.3 Illustrative Examples

5 10 15 20 25 30 35

−250

−200

−150

−100

−50

0

50

Figure 5.9: Jk2 (c(0), µN ) with corre-

sponding boundM(u?c0 , 5, k)
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Figure 5.10: Jk2 (c(0), µN ) for two differ-

ent efficient solutions

first efficient solutions are chosen as in Example 5.17 in Figure 5.7 on the left side.

Note that the first nondominated set JNE (c(0)) is identical for both algorithms. Thus,

the efficient solution (and the colors) are the same as in the previous simulations.

Again, we remark that the choice of the first efficient solution impacts the performance

of the second cost criterion J2.

With these two examples above, we have substantiated the theoretical results from

Section 5.2 using numerical simulations for the isothermal reactor with two cost

functions. Now, we turn to illustrate that – as the theoretical results suggest – our

approach works for more than two cost criteria. In particular, we would like to em-

phasize that our theoretical results also apply to a general number of objectives. To

this end, we add another cost criterion to the multiobjective optimal control prob-

lem (5.17) and present the numerical results in the same manner as in Example 5.17

and 5.18.

Example 5.19 (Reactor with three objectives)

We consider the isothermal reactor from Example 5.17 and the corresponding multi-

objective optimal control problem (5.17). In order to extend the example, we add a

third cost criterion, which aims to minimize the energy effort. Hence, the third cost

function is given by

JN3 (c0,u) :=

N−1∑

k=0

`3(c(k, c0), u(k)), with `3(c, u) = u2,

and we now minimize JN (c0,u) = (JN1 (c0,u), JN2 (c0,u), JN3 (c0,u)).

Stage cost `3 is a continuous function; thus, Assumption 5.1 is satisfied. As-

sumptions 5.6 and 5.14 can be shown exactly as in Example 5.17 and 5.18. For
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Figure 5.11: Closed-loop trajectory of Example 5.19

our numerical simulations, we consider the MPC-horizon N = 15. As in Exam-

ple 5.18, we apply Algorithm 3 to illustrate the trajectory convergence, the averaged

performance of all cost criteria Ji, i = 1, 2, 3, and, especially, the non-averaged per-

formance of Ji for all i ∈ {1, 2, 3}. Further, we chose the first efficient solution such

that J15(c0,u
?
c0) = (317.827,−380.092, 1969.311).
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(b) J̄k2 (c0, µ
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(c) J̄k3 (c0, µ
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Figure 5.12: Averaged performance of all cost criteria Ji

In Figure 5.11, we observe that the closed-loop trajectory behaves qualitatively as

in Figure 5.4, but quantitatively there are differences. Significantly, the peak of the

second component cB is higher than in Example 5.17. Further, the averaged cost J̄1

has a smaller start value, and the amplitude of the second averaged cost J̄2 is larger

than in the previous example. These phenomena are visualized in Figure 5.12. On

the right-hand side in Figure 5.12, the third averaged cost J̄3 also converges from

below to the theoretical bound `3(xe, ue) = 144, as stated in Theorem 5.10.

Further, in Figure 5.13 the performances of Ji, i = 1, 2, 3, are shown. Again, the
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Figure 5.13: Performance of all cost criteria Ji

first cost function J1 complies with the theoretical bound JN1 (c0,u
?
c0). We can observe

that the performance behaves as expected for the second and third cost criteria. The

third cost J3 is strictly increasing since the squared value of the cost in the equilibrium

ue = 12 is added in each iteration.

These three examples in this section illustrated our theoretical results numerically,

particularly regarding the impact of the choice of the first efficient solution u?x(0),

chosen in step (0) of our algorithms. In the next chapter, we discuss the impact of

the choice of the subsequent efficient solutions on the solution behavior. Although

the convergence behavior does not change, the transient behavior does. Analyzing

this behavior, we investigate numerically different selection rules.
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6 Numerical Simulations – The Impact of
Selection Rules on the Solution
Behavior

In this chapter, we illustrate our theoretical findings from Section 5 by conducting

numerical experiments and simulations and discussing the impact of selection rules.

First, we introduce different selection rules for the subsequent efficient solutions and

move on to discussing the numerical experiments by application examples. Then, we

provide an overview of our implemented program.

6.1 Selection Rules

In Chapter 5, we have shown theoretically and visualized numerically the impact of

the choice of the first efficient solution u?x0 on the performance estimates. However,

by applying the global criterion method for calculating and selecting the subsequent

efficient solutions u?x(k) in the examples of Section 5.3, we have not exploited a degree

of freedom – namely, the selection of the subsequent efficient solution u?x(k) in each

time step. We recall that we distinguish between the first efficient solution u?x0 chosen

in step (0), i.e., in the first iteration, and the subsequent efficient solutions u?x(k)

chosen in step (1), i.e., from time step k = 2 onwards.

In the following, we introduce rules for choosing the subsequent efficient solutions

such that we can further investigate the impact of these selection rules on the solution

behavior. In the bi-objective case, generally, an efficient solution with values at the

top left of the considered nondominated set will cause the first cost criterion to

become smaller and vice versa. Particularly in our setting, where the first cost is

always stabilizing, putting a large emphasis on the first cost criterion forces the

trajectory to converge faster since this causes a lower cost. To check whether this

effect can be seen in practice, we will investigate different selection rules for choosing

the subsequent efficient solutions. To this end, we introduce the following selection

rules for the subsequent efficient solutions:

• “ideal”: The efficient solutions are computed as in (5.16) as pre-images of

nondominated points with minimal Euclidean distance to the ideal point z?
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6 Numerical Simulations – The Impact of Selection Rules on the Solution Behavior

introduced in Example 5.17 with

z?i = min
{
JNi (x(k),u)

∣∣ u ∈ UN (x0), JNj (x(k),u?x(k)) ≤ JNj (x(k),ux(k))
}
,

for all i = 1, . . . , s, where u?x(k) is are the efficient solutions in each time step k

in Algorithm 2 or Algorithm 3. Depending on the algorithm, we set j = 1 or

j = 1, . . . , s, corresponding to the constraints in step (1). This selection rule is

illustrated in Figure 6.1 for two objectives.

• “min i” (i ∈ {1, . . . , s}): The efficient solutions are chosen such that JNi (with

the additional bounds from inequality (5.4) or inequalities (5.5)) is minimal.

J1

J2

z∗

Figure 6.1: Visualization of the selection rule “ideal”

These selection rules are applicable to both Algorithm 2 and Algorithm 3. However,

we note that the selection criteria “min i” with i ∈ {1, . . . , s} theoretically only guar-

antee to find weakly efficient solutions to the underlying multiobjective optimization

problem. These weakly efficient solutions lie at the extremals of the nondominated

set. The set of weakly efficient solutions forms a superset of the set of efficient solu-

tions. It also contains those feasible solutions for which just no other feasible solution

exists, which strictly improves all objective functions simultaneously. Thus, we must

ensure that we only choose and use efficient solutions. In the case of Algorithm 3,

the solutions are additionally constrained by the bounds (5.5), which “cut off” these

extremal points. Since, according to our numerical experience, this is the situation

in all our numerical tests, we can assume that our algorithm yields weakly efficient

solutions that are not also efficient.

We begin our investigation with the isothermal reactor from Section 5.3. Using

Algorithm 3, we examine the solution behavior by applying different selection rules.

We then continue with theoretically discussing a path-following example motivated
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by the application. Through numerical simulations, we show that Algorithm 2 is also

applicable and that our theoretical results from Section 5.2 are still observable.

6.2 Bi-Objective Examples

To discuss the impact of different selection rules for the subsequent efficient solutions,

i.e., those in step (1) of the algorithms, numerically, we consider again the isothermal

reactor. Since we want to guarantee the theoretical performance estimates for all

cost criteria, we use Algorithm 3. To explain the effects clearly and to visualize

the nondominated set easily, we consider bi-objective optimal control problems, and

in the case of the reactor, the multiobjective optimal control problem (5.17) from

Example 5.17. Second, we consider an example motivated by economic growth to

show that the selection rules must not impact the solution behavior.

In order to ensure comparability, we consider the same first efficient solution in all

simulations. Closely related to guarantees of the theoretical performance estimates is

the development of the nondominated sets during the iterations, which we will discuss

in the following example. All approximations of nondominated sets were calculated

with the adapted Pascoletti-Serafini optimization [24].

Example 6.1 (Reactor Part 3)

We consider the isothermal reactor from Example 5.17 with the same constants and

constraints. For the simulation, we used Algorithm 3 with the different selection rules

described in Section 6.1 for choosing the subsequent efficient solution u?c(k). In all

simulations we consider the MPC-horizon N = 5 and use the same first efficient

solution u?c(0) which is chosen as in Example 5.17 such that

J5(c0,u
?
c0) = (54.034, 9.500).

Figure 6.2 shows the first nondominated set. Additionally, we marked the point cor-

responding to the first chosen efficient solution.

Further, in Figure 6.3 on the left side, we visualize the bounds on the nondomi-

nated set of Algorithm 3 in time step k = 2. The resulting second nondominated set

is enlarged on the right side. The colored points are the efficient solutions chosen

according to the selection rules “ideal”, “min 1”, and “min 2”. While in all sim-

ulations, the same first efficient solution is chosen, we compare different selection

rules for the subsequent efficient solutions, which are, however, identical during the

iterations.

In Figure 6.4, we visualized the nondominated set and the corresponding chosen

subsequent efficient solutions in the time step k = 6. We remark that the magnitudes

of the cost functionals and, thus, the size and the location of the nondominated sets are
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Figure 6.2: First nondominated set with chosen efficient solution
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Figure 6.3: Second nondominated set with the chosen efficient solutions

significantly different for the three selection rules. The nondominated set for “min 2”

(right) has a range from 7 to 13 and from -58 to -52, and the nondominated set for

“min 1” (mid) has a range from 0.5 to 0.8 and from -36 to -34.6 that is substantially

smaller. The nondominated set for “ideal” (left) lies between those for “min 1” and

“min 2”. Hence, for each selection rule, the subsequent efficient solutions are not only

chosen according to different rules but also from completely different nondominated

sets. This indicates that the choice of efficient solutions should have an impact on

convergence rate and performance. Figure 6.5 illustrates the resulting closed-loop

trajectories.

On the left-hand side in Figure 6.5, we observe that all selection rules deliver a

similar behavior for the first component of the trajectory cA. In contrast, on the

right-hand side, the behavior of the second component cB depends strongly on the
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Figure 6.4: Nondominated set in time step k = 6 for the different selection rules
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Figure 6.5: Components of the closed-loop trajectory for the different selection rules

selection rule. The rule “min 2” aims to maximize the economic yield. Therefore,

the second component of the closed-loop has large values and converges only slowly to

the equilibrium. While the trajectory of “min 1” reaches a small neighborhood of the

equilibrium within 15 time steps, “min 2” needs about 2000 time steps to get similarly

close to the equilibrium.

In Figure 6.6, we visualize the cost criteria JN1 and JN2 . Here, we observe that

“min 1” results in a significantly smaller J1 than the other strategies, while J2 is

the largest, whereas “min 2” enforces exactly the opposite. Regarding the cost, the

main feature of “ideal” becomes particularly clear. The selection rule “ideal” yields

a compromise between both costs, which in this example turns out to be closer to

“min 1” than to “min 2”.

The results in Example 6.1 show precisely the behavior that we would expect from

the different selection rules. Actually, a priori, it was unclear that the quantitative

differences were so pronounced. Indeed, as the following example indicates, the effect

of the different rules can also be almost negligible.
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Figure 6.6: Cost criteria J1 and J2 for the different selection rules

Example 6.2

We consider an economic growth model introduced in [14]. The system dynamic in

discrete time is given by

x(k + 1) = u(k), k ∈ N,

and the stage cost by

`1(x, u) = − ln(Axα − u),

with parameters A = 5 and α = 0.34. We impose state and control constraints

X = [0, 10] and U = [0.1, 5]. As calculated in [16], the equilibrium at which the

system is strictly dissipative is given by (xe, ue) = (xe, xe) ≈ (2.23, 2.23). We use the

equilibrium to set the endpoint terminal constraint X0 = {xe}. Next, we introduce

the second stage cost

`2(x, u) = (x− xe)2 + 0.1(u− ue)2,

which additionally stabilizes the equilibrium. Thus, the multiobjective optimal control

problem reads

min
u∈UN (x0)

JN (x0,u) =

(
N−1∑

k=0

`1(x(k, x0), u(k)),
N−1∑

k=0

`2(x(k, x0), u(k))

)

s.t. x(k + 1) = u(k),

x(0) = 5,

x(N, x0) ∈ X0 = {(2.23, 2.23)},
X = [0, 10], U = [0.1, 5]. (6.1)

Due to the strict dissipativity for the stage cost `1 at (xe, ue), the required Assump-

tions 5.1 and 5.6 are fulfilled. By introducing endpoint terminal constraints, Assump-

tion 5.14 holds with the same argument as in Example 5.18. Hence, this example fits
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in our theoretical setting. Next, to check whether the choice of the subsequent efficient

solution in Algorithm 3 impacts the solution behavior, we consider the MPC-horizon

N = 10 and the selection rules from Section 6.1. We chose the first efficient solution

such that J10(x0,u
?
x0) = (−15.085, 7.892).
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Figure 6.7: Resulting nondominated set
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Figure 6.8: Closed-loop trajectories

Figure 6.7 shows the nondominated set in the second time step. Due to the re-

strictions (5.5), only one point is cut out of the nondominated set. Thus, there is no

more degree of freedom in choosing the efficient solution, suggesting that the selection

rules have no impact on the solution behavior. Indeed, this behavior is confirmed in

Figure 6.8, as there are no differences – except for numerical inaccuracies – in the

trajectories resulting from the selection rules. The same phenomenon is reflected in

the costs. For this example, we, therefore, can conclude that the choice of the subse-

quent efficient solutions has almost no influence on the trajectory behavior and the

cost criteria.

In summary, the examples show that implementing different selection rules for

the subsequent efficient solutions may significantly affect the resulting closed-loop

trajectories and costs. These impacts are clearly visible in Example 6.1. In contrast,

Example 6.2 shows that this difference may also be negligible.
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6.3 The Path-Following Problem

In this section, we extend the illustration of our theoretical results and the impact

of selection rules to an additional application example. We consider an autonomous

vehicle combined with a path-following problem for which we refer to the work in

[28, 29, 34]. More precisely, an autonomous vehicle moves in the x1 − x2−plane and

can be controlled in terms of its speed and steering angle. We pursue multiple goals:

driving along a given path (which we interpret as staying on the road), ensuring

driving comfort, and maintaining a reference speed. Thus, this multiobjective optimal

control problem is motivated and modeled from an application of increasing interest,

for instance, we refer to [21,27,60,67] for which we do not claim completeness. Since

the objectives are conflicting, we will observe in Section 6.3.2 a significant impact

of the selection rules on the solution behavior. We briefly introduce the example

theoretically before discussing the numerical simulation results.

6.3.1 Problem Formulation

We draw on a path-following example presented in [28, 29, 34]. The authors of these

references do their analysis in a continuous time setting. Hence, we first recall the

main ideas and results before adapting the example to our discrete time setting and

proposing our multiobjective path-following problem.

We consider an autonomous vehicle moving in the x1− x2−plane according to the

system 

ẋ1

ẋ2

ẋ3


 = f(x, u) :=



u1 cos(x3)

u1 sin(x3)

u1 tan(u2)


 , x(0) = x0, (6.2)

where x1, x2 describes the position, x3 describes the yaw angle, u1 is the speed, and

u2 is the steering angle of the vehicle. We constrain the speed of the vehicle such

that u1 ∈ [0, 6] and, thus, driving backwards is impossible. To avoid too strong dis-

locations, the steering angle is constrained by π
5 in both directions, i.e., u2 ∈ [−π

5 ,
π
5 ].

Next, we define the path P to be followed. The path is an explicitly parameterized

curve, see [28, Example 4.3], and is given by

P =




p(θ) ∈ R3

∣∣∣∣ [θ̂, 0] 7→ p(θ) =




θ

ρ(θ)

arctan

(
∂ρ

∂θ
(θ)

)







, (6.3)

where θ̂ = −30 and

ρ(θ) = −α log

(
γ

β + |θ|

)
· sin(ωθ).
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The coefficients are given by α = 6, β = 5, γ = 20, and ω = 0.35. Figure 6.9 visualizes

the path in the x1−x2-plane. We note that the path is negatively parameterized since

θ̂ < 0, and p(0) = 0 holds. Further, the map p is twice continuously differentiable

and bijective. We can conclude that the admissible state space X is induced by the

path and the range of motion of the vehicle and, thus, given by

X = [−30, 0]× [−3, 6]× [−2π, 2π].

−30 −25 −20 −15 −10 −5 0

−2

0

2

4

Figure 6.9: Visualization of the path P

Moreover, we impose additional path-following constraints to ensure that the ve-

hicle follows the given path as shown in, for instance, [29]. We consider the linear

differential equation

θ̇ = g(θ, v) := −λθ + v, θ0 = θ̂ = −30, (6.4)

with λ = −10−3 and v ∈ [0, 6]. This equation is a timing law with the virtual con-

troller v such that the evolution of the parameter θ can be influenced. As in [29], the

timing law is usually not given a priori and must not necessarily be linear, providing

us with an additional degree of freedom in the controller design. This way, we can

design the controller to depend on the input u and the reference timing t 7→ θ(t). We

define the state and control as y = (x, θ), w = (u, v) respectively, and the admissible

state and control set expand to X = [−30, 0] × [−3, 6] × [−2π, 2π] × [−30, 0] and

U = [0, 6]× [−π
5 ,

π
5 ]× [0, 6]. In the following, we consider the equilibrium

(ye, we) =







0

0

xe3
0


 ,




0

u2|θ=0

0





 ,
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with xe3 = p3(0) = arctan

(
∂ρ

∂θ
(0)

)
, and

u2|θ=0 = arctan



(

1 +

(
∂ρ

∂θ
(0)

)2
)−3/2

∂2ρ

∂θ2
(0)


 ,

since the reference speed is ue1 = 0 and the second input u2 does not vanish at the

end of the path, see [34, Section 4].

Additionally, we introduce a terminal condition. Namely, we set the given path P
as our terminal constraint set X0 = P × [−30, 0]. The conceptual idea of doing

so is to project the compatibility condition from Assumption 5.1 (iv) b) onto the

virtual state θ. Consequently, we shift the costs of driving the system along the

path such that they only depend on θ. We need to ensure the existence of a local

feedback κ = (κu, κv) as required in Assumption 5.1, which guarantees the exact

path-following. Before imposing a compatibility condition, we must define our cost

function and terminal costs.

The cost function in [29, Section 4] is given by a stabilizing stage cost

`1(y, w) = (x− p(θ))TQ(x− p(θ)) + qθ2 + (u− ue)TR(u− ue) + (v − ve)2,

where Q = 8 · diag(104, 105, 105), q = 1
2 , R = diag(10, 10), and we = (ue, ve) denotes

the control equilibrium. Moreover, the terminal cost is a penalty term

F1(y) =
c

2
θ2,

where c = 1740 is a constant chosen such that the terminal cost guarantees that

x(t)− p(θ(t))→ 0 for t→∞.

We define the path-following single-objective optimal control problem in continuous

time

min
w∈UN (y0)

JN1 (y0,w) =
N−1∑

k=0

`1(yw(k, y0), w(k)) + F1(yw(N, y0))

s.t. ẋ = f(x, u),

θ̇ = g(θ, v),

x(0) = x0, θ(0) = θ0,

y ∈ X, yw(N, y0) ∈ X0

(PF SO)

with the quantities described above. The optimal control problem (PF SO) has the

following properties, proven in [34].
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Property 6.3

(i) The origin is contained in intX and intU, and the sets X and U are compact.

(ii) The right-hand side of the control system (6.2) f : X×U→ R3 is a continuous

and local Lipschitz vector field, and it satisfies f(0, 0) = 0. The same holds for

the timing law g in equation (6.4).

(iii) The stage cost `1 is continuous and positive definite.

(iv) The path P is regular, twice continuously differentiable, negatively parametrized,

and bijective.

(v) The timing law g is chosen such that for all v ∈ [0, 6] and θ ∈ [−30, 0) it yields

that g(θ, v) > 0.

(vi) The terminal cost F1(x) is continuously differentiable, positive semidefinite and

F1(0) = 0 holds, and P ⊆ X0.

(vii) For all x ∈ X the controller

wε = (uε, vε)
T =




θ̇

√
1 +

(
∂ρ

∂θ

)2

arctan



(

1 +

(
∂ρ

∂θ

)2
)− 3

2

· ∂
2ρ

∂θ2




0



∈ U

fulfills

∇F1(y) ·
(
f(x, uε)

g(θ, vε)

)
+ `1(y, wε) ≤ 0

and (f(x, uε), g(θ, vε)) ∈ X0 for all y ∈ X0.

The controller wε was determined via a flat parametrization of state and input

variables, for a discussion, see [28, Example 4.3], and also derived in [34, Section 4].

Due to Property 6.3 the assumptions A1–A7 in [34], and the assumptions of The-

orem 1 in [29] are fulfilled. Hence, we can conclude that [29, Theorem 1] holds, and

the vehicle stays on the given path P. More precisely, for the closed-loop system

of the path-following problem, the error e(t) = x(t) − p(θ(t)) converges to zero for

t→∞.

We extend the path-following problem (PF SO) to a multiobjective problem by

considering two further cost criteria. The first one,

`2(y, w) = (u1 tan(u2))2 ,
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penalizes the deviation of the derivative of the yaw angle from zero and, thus, aims

to avoid abrupt changes in the yaw angle. We interpret this cost criterion as ensuring

driving comfort, whereas the third stage cost,

`3(y, w) = (u1 − uref)
2,

enforces the maintaining of a reference speed uref.

In addition, we discretize system (6.2), (6.4) using the Heun method with h ≥ 0

resulting in

y(k + 1) =

(
x(k + 1)

θ(k + 1)

)
=

(
x(k) + h

2 (f(x(k), u(k)) + f(x̃(k + 1), u(k)))

θ(k) + h
2

(
g(θ(k), v(k)) + g(θ̃(k + 1), v(k))

)
)

=: f̃(y, w)

(6.5)

y(0) = (x0,−30)T ,

where we use the explicit Euler method to calculate




x̃1(k + 1)

x̃2(k + 1)

x̃3(k + 1)

θ̃(k + 1)


 =




x1(k) + hu1(k) cos(x3(k))

x2(k) + hu1(k) sin(x3(k))

x3(k) + hu1(k) tan(u2(k))

(1− hλ)θ(k) + hv(k)


 .

As we aim to apply our multiobjective model predictive control Algorithms 2, 3

to solve the multiobjective path-following problem, we need to verify whether this

problem fits in our setting from Section 5.1. To accomplish this, we validate Assump-

tion 5.1:

(i) The functions f̃ , F1, and `i, i = 1, 2, 3 are continuous.

(ii) The equilibrium is given by (ye, we).

(iii) The system (6.5) is strictly(x, u)-dissipative for the stage cost `1, because `1 is

stabilizing in y and w.

(iv) The equilibrium (ye, we) lies at the end of the path, i.e., (ye, we) ∈ P. The

controller wε is designed such that Property 6.3 (vii) holds. Further, the discrete

version of this condition, using the difference quotient with h = 1, leads to the

compatibility condition in Assumption 5.1 (iv) b).

(v) The set U is compact and the set X and X0 are closed. If we choose the initial

state x0 such that the vehicle can be steered on the path, Lemma 2.33 guarantees

external stability.

114



6.3 The Path-Following Problem

Finally, we establish the multiobjective path-following problem

min
w∈UN (y0)

JN (y0,w) :=
(
JN1 (y0,w), JN2 (y0,w), JN3 (y0,w)

)

s.t. y(k + 1) = f̃(y(k), w(k)), k ∈ N,
x(0) = x0, θ(0) = θ0,

y(N, y0) ∈ X0.

(PF MO OCP)

We remark here that the assumptions also hold for other discretization methods. In

addition, the implementation of our algorithms, see Chapter 6.4, allows us to use

discretization methods depending on what turns out to be numerically more stable.

Hence, we decided to use the Heun discretization for all our numerical investigation

of this path-following example.

6.3.2 Numerical Results

We simulate the multiobjective path-following problem (PF MO OCP) by using the

implementation of our algorithms, see Chapter 6.4, to analyze the numerical results.

In view of the less restrictive additional constraints, we apply Algorithm 2 and inves-

tigate the path-following behavior based on the different selection rules introduced

in Section 6.1.

Example 6.4 (Path-Following Version 1)

We consider the path-following problem (PF MO OCP) with the two cost criteria

`1(y, w) = 10−4
(
(x− p(θ))TQ(x− p(θ)) + qθ2 + (u− ue)TR(u− ue) + (v − ve)2

)
,

where Q = 8 · diag(104, 105, 105), q = 1
2 , R = diag(10, 10), and

`2(y, w) = 10 (u1 tan(u2))2 .

We scaled the stage costs and, thus, the cost function here to bring the resulting val-

ues into the same order of magnitude to make the optimization problem numerically

robust.

As discussed in the previous section, the path-following problem fulfills Assump-

tion 5.1 from which we can conclude trajectory convergence as well as performance

results. Further, from the section above, we adapt the admissible state set X, con-

trol set U, and the terminal constraint set X0 = P × [−30, 0]. We used the program

described in Section 6.4 using the Heun discretization with h = 1 with MPC-horizon

N = 15 and K = 150 time steps for the numerical simulations.

The movement of the vehicle in the x1−x2–plane, the speed, and the steering angle

of vehicles with different selection rules are visualized in Figure 6.10. We can observe
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Figure 6.10: Movement, speed and angle of the vehicle for two cost criteria

that the solution behavior is quite different depending on the selection rule. While

the qualitative behavior of the movement is very similar, the speed of the movement

is very different. In particular, the vehicle that follows the rule “min 2” drives very

slowly and barely gets to the first bend, whereas the vehicle that follows the rule

“min 1” comes to the end of the path within 150 time steps. We may interpret the

vehicle’s behavior following “min 2” as maximizing driving comfort by driving along

curves very slowly and carefully.
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Figure 6.11: Cost function J1 depending on the time step k

The remarkable difference between the different selection rules is also mirrored in

the development of the first cost function depending on the time step k. Figure 6.11

on the left side visualizes the first cost function and the upper bound according to

Theorem 5.7. Although the upper bound does not seem to be sharp, the zoomed-in

version of the plot in the middle of Figure 6.11 shows that the costs according to

“min 2” are increasing. Hence, it is not (numerically) clear if the bound is respected

and if the vehicle comes to the end of the path. In order to verify our theoretical

results numerically for this special case, we did the same simulation but this time

with approximately 23,000 time steps. Then, we can observe in Figure 6.11 on the
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6.3 The Path-Following Problem

right side that the theoretical bound JN1 (x0,u
?
x0) is sharp, and in the simulation that

the corresponding vehicle comes to the end of the path.

Figure 6.12 illustrates the second cost function JN2 depending on the time step k.

Even though with Algorithm 2, we cannot theoretically guarantee the upper bound

shown in Theorem 5.15, the costs seem to converge in the numerical simulations.

The behavior of the second cost criterion is the opposite of the first cost criterion:

While the rule “min 2” produces approximately zero costs, the rule “min 1” causes

costs of about 500. In contrast, the rule “ideal” selects a compromise solution between

“min 1” and “min 2” and, thus, generates moderate for both cost criteria.
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Figure 6.12: Cost function J2 depending on the time step k

In Example 6.4, we observe that the selection rule “min 2” requires a huge amount

of iterations. In order to avoid this, we modify the second stage cost in the next

example.

Example 6.5 (Path-following Version 2)

We consider the path-following problem (PF MO OCP) with the two stage costs de-

scribed in Example 6.4. In contrast to this example, we modify the second cost crite-

rion by adding a term penalizing the deviation from the reference speed uref = 6 and

define the new second stage cost by

`2(y, w) = 10(u1 tan(u2))2 + 5(u1 − 6)2.

Indeed, we intend to force the vehicle, driving with the rule “min 2”, to move along

the path faster. As discussed in Example 6.4, we scale the terms of the stage costs to

obtain better numerical robustness. For our simulations, we use the same parameters

as in Example 6.4.
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Figure 6.13: Left: Movement for all selection rules, right: Movement for selection

rule “min 2”

Then, in Figure 6.13 on the left side, we observe that all vehicles drive along

the path at approximately the same speed. However, we also observe that the selec-

tion rules “ideal” and “min 2” do not follow the path exactly anymore. This phe-

nomenon is visualized more clearly in Figure 6.13 on the right side for the selection

rule “min 2”.
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Figure 6.14: Cost function JN1 and JN2 depending on the time step k

Further, Figure 6.14 visualizes the two cost criteria JN1 and JN2 depending on

the time step k. The first cost criterion and the corresponding performance bound

from Theorem 5.7 are plotted on the left side. This time, even for the selection

rule “min 2”, the upper bound is not as sharp as in Example 6.4. On the right

side, the second cost criterion behaves approximately the same way for each selection

rule, and it seems as if there is a linearly growing performance bound as stated in

Theorem 5.15. This allows the assumption that the additional constraints (5.5) for

all cost criteria in Algorithm 3 are not necessary to ensure a performance bound on
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6.3 The Path-Following Problem

the cost functions JNi , i ≥ 2.

In the next example, we show that our findings in Section 5.2 are not restricted

to only two cost criteria. To achieve this, we investigate a path-following example

in which we aim to follow the path, ensure driving comfort, and obtain a reference

speed.

Example 6.6 (Path-following Version 3)

We consider the path-following problem (PF MO OCP) with three cost criteria from

Section 6.3.1, namely, path-following

`1(y, w) = 10−4
(
(x− p(θ))TQ(x− p(θ)) + qθ2 + (u− ue)TR(u− ue) + (v − ve)2

)
,

ensuring driving comfort

`2(y, w) = 10(u1 tan(u2))2,

and obtaining a reference speed

`3(y, w) = 5(u1 − 6)2.

The scaling of the stage costs is again in order to bring the resulting values into the

same order of magnitude and, thus, to improve the numerical robustness. We use the
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Figure 6.15: Movement, speed and angle of the vehicle for three cost criteria

same admissible state and control sets X and U, as well as the terminal constraint,

set X0 as in Example 6.4, the MPC-horizon is N = 15, and the number of time steps

is given by K = 150.
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6 Numerical Simulations – The Impact of Selection Rules on the Solution Behavior

The results of the simulations with different selection rules are visualized in Fig-

ure 6.15. We note a coupling of the phenomena observed in the examples above.

While the rule “min 1” follows the path exactly in the given time, the rule “min 2”

only follows the path approximately and does not come to the end of the path in the

given time. However, the third cost criterion forces this vehicle to drive faster than in

Example 6.4. Moreover, the selection rules “min 3” and “ideal” behave comparably,

except that the vehicle with the rule “ideal” cuts the curves more. This behavior is

likely due to the fact that all three cost criteria are, roughly speaking, equally impor-

tant.

In Figure 6.16, the behavior of the three cost functions JNi , i = 1, 2, 3, is visualized.

On the left, the first costs of all selection rules respect the performance bound from

Theorem 5.7. In contrast, the second and the third cost criterion seem to follow the

behavior described in Theorem 5.15. Actually, the second cost function even seems

to converge numerically.
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Figure 6.16: Cost function J1 depending on the time step k

In summary, all the Examples 6.4, 6.5 and 6.6 show the applicability of our Al-

gorithm 2 to multiobjective optimal control problems motivated by and modeled

from an application problem. The numerical results also give evidence that the more

restrictive Algorithm 3 is not necessary to obtain performance bounds on the cost

functions JNi , i ∈ {2, . . . , s}, as stated in Theorem 5.15.

6.4 Implementation

Based on Mareleen Stieler’s program [88, Chapter 7], we implemented the Algo-

rithms 2 and 3 in Python supported by student assistant M.Sc. Jonas Schießl. We

already used this implementation to illustrate our theoretical findings in Section 5.3.

Our program supports the optimization with both SciPy (https://scipy.org)

and CasADi (https://web.casadi.org), see [4]. CasADi supports algorithmic dif-

ferentiation and, thus, can solve large optimization problems efficiently and fast. In
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6.4 Implementation

comparison, SciPy can handle non-smooth problems, like the absolute value func-

tion as an objective function, better. Due to their respective advantages, we decided

to integrate both optimizers in our program such that we can choose one of them

depending on the problem. Further, the user can switch between Algorithm 2 and

Algorithm 3.

Several methods for solving the multiobjective optimal control problem under con-

sideration are available. We usually use the adapted Pascoletti-Serafini optimization

presented in [24] to approximate the whole nondominated set. We used ASMO [1] as

the template for our implementation in Python of this method. In the case of convex

problems, the weighted sum approach (see [23] or Section 2.2.1) is also available in

the code. Our code supports NSGA II [17] provided by pymoo (https://pymoo.org)

[12]. Hence, we are also able to handle highly non-convex problems or problems

with a nondominated set consisting of non-contiguous branches. Besides the meth-

ods for approximating the whole nondominated set, we can use the global criterion

method [71] or a scalarization with fixed weights if we are only interested in one spe-

cific efficient solution. We can combine different multiobjective optimization methods

depending on what we want to study.

In order to choose the first efficient solution u?x0 graphically and, thus, determine

the performance, we provide the possibility to visualize the nondominated set in

the first iteration. In the subsequent iteration, we can use scalarization by fixing a

weight or still approximate the whole nondominated set. We note that approximating

the whole nondominated set in each iteration is computationally expensive and not

necessary to ensure our theoretical guarantees. In Section 6.1, we discussed different

rules for choosing the subsequent efficient solutions. The implementation of the

selection rules ensures that the nondominated set is approximated, and the efficient

solution is chosen according to the rule. Alternatively, we can either use the global

criterion method or the scalarization method with weights matching the selection

rules. Then, only one optimization problem must be solved in each iteration, which

saves enormous computational time.

Once a multiobjective optimal control problem is solved with our program, we can

directly visualize or store the data of interest. Furthermore, concerning comparing

different selections of the subsequent solutions, the code supports loading the first

efficient solution u?x0 from saved data and proceeding with this control sequence.
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7 Outlook and Future Research

Throughout this thesis, we have investigated different aspects of multiobjective op-

timal control problems. Besides developing a local turnpike analysis for discounted

problems and a formulation for multiobjective strict dissipativity, we examined mul-

tiobjective model predictive control algorithms theoretically and numerically. While

the local turnpike analysis led to arguments that apply to more problem classes

than expected, the question of formulating an appropriate multiobjective dissipativ-

ity got unexpected technically. However, these technical studies result in a better

understanding of the behavior of optimal control problems with convex-combined

stage costs. Moreover, studying the additional degree(s) of freedom in choosing effi-

cient solutions in each time step numerically gave us surprising insights. Especially

even with our quite simple selection rules, the impact on the solution behavior was

significant, and we were surprised by the unpredicted results, which raised further

interesting questions.

To conclude the thesis, we outline some possibilities for future research.

Towards Local Turnpike Properties

In Chapter 3, in Theorem 3.8, we have established that depending on the discount

factor, it may be more favorable for the trajectory to stay at a local equilibrium

than moving to the cheaper global equilibrium. Roughly spoken, if the prediction

is not long enough to detect that the cost in the global equilibrium can offset the

“travel cost”, the trajectory stays at the local equilibrium. We have expressed the

too-short prediction in terms of the discount factor. However, in the non-discounted

setting, we can explore the horizon N of the optimal control problem. Based on our

findings for discounted problems, we can analyze the trajectory behavior depending

on the horizon N in a non-discounted setting. A first investigation has already been

published in [64].

Multiobjective Dissipativity using other Scalarization Methods

In our investigation of strict dissipativity for convex combined strict dissipative stage

costs, we examined, depending on the weight, the behavior of the optimal equilibrium,

and the storage function. We derived assumptions on the problem data depending on
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the weight in Theorem 4.13 and Theorem 4.18 to ensure that convex combined strict

dissipative stage costs are strictly dissipative. To this end, we used techniques from

nonlinear programming. Although the weighted sum approach is commonly used to

scalarize multiobjective optimization problems, it is unsuitable for non-convex prob-

lems. We expect that it is possible to obtain similar results for other scalarization

methods using the approaches presented in Chapter 4. Considering other scalariza-

tion methods, we aim to extend our multiobjective strict dissipativity to non-convex

problems.

Multiobjective Optimal Control Problems without Terminal Conditions

Closely related to multiobjective strict dissipativity using scalarization methods avoid-

ing terminal conditions is how to get rid of the terminal conditions in Algorithms 2

and 3. Both need the local feedback κ in the terminal constraint set from Assump-

tion 5.1 to construct the comparison control sequence u. In contrast to the methods

presented in Chapter 4, in Chapter 5, we only require the strong dissipativity as-

sumption for one objective function. In view of application examples with merely

one strictly dissipative staged cost and the absence of terminal conditions, a further

investigation on how to construct the comparison control sequence in the Algorithms 2

and 3 is interesting.

Improved Performance Estimates for all Cost Criteria

The path-following problem presented in Sections 6.3.1 and 6.3.2 delivered quite

promising numerical results: The less restrictive Algorithm 2 led to numerical per-

formance results behaving similarly to the behavior described in Theorem 5.15 for

Algorithm 3. However, whether Theorem 5.15 also holds for Algorithm 2 remains

unclear. Further, we have observed in Chapter 6 that the selection rules may impact

the solution behavior. Clearly, the trajectory behavior also influences the perfor-

mance results. Therefore, incorporating the (quite simple) selection rules into our

performance estimates can serve as a first step toward improving the performance

estimates.

Further Investigation on Selection Rules

Until now, our investigation on selection rules only considers time-invariant rules. We

believe exploring the formulation of time-varying selection rules might be interesting.

For example, in the path-following problem, the decision maker’s preferences may

change depending on where the vehicle is on the path. While driving comfort may

be a significant factor in curves, acceleration or maintaining a reference speed may
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become more crucial on straight sections. Thinking one step further, a learning

approach for the selection rules might also be desirable. Allowing the rules to adapt

and improve over time could enhance decision-making.

The missing Piece: Multiobjective Optimality on the Infinite Horizon

A well-known fact in single-objective model predictive control is that strict dissipativ-

ity implies the turnpike property, and this, in turn, implies that the MPC closed-loop

is approximately optimal on the infinite horizon [40]. After deriving a multiobjective

dissipativity theory in Chapter 4 the next step is to adapt this result to the mul-

tiobjective setting. In fact, it is not clear yet how the error is distributed among

the individual objective functions and how the error can be appropriately measured.

However, before applying the single-objective MPC results to multiobjective optimal

control problems, it is crucial to clarify how an error analysis of an approximated

nondominated set can be made. We think that determining the Hausdorff distance

between the exact nondominated set and the corresponding approximated nondomi-

nated set might be a promising approach.
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[84] J. Schießl and L. Krügel. nMPyC - A Python library for solving optimal control

problems via MPC. http://nmpyc.readthedocs.io/, 2022.

135

http://nmpyc.readthedocs.io/


Bibliography

[85] T. Schmitt, T. Rodemann, and J. Adamy. Multi-objective model predictive

control for microgrids. at - Automatisierungstechnik, 68(8):687–702, 2020.

[86] A. K. Skiba. Optimal growth with a convex-concave production function. Econo-

metrica, 46:527–540, 1978.

[87] E. D. Sontag. Mathematical Control Theory. Springer New York, 1998.

[88] M. Stieler. Performance Estimates for Scalar and Multiobjective Model Predic-

tive Control Schemes. PhD thesis, Universität Bayreuth, Bayreuth, 2018.
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