
Numerical Identification of Motor Units
in Muscle Tissue from High Resolution

EMG Data

Von der Universität Bayreuth
zur Erlangung des Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)
genehmigte Abhandlung

von

Tobias Andreas Sproll

aus Engen

1. Gutachter Prof. Dr. Anton Schiela
2. Gutachter Dr. Martin Weiser

Tag der Einreichung: 26.07.2023
Tag des Kolloquiums: 11.01.2024

Abstrakt (deutsch)

Im menschlichen Körper sind motorische Einheiten die kleinste kontrollierbare Einheit
eines Muskels. Wenn wir uns bewegen und eine motorische Einheit aktiv ist, erzeugt
diese Aktivität ein elektrisches Potential, welches auf der Haut gemessen werden kann.
In der medizinischen Behandlung und Forschung kann es nun notwendig sein, bestimmte
motorische Einheiten in Muskeln anhand von Messungen auf der Haut zu identifizieren.
Jüngste Fortschritte in der Oberflächenelektromyographie ermöglichen es, Informatio-
nen über einzelne motorische Einheiten aus diesen Messungen zu gewinnen. Im ersten
Teil dieser Arbeit stellen wir ein mathematische Modell vor, welches die numerische
Identifizierung von motorischen Einheit aus einer Oberflächenelektromyographiemessung
ermöglicht. Basierend auf einem elektrostatischen Modell leiten wir ein adjungierter
Ansatz her der die effizienten Simulation einer Oberflächenelektromyographiemessung
ermöglicht. Dieses Modell benutzen wir um ein nichtlineares Optimierungsproblem zur
Identifizierung von motorischen Einheiten zu definieren. Wir zeigen dann, dass dieses
Optimierungsproblem mindestens eine Lösung besitzt. Des Weiteren leiten wir die Opti-
malitätsbedingungen erster Ordnung her welche die Basis eines Algorithmus zur Lösung
des Problems bilden.

Im zweiten Teil der Arbeit stellen wir einen Optimierungsalgorithmus vor, der die spe-
zifische mathematische Struktur dieses Problems ausnutzt. Dieser Algorithmus basiert
auf einem Newton Verfahren im Funktionenraum mit ungenauen Funktionsauswertungen
durch adaptive numerische Quadratur. Wir präsentieren ein globales Konvergenzresul-
tat für diese Methode und beschreiben detailliert seine algorithmische Implementierung.
Abschließend studieren wir verschiedene numerische Beispiele welche die praktische Per-
formance des Algorithmus demonstrieren.

I

Abstract (english)

In the human body, motor units are the smallest controllable unit of a muscle. When we
move and a motor unit is active, this activity generates an electrical potential that can
be measured on the skin. In medical treatment and research, it may now be necessary
to identify specific motor units in muscles based on measurements on the skin. Re-
cent advances in surface electromyography make it possible to obtain information about
individual motor units from these measurements.

In the first part of this paper, we present a mathematical model that allows the numerical
identification of a motor unit from a surface electromyography measurement. Based on
an electrostatic model, we derive an adjoint approach allowing the efficient simulation
of a surface electromyography measurement. We use this model to define a nonlinear
optimization problem for identifying motor units. We then show that this optimization
problem has at least one solution. Furthermore, we derive the first-order optimality
conditions which form the basis of an algorithm to solve the problem.

In the second part of the paper, we present an optimization algorithm that exploits the
specific mathematical structure of this problem. This algorithm is based on a New-
ton method in function space with inexact function evaluations by adaptive numerical
quadrature. We present a global convergence result for this method and describe in de-
tail its algorithmic implementation. Finally, we study various numerical examples that
demonstrate the practical performance of the algorithm.

III

Acknowledgments

First, I would like to thank my supervisor Prof. Dr. Anton Schiela, who brought my
attention to the topic during my studies at the TU Berlin and supported my research
since then. His knowledge, motivation, and joyful nature helped to remove any obstacles
in the research process and made writing this thesis possible.

Furthermore, I would like to thank Dr. Martin Weiser for reviewing this thesis as the
second surveyor. I also thank Prof. Dr. Lars Grüne and Prof. Thomas Kriecherbauer,
who were a part of the examination committee.

Next, I would like to thank Prof. Dr. Madeleine Lowery and her team, who supported
the development of the model by providing insight into the exciting field of biomedical
engineering. I also acknowledge Prof. Dr. Bernd Lapatki, who suggested the topic to
my supervisor Prof. Dr. Anton Schiela.

I thank all the members of the Chair of Applied Mathematics for a pleasant and sti-
mulating working environment: Dr. Matthias Stöcklein, Dr. Julian Ortiz, Dr. Manuel
Schaller, Dr. Simon Pirkelmann, Dr. Georg Müller, Dr. Michael Baumann, Dr. Marleen
Stieler, Dr. Arthur Fleig, Dr. Bastian Pötzl, Lisa Krügel, Frederik Köhne, Kilian Pioch,
Mario Sperl, and Jonas Schießl. Special thanks go to Dr. Robert Bayer, who helped
me countless times to install new software for this thesis and the lectures, and to Sigrid
Kinder, who supported the whole Chair with her incredible administrative skills.

Last but not least, I would like to thank my parents, who supported me my whole life
and encouraged me to pursue my goals. Without you, this accomplishment would not
have been possible.

V

Contents

Abstrakt (deutsch) I

Abstract (english) III

Acknowledgements V

Contents VII

1 Introduction 1
1.1 Outline . 3

2 Modeling of Surface EMG Measurements 5
2.1 Modeling Motor Unit Activity . 5
2.2 Transmission of Electric Potentials in Human Tissue 10
2.3 Simulating Measurements with an Adjoint Approach 20

3 An Optimization Problem to Identify a Motor Unit 27
3.1 Analysis of the Optimization Problem . 28
3.2 Analysis of the Lagrangian Function . 35

4 A Numerical Identification Algorithm 43
4.1 An Augmented Lagrangian Method . 43
4.2 Newton Line-Search with Inexact Evaluations 46
4.3 A Global Convergence Result . 48

5 A Practical Optimization Algorithm 53
5.1 Discretization of the Problem . 53
5.2 Adaptive Computation of the Lagrange Function 57
5.3 Details of the Inexact SQP-Method . 60
5.4 Details of the Lagrange Parameter Update 65

6 Numerical Examples 67
6.1 Identification of a Motor Unit in a Cylindrical Domain 67

VII

6.2 Influence of Impulse Response Functions 73
6.3 Influence of Algorithmic Parameters . 74
6.4 Influence of the Anatomy . 77
6.5 Comparing Different Electrode Setups . 79
6.6 Identifying a Multi-Fiber Motor Unit . 82
6.7 Identifying a Motor Unit in the FDI Muscle 84

7 Conclusion 87

Bibliography 89

Own Publications 95

List of Figures 97

List of Tables 101

Eidesstattliche Versicherung 103

VIII

Chapter 1

Introduction

In the human body, muscles are responsible for movements. These muscles consist of
many muscle fibers organized in so-called motor units. A motor unit is, thereby, the
smallest controllable unit of the muscle. When using a muscle, the nervous system
activates one or more of these motor units. This activation causes electrical signals, so-
called action potentials, to propagate along the muscle fibers. These propagating action
potentials create a spatially and temporally changing potential field. We can measure
this potential with electrodes placed on the skin above the muscle.

A fundamental question in medical research and diagnosis is: what is the bioelectric
source responsible for a specific measured potential on the skin? To answer this que-
stion, we need to find a way to identify these sources from the given measurements.
Such identification of bioelectric activity from surface measurement is required in many
fields of medicine, e.g., in measuring brain activity (EEG) or cardiac activity (ECG).
Correspondingly, a lot of work has been performed to develop tools for computational
assistance, see, e.g., [28] and references therein for EEG. In general terms, refinements
of classical Tychonov regularization techniques are applied to the spatial problem.

The corresponding technique for measuring action potentials in muscles is called elec-
tromyography (EMG). It can be used for research (which motor unit is responsible for
which movement?) or in pre-operative planning (where is the location of important
nerves, which should not be harmed in operations?). Similar techniques as described
above have also been applied to electromyography measurements [42, 57, 58]. These
techniques yield a smooth, distributed reconstruction of sources, which is appropriate in
those applications where the sources are smoothly distributed within the tissue. These
approaches solve mainly spatial problems, not taking into account the spatio-temporal
structure of the problem.

However, bioelectrical sources in motor units are known to have special structures. They
consist of a characteristic action potential that is concentrated along a line in space and
moves along a fiber. Approaches that directly attempt to process the spatio-temporal

1

information and exploit the high temporal resolution of surface EMG are less common.
A notable exception is [46]. The authors consider a regularized least-squares approach
for fitting the EMG signal by a linear combination of a moderate number of analytically
predefined and prelocated waveforms. This enables fast computations in real-time with
modest accuracy.

Our work aims to establish a mathematically sound approach to the EMG problem that,
similarly to [46], considers the special structure of moving action potentials in muscles.
Similar to [46], we use a least-squares tracking type functional for the identification.
However, we introduce refined modeling approaches to simulate a surface EMG measu-
rement from a given source. We also represent the source to be identified more flexibly
via a curve that can be chosen freely inside the muscle tissue.

We can model, using a quasi-static approach, cf. [51], the potential Φ, generated from
the moving action potentials, for each time instant t as the solution of a Poisson equation
of the form∫

Ω

(σ(x)∇Φ(x, t)) · ∇v(x) dx+
∫

∂ΩS

µΦ(s, t)v(s) ds =
∫
Ω

v(x) dρ(t) ∀v ∈ C∞(Ω) (1.1)

In this setting, the time-dependent source density ρ(t), given through a moving action
potential, is spatially concentrated on the motor unit and thus modeled as a Radon line
measure. Solutions to this problem in the sense of Stampacchia can be found inW 1,p′(Ω)
where p′ > d/(d− 1), Ω ⊂ Rd (cf., e.g., [53] and a discussion concerning uniqueness can
be found in [47]). However, the direct numerical solution of (1.1) for all t in the time
interval of interest would incur a high computational cost, i.e., for each time instant
an elliptic PDE on a three-dimensional domain would have to be solved. That would
render numerical approaches to the identification problem too costly. We overcome this
difficulty by an adjoint approach reducing the simulation of a single measurement via
(1.1) to evaluating a line integral.

Based on this simulation model, we establish a least-squares type tracking problem to
identify the motor units from a surface EMG measurement. The subject of our iden-
tification problem is the trajectory of the moving action potential, represented by a
parameterized curve. Unlike the least-squares approach in [46], our problem is formu-
lated in an infinite-dimensional function space setting, which makes the analysis of the
problem much more involved. Those kinds of infinite-dimensional optimization problems
emerge in many application-related problems. Therefore, the prototype of this problem
is studied very well, cf., e.g., [56, 63, 34], and we will employ techniques of analysis
established in the field of research to show the existence of solutions and first-order
optimality conditions. This lays the groundwork for an optimization-based numerical
approach to solve our identification problem.

To solve the identification problem numerically, we rely on well-known algorithmic ap-
proaches, cf., e.g., [48, 6]. However, due to the special structure of our problem, some
algorithmic adjustments are necessary. In particular, we use an adaptive quadrature

2

rule to evaluate the objective function changing the evaluation method from step to
step. Thus, we interpret the evaluation as an inexact evaluation of continuous quantities
rather than an exact evaluation of discrete quantities. Inexact function evaluations are
not uncommon in nonlinear optimization, and the topic is studied in different settings,
cf., e.g., [33, 38, 10, 13, 15, 62].

1.1 Outline
The goal of this thesis is to derive an optimization problem suitable for the identification
of a motor unit from surface EMG measurements. Furthermore, we present a numerical
algorithm that can solve the optimization problem. Finally, we validate the theoretical
considerations numerically. The rest of this chapter shows an outline of this thesis.

Chapter 2 - Modeling of surface EMG Measurements This chapter explains the
modeling aspect of the optimization problem. We start by describing the moving action
potentials. Afterward, we discuss a biophysical model in form of a partial differential
equation (PDE), describing the transmission of potentials in the human body. Moreover,
we discuss this PDE from a mathematical point of view, i.e., its solvability. Finally, we
introduce an adaptive approach for simulating a surface EMG measurement which we
also analyze numerically.

Chapter 3 - An Optimization Problem to Identify a Motor The third chapter
introduces the optimization problem used for the identification. We then conduct a
thorough analysis of the problem to show the existence of solutions. Moreover, we
define and analyze the augmented Lagrangian function and derive first-order optimality
conditions for the optimization problem.

Chapter 4 - A Numerical Identification Algorithm This chapter presents the
augmented Lagrangian method used to solve the optimization problem from the previous
chapter. Thereby, we modify the inner Newton method such that it considers the spe-
cific problem structure. Furthermore, we study the convergence of the Newton method
requiring two assumptions to be met. Therefore, we discuss these assumptions in detail
before we prove a global convergence result. Additionally, we shortly discuss the local
convergence of the Newton method.

Chapter 5 - A Practical Optimization Algorithm The fifth chapter treats the
implementation details. Therefore, we first discuss the finite element discretization of
the required quantities. Then, we explain the implementation of the adaptive quadrature
algorithm and how we can incorporate the requirements needed for global convergence.
Furthermore, we discuss the computation of the Lagrangian function and its derivatives.
Afterward, we talk about the implementation of the Newton method. Thereby, we split
the discussion into two parts. First, we discuss the computation of search directions
and secondly the line search. We close the discussion of the implementation details by

3

explaining the augmented Lagrangian method, i.e., how we compute the update of the
Lagrange multiplier.

Chapter 6 - Numerical Examples The sixth chapter studies some numerical ex-
amples. Therefore, we discretize the problem with finite elements as described in the
previous sector. We then solve the optimization problem and study different examples
which are interesting from a mathematical and a user point of view. Thereby the first
couple of examples use a cylindrical domain representing some limb. For this geome-
try, we conduct a performance analysis and study the influence of the impulse response
functions, two algorithmic parameters, geometric properties, and the position of the
electrodes. Furthermore, we study an example where we identify a motor unit that con-
sists of multiple muscle fibers. Last but not least, we study the identification in a hand
geometry created from MRI data.

Chapter 7 - Conclusion The last chapter of this work summarizes the results and
provides possibilities for future research.

4

Chapter 2

Modeling of Surface EMG
Measurements

In the first part of this work, we derive a mathematical model that simulates a surface
EMG measurement. This model builds the foundation for the optimization problem,
which we will use to identify a motor unit from a surface EMG measurement. Before
discussing the model, we shortly describe the principle of a surface EMG measurement.

When we use a muscle, our brain sends a signal that activates the motor unit responsible
for the movement. A motor unit is, therefore, the smallest controllable unit of a muscle.
When a motor unit is activated, two electrical signals, the so-called action potentials,
propagate from the neuromuscular junction in the middle of the motor unit toward
both ends. This propagation of electrical sources produces an electric potential. Since
human tissue behaves like a volume conductor, we can measure this potential at the
skin. Our model, therefore, consists of two parts. First, we model the activation of the
motor unit. In this section, we model the motor unit and the current source density
ρi, describing the moving action potentials. Secondly, we model the transmission of the
generated potential through human tissue. For this purpose, we model a domain Ω ∈ R3

representing some part of the human body. We then use Maxwell’s equations to derive
a PDE describing the transmission of the electric potential in this domain. As we will
see, using this PDE to simulate a surface EMG measurement would be inefficient and
associated with high computational costs. Thus, we introduce an adjoint approach for
efficiently simulating a surface EMG measurement. We then close this chapter with a
short numerical example, discussing some aspects of the numerical simulation. Parts of
this chapter has been published in [64].

2.1 Modeling Motor Unit Activity
Before we can model the activation of a motor unit, we must first define what a motor unit
is and how we can describe it mathematically. Motor units are the smallest controllable

5

units in a muscle. In general, more than one motor unit is activated. But these motor
units are distinguishable using decomposition techniques, cf. [37, 23, 35]. Therefore,
we assume that only one motor unit is active. Most muscles consist of several hundred
motor units, and each motor unit consists of up to 2000 muscle fibers itself, see [20, 26].
Obviously, modeling all these muscle fibers on a microscopic level would exceed the
computational effort. Therefore, we model the muscle at the macroscopic level as a
domain ΩM and select only one motor unit on the microscopic level. In the next section,
we will discuss the properties of ΩM in more detail.

In general, all muscle fibers in a motor unit are activated simultaneously. Furthermore,
we can consider biological tissue as a linear volume conductor, and consequently, we can
apply the principle of superposition, see [43, 45]. Since the muscle fibers of one motor
unit lie in the same cylindrical region of the muscle, see [20, 26], these observations make
it possible to consider the motor unit as single-fibered. Such a single-fibered motor unit
represents the center of mass of the actual motor unit, i.e., the area of the motor unit
with the most muscle fibers. Figure 2.1 shows a cylindrical motor unit with 100 muscle
fibers.

ν[m/
s]

ν[m/
s]

u(−tA)

u(0)

u(tA)

Figure 2.1: Sketch of a motor unit with 100 muscle fibers (black) and single-fibered
representative (red)

Since the radius of such a single-fibered motor unit is very small, we will model our
motor unit as (the trace of) a fixed curve u in ΩM . To prove that the optimal problem
(3.3) has at least one solution, we need that this curve u to satisfy some regularity
requirements. Thus, we demand u ∈ H2(I,ΩM), where H2(I,ΩM) is the space of
vector-valued functions v : R ⊃ I 7→ ΩM such that each component is in the Sobolev
space H2(I), cf. [1, 8]. Since H2(I) is continuously embedded in C1(I), we can, in this
section, treat the curve u as if it is a regular C1 curve. When we define the moving action

6

potentials, we choose a parameterization for u, determining the length of the interval I.

When a motor unit is activated, two action potentials propagate from the neuromuscu-
lar junction toward both ends of the motor unit. Those two action potentials extend
spatially along that motor unit but also move along the motor unit during the activation
period. The action potential takes a characteristic shape, sketched in Figure 2.2, which
we map onto a specific time-varying segment of the curve describing the motor unit to
obtain a line measure ρl(t) at time t. This line measure will later define the current
source density responsible for the measured electric potential. Further difficulties arise
towards the ends of the fiber. Here the principle of conservation of charges is violated,
and we must add additional source terms.

Biomedical modeling of action potentials starts with the following function

im(z) :=
{
−c(σin, r, nF) exp(az)

(
6az + 6(az)2 + (az)3

)
if z ≤ 0

0 else,
(2.1)

in terms of a reference parameter z ∈ R. Here a > 0 is a scaling factor that determines
the spatial extension of the signal, and c(σin, r, nF) is a constant depending on the
intracellular conductivity σin, the radius of the motor unit r, and the number of muscle
fibers nF . We refer to [43, 52, 3] for a more detailed description of the action potential.
The antiderivative of im is

Im(z) :=
{
−c(σin, r, nF) exp(az)

(
3(az)2 + (az)3

) 1
a if z ≤ 0

0 else

and thus ∫
R

im(z) dz = Im(0)− lim
z→−∞

Im(z) = 0,

which corresponds to the principle of conservation of charge in the body.

Up to now, the action potential is defined as a function on R, so the next step is to
define a pull-pack of im onto the given curve u(I) ⊂ ΩM . A common assumption in
biomedical modeling is that the velocity ν with which the action potential propagates
along the fiber is constant, see [43]. Since the curve u represents the trajectory of the
two propagating action potentials, we choose the parameterization of the curve u such
that it matches with the propagation velocity ν of the signal, in other words, |u̇(τ)| ≡ ν.
That means we can identify each point on the curve u with some z ∈ R via the arc
length

z(τ) =
τ∫

0

|u̇(ξ)| dξ =
τ∫

0

ν dξ = ντ.

Therefore, z(0) = 0 corresponds to the neuromuscular junction u(0), and we can identify
points that are on the “right” side of the neuromuscular junction with some z ∈ R+ and

7

points on the “left” side with some z ∈ R−. With tA, we denote the time one action
potential needs to propagate from the neuromuscular junction to the fiber end. Thus,
z(−tA) and z(tA) correspond to the ”left” resp. ”right” end of the motor unit. Conse-
quently, we choose I = [−tA, tA] and denote with u(−tA) and u(tA) the corresponding
ends of the motor unit.

Next, we assume that the activation of the motor unit happens at some time t0 > 0.
Then, to model the action potential propagating from the neuromuscular junction toward
the “right” end of the fiber, we shift the origin of the action potential im(z) by ν·(t0− t)
and set

ρ̃(u(τ), t) =
{
im (z(τ) + ν ·(t0 − t))) if z(τ) > 0
0 else.

To model the second action potential that propagates in the opposite direction, we mirror
the signal at point zero, which is equal to adding a minus sign before z(τ) and changing
z(τ) > 0 to z(τ) < 0. By combining both action potentials, we get the line-measure

ρ̃l(u(τ), t) := ρl(τ, t) :=
{
im (z(τ) + ν ·(t0 − t))) if z < 0,
im (−z(τ) + ν ·(t0 − t))) if z > 0

}
= im (ν ·(|τ |+ t0 − t))

(2.2)

as a source term.

Conservation of charge and end effects As we have observed, our model im of
the action potential respects the conservation of charge, i.e. its total integral over R
vanishes. However, our definition of the measurement y(t) (cf. 2.35, below) involves
only an integral over a bounded subset of R, and the corresponding total charge is given
by (taking into account the substitution of variables formula):

ρtotal(t) =
0∫

−tA

im (ν ·(−τ + t0 − t)) ν dτ +
tA∫
0

im (ν ·(τ + t0 − t)) ν dτ

= −Im(ν ·(−τ + t0 − t))
∣∣∣0
−tA

+ Im(ν ·(τ + t0 − t))
∣∣∣tA
0

(2.3)

which is, in general, non-zero. This truncation of the integral can be observed in Fi-
gure 2.2 when comparing the prototype of the action potential (see Figure 2.2a) with the
two propagating action potentials in the Figures 2.2b and 2.2d. In the beginning, the
tails of the action potentials are not present on the motor unit (see Figure 2.2b). After
some time, the first part of the action potentials is no longer on the motor unit (see
Figure 2.2d). These truncations need to be compensated for. Otherwise, the principle of
conservation of charge would be violated and yield characteristic artifacts in simulations,

8

z

im(z)

(a) Prototype of the action potential (2.1)

z(−tA) z(0) z(−tA)
z

im(z)

(b) Action potential truncated at the tail

z(−tA) z(0) z(−tA)
z

im(z)

(c) Action potential with negligible truncation

z(−tA) z(0) z(−tA)
z

im(z)

(d) Action potential truncated at the head

Figure 2.2: Different versions of the action potential

so-called end effects. We can observe those end effects when we discuss the simulation
at the end of this chapter.

The representation of (2.3) by boundary terms at τ = −tA, 0, tA already suggests how
to construct an appropriate compensation. We will add point (Dirac) measures at u(0),
u(tA), and u(−tA), scaled by the negatives of the corresponding boundary terms to the
measure ρ(t). This can also be interpreted physiologically: at the ends of the fibers,
transitional charge imbalances are compensated by small charge displacements in the
close vicinity of the end plates. A similar approach can be found in [26].

Figure 2.2b shows that the first truncation of the action potential is at the neuromuscular
junction. In (2.3), this corresponds to the boundary term at τ = 0. Therefore we get

ρ̃s(u(0), t) := ρs(0, t) := 2Im(ν ·(t0 − t)), (2.4)

which is a Dirac measure at the neuromuscular junction u(0). Figure 2.2c shows that
after some time, the support of the action potential lies completely on the motor unit.

9

Therefore, the charge imbalances from the truncation at the neuromuscular junction
tend exponentially to zero.

When the action potentials arrive at the ends u(−tA) and u(tA) of the motor unit, see
action potentials in Figure 2.2d, they are again truncated. Thus we have to compensate
the boundary terms at τ = −tA and τ = tA in (2.3) by Dirac measures at u(−tA) and
u(tA) as follows:

ρ̃s(u(−tA), t) = ρ̃s(u(tA), t) := ρs(tA, t) := −Im(ν ·(tA + t0 − t)). (2.5)

Observe that these charges are 0, if t ≤ tA + t0, since Im(z) = 0 for z ≥ 0. Our above-
described compensation technique can reduce these end effects, as shown in the last
part of this chapter. The current source density ρi is then the sum of the line measure
ρ̃l(u(τ), t) and the stationary source term

ρ̃s(t) = ρ̃s(u(0), t) + ρ̃s(u(tA), t) + ρ̃s(u(−tA), t). (2.6)

The next step in deriving a model for simulating surface EMG measurements is to derive
a model for the potential transmission in human tissue. Thus, this is the focus of the
next section.

2.2 Transmission of Electric Potentials in Human Tissue

In this section, we study the behavior of electromagnetic fields in human tissue. There-
fore, we derive a model that connects the charge density of the moving action potential
ρi with the electric potential Φ. This model consists of two parts. The first part descri-
bes the transmission of the potential in the domain, and the second part deals with the
behavior at the boundary. Due to the moving action potential, the model is potentially
time-dependent. But there are some common assumptions when modeling a bioelectric
system. Those assumptions transform the time-dependent model into a quasi-static mo-
del. We additionally study what happens when the potential transmissions from one
tissue type into another. Finally, we transform the obtained PDE from its strong form
into the weak form needed for the following mathematical analysis. Before we can derive
this model, we must first discuss the mathematical description of human tissue.

Modeling Human Tissue

First, we note that it is sufficient to model only those parts of the body we are interested
in. This is reasonable since we do not gather relevant information from parts far away.
For example, we do not gain additional information from the left arm when we are
interested in a motor unit in the right arm. We choose an open and bounded domain
Ω ⊂ R3 with Lipschitz boundary ∂Ω to represent such a body part. This means ∂Ω is
locally the graph of a Lipschitz continuous function, see [18, 56]. Since the human body
consists of different tissue types, we split the domain Ω into several subdomains Ωi, such

10

that

Ω = ∪Ωi

∂Ωij = Ωi ∩ Ωj if i ̸= j,

where ∂Ωij is the shared boundary between two tissue types. For the sake of simplicity,
we will restrict our model to muscle, fat, and bone tissue. The muscle tissue we denote
with ΩM , the fat tissue with ΩF , and the bone tissue with ΩB. To denote the boundary
between two subdomains, we use ∂ΩMF , ∂ΩMB, and ∂ΩFB. The order of the indices
thereby depends on the direction of the outer normal vector. If, e.g., the vector points
from muscle to fat, we denote it with ∂ΩMF . Consequently, we use ∂ΩFM if the normal
vector points from fat to muscle. Since we model only a part of a human body, we get
an artificial boundary truncating the body, which we call ∂ΩA. Last but not least, skin
tissue bounds the rest of our domain, and we label it with ∂ΩS . Thus,

∂Ω = ∂ΩS ∪ ∂ΩA

∅ = ∂ΩS ∩ ∂ΩA.

In the human body, each tissue type has three different electromagnetic properties.
Those properties are the conductivity σ, the permittivity ϵ, and the permeability µ.
First, we note human tissue is not magnetic. Thus, the permeability is given by the
permeability of a vacuum µ0. We also know that the upper-frequency limit in human
tissue is around 1kHz, see [43, 51, 45]. We can assume that the tissue is purely resistive
in this frequency range. Thus, the properties are independent of the exact frequency, see
[43, 54]. All tissue types, excluding muscle tissue, are isotropic, [3, 43, 54]. Therefore,
conductivity and permittivity are the same in each direction. Contrary, muscle tissue
is anisotropic, i.e., the conductivity and permittivity are higher in the direction of the
muscle fibers. Therefore, both properties depend on the geometry. Since we have an
inverse problem, the orientation of the muscle fibers is a priory unknown. But for simple
geometries, we can assume that muscle fibers are straight or, at least, only slightly
curved. Therefore we can define, for example, the x-axis as the axial direction and
rotate the geometry such that the motor unit is approximately parallel to the x-axis.
Thus we can represent both properties with a rank two tensor of the form

σM =

σM,axial 0 0
0 σM,radial 0
0 0 σM,radial

 ,
see [43, 3]. To be consistent, we write the conductivity and permittivity as a scaled
Identity matrix if the tissue is isotropic, e.g.,

σF =

σF 0 0
0 σF 0
0 0 σF

 ,

11

Table 2.1 shows conductivity and permittivity values for different tissue types. Note
that we have chosen the average of resistive and conductive skin, and the permittivity
is given relatively to the permittivity in a vacuum, which is ϵ0 = 8.8 · 10−12 As

V m . The
conductivity is positive and constant for all tissue types, and thus the two estimates

σmax := max{∥σM∥∞, |σF |, |σB|} <∞ (2.7)
σmin := min{λmin(σM), |σF |, |σB|} > 0. (2.8)

are valid. This shows that the conductivity is in L∞(Ω) and elliptic, which we will need
later for the ellipticity and boundedness of the bilinear form (2.30).

tissue type fat bone muscle (axial) muscle (radial) skin
σ[S/m] 4.0 · 10−2 2.0 · 10−2 4.0 · 10−1 9.0 · 10−2 0.5
ϵ[rel.] 1.5 · 105 5.85 · 103 2.0 · 107 4.4 · 106 5.5 · 104

Table 2.1: Conductivity σ and permittivity ϵ for different tissue types at 100Hz, cf. [59]

Next, we derive the physical model that describes the transmission of the electric poten-
tial through human tissue.

Using Maxwell’s Equations to Describe the Potential Transmission

In general, Maxwell’s equations describe Electromagnetic phenomena, see [36, 52]. Since
the impressed current density Ji is harmonic with frequency ω, the induced electric field
E is also harmonic, see [52]. Therefore, we use the time-harmonic Maxwell’s equations
given by:

0 = iωB + curlE (2.9)
0 = divB (2.10)

−J = iωD − curlH (2.11)
ρ = divD (2.12)

where E is the electric field intensity, H is the magnetic field intensity, D is the electric
flux density, B is the magnetic flux density, ρ is the electric charge density, and J is the
electric source density, see [36, 32].

Equation (2.9) is called Faraday’s law of Induction. It states that a temporal changing
magnetic flux density causes a changing electric field intensity. Since, in general, there
is no magnetic material in human tissue, see [51], and we further assume that there is
no external magnetic field, we can neglect this equation.

Equation (2.10) is Gauss’s Magnetic Law. It says that the magnetic flux is source-free.
We can also neglect this equation.

Equation (2.11) is called Ampere’s law. Similar to Faraday’s law of Induction, it states
that the flow of electric currents causes a spatially changing magnetic field.

12

Last but not least, equation (2.12) is Gauss’s Electric Law. It describes how electric
charges influence the resulting static electric field. More detailed, it says that charges
are the endpoints of field lines.

Analyzing those equations, we notice that they do not cover material properties. We can
add the material properties by inserting the so-called constitutive equations, see [36].
Similarly to [43, 51], we assume that human tissue is a linear material. But in contrast,
we allow that the material is inhomogeneous and anisotropic. With these assumptions,
the constitutive equations are

D = ϵE (2.13)
B = µH (2.14)

where ϵ : R3 7→ R3×3 is the dielectric tensor and µ : R3 7→ R3×3 is the permeability
tensor. Inserting (2.13) and (2.14) into and (2.11) we get

−J = ϵiωE − curlµ−1B (2.15)

Since the divergence of the curl is always zero, we can apply the divergence to (2.15)
such that

−divJ = div ϵiωE. (2.16)

Next, we assume that human tissue behaves as a volume conductor, i.e., the material is
conductive, see [43]. Thus the electric source density J can be written as the sum of a
conducting current field σE and an impressed current field Ji, i.e.,

J = σE + J i, (2.17)

where σ : R3 7→ R3×3 is the conductivity tensor, see [51, Eq. 27]. The impressed current
field Ji is, thereby, connected to the current source density ρi via

divJi = −ρi, (2.18)

see [51]. Inserting (2.17) and (2.18) into (2.16) leads to

div (σ + iωϵ)E = −divJ i = ρi. (2.19)

Next, we introduce the magnetic vector potential A and the scalar potential Φ. There-
fore, we first notice that according to the magnetic law of Gauss (2.10)

divB = 0.

Thus, we can conclude that there exists a magnetic vector potential A : R3 7→ R3 with

B = curlA.

13

Inserting this equation in Faraday’s law (2.9), we get

0 = curl (E + iωA) .

Similarly, we can now conclude that there exists an electric scalar potential Φ : R3 7→ R
with

E = −∇Φ− iωA. (2.20)

Inserting (2.20) into (2.19) leads then to

−div ((σ + iωϵ) (∇Φ+ iωA)) = ρi. (2.21)

In most cases, solving this hyperbolic PDE would be too costly. But when modeling
bio-electric phenomena, it is common to assume that the process is quasi-static, see
[45, 51, 44]. The quasi-static assumption states that the transmission of the electric
field is much faster than the propagation of action potentials generating it. Thus the
electric field behaves at each point in time as if it is static. Additionally, the quasi-
static assumptions state that we can neglect inductive and capacitive effects. Before
we apply those assumptions to (2.21), we briefly discuss their consequences and under
which circumstances they are applicable.

The Quasi-Static Approximation For the sake of simplicity, we assume a homo-
geneous domain Ω while studying the quasi-static approximation. If the domain is not
homogeneous, we can consider (2.21) in its weak form. The weak form allows a discus-
sion of the quasi-static approximation for each subdomain individually as long as the
transmission of the potential is continuous at the boundary between two subdomains.
Therefore, we will add this condition to our list of boundary conditions in the next
section. The following study of quasi-stationary is a summary of the examination done
by Plonsey and Heppner, see [51].

To derive the quasi-static approximation, we assume that Φ and A satisfy the Lorentz
gauge

divA = −(σ + iωϵ)µΦ, (2.22)

see [51, 29]. Using the Lorentz gauge decouples the computation of Φ and A such that
they are the solution of the Helmholtz equations

∆Φ+ k2Φ = −ρi
σ + iωϵ

∆A+ k2A = −µJ i,

14

where k2 = −iωµ(σ + iωϵ) is the complex wave number, see [51, 29]. Fundamental
solutions to this type of problem are given by

A(x) = µ

4π

∫
Ω

Js(x′) exp(−ikR)
R

dx′ (2.23)

Φ(x) = 1
4π(σ + iωϵ)

∫
Ω

ρi(x′) exp(−ikR)
R

dx′. (2.24)

Here, R := ∥x − x′∥2 is the euclidean distance between a field point x (belongs to A
resp. Φ) and a source point x′ (belongs to Ji resp. ρi). The maximal distance depends
on the actual body, but for simplicity, we assume Rmax ≤ 0.5m.

tissue type fat bone muscle (axial) muscle (radial) skin
k 0.004(1− i) 0.015− 0.011i 0.015− 0.011i 0.007− 0.005i 0.014− 0.014i

exp (−ikRmax) 1 0.999− 0.001i 0.999− 0.001i 1 0.99− 0.007i
|kRmax|2 8 · 10−6 3.9 · 10−6 8.7 · 10−5 1.9 · 10−5 9.8 · 10−5

ωϵ
σ 0.021 0.016 0.373 0.27 6 · 10−4

Table 2.2: Properties for the quasi-static assumptions for different tissue types

The first assumption we want to verify is that we can neglect propagation effects, i.e.,
the electric field E behaves as if it is static. Studying (2.23) and (2.24), we notice that
exp (−ik∥x− x′∥) corresponds to the time the potential needs to react to changes in the
source. We get exp (−ikR) ≈ 1, if kRmax ≪ 1 implying that the potentials (2.23) and
(2.24) are equivalent to their static counterparts, cf., e.g., [29, Eq. 2.29 and Eq. 5.65].
Table 2.2 shows the computed phase delays for all tissue types used. The data shows
that exp (−ikR) ≈ 1 for all tissues with a maximal error of 0.01 such that we can assume
that both fields behave as if they are static. Consequently, we can solve (2.21) for each
time step separately.

Secondly, we verify that we can neglect inductive effects, i.e., E = −∇Φ. The term iωA
in (2.20) describes the magnetic induction, i.e., the part of the electric field induced from
the vector potential. Plonsey and Heppner showed, using (2.24), (2.23) and (2.22), that
|ωA/∇Φ| = |kR|2, see [51, Eq. 13]. Thus, we can neglect the magnetic induction if
|kR|2 ≪ 1, which is similar to the condition we used to show that the fields are static,
i.e., for static fields, we can neglect the magnetic induction. The computed values in
Table 2.2 underlay this assumption. Hence, E = −∇Φ and (2.21) reduces to the complex
Poisson problem

−div ((σ + iωϵ)∇Φ) = ρi.

The last assumption we want to verify is that we can neglect capacitive effects. As we
will see, this assumption is also the weakest. The complex dielectric constant σ + iωϵ
describes the capacitive effects of the material. This constant is real, i.e. σ+ iωϵ ≈ σ, if

15

ωϵ/σ ≪ 1. As the computed values in Table 2.2 show, this condition is only satisfied for
fat, bone, and skin tissue. The quotient is rather large for both types of muscle tissue,
implying that neglecting capacitive effects is not necessarily possible for muscle tissue.
However, it’s well known that the conductivity and permittivity of muscle tissue depend
on the frequency, and the quotient varies in a wide range, see [55, 43]. Nevertheless,
[55, Table II] shows that the effect on the measured potential is rather small for the
material properties we use, see Table 2.1. Therefore, we still assume that we can neglect
capacitive effects for muscle tissue, i.e., σ ≈ σ + iωϵ.

Using the quasi-static approximation, (2.21) transform to

−div (σ(x)∇Φ(x, t)) = ρi(x, t) ∀t, . (2.25)

This equation finally models the transmission of the, from the action potential ρi, induced
electric potential Φ through human tissue. As usual, when using a PDE in optimization,
we want to transform (2.25) into its weak form. Therefore we also need some boundary
conditions, which we discuss in the next section.

Boundary Conditions

Previously, when we modeled human tissue, we described three different boundary types.
Those are skin that separates the tissue from the surrounding air, an artificial boundary
truncating the body, and boundaries between different tissues. For the first two cases, we
start with general "Robin" boundary conditions, see [56, Section 2.3.2]. For our problem,
they are given by

∂νΦ(s, t)− µ(Φ(s, t)− Φ0) = g(s),

where ∂ν is a normal derivative, Φ0 ∈ R is the potential on the outside of the domain,
g(s) ∈ L∞(∂Ω) is a external source density, µ is the scaled trace operator, and with s we
denote the boundary variable. In our setting, the normal derivative ∂ν is the directional
derivative into the normal outward direction ν, which is orthogonal to the boundary ∂Ω.
The trace operator is a linear continuous map µ : H1(Ω) 7→ L2(∂Ω) such that for all
continuous functions (µy)(s) = y(s) a.e. on ∂Ω. For more details, we refer to [2, 1].
To incorporate material properties, we scale the trace operator with σi

δs , where δs is the
thickness of the boundary layer and σi is the conductivity of the boundary tissue. For
simplicity, we use the same letter for the scaled trace operator, i.e., µ := σi

δsµ.

Robin boundary conditions state that the outgoing flow of the potential given by ∂νΦ(s)
is proportional to the difference between the potential at the boundary and some external
potential.

First, we consider the boundary to be skin. In this case, we determine that the electrical
potential in the air is zero. Furthermore, we assume that no electrical sources are present
in the air. That means Φ0 = 0 and g(s) ≡ 0, such that we get

∂νΦ(s, t) = −µΦ(s, t) at ∂Ω0 (2.26)

16

as a boundary condition.

In the case of an artificial boundary, we suppose that no relevant sources are in the
”infinite” volume conductor, such that g(x) = 0. Next, we assume that the potential is
zero if we are far enough away from the current source density ρi, implying Φ0 = 0 and
δs→∞. Consequently, we get homogeneous Neumann boundary conditions

∂νΦ(s, t) = 0 at ∂Ω∞. (2.27)

Finally, we want the potential transmission to be continuous at the boundary between
different tissue types. Therefore, we use the so-called transmission conditions

σi∂νΦ(s, t) = σj∂νΦ(s, t) at ∂Ωij . (2.28)

Deriving the Weak Form

Combining the results that we have derived so far, we get

−divσ∇Φ(x, t) = ρi(x, t) in Ω
∂νΦ(x, t) = −µΦ(x, t) at ∂ΩS

∂νΦ(x, t) = 0 at ∂ΩA

σi∂νΦ(x, t) = σj∂νΦ(x, t) at ∂Ωij .

(2.29)

Since there are no time derivatives, this is a spatial PDE. Therefore, we must solve it for
each temporal snapshot t ∈ [0, T]. For fixed t, (2.29) is the so-called strong form of an
elliptic PDE. The solution of such a PDE has to be at least two times differentiable. In
general, this is a strong assumption, and there must not necessarily exist a solution to the
problem. To overcome this problem, mathematicians have defined the weak derivative,
Sobolev spaces, and the weak or variation form of a PDE. A detailed theory about those
topics can be found, e.g., in [1, 56, 25].

We apply formal integration by parts to the first equation of (2.29) to derive the weak
form. We must thereby consider that the conductivity σ depends on the tissue type and
that the transmission of the potential Φ is continuous at the boundary. To study the
influence of these two aspects, we exemplarily divide the integration domain Ω into two
subdomains Ω1 and Ω2. Since the transmission condition does not affect the right side
of the equation, we analyze only the left side of the problem. First, we multiply with a
testfunction v ∈ H1(Ω) and integrate over Ω. Since the subdomains are disjoint, we can
then split the integral such that we get

−
∫
Ω

div(σ∇Φ)v dx = −
∫
Ω1

div(σ1∇Φ)v dx−
∫
Ω2

div(σ2∇Φ)v dx.

Applying integration by parts onto both integrals leads to

... =
∫
Ω1

σ1∇Φ∇v dx−
∫

∂Ω1

σ1∂νΦv ds+
∫
Ω2

σ2∇Φ∇v dx−
∫

∂Ω2

σ2∂νΦv ds.

17

Then, we split the boundaries ∂Ω1 and ∂Ω2 into the shared part ∂Ω12 resp. ∂Ω21 and the
remaining boundary parts, denoted with ∂Ω1\∂Ω12 and ∂Ω2\∂Ω21. Using those splits,
we get

... =
∫
Ω1

σ1∇Φ∇v dx−
∫

∂Ω1\∂Ω12

σ1∂νΦv ds−
∫

∂Ω12

σ1∂νΦv ds

+
∫
Ω2

σ1∇Φ∇v dx−
∫

∂Ω2\∂Ω21

σ2∂νΦv ds−
∫

∂Ω21

σ2∂νΦv ds.

The transmission condition (2.28) implies now that the integrals over ∂Ω12 and ∂Ω21
are the same, but since the orientation of the outer normal vector is different they have
a different sign. Thus, they cancel each other out, and we can compute

... =
∫
Ω1

σ1∇Φ∇v dx−
∫

∂Ω1\∂Ω12

σ1∂νΦv ds+
∫
Ω2

σ1∇Φ∇v dx−
∫

∂Ω2\∂Ω21

σ2∂νΦv ds

=
∫
Ω

σ∇Φ∇v dx−
∫
∂Ω

σ∂νΦv ds.

Applying the same method to (2.29) and inserting the remaining boundary conditions
(2.27) and (2.26) yield the following bilinear form

a : H1(Ω)×H1(Ω)→ R

a(Φ, v) :=
∫
Ω

(σ(x)∇Φ(x)) · ∇v(x) dx+
∫

∂ΩS

µΦ(s)v(s) ds. (2.30)

Due to (2.7), (2.8), and the presence of Robin boundary conditions with µ > 0 on ∂ΩS ,
this bilinear form is H1(Ω)-elliptic by a generalized Poincare inequality, cf., e.g., [56,
Lemma 2.5]. Thus, by the Lax-Milgram theorem, we obtain a continuously invertible
linear operator

A : H1(Ω)→ H1(Ω)∗

(AΦ)(v) := a(Φ, v).

Since H1(Ω) is reflexive, we may identify H1(Ω)∗∗ ∼= H1(Ω) and also consider the adjoint
operator A∗ : H1(Ω)→ H1(Ω)∗ of A as (A∗v)(Φ) = a(Φ, v) = (AΦ)(v).

In Section 2.1, we modeled the current source density ρi at a time-instant t with a
line measure ρl(t) ∈ M(Ω). HereM(Ω) is the Banach space of Radon measures on Ω,
which is isomorphic to the dual C(Ω)∗ of the space of continuous functions by the well
known Riesz representation theorem, see [8, Theorem 5.5]. Thus, we may introduce the
following weak form:

a(Φ(t), v) =
∫
Ω

vdρi(t) ∀v ∈ C∞(Ω). (2.31)

18

Since H1(Ω) ̸↪→ C(Ω) in our 3D-setting, we cannot write (2.31) as an operator equation
AΦ(t) = ρi(t) in H1(Ω), and thus the Lax-Milgram theorem cannot be applied directly.
Nevertheless, by an approach due to Stampacchia, see [53], solvability of (2.31) with
Φ(t) ∈W 1,p′(Ω) for some p′ < 3/2 can be established.

In this approach, the bilinear form (2.30) is redefined on different spaces as

ap :W 1,p′(Ω)×W 1,p(Ω)→ R

with 1/p + 1/p′ = 1 for p > 3, implying that W 1,p(Ω) ↪→ C(Ω). This gives rise to the
following restricted pre-dual problem for some l ∈W 1,p′(Ω)∗ ↪→ H1(Ω)∗:

find ψ ∈W 1,p(Ω) : ap(v, ψ) = l(v) ∀v ∈ H1(Ω).

By Lax-Milgram, this problem has a solution ψ ∈ H1(Ω), and it is a question of regularity
theory if ψ is an element of W 1,p(Ω). If this is true for all l ∈W 1,p′(Ω)∗, which is known
as “maximal regularity”, then the pre-dual operator

∗Ap :W 1,p(Ω)→W 1,p′(Ω)∗

(∗Apψ)(v) = ap(v, ψ)

is an isomorphism by the open mapping theorem.

Remark 1. More generally, it can be shown that ψ is an element of H1(Ω) ∩ C(Ω) if
l ∈ W 1,p′(Ω)∗ for p′ > d/(d − 1), Ω ⊂ Rd, cf. e.g. [31]. Then, with some additional
technical effort, we can still show the solvability of (2.31), but an additional criterion is
required to single out a unique solution. A detailed discussion can be found in [47].

For simplicity, we thus impose the following assumption:

Assumption 2.2.1. The domain Ω and its subdomains Ωj are sufficiently regular, such
that the operator ∗Ap :W 1,p(Ω)→W 1,p′(Ω)∗ is an isomorphism for some p > 3.

Under this assumption and since Sobolev spaces are reflexive, we can conclude that the
adjoint Ap := (∗Ap)∗

Ap :W 1,p′(Ω)→W 1,p(Ω)∗

(Apφ)(w) := ap(φ,w)

is an isomorphism, since adjoints of isomorphisms in normed spaces are also isomor-
phisms. Due to the continuous and dense embedding W 1,p(Ω) ↪→ C(Ω) we can use the
corresponding adjoint embedding C(Ω)∗ ↪→ W 1,p(Ω)∗ to regard the charge ρ(t) as an
element ofW 1,p(Ω)∗ for each t, and we obtain unique solvability of the operator equation:

ApΦ(t) = ρ(t)

Hence, a unique electric potential Φ(t) ∈ W 1,p′(Ω) that satisfies (2.31) exists for each
ρ(t). Since all spaces are reflexive, we can identify the adjoint and pre-adjoint operators,
i.e., A∗

p = ∗Ap.

19

2.3 Simulating Measurements with an Adjoint Approach

With the above-derived model, the potential Φ(t) can, in principle, be computed in the
whole domain for every t if ρ(t) is given. However, the computational effort to do so
with finite elements is too large, given that we are only interested in a certain number
of measurements yi(t) at the boundary of Ω. Thus, we develop a more efficient adjoint
approach to compute a desired measurement y(t) ∈ R from given ρ(t).

In our setting, the potential is measured with small circular electrodes on the skin as
follows

y(t) := B(Φ(t)) = 1
|D|

∫
D

Φ(s, t) ds,

where D ⊂ ∂ΩS is the area of the electrode. The trace theorem, cf., e.g. [56, Theorem
2.1], implies that B is well defined as an element of W 1,p′(Ω)∗.

Let ρ(t) ∈W 1,p(Ω)∗ and denote by Φ(t) ∈W 1,p′(Ω) the solution of

(ApΦ(t))(v) = ρ(t)(v) ∀v ∈W 1,p(Ω).

Now consider the solution ω ∈W 1,p(Ω) of the adjoint problem:

(A∗
pω)(φ) = B(φ) ∀φ ∈W 1,p′(Ω). (2.32)

which corresponds to the following Poisson problem in its weak form:

∫
Ω

σ(x)∇φ(x) · ∇ω(x) dx+
∫

∂ΩS

µφ(s)ω(s) ds = 1
|D|

∫
D

φ(s, t) ds ∀φ ∈W 1,p′(Ω). (2.33)

Then we compute easily

y(t) = B(Φ(t)) = (A∗
pω)(Φ(t)) = ap(Φ(t), ω) = (ApΦ(t))(ω) = ρ(t)(ω).

That means we can compute the potential at an electrode efficiently by evaluating

y(t) =
∫
Ω

ω(x) dρi(t). (2.34)

where ω ∈W 1,p(Ω) ↪→ C(Ω) is the previously computed solution of the adjoint problem
(2.32). We can now insert the previously derived definition of ρi = ρl + ρs into (2.34).
Additionally, we stress the dependence of the measurement y on u by including u as an

20

argument. Using (2.2) and (2.6) we get

y(u, t) =
∫
Ω

ω(x)d(ρ̃l + ρ̃s)(t)

=
tA∫

−tA

ω(u(τ))ρ̃l(u(τ), t)|u̇(τ)| dτ +
∑

τ∈{−tA,0,tA}
ω(u(τ))ρ̃s(u(τ), t)

=
tA∫

−tA

ω(u(τ))νρ̃l(u(τ), t) dτ +
∑

τ∈{−tA,0,tA}
ω(u(τ))ρ̃s(u(τ), t)

=
tA∫

−tA

ω(u(τ))νρl(τ, t) dτ +
∑
τ∈IB

ω(u(τ))ρs(τ, t)

(2.35)

with IB := {−tA, 0, tA}.

Now the computation of y(u, t) requires just the evaluation of this line integral, which is
much cheaper than computing the solution of an elliptic equation. Clearly, y(u, t) also
depends on the solution ω of (2.32) and thus on the domain D of the electrode used
for the measurement. If, for i = 1 . . . nE , electrodes Di are considered, we denote the
corresponding measurements by yi(u, t)

For our forward problem (2.31), we may assume that the moving charge is completely
contained in the muscular subdomain ΩM , which is disjoint with the domains of measu-
rement Di ⊂ ∂Ωs. We can thus invoke regularity results to obtain more smoothness of
the restriction ω|ΩM

. This is useful to render sensitivities of y(t) concerning perturba-
tions of the support of ρi(t) well defined, which in turn is needed for the later optimal
control problem (3.3).

Lemma 2.3.1. The solution ω of (2.32) is in C∞(ΩM) ∩W 1,p(Ω).

Proof. By (2.33) ω is the solution of an elliptic equation subject to inhomogenous Ro-
bin boundary conditions on D but without interior source terms. Let us consider the
restriction ω|ΩM

to ΩM . We observe that ω|ΩM
satisfies a homogenous Laplace equation

in the weak form on ΩM subject to Dirichlet boundary conditions on ∂ΩM , given simply
by the condition that ω|∂ΩM

is the trace of ω on ∂ΩM . Moreover, the coefficient σ is
constant on ΩM . Such problems, however, are known to be C∞ regular in the interior,
cf., e.g., [25, Cor. 8.11].

We close this section with a short discussion about simulating a surface EMG measure-
ment.

Numerical Simulation of a surface EMG Measurement To illustrate the proper-
ties of the forward problem, we perform the simulation of a surface EMG measurement
using the previously established model. We consider a measurement for a single-fibered

21

Figure 2.3: Geometrical setup for a numerical simulation: white dots: electrodes, dark
brown: FDI muscle, light brown: bones and remaining tissue, black line: motor unit.

motor unit in the first dorsal interosseous (FDI) muscle of the right hand. The maximal
extension of the hand is approximately 15 cm from the wrist to the fingers, 10 cm from
the little finger to the thumb, and between 2 and 5 cm from the back of the hand to
the front of the hand. At this point, we would like to thank the authors of [49] for
sharing the STL files of their MRI measurements. Since we discuss the implementation
details extensively in the chapters 5 and 6, we only summarize the key aspects of the
implementation in this section.

For simplicity, our model contains only the FDI muscle and the first two metacarpal bo-
nes. The rest of the domain was modeled as fat tissue. Figure 2.3 shows the geometrical
model and a grid of 24 circular electrodes (white dots) placed above the FDI muscle.
The location of the motor unit is depicted by the black straight line that crosses the
electrode grid horizontally. Its depth below the electrode grid is 4 mm. The motor unit
is represented by a piecewise cubic Hermite polynomial on 20 subintervals, which also
allows the representation of curved motor units with high accuracy.

To incorporate the electrode grid into the STL files, we used the CAD software Blender
[7]. To generate a mesh from the STL data, we used gmsh [24]. We performed all the
following computations in C++, where we used the toolbox Dune [5] for all mesh-related
operations and the finite element toolbox Kaskade7 [27] to compute the finite element
discretization of the adjoint problem.

The numerical computation of the adjoint solutions is done by a finite element method
on a triangulation T of Ω consisting of 414195 tetrahedra. On T we used continuous

22

piecewise quadratic ansatz functions to discretize W 1,p(Ω) and W 1,p′(Ω) by

Wh := {w ∈ C(Ω,R) : w|K ∈ P2(K) ∀K ∈ T }.

A Galerkin method applied to the adjoint problem (2.32) leads to the discrete problem

find ωh ∈Wh s.t.
(A∗

pωh)(φ) = B(φ) ∀φ ∈Wh.

After finite element discretization, we end up with a large sparse linear system of equa-
tions, which we must solve. We used the preconditioned conjugated gradient method
from the linear algebra library Eigen [22] to solve this linear system. Since no grid hier-
archy is available, we used a standard incomplete Cholesky decomposition, see [41], as
a preconditioner.

To evaluate the line integrals (2.35), we perform a numerical quadrature along the motor
unit, i.e., the trajectory of u. As seen in Figure 2.2, the action potential is only nonzero
on a small part of the trajectory but shows large oscillations there. Thus, a standard
piecewise quadrature rule on uniform intervals would be inefficient. We, therefore, use
an adaptive quadrature algorithm. Since this algorithm influences the convergence of the
later introduced optimization algorithm, cf. Section 4.2, we provide a detailed discussion
of the adaptive quadrature algorithm in Section 5.1.

Figure 2.4a visualizes the simulated time-dependent signal on all 24 electrodes. Depen-
ding on their location, the electrodes yield different measurements. For example, the
strength of the measured signal depends on the distance between the electrodes and the
source.

The identification of the depth of a source from boundary measurements is often difficult.
We thus perform a variation in depth of the motor unit and compare the simulation
result. Figure 2.4b shows the simulated measurement of one electrode (marked in red in
Figure 2.4a) for motor units with different depths. The simulated measurements show
that most parts of the simulated potential decrease very quickly if we increase the depth.
But due to the concentrated stationary sources, the potential decreases much slower at
the end of the measurement. That is a well-known effect when modeling monopolar
signals, see [21, 26]. This property can affect numerical identification, which is why we
will study the effect in a separate example in chapter 6.

As discussed next, our adjoint approach significantly reduces the required numerical
effort per simulated measurement, at least for high temporal resolution. For example,
the computation of 200 time steps by a direct approach would require the solution of 200
PDEs of the form (1.1). By an adjoint approach, we only have to solve the PDE (2.32)
24 times, which is the number of electrodes used. In this example, the numerical effort
concerning the solution of PDEs is reduced by a factor of 8.

Once the weighing functions are computed, the numerical cost of the quadrature for-
mulas needed for simulation with our adjoint approach is almost negligible. In the

23

(a) Simulated measurement on a 6x4 electrode grid. The geometric confi-
guration corresponds to the one, shown in Figure 2.3. The curves show the
temporal behavior of the measured potential.

0 25 50 75 100 125 150 175 200

Depth of the motor unit:
4 mm
6 mm
8 mm

(b) Impact of the motor unit depth on the
simulated measurement

0 25 50 75 100 125 150 175 200

End effects are modeled:
true
false

(c) Comparison of a surface EMG simula-
tion with (green) and without (red) cor-
rection of end effects

Figure 2.4: Simulated EMG measurement for a single fibered motor unit for 0.2s

24

above-described example, we observed the following computational times: on a standard
workstation, the single-threaded computation of one PDE solution by a cg iteration re-
quires about 7 seconds (assembly of the problem data and setup of the preconditioner
not included), while the simulation of all 24 measurements with the adjoint approach
required 0.3 seconds for all 200 time steps in total, and thus around 1.5 milliseconds per
time step.

Certainly, these results depend on the spatial and temporal resolution of the problem.
Furthermore, parallelization is possible in both the direct and the adjoint approaches.
But the numbers give a clear impression of the advantages of our adjoint approach,
already for a single simulation. If multiple simulations with the same geometry have to
be performed, e.g., inside an optimization algorithm, the weighing functions only have to
be computed once. Then the computational savings of the adjoint approach, compared
to a direct simulation, are even more pronounced.

25

26

Chapter 3

An Optimization Problem to
Identify a Motor Unit

This chapter discusses the optimization problem and was partially published in [64, 65].
It is an inverse problem to the forward problem described in Section 2.3 in the following
sense: up to now, the motor unit was modeled as the trace of a given curve u, and
we derived a model for the simulation of the measurements yi(u, t) at nE electrodes
via (2.35). From now on, we assume that measurements ym,i(t) are available and we
are looking for a curve u, such that the corresponding simulated values yi(u, t) and the
measurements ym,i(t) fit well, i.e. that the difference

zi(u, t) := yi(u, t)− ym,i(t)

becomes small for all t. Collecting everything in the vectors y(u, t), ym(t), z(u, t) ∈ RnE

and using the standard Euclidean norm ∥ · ∥nE on RnE , this leads to the following least-
squares type tracking term

J1(u) =
1
2

T∫
0

∥z(u, t)∥2nE
dt = 1

2

T∫
0

∥y(u, t)− ym(t)∥2nE
dt, (3.1)

where the components of y(u, t) are defined via (2.35).

We can make a rough guess of the location of the motor unit u by inspecting the gi-
ven measurement ym and the subdomains of Ω, cf., e.g., Figure 2.4a or 6.2. Thus, we
can choose a reference trajectory uref (e.g., a piecewise linear curve that connects the
estimated location of the neuromuscular junction and the end-plates) a priori. Further-
more, motor units are smooth in healthy tissue. These two aspects justify the following
regularization term:

J2(u) :=
1∫

−1

α1
2 ∥u(τ)− uref (τ)∥

2
2 +

α2
2 ∥ü(τ)∥

2
2 dτ, (3.2)

27

where ∥ · ∥2 is the standard Euclidean norm on R3 (consequently ⟨·, ·⟩2 is the standard
Euclidean scalar product on R3). This term also yields the necessary compactness to
show the existence of optimal solutions.

Finally, we add a constraint ensuring that the signal passes the motor unit with constant
speed ν > 0, as assumed in section 2.1. Therefore, we define the constraint function

G : H2(−tA, tA,R3) 7→ H1(−tA, tA,R)
[G(u)] (τ) := ∥u̇(τ)∥22 − ν2,

and demand that [G(u)] (τ) = 0 for almost every τ ∈ [−tA, tA]. We also demand that
the solution is located in the muscle tissue ΩM . Combining those two constraints, we
get the following admissible set

Uad := {v ∈ H2(−tA, tA,R3)| v(τ) ∈ ΩM , G(v)(τ) = 0, for a. e. τ ∈ [−tA, tA]}.

This definition of the admissible set Uad is reasonable, since H2(−tA, tA,R3) is embedded
in C1(−tA, tA,R3). Collecting everything, we get the optimization problem:

min
u∈Uad

J(u) := J1(u) + J2(u). (3.3)

Alternatively, we can write this problem as an unconstrained problem by adding an
indicator function such that

min
u∈H2(−tA,tA,R3)

F (u) := J(u) + ιUad
(u). (3.4)

Remark 2. Some straightforward extensions of this identification problem are concei-
vable: for example, we may include the speed ν and the scaling parameter a in the set of
variables we want to identify. For simplicity of presentation, we assume these parameters
to be given.

The rest of this chapter discusses the existence of solutions and derives first-order opti-
mality conditions. Furthermore, we introduce the Lagrangian function and show some
properties needed when numerically solving the problem.

3.1 Analysis of the Optimization Problem
The goal of this section is to show that the optimization problem (3.3) has at least one
solution. Therefore, we first discuss the required properties and secondly, we prove the
existence result.

Properties of the Objective Function

This section lays the foundation for the existence proof in the next section and consists
of three auxiliary results. First, we show that the admissible set Uad is weakly closed and

28

that the equality constraint G(u) is well-defined and twice differentiable. The second
result shows that the function J is twice differentiable and weakly lower continuous. Note
that J and G do not need to be twice differentiable. But we want to use a Newton-like
method to solve the optimization problem numerically, requiring the second derivative.
Finally, we use those two results to show that objective function F is radially unbounded
and weakly lower semi-continuous.

Lemma 3.1.1. The admissible set Uad is weakly closed, and the equality constraint G
is well defined and twice Fréchet differentiable.

Proof. To show that Uad is weakly closed, it is sufficient to show that the sets

U1 = {v ∈ H2(−tA, tA,R3)| v(τ) ∈ ΩM for a.e. τ ∈ [−tA, tA]}

and

U2 = {v ∈ H2(−tA, tA,R3)|G(v)(τ) = 0 for a.e. τ ∈ [−tA, tA]}

are weakly closed. The admissible set Uad is then weakly closed as an intersection of
finitely many weakly closed sets.

Let u : [−tA, tA] 7→ ΩM be a regular curve. We know, from [1, Theorem 6.2], that there
exists a compact embedding E : H2(−tA, tA,R3) 7→ C1(−tA, tA,R3) implying that there
exists a v ∈ H2(−tA, tA,R3) such that Ev = u, cf., e.g., [1, Section 4.2]. Additionally,
the embedding implies the existence of a continuous representative Eu ∈ C1(−tA, tA,R3)
with Eu = u and ∥Eu̇∥0,∞ ≤ cE∥u∥2,2 <∞. Thus U1 is well-defined and not empty.

Let now {uk} ⊂ U1 be a weakly convergent sequence with limit u. Since the embedding
E is compact there exist a subsequence ukl such that Eukl → E1u in C1(−tA, tA,R).
Furthermore, there exist a another subsequence Eukli that converges pointwise to Eu for
all τ ∈ [−tA, tA]. We can conclude from Eukli (τ) ∈ ΩM and ΩM closed that Eu(τ) ∈ ΩM

and thus also u(τ). This shows that U1 is weakly closed.

Using Hölder’s (H.) and the Cauchy-Schwartz inequality (C.S.), we can compute

∥∥u̇∥22∥21,2 =
tA∫

tA

∥u̇∥42 + 4⟨ü(τ), u̇(τ)⟩22 dτ
C.S.
≤ 4

tA∫
tA

∥u̇(τ)∥42 + ∥ü(τ)∥22∥u̇(τ)∥22 dτ

=4
tA∫

tA

∥u̇(τ)∥22
(
∥u̇(τ)∥22 + ∥ü(τ)∥22

)
dτ

H.
≤ 4∥∥u̇∥22∥0,∞

tA∫
tA

∥u̇(τ)∥22 + ∥ü(τ)∥22 dτ

=4
(

sup
τ∈[−tA,tA]

|
2∑

i=0
u̇2i (τ)|

)
∥u̇∥21,2 ≤ 12∥u̇∥20,∞∥u̇∥21,2 <∞

showing that ∥u̇∥22 ∈ H1(−tA, tA,R). Thus,

G :H2(−tA, tA,R3) 7→ H1(−tA, tA,R)
[G(u)](τ) = ∥u̇(τ)∥22 − ν2

29

is well-defined.

It is well known that, as continuous bilinear form, G is twice Fréchet differentiable, see
[19]. The derivatives of G are then

G′ : H2(−tA, tA,R3) 7→ L(H2(−tA, tA,R3), H1(−tA, tA,R))
[G′(u)(v)](τ) = ⟨u̇(τ), v̇(τ)⟩2

and

G′′ : H2(−tA, tA,R3) 7→ L
(
H2(−tA, tA,R3),L(H2(−tA, tA,R3), H1(−tA, tA,R))

)
[G′′(u)(v, w)](τ) = ⟨v̇(τ), ẇ(τ)⟩2.

Let now {uk} ⊂ U2 be a weakly convergent sequence with limit u. As above there exist
a subsequence ukl such that Eukl → Eu in C1(−tA, tA,R3). Since G is differentiable, it
is also continuous, implying

0 = G(Eukl)→ G(Eu).

Thus, U2 is weakly closed, concluding the proof.

Remark 3. The H2-regularization term J2 is essential for the weak closedness of U2. It
is not hard to construct a zig-zagging sequence of trajectories un with |u̇n| = ν a.e. (and
thus bounded inW 1,∞), such that the weak limit ū violates | ˙̄u| = ν. From a computational
point of view, such a regularization term does not impose severe difficulties since u can
be easily discretized in an H2 conformal fashion by a piecewise polynomial spline which
is globally in C1.

Lemma 3.1.2. The function J : H2(−tA, tA,R3) ⊃ Uad 7→ R is continuous and weakly
lower semi-continuous. If u(τ) ∈ ΩM for all τ ∈ [−tA, tA], then J is twice Fréchet
differentiable at u.

Proof. First, we note that, as a sum, J is continuous, Fréchet differentiable and weakly
lower semi-continuous, if J1 and J2 are continuous, Fréchet differentiable and weakly
lower semi-continuous.

To show the three properties for J1, we define, for fixed t and k, the mapping

ψk : ΩM × [−tA, tA] 7→ R
ψk(x, τ) := νρl(τ, t)ωk(x).

with derivative

ψ′
k : ΩM × [−tA, tA] 7→ L(R3,R)

ψ′
k(x, τ)(v) := νρl(τ, t)ω′

k(x)(v)

30

and

ψ′′
k : ΩM × [−tA, tA] 7→ L(R3;L(R3;R))

ψ′′
k(x, τ)(v, w) := νρl(t, τ)ω′′

k(x)(v, w).

We know, from Lemma 2.3.1, that ωk ∈ C∞(ΩM) and thus also ω′
k, ω

′′
k ∈ C∞(ΩM).

Furthermore, ρl is continuous as a composition of continuous functions, cf. (2.2) and
(2.1). Therefore, ψk(·, τ), ψ′

k(·, τ) and ψ′′
k(·, τ) are continuous for all τ ∈ [−tA, tA] and

ψk is twice Fréchet differentiable, see [60, Page 192]. The Theorems 6.3 and 6.7 in [4]
imply that the corresponding superposition operator is well-defined from C(−tA, tA,R3)
into itself and twice Fréchet differentiable. Furthermore, Theorem 8.8 in [8] implies the
existence of a continuous compact embedding E : H2(−tA, tA,R3) 7→ C(−tA, tA,R3)
with Eu = u. Therefore, the superposition operator

Ψk : H2(−tA, tA,R3) ⊃ Uad 7→ C(−tA, tA,R3)
Ψk(u)(τ) := ψk(Eu(τ), τ)

is well-defined and twice Fréchet differentiable, see [4, Theorem 6.3 and 6.7]. The Fréchet
derivatives are then given by

Ψ′
k : Uad 7→ L

(
H2(−tA, tA,R3);C(−tA, tA,R)

)
[
Ψ′

k(u)(v)
]
(τ) = ψ′

k(Eu(τ), τ)(Ev(τ))

and

Ψ′′
k : Uad 7→ L

(
H2(−1, 1,R3);L

(
H2(−tA, tA,R3);C(−tA, tA,R)

))
[
Ψ′′

k(u)(v, w)
]
(τ) = ψ′′

k(Eu(τ), τ)(Ev(τ), Ew(τ)).

The correction terms ωk(u(·))ρs(·, t) are, with the same argumentation, well-defined and
Fréchet differentiable. Thus, for all t,

y : H2(−tA, tA,R3)× [0, T] 7→ R

yk(u, t) =
tA∫

−tA

ωk(u(τ))νρl(τ, t) dτ +
∑
τ∈IB

ωk(u(τ))ρs(τ, t)

is well-defined and twice Fréchet differentiable with derivatives

y′k : H2(−tA, tA,R3) 7→ L
(
H2(−tA, tA,R3);R

)
y′k(u, t)(v) =

tA∫
−tA

[
ω′
k(u)(v)

]
(τ)νρl(τ, t) dτ +

∑
τ∈IB

[
ω′
k(u)(v)

]
(τ)ρs(τ, t)

31

and

y′′k : H2(−tA, tA,R3) 7→ L
(
H2(−tA, tA,R3),L

(
H2(−tA, tA,R3);R

))
y′′k(u, t)(v, w) =

tA∫
−tA

[
ω′′
k(u)(v, w)

]
(τ)νρl(τ, t) dτ +

∑
τ∈IB

[
ω′′
k(u)(v, w)

]
(τ)ρs(τ, t)

Defining the component-wise derivatives

[
ω′(u)(v)

]
(τ) :=


[ω′

1(u)(v)] (τ)
...[

ω′
nE

(u)(v)
]
(τ)


and

[
ω′′(u)(v, w)

]
(τ) :=


[ω′′

1(u)(v, w)] (τ)
...[

ω′′
nE

(u)(v, w)
]
(τ)


implies, using the chain and sum rule, that

J1 : H2(−tA, tA,R3) 7→ R

J1(u) =
1
2

∫ T

0
∥z(u, t)∥2nE

dt = 1
2

∫ T

0
∥y(u, t)− ym(t)∥2nE

dt

is twice Fréchet differentiable with derivatives

J ′
1 : H2(−tA, tA,R3) 7→ L(H2(−tA, tA,R3),R)

J ′
1(u)(v) =

T∫
0

⟨z(u, t), z′(u, t)(v)⟩nE dt =
T∫
0

⟨y(u, t)− ym(t), y′(u, t)(v)⟩nE dt

and

J ′′
1 : H2(−tA, tA,R3) 7→ L

(
H2(−tA, tA,R3),L(H2(−tA, tA,R3),R)

)
J ′′
1 (u)(v, w) =

T∫
0

⟨z(u, t), z′′(u, t)(v, w)⟩nE + ⟨z′(u, t)(v), z′(u, t)(w)⟩nE dt

=
T∫
0

⟨y(u, t)− ym(t), y′′(u, t)(v, w)⟩nE + ⟨y′(u, t)(v), y′(u, t)(w)⟩nE dt.

Since J1 : C(−tA, tA,R3) 7→ R is differentiable, it is also continuous and thus lower
semi-continuous in C(−tA, tA,R3). Let {uk} ⊂ Uad be a weak converging sequence with

32

limit u. Since the embedding E is compact, there exists a subsequence ukl such that
Eukl → Eu in C(−tA, tA,R3). Thus,

lim
Eukl

→Eu
J1(Eukl) ≥ J1(Eu)

showing that J1 is weakly lower semi-continuous in H2(−tA, tA,R3).

J2 is a convex quadratic bilinear form, and it is well known that they are twice Fré-
chet differentiable from L2 into itself and weakly lower semi-continuous, see [19]. The
derivatives of J2 are given through

J ′
2 : H2(−tA, tA,R3) 7→ L(H2(−tA, tA,R3),R)

J ′′
2 (u)(v) =

tA∫
−tA

α1⟨u(τ)− uref(τ), v(τ)⟩2 + α2⟨ü(τ), v̈(τ)⟩2 dτ

and

J ′′
2 : H2(−tA, tA,R3) 7→ L

(
H2(−tA, tA,R3),L(H2(−tA, tA,R3),R)

)
J ′′
2 (u)(v, w) =

tA∫
−tA

α1⟨v(τ), w(τ)⟩2α2 + ⟨v̈(τ), ẅ(τ)⟩2 dτ

The sum rule indicates now that J is continuous and Fréchet differentiable, and since
the lim inf is super-additive, J is weakly lower semi-continuous.

Collecting the derivatives from the previous proof, we get the derivatives

J ′ : H2(−tA, tA,R3) 7→ L(H2(−tA, tA,R3),R)

J ′(u)(v) =
T∫
0

⟨z(u, t), z′(u, t)(v)⟩nE dt+
tA∫

−tA

α1⟨u(τ)− uref(τ), v(τ)⟩2 + α2⟨ü(τ), v̈(τ)⟩2 dτ

and

J ′′ : H2(−tA, tA,R3) 7→ L
(
H2(−tA, tA,R3),L(H2(−tA, tA,R3),R)

)
J ′′(u)v =

T∫
0

⟨z(u, t), z′′(u, t)(v, w)⟩nE + ⟨z′(u, t)(v), z′(u, t)(w)⟩nE dt

+
tA∫

−tA

α1⟨v(τ), w(τ)⟩2α2 + ⟨v̈(τ), ẅ(τ)⟩2 dτ

33

Remark 4. Recall that the derivatives ω′(u) and ω′′(u), required for computing y′(u, t)
resp. y′′(u, t), are well-defined by Lemma 2.3.1, since u is assumed to be contained in
the muscular tissue ΩM . However, if we approximate ω by a finite element function,
ω′(u) and ω′′(u) are only piecewise continuous.

Lemma 3.1.3. The objective function F is weakly lower semi-continuous and radially
unbounded.

Proof. We already know from Lemma 3.1.2 that J is weakly lower semi-continuous. It
remains to show that the indicator function ιUad

is lower semi-continuous.
A function f : X 7→ R is weakly lower semi-continuous if the level sets Nαf = {x ∈
X|f(x) ≤ α} are weakly closed for all α ∈ R, see [17, Theorem 7.4.11]. For the indicator
function, the level sets are given through

NαιUad
(u) =

{
Uad if α > 0
∅ else.

Lemma 3.1.1 states that Uad is weakly closed. Furthermore, the empty set is always
weakly closed. Thus we can conclude that the indicator function is weakly lower semi-
continuous.

The objective function F is called radially unbounded (or weakly coercive) if

lim
∥u∥2,2→∞

F (u) = +∞,

see [61, Def. 25.16]. Obviously, F (u) > 0 and for ∥u∥2,2 → ∞ either J2 or ιUad
goes to

infinity and therefore F is radially unbounded.

Existence of Solutions

Using the three auxiliary results from the previous section, we can prove the existence
of optimal solutions by standard techniques:

Theorem 3.1.4. The optimization problem

min
u∈H2(−tA,tA,R3)

F (u) := J(u) + ιUad
(u).

has at least one solution u∗ ∈ H2(−tA, tA,R3).

Proof. Let {un} be a minimizing sequence. Since F is radially unbounded, we can
conclude that un is bounded, see Lemma 3.1.3. Since H2(−tA, tA,R3) is reflexive, there
exist a weakly convergent subsequence unk with limit u∗, see [8, Theorem 3.18]. By
Lemma 3.1.3 F is weakly lower semi-continuous and thus

inf F ≤ F (u∗) ≤ lim inf
k→∞

F (unk) = inf F,

which shows that the limit point u∗ is a minimizer of F .

34

In the next chapter, we will develop an algorithmic approach to solve the optimization
problem (3.3) numerically. The foundation of this approach will be an augmented La-
grangian method, requiring the Lagrangian Function and the corresponding first-order
optimality conditions. Thus, the following section analyzes these two aspects.

3.2 Analysis of the Lagrangian Function
This section defines and analyzes the augmented Lagrangian function required for the
algorithmic approach presented in the next chapter. Therefore, we first derive first-
order optimality conditions for the problem. And secondly, we define the augmented
Lagrangian function and study some properties required for a global convergence result.

First-Order Optimality conditions

Deriving first-order optimality conditions is complicated by the geometric constraint
u ⊂ ΩM , which we imposed to assert the existence of solutions. However, from a
practical point of view, we can expect that the optimal solution u∗ is contained in ΩM

without the need to enforce this as a constraint because the measured values originate
from a true signal, emitted from some trajectory u ⊂ ΩM . In addition, the part J2 of
the objective function penalizes the departure of u from the reference trajectory uref ,
which reasonably will be chosen to lie in ΩM . Therefore, for simplicity, we will drop
the geometric constraint from now and assume that the optimal solution u∗ lies in the
muscle domain ΩM . Thus, we can rewrite the optimal control problem 3.3 as a pure
equality-constrained problem:

min
u∈H2(−tA,tA,R3)

J(u)

s.t. G(u)(τ) = 0 for a. e. τ ∈ [−tA, tA].
(3.5)

As usual, we eliminate the equality constraint with the help of a Lagrange multiplier,
which leads to the following result:

Theorem 3.2.1. Let u∗ be a local minimizer of (3.5) that lies in ΩM . Then there exist
a Lagrange multiplier λ̃ ∈ H1(−tA, tA,R)∗, such that

0 = J ′(u∗) +G′(u∗)∗λ̃
0 = G(u∗)(τ) for a. e. τ ∈ [−tA, tA]
λ̃ ∈ H1(−tA, tA,R)∗

(3.6)

Proof. First, we recall that λ̃ ∈ H1(−tA, tA,R)∗ is called Lagrange multiplier, if

λ̃ ∈ K+ (3.7)
λ̃ (G(u∗)) = 0 (3.8)
J ′(u∗)−G′(u∗)∗λ̃ ∈ C(u∗)+ (3.9)

35

is fulfilled, see [63, Eq. 1.1]. Here K is a convex closed cone such that G(u) ∈ K
and K+ is the dual cone of K. Since we have pure equality constraints, K = {0} ⊂
H1(−tA, tA,R) and from the definition of the dual cone, we can conclude that K+ =
H1(−tA, tA,R)∗, see [56, 63]. Thus, (3.7) is equivalent to λ̃ ∈ H1(−tA, tA,R)∗.

Next, [G(u∗)] (τ) = 0 implies that condition (3.8) is always fulfilled and thus we can
replace it by [G(u∗)] (τ) = 0. Furthermore, C(u∗) is the conical hull of H2(−tA, tA,R3),
which is H2(−tA, tA,R3) implying that the dual cone C(u∗)+ = {0}. Thus, condi-
tion (3.9) simplifies to

J ′(u∗)−G′(u∗)∗λ̃ = 0.

Since we already know from Lemma 3.1.2 that J and G are Fréchet differentiable, we
can conclude from [56, Theorem 6.3] that a Lagrange multiplier λ̃ exists, if G satisfies
the regularity condition of Zowe and Kurcyusz, which is given through

G′(u∗)C(u∗) +K(−G(u∗)) = H1(−tA, tA,R).

Here K(x) is the conical hull of K at x, cf., e.g., [56, Page 330]. We can conclude from
K = {0} and G(u∗) = 0 that K(G(u∗)) = {0} and since C(u∗) = H2(−tA, tA,R3), this
condition is equivalent to G′(u∗) surjective. To show that G′ is surjective, we choose for
arbitrary w ∈ H1(−tA, tA,R)

v(τ) =
τ∫

−tA

u̇∗(ξ)w(ξ)
ν2

dξ,

which is in H2(−tA, tA,R3) and has the derivative

v̇(τ) = u̇∗(τ)w(τ)
ν2

.

Therefore,

[
G′(u∗)(v)

]
(τ) = ⟨u̇∗(τ),

u̇∗(τ)w(τ)
ν2

⟩2 = w(τ)⟨u̇∗(τ), u̇∗(τ)⟩2
ν2

= w(τ)

and since w ∈ H1(−tA, tA,R) was arbitrary, G′(u∗) is surjective.

We can conclude from the definition of an adjoint operator that G′(u∗)∗λ̃ = λ̃(G′(u∗))
where the Lagrange multiplier λ̃ ∈ H1(−ta, ta,R)∗ is a linear function. Furthermore, we
know from the Riesz-Fréchet representation theorem, see [8, Theorem 5.5], that there
exists a λ ∈ H1(−1, 1,R) such that

λ̃(v) = ⟨λ, v⟩1,2 ∀v ∈ H1(−1, 1,R).

36

Therefore, we can write, for all δu ∈ H2(−tA, tA,R3), the KKT condition (3.6) as

0 =
T∫
0

⟨y(u, t)− ym(t), y′(u, t)(δu(t))⟩nE dt+ ⟨λ, ⟨u̇, δu̇⟩2⟩1,2

+
tA∫

−tA

α1⟨u(τ)− uref(τ), δu(τ)⟩2 + α2⟨ü(τ), δü(τ)⟩2 dτ

0 = ∥u̇(τ)∥22 − ν2 for a.e. τ ∈ [−tA, tA]
λ ∈ H1(−tA, tA,R).

(3.10)

The augmented Lagrangian Function

Previously, we eliminated the equality constraints by adding an indicator function ιUad
,

cf. (3.4). Obviously, the indicator function ιUad
is not twice Fréchet differentiable,

restricting the selection of optimization algorithm. Alternatively, we can eliminate the
equality constraints with a quadratic penalty term µ

2 ⟨G(u), G(u)⟩1,2 and solve a sequence
of sub-problems with increasing µ. This approach creates a sequence of solutions uk
converging to u∗ for µ → ∞, see [48, Theorem 17.1]. Since the quadratic penalty term
is smooth, we can use standard techniques from unconstrained optimization to solve the
sub-problems. But it is well known that the second derivative of the penalty term is,
for increasing µ, ill-conditioned, cf., e.g., [48, Page 505 ff.]. One possibility to reduce the
ill-conditioning is to incorporate the Lagrange multiplier into the penalty term, i.e., by
using

J3 : H2(−tA, tA,R3)×H1(−1, 1,R)× R+ 7→ R

J3(u, ξ) = ⟨λ+ µ

2G(u), G(u)⟩1,2

=
tA∫

−tA

(
λ+ µ(∥u̇(τ)∥22 − ν2)

) (
∥u̇(τ)∥22 − ν2

)
+
(
λ̇+ µ⟨u̇(τ), ü(τ)⟩2

)
⟨u̇(τ), ü(τ)⟩2 dτ,

(3.11)

as penalty term, where ξ := (λ, µ) ∈ H1(−1, 1,R) × R+ is a parameter combining the
Lagrange multiplier λ and the penalty parameter µ. Adding the penalty term (3.11) to
the objective function J results in the so-called augmented Lagrangian Function L(u, ξ),
and we can replace the optimization problem (3.4) with

min
u∈H2(−1,1,R3)

L(u, ξ) := J1(u) + J2(u) + J3(u). (3.12)

When discussing the algorithm used to solve (3.12), see Chapter 4, we require that L is
twice Fréchet differentiable and that the first derivative satisfies a Lipschitz condition.
Thus, we finish this section by showing these properties.

Lemma 3.2.2. Let u(τ) ∈ ΩM for all τ ∈ [−tA, tA], then the Lagrangian function
L(u, ξ) is, on ΩM , twice Fréchet differentiable in u.

37

Proof. We have already proved that J1(u), J2(u), and G(u) are twice Fréchet differen-
tiable, cf. Lemma 3.1.2 and Lemma 3.1.1. Since G is twice Fréchet differentiable, the
chain and product rule imply that J3 is also twice Fréchet differentiable with derivatives

J ′
3 : H2(−tA, tA,R3)×H1(−1, 1,R)× R+ 7→ L(H2(−tA, tA,R3),R)

J ′
3(u, ξ)(v) = ⟨λ+ µG(u), G′(u)(v)⟩1,2

=
tA∫

−tA

(
λ+ µ(⟨u̇(τ), u̇(τ)⟩2 − ν2)

)
⟨u̇(τ), v̇(τ)⟩2

+
(
λ̇+ 2µ⟨ü(τ), u̇(τ)⟩2

) (
⟨ü(τ), v̇(τ)⟩2 + ⟨u̇(τ), v̈(τ)⟩2

)
dτ

and

J ′′
3 : H2(−tA, tA,R3)×H1(−1, 1,R)× R+

7→ L
(
H2(−tA, tA,R3),L(H2(−tA, tA,R3),R)

)
J ′′
3 (u, ξ)(v, w) = ⟨λ+ µG(u), G′′(u)(v, w)⟩1,2 + µ⟨G′(u)(v), G′(u)(w)⟩1,2

=
tA∫

−tA

(
λ+ µ(⟨u̇(τ), u̇(τ)⟩2 − ν2)

)
⟨v̇(τ), ẇ(τ)⟩2

+
(
λ̇+ 2µ⟨ü(τ), u̇(τ)⟩2

) (
⟨v̈(τ), ẇ(τ)⟩2 + ⟨v̇(τ), ẅ(τ)⟩2

)
+ µ⟨u̇(τ), v̇(τ)⟩2⟨u̇(τ), ẇ(τ)⟩2
+ µ (⟨ü(τ), v̇(τ)⟩2 + ⟨u̇(τ), v̈(τ)⟩2) (⟨ü(τ), ẇ(τ)⟩2 + ⟨u̇(τ), ẅ(τ)⟩2) dτ

Finally, the sum rule implies that the augmented Lagrangian function is twice Fréchet
differentiable.

Lemma 3.2.3. For all u,w := u + βδu ∈ Uad with β < 1 there exist a constant L > 0
such that the derivative of the Lagrangian function L satisfies the following Lipschitz
condition:

|
[
L′(u, ξ)− L′(w, ξ)

]
(δu)| ≤ βL∥δu∥22,2 ∀u, w ∈ Uad, β < 1. (3.13)

Proof. First, we note that it is, using the triangle inequality, sufficient to show that J1,
J2, and J3 satisfy the Lipschitz condition.

The action potential im and its antiderivative Im are continuous and thus bounded, i.e.,
there exists a constant cI such that |im(z)| < cI and |Im(z)| < cI for all z ∈ R. Since
the current source density ρl is just a shifted projection of im onto the motor uni u, we
can conclude that also ρl(τ, t) < cI for all τ ∈ [−tA, tA] and all t. Furthermore, we can
conclude from (2.4) and (2.5) that ρs(·) < 2cI . We may assume, since the source density
is bounded, that the measurements are bounded, i.e., there exists a constant cM such
that ∥ym(t)∥nE < cM for all t.

38

Lemma 2.3.1 states that ωk ∈ C∞(Ω̄M) ∩ H1(Ω), implying that ωk, ω′
k, and ω′′

k are
bounded on Ω̄M , i.e., there exist a constant Mω > 0 such that

∥ω(u)∥nE ≤Mω ∀u ∈ Ω̄
∥ω′(u)(v)∥nE ≤Mω∥v∥2 ∀u ∈ Ω̄

∥ω′′(u)(v, w)∥nE ≤Mω∥v∥2∥w∥2 ∀u ∈ Ω̄.

Thus, we can conclude that ωk and ω′
k are Lipschitz continuous, more precisely there

exists a constant Lω > 0 such that

∥ω(ũ)− ω(w̃)∥nE ≤ Lω∥ũ− w̃∥2 ∀ũ, w̃ ∈ Ω̄M .

∥
[
ω′(ũ)− ω′(w̃)

]
(ṽ)∥nE ≤ Lω∥ũ− w̃∥2∥ṽ∥2 ∀ũ, w̃ ∈ Ω̄M .

Note that we use the same constants Mω and Lω for the functions and the derivatives.
In general, these can be different constants, but since their magnitude is irrelevant to the
proof, we simplify by using the same constant. We can, using these bounds, compute

∥y(u, t)∥nE = ∥
tA∫

−tA

ω(u(τ))νρl(τ, t) dτ +
∑
τ∈IB

ω(u(τ))ρs(τ, t)∥nE

≤ νcI
tA∫

−tA

∥ω(u(τ))∥nE dτ + 2cI
∑
τ∈IB

∥ω(u(τ))∥nE

≤ (2tAν + 6)cIMω =:My

and

∥y(w, t)− y(u, t)∥nE

=∥
tA∫

−tA

νρl(τ, t) (ω(w(τ))− ω(u(τ))) dτ +
∑
τ∈IB

(ω(w(τ))− ω(u(τ)) ρs(τ, t)∥nE

≤νcI
tA∫

−tA

∥ω(w(τ))− ω(u(τ))∥nE dτ + 2cI
∑
τ∈IB

∥ω(w(τ))− ω(u(τ)∥nE

≤νcILω

tA∫
−tA

∥w(τ)− u(τ)∥2 dτ + 2cILω

∑
τ∈IB

∥w(τ)− u(τ)∥2

≤(ν + 6)cILω∥w − u∥0,2

showing that y(u, t) is, for all t, bounded and satisfies the Lipschitz condition with
constant Ly := (ν + 6)cILω.

Since the simulation y(u, t) and the measurements ym(t) are bounded, we can conclude
that the difference z(u, t) := y(u, t)− ym(t) is also bounded, i.e.

∥z(u, t)∥nE ≤ ∥y(u, t)∥nE + ∥ym(t)∥nE ≤My + cM =Mz.

39

Using the same bounds as above, we can similarly compute

∥y′(u)(δu)∥nE = ∥
tA∫

−tA

[
ω′(u)(δu)

]
(τ)νρl(τ, t) dτ +

∑
τ∈IB

[
ω′(u)(δu)

]
(τ)ρs(τ, t)∥nE

≤ νcIMω

tA∫
−tA

∥δu(τ)∥2 dτ + 2MωcI
∑
τ∈IB

∥δu(τ)∥2

≤ (ν + 4)cIMω︸ ︷︷ ︸
:=Mdy

∥δu∥0,2 =Mdy∥δu∥0,2

and

∥
(
y′(w, t)− y′(u, t)

)
(δu)∥nE

=∥
tA∫

−tA

νρl(τ, t)
[(
ω′(w)− ω′(u)

)
(δu)

]
(τ) dτ +

∑
τ∈IB

[(
ω′(w)− ω′(u)

)
(δu)

]
(τ)ρs(τ, t)∥nE

≤νcILω

tA∫
−tA

∥w(τ)− u(τ)∥2∥δu(τ)∥2 dτ + 2cILω

∑
τ∈IB

∥w(τ)− u(τ)∥2∥δu(τ)∥2

≤(ν + 6)cILωβ∥δu∥20,2

showing that y′(u, t) is, for all t, bounded and satisfies the Lipschitz condition with
constant Ldy := (ν + 6)cILωβ.

Since y(u, t) and y′(u, t) are bounded and satisfying the Lipschitz condition, we can
conclude from

|
[
J ′
1(w)− J ′

1(u)
]
(δu)|

=

∣∣∣∣∣∣
T∫
0

⟨y′(w, t)(δu), z(w, t)⟩nE − ⟨y
′(u, t)(δu), z(u, t)⟩nE dt

∣∣∣∣∣∣
≤

T∫
0

∣∣⟨(y′(w, t)− y′(u, t))(δu), z(w, t)⟩nE + ⟨y′(u, t)(δu), y(w, t)− y(u, t)⟩nE

∣∣ dt
≤

T∫
0

∥(y′(w, t)− y′(u, t))(δu)∥nE∥z(w, t)∥nE + ∥y′(u, t)(δu)∥nE∥y(w, t)− y(u, t)∥nE dt

≤ (MzLdy +MdyLy)T∥δu∥20,2

that J ′
1(t) satisfies the Lipschitz condition with constant L1 := (MzLdy +MdyLy)T .

40

The simple computation

∣∣∣[J̃ ′
2(w)− J̃ ′

2(u)
]
(δu)

∣∣∣ ≤ α1
2

tA∫
−tA

|⟨w(τ)− uref (τ), δu(τ)⟩2 − ⟨u(τ)− uref (τ), δu(τ)⟩2| dτ

+ α2
2

tA∫
−tA

|⟨ẅ(τ), δü(τ)⟩2 − ⟨ü(τ), δü(τ)⟩2| dτ

= βα1
2

tA∫
−tA

⟨δu(τ), δu(τ)⟩2 dτ +
βα2
2

tA∫
−tA

⟨δü(τ), δü(τ)⟩2 dτ

≤ βmax{α1, α2}∥δu∥22,2

shows that J2 satisfies the Lipschitz condition with constant L2 := max{α1, α2}.

To show that J3 satisfies the Lipschitz condition is more complicated. Thus we split the
discussion into three parts.

We know that there exists a compact embedding E : H1(−tA, tA,R3) 7→ C(−tA, tA,R3),
see [1, Theorem 6.2], implying the existence of a representative Eu̇ ∈ C(−tA, tA,R3)
with Eu̇ = u̇ and ∥Eu̇∥0,∞ ≤ cE∥u̇∥1,2 < ∞, cf., e.g., [1, Section 4.2]. Using Hölder’s
inequality (H.), Young’s inequality (Y.), and the Cauchy-Schwartz inequality (C.S.), we
can compute for v1, v2 ∈ H1(−tA, tA,R3):

⟨∥v1∥22, ∥v2∥22⟩0,2
H.
≤ 0.5∥∥v1∥22∥0,∞

tA∫
tA

∥v2(τ)∥22 dτ + 0.5∥∥v2∥22∥0,∞
tA∫

tA

∥v1(τ)∥22 dτ

≤
(

sup
τ∈[−tA,tA]

|
2∑

i=0
v21,i(τ)|

)
∥v2∥20,2 +

(
sup

τ∈[−tA,tA]
|

2∑
i=0

v22,i(τ)|
)
∥v1∥20,2

≤ 3∥v1∥20,∞∥v2∥20,2 + 3∥v2∥20,∞∥v1∥20,2

and

⟨ d
dt
∥v1∥22,

d

dt
∥v2∥22⟩0,2 = 4

tA∫
−tA

⟨v̇1(τ), v1(τ)⟩2⟨v̇2(τ), v2(τ)⟩2 dτ

C.S.
≤ 4

tA∫
−tA

∥v̇1(τ)∥2∥v1(τ)∥2∥v̇2(τ)∥2∥v2(τ)∥2 dτ

Y.
≤ 2

tA∫
−tA

∥v̇1(τ)∥22∥v2(τ)∥22 + ∥v1(τ)∥22∥v̇2(τ)∥22 dτ

H.
≤ 6∥v1∥20,∞∥v̇2∥20,2 + 6∥v2∥20,∞∥v̇1∥20,2,

41

implying

⟨∥v1∥22, ∥v2∥22⟩0,2 ≤ 6∥v1∥20,∞∥v2∥21,2 + 6∥v2∥20,∞∥v1∥21,2.

Using the last inequality and the embedding, we can easily compute

∥
[
G′(w)−G′(u)

]
(δu)∥21,2 = ∥βG′(δu)(δu)∥21,2 = β∥∥δu̇∥22∥21,2 ≤ 12β∥δu̇∥20,∞∥δu̇∥21,2,

⟨G′(u)(δu), G(w)−G(u)⟩1,2 = ⟨⟨u̇, δu̇⟩2, ∥ẇ∥22 − ∥u̇∥22⟩1,2
= ⟨⟨u̇, δu̇⟩2, β⟨u̇, δu̇⟩2 + β2⟨δu̇, δu̇⟩2⟩1,2
β<1
≤ β (⟨⟨u̇, δu̇⟩2, ⟨u̇, δu̇⟩2⟩1,2 + ⟨⟨u̇, δu̇⟩2, ⟨δu̇, δu̇⟩2⟩1,2)
C.S.
≤ β⟨∥u̇∥22 + ∥u̇∥2∥δu̇∥2, ∥δu̇∥22⟩1,2
Y.
≤ β⟨2∥u̇∥22 + ∥δu̇∥2, ∥δu̇∥22⟩1,2
≤ 12β

(
∥u̇∥20,∞∥δu̇2∥21,2 + ∥δu̇∥20,∞∥u̇∥21,2 + ∥δu̇∥20,∞∥δu̇∥21,2

)
≤ 12β

(
2cE∥u̇∥21,2 + ∥δu̇∥20,∞

)
∥δu̇2∥21,2

and

|⟨G(w), βG′(δu)(δu)⟩1,2| = |⟨∥u̇+ βδu̇∥22 − ν2, β∥δu̇∥22⟩2⟩1,2|
β≤1
≤ β

(
|⟨∥u̇∥22 + ∥δu̇∥, ∥δu̇∥22⟩2|+ ν2∥δu̇∥21,2

)
≤ 12β

(
2cE∥u̇∥21,2 + ∥δu̇∥20,∞

)
∥δu̇2∥21,2.

Combining these results, we can compute

|J3(w, ξ)− J3(u, ξ)| = |⟨λ+ µG(w), G′(w)(δu)⟩1,2 − ⟨λ+ µG(u), G′(u)(δu)⟩1,2|
≤|⟨λ, βG′(δu)(δu)⟩1,2|+ |⟨G(w), βG′(δu)(δu)⟩1,2|+ |µ⟨G(w)−G(u), G′(u)(δu)⟩1,2|
H
≤∥λ∥21,2∥G′(δu)(δu)∥21,2 + 24β

(
2cE∥u̇∥21,2 + ∥δu̇∥20,∞

)
∥δu̇2∥21,2

≤ 24β
(
(2 + ∥λ∥21,2)cE∥u̇∥21,2 + ∥δu̇∥20,∞

)
∥δu̇2∥21,2.

Thus, J3 satisfies the condition with L4 = 24
(
(2 + ∥λ∥21,2)cE∥u̇∥21,2 + ∥δu̇∥20,∞

)
.

Collecting all the interim results, we get

|
[
L′(w, ξ)− L′(u, ξ)

]
(δu)| ≤ β (L1 + L2 + L3 + L4)︸ ︷︷ ︸

=:L

∥δu∥22,2

which concludes the proof.

42

Chapter 4

A Numerical Identification
Algorithm

This chapter discusses the augmented Lagrangian method we use to solve the opti-
mal control problem numerically. Previously, we introduced the augmented Lagrangian
function, which transforms the constrained problem into an unconstrained one. The
augmented Lagrangian method now consists of an Newton method to solve the un-
constrained problem and an update for the Lagrangian multiplier λ and the penalty
parameter µ. To solve the problem numerically, we replace the integrals in the objective
function with quadrature rules. As mentioned when discussing the numerical simula-
tion, cf. Section 2.3, we use adaptive quadrature rules such that we can not rely on
standard convergence results. Thus, we discuss a modified convergence result and its
requirements. Parts of this chapter has been published in [65].

To distinguish between the iterates of the augmented Lagrangian method and the iterates
of the Newton method, we use, from now on, ũk for the iterates of the augmented
Lagrangian method and uk for the iterates of the Newton method.

4.1 An Augmented Lagrangian Method
With the help of the previously defined augmented Lagrangian function L, we can trans-
form the unconstrained problem (3.3) into the unconstrained problem

min
u∈H2(−tA,tA,R3)

L(u, ξ) = J1(u) + J2(u) + J3(u, ξ), (4.1)

where J1 is a tracking term, cf. (3.1), J2 is a regularization term, cf. (3.2), and J3 is
a penalty term incorporating the Lagrange multiplier λ and a penalty parameter µ, cf.
(3.11). Since we use fixed parameters λ and µ when discussing the Newton method,
we can combine them into one penalty parameter ξ := (λ, µ). For increasing µ and
with a suitable update strategy for λ, the solution of (4.1) converges to the solution of

43

the constrained problem (3.3), see [6, Proposition 4.2.2]. We can achieve this with the
following algorithm:
Algorithm 1: Augmented Lagrangian Algorithm
Input: ũ0, µ0 = 1, 0 < c1 < 1, 1 < c2, and λ0 ≡ 0;
do

ũk+1 ← Solve (4.1) with an Newton method;
if ∥G(ũk+1)∥1,2 < c1∥G(ũk)∥1,2 then

update λk+1 and set µk+1 = µk;
else

µk+1 = c2µk and set λk+1 = λk;
end

while ∥L′(ũk+1, ξk∥2,2∗ > ε1 and ∥G(ũk+1)∥1,2 > ε2;
Output: ũk and λk

Concerning the outer loop of the augmented Lagrangian method, it remains to define an
update strategy for the Lagrangian multiplier λk. To define an update, we take a look
at the following quadratic optimization problem

min
w∈H1(−1,1,R3)

1
2⟨w,w⟩1,2 + J ′(ũk)(w) s.t. G′(uk)(w) = 0,

which has the following first-order optimality conditions

0 = ⟨w, v⟩1,2 + J ′(ũk)(v) + ⟨λ,G′(ũk)(v)⟩1,2
0 = G′(ũk)(w).

(4.2)

Testing (4.2) with

v ∈ kerG′(ũk)⊥ := {v ∈ H1(−1, 1,R3) : ⟨v, w⟩1,2 = 0 ∀w ∈ kerG′(ũk)}

transforms the first equation of (4.2) into

0 = J ′(ũk)(v) + ⟨λ,G′(ũk)(v)⟩1,2 ∀v ∈ kerG′(ũk)⊥.

If ũk = u⋆, then the solution λ̄ of (4.2) is equal to the original Lagrangian multiplier
λ⋆. Thus, we can update the Lagrangian multiplier by solving (4.2). Defining ∇H1J(ũk)
by ⟨∇H1J(ũk), v⟩1,2 = J ′(ũk)v for all v we observe that λ̄ is indeed the solution of the
minimization problem

min
λ∈H1

∥∇H1J(ũk)−G′(ũk)∗λ∥21,2,

where G′(ũk)∗ is the Hilbert space adjoint of G′(ũk).

Evaluation of Functionals with Adaptive Quadrature

While the outer loop of the augmented Lagrangian method is fairly standard, our par-
ticular problem structure motivates some algorithmic adjustments for the inner Newton

44

method solving (4.1). To apply the Newton method, we must compute the Lagrangian
function L and its derivatives. To do this numerically, we replace the integrals in J1,
J2, and J3 with quadrature rules. We note that after finite element discretization, the
integrands in J2 and J3 are piecewise polynomials of some fixed order. Thus, we can
evaluate those integrals exactly with a piecewise quadrature rule of sufficient order.

It remains to compute the functional J1, given by (3.1). We observe that the integrand
of (3.1) requires the evaluation of z(u, t), which in turn can only be computed by an
evaluation of an integral, namely (2.35). This nested integral structure is the most
challenging part of the computation.

For the outer integral of (3.1), we can use any piecewise quadrature rule as long as
the segmentation of the time interval is fine enough. Furthermore, the measured values
are, in general, discrete. Thus, it is suitable to choose the quadrature points of the
outer integral such that they match the times at which we measured the potential.
The inner integral in (2.35) is more difficult to compute. As shown in Section 2.1, the
action potential is a propagating signal with only small support on the motor unit u
and shows large oscillations in this area. Those oscillations make a standard piecewise
quadrature rule on uniform intervals inefficient. Thus, an adaptive quadrature rule is
appropriate to compute z(u, t). Due to this adaptive procedure, which changes from step
to step, the computed result cannot be interpreted as an exact evaluation of a discrete
quantity, but as an inexact evaluation of a continuous quantity. Thus, a deliberate
adjustment of accuracy requirements is necessary to avoid interference of the introduced
errors with the global convergence of our algorithm. Inexact function evaluations are
not uncommon in nonlinear optimization, and the topic is studied in different settings,
cf., e.g., [33, 38, 9, 13, 15, 62]. Our approach resembles [9], where a Trust-Region
algorithm is shown to converge globally under a condition, similar to (4.4), below. Using
a sufficient error bound, cf. Lemma 4.1.1 below, we can ensure that our algorithm
satisfies this condition, which we then use to modify a classical global convergence result
for backtracking line search algorithms, cf., e.g., [48, Theorem 3.2].

We will discuss those two aspects in more detail when we later show the convergence
of the Newton method. To indicate that J1 and thus also L are computed inexactly
with a quadrature rule, we use an index Q and write J1,Q respectively LQ. Since we can
compute J2 and J3 exactly, we don’t use an index for them and consequently we use
LQ = J1,Q + J2 + J3. The following lemma connects the accuracy of the computation of
z with the relative error in the computation of differences of L:

Lemma 4.1.1. Let 0 < ς < 1 and assume that the following error bound for the diffe-
rence z(·, t) = y(·, t)− ym(t) holds pointwise for every t and two trajectories u, v:

|⟨z(v, t)− zQ(v, t), z(v, t) + zQ(v, t)⟩n − ⟨z(u, t)− zQ(u, t), z(u, t) + zQ(u, t)⟩n|

≤2ς
T
|LQ(v, ξ)− LQ(u, ξ)|.

(4.3)

45

Then the Lagrangian function can be evaluated with the following accuracy estimate:

| (L(v, ξ)− L(u, ξ))− (LQ(v, ξ)− LQ(u, ξ)) | ≤ ς|LQ(v, ξ)− LQ(u, ξ)|. (4.4)

Proof. As mentioned above, we can compute J2 and J3 exactly by choosing a quadrature
rule of sufficient order. Therefore:

|(L(v, ξ)− L(u, ξ)− (LQ(v, ξ)− LQ(u, ξ)) | = | (J1(v)− J1(u))− (J1,Q(v)− J1,Q(u)) |

≤ 1
2

T∫
0

∣∣∣(∥z(v, t)∥2nE
− ∥zQ(v, t)∥2nE

)
−
(
∥z(u, t)∥2nE

− ∥zQ(u, t)∥2nE

)∣∣∣ dt
= 1

2

T∫
0

|⟨(z − zQ)(v, t), (z + zQ)(v, t)⟩n − ⟨(z − zQ)(u, t), (z + zQ)(u, t)⟩n| dt

(4.3)
≤ ς|LQ(v, ξ)− LQ(u, ξ)|.

Since using adaptive quadrature has the largest effect on the inner Newton method, we
study it now in detail.

4.2 Newton Line-Search with Inexact Evaluations
By an Newton method, we attempt to find a stationary point of (3.12). We will employ
a Hessian modification strategy to ensure that only directions of sufficient descent are
computed.

To compute a step δuk of the Newton method, we minimize the following quadratic
model of LQ(uk, ξ):

min
δuk∈H2(−1,1,Ω)

L′Q(uk, ξ)(δu) +HQ(uk; Λ)(δuk, δuk)

where HQ is a modified hessian with respect to some Λ ≥ 0:

HQ(uk; Λ)(v, v) := L′′Q(uk, ξ)(v, v) + Λ⟨v, v⟩2,2.

This is equivalent to solving the linear equation:

0 = L′Q(uk, ξ)(v) +HQ(uk; Λ)(δuk, v) ∀v ∈ H2(−1, 1,Ω). (4.5)

For our considerations, we require the following dual norms for linear and bilinear forms
on H2(−1, 1,Ω):

∥ℓ∥2,2∗ := sup
∥v∥2,2=1

|ℓ(v)|

∥b∥2,2∗ := sup
∥v∥2,2=1,∥w∥2,2=1

|b(v, w)|

46

Lemma 4.2.1. Assume that for some 0 < γ we have the estimate

γ∥v∥22,2 ≤ HQ(v; Λ)(v, v). (4.6)

Then we obtain the following bound for δuk:

−L′Q(uk, ξ)(δuk) ≥ γ∥δuk∥22,2. (4.7)

Proof.
L′Q(uk, ξ)(δuk)

(4.5)= −HQ(uk; Λ)(δuk, δuk) ≤ −γ∥δuk∥22,2.

Using this lemma, we can devise a strategy for choosing Λ to enforce (4.7). Starting
with Λ0 = 0, we compute δuk and test if (4.7) holds. If not, we use Λ1 = 0.1 and
use Λk+1 = 2Λk to create a increasing sequence of Λ > 0 until (4.7) is satisfied. Since
∥L′′Q(uk, ξ)∥2,2∗ is bounded, this loop will terminate at the latest if Λ ≥ γ+∥L′′Q(uk, ξ)∥2,2∗
and we obtain

∥HQ(uk,Λ)∥2,2∗ ≤ Λ + ∥L′′Q(uk, ξ)∥2,2∗ .

As usual, the iterate uk is then updated via uk+1 := uk+βkuk, where the damping factor
βk is computed by a standard back-tracking line search, which terminates if an Armijo
condition of the form

LQβ
(uk + βδuk, ξ) ≤ LQβ

(uk, ξ) + ηL′Qβ
(uk, ξ)(βδuk) β ∈]0, 1] (4.8)

is fulfilled. Observe that (4.8) is evaluated by a possibly different quadrature rule Qβ

than the quadrature ruleQ, used to compute δuk. Nevertheless, under certain conditions,
we can show that the back-tracking line search terminates with some β that is above a
certain lower bound:

Lemma 4.2.2. Let η ∈]0, 1[, σ > 0 and assume that δuk fulfills

L′Qβ
(uk, ξ)(δuk) ≤ σL′Q(uk, ξ)(δuk) (4.9)

for all quadrature rules employed during the line-search back-tracking. Then there exists
a β̄(η, L, γ, σ) such that for all β < β̄ the Armijo condition (4.8) is fulfilled.

Proof. Since L′Qβ
(·, ξ) satisifies a Lipschitz condition, see Lemma 3.2.3, we can compute

LQβ
(uk + βδuk, ξ)− LQβ

(uk, ξ)− L′Qβ
(uk)(βδuk)

=
1∫

0

[
L′Qβ

(uk + tβδuk, ξ)− L′Qβ
(uk, ξ)

]
(βδuk) dt

(3.13)
≤

1∫
0

tLβ2∥δuk∥22,2 dt ≤
Lβ2

2 ∥δuk∥
2
2,2.

47

Together with (4.7) and (4.9) this implies

LQβ
(uk + βδuk, ξ)− LQβ

(uk, ξ) ≤ L′Qβ
(uk)(βδuk, ξ) +

Lβ2

2 ∥δuk∥
2
2,2

≤ηL′Qβ
(uk)(βδuk, ξ) + (1− η)σL′Q(uk)(βδuk, ξ) +

Lβ2

2 ∥δuk∥
2
2,2

≤ηβL′Qβ
(uk)(δuk, ξ) + β

(
Lβ

2 − (1− η)σγ
)
∥δuk∥22,2.

The last term is negative if we choose 0 < β < 2(1−η)σγ
L , and thus the result follows.

Thus, a line-search algorithm (which we will elaborate on in Algorithm 6, below) can
terminate with two different outcomes: either (4.8) holds eventually, or (4.9) is violated
at some point. In the latter case, the step δuk should be rejected and recomputed
with tighter tolerance, because the predicted decrease L′Q(uk, ξ)δuk may have been too
optimistic for this direction. We can now connect these parts to the following conceptual
algorithm:

Algorithm 2: Newton method with line search
Input: u0 = ũk, tol0 = 10−5, ε1 = 10−6 ;
do

Λ = 0;
do

δuk ← solve (5) with Alg. 5 and tolerance tolk ; // see Sec. 5.3
increase Λ ; // only if (4.6) is violated

while (4.6) is violated;
βk ← apply line search Alg. 6, until (4.8) holds or (4.9) is violated ;
// see Sec. 5.3
if (4.9) is violated then

tighten tolk and set uk+1 = uk;
else

uk+1 = uk + βkδuk;
end

while ∥L′(uk+1, ξ)∥2,2∗ ≥ 0.9ε1;
Output: ũk+1 = uk ;

As usual, we want to know under which conditions Algorithm 2 converges globally. Thus,
we will discuss this question in the next section.

4.3 A Global Convergence Result
To formulate a global convergence result that takes into account adaptive quadrature,
let us introduce δvk as the solution of the following equation using the exact derivative:

0 = L′(uk, ξ)(v) +HQ(uk; Λ)(δvk, v) ∀v ∈ H2(−1, 1,Ω), (4.10)

48

satisfying the inequality

∥L′(uk, ξ)∥2,2∗ ≤ ∥HQ(uk; Λ)∥2,2∗∥δvk∥2,2 (4.11)

We assume that the connection between δvk and δuk satisfies

∥δvk∥2,2 ≤ Θ∥δuk∥2,2. (4.12)

This can be fulfilled uniformly if the quadrature rule is kept sufficiently accurate. The
main result of this section is then:

Theorem 4.3.1. Let 0 < γ ≤ Γ, ς, η ∈]0, 1[, σ,Θ > 0 be fixed constants. Assume that
numerical quadrature rules are used, such that in each step, the inequalities (4.4), (4.7),
(4.9), and (4.12) are satisfied, and such that ∥HQ(uk; Λ)∥2,2∗ ≤ Γ.

Then Algorithm 2 converges globally, i.e.,

lim
k→∞

∥L′(uk, ξ)∥2,2∗ = 0.

Proof. From Lemma 4.2.2 it follows that there exists a β̄ > 0 such that β̄ < βk∀k. Then
we can compute::

L(uk+1, ξ)− L(uk, ξ) = L(uk+1, ξ)− L(uk, ξ)−
(
LQβk

(uk+1, ξ)− LQβk
(uk, ξ)

)
+
(
LQβk

(uk+1, ξ)− LQβk
(uk, ξ)

)
(4.4)
≤ (1− ς)

(
LQβk

(uk+1, ξ)− LQβk
(uk, ξ)

)
(4.8)
≤ (1− ς)ηβkL′Qβk

(uk, ξ)δuk
(4.9)
≤ (1− ς)ησβkL′Q(uk, ξ)δuk

(4.7)
≤ −(1− ς)ησβ̄γ∥δuk∥22,2 ≤ 0.

Since G is continuous, see Lemma 3.1.1, and uk(τ) ∈ Uad for all k and all τ , it follows
that ∥G(uk)∥1,2 is bounded and thus L(uk, ξ) is bounded from below, more precisely

L(uk, ξ) = J(uk)︸ ︷︷ ︸
≥0

+ ⟨λ,G(uk)⟩1,2︸ ︷︷ ︸
≥−∥λ∥1,2∥G(uk)∥1,2

+ µ

2 ⟨G(uk), G(uk)⟩1,2︸ ︷︷ ︸
≥0

≥ −∥λ∥1,2∥G(uk)∥1,2 =: L.

Therefore,
∞∑
k=0
L(uk+1, ξ)−L(uk, ξ) ≥ L−L(u0, ξ) implying |L(uk+1, ξ)−L(uk, ξ)| → 0

and we can conclude that ∥δuk∥2,2∗ → 0. Finally (4.11) and (4.12) imply:

0 ≤ ∥L′(uk, ξ)∥2,2∗ ≤ Γ∥δvk∥2,2 ≤ ΓΘ∥δuk∥2,2 → 0.

49

The above-stated result guarantees only the global convergence, but that doesn’t include
the local convergence of the Newton method. Thus, we add a second error bound, which
we explain next.

Local Convergence

It is well known that the local convergence rate of an SQP method depends on accurate
search directions, e.g., the better the preconditioner approximates the Hessian of the
objective function, the faster the SQP method converges locally. For our problem, the
search direction additionally depends on the accuracy of the adaptive quadrature. Thus,
we want that the difference δek := δuk − δvk satisfies

∥δek∥ = ∥δuk − δvk∥H ≤ ϵ∥δvk∥H ∀k, (4.13)

where ∥ · ∥H is the following energy norm:

∥v∥H := H(uk,Λ)(v, v) ∀v ∈ H2(−tA, tA,ΩM).

Note that, by the choice of Λ, cf. Lemma 4.2.1, H is positive definite such that ∥ · ∥ is
in fact a norm. Furthermore, ϵ is a moderate tolerance, e.g., ϵ = 10−2. Unfortunately,
we can not include this directly in the adaptive quadrature algorithm. But the following
result gives us an applicable condition.

Lemma 4.3.2. Assume that the error bound∣∣∣⟨z(uk, t), z′(uk, t)(δek)⟩nE − ⟨zQ(uk, t), z′Q(uk, t)(δek)⟩nE

∣∣∣ ≤ ϵ2

T
∥δvk∥2H (4.14)

is satisfied for all t ∈ [0, T]. Then ∥δek∥ = ∥δuk − δvk∥H ≤ ϵ∥δvk∥H .

Proof. With (4.5) and (4.10) we compute

∥δek∥2H = H(uk; Λ)(δek, δek) =
∣∣∣[J ′

1(uk)− J ′
1,Q(uk)

]
(δek)

∣∣∣
≤

T∫
0

∣∣∣⟨z(uk, t), z′(uk, t)(δek)⟩nE − ⟨zQ(uk, t), z′Q(uk, t)(δek)⟩nE

∣∣∣ dt ≤ ϵ2∥δvk∥2H .
Taking the square root on both sides provides the result.

Remark 5. If we assume that the energy norm ∥ · ∥H and H2-norm are equivalent, i.e.
there exist 0 < γ ≤ Γ such that γ∥v∥2,2 ≤ ∥v∥H ≤ Γ∥v∥2,2, then (4.13) implies (4.12).

It is well known that, under certain conditions, Newton methods converge locally qua-
dratic or superlinear, see [16]. However, we can not expect this for our problem structure.
Although the theoretical result 2.3.1 states that ωk ∈ C∞(ΩM) ∩W 1,p, we must com-
pute them numerically with finite elements and thus the discrete version ωk,h satisfies
this property only locally on each tetrahedron. Thus, small jumps occur in the first

50

derivative at the boundary between two adjacent tetrahedra, and the regularity require-
ments for neither quadratic nor superlinear convergence are satisfied. But under specific
conditions, these discontinuities are no longer a factor. If we can identify the motor
unit exactly and if there are no measure errors, i.e., no white noise, then the difference
z(uk, t) = y(uk, t) − ym(t) goes to zero for uk → u∗. Even though this situation is
practically impossible, we will see this theoretical consideration in one of our examples.

Now that we have proven that the inner Newton method converges globally and have
derived a measure for fast local convergence, we discuss how we implemented the aug-
mented Lagrangian method numerically.

51

52

Chapter 5

A Practical Optimization
Algorithm

This section discusses the implementation of our algorithmic concept, described above.
We thereby split the discussion into four parts. First, we discuss the discretization
and the evaluation of the required quantities. The second part discusses the adaptive
computation of the Lagrange function, i.e., how we incorporate the error bound into
an adaptive quadrature algorithm. Furthermore, this part explains the computation of
the Lagrange function L and its derivatives. Thirdly, we discuss the implementation of
the Newton method. Therefore, we first explain how we transform the linear equations
(4.5) and (4.10) into systems of linear equations and how we solve them. Secondly,
we discuss the computation of the search directions, and thirdly the details of the line
search. We then close this chapter by discussing the augmented Lagrangian method,
i.e., the implementation of the Lagrange multiplier update. Parts of this chapter has
been published in [65].

5.1 Discretization of the Problem

To solve the problem numerically, we must discretize and evaluate the required quan-
tities. This includes the discretization of the motor unit u and the computation and
evaluation of the impulse response functions ω(u). For this purpose, we use two diffe-
rent finite element approaches. Thus, we first discuss the usage of cubic Hermite ansatz
functions to discretize the motor units u. And secondly, we discuss a standard finite
element approach to discretize the impulse response functions ωk. Since the evaluation
of ωk will be a bottleneck of our algorithm, we discuss in detail how we can use an
efficient neighborhood search to evaluate ωk.

Discretization of Signal Trajectories To discretize u, we first choose a segmenta-
tion TFE of the interval [−tA, tA]. Therefore, we divide the interval into n subintervals

53

with length h = 2ta/n. The segmentation TFE contains then n + 1 uniformly distribu-
ted segmentation points τj . We then employ cubic Hermite finite elements on TFE to
discretize u ∈ H2(−tA, tA,Ω) in a conformal way, see [30, Section 8.6.2]. We thus obtain
the following ansatz space:

Vh := {v ∈ C1(−tA, tA,Ω) : v|I ∈ P3(I) ∀I ∈ TFE} ⊂ H2(−tA, tA,ΩM),

with basis {ϕ0, ..., ϕm} to be defined in more detail. The foundation of the basis functions
ϕi are the following Hermite basis functions

bi(τ) =
(h− |τ − τi|)2(h+ 2|τ − τi|)

h3

bn+1+i(τ) =
(h− |τ − τi|)2(τ − τi)

h2

 if τ ∈ [τi−1, τi+1]

bn+1+i(τ) = bi(τ) = 0 if τ /∈ [τi−1, τi+1]


for 0 < i < n. (5.1)

Now, we must consider that the image of functions u ∈ Vh is three-dimensional. There-
fore, we multiply bi with the unit vectors el ∈ R3, and define

ϕ3i+l(τ) = elbi(τ) for i = 0, ..., 2n+ 1 and l = 0, 1, 2,

implying that m = 6n+ 5. We can then write each u(τ) ∈ Vh as

u(τ) :=
m∑
i=0

uiϕi(τ). (5.2)

As usual, u = (u0 · · · um)T ∈ Rm is then a discrete representative of u ∈ Vh. Similar to
the well-known Lagrange basis functions, the Hermit basis functions have, for 0 ≤ i, j ≤ n
and i ̸= j, the following properties:

bi(τi) = 1, ḃi(τi) = 0, bi(τj) = ḃi(τj) = 0,
bn+1+i(τi) = 0, ḃn+1+i(τi) = 1, bn+1+i(τj) = ḃn+1+i(τj) = 0.

Thus, we get for j = 0, ..., n:

u(τj) =
2∑

l=0
u3j+lϕ3j+l(τj) =

 u3j
u3j+1
u3j+2


and

u̇(τj) =
3n+5∑

l=3n+3
u3j+lϕ3j+l(τj) =

 u3(n+1+j)
u3(n+1+j)+1
u3(n+1+j)+2

 .
Furthermore, the support of the basis functions consists of only two neighboring subin-
tervals, cf. (5.1). Thus, we can efficiently compute

u(τ) =
5∑

l=0
u3i+lϕ3i+l(τ) +

l=3n+8∑
l=l=3n+3

u3i+lϕ3i+l(τ)

for τ ∈ [τi, τi+1] and 0 ≤ i ≤ n− 1.

54

Discretization of Impulse Response Functions To compute J1, we must evaluate
the impulse response functions ωk and their derivatives along the trajectory. These eva-
luations are well defined in the continuous setting since ωk ∈ C∞(ΩM) ∩W 1,p(Ω), see
Lemma 2.3.1. The impulse response functions do not change during the optimization,
so we can compute them a-priory, using finite elements on Ω. To this end, we use stan-
dard Lagrange elements on a triangulation K of Ω. On K, we use continuous piecewise
polynomial ansatz functions to discretize W 1,p(Ω) and W 1,p′(Ω) by

Wh := {wh ∈ C(Ω,R) : wh|K ∈ Pm(K) ∀K ∈ K}.

For the computation of HQ(uk; Λ), we need the second derivatives of the ωk,h. Therefore,
we must use at least polynomials of order m = 2 or alternatively m = 3 as ansatz
functions.

Concerning the triangulation, there are two domains of interest where we want the
mesh to be sufficiently fine. These two regions are the domain where the electrodes
are located and the muscle tissue. Due to the circular shape of the electrodes and a
possible curved skin, the mesh size is possibly already quite large after modeling the
electrodes. Therefore, it can be more efficient to increase the polynomial order instead
of refining the triangulation in the muscle tissue domain. Clearly, we have to find a good
compromise between the mesh size and the used polynomial order. In the next chapter,
we will discuss this in more detail when presenting a numerical example. Consequently,
the derived mesh has, in general, no hierarchical structure.

We can then compute approximations ωk,h for each ωk with a standard Galerkin method,
applied to the adjoint problem (2.30), see, e.g., [30, Chapter 8.2]. This leads to the
following discrete problem

find ωk,h ∈Wh s.t.
(A∗

pωk,h)(φh) = Bk(φh) ∀φh ∈Wh

with

(A∗
pωk,h)(φh) =

∫
Ω

(σ(x)∇φh(x)) · ∇ωk,h(x) dx+
∫

∂ΩS

µφh(s)ωk,h(s) ds

and

Bk(φh) =
1
|Dk|

∫
Dk

φh(s) ds,

where Dk ⊂ ∂ΩS is the domain of the kth electrode. Let now {φh,0, ..., φh,N} be a basis
of Wh. As usual, when using a Galerkin method, we can represent ωk,h by

ωk,h(x) =
N∑
i=0

ωk,iφh,i(x),

55

where ωk := (ωk,0 ... ωk,0) ∈ RN is the discrete representative of ωk,h ∈Wh.

Using the linearity of A∗
p, we can compute

(A∗
pωk,h)(φh,j) =

∫
Ω

(σ(x)∇φh,j(x)) ·
N∑
i=0

ωk,i∇φh,i(x) dx+
∫

∂ΩS

µφh,j(s)
N∑
i=0

ωk,iφh,i(s) ds

=
N∑
i=0

ωk,i

∫
Ω

(σ(x)∇φh,j(x)) · ∇φh,i(x) dx+
∫

∂ΩS

µφh,j(s)φh,i(s) ds


︸ ︷︷ ︸

(:=A∗
p)ij

.

Furthermore, it is sufficient to test with all basis functions φh,i such that we end up with
the following linear system of equations:

A∗
pωk = Bk (5.3)

where (Bk)j = Bk(φh,j). To solve (5.3), we use a standard preconditioned conjugate
gradient method, see, e.g., [48, Chapter 5]. We used the version provided by Eigen,
see [22], and since there is, in general, no grid hierarchy available, we use a standard
incomplete Cholesky decomposition, see [41], as a preconditioner.

Evaluation of ωk,h Since we use an adaptive quadrature to compute z, see below, we
have to evaluate the finite element approximations ωk,h of the impulse response functions
at all quadrature points. For a given quadrature point xi = u(τi), the evaluation of
ωk,h(u(τi)) is

ωk,h(u(τi)) =
∑

supp(φh,i)⊂Ki

φh,i(xi)ωk,i,

where Ki is the tetrahedron for which xi ∈ Ki. In the absence of any additional infor-
mation, identifying Ki for a given xi is, in general, numerically expensive. In that case,
a full search through all tetrahedra of the grid may be necessary to find Ki

To find Ki efficiently, we exploit that the quadrature points are ordered along the tra-
jectory of u. Thus, we can use a neighborhood search: if Ki−1 ∋ xi−1 is known, and xi is
the next quadrature point, we test all neighbors of Ki−1 if they contain xi. If that fails,
we compute the distance between the center of the neighbors and the quadrature point
xi. We then choose the neighbor with the lowest distance to the quadrature point and
test its neighbors. We repeat this procedure until we find the tetrahedron that contains
xi or a maximal number of tetrahedra has been tested. In the latter outcome, or if an
initial inclusion xi−1 ∈ Ki−1 is not known, we fall back to a full search (or hierarchic
search if possible) over the whole grid.

Using an adaptive quadrature to compute z(uk, t) for several time instances t requires the
evaluation ωk,h along the same trajectory. Thus, we stored the tetrahedron containing
the point uk(−tA) such that the initial inclusion is mostly known. Furthermore, this

56

has the advantage that in most cases a neighborhood search is sufficient to update the
initial inclusion after updating uk during the Newton iteration.

5.2 Adaptive Computation of the Lagrange Function
This section discusses the computation of L(uk, ξk) at an iterate uk. Due to the problem
structure, we can split this computation into two parts. On the one hand, we have
quantities that do not require adaptive quadrature, namely J2 and J3. On the other
hand, we have J1 depending on the computation of the simulated measurements z(uk, t)
via adaptive quadrature of the integral (2.35), based on Gauß-Kronrod quadrature rules
[39]. Thus, we first discuss the adaptive quadrature algorithm with the required modifi-
cations made to incorporate the error bounds. The second part of this section discusses
the computation J1, J2, and J3.

The Adaptive Quadrature Algorithm In section 4.2, we have defined the two
error bounds (4.3) and (4.14) to ensure that the Newton converges both globally and
locally. These two bounds need to be met by the computation of z(uk, t) via adaptive
quadrature, which has to be performed for each electrode and for each time instance
where we simulate a measurement. Thus, most of the computation time is spent during
the quadrature algorithm. The algorithmic framework we present is thereby pretty
standard, and similar versions can be found, e.g., in [12, 50].

The two error bounds require slightly different versions of our adaptive quadrature algo-
rithm. However, their general structure stays the same. Thus, we will first explain the
general algorithmic approach for an arbitrary global error bound E that has to satisfy
a given global tolerance tol and then discuss the specific details when we talk about the
computation of the step and the line search. The careful reader will notice that the two
error bounds require different quantities, i.e., we have to evaluate z(uk+1, t) for (4.3) and
z′(uk, t)(δuk − δvk) for (4.14). Mentioning this differentiation every time the algorithm
evaluates z(uk, t), the description of the algorithm would become unnecessarily compli-
cated. Thus, when writing that the algorithm computes z(uk, t), we imply that we also
compute the corresponding second value.

Adaptive quadrature uses a partition of the domain of integration, which is gradually
refined with the help of error indicators. Consider a given partition T of the integration
interval [−tA, tA], which consists of |T | sub-intervals. We start with computing the
contribution to z on each sub-interval I ∈ T , once with the Gauß rule (zGI) and once
with the corresponding Kronrod rule (zKI). Simultaneously, we can evaluate local error
estimates EI , which are the portions of the global error on the interval I. Using these
quantities, we then compute zK(u, t) =

∑
I∈T zKI (u, t), zG(u, t) =

∑
I∈T zGI (u, t), and a

global error estimate E (to be specified below). If E > tol is violated, we choose TR ⊂ T
such that TR is the smallest subset with∑

I∈TR

EI ≥ χ
∑
I∈T

EI . (5.4)

57

Here, χ is a parameter that shall ensure that TR is not too small, i.e., such that the
adaptive quadrature does not need too many iterations. To find the smallest subset
TR, we sort the local error estimates EI by value and choose those with the highest
magnitude. In numerical practice, it turned out that it is a good strategy to choose χ
relatively large, e.g., χ = 0.75. However, frequently the errors are concentrated in only a
few intervals. Thus, we choose a safety parameter εS to avoid the unnecessary refinement
of too many intervals with very small contributions, i.e., an interval I is not refined if
the corresponding local error estimate EI < εS . One possible choice is εS = tol/|T |,
which corresponds to the magnitude of an average error distribution.

Next, we refine all intervals in TR and reevaluate the integral on this new partition.
Since function evaluations are, in general, expensive, we store the local values zGI (u, t),
zKI (u, t), and EI and only recompute the local values on the refined intervals. Additio-
nally to zG and zK , the algorithm delivers a new segmentation T of [−tA, tA], which we
can use to compute z′(uk, t) and z′′(uk, t). This results in the following algorithm:

Algorithm 3: Adaptive Quadrature
Input: uk, T0, tol ;
Variable Input: uk+1 or δek ; // depends on the choice of E
Set TR = T0 ;
while |Tj | < maxIntervals do

compute zKI , zGI , and EI for all I ∈ TR ;
compute zK , zG and E ; // possibilities for E, see (5.6) and (5.5)
if E < tol then

break ;
else

choose TR ⊂ Tj such that (5.4) is satisfied ;
Tj+1 ← refine all intervals in TR ;

end
end
Output: zK , zG, and Tj ;

Computation of L(u, ξ) The last quantity to compute is the Lagrange functional
L(u, ξ) and its derivatives. If we inspect the terms in L, we notice that J2, J3, and the
regularization term of H are only compositions of parts of the H2(−tA, tA,R3) scalar
product. The only exception is J1, such that we treat the computation of J1 separately.

First, we recall that u is, after finite element discretization, locally a polynomial of order
three. Consequently, the first and second derivatives are then polynomials of order two
respectively one. Using the finite element discretization of u, cf. (5.2), we can compute

⟨u(τ), u(τ)⟩2 = ⟨
m∑
i=0

uiϕi(τ),
m∑
i=0

uiϕi(τ)⟩2 =
m∑
i=0

m∑
j=0

(uiuj)⟨ϕi(τ), ϕj(τ)⟩2,

58

⟨u̇(τ), u̇(τ)⟩2 = ⟨
m∑
i=0

uiϕ̇i(τ),
m∑
i=0

uiϕ̇i(τ)⟩2 =
m∑
i=0

m∑
j=0

(uiuj)⟨ϕ̇i(τ), ϕ̇j(τ)⟩2,

and

⟨u(τ), u(τ)⟩2 = ⟨
m∑
i=0

uiϕ̈i(τ),
m∑
i=0

uiϕ̈i(τ)⟩2 =
m∑
i=0

m∑
j=0

(uiuj)⟨ϕ̈i(τ), ϕ̈j(τ)⟩2

showing that all integrands of J2 and J3 are polynomials of order lower than eight.
Thus, we can compute them exactly with a piecewise Gauss quadrature rule of order
five. Using v, w ∈ Vh, the same argumentation implies that ⟨u(τ), v(τ)⟩2, ⟨v(τ), w(τ)⟩2,
⟨u̇(τ), v̇(τ)⟩2, ⟨v̇(τ), ẇ(τ)⟩2, ⟨ü(τ), v̈(τ)⟩2, and ⟨v̈(τ), ẅ(τ)⟩2 are also polynomials of order
lower than eight. Thus, we can use the same Gauss rule to compute the derivatives of
J2 and J3.

To evaluate J1, we have to compute the outer integral which defines the tracking problem.
Here, we can simply use the piecewise midpoint rule, since this only transforms the
problem from a continuous into a discrete tracking problem. Furthermore, the measured
values ym(t) are, in general, also discrete, this is naturally the best method if we choose
the quadrature points to be equal with the times where we have measured the potentials
ym. Thus, this determines the times steps ti for which we compute z(u, ti) with the
above-described adaptive quadrature algorithm. Since we use a Galerkin approach, we
must ensure that the segmentation Tδv, generated by the adaptive quadrature, contains
the segmentation points of TFE . Thus, we use TFE as initial segmentation when using
the adaptive quadrature. As before, we could compute z, z′, and z′′ simultaneously, but
due to the adaptive quadrature, this would be costly concerning computational effort
and memory storage. This has mainly two reasons: Firstly, we would have to evaluate
ω′
k,h and ω′′

k,h repeatedly. And secondly, the adaptive quadrature requires storing the
values of the derivatives (since z is vector-valued, they are, in fact, matrices and tensors)
for each interval in the segmentation. Therefore, we decided to compute solely z(u, ti)
adaptively and use the final segmentation Tδv to compute z′G, z′K , and z′′G concerning the
Galerkin approach. Although this approach requires an additional iteration over Tδv, we
think it is the better option.

Remark 6. The careful reader may notice that the error bound (4.13) requires the eva-
luation of z′(uk, ti)δek. Thus using (4.13) contradicts the above-described justification,
since we anyway must evaluate ω′

k,h and store z′ in this case. But testing solely with δek
requires only storing one additional vector instead of a matrix. And since we anyway
need an additional loop to compute z′′, the above-described approach is, in our opinion,
the better alternative.

Since the computation of z(u, ti) requires only read access to ωk,h, we can easily pa-
rallelize the piecewise midpoint rule. Therefore, we first choose an interval [0, T] on
which we want to simulate a measurement. We then choose n equidistantly distributed
quadrature points ti with t0 = dt/2, ti+1 = ti + dt, tn = T − dt/2, and dt = T/(n+ 1).
Next, we must decide how many threads we want to use. The workstation we use for

59

the numerical examples in the next section has four CPU cores, such that we can use
up to four threads for the computation. The algorithm creates then nbrthreads threads,
where each thread computes the following: First, the thread locks the global index i
such that the other threads can not change the index. Then, we test if we still must
compute z(u, ti) respectively if i < n + 1. When this is true, we set tm = ti, increase
i, and unlock the index i so the other treads can continue. We then compute z(u, tm)
adaptively with Algorithm 3. Finally, we lock the value of J1 (to avoid adding values
simultaneously to J1), add ⟨z(u, tm), z(u, tm)⟩2 to J1, and unlock J1 again. Contrarily,
if i ≥ n + 1 (all quadrature points were visited), we also unlock i and exit the thread.
This lead then to the following algorithm:

Algorithm 4: Parallel implementation of a piecewise midpoint rule
Input: uk, {t0, ..., tn}, nbrthreads = 4 ;
Set J1 = 0 and i = 0;
create nbrthreads threads computing:
while True do

lock i;
if i < n+ 1 then

set m = i, i = i+ 1 and unlock i
else

unlock i and exit thread;
end
compute z(uk, tm);
lock J1, J1 = J1 + ds · ⟨z(uk, tm), z(uk, tm)⟩2, unlock J1;

end
Output: J1 = J1(uk) ;

5.3 Details of the Inexact SQP-Method

In section 4.2, we proved that the Newton method converges globally if the error bound
(4.4) for the numerical quadrature is fulfilled and if in addition (4.7), (4.9), and (4.12)
hold. Additionally, we added the error bound (4.13) to ensure that the Newton method
converges locally at a reasonable speed. In this section, we devise algorithmic measures
to enforce these error bounds by customizing the numerical quadrature.

The exact evaluation of (4.4) requires the computation of the exact values of the integrals,
which are not available. Thus, we have to replace the exact quantities with estimates.
A standard method to derive such estimates is to replace the integrals with quadrature
rules of higher order. As already mentioned when describing the adaptive quadrature,
cf. Section 5.2, we are using the well-known Gauß-Kronrod quadrature formula. These
quadrature rules consist of a Gauß quadrature rule, denoted by an index G, and an
extended quadrature rule of higher order (called Kronrod extension), denoted by the

60

index K. With their help, we define the quantities:

E(u, v, t) := |⟨(zK − zG)(v, t), (zK + zG)(v, t)⟩n − ⟨(zG − zK)(u, t), (zG + zK)(u, t)⟩n|
E(u, v, t) := |⟨zK(u, t), z′K(u, t)v⟩n − ⟨zG(u, t), z′G(u, t)v⟩n|

tolE,k := 2ς
T
|LK(uk+1, ξk)− LK(uk, ξk)|

tolE,k := ϵ2

T
∥δvk∥2H

The error bounds (4.3) and (4.14) are then replaced by their computable counterparts:

E(uk, uk+1, t) ≤ tolE,k ∀t ∈ [0, T] (5.5)
E(uk, δek, t) ≤ tolE,k ∀t ∈ [0, T] (5.6)

with δek := δuk − δvk. To compute the directions δuk and δvk, we apply a Galerkin
method to (4.5) and (4.10), which lead to the discrete problems:

HG(uk; Λk)(δuk, w) + L′G(uk, ξk)w = 0 ∀w ∈ Vh. (5.7)
HG(uk; Λk)(δvk, w) + L′K(uk, ξk)w = 0 ∀w ∈ Vh. (5.8)

Similar to the computation of the impulse response functions ωk,h, we can transform
(5.7) and (5.8) into systems of linear equation by inserting the basis representation of
δuk. Therefore, we first note that it is sufficient to test (5.7) and (5.8) with all basis
function ϕi ∈ Vh, cf. 5.1. Using δuk =

m∑
i=0

(δuk)iϕi, we can compute

HG(uk; Λk)
(

m∑
i=0

(δuk)iϕi, ϕj

)
=

m∑
i=0

(δuk)iHG(uk; Λk)(ϕi, ϕj) j = 0, ...,m

such that we get the following systems of equations

H δuk = −L and H δvk = −L̃ (5.9)

where the matrix entries H ij are given through

H ij := HG(uk; Λk)(ϕi, ϕj).

Consequently, we get the right-hand sides

Li := L′G(uk, ξk)(ϕi)

and

L̃i := L′K(uk, ξk)(ϕi).

Since we use an adaptive quadrature rule, these two linear systems of equations are pretty
small such that we can use a direct solver, i.e., a Cholesky decomposition of H. And

61

since the matrix is the same for both systems, we must only compute the decomposition
once. Next, we want to discuss how we incorporated the error bounds (5.5) and (5.6)
into our algorithm. The first part where we can incorporate them is the computation of
the direction δuk. There we use (5.6) together with the adaptive quadrature to ensure
that the algorithm converges quickly, locally, i.e., that (4.13) is satisfied. And secondly,
we use (5.5) to enforce global convergences, cf. Theorem 4.3.1, when applying the line
search.

Computation of Search Directions When computing the directions of descent δuk
and δvk, defined by (5.7) and (5.8), respectively, we need to ensure that they satisfy
condition (4.13) and thus also (4.12). To achieve this, we use the following correction
loop, specified in Algorithm 5. First, we compute L′G(uk, ξk), L′K(uk, ξk) and HG(uk; Λ)
as described above, cf. Section 5.2. The J1 part of L′ is thereby computed adaptively
such that a given error bound is satisfied. Second, we solve (5.7) and (5.8) using an inner
feedback loop to ensure that HG(uk; Λ) is positive definite, i.e., satisfies (4.7). After we
have computed these candidates for δuk and δvk, we test if they satisfy (4.13). If this is
not the case, we tighten the given error bound and restart the computation. Otherwise,
Algorithm 5 terminates successfully and returns δuk and δvk. Due to the higher order
quadrature rule, δvk is more accurate than δuk. Thus, we will use δvk as input for the
following line-search procedure.

Algorithm 5: Computation of Newton direction
Input: uk, tolk−1 and T0 ; // in general T0 = TFE

compute J ′
2, J

′
3, J

′′
2 and J ′′

3 on TFE ;
for i=1,2,... do

if i == 1 then
z′G, z

′
K , z

′′
G, Ti ← Alg. 3 (Input: uk, T0, tolE,k−1, (5.10)) ;

else
z′G, z

′
K , z

′′
G, Ti ← Alg. 3 (Input: uk, δek, Ti−1, tolE,k, (5.6));

end
compute J ′

1,G, J
′
1,K , J ′′

1,G,L′G and L′K ;
do

choose Λ and compute HG ; // choice of Λ, see Sec. 4.2
δuk, δvk ← solve (5.7) resp. (5.8) ;

while (4.7) is not satisfied;
if ∥δek∥H ≤ ϵ∥δvk∥H then

terminate “accuracy requirement (5.6) fulfilled“;
else

update δek and tolE,k;
end

end
Output: δvk and Tδvk = Tk ;

62

Let us now explain the features of Algorithm 5 in more detail. As described in Section 5.2,
we can split the computation of L′G(uk, ξk), L′K(uk, ξk) and HG(uk; Λ) into two parts.
First, we can exactly compute J ′

2(uk), J ′
3(uk, ξk), J ′′

2 (uk) and J ′′
3 (uk, ξk) on the given

finite element segmentation TFE with a Gauss quadrature rule of order five. These
computations do not need adaptive quadrature and thus can be performed before the
loop. Second, we compute J ′

1,G(uk), J ′
1,K(uk), and J ′′

1,G(uk) requiring the ”adaptive”
computation of z′G(uk, t), z′K(uk, t), and z′′G(uk, t) as described in the previous section.

When computing z(uk, t) adaptively with algorithm 3, we use, in general, the error crite-
rion (5.6). This, however, is only possible for i ≥ 2, since (5.6) requires an approximation
of the difference δuk − δvk which is only available after the first pass of the loop. Thus,
in the first pass of the loop, we have to replace (5.6) by an alternative criterion. A re-
asonable choice would be using the error bound (5.5) used in the line search, cf. below.
But this error bound depends on uk+1 and tolE,k, which are unavailable. Thus, we drop
the quantities requiring uk+1 and replace tolE,k with tolE,k−1 resp. 10−5 if k = 0. These
modifications lead to the following error bound:

|⟨(zK − zG) (uk, t), (zK + zG) (uk, t)⟩n| ≤ tolE,k−1. (5.10)

Beginning with the second pass of the loop, we can use δuk and δvk from the previous
step to apply the error bound (4.13) when adaptively computing z(uk, t).

After the computation of z′G(uk, t), z′K(uk, t), and z′′G(uk, t), we can compute J ′
1,G(uk),

J ′′
1,G(uk), and J ′

1,K(uk), and thus L′G(uk, ξk), L′K(uk, ξk), and HG(uk; Λ) as described in
section 5.2, needed to define the linear systems (5.7) and (5.8).

When solving (5.7) and (5.8), we first choose Γ = 0 and compute HG(uk; Γ). Then
we solve the resulting systems of linear equations (5.9) with the help of a Cholesky
decomposition and test if (4.7) is satisfied. If this test fails, we increase Γ, i.e., set
Γ = 0.1 and multiply it with 2 after each failed test. Next, we update HG(uk; Γ) and
recompute δuk and δvk until they fulfill (4.7).

Finally, we test if (4.13) is satisfied. If this test fails, we update δek and tolE,k and go
back to the computation of the derivatives of J1. Otherwise, we continue with the line
search which we are describing now.

Inexact Line Search When computing the damping factor β, we must ensure that
the Lagrangian functional satisfies (4.4). Therefore, it is necessary to evaluate z(uk, t)
and z(uk+1, t) adaptively using the error bound (5.5). This error bound depends on
tolE,k, which is not a priori known. Thus, we cannot use the error bound directly.
Instead, we add a feedback loop to a standard backtracking line search algorithm, cf.,
e.g., [48, Algorithm 3.1], and use tolE,k−1 as initial tolerance. As initial segmentation
for the adaptive quadrature algorithm, we use the final segmentation Tδvk of the step
computation. This leads to the modified backtracking algorithm 6, which we describe
now.

63

We start with β = 1 and set utry = uk + βδvk. As describe in Section 5.2, we can com-
pute J2(utry) and J3(utry, ξk) without resorting to adaptive quadrature. Furthermore,
we can reuse J2(uk), J3(uk, ξk), J ′

2(uk) and J ′
3(uk, ξk) computed during the computation

of δuk. To obtain J1,G(utry), J1,K(utry), J1,G(uk), and J1,K(uk), we compute z(uk, t)
and z(utry, t) with the adaptive quadrature algorithm 3. Thereby, we must ensure that
both quantities satisfy the error bound (5.5). Thus, we slightly modify the adaptive qua-
drature algorithm such that it computes z(uk, t) and z(utry, t) simultaneously with the
same Gauss-Kronrod rule. The modifications read as follow: Since z(uk, t) and z(utry, t)
are independent, we can compute the local quantities zG,I(uk, t), zK,I(uk, t), zG,I(utry, t),
zK,I(utry, t), and EI(uk, utry, t) separately while iterating over the segmentation Tj (star-
ting with Tδvk).

After computing the global values as usual, we test if (5.5) is satisfied. If this is not
the case, we choose a refinement partition TR such that (5.4) is satisfied. As usual,
we refine Tj and recompute zG,I(uk, t), zK,I(uk, t), zG,I(utry, t), and zK,I(utry, t) on the
refined intervals.

Algorithm 6: Computation of the damping factor β
Input: uk, δvk, J2(uk), J3(uk, ξk), J ′

2(uk)δvk, J ′
3(uk, ξk)δvk, Tδvk ;

Parameter: ς = 0.9, η = 10−3, σ = 0.01, β = 2, tolE,k = tolE,k−1;
do

do
β ← 0.5β and utry ← uk + βδvk;
compute J2(utry) and J3(utry, ξk) on TFE ;
zG(uk, t), zK(uk, t), zG(utry, t), zK(utry, t), Tβ ← Alg. 3

(Input: uk, utry, Tδvk , tolE,k, and error bound (5.5));
compute z′K(uk, t)δvk on Tβ;
compute J1,G(uk), J1,K(uk), J ′

1,K(uk)δvk, J1,G(utry), and J1,K(utry);
compute LG(uk, ξk),LK(uk, ξk), L′K(uk, ξk)δvk, LG(utry, ξk) and
LK(utry, ξk);

while LK(utry, ξk)− LK(uk, ξk) > βηL′K(uk, ξk)δvk;
if L′Qβ

(uk, ξk)δvk ≥ σL′Qδvk
(uk, ξk)δvk then

terminate “(4.9) violated”;
else

tolE,k = 2ς
T |LK(utry)− LK(uk)|;

end
while | (LK(utry, ξk)− LK(uk, ξk))− (LG(utry, ξk)− LG(uk, ξk)) | ≥ tolE,k;
terminate “(4.8) and estimated (4.4) fulfilled”;
Output: β;

As before we can compute z′K(uk, t)δvk on the final segmentation Tβ. Next, we can
compute J1,G(uk), J1,K(uk), J ′

1,K(uk)δvk, J1,G(utry), J1,K(utry), LG(uk, ξk),LK(uk, ξk),
L′K(uk, ξk)δvk, LG(utry, ξk) and LK(utry, ξk) and test if the Armijo condition is satisfied.

64

If not, we multiply β by 0.5 and repeat the process until the Armijo condition is fulfilled.
When we have found an acceptable β, we update tolE,k and test if (4.4) is still satisfied.
If this is not the case, we restart the line search with the updated error bound. This
final test ensures that (4.4) is satisfied at termination. The test seldom fails since we
already used the adaptive quadrature to control this error.

The last section of this chapter treats the update of the Lagrange multiplier λk occasio-
nally happening after a successful pass of the Newton method.

5.4 Details of the Lagrange Parameter Update
After a successful pass of the Newton method, we test if ∥G(u)∥2,2∗ was reduced enough,
more precisely that the feasibility of the solution was increased, cf. 4.1. If this was the
case we update the Lagrange parameter λk by solving

0 = ⟨w, v⟩1,2 + J ′(ũk)(v) + ⟨λk+1, G
′(ũk)(v)⟩1,2

0 = G′(ũk)(w)
∀v ∈ H2(−tA, tA,R3),

cf. Section 4.1. Analyzing this equation, we note that the first equation is an integral
equation while the second equation pointwise, i.e., [G′(u)(w)] (τ) = 0 for almost all
τ ∈ [−tA, tA]. But we can, using the fundamental lemma of calculus of variations, see,
e.g., [11, Section 2.2], transform the second equation into an integral equation of the
form

⟨G′(ũk)(w), ṽ⟩1,2 = 0 ∀ṽ ∈ H1(−1, 1,R).

Furthermore, it is well-known that it is numerically more stable to compute an update
δλk instead of the new iterate λk+1. Thus, we write λk+1 = λk + δλk and compute

0 = ⟨w, v⟩1,2 + J ′(ũk)(v) + ⟨λk+1, G
′(ũk)(v)⟩1,2

= ⟨w, v⟩1,2 + J ′(ũk)(v) + ⟨λk, G′(ũk)(v)⟩1,2 + ⟨δλk, G′(ũk)(v)⟩1,2
= ⟨w, v⟩1,2 + L′(ũk, (0, λk))(v) + ⟨δλk, G′(ũk)(v)⟩1,2.

To solve these integral equations numerically, we must discretize λk, δλk ∈ H1(−1, 1,R).
Since λk is only in H1, we could use standard Lagrange basis polynomials for this
purpose. But since we already use Hermite basis polynomials for the discretization of
the trajectory u, we use the same basis polynomials to discretize λk which makes the
assembling of the matrix G, see below, much easier. Furthermore, using Hermite finite
elements respects the continuity of the Lagrange multiplier. When discretizing λk we
must consider that, in difference to u, the image of λ is in R. Thus, we get the ansatz
space:

Ṽh := {v ∈ C1(−tA, tA,R) : v|I ∈ P3(I) ∀I ∈ TFE} ⊂ H2(−tA, tA,ΩM),

with basis (b0(τ), ..., b2n+1(τ)). Similar to the above-described finite element discretiza-
tion, it is now sufficient to test with all basis functions ϕj ∈ Vh and bj ∈ Ṽh. Thus, we

65

must solve

0 = ⟨w,ϕj⟩1,2 + L′(ũk, (0, λk))(ϕj) + ⟨δλk, G′(ũk)(ϕj)⟩1,2 ∀ϕj ∈ Vh
0 = ⟨G′(ũk)(w), bj⟩1,2 ∀bj ∈ Ṽh.

Using δλ =
2n+1∑
i=0

δλibi ∈ Ṽh and w =
m∑
i=0

wiϕi ∈ Vh we can compute

⟨w,ϕj⟩1,2 = ⟨
m∑
i=0

wibi, ϕj⟩1,2 =
m∑
i=0

wi⟨ϕi, ϕj⟩1,2

⟨δλk, G′(ũk)(ϕj)⟩1,2 = ⟨
2n+1∑
i=0

δλibi, G
′(ũk)(ϕj)⟩1,2 =

2n+1∑
i=0

δλi⟨bi, G′(ũk)(ϕj)⟩1,2

⟨G′(ũk)(w), bj⟩1,2 = ⟨G′(ũk)(
m∑
i=0

wiϕi), bj⟩1,2 =
m∑
i=0

wi⟨G′(ũk)(ϕi), bj⟩1,2,

such that we get the following linear system of equations:[
M GT

G 0

] [
w
δλ

]
=
[
L̃
0

]

with

M ∈ Rm×m, Mi,j = ⟨ϕi, ϕj⟩1,2, i, j = 0, ...,m
G ∈ R2n+1×m, Gi,3j+l = ⟨bi, G′(uk+1)ϕj⟩1,2, i = 0, ..., n+ 1; j = 0, ...,m

and
L ∈ Rm, Li = −L′(uk+1, ξk)ϕi, i = 0, ...,m.

Similar to the step computation, the resulting linear system of equations has a moderate
size. Therefore, we can use a direct solver to solve it. But contrarily, this system of
linear equations is due to the local support of the basis functions φi sparse. Thus, we
use a sparse LU decomposition based on the SuperLU package, see [14].

Computing the matrix entries Mij and Gij does not depend on the simulation y. Thus,
we can compute them without resorting to the adaptive quadrature rule. As described in
section 5.1 and 5.2, we can use a Gauss quadrature rule of order 5 to compute the matrix
entries on each interval of the segmentation TFE . Furthermore, computing Mij only
depends on the basis functions ϕi, such that we can compute M once in the beginning
and reuse a stored version.

The computation of the right-hand side L differs only in two aspects from the evaluation
of L when computing the direction δuk, cf. Section 5.3. First, we set µ = 0. And
secondly, the update of the Lagrange multiplier doesn’t depend on any error bound.
Thus, we can use a simple relative error criterion when ”adaptively” computing z′K(ũk, t)
as described in Section 5.2.

66

Chapter 6

Numerical Examples

The final chapter studies seven numerical examples. The foundations for these examples
are two different geometries. The first four examples use a cylindrical geometry repre-
senting a part of an upper arm and the last example uses a geometry representing a
right hand containing the first dorsal interossei (FDI) muscle and the two neighboring
bones. We use these geometries to verify that the optimization problem (3.3) combi-
ned with the augmented Lagrangian method, see Section 4.1, is capable of identifying
a motor unit from a surface EMG measurement. The first example serves as a proof
of concept. Furthermore, we conduct a performance analysis for this first numerical
example. The second example studies the influence of the impulse response functions,
i.e. the accuracy with which compute them. The third example studies the influence
of the algorithmic parameters ε and α2 on the identifying process. The fourth example
studies the influence of anatomical circumstances, i.e. the fat thickness and the distance
between the motor unit and the electrodes. The fifth example studies the influence of the
electrode positions, i.e. the distance between two electrodes and their number. When
we modeled a surface EMG measurement, we assumed for simplicity that motor units
are singled-fibered, which is anatomically incorrect. Thus, the sixth example simulates a
multi-fibered motor unit and shows that we can identify the center of mass of this motor
unit. The last example visualizes the identification process in a more complicated geo-
metry, namely the right hand. For this example, we also conduct a second performance
analysis. Parts of this chapter has been published in [65].

6.1 Identification of a Motor Unit in a Cylindrical Domain

This first example visualizes the general capability of our approach for identifying a mo-
tor unit. Furthermore, we conduct a performance analysis of the augmented Lagrangian
method. But before we can discuss the numerical results, we must describe the general
setup of the example.

67

General Setup

For the first, and also for the following five, examples, we use a cylindrical domain
representing a part of a limb, e.g., the middle part of an upper arm. This cylinder
consists of three layers, where the inner layer represents a bone (white), the middle layer
represents muscle tissue (orange), and the outer layer is fat tissue (red). For the setup
of the electrodes, we oriented us on a real measuring device, see Figure 6.1b, containing
9×13 electrodes with a distance of 4mm between the electrode centers. But to keep the
numerical effort at a reasonable level, we consider only a grid of 5× 13 = 65 electrodes
(black circles) on the skin (beige). Furthermore, we increased the distance between the
electrodes to 8mm in the horizontal and vertical directions. The cylinder has a length
of 18cm and a diameter of 8cm. The bone has a diameter of 2cm, the muscle tissue has
a diameter of 7.5cm, and the fat layer has a depth of 0.5cm. As shown in Figure 6.1a,
we shifted the bone and placed the electrodes on the opposite boundary.

(a) Cylindrical domain with 65 electrodes (b) Measure foil with circular electrodes

Figure 6.1: Geometric setting and real measure foil

To create a FE conforming mesh from the geometry, we used gmsh, see [24]. Concerning
the triangulation, there are two domains of interest where we want the mesh to be
sufficiently fine. The first region is the domain where the electrodes are placed. Due
to the circular shape of the electrodes and a possible curved skin, the mesh must be
sufficiently fine in this region. Since the shape of the electrodes is defined during the
mesh generation, this area is initially pretty fine and has no hierarchical structure. The
second region is that part of the muscle tissue, where the motor unit is roughly known
to be located. This area was chosen as a cylinder with a radius of 0.5cm around the axis
(x, 0., 0.029). We refined the mesh inside this cylinder two resp. three times resulting
in two different meshes containing 82581 resp. 181084 tetrahedra, which we will use
later for comparison purposes.

For the approximation of a motor unit, a finite element discretization of [−1, 1] that
consists of 19 subintervals is sufficient. Therefore, the matrix representation of H(u,Λ)
is only a 120 × 120 matrix, such that we can use a direct solver, i.e., a Cholesky de-

68

composition, to solve (4.5), cf. Section 5.3. The matrix for computing the update of
the Lagrange multiplier is similarly small, but, in contrast to H(u,Λ), it is sparse, see
Section 5.4.

We created synthetic measurement data, see Figure 6.2 by simulating measurements for
a given reference motor unit. Analytically our reference motor unit is given through

u(t) =

cos(π/90) sin(0.38t)− 0.02 sin(π/90)
0.1 cos(0.38t)

sin(π/90) sin(0.38t) + 0.02 cos(π/90)

 for t ∈ [−1, 1].

Figure 6.3 (below) shows two views of the reference motor unit (cyan). The left picture
visualizes the positions relative to the electrodes, and the right picture shows the change
of depth respectively the distance to the electrodes. This setting combines two critical
difficulties, which are usually encountered separately in practice: the change of depth
(e.g., in facial muscles) and a curved motor unit (e.g., in the biceps). It is thus slightly
more complicated than most practical use cases.

Figure 6.2: Simulated measurement for a reference motor unit at 65 electrodes

To simulate the measurements, we divided the time interval [0, 2]ms into 200 equidis-
tantly distributed measure points ti and computed for each measure-point y(u, ti) with
(2.35). We used the adaptive quadrature algorithm 3 with a standard relative error
criterion and tolerance 10−6 to compute the integral. To create a realistic measurement,
we added white noise with a data-to-noise ratio of 5%. Figure 6.2 shows the 65 simulated

69

measurements in a grid. The measurements contained in the red boxes are depicted in
detail in Figure 6.4 (below) as reference measurements in the discussion of this example.

Looking at the grid of simulated measurements in Figure 6.2, we can already guess
roughly the trajectory of the motor unit visually. Additionally, we notice that the
measured signal gets stronger from left to right indicating that the distance between
the motor unit and the electrodes is shorter on the right part of the measurement.
Based on these observations we can select an initial guess for the solution. To challenge
our algorithm, i.e. the globalization part, we ignored most of the visual information
and chose a straight line with a constant depth. In Figure 6.3, the initial trajectory is
visualized in red. We then used the presented algorithm to identify the reference motor
unit from the simulated measurement. To solve the optimization problem we selected
the parameters α1 = 0.1, α2 = 0.01, and ε = 0.01. Furthermore, we terminated the
inner Newton method if ∥L′(uk+1, ξ)∥2,2∗ < 0.9 · 10−6 and the augmented Lagrangian
method if ∥G(u)∥ < 10−6 or after eight steps. We will now discuss the result of this
identification process.

Numerical Analysis

We start with a qualitative discussion of the identification, using impulse response functi-
ons computed with cubic ansatz polynomials on a grid that was refined three times in
the area of the motor unit. Figure 6.3 compares the reference motor unit, shown in cyan,
with the computed solution, shown in blue. The right picture shows that the changing
depth is identified very well. As the left picture shows, the curved trajectory is also
identified well with a slight deviation at the left side where the motor unit is further
away from the electrodes.

−0.050 −0.025 0.000 0.025 0.050

−0.02

−0.01

0.00

0.01

0.02

view relative to the electrodes

−0.04 −0.02 0.00 0.02 0.04

0.02

0.03

0.04

distance to the electrodes

Initial Guess Reference Solution Electrodes

Figure 6.3: Comparison of the computed solution with the reference trajectory

Figure 6.4 compares the measurement produced by the reference trajectory with the
measurement generated from the computed solution for two selected electrodes. We
can see that both measurements fit well and mainly differ in the added noise. This
observation underlines that the algorithm is suitable to identify a motor unit from a
given sEMG measurement.

70

Electrode in row 3 and column 4 Electrode in row 3 and column 10

Figure 6.4: Comparison of simulated (black) and identified measurement (red).

Performance study Figure 6.5 shows that the algorithm needs 33 Newton steps
distributed over 7 augmented Lagrangian steps. The first augmented Lagrangian step
requires the most Newton steps, since it has the least accurate initial guess, and thus
globalization is active. After this first pass of the Newton method, all other augmented
steps require 2 to 5 Newton iterations, but we do not see superlinear convergence. We
attribute for this observation to the non-smoothness of the discretized impulse response
functions ωk,h. Therefore, small jumps in the first derivative, occur at the boundary
between two adjacent tetrahedra. We will later observe the influence of the impulse
response functions in more detail.

2 4 6 8 10 12

10−2

10−4

10−6

10−8

aug. step #1

1 2 3 4 5

aug. step #2

1 2 3 4

aug. step #3

1 2 3 4

aug. step #4

1 2 3

10−2

10−4

10−6

10−8

aug. step #5

1 2 3

aug. step #6

1 2

aug. step #7

Figure 6.5: Energy norm of ∥δvk∥H during all augmented Lagrangian steps

Figure 6.6 visualizes the properties of the augmented Lagrangian method. We see that
∥G(u)∥2,2 converges linearly to zero. To achieve this, the algorithm alternates between
increasing the penalty parameter µ and updating the Lagrange multiplier λ. In theory,

71

we would expect that ∥L′∥2,2∗ also goes to zero. But achieving this goal requires the
norm of the constraints to be much smaller and, thus, also a larger penalty parameter. In
combination with the non-smooth derivatives of ωk,h this led to numerical instabilities,
such that we decide to use a softer termination criterion for ∥L′∥2,2∗ . From a practical
point of view, the chosen tolerances are already pretty small, i.e., a tolerance of 10−6

corresponds to changes in the micrometer area. Furthermore, the nature of the constraint
function implies that further decreasing ∥G(u)∥2,2 only changes the parameterization of
the solution but not the trajectory. Thus, it is reasonable to use a moderate termination
criterion.

2 4 6

10−6

10−5

10−4

2 4 6

100

101

102

||L′||2,2,∗
||G(u)||2,2
γ

Figure 6.6: Key data of the augmented Lagrangian algorithm

Lastly, Figure 6.7 compares the tolerance, given to the adaptive quadrature, with the
size of the resulting segmentation of the integration domain. For this example, the
segmentation after the line search is the same as after computing δvk. Thus, the plot
shows only the final number of points in the segmentation. Furthermore, plotting the
data from all measure points ti would be messy. For the sake of brevity, we visualize the
average and maximal number of points among all used segmentations in each step and
concentrate our discussion on the first pass of the inner Newton method. Since both
tolerances depend on differences that get very small during the algorithm, the adaptive
quadrature algorithm refines the segmentation more for the last steps of the algorithm.
Next, we notice that the average number of grid points is much lower than the maximal.
This observation indicates that the adaptive quadrature needs only a fine segmentation
for a few measure points and underlines the theoretical considerations in Section 5.2 and
justifies using adaptive quadrature.

From this first example, we can conclude, that the optimization problem (3.3) combined
with Algorithm 1 can identify a motor unit from a surface EMG measurement with
reasonable effort. Furthermore, it justifies using an adaptive quadrature. The next
example studies now the influence of the impulse response functions.

72

2 4 6 8 10 12
0

200

400

600

Avg. grid points

Max. grid points

2 4 6 8 10 12
10−18

10−15

10−12

10−9

10−6

10−3
Tol. step comp.

Tol. line search

Figure 6.7: Comparison of the average and maximal grid size (left) after using adaptive
quadrature with different tolerances (right)

6.2 Influence of Impulse Response Functions

This example discusses the influence of the discretization of the impulse response functi-
ons ωk,h by finite elements. Discretization introduces small discontinuities of the deri-
vatives ω′

k,h at the facets of the triangulation, which may affect the performance of our
algorithm. To assess the situation, we solve the above problem using two different grid
resolutions and, on each grid, finite elements of degrees two and three.

In our numerical experience, the inner Newton method behaves, after the first augmen-
ted Lagrangian step, similarly for all impulse response functions and only differs in the
first augmented Lagrangian step. We attribute this behavior to the observation that the
trajectory is already identified quite well. Thus, the remaining augmented Lagrangian
steps mainly optimize the parameterization, which needs 2 to 7 Newton steps per aug-
mented Lagrangian step. Figure 6.8 shows the convergence rates for the first pass of the
inner Newton method. We notice that the algorithm requires the most iterations using
the coarse grid (2 refinements) and polynomials of order 2. For the other sets of impulse
functions, the convergence rate is approximately the same.

The size and order of the finite element space also influence the computational times for
each step. Since the usage of the adaptive quadrature rule influences the computation
times, the effect of the choice of the impulse response function is not that clear when
comparing the average times needed to compute a Newton step. Therefore, we start by
comparing the times the algorithm needs to simulate a measurement, see Table 6.1. Here,
we notice that increasing the polynomial degree from two to three approximately doubles
the computation time. Since changing the polynomial degree from two to three, increases
the degrees of freedom per tetrahedron from 10 to 20, we could expect this behavior.
Refining the grid increases the computation times by only about 50%. The observed
behavior is similar when comparing the average times needed to compute a Newton step

73

0 5 10 15 20 25 30 35 40 45

10−2

10−3

10−4

10−510−5

10−6

10−7

ref.: 2, pol. order: 2

ref.: 2, pol. order: 3

ref.: 3, pol. order: 2

ref.: 3, pol. order: 3

Figure 6.8: Comparison of ∥δvk∥H for different impulse response functions

considering that the adaptive quadrature produces different fine segmentations.

Including the times needed to compute the impulse response functions in our discussion,
we observe that increasing the polynomial degree increases the computation time by
a factor of 7, whereas refining the domain increases the computation time only by a
factor of 3.5. Thus, if the optimization problem is solved only once, the computation of
the impulse response function is possibly too time-consuming when using polynomials of
degree 3. But if the optimization problem is solved multiple times, e.g., when identifying
different motor units in one muscle, then polynomials of higher degrees are the better
choice. In addition, higher-degree finite elements may yield more accurate identification
results.

ref./ Newton avg. points avg. time avg. time total time to
degree steps in [−1, 1] simulation [s] Newton step [s] time [s] compute ωk,h [s]
2/2 69 88.7 1.33 4.47 299 158.72
2/3 35 84.1 2.54 8.85 285 1135.22
3/2 40 134 1.81 6.54 246 557.04
3/3 33 78.4 2.69 8.15 249 4664.88

Table 6.1: Comparing results for different impulse response functions ωk,h

6.3 Influence of Algorithmic Parameters

This section analyzes the influence of two algorithmic parameters on the identification.
The first parameter we want to analyze is ε influencing the accuracy with which we
compute δvk. Secondly, we study the influence of the regularity parameter α2 on the
identified trajectory. For these examples, we use the same setup as in the first example
but change the parameters accordingly.

74

Influence of ε To study the influence of the direction δvk we solve the problem four
times with ϵ = 0.5, 0.1, 0.01 and 0.001. The solutions are, for all four parameters, visually
not distinguishable, i.e. we get the same trajectory as in the first example, see Figure 6.3.
But the convergence rate and computation times change significantly. Since the behavior
of the inner Newton method is similar for all augmented steps, we only visualize the first
pass of the inner Newton method in Figure 6.9.

First, we notice that the algorithm has the worst convergence rate for ε = 0.5. But for
the other parameters, it has almost no effect. The reason for this observation becomes
quite obvious when taking into account the error bound used for the adaptive quadrature.
While for ε = 0.5, the step δvk is accepted almost immediately, meaning that only the
simplified error bound (5.10) is used, all other choices of ε require at least one additional
computation of δvk with the error bound (5.6).

2 4 6 8 10 12 14 16
10−7

10−6

10−5

10−4

10−3

10−2

10−1

ε = 0.5

ε = 0.1

ε = 0.01

ε = 0.001

ε = 0.5∗

Figure 6.9: Energy Norm of δv for different tolerances ε (∗: forced usage of (5.6))

From this observation we may conclude that the choice of the parameter is secondary
and the important part is using the advanced error bound. To verify this observation, we
solved the problem once more with ε = 0.5, but this time we automatically rejected the
first version of the directions and always computed δvk and δuk with the more advanced
error bound (Remember that we can not apply (5.6) directly, cf. Section 5.3). Using this
approach resulted in a convergence rate that was still worse than with ε = 0.1 but better
than simply using ε = 0.5 without forcing the usage of the error bound (5.6). Thus,
for this example, ε = 0.1 seems to be the optimal choice. Additionally, using ε = 0.1
provides the fastest total computation time. As Table 6.2 shows, the time required
to compute δvk is slightly bigger than for ε = 0.5, but since it needs lesser steps the
total computation time is much slower. Using smaller ε increases the computation times
significantly but we do not gain any advantage regarding the convergence raid. Thus,
we can conclude that is unnecessary to choose a small parameter ε.

75

ϵ steps avg. time Total Time [s]Newton step [s]
0.5 44 2.5 160.1
0.1 33 3.3 127.7
0.01 33 5.4 195.0
0.001 33 8.9 302.2
0.5∗ 40 3.0 164.1

Table 6.2: Computation times for different tolerances ε (∗: forced usage of (5.10))

Influence of α2 The second parameter we want to analyze in this section is the regula-
rization parameter α2 controlling the smoothness of u. Therefore, we solve the problem
three times with α2 = 0.1, 0.01 and 0.001. Figure 6.10 compares the identified motor
units for the different choices of α2.

−0.050 −0.025 0.000 0.025 0.050

−0.02

−0.01

0.00

0.01

0.02

view relative to the electrodes

−0.04 −0.02 0.00 0.02 0.04
0.02

0.03

0.04

distance to the electrodes

Reference α = 0.1 α = 0.01 α = 0.001

Figure 6.10: Solution for different regularization parameters α2

The first observation we make is that the identification of the motor unit does not work
very well for α2 = 0.1. For this choice, the solution matches the reference trajectory only
on the right part of the measurements, i.e. in the region where the motor unit is closer
to the electrodes. Additionally, the algorithm has problems identifying the correct depth
on the left part of the measurements. As seen in the first example, the identification of
the motor unit works pretty well for α2 = 0.01 and we see that it is almost perfect for
α2 = 0.001.

The left picture in Figure 6.11 shows that the choice of α2 has only a minimal influence
on the convergence rate of the first pass of the inner Newton method. But in contrast, the
right picture shows that the augmented Lagrangian has, for α2 = 0.001, not reached the
termination criteria ∥G(u)∥2,2 ≤ 1e−6 after eight steps. The reason for this observation
is, that the second derivative becomes indefinite if the penalty parameter µ is too large,
which causes numerical instabilities for the later augmented Lagrangian steps. Thus, we
can conclude that, for this example, α2 is too small to compensate for the increasing
penalty parameter µ.

76

2 4 6 8 10 12
10−7

10−6

10−5

10−4

10−3

10−2
‖δvk‖H

1 2 3 4 5 6 7 8

‖G(u)‖2,2

α = 0.1 α = 0.01 α = 0.001

Figure 6.11: ∥δvk∥H and ∥G(u)∥2,2 for different regularization parameters α2

This example showed that the regularity parameter α2 has a non-neglectable influence
on the Newton method. If it is too big we get a straight line and if it is too small the
second derivative is no longer positive definite leading to numerical instabilities. Thus
we have to choose this parameter with care or use an update strategy for α2. We could,
for example, start with α = 0.001 and after the algorithm has finished, we could restart
with α2 = 0.001 and use the previously computed solution as uref . In this case, we can
increase α1 without fearing that the globalization fails, since we are already close to the
solution.

6.4 Influence of the Anatomy
In Section 2.3 we have observed that increasing the distance between the motor unit
and the electrodes adds an additional effect to the measurement, the so-called end-
effects. The reason for these effects is that potential generated from the point sources,
introduces to ensure that the conservation of charges is not violated, gets less damped
than the potential generated from the moving action potentials. Due to the material
properties of fat, this effect is even more pronounced if the fat layer is thicker. Thus, this
example studies the effect of the fat layer, and the distance between the motor unit and
the electrodes. Therefore, we increased, in comparison to the first example, the distance
between the motor unit and the electrodes from 10mm to 20mm. Then we simulated
two measurements. For the first measurement, see red measurement in Figure 6.12a, we
used the same domain as in the first example. When we compare this measurement with
the one from the first example, see Figure 6.2, we can clearly see some spikes at the end
of the measurements which are the end-effects. But it is still possible to visually identify
the trajectory of the motor unit and also the changing depth is observable. Thus in this
case, the end-effects do not influence the identification and we can see in Figure 6.13
that the computed solution matches with the reference trajectory as well as in the first

77

example where no end-effects were observable.

(a) Simulated measurements for a 5mm fat
layer, without (red) and with double differen-
tial filter (green)

(b) Simulated measurements for a 10mm fat
layer without (red) and with double differen-
tial filter (green)

Figure 6.12: Comparison of Measurements

For the second measurement, see red measurement in 6.12b, we used the same geometry
but we increased the thickness of the fat layer from 5mm to 10mm. For this domain, the
observation is completely different. We notice that this time the end effects dominate the
measurements and neither the trajectory nor the changing depths are clearly observable.
As a result, the identified motor unit does not match the reference trajectory as nearly
as well as before, see Figure 6.13.

−0.050 −0.025 0.000 0.025 0.050

−0.02

−0.01

0.00

0.01

0.02

view relative to the electrodes

−0.04 −0.02 0.00 0.02 0.04
0.01

0.02

0.03

0.04

distance to the electrodes

Reference

No Filter (1cm Fat)

DD Filter (1cm Fat)

No Filiter (0.5cm Fat)

Figure 6.13: Solution for different thick fat layers and with using a DD filter

To overcome this problem, the authors of [21] introduced different detection systems to
filter out the end effects generated from stationary sources. To decide which filter to
use, we shortly recall that muscle tissue is anisotropic, i.e. the conductivity is higher in
the axial direction. Thus, the generated potential propagate faster in the axial direction,
and consequently the influence of the stationary sources on the measurement is different
regarding the two space directions x (axial) and y (radial). Thus, the simulation results
in [21, Section 4.3.3] show that the double differential detection system filters out the

78

non-propagating parts the best. This detection system uses three electrodes that are
neighbors concerning the axial direction and generates a new measurement from them.
Therefore, it multiplies the measurement from the middle electrode by two and subtracts
the two other measurements. Using this filter reduces the electrode grid from 5 × 13
to 5 × 11, but it still covers the whole motor unit in the axial direction. Comparing
the red (without filter) and green measurements (with filter) in Figure 6.12, we notice
that the double detection system filters out the end effects almost perfectly. Since the
axial direction is, in our example, the x-axis, we attribute the observation of smaller end
effects to simulating a measurement for a curved motor unit. For the domain with the
10mm thick fat layer, the algorithm could identify the motor unit pretty when using the
double differential filter, see Figure 6.13. For the domain with the 5mm thick fat layer,
we could not detect a viable difference between the solution, which is why we decided to
plot only one of them. This observation is not surprising, since the identification works
already pretty well without the double differential detection system.

6.5 Comparing Different Electrode Setups

Our next example analyzes the influence of the electrode positions. The foundation
for the different electrode configurations builds the 5 by 13 electrode grid used for the
first example. As we have seen in the first example the identification works pretty well
with this setup. Since the computational effort for precomputing the impulse response
functions is proportional to the number of electrodes, the question that now arises is if
it is possible to reduce the number of electrodes. Therefore, we solve the optimization
problem four times with different electrode girds and compare the solutions to the one
from the first example.

−0.02

−0.01

0.00

0.01

0.02

3x7 electrode grid 3x13 electrode grid (with gap)

−0.050 −0.025 0.000 0.025 0.050

−0.02

−0.01

0.00

0.01

0.02

5x7 electrode grid

−0.050 −0.025 0.000 0.025 0.050

3x13 electrode grid

Figure 6.14: Different electrode setups

79

Before we compare the computed solutions, we shortly describe the different electrode
setups visualized in Figure 6.14. The first configuration (top left) uses only every second
electrode, i.e., the distance between the electrodes is doubled from 8mm to 16mm,
but the same area is covered. Thus, this setup contains 3 × 7 electrodes. The second
configuration (bottom left) uses every second row in the electrode grid, resulting in
5 × 7 electrodes. For this setup, the distance between two electrodes is 8mm in the
y-direction and 16mm in the x-direction. The third example (top right) uses then every
second column such that we get 3 × 13 electrodes. Here, the distances between two
electrodes are swapped, i.e., the distance is 8mm in the x-direction and 16mm in the
y-direction. The fourth and final configuration (bottom right) uses the three middle
rows of the electrode grid resulting also in 3× 13 electrodes. As in the first example the
distance between two electrodes is 8mm in all spacial directions.

The first trajectories we want to compare to the solution computed with the ”full” elec-
trode grid, are the solutions computed with the first and second configurations described
above. Using the first setup (3× 7 electrodes) to compute a solution, results in a trajec-
tory that is close to the reference trajectory but the algorithm can not correctly identify
the curvature, cf. red trajectory in Figure 6.15. And also the changing depth is identified
slightly worse than in the first example, but still in an acceptable error margin. Compa-
ring the solution (magenta trajectory) of the second configuration (5×7 electrodes) with
the solution of the first example (blue trajectory), we notice that the identification works
pretty well on the right side of the measurements where the trajectory is closer to the
electrodes, but on the left side it has difficulties to identify the curvature. Furthermore,
the identification of the depth is as good as in the first example.

−0.050 −0.025 0.000 0.025 0.050

−0.02

−0.01

0.00

0.01

0.02

view relative to the electrodes

−0.04 −0.02 0.00 0.02 0.04
0.02

0.03

0.04

distance to the electrodes

Reference

5x7 electrodes

5x13 electrodes

3x7 electrodes

electrodes

Figure 6.15: Solutions for the first and second electrode setup

Next, we compare the solutions of the third and fourth setups to the solution of the first
example (blue trajectory). The trajectory identified with the third configuration (3× 13
electrodes with a gap) is similar to the solution of the first electrode configuration, but at
least on the right side of the measurements, the curvature is identified a little bit better,
cf. red trajectory in Figure 6.16. Using the fourth configuration (3 × 13 electrodes

80

without a gap)results in a solution (magenta trajectory) that is similar to the solution
of the first example.

−0.050 −0.025 0.000 0.025 0.050

−0.02

−0.01

0.00

0.01

0.02

view relative to the electrodes

−0.04 −0.02 0.00 0.02 0.04
0.02

0.03

0.04

distance to the electrodes

Reference

3x13 electrodes

5x13 electrodes

3x13 electrodes (with gap)

electrodes

Figure 6.16: Solutions for the third and fourth electrode setup

Analyzing these four examples, we can conclude that not all electrodes from the initial
electrode grid are required for a satisfying identification but the position is important. So
far we can say that the top and bottom rows of electrodes are not necessary for a good
identification. Comparing the second, third, and fourth examples, we may conclude
that it is maybe possible to use every second electrode in the three middle rows, cf.
Figure 6.17. Thus, we computed a fifth solution where we used this setup. Figure 6.17
shows that the identified trajectory is quite good but not as good as in the first example
or as for the fourth electrode configuration. But we notice that there is the possibility
to reduce the distance between the electrodes and still cover the whole trajectory.

−0.050 −0.025 0.000 0.025 0.050

−0.02

−0.01

0.00

0.01

0.02

view relative to the electrodes

−0.04 −0.02 0.00 0.02 0.04
0.02

0.03

0.04

distance to the electrodes

Reference

3x7 electrodes

5x13 electrodes

electrodes

Figure 6.17: Solution for the fifth electrode setup

Since using 49 electrodes provided the same solution as using 65 electrodes, we can
conclude that is possible to identify the motor unit with much less electrodes than are
in the concrete measure device, namely 117 (see Figure 6.1b). Reducing the number
of electrodes to 21 provided also a satisfying solution and there is also the possibility

81

to optimize the distance between the electrodes. Unfortunately, the reduction of the
number of electrodes has only a minor effect on the computation time. On the one
hand, it indeed reduces the time required to compute a Newton step from 8.15s (65
electrodes) to 4.6s (49 electrodes) respective 4.2s (21 electrodes), but on the other hand,
the required number of Newton steps increased. Thus the total computation time is for
all three setups approximately the same and lies between 240 and 260s. Nevertheless, it
can still be a good idea to reduce the number of electrodes, since computing the impulse
response functions is numerically expensive, i.e. if we use higher-order finite elements.

6.6 Identifying a Multi-Fiber Motor Unit

When we modeled simulating a surface EMG measurement, we mentioned that a motor
unit can consist of several hundred motor units. But for simplification, we used the tissue
properties to apply the superposition principle such that we can represent a motor unit
by a single-fibered motor unit, see Section 2.1. This example shall now verify that this is
a valid assumption and that we can identify the center of mass of a multi-fiber motor unit
with our approach. Therefore, we selected randomly 100 muscle fibers and simulated for
each one a surface EMG measurement. To get a realistic distribution of muscle fibers,
we oriented us on the description of a motor unit given in [26]. The x-coordinate of the
neuromuscular junction is thereby Gaussian distributed with a mean value of 0 and a
standard deviation of 0.0012m. The y and z-coordinates are then uniformly distributed
in a circle with center (0., 0.03)m and a radius of 0.003m. The speed of the moving
action potentials is chosen Gaussian distributed with a mean value of 3.8m/s and a
standard deviation of 0.02m/s. Additionally, we rotated the motor unit around the
point (0., 0., 0.)m. Figure 6.18a shows the distribution of the 100 muscle fibers (black)
and the center of mass (cyan) in the axial direction, once relative to the electrodes and
once in the xz-plane visualizing the depth. Furthermore, Figure 6.18b visualizes a slice
through the motor unit and shows the distribution of the neuromuscular junctions.

0.04 0.02 0.00 0.02 0.04
0.01
0.00
0.01

view relative to the electrodes

0.04 0.02 0.00 0.02 0.04
0.02
0.03
0.04

distance to the electrodes

(a) Views of the motor unit in axial direction

0.01 0.00
0.025

0.035

(b) Slice through the motor unit

Figure 6.18: Multi-Fiber motor unit (black) and its center of mass (cyan)

82

Since we can apply the superposition principle, we get the simulated measurement of
the motor unit as the sum of all measurements. To compensate for the fact that we
simulated a measurement for more than one muscle fiber, we multiplied the source term
ρi by the number of muscle fibers. We then solved the optimization problem with
the same parameters as in the first example. As Figure 6.19 shows, the trajectory of
the center of mass of the multi-fiber motor unit and the identified trajectory match
perfectly. Thus, we can conclude that our assumption to model a single-fibered motor
unit is justified.

−0.050 −0.025 0.000 0.025 0.050

−0.02

−0.01

0.00

0.01

0.02

view relative to the electrodes

−0.04 −0.02 0.00 0.02 0.04
0.02

0.03

0.04

distance to the electrodes

Initial Guess Reference Solution Electrodes

Figure 6.19: Solution for identifying the center of mass of a multi-fiber motor unit

Last but not least, we want to analyze if using a multi-fiber motor unit as a reference
has any influence on the convergence rate. When comparing the convergence rates in
Figure 6.20 with the convergence rates from the first example (Figure 6.5), we notice a
similar behavior, such that we can conclude that using multiple muscle fibers does not
increase the difficulty of the problem in a notable fashion.

1 2 3 4 5 6 7 8

10−2

10−4

10−6

10−8

aug. step #1

1 2 3 4

aug. step #2

1 2 3

aug. step #3

1 2 3

aug. step #4

1 2

10−2

10−4

10−6

10−8

aug. step #5

1 2

aug. step #6

1 2

aug. step #7

1 2

aug. step #8

Figure 6.20: Energy Norm of δv for identifying a multi-fiber motor unit

83

6.7 Identifying a Motor Unit in the FDI Muscle
The last example of this chapter studies the identification of a motor unit in more
complex geometry, namely the geometry of the right hand which we already used for the
simulation in Section 2.3. But for this example, we choose a trajectory that approximates
the shape of the FDI Muscle instead of the straight line used for the first simulation
example in Section 2.3. Figure 6.21a shows a view of the hand where we look at the
back of the hand and it shows the trajectory (black) relative to the electrodes (red). The
second picture, see Figure 6.21b, shows the hand from a perspective where we look at
the thumb. In this picture, we can see the depth of the motor unit, i.e. the distance to
the electrodes. Furthermore, we can clearly see that the trajectory follows the curvature
of the FDI muscle (shown in orange).

(a) Look at the back of the hand (b) Look at the thumb

Figure 6.21: Two different perspectives of the hand geometry

Similar to the first and sixth examples, the motor unit is identified pretty well. As
Figure 6.22 shows, the computed trajectory (blue) matches nearly perfectly with the
reference trajectory (cyan) if comparing them relative to the electrodes. Furthermore,
we also notice only a small deviation comparing the distance to the electrodes.

0.060.07

0.035

0.045

view relative to the electrodes

0.060.07

0.05

0.06

distance to the the electrodes

Initial Guess Reference Solution Electrodes

Figure 6.22: Solution for identifying a motor unit in a hand

84

Looking at the convergence rates in Figure 6.23, we see a similar behavior as for the first
example. As before we can only observe fast local convergence for the first pass of the
Newton method. From the second pass on, the Newton method requires then, similar
to the previous examples, only three to five steps.

1 2 3 4 5 6 7 8 910

10−1

10−3

10−5

10−7

aug. step #1

1 2 3 4

aug. step #2

1 2 3

aug. step #3

1 2 3 4

aug. step #4

1 2 3 4 5

10−1

10−3

10−5

10−7

aug. step #5

1 2 3

aug. step #6

1 2 3

aug. step #7

1 2 3

aug. step #8

Figure 6.23: Energy Norm of δv for identifying a motor unit in a hand

When comparing the behavior of the augmented Lagrangian algorithm in this setting
with the one from the first example, we notice that the norm of the constraint function
converges slower to zero, cf. Figures 6.24 and 6.6. Consequently, the penalty parame-
ter is increased faster, i.e. the algorithm updates the Lagrangian parameter first and
increases then the penalty parameter three times. Afterward, the last four augmen-
ted steps update only the Lagrange multiplier. But the required amount of augmented
steps is similar underlying the observation that the trajectory is identified in the first
step of the augmented Lagrangian algorithm and the following steps only update the
parametrization such that it matches the constraints.

2 4 6 8
10−7

10−6

10−5

2 4 6 8

101

103

||L′||2,2,∗ ||G(u)||2,2 γ

Figure 6.24: Key data of the augmented Lagrangian algorithm in the hand setting

Comparing the Figures 6.25 and 6.7, we notice a similar behavior of the adaptive qua-

85

drature. This observation underlines the conclusion from the first example that using
an adaptive quadrature is justified.

1 2 3 4 5 6 7 8 9 10
0

200

400

Grid Data

Avg. grid points

Max. grid points

1 2 3 4 5 6 7 8 9 10
10−18

10−15

10−12

10−9

10−6

10−3

Tol. adaptive quadrature

Tol. step comp.

Tol. line search

Figure 6.25: Comparison of the average and maximal grid size after using adaptive
quadrature

Exact Identification When we discussed the local convergence in Section 4.3, we
mentioned that the influence of the impulse response functions is neglectable if the motor
unit is identified exactly. Thus, to close this chapter, we solved the hand problem for a
straight motor unit and a reference measurement without white noise. As Figure 6.26
shows, we can then observe, for this setting, quadratic convergence for the last three
steps, verifying the theoretical consideration.

1 2 3 4 5 6 7

10−1

10−2

10−3

10−4

10−510−5

10−6

10−7

Figure 6.26: Energy Norm of δv when the motor unit is exactly identified

86

Chapter 7

Conclusion

This thesis derived an optimization problem to identify a motor unit in muscle tissue
from a surface EMG measurement. Therefore, we first modeled the activation of motor
units, i.e., the propagation of action potentials along the motor units. The motor unit
was thereby modeled as a curve u ∈ H2(−tA, tA,ΩM) representing the trajectory of
the action potentials. Next, we derived a quasi-static model for the transmission of
the electric potential in human tissue. Using these two models, we could simulate a
surface EMG measurement by solving a PDE for each time step in a selected measure
interval, which is numerically expensive. A decisive step was then using an adjoint
approach to enable an efficient simulation of the measured signal by evaluating a simple
line integral. Inserting this forward model into a tracking-type optimization problem
allows the numerical identification of a motor unit from a surface EMG measurement.
We showed that at least one solution exists for this optimization problem. Furthermore,
we derived first-order optimality conditions (3.10) serving as a basis for a computational
approach.

Our optimization algorithm is based on an augmented Lagrangian method. We then used
a Newton method to solve the resulting sequence of unconstrained problems. Further-
more, we used adaptive quadrature to efficiently compute the line integral (2.35). Thus,
we interpreted the evaluation as an inexact evaluation of quantities requiring algorithmic
measurements to ensure global convergence. Consequently, we had to incorporate these
algorithmic measurements into the Newton method.

From the examples, we can conclude that our optimization algorithm is capable of iden-
tifying motor units from surface EMG measurements in an efficient way, at least in
the context of synthetically generated measurements. The examples also showed that
a couple of factors exist that influence the identification in different ways. First, there
are algorithmic parameters that we can control, e.g., the regularity parameter α2 or the
accuracy parameter ε regulating the accuracy of the search directions. On the other
hand, anatomical and experimental aspects exist that we can control only to some de-
gree or that are uncontrollable. We can, for example, vary the position of the electrodes

87

on the skin. But their possible locations are predefined by the anatomy of the patient.
Furthermore, the fourth example showed that the tissue properties, i.e., the thickness of
the fat layer, influence the measurement and thus also on the identification. This is an
example for an aspect we can not control, but we presented a possibility to deal with
this aspect.

Although we covered the identification in detail, a few open questions still exist. As
the first example has shown, the quality of the impulse response functions has a non-
negligible influence on the convergence of the Newton method. Thus, their influence
should be examined in more detail, and the computation of higher-order functions should
be accelerated, e.g., by using a hierarchical basis in the polynomial degree with a suitable
preconditioner (cf., e.g., [40]). Also, testing the algorithm with actual measurements
should be the objective of further studies. When dealing with actual measurements, we
must also consider the tissue properties. Although their values are given in the literature,
they can vary depending on the frequency of the action potentials. Thus, the simulated
measurement contains uncertainties that should be considered when identifying a motor
unit.

Another uncertainty is the velocity ν with which the action potential propagates along
the motor unit. For our examples, we assumed that we know this velocity, but in
practice, it will be unknown. Thus, box constraints would be more appropriate than
equality constraints. Another possibility would be to add the velocity to the variables
we want to identify. Both options complicate the optimality problem requiring further
analysis.

88

Bibliography

[1] Robert A. Adams and John J. F. Fournier. Sobolev spaces, volume 140 of Pure and
applied mathematics. Acad. Press, Amsterdam, 2. edition, 2003.

[2] Walter Alt. Nichtlineare Optimierung: Eine Einführung in Theorie, Verfahren und
Anwendungen. Studium Aufbaukurs Mathematik. Vieweg + Teubner, Wiesbaden,
2., überarbeitete und erweiterte auflage edition, 2011.

[3] S. Andreassen and A. Rosenfalck. Relationship of intracellular and extracellu-
lar action potentials of skeletal muscle fibers. Critical Reviews in Bioengineering,
6(4):267–306, 1981.

[4] Jürgen Appell and Petr P. Zabrejko. Nonlinear superposition operators, volume 95
of Cambridge tracts in mathematics. Cambridge Univ. Press, Cambridge, 1990.

[5] Peter Bastian, Markus Blatt, Andreas Dedner, Nils-Arne Dreier, Christian Engwer,
René Fritze, Carsten Gräser, Christoph Grüninger, Dominic Kempf, Robert Klöf-
korn, Mario Ohlberger, and Oliver Sander. The Dune framework: Basic concepts
and recent developments. Computers & Mathematics with Applications, 81:75–112,
2021.

[6] Dimitri P. Bertsekas. Nonlinear programming. Athena Scientific, Belmont, Mass.,
2. ed., 3. print edition, 2008.

[7] Blender Online Community. Blender - a 3D modelling and rendering package.
http://www.blender.org, 2021.

[8] Haim Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equati-
ons. Universitext. Springer Science+Business Media LLC, New York, NY, 2010.

[9] Richard G. Carter. Numerical optimization in hilbert space using inexact function
and gradient evaluations. Technical report 89-45, ICASE, Langley, 1989.

[10] Richard G. Carter. On the global convergence of trust region algorithms using
inexact gradient information. SIAM Journal on Numerical Analysis, 28(1):251–
265, 1991.

89

http://www.blender.org

[11] A. Chenciner, S. S. Chern, B. Eckmann, P. de La Harpe, F. Hirzebruch, N. Hitchin,
L. Hörmander, M.-A. Knus, A. Kupiainen, G. Lebeau, M. Ratner, D. Serre, Y. G.
Sinai, N. J. A. Sloane, J. Tits, B. Totaro, A. Vershik, M. Waldschmidt, M. Berger,
J. Coates, S. R. S. Varadhan, Mariano Giaquinta, and Stefan Hildebrandt. Calculus
of Variations I, volume 310. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

[12] Elise de Doncker. An adaptive extrapolation algorithm for automatic integration.
ACM SIGNUM Newsletter, 13(2):12–18, 1978.

[13] Ron S. Dembo and Trond Steihaug. Truncated-newton algorithms for large-scale
unconstrained optimization. Mathematical programming, 26(2):190–212, 1983.

[14] James W. Demmel, Stanley C. Eisenstat, John R. Gilbert, Xiaoye S. Li, and Joseph
W. H. Liu. A supernodal approach to sparse partial pivoting. SIAM J. Matrix
Analysis and Applications, 20(3):720–755, 1999.

[15] Peter Deuflhard. Global inexact newton methods for very large scale nonlinear
problems. IMPACT of Computing in Science and Engineering, 3(4):366–393, 1991.

[16] Peter Deuflhard. Newton Methods for Nonlinear Problems: Affine Invariance and
Adaptive Algorithms, volume 35 of SpringerLink Bücher. Springer-Verlag Berlin
Heidelberg, Berlin, Heidelberg, 2011.

[17] Jacques Dixmier. General Topology. Undergraduate Texts in Mathematics. Sprin-
ger, New York, NY, 1984.

[18] M. Dobrowolski. Angewandte Funktionalanalysis: Funktionalanalysis, Sobolev-
Räume und elliptische Differentialgleichungen. Springer, Berlin, 2., korrigierte und
überarb. aufl. edition, 2010.

[19] Ivar Ekeland and Roger Temam. Convex analysis and variational problems, vo-
lume 28 of Classics in applied mathematics. SIAM, Philadelphia, unabridged, corr.
republ edition, 1999.

[20] R. M. Enoka. Morphological features and activation patterns of motor units. Journal
of clinical neurophysiology : official publication of the American Electroencephalo-
graphic Society, 12(6):538–559, 1995.

[21] Dario Farina, Corrado Cescon, and Roberto Merletti. Influence of anatomical,
physical, and detection-system parameters on surface EMG. Biological Cybernetics,
86(6):445–456, 2002.

[22] Gaël Guennebaud, Benoît Jacob, et al. Eigen v3. http://eigen.tuxfamily.org, 2010.

[23] Marco Gazzoni, Dario Farina, and Roberto Merletti. A new method for the ex-
traction and classification of single motor unit action potentials from surface EMG
signals. Journal of Neuroscience Methods, 136(2):165 – 177, 2004.

90

[24] Christophe Geuzaine and Jean-François Remacle. Gmsh: A 3-D finite element mesh
generator with built-in pre- and post-processing facilities. International Journal for
Numerical Methods in Engineering, 79(11):1309–1331, 2009.

[25] David Gilbarg and Neil S. Trudinger. Elliptic partial differential equations of second
order. Classics in mathematics. Springer, Berlin, reprint of the 1998 ed. edition,
2001.

[26] T.H.J.M. Gootzen, D. F. Stegeman, and A. van Oosterom. Finite limb dimensi-
ons and finite muscle length in a model for the generation of electromyographic
signals. Electroencephalography and Clinical Neurophysiology/Evoked Potentials
Section, 81(2):152–162, 1991.

[27] Sebastian Götschel, Martin Weiser, and Anton Schiela. Solving Optimal Control
Problems with the Kaskade7 Finite Element Toolbox. In Advances in Dune, pages
101–112. Springer, Berlin, 2012.

[28] Roberta Grech, Tracey Cassar, Joseph Muscat, Kenneth P. Camilleri, Simon G.
Fabri, Michalis Zervakis, Petros Xanthopoulos, Vangelis Sakkalis, and Bart Van-
rumste. Review on solving the inverse problem in EEG source analysis. Journal of
neuroengineering and rehabilitation, 5:25, 2008.

[29] David J. Griffiths. Introduction to electrodynamics. Always learning. Pearson, Bos-
ton, 4. ed., international ed. edition, 2013.

[30] Wolfgang Hackbusch. Elliptic Differential Equations, volume 18. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2017.

[31] R. Haller-Dintelmann, C. Meyer, J. Rehberg, and A. Schiela. Hölder Continuity and
Optimal Control for Nonsmooth Elliptic Problems. Appl Math Optim, 60(3):397–
428, 2009.

[32] George W. Hanson and Alexander B. Yakovlev. Operator theory for electromagne-
tics: An introduction. Springer, New York, NY, 2002.

[33] Matthias Heinkenschloss and Luis N. Vicente. Analysis of inexact trust-region sqp
algorithms. SIAM Journal on Optimization, 12(2):283–302, 2002.

[34] Michael Hinze, Rene Pinnau, Michael Ulbrich, and Stefan Ulbrich. Optimization
with PDE constraints, volume 23 of Mathematical modelling. Springer, Dordrecht,
2009.

[35] A. Holobar, M. A. Minetto, and D. Farina. Accurate identification of motor unit
discharge patterns from high-density surface emg and validation with a novel signal-
based performance metric. Journal of Neural Engineering, 11(1):016008, 2014.

[36] Andreas Kirsch and Frank Hettlich. The mathematical theory of time-harmonic
Maxwell’s equations: Expansion-, integral-, and variational methods, volume 190 of
Applied Mathematical Sciences. Springer, Cham, 2015.

91

[37] Bert U. Kleine, Johannes P. van Dijk, Bernd G. Lapatki, Machiel J. Zwarts, and
Dick F. Stegeman. Using two-dimensional spatial information in decomposition of
surface EMG signals. Journal of Electromyography and Kinesiology, 17(5):535–548,
2007.

[38] D. P. Kouri, M. Heinkenschloss, D. Ridzal, and B. G. van Bloemen Waanders. Inex-
act objective function evaluations in a trust-region algorithm for pde-constrained op-
timization under uncertainty. SIAM Journal on Scientific Computing, 36(6):A3011–
A3029, 2014.

[39] Aleksandr S. Kronrod. Nodes and Weights of Quadrature Formulas. Consultants
Bureau Enterprises, 1965.

[40] Sabine Le Borne. Hierarchical preconditioners for high-order FEM. In Domain
decomposition methods in science and engineering XXII, volume 104 of Lect. Notes
Comput. Sci. Eng., pages 559–566. Springer, Cham, 2016.

[41] C J Lin and J J More. Incomplete Cholesky factorizations with limited memory.
SIAM Journal on Scientific Computing, 21, Sep 1999.

[42] Yang Liu, Yong Ning, Sheng Li, Ping Zhou, William Z. Rymer, and Yingchun
Zhang. Three-Dimensional Innervation Zone Imaging from Multi-Channel Surface
EMG Recordings. International Journal of Neural Systems, 25(6):1550024, 2015.

[43] M. M. Lowery. EMG Modeling and Simulation: 8. In Surface Electromyography
: Physiology, Engineering, and Applications, pages 210–246. John Wiley & Sons,
Ltd, 2016.

[44] Madeleine M. Lowery, Nikolay S. Stoykov, Allen Taflove, and Todd A. Kuiken. A
multiple-layer finite-element model of the surface EMG signal. IEEE Transactions
on Biomedical Engineering, 49(5):446–454, 2002.

[45] Jaakko Malmivuo and Robert Plonsey. Bioelectromagnetism: Principles and appli-
cations of bioelectric and biomagnetic fields. Oxford Univ. Press, New York, NY,
1995.

[46] Luca Mesin. Real time identification of active regions in muscles from high density
surface electromyogram. Computers in Biology and Medicine, 56:37–50, 2015.

[47] Christian Meyer, Lucia Panizzi, and Anton Schiela. Uniqueness Criteria for the Ad-
joint Equation in State-Constrained Elliptic Optimal Control. Numerical Functional
Analysis and Optimization, 32(9):983–1007, 2011.

[48] Jorge Nocedal and Stephen J. Wright. Numerical optimization. Springer series in
operations research. Springer, New York, NY, 1999.

[49] Diego Pereira Botelho, Kathleen Curran, and Madeleine M. Lowery. Anatomically
accurate model of EMG during index finger flexion and abduction derived from
diffusion tensor imaging. PLOS Computational Biology, 15(8):e1007267, 2019.

92

[50] R. Piessens. Quadpack: A Subroutine Package for Automatic Integration, volume v.1
of Springer Series in Computational Mathematics Ser. Springer Berlin / Heidelberg,
Berlin, Heidelberg, 1983.

[51] R. Plonsey and D. B. Heppner. Considerations of quasi-stationarity in electrophy-
siological systems. The Bulletin of Mathematical Biophysics, 29(4):657–664, 1967.

[52] P. Rosenfalck. Intra- and extracellular potential fields of active nerve and muscle
fibres. A physico-mathematical analysis of different models. Acta Physiologica Scan-
dinavica. Supplementum, 321:1–168, 1969.

[53] Guido Stampacchia. Le problème de Dirichlet pour les équations elliptiques du
second ordre à coefficients discontinus. Annales de l’institut Fourier, 15(1):189–
257, 1965.

[54] Dick F. Stegeman, Joleen H. Blok, Hermie J. Hermens, and Karin Roeleveld. Sur-
face EMG models: properties and applications. Journal of Electromyography and
Kinesiology, 10(5):313–326, 2000.

[55] Nikolay S. Stoykov, Madeleine M. Lowery, Allen Taflove, and Todd A. Kuiken.
Frequency- and time-domain fem models of emg: capacitive effects and aspects of
dispersion. IEEE transactions on bio-medical engineering, 49(8):763–772, 2002.

[56] Fredi Tröltzsch. Optimal control of partial differential equations: Theory, methods,
and applications, volume 112 of Graduate studies in mathematics Applied mathe-
matics. American Math. Soc, Providence, RI, 2010.

[57] Kees van den Doel, Uri M. Ascher, and Dinesh K. Pai. Computed myography: three-
dimensional reconstruction of motor functions from surface EMG data. Inverse
Problems, 24(6):065010, 2008.

[58] Kees van den Doel, Uri M. Ascher, and Dinesh K. Pai. Source localization in elec-
tromyography using the inverse potential problem. Inverse Problems, 27(2):025008,
2011.

[59] J. P. van Dijk, M. M. Lowery, B. G. Lapatki, and D. F. Stegeman. Evidence
of Potential Averaging over the Finite Surface of a Bioelectric Surface Electrode.
Annals of Biomedical Engineering, 37(6):1141–1151, June 2009.

[60] Eberhard Zeidler. Nonlinear Functional Analysis and its Applications: III: Vari-
ational Methods and Optimization. Springer New York, New York, NY and s.l.,
1985.

[61] Eberhard Zeidler. Nonlinear Functional Analysis and its Applications: II/B: Non-
linear Monotone Operators. Springer New York, New York, NY and s.l., 1990.

[62] J. Carsten Ziems and Stefan Ulbrich. Adaptive multilevel inexact sqp methods for
pde-constrained optimization. SIAM Journal on Optimization, 21(1):1–40, 2011.

93

[63] J. Zowe and S. Kurcyusz. Regularity and stability for the mathematical program-
ming problem in Banach spaces. Appl Math Optim, 5(1):49–62, 1979.

94

Own Publications

[64] Tobias Sproll and Anton Schiela. An adjoint approach to identification in elec-
tromyography: Modeling and first order optimality conditions. Inverse Problems,
2021.

[65] Tobias Sproll and Anton Schiela. Numerical solution of an identification problem
in electromyography, 2023. https://epub.uni-bayreuth.de/id/eprint/7068.

[66] Tobias Sproll, Anton Schiela, and Madeleine Lowery. Numerical identification of
motor units using an optimal control approach. IFAC-PapersOnLine, 51(2):174–
179, 2018. 9th Vienna International Conference on Mathematical Modelling.

95

https://epub.uni-bayreuth.de/id/eprint/7068

96

List of Figures

2.1 Sketch of a motor unit with 100 muscle fibers (black) and single-fibered
representative (red) . 6

2.2 Different versions of the action potential 9
2.3 Geometrical setup for a numerical simulation: white dots: electrodes,

dark brown: FDI muscle, light brown: bones and remaining tissue, black
line: motor unit. 22

2.4 Simulated EMG measurement for a single fibered motor unit for 0.2s . . . 24

6.1 Geometric setting and real measure foil 68
6.2 Simulated measurement for a reference motor unit at 65 electrodes 69
6.3 Comparison of the computed solution with the reference trajectory 70
6.4 Comparison of simulated (black) and identified measurement (red). . . . 71
6.5 Energy norm of ∥δvk∥H during all augmented Lagrangian steps 71
6.6 Key data of the augmented Lagrangian algorithm 72
6.7 Comparison of the average and maximal grid size (left) after using adap-

tive quadrature with different tolerances (right) 73
6.8 Comparison of ∥δvk∥H for different impulse response functions 74
6.9 Energy Norm of δv for different tolerances ε (∗: forced usage of (5.6)) . . 75
6.10 Solution for different regularization parameters α2 76
6.11 ∥δvk∥H and ∥G(u)∥2,2 for different regularization parameters α2 77
6.12 Comparison of Measurements . 78
6.13 Solution for different thick fat layers and with using a DD filter 78
6.14 Different electrode setups . 79
6.15 Solutions for the first and second electrode setup 80
6.16 Solutions for the third and fourth electrode setup 81
6.17 Solution for the fifth electrode setup . 81
6.18 Multi-Fiber motor unit (black) and its center of mass (cyan) 82
6.19 Solution for identifying the center of mass of a multi-fiber motor unit . . . 83
6.20 Energy Norm of δv for identifying a multi-fiber motor unit 83
6.21 Two different perspectives of the hand geometry 84
6.22 Solution for identifying a motor unit in a hand 84
6.23 Energy Norm of δv for identifying a motor unit in a hand 85

97

6.24 Key data of the augmented Lagrangian algorithm in the hand setting . . 85
6.25 Comparison of the average and maximal grid size after using adaptive

quadrature . 86
6.26 Energy Norm of δv when the motor unit is exactly identified 86

98

List of Algorithms

1 Augmented Lagrangian Algorithm . 44
2 Newton method with line search . 48

3 Adaptive Quadrature . 58
4 Parallel implementation of a piecewise midpoint rule 60
5 Computation of Newton direction . 62
6 Computation of the damping factor β . 64

99

100

List of Tables

2.1 Conductivity σ and permittivity ϵ for different tissue types at 100Hz, cf.
[59] . 12

2.2 Properties for the quasi-static assumptions for different tissue types . . . 15

6.1 Comparing results for different impulse response functions ωk,h 74
6.2 Computation times for different tolerances ε (∗: forced usage of (5.10)) . . 76

101

Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbstständig ver-
fasst und keine anderene als die von mir angegebenen Quellen und Hilfsmittel verwendet
habe.

Weiterhin erkläre ich, dass ich die Hilfe von gewerblichen Promotionsberatern bzw. -
vermittlern oder ähnlichen Dienstleistern weder bisher in Anspruch genommen habe,
noch künftig in Anspruch nehmen werde.

Zusätzlich erkläre ich hiermit, dass ich keinerlei frühere Promotionsversuche unternom-
men habe.

Bayreuth, den

103

	Abstrakt (deutsch)
	Abstract (english)
	Acknowledgements
	Contents
	Introduction
	Outline

	Modeling of Surface EMG Measurements
	Modeling Motor Unit Activity
	Transmission of Electric Potentials in Human Tissue
	Simulating Measurements with an Adjoint Approach

	An Optimization Problem to Identify a Motor Unit
	Analysis of the Optimization Problem
	Analysis of the Lagrangian Function

	A Numerical Identification Algorithm
	An Augmented Lagrangian Method
	Newton Line-Search with Inexact Evaluations
	A Global Convergence Result

	A Practical Optimization Algorithm
	Discretization of the Problem
	Adaptive Computation of the Lagrange Function
	Details of the Inexact SQP-Method
	Details of the Lagrange Parameter Update

	Numerical Examples
	Identification of a Motor Unit in a Cylindrical Domain
	Influence of Impulse Response Functions
	Influence of Algorithmic Parameters
	Influence of the Anatomy
	Comparing Different Electrode Setups
	Identifying a Multi-Fiber Motor Unit
	Identifying a Motor Unit in the FDI Muscle

	Conclusion
	Bibliography
	Own Publications
	List of Figures
	List of Tables
	Eidesstattliche Versicherung

