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ABSTRACT

Sodium (Na) Super-Ionic CONductor (NaSICON) solid electrolyte (SE) powders

(Na3Zr2Si2PO4) were prepared by the mixed oxide technique using a planetary

ball mill and synthesized via solid-state method at temperatures ranging from

950 to 1200 �C. The powders with 95% pure NaSICON phase were deposited on

different substrates via Powder Aerosol Deposition (PAD) at room temperature

directly from the powders and fully dense ceramic films were obtained. X-ray

diffractometry including Rietveld refinement were carried out on both the cal-

cined powders and the resulting films to determine the crystallographic prop-

erties. Subsequently, the electrical properties of the resulting films were

characterized and the effect of annealing at temperatures between 100 and

600 �C on the ionic conductivity of NaSICON PAD films was evaluated.

Annealed films were measured in the temperature range 50 and 250 �C to cal-

culate the activation energy Ea of the PAD films. Our work demonstrates a

successful room temperature deposition of dense NaSICON electrolyte films on

different substrates, which is promising for stationary energy storage applica-

tions of solid-state-sodium batteries.

Introduction

Li-ion batteries have been widely studied by

researchers worldwide, and the technology is about

to reach its limits in terms of specific capacity [1, 2].

Additionally, safety concerns remain from past to

today due to liquid electrolyte components. In the

past decade, one research focus is on all-solid-state

batteries (ASSB) with nonflammable solid elec-

trolytes. Due to the huge abundance of the element

‘‘sodium’’ in the earth crust, some researchers con-

sider that Na-ion batteries would open a new era of

batteries in terms of their abundancy, sustainability,

and lower-cost [3].
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Sodium (Na) Super-Ionic CONductor (NaSICON)

solid-state ionic conductors were introduced before

the emergence of Li-ion batteries [4]. Hong et al. [5]

first prepared NaSICON type Na-ion solid elec-

trolytes in 1976 and demonstrated their ionic con-

ductivity. From that time forth, comprehensive

studies have been published covering its use for gas

sensors, ion-selective sensors, or sodium all-solid-

state batteries (ASSB) [6].

Several production techniques have been reported

to build up solid electrolytes (SE) in ASSBs; however,

very few of those methods were successful to provide

thin solid electrolyte films with thicknesses in the

20–50 lm range. Thicker SE components come along

with higher electrical resistances. On the other hand,

the methods reported so far to implement SEs require

high sintering temperatures above 1000 �C, which

may lead to very high production costs. The powder

aerosol deposition (PAD) method, also known as

aerosol deposition method (ADM) [7], vacuum cold

spray [8], or vacuum kinetic spray [9], may help to

overcome the difficulties of realizing membranes in

the desired thickness range and reduce costs by

excluding the additional high-temperature sintering

step. The fundamental principle of the method is

based on the mechanism of room temperature impact

consolidation (RTIC) [10], where particles collide

with the substrate at high velocity, and during this

collision, a portion of the kinetic energy of the par-

ticles is converted into bonding energy and dense

ceramic films are formed.

A variety of ceramic materials, e.g., Al2O3 [10–14],

YSZ [15–19], ZrO2 [20], LLZO (Li7La3Zr2O12) [21, 22],

LLZTO (Li6La3Zr2TaO12) [23], LAGP (Li1.5Al0.5Ge1.5-
P3O12) [24], LATP (Li1?xAlxTi2-xP3O12) [25], BFT

(BaFe0.7Ta0.3O3-d) [26, 27], BaTiO3 [28–32], and many

more compounds can be deposited by PAD on a wide

range of substrate materials, with the intention to

manufacture functional films that are used as solid

electrolytes, proton conductors, insulators, or sen-

sors. Powder aerosol deposition of Na3V2(PO4)3
electrode material has been reported in [33]; however,

a detailed study on the electrical properties of PAD-

deposited NaSICON solid electrolyte for ASSB has

not been reported yet.

In this work, we investigated the film deposition of

NaSICON material and carried out first measure-

ments of the electrical properties of thick NaSICON

films. We produced NaSICON powders and ana-

lyzed resulting powders regarding their

morphological and structural properties. Then, we

deposited thick films from the powders on different

substrates, characterized the films and investigated

the effects of post-heat-treatment processes on the

conductivity of NaSICON PAD films. The main steps

of the study are depicted in Fig. 1, namely powder

preparation, film production, and characterization of

functional NaSICON films.

Experimental

Powder synthesis

NaSICON (Na3Zr2Si2PO4) solid electrolyte powders

were synthesized via a solid-state synthesis route

(mixed-oxide route). The starting raw materials of

Na2CO3 (C 99%, Sigma Ald.), NH4H2PO4 (C 99.5%,

Sigma Ald.), ZrO2 (99%, Sigma Ald.), and SiO2

(99.5%, Alfa Aesar) were weighed-in according to the

stoichiometric ratio of Na3Zr2Si2PO4 and homoge-

nized for 15 min at 400 rpm in a planetary ball mill

(Fritsch Pulverisette 5, Idar-Oberstein). Mixing was

carried out in a zirconia jar (stabilized with 3.5 wt%

MgO) with zirconia balls (stabilized with 5 mol%

Y2O3; Ø10 mm). The ball-to-powder weight ratio was

3:1, respectively. Cyclohexane was used as milling

medium. Afterward, cyclohexane was evaporated in

a fume hood and the powder mixtures were calcined

in air for 5 h between 950 and 1200 �C in 50 �C steps

in an aluminum oxide crucible covered with a plat-

inum foil (5 K min-1 heating and cooling rate).

To obtain a suitable particle size distribution for the

powder aerosol deposition process, calcined powders

were grinded again by using the same grinding jars

and media, this time for 35 min (400 rpm, ball-to-

powder ratio 3:1). Then, cyclohexane was evaporated

by a rotary evaporator (Heidolph Hei-VAP Advan-

tage, Schwabach, Germany) and powders were kept

in a drying-oven at 120 �C for 24 h. In order to avoid

large agglomerates, powders were sieved through

90 lm mesh sized screen. Finally, these powders

were stored in a furnace operating at 200 �C to obtain

dry, free-flowing powder prior to spraying process.

Powder aerosol deposition

Thick films were fabricated via a custom-made PAD

device. The setup in our laboratory and its funda-

mentals were reported elsewhere [34]. Powders were
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sprayed on two different substrates; stainless steel

(20 mm 9 20 mm 9 2 mm), and alumina with

screen-printed interdigital electrodes (IDEs). Detailed

information on interdigital electrodes and their

properties can be found in [18, 35]. As carrier gas,

oxygen was used with a flow rate of 8 L min-1. The

resulting pressure inside the aerosol generator was

25 kPa and the pressure within the deposition

chamber was 0.5 kPa. The powders in the aerosol

were accelerated toward the deposition chamber,

passing through a converging slit nozzle with an

orifice of 10 9 0.5 mm2, by utilizing the pressure

difference between aerosol chamber and aerosol

generator. The distance between the converging

nozzle and the substrates was adjusted to 3 mm. The

stage (where the substrates were attached) was

moved horizontally at a speed of 5 mm s-1 over

80 scans to obtain 10 mm 9 10 mm areal films.

Characterization methods

Before the deposition, the particle sizes of the pow-

ders were measured by laser scattering (Mastersizer

2000, Malvern Instruments Ltd, Malvern, UK). Phase

compositions of powders and films were determined

by X-ray diffractometry (XRD, D8-Advance, Bruker,

diffractometer with Ge-Ka1 monochromator—

1.5406 Å and energy-dispersive 1-D LYNXEYE

detector). Powders were subjected to X-rays between

10� and 80� (2h) in 0.02� steps for 0.2 s holding time

and the XRD parameters on the films were deter-

mined between 10� and 55� in steps of 0.01� for 0.5 s

exposure time. The diffraction data were analyzed

using the search and match feature in X’Pert High-

Score Plus software combined with ICDD PDF-

4 ? database (2020) to evaluate the crystal structure.

The crystallite size and the internal strain were

estimated by fitting the data using pseudo-Voigt

functions for Rietveld refinement in TOPAS-Aca-

demic Software. Details of the refinement process are

provided in the supplementary information.

The thicknesses of the PAD films were measured

by a stylus profilometer (PGK/S’’, Mahr, Göttingen,

Germany). The microstructures of the sprayed films

were examined by scanning electron microscopy

(SEM, Leo 1530 VP, Zeiss, Oberkochen, Germany) on

its cross section. To prepare samples for SEM, the

films sprayed on stainless steel substrates were

embedded in resin and then cut in half. Subse-

quently, the surfaces were grinded and polished.

The electrical conductivity of the as-deposited

NaSICON films was determined by two-wire elec-

trochemical impedance spectroscopy (EIS) on IDE

samples from room temperature up to 600 �C in

100 �C steps. The samples were heated at a rate of

5 K min-1 in an alumina tube furnace, and the

impedance was measured at the end of 20 min of

dwell time for each temperature step by a precision

impedance analyzer (Novocontrol Alpha-A, Ger-

many) in a frequency range from 1 MHz to 1 Hz at

150 mV rms amplitude of the AC signal. EIS data

were fitted in Relaxis3 software. As an equivalent

circuit, we used parallel elements of a resistor (R) and

a constant phase element (CPE) and another CPE

element in series to describe the Na? ion blocking

effect of the platinum electrodes (R||CPE)-(CPE).

The effective conductivity reff is calculated by Eq. 1

[18, 36, 37]. In Eq. 1, Rtot denotes the total resistance

and t the film thickness. The IDE geometry is deter-

mined by the finger length l = 4.5 mm, the finger

width w = 100 lm, the spacing between each fingers

d = 100 lm, and the number of fingers n = 15.

Figure 1 Flowchart of the main processes.
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reff ¼
d

Rtot � A
¼ d

Rtot � 2n� 1ð Þ � l � tþ 2n � w � t½ � ð1Þ

Annealed IDEs were post-treated at temperatures

between 50 and 250 �C to determine the activation

energy Ea of the NaSICON films annealed at different

temperatures. The activation energy was calculated

using the slope m of the linear fitting of the Arrhe-

nius-like plots that were created by plotting log reff
vs. 1000/T for each annealing temperature. Accord-

ing to Eq. 2, the activation energy can be calculated,

with kB being Boltzmann’s constant:

reff ¼ r0 � exp � Ea

kBT

� �
ð2Þ

Results and discussion

Properties of the powder used in aerosol
deposition

The NaSICON powders were prepared as described

above. XRD and Rietveld analyses were utilized to

verify the phase content of all powders. Figure 2a

shows the XRD patterns of powders calcined

between 950 and 1200 �C for 5 h. The graph displays

the 2h range between 27� and 32�, where the main

reflections of the monoclinic zirconia (00-037-1484)

and the monoclinic NaSICON (00-035-0412) phases

are located. Only the zirconia reflections occur in the

sample calcined at 950 �C. Reflections from the

NaSICON phase appear at 1000 �C and their inten-

sities increase with increasing calcination tempera-

ture. Simultaneously, the intensities of reflections

from zirconia decrease. Regarding to volatilization of

Na and P elements during calcination process

[38, 39], small amounts of zirconia impurities are still

present in the pattern of the sample calcined at

1200 �C. However, this pattern coincides well to the

monoclinic phase of NaSICON. The amount of the

NaSICON phase in each powder derived by Rietveld

analysis is shown in Fig. 2b. The powder calcined at

1200 �C mainly consists of monoclinic NaSICON

phase (95.4%) with only a small monoclinic ZrO2

impurity (see Fig. S1 for the Rietveld refinement).

Therefore, for the following experiments, only the

powders calcined at 1200 �C were used.

The particle size distribution of NaSICON powders

prepared for PAD process is shown in Fig. 3. The

powder exhibits a d50 value of 4.8 lm. This value

coincides with the upper range of suitable particle

sizes (0.2–5 lm) for the PAD process [40]. It can be

seen from Fig. 3 that the powder has a merged

bimodal distribution with a range of 0.8 lm (d10) to

13 lm (d90).

The SEM image of the final powder prior to the

PAD process is shown in Fig. 3b. The powder con-

sists of bigger particles about 10–30 lm with a frac-

tion of smaller particles in the range of 0.2–1 lm
attached to the surface of the larger ones.

PAD of NaSICON

The deposition process of NaSICON powders on

stainless steel and alumina (with IDE structure)

substrates resulted in dense and homogeneous films.

Depending on the parameter setup of the PAD pro-

cess, thick films were fabricated with thicknesses

between 3.5 and 10 lm. Figure 4a shows the thick-

ness profile of a film that is recorded in spraying

direction (depicted with an arrow in the image). The

cross-sectional image of the substrate in Fig. 4b

reveals a fully dense and crack-free NaSICON PAD

film. None of the bigger particles from the starting

powder is visible in the SEM image. This shows that

particles were broken into small fragments to form

the film. For the PAD process, this is a typical

behavior of particles during film formation [41, 42].

To investigate whether changes in the crystal

structure have occurred as a result of the deposition

process, XRD analyses of deposited films on stainless

steel substrates were carried out (see Fig. S2 for the

Rietveld refinement). The recorded XRD data of the

powder are compared with the PAD film in Fig. 5

including the reference patterns from the database.

Figure 2 a XRD patterns of NaSICON powders calcined at

950–1200 �C. b Rietveld results of each powder calcined at

different temperatures.
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The reflections from the stainless steel substrate

(c(111), c(200)) are visible in the measured pattern of

the deposited film. The impurity reflections of ZrO2

in the powder and deposited film are marked with

filled triangles. The pattern of the deposited film

matches with the simulated reference monoclinic

NaSICON (00-035-0412) and the reference monoclinic

ZrO2 (00-037-1484) reflections in terms of their 2h
positions and intensities. However, the reflections are

broadened due to strain and distortion of the crys-

tallite lattice as a result of high impact energy of the

particles [10]. This is an essential and well-known

feature of PAD-processed ceramic films [43]. The

crystallite size and microstrain values of the NaSI-

CON film, respectively, 34 nm and 0.45% were cal-

culated by Rietveld refinement according to data on

Figure 3 a Particle size distribution of the NaSICON powder used for the PAD process. b SEM images of NaSICON powder with

different magnifications.

Figure 4 a Example for a thickness profile of a NaSICON thick film deposited on a stainless steel substrate b cross-sectional SEM image

of the film.

Figure 5 X-Ray diffraction of a NaSICON PAD film on stainless

steel substrate.
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the phase card of NaSICON. These values are in

accordance with the reported data for crystallite size

and microstrain of PAD films. The reported values of

the crystallite size and microstrain of CeO2 films

prepared by PAD are 12–55 nm and 0.06–0.56%,

respectively, depending on the powder pretreatment

temperature [44] and, for PAD films of BaZrO3,

BaSnO3, and BaCeO3, the values are 14–34 nm and

0.2–0.3%, respectively [45]. Smaller crystallite sizes

and increased microstrain in PAD films are expected

as a result of the RTIC mechanism [44].

Electrical conductivity of NaSICON PAD
films

The Nyquist plots of the impedance spectra of the

IDEs annealed up to 600 �C are shown in Fig. 6a. The

EIS data were recorded at the target temperature. The

impedance spectra for all samples consist of one

depressed semicircle starting at the origin at high

frequencies, and a tail due to ion blocking at low

frequencies, which indicates ion conduction in the

material [46]. Therefore, the separation of grain and

grain boundary contributions is not possible. With

increasing temperature, semicircles become smaller

and the total resistances reduce. According to Eq. 1,

the effective in-plane conductivity reff was deter-

mined as 7.1 9 10–7 S cm-1 at room temperature. The

conductivity value increases with increasing tem-

perature and at 200 �C, a value of 7 9 10–5 S cm-1

was found for NaSICON electrolyte PAD films

(Fig. 6b). Compared to the high total conductivity

values (10–4 to 10–3 S cm-1) of bulk materials repor-

ted in the literature [5, 6, 38, 39, 47–50], PAD films of

NaSICON solid electrolytes exhibit a significantly

lower electrical conductivity in the as-deposited state.

It is claimed in the literature that the distorted crys-

tallite structure due to increased strain and the dis-

torted surfaces between the nano-grains are

responsible for the lower conductivities [21, 43].

All samples that were previously annealed

between room temperature and 600 �C were subse-

quently heated to temperatures between 50 and

250 �C and EIS data were collected in order to gather

information about the activation energy Ea of the

conduction processes. Arrhenius-like plots are shown

in Fig. 7a. The effective total conductivity reff of the
IDEs annealed up to 600 �C (see Fig. 6) are also

included in Fig. 7a for comparison and the data set

were labeled as ‘‘as-deposited’’ because the samples

on IDEs were not subjected to a pretreatment. These

IDEs were heated and subsequently dwelled for

20 min at the target temperature before an EIS mea-

surement was performed, and the IDEs were then

cooled down to room temperature again.

The initially heated and then cooled IDEs were

labeled as ‘‘previously annealed’’ in the graph. The

IDE labeled as ‘‘not annealed’’ was only post-treated

between 50 and 250 �C without previous treatment

and it was compared with the previously annealed

IDEs. The measured data on the graph were pre-

sented with filled symbols. The extrapolated data

were shown with unfilled labels. The conductivity

values of ‘‘not annealed,’’ ‘‘previously annealed at

200 �C,’’ and ‘‘previously annealed at 300 �C’’ sam-

ples coincide with the sample in the ‘‘as-deposited’’

state. No increase in conductivity and activation

energy values were observed in the previously

annealed IDEs at 20 and 300 �C (Fig. 7a). The phase

transition temperature reported in the literature

ranges between 130 and 300 �C (from monoclinic to

rhombohedral structure) depending on the

Figure 6 a Nyquist plots of temperature-dependent EIS measurements, b effective conductivity values of each sample at corresponding

temperature.
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composition of NaSICON [52]. The monoclinic

structure has one more Na site for the occupation of

Na? ions, which leads to additional conduction

pathways that makes the monoclinic structure more

conductive than the rhombohedral structure [53]. The

phase transition from highly conductive monoclinic

phase to rhombohedral structure, where sodium ions

are less mobile, may explain the increase in activation

energy of previously annealed IDEs at 200 and

300 �C. The IDEs annealed above 300 �C, however,

exhibit an increased conductivity. The graph shows

that the initially low conductivity values at room

temperature and up to 300 �C are permanently

increased, e.g., the conductivity of the sample

annealed at 600 �C increases by one orders of mag-

nitude at 50 �C compared to the value of the as-de-

posited sample (from 1.6 9 10–7 S cm-1 to

1.5 9 10–6 S cm-1). The effective conductivity values

of similar compositions reported in the literature are

also included in Fig. 7a. Compared to conductivity

values of bulk NaSICON SEs at room temperature

reported by Naqash et al. [38] and Narayanan et al.

[39], 1.6 9 10–3 S cm-1 and 1.13 9 10–3 S cm-1,

respectively, the PAD-deposited NaSICON films

exhibit a lower conductivity at room temperature,

even when annealed at 600 �C (1.5 9 10–6 S cm-1).

However, Lalère et al. [6] demonstrated the func-

tionality of an all-solid-state battery with NaSICON

solid electrolyte, which exhibits an ionic conductivity

of 1.9 9 10–4 S cm-1 at 200 �C. The ionic conductivity

of the here-investigated NaSICON film annealed at

600 �C and post-treated at 200 �C is

3.6 9 10–4 S cm-1, and hence, it is close to the

reported value by Lalère et al.

The calculated activation energy of post-treated

IDEs (in Fig. 7a) between 50 and 250 �C is shown in

Fig. 7b. A slight increase in the activation energy Ea

can be observed for samples annealed at 200 �C.
Then, Ea decreases continuously with increasing

annealing temperature of the samples. The NaSICON

film annealed at 600 �C exhibits the lowest activation

energy value of 0.48 eV (and the highest conductivity

at room temperature). The reported activation ener-

gies of bulk materials in the literature are roughly

100–200 meV smaller than the Ea values of the

NaSICON films produced via PAD.

One may object at this point that a full restoration

of the conductivity has not yet been occurred, since

the values of bulk samples have not been reached

(according to the literature data, one finds 10–3–

10–4 S cm-1 at 50 �C for this composition [54]). For a

comparison with literature with respect to the nec-

essary annealing temperatures to achieve (almost)

bulk values for the conductivity, the findings of

Exner et al. [43] can be taken into account. These

authors concluded that the reduced electrical con-

ductivity that can be observed for all ceramic PAD

films is due to internal strain in the as-deposited

state.

Figure 7 a Arrhenius-like representation of the effective

conductivity. While the colored and filled squares indicate the

measurement points, the unfilled ones represents the extrapolated

data. The literature data are labeled as stars for comparison q1 and

q5 [47], q4 [6], q3 [38], q2 [39]. b Activation energy for the

samples post-treated at different temperatures (literature data:

[49], [50], [51]).
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Depending on the melting temperature of the

material, a thermal treatment with annealing tem-

peratures (Tannealing) between 500 and 1000 �C is

required for recovering the electrical properties of

PAD films. Figure 8 shows the required annealing

temperature for many materials, versus the corre-

sponding melting point, Tmp, from [43]. Equation 3 is

proposed to describe this trend within a scatter

band of ± 150 K. The melting point Tmp of NaSICON

depends on its composition [55]. However, the

incongruent melting point Tmp of the composition

Na3Zr2Si2PO12 used to produce NaSICON PAD films

in this study, was reported to be 1300 �C [56]. This

value (1573 K) is inserted as a filled gray dot in the

Exner-plot in Fig. 8. According to Eq. 3, the required

annealing temperature of NaSICON should be 992 K

(720 �C). However, due to the scatter band of 150 K,

the necessary restoration temperature may not have

been reached. Nevertheless, the findings in this study

agree with the overall picture as shown by Exner

et al.

Tannealing ¼
Tmp

6
þ 730K ð3Þ

From an all-solid-state battery perspective, two

conclusions have to be drawn. First of all,

Na3Zr2Si2PO12 may not be appropriate, since one

may need even prohibitively higher annealing tem-

peratures, and/or the obtained conductivities may

nevertheless be too low. Therefore, higher conductive

compositions like sodium-excess [38], trivalent (La3?

[63], Y3? [64]) or tetravalent (Ti4? [65], Ce4? [66]) ion

substituted NaSICON should be studied in the

future. In these compositions, conductivities in the

range from 1. 9 10–4 S cm-1 to 1 9 10–3 S cm-1 may

be reached at room temperature.

Conclusion

In the current study, we conducted initial work on

the synthesis and fabrication of NaSICON solid

electrolyte films via the PAD method followed by

electrical characterizations of the produced films.

NaSICON powders were synthesized by a solid-state

synthesis method. PAD films of NaSICON are

approximately 10 lm thick and highly dense with a

crack-free microstructure. XRD and Rietveld refine-

ment of the powder shows that the monoclinic

NaSICON phase with only small amounts of ZrO2 as

an impurity phase was obtained. The phase compo-

sition is not affected by the PAD process.

By EIS, the electrical conductivity of the films was

studied. In the as-deposited state, films exhibit a

highly reduced conductivity in the range of 10–8–

10–7 S cm-1. However, the low temperature conduc-

tivity increases by one order of magnitude with an

annealing temperature above 300 �C. In summary, it

can be stated that the powder aerosol deposition

method could be promising for the fabrication of

membranes for stationary all-solid-state-sodium bat-

teries. As next steps, half and full cells will be built up

utilizing this method. Additionally, other NaSICON-

like compounds will be studied.
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