Periodica Mathematica Hungarica (2023) 87:86-109
https://doi.org/10.1007/510998-022-00503-4

®

Check for
updates

Covering families of triangles

Otfried Cheong'® - Olivier Devillers?® - Marc Glisse3@® - Ji-won Park?

Accepted: 6 May 2022 / Published online: 30 January 2023
© The Author(s) 2023

Abstract

A cover for afamily F of sets in the plane is a set into which every setin F can be isometrically
moved. We are interested in the convex cover of smallest area for a given family of triangles.
Park and Cheong conjectured that any family of triangles of bounded diameter has a smallest
convex cover that is itself a triangle. The conjecture is equivalent to the claim that for every
convex set A there is a triangle Z whose area is not larger than the area of X, such that Z
covers the family of triangles contained in X'. We prove this claim for the case where a
diameter of X’ lies on its boundary. We also give a complete characterization of the smallest
convex cover for the family of triangles contained in a half-disk, and for the family of triangles
contained in a square. In both cases, this cover is a triangle.

Keywords Triangles - Smallest area - Universal cover - Convex cover - Crescent -
Half-disk - Square

1 Introduction

A cover for a family F of sets in the plane is a set into which every setin F can be isometrically
moved. We call a cover smallest if it has smallest possible area. Smallest convex covers have
been studied for various families of planar shapes. In 1914, Lebesgue asked for the smallest
convex cover for the family of all sets of diameter one. The problem is still open, with the
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best known upper bound on the area being 0.845 [1, 5] and the best known lower bound
being 0.832 [3]. Moser’s worm problem asks for the smallest convex cover for the family
of all curves of length one, with the best known upper bound of 0.271 [9, 11] and the best
known lower bound of 0.232 [6]. More variants can be found in [2, 10].

These problems appear to be hard because we do not even have a conjecture on the shape
of a smallest convex cover. The best lower bound for Lebesgue’s problem, for instance, is
based on an approximation to the optimal placement of a circle, a triangle, and a pentagon
obtained through an exhaustive computer search [3].

While smallest convex covers have remained elusive for most families, we have a complete
answer for some families of triangles. Kovalev showed that the smallest convex cover for the
family of all triangles of perimeter one is a uniquely determined triangle [4, 7]. Fiiredi and
Wetzel showed that the same holds for the family of all triangles of diameter one [4], and
Park and Cheong showed the same for the family of triangles of circumradius one, as well
as for any family of two triangles [8]. These known results led Park and Cheong to make the
following conjecture:

Conjecture 1 [8] For any bounded family 7 of triangles there is a triangle Z that is a smallest
convex cover for 7.

It is easy to see that this is equivalent to the following conjecture:

Conjecture 2 [8] Let X be a convex set. Then there is a triangle Z whose area is at most the
area of X', such that Z is a convex cover for the family of triangles contained in X

In this paper, we add to the existing evidence motivating these conjectures. In particular,
we prove that Conjecture 1 is true for the family of triangles contained in a given half-disk,
and for the family of triangles contained in a given square. The half-disk result is a rather
easy warm-up exercise, proven in Sect. 5; see Fig. 1(left).

Theorem 1 The triangle with sides V2,14 /2, and \/3 is a smallest convex cover for the
Sfamily of triangles contained in the half-disk of radius one.

The family of triangles contained in the unit square turns out to be much harder. Intrigu-
ingly, there is a “nice” triangle C* with angles 60°, 75°, and 45° and a longest edge of
length /2 that covers “most” triangles contained in the unit square. However, some skinny
triangles—the worst case being the isosceles triangle with apex angle ~ 5.6°—do not fit
into C*, and the actual smallest convex cover is a triangle C whose longest edge has length
about v/2 + 0.005. We prove that C indeed covers all triangles contained in the unit square
in Sect. 6; see Fig. 1(right).

Fig. 1 The smallest convex covers (blue triangles) for triangles in a half-disk or in a square
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Theorem 2 The unique smallest convex cover for the family of triangles contained in the unit

square is the triangle AXY Z with AXZY = %, |ZY| = ﬁ and
> 12

sin(5 + 260)
cos (5 — 6o) sin (5)
-1 1 T o
where 0 = tan (7) - T N 0.049 2281

V2443

In our second main result, we consider Conjecture 2. It is known to hold when X is a disk
[8], a half-disk (Theorem 1), or a square (Theorem 2). In Sect. 3, we prove the following
theorem, which extends this to a much larger family of shapes X’

IXZ| = ~ 1.4195,

Theorem 3 Let X be a crescent, that is, a convex set that contains a diameter on its boundary.
Then there is a triangle Z whose area is at most the area of X, such that Z is a convex cover
for the family of triangles contained in X.

Note that we do not claim that the triangle Z is a smallest cover for the family of triangles
contained in X. For instance, a half-disk is a crescent, but the triangle Z constructed in the
proof of Theorem 3 is larger than the optimal triangle cover of Theorem 1. While proving
Conjecture 2 would imply Conjecture 1, the special case of Theorem 3 does therefore not
seem to imply any special case of Conjecture 1. In particular, it does not allow us to claim
that the family of triangles contained in a given crescent has a triangular smallest convex
cover.

The proofs of the three theorems are independent, we start with Theorem 3.

2 Notation

For three points A, B, C € R2, we let AB denote the line through A and B, let ‘AB denote
the line segment connecting A and B, and let AA BC denote the triangle ABC. When AB is
not horizontal, then we let H 4 p denote the horizontal strip bounded by the horizontal lines
through A and through B. For a point P € H 4 p, we define {4 g (P) as the horizontal distance
between P and the line AB. Formally, {4p(P) = |PX|, where X is the intersection point
of AB with the horizontal line through P.

For a point P and a distance ¢ > 0, we define points P ©¢t = P — (t,0) and P & ¢t =
P + (¢, 0). In other words, P ©¢ and P @ ¢ lie on the horizontal line through P at distance ¢
to the left and to the right of P.

We say that a triangle T fits info a convex planar set X if there is a triangle 7/ C X’ such
that 7 and 7’ are congruent, that is, 7’ is the image of T under a combination of translations,
rotations, and reflections. We say that 7" maximally fits into X if T fits into X, but there is
no triangle 7’ 2 T that fits into X’.

We define a crescent to be a convex shape whose diameter lies on its boundary. Any
triangle is itself a crescent. For a convex planar set X, let | X’| denote the area of X.

3 Every crescent has a triangular cover

We start by describing how to construct a triangular cover for the family of all triangles in
a given crescent. See Fig. 2 for illustration. Let X’ be a crescent with diameter AB C d.X.
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Covering families of triangles 89

A’ A B B’

Fig.2 Construction of a triangular cover from a crescent

We assume that AB is horizontal and A is to the left of B. Let C be a highest point on 9.X,
that is, a point maximizing the distance from A B, let D be a point on the curve AC C 0X
maximizing the horizontal distance from AC, and let E be a point on the curve BC C dX
maximizing the horizontal distance from BC. In other words, X has a horizontal tangent
in C, a tangent parallel to AC in D, and a tangent parallel to BC in E.Let A’ = AS ¢pc(E)
and B’ = B @ ¢ac (D). We claim that AA’B'C is indeed a cover for the set of triangles in
X, and that |[AA’B'C| < |X|.

Theorem 4 If a triangle fits into the crescent X, then it fits into the triangle AA’B'C.
Before we prove Theorem 4, we show how it implies the result stated in the introduction.

Proof of Theorem 3 1t suffices to observe that for the triangle Z = AA’B’C constructed in
Theorem 4 we have |Z| < |X| since

Z=ANA'ACUAABCUABB'C,

X D AADCUAABCUABEC,

and |AA’AC| = |ABEC| and |ABB'C| = |AADC)|. O

To prove Theorem 4, we first need a few lemmas. The first one characterizes triangles that
maximally fit into a crescent.

Lemma 1 Let X be a crescent with horizontal diameter AB, A left of B, contained in the
upper halfplane bounded by AB. If a triangle A P Q R fits maximally into X, then it is of one
of the following three forms:

(i) P=Aand Q =B,and R € X \ AB;

(ii) P=Aand R, Q € dX \ AB, with R to the left of and strictly above Q;
(iii) P =B and R, Q € 0X \ AB, with R to the left of and strictly below Q.

Proof Since A P Q R maximally fits into X', we can assume that P, Q, R all lie on the bound-
ary dX. If no vertex lies on A B, we can translate the triangle downwards until it touches A B,
so we can assume that P € AB.If Q € AB, then APQR C AABR, so the maximality
implies that AP QR = AABR and we are in case (i). It remains to consider the case where
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90 0.Cheong et al.

Fig.3 Proof of Lemmal

A

Fig.4 Lemma 2

P € AB, while Q and R lie on the upper chain X \ AB, so we can assume that R lies to
the left of Q.

Let us first assume that R lies above Q. Let K be the intersection point of AB and RQ,
and let £ be the bisector of the angle ZAK R; see Fig. 3. We reflect the points R and Q
about £ to obtain points R* and Q* on the line AB. Since |[KR*| = |KR| < |KB|+|BR| <
|[KB| 4 |BA| = |KA|, we have R* € AB but is not equal to A. We also note that Q* lies
strictly between R* and B and thus Q* € AB.

If P lies between R* and Q*, then we can reflect it about £ to obtain a point P* on the
segment R Q so that A P*Q* R* is congruent to A P Q R; see Fig. 3(left). Since AP*Q*R* C
AAB P*, it does not maximally fit into X

If P lies to the left of R* but is notequal to A, then we can slightly rotate A P Q R clockwise
around R. This moves Q and P into the interior of X, so AP QR does not maximally fit
into X.

If P lies to the right of Q*, then we rotate Q by 180° about the midpoint of PR to
obtain Q’, see Fig. 3(right). The quadrilateral PQRQ’ is a parallelogram, and APRQ’ is
congruentto AP QR. Then Q" € AP RR* since R above Q implies Q" above P and P right
of Q Q* implies Q' right of RR*. Since APRQ’ C AAPR, AP QR does not maximally fit
into X.

It follows that whenever R lies above Q, then P = A and we are in case (ii). By symmetry,
whenever R lies below Q, then P = B and we are in case (iii).

Finally, when RQ is horizontal, we let ¢ be the horizontal line equidistant from AB
and RQ. Again we mirror R and Q about £ to obtain R* and Q* on AB. The arguments
above apply literally, and we conclude that P = A. By symmetry, however, we can also
conclude that P = B, a contradiction. It follows that when R Q is horizontal, then AP QR
does not maximally fit into X'. O

We now state two lemmas, postponing their proofs to Sect. 4.
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Covering families of triangles 91

Fig.5 Lemma 3

Lemma2 Let AABC be a triangle with the longest edge |AB|. Let AB be horizontal, A
left of B, and let Q € Hac lie to the left of AC with |QB| < |AB|. Then ABCQ fits
into AAB'C, where B = B @ tac(Q) (see Fig. 4).

Lemma 3 Let AABC be an isosceles triangle with |AB| = |AC|. Let AB be horizontal, A
left of B, let AH be the height of AABC with respect to BC, and let R € Hac lie to the
left of AC with |AR| > |AH| and |BR| < |AB]| (that is, R lies in the green area of Fig. 5).
Let A" = A © u for some > 0 such that % < %, let B = B @ {ac(R), let H' be
the orthogonal projection of A’ on BC, and let R* be the horizontal projection of R on BC.
We rotate B and H' around A’ by angle £C AR, obtaining points B” and H”, respectively.
Then B" lies in ABB'H and H" € AA’H' R*.

Proof of Theorem 4 1t suffices to prove the statement for an arbitrary triangle AP QR that
maximally fits into X. By Lemma 1, this implies that AP QR is of one of the three types in
the lemma.

Case APQR of type(i)
If APQR is of type (i) with P = A and Q = B, then, depending on the location of R, we

translate it leftwards by ¢pc (R) or rightwards by ¢4 (R) to place itin AA’BC or AAB'C,
which are both included in AA’B’C.
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92 0.Cheong et al.

Fig.6 Proof of Theorem 4: R not
left of C

Fig.7 Proof of Theorem 4: O C
below AH

Types (ii) and (iii) are symmetric, so we break the symmetry and assume that P = A and
R lies to the left and above Q.

Case R not to the left of C

If R does not lie to the left of C, we translate AP QR leftwards by ¢pc(R) to obtain a
triangle AP’ Q' R’ with R’ on BC; see Fig. 6.If Q' € AABC, we are done since AP’ Q'R’ C
AA’BC. Otherwise we apply Lemma 2 (after symmetry) to the triangle ABP’R’ and the
point Q' and obtain that A P QR fits in the triangle A(P’ © ¢pc(Q'))BR’ € AA’BC.

Now we are left with the case where R lies strictly to the left of C. Since Q lies below R,
Q lies on the right chain from B up to but not including C. Let H be the foot of the height
of AABC with respect to BC and let B* be the mirror image of B about AH.

Case Q below AH

If {BAQ < ABAH, then we rotate AP QR clockwise around A. During the rotation,
both £4¢(R) and {pc(Q) are decreasing. We continue the rotation to obtain AP Q'R’ until
either £4c(R') = 0or Q' € AB;seeFig. 7.1f {ac(R’) > 0,then Q' € AB. We then translate
the triangle rightwards by cac(R") < |BB’| to place it in AAB’C. Otherwise, R’ € AC.
Since AAR'Q' € AACQ’ and {pc(Q’) < |AA'|, we apply Lemma 2 to AABC and Q' to
conclude that AAR’Q’ fits in AA’BC.
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Fig.8 Proof of Theorem 4:
R e AAHB*

Fig.9 Proof of Theorem 4:
|AR| < |AH]|

Case R € AAHB*.

We now have that { BAQ > {BAH.If R € AAH B*, then we mirror AP QR about AH to
obtain a new triangle APR’Q’ with R" € AABH C AABC and {pc(Q’) = ¢pc(Q); see
Fig. 8. We can then rotate the triangle clockwise. The rotation decreases ¢pc(Q’). We stop
when either O’ € BC or R’ € AB and denote by AP Q" R” the triangle in the new position.
In the first case, we have APR” Q" C AABC, in the second case we can translate leftwards
by ¢pc(Q”) < ¢pc(Q) < |AA’| to place the triangle in AA’BC.

Case |AR| < |AH|
Consider now the case where |AR| < |AH|. We can rotate AP QR clockwise around A to

obtain a new triangle AP Q' R’ with Q' € AB; see Fig. 9. Since R’ lies in the interior of X,
the triangle AP Q’'R’ does not maximally fit into X’.

Final case
We are now left with the final case where R € Hac C Hap+ lying to the left of AB*,

|AR| > |AH|, |BR| < |AB|, {BAQ > {BAH, and Q € Hac C Hap+ lying to the right
of BC;seeFig. 10. Welet p = £ B* AR. We firstmirror A P Q R about A H toobtain AP R’ Q’,
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Fig. 10 Proof of Theorem 4: the final case

with R’ below AB, LR'AB = p, and ¢pc(Q') = ¢pc(Q). We then translate APR'Q’
leftwards by ¢pc (Q') to obtain A P” Q” R” and finally rotate counter-clockwise about P” by
angle p to obtain AP” Q" R". To see that AP”R"” Q" fits into AA’ B’C, it remains to show
that 9" € AA’B'C, since P € A’A and R” € AB.

Let H' be the foot of the perpendicular from P” to BC. Since the line P” H' is the image
of a leftward translation of the line P H by ¢pc(Q’), and Q' lies below the line A H, we have
Q" € H'B. We rotate H' and B about P” by angle p to obtain H” and B”, respectively, so
that Q" € H"B’.

We now apply Lemma 3 to AABB* and R, with u = ¢pc(Q) = ¢pp+(Q). Note that C
in the lemma is our B*, A’ in the lemma is our P”. The B’ in the lemma will be denoted
here B® = B @ ¢ap=(R) € BB’ since tap+(R) < Cac(R) < Cac(D). To check the
lemma’s condition on u, let Qg be the point on the line AH at distance |AB| from A and
let Ag = AS¢pp+(Qo);seeFig. 11.Since u < ¢pp*(Qo) under the constraint |A Q| < |AB|,
we have that “agfl < ﬁ‘fl Let Y = Qo © ¢pp+(Qop) and let Z = Qp & |AB|. The
quadrilateral AB Z Q¢ is arhombus, and the triangle A B ZY isright-angled at B, and therefore
similar to AABH. It follows that 'ﬁ“ﬁ' = I‘X?\ = \Iﬁg‘l and the condition in Lemma 3 is
satisfied. The lemma implies that B” € ABB®H, and that H” € AH’'P”R*, where R* is
the horizontal projection of R on the line BB*. Since R € H ¢, the point C must lie on the
segment R*B*, and thus H” € AH'P"R* C AH'P"C C AA'BC.

Since Q"' € H'B", H" ¢ AA'BC C AA'B'C and B” ¢ ABB®H c AA'B'C,
convexity of AA’B’C implies that Q" € AA’B’'C, completing the proof. O
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o= o
Ay |A=P B B®

Fig. 11 Proof of Theorem 4: verifying the condition of Lemma 3

Fig. 12 Lemma 2. Angle notation (left); Case 1 (right)

4 Proofs with trigonometry and calculus

In this section we provide the postponed proofs of Lemma 2 and Lemma 3.

Proof of Lemma 2 We denote angles as in Fig. 12(left). Note that @ + ¢ = ¥ + 6. We claim
that ABC Q fits into AAB’C. We distinguish two cases.

Case1:0 > @

In this case, we rotate ABCQ by angle ¢ around B, resulting in ABRS with S on the
line AB; see Fig. 12(right). Since |BS| = |BQ| < |AB|, S lies on AB. On the other hand
Y=o+ (¢ —0) < «a,so R lies below AC, and therefore in AABC.

Case2:0 < @

In this case, we rotate ABC Q by angle 6 around B, resulting in ABRS with RS parallel
to AC; see Fig. 13(left). We let ABS’R’ be the image of AB RS mirrored about the angular
bisector of ZAB R, which means that R’ lies on AB; see Fig. 13(right).

We claim that min{¢ac(S), Cac(S")} < ac(Q) = |BB’|, which implies that at least one
of ABRS or ABS’R’ can be translated rightward to fit into AAB’C. By the law of sines,
applied to triangles AA(Q @ Cac(Q)(B @ Cac(Q)), AA(S @ Sac(9))(B @ gac(S)), and
AA(S @ Cac(S))(B & Cac(S))) (see blue shaded triangles in Figs. 12 and 13), we have

|BOI  ¢ac(Q) +|AB| _ ¢ac(S)+|AB| _ ¢ac(S') +|AB]
sin  sin(e+¢) sin ¥ T osinlw+B—¢)
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T—a—f

7«'*((14"‘3*@)."'

T —a—(6—0)

=m—1 ¢—9(

A
Fig. 13 Lemma 2. Case 2

so we need to prove min {sin(y/), sin(¢ + 8 — ¢)} < sin(«x + ¢). Suppose this is not the
case. Then we have sin(e + ¢) < siny. Sincex +¢ = ¥ +60 > ¥ and x +— sinx is
monotonously increasing on [0, 5], we must have o« +¢ > 5 and 7 — (¢ +¢) < 7. On the
other hand, we also have sin(« + 8 — ¢) > sin(«x + ¢) = sin(w — (@ + ¢)), which implies
o+ B —¢ > m — (o + ¢) and therefore (o + ¢) + (¢ + B — ¢) > 7. However, since y
is the largest angle in AABC, (¢ +¢)+(ax+B—¢) =20 +B <a+B+y =m,a
contradiction. )

Proof of Lemma 3 We scale the problem such that |AB| = |AC| = 1 and place A at the
origin, so that B = (1,0). Let 8 = LABC, o« = {BAC =7 —28,and p = L{CAR. We
have |AH| = sin B, and |A’B| < ﬁ, see Fig. 14.

We first observe that we can replace R by the point at distance sin 8 from A on AR.
This keeps p unchanged, decreases |BR|, decreases {ac(R), and decreases |H'R*| so
that AA” H' R* becomes strictly smaller. So in the following, |AR| = |AH| = sin 8.

Let next § = Z4c(R), and let X € AC be the point R @ §. Applying the law of sines
to AAXR, we have

8 sin sin sin 1 sin p
— = = = SO = .
sinp sinae sin28  2sinfBcosB  2cosf 2cos B

ey

We now analyse the interval of angles § for which the conditions of the lemma can be
satisfied. Consider the point Ry = (— sin 8 cos 28, sin 8 sin28) on AC with |ARy| = sin ,
and let

#(B) := |RoB|*> = (1 + sin B cos 28)” + (sin B sin 28)°.
Notice! that %(b(ﬂ) = 2cos B(6cos® B + sin B — 5), which is negative on [7, %] since
6cos? B+sin B —5 < 6cos? 7T —4 = —1.Thus, as f increases from 7 to 5, ¢ (B) decreases
monotonously from ¢ (%) = % to ¢(5) = 0, so there is a By € (%, ) with ¢(B) = 1. For
B < Bo ~ 1.003 ~ 57.47°, no point R left of AC at distance smaller than one from B can
exist; see Fig. 15. In the following we therefore have g > Bo.

The point R lies on an arc of circle around A with right endpoint Rg. There are two other
critical points on this circle: let R; be the point with [AR;| = sin8 and |BR;| = 1, and
let R be the point on the horizontal line through C with |[AR;| = sin 8 and a positive x-
coordinate. A point R satisfying the conditions of the lemma cannot lie to the left of R
because |BR| < 1, and cannot lie to the left of R, since R € Hac.

! The computations in Maple can be found in the appendix.
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£ A C
NGETA
/"3
Ro 0
H/
Voo
P -
7 g ‘ B
/Oé:ﬂ'*QB \ 3 AN
A |4 ’ ! [B B

H sin /3 1-sinf §

Fig. 14 Lemma 3: Notation

Fig. 15 Lemma 3: definitions
of By and B

The triangle AABR; is isosceles with two sides of length one and a short side AR of
length sin 8, so LABR| = 2sin’1(% sin B). The law of sines applied to triangle A(A ©
Zac(R1))R1 B now shows that

Cac(Ry) + 1 _ 1
sin(r — (7 —2p) —2sin~"!(§sinB))  sin2p’
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98 0.Cheong et al.

We set

sin(2B — 2 sin~! (% sin B))

h(B) :==tac(R1) = Sin2p

1. 2)

Since C = (—cos2p, sin2p), the x-coordinate of R, is v/sin? B — sin?28. For B =
B = cos_l(ﬁ) ~ 1.107 =~ 63.4°,wehave C = (%, %),Rg = (%, %),implying |IBRy| =1,
that is, R; = R»y; see Fig. 15. We set

8(B) :=¢ac(Ry) = |RaC| = —cos2f — /sin® B — sin” 28. 3)
To summarize:

— For o < B < Bi1, R lies on the arc between Ry and R;. The angle p is maximized
when R = R;. For § = By, we have R; = Ry (so there is only a single choice for R),
for B = B1 we have Ry = Ry = (%, %). Since R cannot lie to the left of R, we have
3 < h(B).

— For 1 < B < 5, R lies on the arc between R and R;, with p maximized when R = R».
Since R cannot lie to the left of R, we have § < g(f).

B” position

Consider now the point B”. Since |A'B| < ﬁ, it has y-coordinate at most :Eg We will
sin p
sin °

prove that H B’ intersects the vertical line x = 1 through B at y-coordinate at least
implying that B” lies below H B’, and therefore is in ABB'H.

Since H = (sin? B, sin Bcos B) and B’ = (1 + 8, 0), the line x = 1 intersects H B’ at
y-coordinate

sinfcosp  sinp sinfcosp  sinpsinf
148 —sin?B  2cosp cos?B+8  2(cos?p+8)

sin p

This is at least Sin B

if and only if

1 - 2
cos? B+8 ~ sin? B’

which is equivalent to
1 3
8 < Esinzﬁ—coszﬁ: Esinzﬂ—l.

Setting f(B) = %sin2 B — 1, it remains to show that § = Zac(R) < f(B) under the
conditions of the lemma.

We first consider the case 8 > B, where § < g(8). Since g(B) is a decreasing function,
while f(f) is an increasing function, this implies that § < g(8) < g(B1) = % = f(B1) <
fB).

We next consider Sy < B < 1. For f = i, R = Ri, 50 h(B1) = g(B1) = & = f(B).
We consider the function 8 +— f(8) — h(B). Plotting its derivative on the interval [Bo, B1]
shows that it is smaller than —0.2, so f(8) — k() is decreasing on the interval. This implies
that § < h(B) < f(B) for B € [Bo, B1], completing the proof of B” € ABB'H.
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Covering families of triangles 99

H" position

We now turn to the point H”. It is obtained by rotating H’ counter-clockwise around A’ by
angle p. Since A’H’ is orthogonal to BC, H” lies below the line BC. Since p < 7, H” lies
above the line A’H’. To show that H” € AA’H’R*, it remains to prove that H” lies below
the line A’ R*. This is equivalent to proving p < £ H'A’R*.

Let R{) be the horizontal projection of Ry on the line BC'; see Fig. 14. Since the y-coordinate
of Ry is sin Bsin 28, we have R} = (1 — cos B sin 28, sin B sin 28). We have

4H'A'R* = {BA'R* — {BA'H' = {BA'R* — {BAH
= 4BA'R* = (5 — B) = LBA'R; — (5 — B)

Since |A’B| < =1, we can therefore bound from below £ H' A’ R* by (), where

sin 8
sin B sin 2 >_z
(1—cosBsin2B) + (qp — 1)/ 2

r(B) :=tan~! ( + 8.

Plotting (B) shows that it is larger than 0.25 on the interval [Sp, %”].

We consider the case fop < B < B;. This implies that p is maximized when R = Rj.
Combining (1) and (2), this gives us sin p < 2h(f) cos B. Plotting sin~'(2h (B) cos B) on the
interval [Bp, B1] shows that p < 0.2 < 0.25 < r(B).

Finally, we turn to the case i < B < 7. Here, p is maximized when R = Ry.
Combining (1) and (3), this gives us sinp < 2g(f)cos B. Plotting the function 8 +—
sin_](Zg(,B) cos ) on the interval [Bi, %] shows that p < 0.2 on that interval. For
B < 2—”, this implies p < 0.25 < r(B). For g > 2—”, we consider the function
t(B) =r(B) — sin~! (2g(B) cos B). We plot the derivative of 7(f) on the interval [%", %]
to show that it is smaller than —0.05, so #(8) is a decreasing function on that interval.
Since t(%) = 0, this implies that 7(8) > 0, and therefore p < r(B) for %” <B < % To
summarize, we have shown p < r(8) < £LH'A’R*, so H" € AA’H’'R* for all values of .
O

5 Triangles contained in a half-disk

As a warm-up exercise to the square case, we determine the smallest convex cover for the
family of triangles contained in the half-disk that is the intersection of the unit disk with the
halfplane y > 0. The half-disk is a crescent, but the triangular cover constructed in Theorem 4
is in this case not the smallest one.

Proof of Theorem 1 Let T be a triangle that maximally fits into the half-disk, and so T falls
into one of the three cases of Lemma 1. Cases (ii) and (iii) cannot occur, since such a triangle
can rotate around its bottom vertex. Thus we are in case (i): 7 is a right-angled triangle whose
hypotenuse is the diameter of the half-disk.

By symmetry, we in fact only have to consider the triangles 7, whose vertices are (—1, 0),
(1,0), (—x,+/1 — x2), for x € [0, 1]; see Fig. 16(left). When translating T, horizontally so
that its upper vertex is on the line segment (—1, 0)(0, 1), the right vertex of the translation
of Ty is at coordinate (x + +/1 — x2, 0). The x-coordinate of this point is maximized for
X = %, so the triangle Z with vertices (—1, 0), (\/i, 0), and (0, 1) is a cover for all T ; see
the blue triangle in Fig. 16(right). To complete the proof of Theorem 1, we need to argue

@ Springer



100 0.Cheong et al.

< ! R Ltz

Fig. 16 Right triangles of diameter two
D A D A D P=A

Ry )

v
C B C B C Qo Q B

Fig. 17 Triangles that fit in a square

that Z is a smallest cover for the family 7. This is true since it is already a smallest cover

for the two triangles Ty and T % , as can be seen using Corollary 10 of Park and Cheong [8].
2
O

6 Triangles contained in the unit square

In this section, we prove Theorem 2. We start again by characterizing triangles that maximally
fit into the square.

Lemma4 Let X = ABCD be a square. If a triangle T = AP QR fits maximally into X,
then without loss of generality, we can assume that P = A, Q lies on BC, and R lies on C D.

Proof Since T maximally fits into X', we can assume that P, Q, R all lie on the boundary 9.X.
Suppose two vertices of T lie on the same side of X', say, P, Qlieon AB.ThenT C AABR C
X as in Fig. 17(left). Since T maximally fits into X, this implies P = A, Q = B. Suppose
next that no vertex of 7' coincides with a vertex of X. Then P, Q, R lie on three different
sides of X, so we can assume that no vertex lies on AD. We can then translate 7 upwards
so that it no longer touches BC, which implies that 7 does not maximally fit into X’; see
Fig. 17(middle). It follows that we can assume that P = A and that Q, R lie on the sides BC
and CD. O

By Lemma 4, it suffices to study the triangles with P = A, Q € BC, and R € CD.
We parameterize these triangles A P QR by the two angles 6 and 6’ made by the edges P Q
and P R with the diagonal AC of the square. We denote this triangle Ty ¢/; see Fig. 17(right).
These parameters range in [0, %] and the case 0 = 0’ = % corresponds to the largest
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Xp=
Py
Q Yo=Qo B
Fig. 18 Construction of the smallest convex cover for the equilateral triangle 7y and the isosceles triangle

Tg.0

equilateral triangle that can fit in the square. We denote this equilateral triangle as 7p =
APyQoRy = T% %; see the red triangle in Fig. 17(right).

6.1 The isosceles case: construction of the cover

We first consider the isosceles triangle Ty g with 6 < %. A convex cover Cg = AXyYoZy

for Ty ¢ and Tp is obtained when P’R’ is aligned with PyRp, and Q' is on Q¢ Ro; see Fig. 18.

We have |P'Q'| = |PyQ| = m. Hence we compute the distance £(0) between P’ and
7

Ry by the law of sines in AXy Q' Zy:
|[P'Q'|-sin £Zy Q' Xy _ Sin(% +20)

L) = = .
©) sin£XygZyQ’ cos( — 0)sin(%5)

When 6 = 0, Ty,o degenerates to the diagonal of the square and £(0) = /2. As 0 increases
from zero, £(0) increases to a maximum? at

—1 1 T o

fp = tan <37> — — ~0.049 ~ 2.81°,
2+43/ 6

then decreases to £(%) = 1/cos {5. We have £(6p) ~ 1.4195.

It follows that the triangle C = AXYZ, where X = Xg,, Y = Yy,, Z = Zg,, is a cover
for the family of all isosceles triangles Tp ¢ for 0 < 6 < %. We note that LA XZY = %
| XZ]| =€), and | ZY| = Z(%).

It is intriguing that C is just slightly larger than the much “nicer” triangle AXoYpZo
obtained for 6 = 0. We will denote this triangle as C* = AX*Y*Z*. The angles of C* are
% = 45°, 51—75 = 75°, and % = 60°. The longest side is | X*Z*| = /2, and, by construction,
we have C* C C.

2 The computations in Maple can be found in the appendix.

@ Springer



102 0.Cheong et al.

Fig. 19 Six cases cover all

possible triangles. All cases but
Case A fitin C* s
4
s
6
T
12
A
6
0 >>9/
T s ™
00 01 13 6 4

We have £(0) > +/2 when 6 € [0, 6;] and £(0) < +/2 when 6 € [0}, %] with

4sin21”—2 +1

6, = tan™! ( ) — 2 %0099 ~ 5.7°,
8sin® % — 6+ /16sin* %5 — 72sin’ 5 + 57

so the triangle Tp ¢ actually fits into C* for §; < 6 < %.

In the following six sections, we discuss why each triangle Ty ¢/ indeed fits into C. Fig. 19
shows how the six cases cover the entire domain of (6, 6’). It turns out that only case A
requires the cover C, in all other cases Ty ¢ fits into the nicer triangle C*—so in a sense C*
is a cover for “most” triangles contained in the unit square.

It follows from the complete characterization of the smallest convex cover for two given
triangles by Park and Cheong [8] that C is a smallest convex cover for T and Ty, g,. This
makes C a smallest convex cover for the family of all triangles contained in the unit square.

Moreover, C is indeed the unique smallest cover for this family. To show this, we can
directly adapt the proof of Lemma 13 by Park and Cheong [8] to argue that a smallest cover
for Ty and Ty, ¢, that is different from C is a quadrilateral, and that this quadrilateral does not
cover either Ty, 1 gy+¢ O Tpy—¢,0,—e for small enough e.

We now turn to the six cases. Without loss of generality we will always assume that < ’.

6.2 CaseA

We start with the triangles where 0 < 0 ~ 5.7° and 0’ < 1”—2 This is the only case where we
need to use the cover C—that should not come as a surprise, since Ty, g, falls into this case.

Let APQR = Ty ¢ be atriangle with6 < 6;.Let Q" € BC be suchthat APQ'R =Ty 4.
We have seen in Sect. 6.1 that Cg C C covers AP Q'R as in Fig. 20. The point Q lies on the
segment BQ’, s0 APQR C Cy aslongas 0 + 0’ < £YyXyZy. Since the angle £ Yy Xy Zy is
minimized by £Yg, Xg,Zg, > 44.8°, this holds by 6 46" < 6; + {5 < 21°.
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D A=P=Xy

9/

R
2, < o

C Q B

Yy
Fig.20 Case A: covering APQR with§ < 6y and6 <6’ < 7/12
Fig.21 Case B: covering APQR D A= X*

when 0 + 6" < 7 and
0,<6<6

R
<L,
C \/ B

Y*

6.3 CaseB

Case B covers those triangles where 6 + 6" < %, except for those triangles we treated in
case A. It is nearly identical to case A, but now we can use our “nice” cover C*. We place C*
with X* = A and such that R is on X*Z*.

For 6 > 0;, we again let Q' € BC be such that APQ'R = Ty y. We argued in Sect. 6.1
that C* covers AP Q'R as in Fig. 21. Since {RAQ < T = LZ*X*Y*, Q € C* and
so APQR C C*.

It remains to consider the situation where 8 < 0; and 6’ > % Let Q" be the point on BC
with {BAQ" = %. Since |[AQ"| = % 3 is less than the height of X* in C*, the point Q”
lies in C*. From 6" > {5 follows that Q lies on BQ", and since 6 46" < %, it therefore lies

in C* as in Fig. 22.
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Fig.22 Case B: covering AP QR D A=X*
when 6 + 6" < 7 and
0 <6 < % <@’

R
AR Q
Y*
Y*
D A D=7~ A
Y*
Ro=2~* Ry

X*
Y*
7" =R 7
Ro 0
C*
Q

Qo Ql X*

Fig.23 Case C: covering AP QR when % <0<0

6.4 CaseC
We now consider the triangles where 6, 0" > %. In other words, Q € BQoy, R € RyD.

We first observe that C* can be placed such that X*Y* is vertical and lies on the line AB,
while Z* lies on the line C D (recall that LY*X*Z* = % while |[X*Z*| = +/2). When
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X+
D A D 4
Ry Y *q
R
R Rie
Y .
C 1 Qo B C 7* B
X+
X*
D A D 4,4 _p
< R01
Y* = R(
Y * ¢
B

TTRUE ¢ Q0
7* Z

Fig.24 Case D: covering APQR when 75 <6 <0’ < %

Z* € RoD, then the side X*Y* covers the entire square edge AB. Figure 23 shows the two
extreme cases where Z* = Ry (top left) and where Z* = D (top right).

Consider now our triangle A P Q R. We place C* such that Z* = R; see Fig. 23(bottom).
Since the line Z* X* has slope —1, it intersects BC in a point Q' such that APQ'R = Ty g.
Since 8’ > @, we have Q € BQ’ C C* and thus APQR C C*.

6.5 CaseD

We now look at the situation where we have % =15 <60<d < %. In other words, we
have Q € QoQ; and R € R Ry where £Q1AC = £R|AC = 5 as in Fig. 24(top left).

We observe that C* can be placed to cover Ty = AP Qg Ry as in Fig. 24(top right). Starting
in this position, we can translate C* downwards until Y* = R;. Since X*Y* is parallel to AR,
A lies in C* during the entire translation; see Fig. 24(bottom left).

Among these positions for C*, we choose the one where Y* = R; see Fig. 24(bottom right).
Since the line Y*Z* has slope —1, it intersects BC in a point Q’ such that APQ'R = Ty .
Since 6’ > 0, we have Q € QpQ’ C C* and thus APQR C C*.

6.6 CaseE

We consider the situation where 8 < % < @', with the constraints T-0< o' < % — 0.
In other words, R lies on C Ry, while Q lies on BQy in Fig. 25, with 7 < {RAQ < %.
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D A=7* D A=7*
Ry Ry
X~ Z
*_ . y* \; B
X*=C 00 B C 0 <Y*
D A=7* D A=7
Ry Roe
X*< X*<
R \
~ Q
c B c ~~— B

QoY™ QoY™

Fig.25 Case E: covering AP QR when 6 < % < 6’ and

ENE]
|
>
IA
’\'Q
IA
Wl
|
)

We place C* with Z* = A and X* = C. Rotating C* clockwise around A, the line X*Y*
intersects BC and C D in two points Q' and R’, respectively; see Fig. 25(top right).

We claim that { R"AQ’ = Z. To see this, consider the point H € X*Y* such that Z*H
is a height of C*. Since the height |AH| = 1, we have AADR' = AAHR and AABQ' =
AAHQ'.

We continue rotating C* until either R lies on X*Y* or Q lies on Y*Z*.

In the first case, R = R’; see Fig. 25(bottom left). Then {RAQ > Z = L R'AQ’ implies
that Q lies to the right of Q” in C*. Since the line Y*Z* has not yet passed the point Q, Q
lies on the highlighted segment in C*.

The second case is illustrated in Fig. 25(bottom right). The line X*Y™* has not yet reached R,
so R lies above that line. Since £ QAR < % = AY*Z*X*, R lies below the line X*Z*, and
therefore on the highlighted segment in C*.

6.7 CaseF

In the final case we consider the angles {5 = 15° < 6 < % and & < 6’ < 7. In other
words, Q lies on BQg, while R € R Ry; see Fig. 26(top left).

We again start by covering Tp = AP QR with C*, but this time we need to cover it in
two different ways; see Fig. 26(top right). The first copy Cj has Y| = Q¢ and Z] = A and
the second copy C3 has Z5 = Qg and Y7 = A. Note that X7Z] and @ intersect exactly
at Rg.

Consider now the point Q € B Q. We rotate C; counter-clockwise around A until Q €
@ and translate C} to the right until Y;* = Q. This places A outside of CJ, so we then
rotate C} counter-clockwise around Q until A € X7Zj. Fig. 26 depicts the situation for
different positions of Q.
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D A D A=Zr=
Xt <
R] \
. B
¢ Qo B ¢ Qo =Yy =
D A D A= Z*

X7 <
=M \ My \/
B

>
i
>
i

. B
C Q:Q/ C B

Fig. 26 Case F: top left: locations of Q and R; top right: double-covering of 7j; middle left: O = Qo;
middle right: Q moving right, M» moving down, bottom left: when M, reaches Ry, let Q' be the position
of O, bottom right: 0 = B

Let M, be the intersection of W and CD and let M, be the intersection of m
and CD; see Fig. 26(middle right). When Q moves from Qg to B, the line AM, rotates
around A and thus M, moves downwards monotonously. We let Q' be the position of Q
when B € Y;Z35 and M> = Ry; see Fig. 26(bottom left).

Let N be the intersection of X% Z?1 and X5Z5. We will show below that for Q € B Qy,
the point N always lies on or to the left of C D. This will imply that the segment M| M lies
entirely in C} U C3, so as long as R € M{M>, we have APQR C Cy or APQR C Cj.

Assume now that R lies above M», that is on M, Ry. This implies that R € Ry Ro, where R»
is the position of M> when Q = B as in Fig. 26(bottom right). Such a triangle AP QR is
covered by C3 in its position when Q = Q’, as illustrated in Fig. 26(bottom left).
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Fig. 27 Case F: computing the D A
x-coordinate of N

Otherwise R lies below M, that is on Ry M;. (This is indeed possible: while O moves
from Qg to B, M initially moves slightly upwards above R; before starting a monotone
movement downwards.) In this case we rotate C} further counter-clockwise until R € X7Y7.
Since {RQA < £R1 QA < LR QoA =T75° = LX*Y*Z*, we then have P = A € C] and
APQR CCy.

It remains to prove the claim that the point N lies on or to the left of the line C D. We will
compute the x-coordinate of N as a function of ¢ := |AQ|. As Q ranges from B to Qg, ¢q
ranges from 1 to 1/ cos {5 ~ 1.035. Let & be the height of Y* in AX*Y*Z*. We have

1 11
h=|Z2"Y*|sin% = |AQ0|§«E: = 5\@:\/6—3«6.

0S8 13

We next observe that Z7 X7 is the line at distance & from Q through A, while Z3 X7 is the
line at distance & from A through Q. This implies that AAQN is isosceles, with two equal
heights of length /; see Fig. 27. Let ¢ := L QAN = LAQN and d := |AN| = |QN|. We
have sina = 2 and cosa = qui' Let 8 := LBAQ. Then, cos 8 = é.

Now we compute the horizontal distance f(g) between A and N:

f(q):dcos(%—a—ﬂ) =dsin(a + B) =dsinacos f + dcosa sin B

hl h
=2<:Zsot77+%smﬂ=7fﬂ+
749 2q,/1- %

)

Plotting the function f(g) shows that f(¢) > 1.01 on the interval 1 < g < 1.02. Plotting
the derivative f’(g) shows that f'(g) < —0.9 on the interval 1.01 < g < 1.05, so f(g)
is decreasing on this interval. We also know that f(|AQg|) = 1 since then N = Ry. This
implies that f(g) > 1 for any Q € BQj. It follows that N lies on or to the left of CD,
completing this case and the entire proof.

1
2 q?
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