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Abstract
Acover for a familyF of sets in the plane is a set intowhich every set inF can be isometrically
moved. We are interested in the convex cover of smallest area for a given family of triangles.
Park and Cheong conjectured that any family of triangles of bounded diameter has a smallest
convex cover that is itself a triangle. The conjecture is equivalent to the claim that for every
convex set X there is a triangle Z whose area is not larger than the area of X , such that Z
covers the family of triangles contained in X . We prove this claim for the case where a
diameter of X lies on its boundary. We also give a complete characterization of the smallest
convex cover for the family of triangles contained in a half-disk, and for the family of triangles
contained in a square. In both cases, this cover is a triangle.

Keywords Triangles · Smallest area · Universal cover · Convex cover · Crescent ·
Half-disk · Square

1 Introduction

A cover for a familyF of sets in the plane is a set intowhich every set inF can be isometrically
moved. We call a cover smallest if it has smallest possible area. Smallest convex covers have
been studied for various families of planar shapes. In 1914, Lebesgue asked for the smallest
convex cover for the family of all sets of diameter one. The problem is still open, with the
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Covering families of triangles 87

best known upper bound on the area being 0.845 [1, 5] and the best known lower bound
being 0.832 [3]. Moser’s worm problem asks for the smallest convex cover for the family
of all curves of length one, with the best known upper bound of 0.271 [9, 11] and the best
known lower bound of 0.232 [6]. More variants can be found in [2, 10].

These problems appear to be hard because we do not even have a conjecture on the shape
of a smallest convex cover. The best lower bound for Lebesgue’s problem, for instance, is
based on an approximation to the optimal placement of a circle, a triangle, and a pentagon
obtained through an exhaustive computer search [3].

While smallest convex covers have remained elusive formost families, we have a complete
answer for some families of triangles. Kovalev showed that the smallest convex cover for the
family of all triangles of perimeter one is a uniquely determined triangle [4, 7]. Füredi and
Wetzel showed that the same holds for the family of all triangles of diameter one [4], and
Park and Cheong showed the same for the family of triangles of circumradius one, as well
as for any family of two triangles [8]. These known results led Park and Cheong to make the
following conjecture:

Conjecture 1 [8] For any bounded family T of triangles there is a triangle Z that is a smallest
convex cover for T .

It is easy to see that this is equivalent to the following conjecture:

Conjecture 2 [8] Let X be a convex set. Then there is a triangle Z whose area is at most the
area of X , such that Z is a convex cover for the family of triangles contained in X .

In this paper, we add to the existing evidence motivating these conjectures. In particular,
we prove that Conjecture 1 is true for the family of triangles contained in a given half-disk,
and for the family of triangles contained in a given square. The half-disk result is a rather
easy warm-up exercise, proven in Sect. 5; see Fig. 1(left).

Theorem 1 The triangle with sides
√
2, 1 + √

2, and
√
3 is a smallest convex cover for the

family of triangles contained in the half-disk of radius one.

The family of triangles contained in the unit square turns out to be much harder. Intrigu-
ingly, there is a “nice” triangle C� with angles 60◦, 75◦, and 45◦ and a longest edge of
length

√
2 that covers “most” triangles contained in the unit square. However, some skinny

triangles—the worst case being the isosceles triangle with apex angle ≈ 5.6◦—do not fit
into C�, and the actual smallest convex cover is a triangle C whose longest edge has length
about

√
2 + 0.005. We prove that C indeed covers all triangles contained in the unit square

in Sect. 6; see Fig. 1(right).

Fig. 1 The smallest convex covers (blue triangles) for triangles in a half-disk or in a square
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88 O. Cheong et al.

Theorem 2 The unique smallest convex cover for the family of triangles contained in the unit
square is the triangle �XY Z with �X ZY = π

3 , |ZY | = 1
cos π

12
, and

|X Z | = sin( π
3 + 2θ0)

cos
(

π
4 − θ0

)
sin

(
π
3

) ≈ 1.4195,

where θ0 = tan−1
( 1

3
√
2 + √

3

)
− π

6
≈ 0.049 ≈ 2.81◦.

In our second main result, we consider Conjecture 2. It is known to hold when X is a disk
[8], a half-disk (Theorem 1), or a square (Theorem 2). In Sect. 3, we prove the following
theorem, which extends this to a much larger family of shapes X :

Theorem 3 LetX be a crescent, that is, a convex set that contains a diameter on its boundary.
Then there is a triangle Z whose area is at most the area of X , such that Z is a convex cover
for the family of triangles contained in X .

Note that we do not claim that the triangle Z is a smallest cover for the family of triangles
contained in X . For instance, a half-disk is a crescent, but the triangle Z constructed in the
proof of Theorem 3 is larger than the optimal triangle cover of Theorem 1. While proving
Conjecture 2 would imply Conjecture 1, the special case of Theorem 3 does therefore not
seem to imply any special case of Conjecture 1. In particular, it does not allow us to claim
that the family of triangles contained in a given crescent has a triangular smallest convex
cover.

The proofs of the three theorems are independent, we start with Theorem 3.

2 Notation

For three points A, B,C ∈ R
2, we let AB denote the line through A and B, let AB denote

the line segment connecting A and B, and let �ABC denote the triangle ABC . When AB is
not horizontal, then we let HAB denote the horizontal strip bounded by the horizontal lines
through A and through B. For a point P ∈ HAB , we define ζAB(P) as the horizontal distance
between P and the line AB. Formally, ζAB(P) = |PX |, where X is the intersection point
of AB with the horizontal line through P .

For a point P and a distance t ≥ 0, we define points P � t = P − (t, 0) and P ⊕ t =
P + (t, 0). In other words, P � t and P ⊕ t lie on the horizontal line through P at distance t
to the left and to the right of P .

We say that a triangle T fits into a convex planar set X if there is a triangle T ′ ⊂ X such
that T and T ′ are congruent, that is, T ′ is the image of T under a combination of translations,
rotations, and reflections. We say that T maximally fits into X if T fits into X , but there is
no triangle T ′

� T that fits into X .
We define a crescent to be a convex shape whose diameter lies on its boundary. Any

triangle is itself a crescent. For a convex planar set X , let |X | denote the area of X .

3 Every crescent has a triangular cover

We start by describing how to construct a triangular cover for the family of all triangles in
a given crescent. See Fig. 2 for illustration. Let X be a crescent with diameter AB ⊂ ∂X .
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Covering families of triangles 89

Fig. 2 Construction of a triangular cover from a crescent

We assume that AB is horizontal and A is to the left of B. Let C be a highest point on ∂X ,
that is, a point maximizing the distance from AB, let D be a point on the curve AC ⊂ ∂X
maximizing the horizontal distance from AC , and let E be a point on the curve BC ⊂ ∂X
maximizing the horizontal distance from BC . In other words, X has a horizontal tangent
in C , a tangent parallel to AC in D, and a tangent parallel to BC in E . Let A′ = A� ζBC (E)

and B ′ = B ⊕ ζAC (D). We claim that �A′B ′C is indeed a cover for the set of triangles in
X , and that |�A′B ′C | ≤ |X |.
Theorem 4 If a triangle fits into the crescent X , then it fits into the triangle �A′B ′C.

Before we prove Theorem 4, we show how it implies the result stated in the introduction.

Proof of Theorem 3 It suffices to observe that for the triangle Z = �A′B ′C constructed in
Theorem 4 we have |Z | ≤ |X | since

Z = �A′AC ∪ �ABC ∪ �BB ′C,

X ⊃ �ADC ∪ �ABC ∪ �BEC,

and |�A′AC | = |�BEC | and |�BB ′C | = |�ADC |. ��
To prove Theorem 4, we first need a few lemmas. The first one characterizes triangles that

maximally fit into a crescent.

Lemma 1 Let X be a crescent with horizontal diameter AB, A left of B, contained in the
upper halfplane bounded by AB. If a triangle �PQR fits maximally into X , then it is of one
of the following three forms:

(i) P = A and Q = B, and R ∈ ∂X \ AB;
(ii) P = A and R, Q ∈ ∂X \ AB, with R to the left of and strictly above Q;
(iii) P = B and R, Q ∈ ∂X \ AB, with R to the left of and strictly below Q.

Proof Since�PQR maximally fits intoX , we can assume that P, Q, R all lie on the bound-
ary ∂X . If no vertex lies on AB, we can translate the triangle downwards until it touches AB,
so we can assume that P ∈ AB. If Q ∈ AB, then �PQR ⊂ �ABR, so the maximality
implies that �PQR = �ABR and we are in case (i). It remains to consider the case where
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90 O. Cheong et al.

Fig. 3 Proof of Lemma1

Fig. 4 Lemma 2

P ∈ AB, while Q and R lie on the upper chain ∂X \ AB, so we can assume that R lies to
the left of Q.

Let us first assume that R lies above Q. Let K be the intersection point of AB and RQ,
and let � be the bisector of the angle ∠AK R; see Fig. 3. We reflect the points R and Q
about � to obtain points R∗ and Q∗ on the line AB. Since |K R∗| = |K R| < |K B|+ |BR| ≤
|K B| + |BA| = |K A|, we have R∗ ∈ AB but is not equal to A. We also note that Q∗ lies
strictly between R∗ and B and thus Q∗ ∈ AB.

If P lies between R∗ and Q∗, then we can reflect it about � to obtain a point P∗ on the
segment RQ so that�P∗Q∗R∗ is congruent to�PQR; see Fig. 3(left). Since�P∗Q∗R∗

�

�ABP∗, it does not maximally fit into X .
If P lies to the left of R∗ but is not equal to A, thenwe can slightly rotate�PQR clockwise

around R. This moves Q and P into the interior of X , so �PQR does not maximally fit
into X .

If P lies to the right of Q∗, then we rotate Q by 180◦ about the midpoint of PR to
obtain Q′, see Fig. 3(right). The quadrilateral PQRQ′ is a parallelogram, and �PRQ′ is
congruent to �PQR. Then Q′ ∈ �PRR∗ since R above Q implies Q′ above P and P right
of QQ∗ implies Q′ right of RR∗. Since �PRQ′

� �APR, �PQR does not maximally fit
into X .

It follows that whenever R lies above Q, then P = A and we are in case (ii). By symmetry,
whenever R lies below Q, then P = B and we are in case (iii).

Finally, when RQ is horizontal, we let � be the horizontal line equidistant from AB
and RQ. Again we mirror R and Q about � to obtain R∗ and Q∗ on AB. The arguments
above apply literally, and we conclude that P = A. By symmetry, however, we can also
conclude that P = B, a contradiction. It follows that when RQ is horizontal, then �PQR
does not maximally fit into X . ��

We now state two lemmas, postponing their proofs to Sect. 4.
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Covering families of triangles 91

Fig. 5 Lemma 3

Lemma 2 Let �ABC be a triangle with the longest edge |AB|. Let AB be horizontal, A
left of B, and let Q ∈ HAC lie to the left of AC with |QB| ≤ |AB|. Then �BCQ fits
into �AB ′C, where B ′ = B ⊕ ζAC (Q) (see Fig. 4).

Lemma 3 Let �ABC be an isosceles triangle with |AB| = |AC |. Let AB be horizontal, A
left of B, let AH be the height of �ABC with respect to BC, and let R ∈ HAC lie to the
left of AC with |AR| ≥ |AH | and |BR| ≤ |AB| (that is, R lies in the green area of Fig. 5).
Let A′ = A � μ for some μ ≥ 0 such that |A′B|

|AB| ≤ |AB|
|AH | , let B

′ = B ⊕ ζAC (R), let H ′ be
the orthogonal projection of A′ on BC, and let R� be the horizontal projection of R on BC.
We rotate B and H ′ around A′ by angle �CAR, obtaining points B ′′ and H ′′, respectively.
Then B ′′ lies in �BB ′H and H ′′ ∈ �A′H ′R�.

Proof of Theorem 4 It suffices to prove the statement for an arbitrary triangle �PQR that
maximally fits into X . By Lemma 1, this implies that �PQR is of one of the three types in
the lemma.

Case�PQR of type(i)

If �PQR is of type (i) with P = A and Q = B, then, depending on the location of R, we
translate it leftwards by ζBC (R) or rightwards by ζAB(R) to place it in �A′BC or �AB ′C ,
which are both included in �A′B ′C .
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92 O. Cheong et al.

Fig. 6 Proof of Theorem 4: R not
left of C

Fig. 7 Proof of Theorem 4: Q
below AH

Types (ii) and (iii) are symmetric, so we break the symmetry and assume that P = A and
R lies to the left and above Q.

Case R not to the left of C

If R does not lie to the left of C , we translate �PQR leftwards by ζBC (R) to obtain a
triangle�P ′Q′R′ with R′ on BC ; see Fig. 6. If Q′ ∈ �ABC , we are done since�P ′Q′R′ ⊂
�A′BC . Otherwise we apply Lemma 2 (after symmetry) to the triangle �BP ′R′ and the
point Q′ and obtain that �PQR fits in the triangle �(P ′ � ζBC (Q′))BR′ ⊂ �A′BC .

Now we are left with the case where R lies strictly to the left of C . Since Q lies below R,
Q lies on the right chain from B up to but not including C . Let H be the foot of the height
of �ABC with respect to BC and let B∗ be the mirror image of B about AH .

CaseQ below AH

If �BAQ ≤ �BAH , then we rotate �PQR clockwise around A. During the rotation,
both ζAC (R) and ζBC (Q) are decreasing. We continue the rotation to obtain �PQ′R′ until
either ζAC (R′) = 0 or Q′ ∈ AB; see Fig. 7. If ζAC (R′) > 0, then Q′ ∈ AB.We then translate
the triangle rightwards by ζAC (R′) < |BB ′| to place it in �AB ′C . Otherwise, R′ ∈ AC .
Since �AR′Q′ ⊂ �ACQ′ and ζBC (Q′) < |AA′|, we apply Lemma 2 to �ABC and Q′ to
conclude that �AR′Q′ fits in �A′BC .
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Fig. 8 Proof of Theorem 4:
R ∈ �AHB∗

Fig. 9 Proof of Theorem 4:
|AR| ≤ |AH |

Case R ∈ �AHB∗.

We now have that �BAQ > �BAH . If R ∈ �AHB∗, then we mirror �PQR about AH to
obtain a new triangle �PR′Q′ with R′ ∈ �ABH ⊂ �ABC and ζBC (Q′) = ζBC (Q); see
Fig. 8. We can then rotate the triangle clockwise. The rotation decreases ζBC (Q′). We stop
when either Q′ ∈ BC or R′ ∈ AB and denote by �PQ′′R′′ the triangle in the new position.
In the first case, we have �PR′′Q′′ ⊂ �ABC , in the second case we can translate leftwards
by ζBC (Q′′) < ζBC (Q) ≤ |AA′| to place the triangle in �A′BC .

Case |AR| ≤ |AH|

Consider now the case where |AR| ≤ |AH |. We can rotate �PQR clockwise around A to
obtain a new triangle �PQ′R′ with Q′ ∈ AB; see Fig. 9. Since R′ lies in the interior of X ,
the triangle �PQ′R′ does not maximally fit into X .

Final case

We are now left with the final case where R ∈ HAC ⊂ HAB∗ lying to the left of AB∗,
|AR| ≥ |AH |, |BR| ≤ |AB|, �BAQ > �BAH , and Q ∈ HAC ⊂ HAB∗ lying to the right
of BC ; seeFig. 10.We letρ = �B∗AR.Wefirstmirror�PQR about AH to obtain�PR′Q′,
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94 O. Cheong et al.

Fig. 10 Proof of Theorem 4: the final case

with R′ below AB, �R′AB = ρ, and ζBC (Q′) = ζBC (Q). We then translate �PR′Q′
leftwards by ζBC (Q′) to obtain�P ′′Q′′R′′ and finally rotate counter-clockwise about P ′′ by
angle ρ to obtain �P ′′Q′′′R′′′. To see that �P ′′R′′′Q′′′ fits into �A′B ′C , it remains to show
that Q′′′ ∈ �A′B ′C , since P ′′ ∈ A′A and R′′′ ∈ AB.

Let H ′ be the foot of the perpendicular from P ′′ to BC . Since the line P ′′H ′ is the image
of a leftward translation of the line PH by ζBC (Q′), and Q′ lies below the line AH , we have
Q′′ ∈ H ′B. We rotate H ′ and B about P ′′ by angle ρ to obtain H ′′ and B ′′, respectively, so
that Q′′′ ∈ H ′′B ′′.

We now apply Lemma 3 to �ABB∗ and R, with μ = ζBC (Q) = ζBB∗(Q). Note that C
in the lemma is our B∗, A′ in the lemma is our P ′′. The B ′ in the lemma will be denoted
here B⊕ = B ⊕ ζAB∗(R) ∈ BB ′ since ζAB∗(R) ≤ ζAC (R) ≤ ζAC (D). To check the
lemma’s condition on μ, let Q0 be the point on the line AH at distance |AB| from A and
let A0 = A�ζBB∗(Q0); see Fig. 11. Sinceμ ≤ ζBB∗(Q0) under the constraint |AQ| ≤ |AB|,
we have that μ+|AB|

|AB| ≤ |A0B|
|AB| . Let Y = Q0 � ζBB∗(Q0) and let Z = Q0 ⊕ |AB|. The

quadrilateral ABZQ0 is a rhombus, and the triangle�BZY is right-angled at B, and therefore
similar to �ABH . It follows that |A0B|

|AB| = |Y Z |
|AB| = |AB|

|AH | , and the condition in Lemma 3 is

satisfied. The lemma implies that B ′′ ∈ �BB⊕H , and that H ′′ ∈ �H ′P ′′R∗, where R∗ is
the horizontal projection of R on the line BB∗. Since R ∈ HAC , the point C must lie on the
segment R∗B∗, and thus H ′′ ∈ �H ′P ′′R∗ ⊂ �H ′P ′′C ⊂ �A′BC .

Since Q′′′ ∈ H ′′B ′′, H ′′ ∈ �A′BC ⊂ �A′B ′C and B ′′ ∈ �BB⊕H ⊂ �A′B ′C ,
convexity of �A′B ′C implies that Q′′′ ∈ �A′B ′C , completing the proof. ��
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Covering families of triangles 95

Fig. 11 Proof of Theorem 4: verifying the condition of Lemma 3

Fig. 12 Lemma 2. Angle notation (left); Case 1 (right)

4 Proofs with trigonometry and calculus

In this section we provide the postponed proofs of Lemma 2 and Lemma 3.

Proof of Lemma 2 We denote angles as in Fig. 12(left). Note that α + φ = ψ + θ . We claim
that �BCQ fits into �AB ′C . We distinguish two cases.

Case 1:� ≥ �

In this case, we rotate �BCQ by angle φ around B, resulting in �BRS with S on the
line AB; see Fig. 12(right). Since |BS| = |BQ| ≤ |AB|, S lies on AB. On the other hand
ψ = α + (φ − θ) ≤ α, so R lies below AC , and therefore in �ABC .

Case 2:� < �

In this case, we rotate �BCQ by angle θ around B, resulting in �BRS with RS parallel
to AC ; see Fig. 13(left). We let �BS′R′ be the image of �BRS mirrored about the angular
bisector of ∠ABR, which means that R′ lies on AB; see Fig. 13(right).

We claim that min{ζAC (S), ζAC (S′)} ≤ ζAC (Q) = |BB ′|, which implies that at least one
of �BRS or �BS′R′ can be translated rightward to fit into �AB ′C . By the law of sines,
applied to triangles �A(Q ⊕ ζAC (Q))(B ⊕ ζAC (Q)), �A(S ⊕ ζAC (S))(B ⊕ ζAC (S)), and
�A(S′ ⊕ ζAC (S′))(B ⊕ ζAC (S′)) (see blue shaded triangles in Figs. 12 and 13), we have

|BQ|
sin α

= ζAC (Q) + |AB|
sin(α + φ)

= ζAC (S) + |AB|
sinψ

= ζAC (S′) + |AB|
sin(α + β − φ)

,
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96 O. Cheong et al.

Fig. 13 Lemma 2. Case 2

so we need to prove min {sin(ψ), sin(α + β − φ)} ≤ sin(α + φ). Suppose this is not the
case. Then we have sin(α + φ) < sinψ . Since α + φ = ψ + θ > ψ and x �→ sin x is
monotonously increasing on [0, π

2 ], we must have α +φ > π
2 and π − (α +φ) < π

2 . On the
other hand, we also have sin(α + β − φ) > sin(α + φ) = sin(π − (α + φ)), which implies
α + β − φ > π − (α + φ) and therefore (α + φ) + (α + β − φ) > π . However, since γ

is the largest angle in �ABC , (α + φ) + (α + β − φ) = 2α + β ≤ α + β + γ = π , a
contradiction. ��
Proof of Lemma 3 We scale the problem such that |AB| = |AC | = 1 and place A at the
origin, so that B = (1, 0). Let β = �ABC , α = �BAC = π − 2β, and ρ = �CAR. We
have |AH | = sin β, and |A′B| ≤ 1

sin β
; see Fig. 14.

We first observe that we can replace R by the point at distance sin β from A on AR.
This keeps ρ unchanged, decreases |BR|, decreases ζAC (R), and decreases |H ′R�| so
that �A′H ′R� becomes strictly smaller. So in the following, |AR| = |AH | = sin β.

Let next δ = ζAC (R), and let X ∈ AC be the point R ⊕ δ. Applying the law of sines
to �AXR, we have

δ

sin ρ
= sin β

sin α
= sin β

sin 2β
= sin β

2 sin β cosβ
= 1

2 cosβ
so δ = sin ρ

2 cosβ
. (1)

We now analyse the interval of angles β for which the conditions of the lemma can be
satisfied. Consider the point R0 = (− sin β cos 2β, sin β sin 2β) on AC with |AR0| = sin β,
and let

φ(β) := |R0B|2 = (1 + sin β cos 2β)2 + (sin β sin 2β)2.

Notice1 that d
dβ

φ(β) = 2 cosβ(6 cos2 β + sin β − 5), which is negative on [π
4 , π

2 ] since
6 cos2 β +sin β −5 ≤ 6 cos2 π

4 −4 = −1. Thus, as β increases from π
4 to π

2 , φ(β) decreases
monotonously from φ(π

4 ) = 3
2 to φ(π

2 ) = 0, so there is a β0 ∈ ( π
4 , π

2 ) with φ(β) = 1. For
β < β0 ≈ 1.003 ≈ 57.47◦, no point R left of AC at distance smaller than one from B can
exist; see Fig. 15. In the following we therefore have β ≥ β0.

The point R lies on an arc of circle around A with right endpoint R0. There are two other
critical points on this circle: let R1 be the point with |AR1| = sin β and |BR1| = 1, and
let R2 be the point on the horizontal line through C with |AR2| = sin β and a positive x-
coordinate. A point R satisfying the conditions of the lemma cannot lie to the left of R1

because |BR| ≤ 1, and cannot lie to the left of R2 since R ∈ HAC .

1 The computations in Maple can be found in the appendix.
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Covering families of triangles 97

Fig. 14 Lemma 3: Notation

Fig. 15 Lemma 3: definitions
of β0 and β1

The triangle �ABR1 is isosceles with two sides of length one and a short side AR1 of
length sin β, so �ABR1 = 2 sin−1( 12 sin β). The law of sines applied to triangle �(A �
ζAC (R1))R1B now shows that

ζAC (R1) + 1

sin(π − (π − 2β) − 2 sin−1( 12 sin β))
= 1

sin 2β
.
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98 O. Cheong et al.

We set

h(β) := ζAC (R1) = sin(2β − 2 sin−1( 12 sin β))

sin 2β
− 1. (2)

Since C = (− cos 2β, sin 2β), the x-coordinate of R2 is
√
sin2 β − sin2 2β. For β =

β1 := cos−1( 1√
5
) ≈ 1.107 ≈ 63.4◦, we haveC = ( 35 ,

4
5 ), R2 = ( 25 ,

4
5 ), implying |BR2| = 1,

that is, R1 = R2; see Fig. 15. We set

g(β) := ζAC (R2) = |R2C | = − cos 2β −
√
sin2 β − sin2 2β. (3)

To summarize:

– For β0 ≤ β ≤ β1, R lies on the arc between R0 and R1. The angle ρ is maximized
when R = R1. For β = β0, we have R1 = R0 (so there is only a single choice for R),
for β = β1 we have R1 = R2 = ( 25 ,

4
5 ). Since R cannot lie to the left of R1, we have

δ ≤ h(β).
– For β1 ≤ β < π

2 , R lies on the arc between R0 and R2, with ρ maximized when R = R2.
Since R cannot lie to the left of R2, we have δ ≤ g(β).

B′′ position

Consider now the point B ′′. Since |A′B| ≤ 1
sin β

, it has y-coordinate at most sin ρ
sin β

. We will

prove that HB ′ intersects the vertical line x = 1 through B at y-coordinate at least sin ρ
sin β

,
implying that B ′′ lies below HB ′, and therefore is in �BB ′H .

Since H = (sin2 β, sin β cosβ) and B ′ = (1 + δ, 0), the line x = 1 intersects HB ′ at
y-coordinate

δ · sin β cosβ

1 + δ − sin2 β
= sin ρ

2 cosβ
· sin β cosβ

cos2 β + δ
= sin ρ sin β

2(cos2 β + δ)
.

This is at least sin ρ
sin β

if and only if

1

cos2 β + δ
≥ 2

sin2 β
,

which is equivalent to

δ ≤ 1

2
sin2 β − cos2 β = 3

2
sin2 β − 1.

Setting f (β) = 3
2 sin

2 β − 1, it remains to show that δ = ζAC (R) ≤ f (β) under the
conditions of the lemma.

We first consider the case β ≥ β1, where δ ≤ g(β). Since g(β) is a decreasing function,
while f (β) is an increasing function, this implies that δ ≤ g(β) ≤ g(β1) = 1

5 = f (β1) ≤
f (β).
We next consider β0 ≤ β ≤ β1. For β = β1, R2 = R1, so h(β1) = g(β1) = 1

5 = f (β1).
We consider the function β �→ f (β) − h(β). Plotting its derivative on the interval [β0, β1]
shows that it is smaller than −0.2, so f (β)− h(β) is decreasing on the interval. This implies
that δ ≤ h(β) ≤ f (β) for β ∈ [β0, β1], completing the proof of B ′′ ∈ �BB ′H .
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H′′ position

We now turn to the point H ′′. It is obtained by rotating H ′ counter-clockwise around A′ by
angle ρ. Since A′H ′ is orthogonal to BC , H ′′ lies below the line BC . Since ρ < π , H ′′ lies
above the line A′H ′. To show that H ′′ ∈ �A′H ′R�, it remains to prove that H ′′ lies below
the line A′R�. This is equivalent to proving ρ ≤ �H ′A′R�.

Let R�
0 be the horizontal projection of R0 on the line BC ; seeFig. 14. Since the y-coordinate

of R0 is sin β sin 2β, we have R�
0 = (1 − cosβ sin 2β, sin β sin 2β). We have

�H ′A′R� = �BA′R� − �BA′H ′ = �BA′R� − �BAH

= �BA′R� − ( π
2 − β) ≥ �BA′R�

0 − ( π
2 − β)

Since |A′B| ≤ 1
sin β

, we can therefore bound from below �H ′A′R� by r(β), where

r(β) := tan−1
(

sin β sin 2β
(
1 − cosβ sin 2β

) + ( 1
sin β

− 1
)
)

− π

2
+ β.

Plotting r(β) shows that it is larger than 0.25 on the interval [β0,
2π
5 ].

We consider the case β0 ≤ β ≤ β1. This implies that ρ is maximized when R = R1.
Combining (1) and (2), this gives us sin ρ ≤ 2h(β) cosβ. Plotting sin−1(2h(β) cosβ) on the
interval [β0, β1] shows that ρ < 0.2 < 0.25 < r(β).

Finally, we turn to the case β1 ≤ β < π
2 . Here, ρ is maximized when R = R2.

Combining (1) and (3), this gives us sin ρ ≤ 2g(β) cosβ. Plotting the function β �→
sin−1(2g(β) cosβ) on the interval [β1,

π
2 ] shows that ρ < 0.2 on that interval. For

β ≤ 2π
5 , this implies ρ < 0.25 < r(β). For β ≥ 2π

5 , we consider the function
t(β) = r(β) − sin−1(2g(β) cosβ). We plot the derivative of t(β) on the interval [ 2π5 , π

2 ]
to show that it is smaller than −0.05, so t(β) is a decreasing function on that interval.
Since t( π

2 ) = 0, this implies that t(β) ≥ 0, and therefore ρ ≤ r(β) for 2π
5 ≤ β < π

2 . To
summarize, we have shown ρ ≤ r(β) ≤ �H ′A′R�, so H ′′ ∈ �A′H ′R� for all values of β.
��

5 Triangles contained in a half-disk

As a warm-up exercise to the square case, we determine the smallest convex cover for the
family of triangles contained in the half-disk that is the intersection of the unit disk with the
halfplane y ≥ 0. The half-disk is a crescent, but the triangular cover constructed in Theorem 4
is in this case not the smallest one.

Proof of Theorem 1 Let T be a triangle that maximally fits into the half-disk, and so T falls
into one of the three cases of Lemma 1. Cases (ii) and (iii) cannot occur, since such a triangle
can rotate around its bottom vertex. Thus we are in case (i): T is a right-angled triangle whose
hypotenuse is the diameter of the half-disk.

By symmetry, we in fact only have to consider the triangles Tx whose vertices are (−1, 0),
(1, 0), (−x,

√
1 − x2), for x ∈ [0, 1]; see Fig. 16(left). When translating Tx horizontally so

that its upper vertex is on the line segment (−1, 0)(0, 1), the right vertex of the translation
of Tx is at coordinate (x + √

1 − x2, 0). The x-coordinate of this point is maximized for
x = 1√

2
, so the triangle Z with vertices (−1, 0), (

√
2, 0), and (0, 1) is a cover for all Tx ; see

the blue triangle in Fig. 16(right). To complete the proof of Theorem 1, we need to argue
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Fig. 16 Right triangles of diameter two

Fig. 17 Triangles that fit in a square

that Z is a smallest cover for the family Tx . This is true since it is already a smallest cover
for the two triangles T0 and T 1√

2
, as can be seen using Corollary 10 of Park and Cheong [8].

��

6 Triangles contained in the unit square

In this section, we prove Theorem 2.We start again by characterizing triangles thatmaximally
fit into the square.

Lemma 4 Let X = ABCD be a square. If a triangle T = �PQR fits maximally into X ,
then without loss of generality, we can assume that P = A, Q lies on BC, and R lies on CD.

Proof Since T maximally fits intoX , we can assume that P, Q, R all lie on the boundary ∂X .
Suppose twovertices of T lie on the same side ofX , say, P, Q lie on AB. Then T ⊂ �ABR ⊂
X as in Fig. 17(left). Since T maximally fits into X , this implies P = A, Q = B. Suppose
next that no vertex of T coincides with a vertex of X . Then P, Q, R lie on three different
sides of X , so we can assume that no vertex lies on AD. We can then translate T upwards
so that it no longer touches BC , which implies that T does not maximally fit into X ; see
Fig. 17(middle). It follows that we can assume that P = A and that Q, R lie on the sides BC
and CD. ��

By Lemma 4, it suffices to study the triangles with P = A, Q ∈ BC , and R ∈ CD.
We parameterize these triangles �PQR by the two angles θ and θ ′ made by the edges PQ
and PR with the diagonal AC of the square. We denote this triangle Tθ,θ ′ ; see Fig. 17(right).
These parameters range in [0, π

4 ] and the case θ = θ ′ = π
6 corresponds to the largest
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Fig. 18 Construction of the smallest convex cover for the equilateral triangle T0 and the isosceles triangle
Tθ,θ

equilateral triangle that can fit in the square. We denote this equilateral triangle as T0 =
�P0Q0R0 = Tπ

6 ,
π
6
; see the red triangle in Fig. 17(right).

6.1 The isosceles case: construction of the cover

We first consider the isosceles triangle Tθ,θ with θ ≤ π
6 . A convex cover Cθ = �XθYθ Zθ

for Tθ,θ and T0 is obtained when P ′R′ is aligned with P0R0, and Q′ is on Q0R0; see Fig. 18.
We have |P ′Q′| = |P0Q| = 1

cos( π
4 −θ)

. Hence we compute the distance �(θ) between P ′ and
R0 by the law of sines in �Xθ Q′Zθ :

�(θ) = |P ′Q′| · sin�Zθ Q′Xθ

sin�Xθ Zθ Q′ = sin( π
3 + 2θ)

cos( π
4 − θ) sin( π

3 )
.

When θ = 0, T0,0 degenerates to the diagonal of the square and �(0) = √
2. As θ increases

from zero, �(θ) increases to a maximum2 at

θ0 = tan−1
(

1
3
√
2 + √

3

)
− π

6
≈ 0.049 ≈ 2.81◦,

then decreases to �(π
6 ) = 1/cos π

12 . We have �(θ0) ≈ 1.4195.
It follows that the triangle C = �XY Z , where X = Xθ0 , Y = Yθ0 , Z = Zθ0 , is a cover

for the family of all isosceles triangles Tθ,θ for 0 < θ ≤ π
6 . We note that �X ZY = π

3 ,|X Z | = �(θ0), and |ZY | = �(π
6 ).

It is intriguing that C is just slightly larger than the much “nicer” triangle �X0Y0Z0

obtained for θ = 0. We will denote this triangle as C� = �X�Y �Z�. The angles of C� are
π
4 = 45◦, 5π

12 = 75◦, and π
3 = 60◦. The longest side is |X�Z�| = √

2, and, by construction,
we have C� ⊂ C.

2 The computations in Maple can be found in the appendix.
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Fig. 19 Six cases cover all
possible triangles. All cases but
Case A fit in C�

We have �(θ) ≥ √
2 when θ ∈ [0, θ1] and �(θ) ≤ √

2 when θ ∈ [θ1, π
6 ] with

θ1 = tan−1
(

4 sin2 π
12 + 1

8 sin2 π
12 − 6 +

√
16 sin4 π

12 − 72 sin2 π
12 + 57

)
− π

6
≈ 0.0996 ≈ 5.7◦,

so the triangle Tθ,θ actually fits into C� for θ1 ≤ θ ≤ π
6 .

In the following six sections, we discuss why each triangle Tθ,θ ′ indeed fits into C. Fig. 19
shows how the six cases cover the entire domain of (θ, θ ′). It turns out that only case A
requires the cover C, in all other cases Tθ,θ ′ fits into the nicer triangle C�—so in a sense C�

is a cover for “most” triangles contained in the unit square.
It follows from the complete characterization of the smallest convex cover for two given

triangles by Park and Cheong [8] that C is a smallest convex cover for T0 and Tθ0,θ0 . This
makes C a smallest convex cover for the family of all triangles contained in the unit square.

Moreover, C is indeed the unique smallest cover for this family. To show this, we can
directly adapt the proof of Lemma 13 by Park and Cheong [8] to argue that a smallest cover
for T0 and Tθ0,θ0 that is different from C is a quadrilateral, and that this quadrilateral does not
cover either Tθ0+ε,θ0+ε or Tθ0−ε,θ0−ε for small enough ε.

We now turn to the six cases.Without loss of generality wewill always assume that θ ≤ θ ′.

6.2 Case A

We start with the triangles where θ ≤ θ1 ≈ 5.7◦ and θ ′ ≤ π
12 . This is the only case where we

need to use the cover C—that should not come as a surprise, since Tθ0,θ0 falls into this case.
Let�PQR = Tθ,θ ′ be a triangle with θ ≤ θ1. Let Q′ ∈ BC be such that�PQ′R = Tθ,θ .

We have seen in Sect. 6.1 that Cθ ⊂ C covers �PQ′R as in Fig. 20. The point Q lies on the
segment BQ′, so �PQR ⊂ Cθ as long as θ + θ ′ ≤ �Yθ Xθ Zθ . Since the angle �Yθ Xθ Zθ is
minimized by �Yθ0 Xθ0 Zθ0 > 44.8◦, this holds by θ + θ ′ ≤ θ1 + π

12 < 21◦.
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Fig. 20 Case A: covering �PQR with θ ≤ θ1 and θ ≤ θ ′ ≤ π/12

Fig. 21 Case B: covering �PQR
when θ + θ ′ ≤ π

4 and
θ1 ≤ θ ≤ θ ′

6.3 Case B

Case B covers those triangles where θ + θ ′ ≤ π
4 , except for those triangles we treated in

case A. It is nearly identical to case A, but now we can use our “nice” cover C�. We place C�

with X� = A and such that R is on X�Z�.
For θ ≥ θ1, we again let Q′ ∈ BC be such that �PQ′R = Tθ,θ . We argued in Sect. 6.1

that C� covers �PQ′R as in Fig. 21. Since �RAQ ≤ π
4 = �Z�X�Y �, Q ∈ C� and

so �PQR ⊂ C�.
It remains to consider the situation where θ < θ1 and θ ′ ≥ π

12 . Let Q
′′ be the point on BC

with �BAQ′′ = π
6 . Since |AQ′′| = 2

3

√
3 is less than the height of X� in C�, the point Q′′

lies in C�. From θ ′ ≥ π
12 follows that Q lies on BQ′′, and since θ + θ ′ ≤ π

4 , it therefore lies
in C� as in Fig. 22.
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Fig. 22 Case B: covering �PQR
when θ + θ ′ ≤ π

4 and
θ <θ1 < π

12 ≤θ ′

Fig. 23 Case C: covering �PQR when π
6 ≤ θ ≤ θ ′

6.4 Case C

We now consider the triangles where θ, θ ′ ≥ π
6 . In other words, Q ∈ BQ0, R ∈ R0D.

We first observe that C� can be placed such that X�Y � is vertical and lies on the line AB,
while Z� lies on the line CD (recall that �Y �X�Z� = π

4 while |X�Z�| = √
2). When
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Fig. 24 Case D: covering �PQR when π
12 < θ ≤ θ ′ ≤ π

6

Z� ∈ R0D, then the side X�Y � covers the entire square edge AB. Figure 23 shows the two
extreme cases where Z� = R0 (top left) and where Z� = D (top right).

Consider now our triangle �PQR. We place C� such that Z� = R; see Fig. 23(bottom).
Since the line Z�X� has slope −1, it intersects BC in a point Q′ such that �PQ′R = Tθ,θ .
Since θ ′ ≥ θ , we have Q ∈ BQ′ ⊂ C� and thus �PQR ⊂ C�.

6.5 Case D

We now look at the situation where we have π
12 = 15◦ < θ ≤ θ ′ ≤ π

6 . In other words, we
have Q ∈ Q0Q1 and R ∈ R1R0 where �Q1AC = �R1AC = π

12 as in Fig. 24(top left).
We observe that C� can be placed to cover T0 = �PQ0R0 as in Fig. 24(top right). Starting

in this position, we can translate C� downwards until Y � = R1. Since X�Y � is parallel to AR1,
A lies in C� during the entire translation; see Fig. 24(bottom left).

Among these positions for C�, we choose the onewhereY � = R; see Fig. 24(bottom right).
Since the line Y �Z� has slope −1, it intersects BC in a point Q′ such that �PQ′R = Tθ,θ .
Since θ ′ ≥ θ , we have Q ∈ Q0Q′ ⊂ C� and thus �PQR ⊂ C�.

6.6 Case E

We consider the situation where θ ≤ π
6 ≤ θ ′, with the constraints π

4 − θ ≤ θ ′ ≤ π
3 − θ .

In other words, R lies on CR0, while Q lies on BQ0 in Fig. 25, with π
4 ≤ �RAQ ≤ π

3 .
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Fig. 25 Case E: covering �PQR when θ ≤ π
6 ≤ θ ′ and π

4 − θ ≤ θ ′ ≤ π
3 − θ

We place C� with Z� = A and X� = C . Rotating C� clockwise around A, the line X�Y �

intersects BC and CD in two points Q′ and R′, respectively; see Fig. 25(top right).
We claim that �R′AQ′ = π

4 . To see this, consider the point H ∈ X�Y � such that Z�H
is a height of C�. Since the height |AH | = 1, we have �ADR′ ≡ �AHR′ and �ABQ′ ≡
�AHQ′.

We continue rotating C� until either R lies on X�Y � or Q lies on Y �Z�.
In the first case, R = R′; see Fig. 25(bottom left). Then �RAQ ≥ π

4 = �R′AQ′ implies
that Q lies to the right of Q′ in C�. Since the line Y �Z� has not yet passed the point Q, Q
lies on the highlighted segment in C�.

The second case is illustrated inFig. 25(bottom right). The line X�Y � has not yet reached R,
so R lies above that line. Since �QAR ≤ π

3 = �Y �Z�X�, R lies below the line X�Z�, and
therefore on the highlighted segment in C�.

6.7 Case F

In the final case we consider the angles π
12 = 15◦ ≤ θ ≤ π

6 and π
6 ≤ θ ′ ≤ π

4 . In other
words, Q lies on BQ0, while R ∈ R1R0; see Fig. 26(top left).

We again start by covering T0 = �PQ0R0 with C�, but this time we need to cover it in
two different ways; see Fig. 26(top right). The first copy C�

1 has Y �
1 = Q0 and Z�

1 = A and
the second copy C�

2 has Z�
2 = Q0 and Y �

2 = A. Note that X�
1Z

�
1 and X�

2Z
�
2 intersect exactly

at R0.
Consider now the point Q ∈ BQ0. We rotate C�

2 counter-clockwise around A until Q ∈
X�
2Z

�
2 and translate C�

1 to the right until Y �
1 = Q. This places A outside of C�

1, so we then
rotate C�

1 counter-clockwise around Q until A ∈ X�
1Z

�
1. Fig. 26 depicts the situation for

different positions of Q.
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Fig. 26 Case F: top left: locations of Q and R; top right: double-covering of T0; middle left: Q = Q0;
middle right: Q moving right, M2 moving down, bottom left: when M2 reaches R0, let Q′ be the position
of Q, bottom right: Q = B

Let M1 be the intersection of X�
1Y

�
1 and CD and let M2 be the intersection of X�

2Y
�
2

and CD; see Fig. 26(middle right). When Q moves from Q0 to B, the line AM2 rotates
around A and thus M2 moves downwards monotonously. We let Q′ be the position of Q
when B ∈ Y �

2 Z
�
2 and M2 = R0; see Fig. 26(bottom left).

Let N be the intersection of X�
1Z

�
1 and X�

2Z
�
2. We will show below that for Q ∈ BQ0,

the point N always lies on or to the left of CD. This will imply that the segment M1M2 lies
entirely in C�

1 ∪ C�
2, so as long as R ∈ M1M2, we have �PQR ⊂ C�

1 or �PQR ⊂ C�
2.

Assume now that R lies aboveM2, that is onM2R0. This implies that R ∈ R2R0, where R2

is the position of M2 when Q = B as in Fig. 26(bottom right). Such a triangle �PQR is
covered by C�

2 in its position when Q = Q′, as illustrated in Fig. 26(bottom left).
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Fig. 27 Case F: computing the
x-coordinate of N

Otherwise R lies below M1, that is on R1M1. (This is indeed possible: while Q moves
from Q0 to B, M1 initially moves slightly upwards above R1 before starting a monotone
movement downwards.) In this case we rotate C�

1 further counter-clockwise until R ∈ X�
1Y

�
1 .

Since �RQA ≤ �R1QA ≤ �R1Q0A = 75◦ = �X�Y �Z�, we then have P = A ∈ C�
1 and�PQR ⊂ C�

1.
It remains to prove the claim that the point N lies on or to the left of the line CD. We will

compute the x-coordinate of N as a function of q := |AQ|. As Q ranges from B to Q0, q
ranges from 1 to 1/ cos π

12 ≈ 1.035. Let h be the height of Y � in �X�Y �Z�. We have

h = |Z�Y �| sin π
3 = |AQ0|1

2

√
3 = 1

cos π
12

1

2

√
3 =

√
6 − 3

√
3.

We next observe that Z�
1X

�
1 is the line at distance h from Q through A, while Z�

2X
�
2 is the

line at distance h from A through Q. This implies that �AQN is isosceles, with two equal
heights of length h; see Fig. 27. Let α := �QAN = �AQN and d := |AN | = |QN |. We
have sin α = h

q and cosα = q
2d . Let β := �BAQ. Then, cosβ = 1

q .
Now we compute the horizontal distance f (q) between A and N :

f (q) = d cos
(π

2
− α − β

)
= d sin(α + β) = d sin α cosβ + d cosα sin β

= q

2 cosα

h

q

1

q
+ q

2
sin β = h

2q
√
1 − h2

q2

+ q

2

√

1 − 1

q2

= 1

2

(
h

√
q2 − h2

+
√
q2 − 1

)
.

Plotting the function f (q) shows that f (q) > 1.01 on the interval 1 ≤ q ≤ 1.02. Plotting
the derivative f ′(q) shows that f ′(q) < −0.9 on the interval 1.01 ≤ q ≤ 1.05, so f (q)

is decreasing on this interval. We also know that f (|AQ0|) = 1 since then N = R0. This
implies that f (q) ≥ 1 for any Q ∈ BQ0. It follows that N lies on or to the left of CD,
completing this case and the entire proof.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10998-022-00503-4.
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