
Vol.:(0123456789)1 3

Rendiconti Lincei. Scienze Fisiche e Naturali (2023) 34:681–688 
https://doi.org/10.1007/s12210-023-01167-z

QUASICRYSTALS: STATE OF THE ART AND OUTLOOKS

Aperiodic crystals and their atomic structures in superspace: 
an introduction

Sander van Smaalen1 

Received: 28 April 2023 / Accepted: 23 May 2023 / Published online: 7 June 2023 
© The Author(s) 2023

Abstract
Aperiodic crystals are ordered matter without three-dimensional (3D) translational symmetry. They encompass quasicrystals, 
incommensurate composite crystals and incommensurately modulated structures. Their crystal structures are described by 
the so-called superspace theory, in which hidden periodicity is uncovered as translational symmetry in a space of dimensions 
higher than three. Here, I give an introduction to the structural features of aperiodic crystals and to the superspace theory 
for describing those structures. Applications, in particular t-plots, are demonstrated for the charge-density wave (CDW) 
materials Er

2
Ir
3
Si

5
 and EuAl

4
.
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1 Introduction

The present contribution is based on a presentation given 
at the conference ”Quasicrystals: State of the art and 
outlooks,” that took place on 18 November 2022 at the 
Accademia Nazionale dei Lincei in Rome, Italy (Bindi 
and Parisi 2023). Here, I will provide an overview of ape-
riodic order in crystals, and I will give a brief introduc-
tion to the superspace theory for the description of the 
atomic structures of aperiodic crystals. Furthermore, the 
use of t-plots as most important tool for crystal–chemical 
analysis will be illustrated by two examples. I will provide 
these descriptions with a minimum of mathematics. For 
a rigorous treatment of the superspace theory, I refer to 
textbooks (van Smaalen 2012; Steurer and Deloudi 2009; 
Janssen et al. 2007).

The crystalline state of matter is important for many 
branches of science, including mineralogy, solid state phys-
ics, solid state chemistry and the pharmaceutical sciences. 
Many crystalline materials possess an atomic structure with 
translational symmetry. That is, the atomic arrangement in 
space—called crystal structure—is completely determined 
by the positions of the atoms in a unit cell, together with 
a lattice of translations. The latter is based on three basic 
vectors, {a, b, c} , that are the edges of the unit cell. Most 
crystalline materials have relatively few atoms in the unit 
cell. For example, for pharmaceutical compounds, the unit 
cell may accommodate precisely one molecule.

By way of construction, the three-dimensional (3D) 
translational symmetry of periodic crystals implies long-
range order for their crystal structures. In the middle of the 
twentieth century, it became apparent, that solid materials 
with long-range order may exist, which do not have trans-
lational symmetry. Crystals with this property are now 
called aperiodic crystals. Three modes of long-range order 
without 3D translational symmetry have been found up to 
the present date. They are incommensurately modulated 
crystals, incommensurate composite crystals and quasic-
rystals. The crystal structures of these materials are most 
favorably described with the aid of the superspace theory, 
which was developed by Aloysio Janner, Ted Janssen and 
Pim de Wolff (de Wolff 1974; de Wolff et al. 1981).

2  Incommensurately modulated crystals

Incommensurately modulated crystals were the first kind 
of aperiodic crystals described in the literature. Their crys-
tal structures can be derived from periodic structures, for 
example, CrOCl at ambient conditions with 3D periodic 
orthorhombic symmetry Pmmn and two formula units in 
the unit cell (Fig. 1a) (Forsberg 1962).

Modulated structures can be understood if we first assume 
that all atoms bear small displacements out of their lattice-
periodic positions. However, these displacements are cor-
related with each other such that they follow as the values of 
a wave, which are obtained at the respective lattice-periodic 
positions. The latter is called basic structure. For CrOCl, 

Fig. 1  Crystal structures of CrOCl at two different pressures. a Per-
spective view along the b-axis of the ambient-pressure crystal struc-
ture. b Approximate 7a × b × 2c superstructure at 30.3 GPa. Adapted 

from Fig. 1 in Bykov et al. (2015) Sci. Rep. 5, 9647. DOI: 10.1038/
srep09647 (color figure online)
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the modulation wave of, for example, the positions of the Cl 
is obvious, when seven basic structure unit cells are plotted 
(Fig. 1b). Actually, if the modulation wave has a period of 
exactly seven basic translations, it is commensurate, and the 
seven-fold supercell is exact. In case the wave slightly devi-
ates from a seven-fold period, it is incommensurate, and no 
true supercell can be found for the modulated crystal struc-
ture. The superspace theory needs to be applied (see below).

In general, an incommensurately modulated structure can 
represent the minimum of the Free Energy. This happens 
in particularly if competing interactions are present, which 
cannot be simultaneously satisfied in an optimal way. For 
example, as proposed in Bykov et al. (2015), the incom-
mensurately modulated crystal structure of CrOCl allows 
a denser packing of Cl atoms within the van der Waals gap 
than is possible with any periodic structure derived from the 
orthorhombic Pmmn 3D periodic structure.

3  Incommensurate composite crystals

The incommensurability of composite crystals is at a more 
fundamental level than that of modulated crystals. Figure 2 
shows the principle of composite crystals by the example of 
the layered compound (LaS)

1.13
TaS

2
 . Layered compounds 

can be described as the stacking of a single layer type, where 
there is strong chemical bonding within the layers and weak 
Van der Waals interactions between the layers, as it is found, 

for example, for CrOCl (Fig. 1a) and NbS
2
 . In a variation of 

this principle, two different kinds of layers are alternately 
stacked, e.g., along the c-axis (Fig. 2).

The two layer types share a common c-axis.1 They might 
also have the same b-axis, with the result that a projection 
along a appears like the projection of a periodic crystal 
(Fig. 2a). However, the projection along b reveals two inde-
pendent a-axes for the two layer types (Fig. 2b). Accord-
ingly, the crystal structure lacks 3D translational symmetry, 
and it is an aperiodic crystal. It is important to realize that a 
composite crystal does not possess two separate ”unit cells.” 
Space is covered by the unit cells of the TaS

2
 subsystem, 

where there is empty space for accommodating the LaS lay-
ers. The other way around, the LaS unit cells also cover 
space, and they have empty space where the TaS

2
 layers 

are located. In a similar way, columns of mutually incom-
mensurate periodicity can be put on a common 2D grid. Or 
a framework structure can be made, in which channels are 
filled with molecules or atoms with their own periodicity 
along the channel axis.

The amplitude of the modulation wave (that is the maxi-
mum displacement of the atoms) can be made arbitrary 
small for modulated crystals. In this way, a 3D periodic basic 
structure can be defined, as the structure with modulation 
amplitudes sets to zero. A 3D periodic basic structure does 
not exist for composite crystals. Each subsystem has its own 
periodicity that is incommensurate with the periodicity of 
the other subsystem. Actually, the interactions between the 
layers of (LaS)

1.13
TaS

2
 result in two subsystems, that are by 

themselves incommensurately modulated structures. The 
periodicity of the modulation wave in the TaS

2
 subsystem is 

provided by the a-axis of the LaS subsystem, and the perio-
dicity of the modulation wave in the LaS layers is provided 
by the a-axis of the LaS subsystem.

4  Symmetry and diffraction

The symmetry group of a periodic crystal always includes a 
3D lattice of translations, that is defined by three basis vec-
tors {a, b, c} . The diffraction of such a structure produces 
sharp Bragg reflections with scattering vectors that are given 
by the reciprocal lattice vectors (Fig. 3a).

The latter are based on three reciprocal basis vectors 
{a∗, b∗, c∗} . Accordingly, Bragg reflections are indexed by 
three integer indices (h, k, l).

Sharp Bragg reflections are the result of long-range order. 
Sharp Bragg reflections are thus obtained in the diffraction of 
all three types of aperiodic crystals. For incommensurately 

(a) (b)

a1

b a2

Fig. 2  The crystal structure of the incommensurate composite crystal 
(LaS)

1.13
TaS

2
. a Projection along the incommensurate a axis, and b 

projection along the common b axis. Large circles denote S atoms; 
small circles represent the metal atoms. Shaded and white circles rep-
resent atoms at different positions of the projected coordinate. Repro-
duced from Jobst and van Smaalen (2002). https://doi.org/10.1107/
S0108768101019280

1 More correctly, the layers are perpendicular to c∗ ; for orthorhombic 
and higher symmetries reciprocal and direct axes are parallel.
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modulated crystals, Bragg reflections are found on the 
reciprocal lattice of the 3D-periodic basic structure (main 
reflections). Additional Bragg reflections—called satellite 
reflections—appear at positions ±q from the main reflec-
tions (Fig. 3b). Any of these reflections can uniquely be 
indexed by four integers (h, k, l, m) , where (h, k, l, 0) are 
main reflections and (h, k, l, m) with m ≠ 0 are satellites. 
The vector q is the wave vector of the modulation wave; its 
length is the reciprocal of the wave length. The modulation 
wave vector q thus characterizes the modulation as present 
in the aperiodic crystal. The example of Fig. 3 pertains to a 
one-dimensional modulation (d = 1) with one modulation 
wave vector. Modulated crystals have also been found for d 
= 1, 2 or 3 modulation wave vectors.

The space group of a periodic crystal includes rotational 
symmetry in addition to translational symmetry. This sym-
metry directly translates into point symmetry of the diffrac-
tion pattern. For example, the diffraction in Fig. 3a possesses 
mmm point symmetry, where both the mirror perpendicular 
to a∗ and the mirror perpendicular to c∗ map a Bragg reflec-
tion onto another Bragg reflection of the same intensity or 
onto itself. The same is true for the diffraction of the modu-
lated crystal (Fig. 3b). An additional feature is, that the point 
symmetry maps a main reflection onto a main reflection, and 
it maps a satellite onto a satellite.

The point symmetry thus observed in the diffraction of an 
aperiodic crystal eventually becomes part of the superspace 
group (superspace symmetry). At this stage, it is important 
to notice that the point symmetry of an aperiodic crystalline 
phase cannot be anything else than a 3D point group. No 
restrictions on the possible point groups exist for aperiodic 
crystals, unlike the restriction to so-called crystallographic 
rotations of order n = 1, 2, 3, 4, 6 (where n = 1 represents 
the identity operator). Despite an infinite number of these 

symmetries, the structure is simple: in analogy to crystal-
lographic point groups 4/mmm and 6/mmm, the only point 
symmetries are n/mmm (n is even) and their subgroups. 3D 
space is special, in that it furthermore allows the crystal-
lographic cubic and the non-crystallographic icosahedral 
groups.

Incommensurately modulated structures and incom-
mensurate composite crystals have symmetries according 
to a crystallographic point group. Quasicrystals are loosely 
defined as aperiodic crystals based on non-crystallographic 
point symmetry. Actually observed have been quasicrystals 
with icosahedral, octagonal, decagonal or dodecagonal sym-
metries. Several higher-order rotations have been found for 
soft-matter quasicrystals (Fischer et al. 2011).

5  Direct and reciprocal superspace

Inspection of the atomic structures immediately reveals the 
absence of translational symmetry for aperiodic crystals 
(e.g., see Fig. 1). On the other hand, the diffraction of ape-
riodic crystals does exhibit rotational symmetry (Sect. 4). 
The latter will provide symmetry of the atomic structure of 
the aperiodic crystals through the use of superspace groups.

The first step towards the superspace description is the 
indexing of the diffraction pattern by four or more integers, 
employing four or more reciprocal vectors. For example, 
in the case of incommensurately modulated morpholinium 
tetra-fluoro-borate, an integer indexing of the diffraction 
requires four reciprocal vectors, {a∗, b∗, c∗, q} (Fig. 3b). It 
was observed by De Wolff, Janner and Janssen (1981), that 
a set of points described by (3 + d) integer indices forms a 
(reciprocal) lattice in (3 + d) space. Accordingly, superspace 
is defined as a space of dimension (3 + d) . For the example 

Fig. 3  Diffraction by morpholinium tetra-fluoro-borate. a recon-
structed (h 4 l) reciprocal layer for the periodic structure at T = 160 
K. b Reconstructed (h 4 l m) reciprocal layer for the modulated 
structure at T = 130 K. Satellite reflections are visible with q = 

(0.4219, 0, 0) . Notice the mmm point symmetry. Figure 1 from Nooh-
inejad et al. (2017) reproduced with permission of the IUCr. https://
doi.org/10.1107/S2052520617009398
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of an incommensurately modulated structure with a one-
dimensional modulation (a single modulation wave vector), 
Fig. 4 shows the relation between observed Bragg reflections 
in physical, 3D space, and the reciprocal lattice points in 
(3 + 1) D space.

There is no theoretical bound on the number of modula-
tion waves in an incommensurately modulated structure, but 
only d = 1, 2 and 3 have been found experimentally (van 
Smaalen et al. 2013). The same is true for incommensurate 
composite crystals. Icosahedral quasicrystals have d = 3 ; 
decagonal and dodecagonal quasicrystals have d = 2.

The diffraction pattern assigns an intensity value to each 
of the Bragg reflections (reciprocal points) in 3D space. 
After solving the phase problem, each reciprocal point gets 
assigned a structure factor. The atomic structure then is the 
inverse Fourier transform of these structure factors. This 
allows a general scheme to be given for the superspace 
description of aperiodic crystals. In reciprocal space, 3D 
and (3+d)D spaces are related by a projection, while the 
structure in 3D space is the intersection of the superspace 
structure (Fig. 5).

The crystal structure in superspace is periodic. The super-
space equivalent of a point atom in physical space is a wavy 
string that precisely has the shape of the modulation wave. 
This is illustrated by one unit cell of the Fourier map in 

superspace for the example of Er
2
Ir
3
Si

5
 with a 1D modula-

tion (Fig. 6).
The trace of the maximum of the Fourier map in Fig. 6a is 

a wavy line that represents the atomic string in Fig. 6b. Each 
section labelled t = constant represents physical space. It is 
perpendicular to the fourth axis, but makes irrational angles 
with at least one other axis, such that physical space lacks 
3D translational symmetry.

Quasicrystals have a different superspace. One reason 
is the lack of a periodic basic structure in physical space. 
The superspace equivalents of point atoms are occupation 
domains of dimension d, which exist perpendicular to physi-
cal space.

6  t‑Plots and crystal chemistry

By construction, the fourth coordinate axis in superspace is 
perpendicular to physical space (Figs. 4 and 6). The fourth 
coordinate x̄s4 of a point in superspace then is

where �̄�(�) are the three coordinates of atom � in the basic 
structure. The parameter t can be considered as the initial 
phase of the modulation wave. Different t gives shifted, but 
entirely equivalent representations of physical space. As 
such it is related to the phason degree of freedom. For crystal 
structures, the variation of environments of a particular atom 
of the basic structure can be obtained by the consideration 
as a function of t of structural parameters, like atomic dis-
placements, atomic distances, bond angles, torsion angles, 
direction of magnetic moment, and occupation of atomic 

(1)x̄s,4 = t + q⋅�̄�(𝜇)

b*

a*

a *s4

-q a*O q
b*

(a)

(b)

Fig. 4  Reciprocal superspace. a 1D section of the diffraction of a 
modulated structure. The reciprocal vector b∗ is perpendicular to 
physical space. b 2D section of the reciprocal superspace lattice. 
Dotted lines indicate the reciprocal unit cell in superspace. Satellite 
reflections in physical space are the projections of reciprocal lattice 
points in superspace (red arrows for first-order satellite reflections.) 
(color figure online)

�( )x

�s s( )x F( )Hs

F( )H

(3+d)D inverse FT

(3+d)D FT

3D inverse FT

3D FT

noitcejorPnoitcesretnI

Fig. 5  Relations between direct and reciprocal spaces and between 
physical space (bottom row) and superspace (top row). �s(xs) is the 
electron density in superspace, which is a function of the (3 + d) 
coordinates of the position xs in superspace. Hs stands for the reflec-
tion indices (h, k, l, m) . FT is Fourier Transformation. Figure 2.4 in 
Incommensurate Crystallography (van Smaalen 2012) reproduced by 
permission of Oxford University Press
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site,⋯ As an example, the z components uz are given for 
the modulation functions of the atoms Ir1a and Si2a in the 
incommensurately modulated crystal structure of Er

2
Ir
3
Si

5
 

(Fig. 7a).
In the basic structure, a chemical bond exists between the 

atoms Ir1a and Si2a. Figure 7a reveals that the modulation 
displacements of these atoms are in phase, i.e. the modula-
tion functions uz of Ir1a and Si2a attain minimum and maxi-
mum values for almost the same values of t. Accordingly, 

the t-plot of the interatomic distance Ir1a–Si2a exhibits but 
a small variation of this distance as a function of t (Fig. 7b), 
and the chemical bond Ir1a–Si2a persists in the modulated 
structure.

Fig. 6  (xs3, xs4)-Section of superspace of the incommensurately mod-
ulated structure of Er

2
Ir
3
Si

5
 , showing the atom Er at basic position 

x̄s3 = 0. a Section from the Fourier map, and b Schematic drawing 

of the superspace atom. Drawn with data from Ramakrishnan et  al. 
(2020) (color figure online)

Fig. 7  a t-Plot of displacements along z =̂ x
3
 of atoms Ir1a and Si2a in the incommensurately modulated structure of Er

2
Ir
3
Si

5
. b t-Plot of the 

distance between atoms Ir1a and Si2a. Drawn with data from Ramakrishnan et al. (2020)
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7  The charge density wave in EuAl
4

The metal EuAl
4
 develops a charge density wave (CDW) 

at temperatures below the phase transition at TCDW = 145 
K (Nakamura et al. 2015; Shimomura et al. 2019). The 
CDW is a modulation of the electron density of the con-
duction band, coupled with a displacement modulation 
of the atoms. The latter modulation has been determined 
by temperature-dependent single-crystal X-ray diffrac-
tion (Ramakrishnan et al. 2022). EuAl

4
 is tetragonal with 

space group I4/mmm and lattice parameters a = 4.395 and 
c = 11.161 Å at T = 250 K (Fig. 8).

An alternative setting is F4/mmm, with a = 6.215 and 
c = 11.161 Å. The CDW modulation is incommensurate 
with modulation wave vector q = (0, 0, 0.1781) at 70 K. 
The CDW phase transition is accompanied by a reduction 
in point symmetry from tetragonal to orthorhombic Fmmm 
for the basic structure. The (3 + 1) D superspace group for 
the modulated structure is Fmmm(0 0 �)s00 (Ramakrishnan 
et al. 2022).

Both I4/mmm and Fmmm have three crystallographi-
cally independent atoms in the basic structure: Eu1, Al1 
and Al2 (Fig. 8). The shortest distances are two Al2–Al2 
contacts and four contacts each of Al2–Al1 and Al1–Al1. 
The largest atomic displacements of the modulation wave 
are along a ; they are in-phase and they are nearly equal 
for all atoms. Only Al1 has a sizeable modulation along 
b . This modulation is responsible for a strong variation 
of two out of four Al1–Al1 contacts, as shown in Fig. 9a.

Other distances are nearly constant over the modula-
tion wave. These observations have led to the conclusion, 
the CDW resides on the Al1 type atoms (Ramakrishnan 
et al. 2022).

8  Outlook

Aperiodic crystals encompass ordered materials without 
translational symmetry, including incommensurately mod-
ulated structures, composite crystals, and quasicrystals. 
The crystal structures of aperiodic crystals are described 
by the superspace theory, originally developed by Janner, 

Fig. 8  The basic structure of EuAl
4
 . One I-centered unit cell is shown 

with Eu (red), Al1 (blue) and Al2 (green) atoms. Reproduced with 
permission from Ramakrishnan et al. (2022) (color figure online)

Fig. 9  t-Plot of interatomic distances in the CDW modulated crystal 
structure of EuAl

4
 . (Left) Al1–Al1 distances, and (right) Al2–Al1 

and Al2–Al2 distances. Numbers indicate the symmetry opera-

tors that were applied to the second atom of each pair (see original 
publication). Reproduced with permission from Ramakrishnan et al. 
(2022)
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Janssen and de Wolff (van Smaalen 2012; Steurer and 
Deloudi 2009; Janssen et al. 2007). Superspace structure 
models may reveal important properties of aperiodic mate-
rials, not the least their symmetries.
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