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Abstract
Moderately high-dimensional approximation problems can successfully be solved by
combining univariate approximation processes using an intelligent combination tech-
nique. While this has so far predominantly been done with either polynomials or
splines, we suggest to employ a multilevel kernel-based approximation scheme. In
contrast to those schemes built upon polynomials and splines, this new method is
capable of combining arbitrary low-dimensional domains instead of just intervals
and arbitrarily distributed points in these low-dimensional domains. We introduce the
method and analyse its convergence in the so-called isotropic and anisotropic cases.

Mathematics Subject Classification 65D12 · 65D15 · 46E22 · 41A63

1 Introduction

High-dimensional problems occur in various applications from physics, engineering
and even business science. Typical examples comprise solutions to the Schroedinger
equation, the Fokker-Planck equation, the Black-Scholes equation or the Hamilton-
Jacobi-Bellmannequation, to namea few.Another frequent application is in the context
of uncertainty quantification,where a partial differential equationwith coefficients that
depend on random variables or high-dimensional parameters has to be solved over a
low-dimensional domain. The solution or more generally the quantity of interest is
then also a high-dimensional function of the parameters.

For moderately high-dimensional problems, sparse grids, see for example [1] for an
overview, have proven to be an efficient and reliable tool. The underlying procedure
for building the high-dimensional approximation goes back to Smolyak [2] but has
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since then been frequently used and studied, see for example [3–8]. Another term
which comes up in this context is the term combination technique, see for example
[9–20].

The idea behind the Smolyak construction is to combine sequences of low-
dimensional approximation schemes in an orderly fashion to obtain a high-dimensional
approximation method which exhibits nearly the same approximation features as the
low-dimensional schemes. So far, however, Smolyak’s procedure has predominantly
been used within the following setting, though there are notable exception, see for
example [21] for other functions and [22] for other point sets. The low-dimensional
problems were usually be defined on univariate domains and the approximation
schemes were either splines or polynomials. While polynomials become more and
more expensive if larger and larger data sets are used, they provide easily even spec-
tral convergence. However, the possible point sets are usually restricted to Chebyshev
or Clenshaw-Curtis points. In contrast, splines, are computationally more efficient but
usually only produce low approximation orders. Both have in common that a gener-
alisation to other low-dimensional domains are not-straight forward. This, however,
might be desirable. For example, if the solution of a time-dependent partial differential
equation is studied then the time interval is usually univariate while the spatial domain
is higher-dimensional. Also, the restriction to only one-dimensional domains limits
the structure of the resulting high-dimensional domains.

In this paper, we suggest to combine Smolyak’s technique with that of multilevel
radial basis functions. Radial basis functions are a well-established tool to tackle
multivariate interpolation and approximation problems, see for example [23, 24]. They
allow the user to build approximations and interpolations using arbitrarily distributed
data sites in low-dimensional domains. Moreover, if compactly supported radial basis
functions are combined with a multilevel strategy, see for example [25–27], they
provide a stable and fast approximation method. The combination of radial basis
functions with Smolyak’s construction is not entirely new. For example, in [28, 29]
Gaussians are used in this context. However, these papers are purely numerical. We
propose to use multiscale compactly supported radial basis functions. We derive the
method, provide several representations of the multivariate approximation operator
and give rigorous error estimates. We do this for the classical Smolyak method over
isotropic index sets, as well, as for the generalisation over anisotropic index sets.

The paper is organised as follows. In the next sectionwe collect all requiredmaterial
on tensor product spaces to describe Smolyak’s method in its most general form. In the
Sect. 3 we collect the required material on radial basis functions, or more generally,
on kernel-based approximation methods. Here, we review the multilevel method and
provide first new representations of it. In the Sect. 4 we introduce the kernel-based
tensor product multilevel method, derive different types of representation and provide
a thorough error analysis. In the Sect. 5 we give some numerical examples.

2 Smolyak’s construction

For higher dimensional approximation problems, the method of Smolyak, introduced
in [2], is one of the standard approximation methods. The basic idea of Smolyak’s
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construction is to combine univariate approximation processes in an orderly fashion,
resulting in a multivariate approximation process, which comes close to achieving
the approximation power of the fully resolved high-dimensional product rule, using
significantly less information. Even if the number of required information still depends
exponentially on the space dimension, the dependence is significantly better than it is
for classical product rules.

2.1 Tensor product spaces and operators

We start by giving a short introduction to tensor products of spaces, functions and
operators. For the convenience of the reader we collect in this subsection all the
relevant material. This will allow us to describe our methods in the most general form.
For more details and proofs, we refer, for example, to [30–32].

Tensor product spaces are usually first defined algebraically by the so-called uni-
versal property. The definition is then extended to normed spaces.

Definition 2.1 Let V (1), . . . , V (d) be linear spaces. The linear space T is called the
algebraic tensor product space of V (1), . . . , V (d), denoted by T = V (1) ⊗· · ·⊗V (d),
if there is a multilinear mapping φ : V (1) × · · · × V (d) → T having the following
properties:

1. The mapping φ generates T , i.e. T = span{φ(u(1), . . . , u(d)) : u(1) ∈
V (1), . . . , u(d) ∈ V (d)}.

2. For every multilinear mapping ψ : V (1) × · · · × V (d) → H with a linear space H ,
there is a unique linear map f : T → H such that f ◦ φ = ψ .

The algebraic tensor product space always exists and is uniquely determined up to
isomorphisms. From this, it particularly follows that it is essentially independent of the
ordering of the building spaces V ( j) and also associative. By definition, the algebraic
tensor product space is the span of the elementary tensors u(1) ⊗ · · · ⊗ u(d) with
u( j) ∈ V ( j), i.e.

T = span
{
u(1) ⊗ · · · ⊗ u(d) : u( j) ∈ V ( j), 1 ≤ j ≤ d

}
.

A direct consequence of this is that a basis of T is given by the tensor products of
bases of the V ( j).

Before discussing normed tensor product spaces, we will shortly recall the concept
of operators between algebraic tensor product spaces.

Definition 2.2 Let U ( j), V ( j), 1 ≤ j ≤ d, be linear spaces with algebraic tensor
products S := U (1) ⊗· · ·⊗U (d) and T = V (1) ⊗· · ·⊗V (d). Let A( j) : U ( j) → V ( j),
1 ≤ j ≤ d, be linear operators. Then, the tensor product operator A(1) ⊗ · · · ⊗ A(d) :
S → T is defined by

[A(1) ⊗ · · · ⊗ A(d)] (u) =
n∑

i=1

A(1)u(1)
i ⊗ · · · ⊗ A(d)u(d)

i ,
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u =
n∑

i=1

u(1)
i ⊗ · · · ⊗ u(d)

i , n ∈ N.

It can be shown that this is well-defined, i.e. independent of the actual representation
of u. Moreover, this is obviously a linear map. A specific case of this is given if
the V ( j) = R, i.e. if the A( j) : U ( j) → R are linear functionals. Using the fact
that the tensor product of d copies of R is R, the above definition yields for linear
λ( j) : U ( j) → R the linear functional λ(1) ⊗ · · · ⊗ λ(d) : S → R defined by

[λ(1) ⊗ · · · ⊗ λ(d)](u(1) ⊗ · · · ⊗ u(d)) :=
d∏
j=1

λ( j)(u( j)).

Remark 2.3 We will particularly be interested in spaces of functions. Hence, if U ( j)

and V ( j) contain certain functions u( j) : �( j) → R and v( j) : �( j) → R, then using
the notations u = u(1) ⊗ · · · ⊗ u(d), x = (x(1), . . . , x(d)) ∈ �(1) × · · · × �(d) and
A = A(1) ⊗ · · · ⊗ A(d), the elementary tensor products are given by

u(x) =
d∏
j=1

u( j)(x( j)),

Au(x) =
d∏
j=1

[A( j)u( j)](x( j)).

This mainly follows from the uniqueness of the tensor product space and the fact that
the universal property is easy to verify for the mapping φ : U (1) × · · · × U (d) →
span{u(1) ⊗ · · · ⊗ u(d)} defined by φ(u(1), . . . , u(d)) = u(1) ⊗ · · · ⊗ u(d).

We now turn to normed spaces. Unfortunately, the norms on the building blocks
do not automatically lead to a norm on the algebraic tensor product space, unless the
norms are given by inner products.Hence, it is usual tomake the following assumptions
and requirements.

Definition 2.4 Let U ( j), V ( j), 1 ≤ j ≤ d, be normed spaces with algebraic tensor
products S := U (1) ⊗ · · · ⊗U (d) and T = V (1) ⊗ · · · ⊗ V (d).

1. A norm ‖ · ‖T : T → R is called a crossnorm if

‖v(1) ⊗ · · · ⊗ v(d)‖T =
d∏
j=1

‖v( j)‖V ( j) , v( j) ∈ V ( j), 1 ≤ j ≤ d. (1)

2. A norm ‖ · ‖T : T → R is called reasonable if

‖λ(1) ⊗ · · · ⊗ λ(d)‖T ∗ =
d∏
j=1

‖λ( j)‖(V ( j))∗ , λ( j) ∈ (V ( j))∗, 1 ≤ j ≤ d. (2)
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Here, T ∗ denotes the dual space of T .
3. Two norms ‖ · ‖S : S → R and ‖ · ‖T : T → R are called compatible if

‖A(1) ⊗ · · · ⊗ A(d)‖S→T =
d∏
j=1

‖A( j)‖U ( j)→V ( j) (3)

for all linear and bounded operators A( j) : U ( j) → V ( j), 1 ≤ j ≤ d.

If ‖ · ‖S and ‖ · ‖T are crossnorms, it is not too difficult to verify, see for example the
comments after Definition 4.77 in [32], that (3) is equivalent to the easier verifiable

‖A(1) ⊗ · · · ⊗ A(d)‖S→T ≤
d∏
j=1

‖A( j)‖U ( j)→V ( j) .

Having a norm on an algebraic tensor product space, we can, if necessary, complete
the space with respect to this norm.

Definition 2.5 Let V (1), . . . , V (d) be normed spaces with algebraic tensor product
space T = V (1) ⊗ · · · ⊗ V (d). Let ‖ · ‖T : T → R be a norm on T . Then, the tensor

product space
(⊗d

j=1 V
( j), ‖ · ‖T

)
is the completion of T under the norm ‖ · ‖T .

Remark 2.6 As the tensor product spaces are the closure of the algebraic tensor product
spaces under given norms, it is always possible to extend an operator A(1)⊗· · ·⊗A(d) :
S → T to a bounded operator between the tensor product spaces

⊗
U ( j) and

⊗
V ( j)

having the same norm, provided that the operator is bounded from S → T , which is
the case if the norms on S and T are compatible.

We are mainly interested in Hilbert spaces, in particular in Sobolev spaces.

Definition 2.7 Let V (1), . . . , V (d) be (pre-)Hilbert spaces with algebraic tensor prod-
uct T = V (1) ⊗· · ·⊗V (d) and inner products 〈·, ·〉V ( j) , 1 ≤ j ≤ d. Then, the induced
inner product on T is defined by

〈u, v〉 =
d∏
j=1

〈u( j), v( j)〉V ( j) , u = u(1) ⊗ · · · ⊗ u(d), v = v(1) ⊗ · · · ⊗ v(d),

and linear extension.

This indeed defines an inner product on the algebraic tensor product space. Moreover,
the norm induced by this tensor product has all the required properties.

Proposition 2.8 The induced norm on the algebraic tensor product space of (pre)-
Hilbert spaces is a reasonable crossnorm. Induced norms are always compatible.
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We are particularly interested in Sobolev spaces. However, not necessarily standard
Sobolev spaces Hm(�), which consists of all functions u ∈ L2(�) having weak
derivatives Dαu ∈ L2(�) for all |α| ≤ m but in so-called mixed-order Sobolev
spaces.

To introduce them, we will employ the following notation. Let �( j) ⊆ R
n j , 1 ≤

j ≤ d, be given and � := �(1) × · · · × �(d). For a function u : � → R and
multi-indices α( j) = (α

( j)
1 , . . . , α

( j)
n j )T ∈ N

n j
0 , 1 ≤ j ≤ d, we will write

Dα(1),...,α(d)

u : = ∂ |α(1)|+···+|α(d)|u
(∂x(1))α

(1) · · · (∂x(d))α
(d)

= ∂ |α(d)|+···+|α(d)|u

(∂x (1)
1 )α

(1)
1 · · · (∂x (1)

n1 )α
(1)
n1 · · · (∂x (d)

1 )α
(d)
1 · · · (∂x (d)

nd )α
(d)
nd

for bothweak and strong derivatives, using also the notationx( j) = (x ( j)
1 , . . . , x ( j)

n j )T ∈
R
n j .

Definition 2.9 Let�( j) ⊆ R
n j , 1 ≤ j ≤ d, be measurable. Let� = �(1)×· · ·×�(d).

Then, the Sobolev space of mixed regularity m ∈ N
d
0 is defined as

Hm
mix(�) :=

{
u ∈ L2(�) : Dα(1),...,α(d)

u ∈ L2(�), |α( j)| ≤ m j , 1 ≤ j ≤ d
}

with inner product given by

〈u, v〉Hm
mix(�) =

∑

|α(1)|≤m1

· · ·
∑

|α(d)|≤md

〈Dα(1),...,α(d)

u, Dα(1),...,α(d)

v〉L2(�)

and norm given by

‖u‖Hm
mix(�) :=

⎛
⎝ ∑

|α(1)|≤m1

· · ·
∑

|α(d)|≤md

‖Dα(1),...,α(d)

u‖2L2(�)

⎞
⎠

1/2

.

Following the ideas of the proof for standard Sobolev spaces, it is easy to see that
this is indeed a Hilbert space. Moreover, it is the tensor product space of the Sobolev
spaces Hm j (� j ) under the induced norm.

Lemma 2.10 Let �( j) ⊆ R
n j , 1 ≤ j ≤ d, be measurable. Let � = �(1) ×· · ·×�(d).

Then, with the induced norm on the tensor product space,

⎛
⎝

d⊗
j=1

H
m j
j (�( j)), ‖ · ‖

⎞
⎠ =

(
Hm
mix(�), ‖ · ‖Hm

mix(�)

)
.

123



High-dimensional approximation with kernel... 491

Proof This is a standard result for m = (0, . . . , 0)T, i.e. for the tensor product of
L2(�

( j)), see for example [30]. However, the proof easily carries over to this more
general situation. �


2.2 Smolyak’s algorithm

We will describe the procedure in its most general form. To this end, we need the
following concept. We will write μ ≤ λ for two vectors μ,λ ∈ N

d if μ j ≤ λ j for
1 ≤ j ≤ d. Similarly we will use the notation μ < λ, μ ≥ λ and μ > λ. Moreover,
we will employ the specific vectors 1 = (1, . . . , 1)T ∈ N

d and 0 = (0, . . . , 0)T.

Definition 2.11 A set � ⊆ N
d is called monotone or downwards closed if λ ∈ � and

μ ∈ N
d with μ ≤ λ implies μ ∈ �.

In this paper we will consider two types of particular monotone index sets, which
have been studied frequently in the literature. The first type is the one that was used
originally by Smolyak [2] and in subsequent papers like [3, 7, 33] and is for q, d ∈ N

given by

� = �(q, d) = {i ∈ N
d : |i| ≤ q}. (4)

Obviously, this set makes only sense if q ≥ d. It then consists of
(q
d

)
elements. To

also treat functions which have a different regularity in each direction, this set was
subsequently generalised, see for example [8, 34–36], to

� = �ω(	, d) =
⎧
⎨
⎩i ∈ N

d :
d∑
j=1

(i j − 1)ω j ≤ 	 min
1≤ j≤d

ω j

⎫
⎬
⎭ , (5)

using a positive, real weight vector ω > 0 and a threshold 	 ∈ N. This is indeed a
generalisation, as we obviously have for any constant vector ω = (ω, . . . , ω)T �= 0
the relation

�ω(	, d) = �(	 + d, d). (6)

In contrast to the isotropic index set (4), it is not so easy to determine the exact
number of elements in the index set (5) due to the real weight vector ω. However,
we will need a bound on the number of elements later on, which we quote from [35,
Lemma 5.3].

Lemma 2.12 If the weight vector ω ∈ R
d+ is non-decreasingly ordered, i.e. if ω1 ≤

ω2 ≤ · · · ≤ ωd then the cardinality of the set �ω(	, d) from (5) is bounded by

#�ω(	, d) ≤
d∏
j=1

(
	ω1

jω j
+ 1

)
. (7)

123



492 R. Kempf, H. Wendland

We remark several points regarding this lemma. First, the assumption on theweights
ω to be ordered is obviously no restriction since we can always permute the directions.
Second, in the isotropic case (4) the estimate is sharp, as we have with constantω using
also (6),

#�ω(	, d) =
(

	 + d

d

)
= (	 + d)!

d! 	! = 1

d!
d∏
j=1

(	 + j) =
d∏
j=1

(
	

j
+ 1

)
.

There are several other publications with different estimates on the cardinality of
�ω(	, d), see for example [36, Lemma 2.8] or [34, Proposition 3.5]. However, they
all exhibit the same asymptotic behaviour of 	d for 	 → ∞ and the bound given in
Lemma 2.12 seems to be the sharpest upper bound yet obtained.

With all this at hand,we can nowgive a formal definition of Smolyak’s construction.
We will do this in the most general form using only arbitrary linear spaces and their
algebraic tensor products.

Definition 2.13 LetU (1), . . . ,U (d) and V (1), . . . , V (d) be linear spaces with algebraic
tensor products S = U (1) ⊗ · · · ⊗U (d) and T = V (1) ⊗ · · · ⊗ V (d). Let � ⊆ N

d be a
monotone index set. For 1 ≤ j ≤ d let L( j) := max{λ j : λ ∈ �}. Assume that there

are operators A( j)
i : U ( j) → V ( j) for 1 ≤ j ≤ d and 1 ≤ i ≤ L( j). Set A( j)

0 := 0 and
define the difference operators

�
( j)
i := A( j)

i − A( j)
i−1 : U ( j) → V ( j), 1 ≤ i ≤ L( j), 1 ≤ j ≤ d. (8)

Then, the Smolyak operator A� : S → T is defined as the tensor product operator

A� :=
∑
i∈�

�
(1)
i1

⊗ · · · ⊗ �
(d)
id

. (9)

Sometimes one also speaks of the Smolyak algorithm or Smolyak procedure.

Remark 2.14 If the spaces U ( j), V ( j), 1 ≤ j ≤ d, are normed spaces and if all the
operators A( j)

i : U ( j) → V ( j) are bounded, then the Smolyak operator can uniquely be
extended from the algebraic tensor products to the tensor products, i.e. to an operator
A� : ⊗U ( j) → ⊗

V ( j), as long as the norms on the algebraic tensor product spaces
are compatible, see Remark 2.6. In this situation, we will not distinguish between the
Smolyak operator and its extension.

Remark 2.15 In the univariate setting d = 1 any monotone index � has the form
� = {1, . . . , L}. Hence, in this situation, the Smolyak operator simply becomes

A� =
L∑

i=1

�
(1)
i = A(1)

L ,
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i.e. we simply have the given univariate operator of the highest index. For the isotropic
index set we have �(q, 1) = {i ∈ N : i ≤ q}, i.e. L = q and for the anisotropic index
set we have �ω(	, 1) = {i ∈ N : (i − 1)ω1 ≤ ω1	}, i.e. L = 	 + 1.

We now want to discuss a different representation of A�, expressing it in the A( j)
i

instead of the �
( j)
i . This is basically based on the identity, see [33],

�
(1)
i1

⊗ · · · ⊗ �
(d)
id

=
∑

β∈{0,1}d
i−β≥1

(−1)|β|A(1)
i1−β1

⊗ · · · ⊗ A(d)
id−βd

,

where we also used the fact that A(1)
i1−β1

⊗ · · · ⊗ A(d)
id−βd

= 0 whenever one of the
indices i j − β j is zero. By setting j = i − β, this leads to

A� =
∑
i∈�

∑

β∈{0,1}d
i−β≥1

(−1)|β|A(1)
i1−β1

⊗ · · · ⊗ A(d)
id−βd

=
∑

j∈�,β∈{0,1}d
j+β∈�

(−1)|β|A(1)
j1

⊗ · · · ⊗ A(d)
jd

(10)

This can be further simplified if the index sets mentioned above are used. For the
isotropic index set �(q, d), the following result can be found in [3, 7, 33].

Lemma 2.16 The operator A� of Definition 2.13 has for � = �(q, d) = {i ∈ N
d :

|i| ≤ q} the representation

A�(q,d) =
∑

i∈P(q,d)

(−1)q−|i|
(
d − 1

q − |i|
)
A(1)
i1

⊗ · · · ⊗ A(d)
id

, (11)

where P(q, d) = {i ∈ N
d : q − d + 1 ≤ |i| ≤ q}.

For the anisotropic index set of (5), i.e.� = �ω(	, d) a generalisation of the previous
result can be found in, e.g., [8].

Lemma 2.17 For � = �ω(	, d) =
{
i ∈ N

d : ∑d
j=1(i j − 1)ω j ≤ 	min1≤ j≤d ω j

}
,

the operator A� of Definition 2.13 has the representation

A�ω(	,d) =
∑

i∈Yω(	,d)

∑

β∈{0,1}d
i+β∈�ω(	,d)

(−1)|β|A(1)
i1

⊗ · · · ⊗ A(d)
id

(12)

with Yω(	, d) = �ω(	, d)\�ω(	 − ‖ω‖1/minω j , d).

These representations are also called combination techniques, see [12].
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We finally need yet another representation, which will be helpful for the error
analysis later on. We will do this only for the two types of index sets we have in mind.
The first one is for the isotropic set. We will formulate the result in a more general
form than the one in [3, 7, 33]. However, it is obvious that the proof given there holds
in this situation, as well.

Lemma 2.18 Let U (1), . . . ,U (d) and V (1), . . . , V (d) be linear spaces with algebraic
tensor products S = U (1) ⊗ · · · ⊗ U (d) and T = V (1) ⊗ · · · ⊗ V (d). Let E ( j) :
U ( j) → V ( j), 1 ≤ j ≤ d, be linear operators with tensor product E (d) = E (1) ⊗
· · ·⊗E (d) : S → T . Finally, letA�(q,d) be the Smolyak operator defined by operators

A( j)
i : U ( j) → V ( j). Then, using the notation q̃ := q − d,

E (d) − A�(q,d) =
d−1∑
k=1

∑
i∈�(q̃+k,k)

k⊗
j=1

�
( j)
i j

⊗
(
E (k+1) − A(k+1)

q̃+k+1−|i|
)

⊗
d⊗

j=k+2

E ( j)

+
(
E (1) − A(1)

q̃+1

)
⊗

d⊗
j=2

E ( j).

The corresponding version for the anisotropic index sets �ω(	, d) comes again
from [8]. Again, we formulate it slightly more general and use also Remark 2.15.
To simplify the notation, we will write for ω ∈ R

d+, 	 ∈ N and 1 ≤ k ≤ d also
�ω(	, k) = {i ∈ N

k : ∑k
j=1(i j − 1)ω j ≤ min1≤ j≤d ω j }.

Lemma 2.19 Let U (1), . . . ,U (d) and V (1), . . . , V (d) be linear spaces with algebraic
tensor products S = U (1) ⊗· · ·⊗U (d) and T = V (1) ⊗· · ·⊗V (d). Let E ( j) : U ( j) →
V ( j), 1 ≤ j ≤ d, be linear operators with tensor product E (d) = E (1) ⊗ · · · ⊗
E (d) : S → T . Finally, let A�ω(	,d) be the Smolyak operator defined by operators

A( j)
i : U ( j) → V ( j). Then,

E (d) − A�ω(	,d) =
d−1∑
k=1

∑
i∈�ω(	,k)

k⊗
j=1

�
( j)
i j

⊗
(
E (k+1) − A(k+1)

îk+1−1

)
⊗

d⊗
j=k+2

E ( j)

+
(
E (1) − A(1)

	+1

)
⊗

d⊗
j=2

E ( j),

where for i ∈ �ω(	, k) the index îk+1 is defined as

îk+1 =
⎢⎢⎢⎣2 + 	

min1≤ j≤d ω j

ωk+1
−

k∑
j=1

(i j − 1)
ω j

ωk+1

⎥⎥⎥⎦ .
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3 The kernel-basedmultilevel method

In this section, we will introduce the operators that we will employ as the operators
A( j)
i j

in the Smolyak formula. To simplify the notation, for this section, we omit the
explicit dependency on the direction j .

3.1 Kernel-based approximation

Let � ⊆ R
n be the domain of interest. We will use positive definite functions for

building approximations to functions f ∈ C(�) which are only known at discrete
points X = {x1, . . . , xN } ⊆ �. Details on this topic can be found in [23]. A function

 : Rn → R is positive definite, if all matrices of the form MX = (
(xi − x j )) are
symmetric and positive definite for all possible sets X = {x1, . . . , xN } of pairwise
distinct points. There is a close connection between positive definite functions and
reproducing kernel Hilbert spaces. These are Hilbert spaces H of functions f : � →
R, which possess a unique kernel K : �×� → Rwith K (·, x) ∈ H for all x ∈ � and
f (x) = 〈 f , K (·, x)〉H for all x ∈ � and all f ∈ H . Every positive definite function

 defines a unique Hilbert space NK (Rn) of functions, called the native space of 
,
in which K (x, y) := 
(x − y) is the translation invariant reproducing kernel.

For us the following result will be particularly important. For a proof we again refer
to [23].

Lemma 3.1 Let σ > n/2 and let 
 : R
n → R be an integrable and continuous

function having a Fourier transform satisfying

c1
(
1 + ‖ω‖22

)−σ ≤ 
̂(ω) ≤ c2
(
1 + ‖ω‖22

)−σ

, ω ∈ R
n, (13)

with two fixed constants 0 < c1 ≤ c2. Then, K : R
n × R

n defined by K (x, y) =

(x− y) is the reproducing kernel of the Sobolev space Hσ (Rn) if the latter space is
equipped with the inner product

〈 f , g〉NK (Rn) :=
∫

Rn

f̂ (ω)ĝ(ω)


̂(ω)
dω.

The induced norm is equivalent to the standard norm on Hσ (Rn).

It is even possible to choose 
 to have compact support in the closed unit ball
B1[0] = {x ∈ R

n : ‖x‖2 ≤ 1}. In this situation, we can also scale 
 as 
δ =
δ−n
(·/δ) with δ > 0. The resulting function has support in Bδ[0]. Moreover, since
scaling does not change the decay of the Fourier transform, Kδ defined by Kδ(x, y) =

δ(x − y) is also a reproducing kernel of Hσ (Rn).

We are particularly interested in two reconstruction processes based on positive def-
inite functions: interpolation and penalised least-squares. The following well-known
result makes kernel-based approximations particularly appealing. A proof of the first
part can be found in [23] and for the second part in [37].
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Lemma 3.2 Let X = {x1, . . . , xN } ⊆ R
n be given. Let 
 : Rn → R be a positive

definite function. Then, given f1, . . . , fN ∈ R, there is a unique function

s =
N∑
j=1

α j
(· − x j ) (14)

satisfying s(xi ) = fi , 1 ≤ i ≤ N. The coefficients α ∈ R
N are determined by a linear

system Mα = f with M = (
(xi − x j )).
Moreover, for every λ > 0 there is a unique function s of the form (14) solving

min
u∈NK (Rn)

N∑
j=1

|u(x j ) − f j |2 + λ‖u‖2NK (Rn),

whereNK (Rn) is the reproducing kernel Hilbert space of the kernel K induced by 
.
In this case, the coefficients can be computed via the linear system (M + λI )α = f .

When working with a compactly supported, positive definite and radial kernel,
there is an unfortunate trade-off principle, see for example [23, 27]. If the support of
the kernel is kept fixed and the number of data sites is increased then the sequence
of interpolants converges to the target function. However, the interpolation matri-
ces become denser and denser, i.e. the ratio between non-zero entries and all entries
remains constant, and the evaluation of the interpolant becomesmore andmore expen-
sive. Eventually, the advantage of the compact support is lost. If, however, the ratio
between the support radius and the “data density” is kept fixed then the interpolation
matrices remain sparse and well-conditioned, evaluation can be done in constant time
but the sequence of interpolants does not converge.

The remedy to this problem is described in the next subsection and will form the
basis of our definition of the approximation operators in the Smolyak algorithm.

3.2 Multilevel approximation

The idea of the kernel-based multilevel approximation is to combine different kernel-
based approximation spaces with a simple residual correction scheme. The latter is
rather general and we start with its definition.

Definition 3.3 Let V be a linear space. Let W1,W2, . . . ⊆ V be a sequence of linear
subspaces and let Vi = W1 + · · · + Wi for i ∈ N. The residual correction scheme
computes for a given f ∈ V a sequence of local approximations si ∈ Wi , global
approximations fi ∈ Vi and errors ei ∈ V as follows. For initialisation, f0 = 0 and
e0 = f . Then, recursively, for i = 1, 2, . . .

• Determine a local approximant si ∈ Wi to ei−1.
• Set fi = fi−1 + si .
• Set ei = ei−1 − si .
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Throughout this paper, we will assume that the local approximants are given by an
operator Ii : V → Wi . In our applications these operators will always be linear.

Lemma 3.4 If the local approximations si ∈ Wi are computed with a specific operator
Ii : V → Wi , i.e. if we have si = I(ei−1), then, for each L ∈ N, there is a multilevel
approximation operator AL : V → VL defined by

AL( f ) :=
L∑

i=1

si =
L∑

i=1

Ii (ei−1) (15)

such that fL = AL( f ).

Proof This follows immediately from the definition, as the sequences of functions
generated by the residual correction scheme satisfy the additional relations

fi = s1 + · · · + si ,

ei = f − (s1 + · · · + si ).

�

Wewill now describe howwewill use kernel-based approximation to build the approx-
imation spaces Wi for the residual correction scheme. As can be expected there are
two ingredients to this: point sets and kernels. We follow mainly [26].

Let � ⊆ R
n again be given. We assume that we have a sequence of discrete, not

necessarily nested data sets X1, X2, . . . given by Xi := {xi,1, . . . , xi,Ni }. For each
point set Xi we define two geometric quantities

hi := hXi ,� := sup
x∈�

min
xk∈Xi

‖x − xk‖2,

qi := qXi := 1

2
min
m �=k

‖xm − xk‖2.

The first quantity is called fill distance ormesh norm and is a measure of how well the
points in Xi cover the domain �, as it is the radius of the largest ball with center in �

without a point from Xi . The second quantity is called separation radius and denotes
the half of the smallest distance between two data sites. We are especially interested
in so-called quasi-uniform data sets, i.e. there exists a constant cqu > 0 such that

qi ≤ hi ≤ cquqi , i ∈ N.

Concerning the fill distances of the data sites X1, X2, . . . , we assume them to be
monotonically decreasing, i.e. we assume them to satisfy for some fixed μ ∈ (0, 1)
the relation hi+1 ≈ μhi .

Next, we define a kernel Ki : �×� → R for each level i ∈ N. In theory, we could
pick different kernels for every level i , choosing a smooth kernel for the first few levels
and then, for higher levels, switching to a rougher one. But in this paper, we will define
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the kernels on all ofRn and build them using the same function 
 : Rn → R. We will
assume that this function has the properties stated in Lemma 3.1, i.e. the associated
reproducing kernel Hilbert space NK (Rn) of the kernel K : Rn × R

n → R defined
by K (x, y) = 
(x − y) is the Sobolev space Hσ (Rn).

We will, in addition, assume that 
 is compactly supported with support given by
the closed unit ball B1[0] = {x ∈ R

n : ‖x‖2 ≤ 1}. Then, we can pick a new support
radius δi > 0 for each level and define the level-dependent kernels as

Ki (x, y) := δ−n
i 


(
x − y

δi

)
, x, y ∈ R

n . (16)

Obviously, Ki (·, y) has support in Bδi [y] for fixed y and all these kernels are repro-
ducing kernels of Hσ (Rn) but with different inner products.

Since we assume that the data sites X1, X2, . . . become denser and denser, the
support radii of 
i are chosen to mimic this behaviour, i.e. we choose them smaller
and smaller. Usually, we couple them to the fill distance via a constant ν > 0 such
that δi = νhi . This way, the number of sites in the support of Ki can be bounded
independently of the level.

Definition 3.5 Let V = C(�). The kernel-based multilevel approximation method is
given by the residual correction scheme with local approximation spaces

Wi := span {Ki (·, x) x ∈ Xi } ,

where Ki : Rn ×R
n → R is defined in (16) and the sequences {Xi }, {hi }, {δi } satisfy

the conditions outlined in the paragraphs above.

Though there is some resemblance to other multiscale methods like wavelets, there
are significant differences. For example, the local approximation spacesWi are in gen-
eral finite-dimensional for every i and built using shifts and scales of a fixed function
over scattered data rather than a regular grid.Moreover, the function
 does not satisfy
any kind of refinement equation. However, there are also recent multiscale construc-
tions, for example based on geometric harmonics, see [38], which also employ finite
dimensional spaces and scattered points, but differ significantly from our approach as
they are based on eigenfunction expansions.

Nonetheless, the interpretation of the method is similar to that of other multiscale
methods. The idea is that we start by computing an approximant from V1 = W1 to f
on X1 using a large support radius δ1. In the next step, we want to add more details and
hence compute an approximant fromW2 on X2 using a smaller support radius δ2 to the
error of the first step. The sum of these two approximants belongs to V2 = W1 + W2
and should be a better approximation than the first one. Proceeding in this way, we
have the above defined kernel-based approximation method. The method has initially
be suggested in [39] and has then further been investigated in [25, 26, 40–43].

If the local approximations si ∈ Wi are computed via si = Ii (ei−1) using a linear
operator Ii : C(�) → Wi then the kernel-based multilevel approximation scheme
allows us once again to write fL as fL = AL( f ) with global approximation operators
AL : C(�) → VL given by (15).

123



High-dimensional approximation with kernel... 499

It remains to discuss howwe choose these approximation operators Ii . In this paper,
we will deal with two types, interpolation and penalised least-squares approximation,
see Lemma 3.2.

Any operator Ii : C(�) → Wi has the form

Ii f =
Ni∑
k=1

αi,k Ki (·, xi,k), f ∈ C(�), (17)

with certain coefficients αi = (αi,1, . . . , αi,Ni )
T ∈ R

Ni . In the case of interpolation,
these coefficients are determined by a linear system Miαi = f with the symmetric,
positive definite and sparse matrix Mi = (Ki (xi, j , xi,k)) ∈ R

Ni×Ni . These matrices
have, under the conditions described above, a condition number which is independent
of the level. Moreover, evaluating Ii f can be done in O(1). Thus, the associated
multilevel operator AL can be computed in O(LNL) time and evaluated in O(L)

time, which makes this method numerically extremely appealing.
Similarly, in the case of penalised least-squares approximation, we have the local

approximation as

si := argmin
s∈NKi (R

n)

Ni∑
k=1

| f (xi,k) − s(xi,k)|2 + λi‖s‖2NKi (R
n), (18)

which is alsogivenbya linear operator si = Ii f of the form (17),where the coefficients
are determined by solving the linear system (Mi + λi I )αi = f , where Mi is again the
kernel matrix Mi = (Ki (xi, j , xi,k)), see Lemma 3.2.

The numerical complexity is comparable to the one for interpolation.
We end this section with collecting convergence results for the multilevel method.

Again, these results are proven in [26].

Proposition 3.6 Let � ⊆ R
n be a bounded domain with Lipschitz boundary. Let

X1, X2, . . . be point sets in � with mesh norms h1, h2, . . . satisfying cμhi ≤ hi+1 ≤
μhi for i = 1, 2, . . . with fixed constants μ ∈ (0, 1), c ∈ (0, 1] and h1 sufficiently
small. Let 
 be a kernel generating Hσ (Rn), i.e. its Fourier transform satisfies (13),
and let Ki : Rn × R

n → R be defined by (16). with scale factor δi = νhi . Assume
1/h1 ≥ ν ≥ γ /μ with a fixed γ > 0.

1. If the target function f belongs to Hσ (�) and if the multilevel method is build
using interpolation operators then there are constants C1,C > 0 such that

‖ f − AL( f )‖L2(�) ≤ C(C1μ
σ )L‖ f ‖Hσ (�), L = 1, 2, . . . . (19)

2. If the target function f belongs to Hβ(�) with n/2 < β < σ and if there is a
constant cq > 0 such that qi ≤ hi ≤ cqqi for i = 1, 2, . . . then there are constants
C1,C > 0 such that

‖ f − AL( f )‖L2(�) ≤ C(C1μ
β)L‖ f ‖Hβ(�), L = 1, 2, . . . . (20)
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3. If the target function f belongs to Hσ (�) and if the smoothing parameters λi
in (18) satisfy λi ≤ κ(h j/δ j )

2σ with a fixed constant κ > 0 then then there are
constants C1,C > 0 such that

‖ f − AL( f )‖L2(�) ≤ C(C1μ
σ )L‖ f ‖Hσ (�), L = 1, 2, . . . . (21)

In all three cases convergences appears if the parameterμ is chosen sufficiently small.

The first case in the theorem above corresponds to approximating functions from
Hσ (�)where the smoothness aligns to the smoothness of the kernel. In the second case
rougher target functions f ∈ Hβ(�) are approximated with a smoother kernel. Here,
an additional stability assumption on the point distributions is required. In the third
case penalised least-squares approximation for functions from Hσ (�) is discussed.
Again, the smoothness is aligned to the smoothness of the kernel. Convergence is
guaranteed if the smoothing parameters are chosen correctly. It is also possible to
show convergence for less smooth target functions but we omit the details here.

Finally, the L2-norm on the left-hand side can be replaced by other L p or Sobolev
norms. Again, we omit the details here.

3.3 Further representations

For their application within the Smolyak construction, we need a better understanding
on how the residual correction operator in general and the more specific multilevel
approximation operator depend on the target function f . This is the goal of this section
and we will start with the general residual correction procedure.

Definition 3.7 Let V be a linear space and L ∈ N. LetW1, . . . ,WL ⊆ V be subspaces.
Let Ii : V → Wi , 1 ≤ i ≤ L be given operators. For a subset u = {u1, . . . , u j } ⊆
{1, . . . , L} with j = #u elements, we will always assume that the elements are sorted
as u1 < u2 < · · · < u j . Then, we define the combined operator

Iu := Iu jIu j−1 · · · Iu1 : V → Wu j .

It is important to note that the ordering of u is crucial in the definition of Iu as the
operators Ii usually do not commute. Moreover, we stress that in the definition of Iu
we first apply the operator with the smallest index then the one with the next bigger
index and so on.

Theorem 3.8 Assume that the residual correction scheme computes local approxima-
tions via Ii : V → Wi . Then, the residual correction approximation AL : V → VL

from (15) has the representation

AL =
∑

u⊆{1,...,L}
1≤#u≤L

(−1)#u+1Iu =
L∑

i=1

(−1)i+1
∑

u⊆{1,...,L}
#u=i

Iu. (22)
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Proof Let I : V → V denote the identity. The definition of the error yields the
recursion ei = (I − Ii )ei−1, showing

eL = (I − IL)(I − IL−1) · · · (I − I1) f .

For the resulting product of operators it is easy to see by induction, that we have the
identity

(I − IL)(I − IL−1) · · · (I − I1) = I +
∑

u⊆{1,...,L}
u �=∅

(−1)#uIu.

Finally, this, together with the identity fL = f − eL yields the stated representation.
�


After this general representation, we will now derive a specific representation for
the multilevel approximation method for both cases, interpolation and penalised least-
squares approximation. Hence, we are in the situation described in Definition 3.5, i.e.
we consider operators Ii : C(�) → Wi defining the local approximation with

Wi := span {Ki (·, x) x ∈ Xi } .

We first look at interpolation. A change of basis allows us to write the operators Ii also
in explicit form. For each i and 1 ≤ k ≤ Ni let χi,k ∈ Wi be the cardinal or Lagrange
function satisfying χi,k(xi,	) = δk,	, 1 ≤ k, 	 ≤ Ni , where δk,	 is the Kronecker
symbol. Then, obviously, we have

Ii f =
Ni∑
k=1

f (xi,k)χi,k . (23)

Inserting this formula into the representation (22) yields the following result.

Theorem 3.9 Let Ii : C(�) → Wi be interpolation operators of the form (23). Let
u = {u1, . . . , u#u} be an ordered set. Then, using the notation k = (k1, . . . , k#u)T ∈
N
#u and Nu = (Nu1 , . . . , Nu#u)

T ∈ N
#u, the combined operator Iu : C(�) → W#u

has the representation

Iu f =
∑
k≤Nu

a(u,k) f (xu1,k1)χu#u,k#u ,

where the coefficients are given by a(u,k) = 1 if #u = 1 and

a(u,k) =
#u−1∏
	=1

χu	,k	
(xu	+1,k	+1)

for #u > 1.
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Moreover, the multilevel interpolation operator AL : C(�) → VL has the repre-
sentation

AL( f ) =
∑

u⊆{1,...,L}
1≤#u≤L

(−1)#u+1
∑
k≤Nu

a(u,k) f (xu1,k1)χu#u,k#u . (24)

Proof For u = {u1, . . . , ui } we have

Iu f = Iui · · · Iu1 f

= Iui · · · Iu2
Nu1∑
k1=1

f (xu1,k1)χu1,k1

= Iui · · · Iu3
Nu2∑
k2=1

Nu1∑
k1=1

χu1,k1(xu2,k2) f (xu1,k1)χu2,k2

= · · ·

=
Nui∑
ki=1

· · ·
Nu1∑
k1=1

χui−1,ki−1(xui ,ki ) · · · χu1,k1(xu2,k2) f (xu1,k1)χui ,ki

=
∑
k≤Nu

[
i−1∏
	=1

χu	,k	
(xu	+1,k	+1)

]
f (xu1,k1)χui ,ki .

Inserting this into (22) gives the representation for the multilevel approximation. �

Next, we are dealing with penalised least-squares approximation, see also Lemma 3.2.
To find a representation for the multilevel approximation operator like the one in
Theorem 3.9, we have to replace the cardinal or Lagrange functions χi,k appropriately.
To this end, we note that, in the case of interpolation, the coefficient vector of the
interpolant (17) is given by αi = M−1

i f with the kernel matrix Mi = (Ki (xi, j , xi,k)).
Hence, the interpolant can also be written as

si (x) = ri (x)Tαi = ri (x)TM
−1
i f,

where ri (x) = (Ki (x, xi,1), . . . , Ki (x, xi,Ni ))
T ∈ R

Ni . Thus, we can conclude that
the cardinal or Lagrange function can alternatively be written as

χi,k(x) = ri (x)TM
−1
i ek, 1 ≤ k ≤ Ni ,

where ek ∈ R
Ni is the k-the unit vector. This idea now carries over to the penalised

least-squares setting. As in this case the coefficient vector in (17) is the solution of
(Mi + λi I )αi = f , we can now write the approximant as

si (x) = ri (x)T(Mi + λi I )
−1f =

Ni∑
k=1

f (xi,k)χ̃i,k(x),
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with the modified cardinal functions

χ̃i,k(x) = ri (x)T(Mi + λi I )
−1ek, 1 ≤ k ≤ Ni . (25)

This gives together with the representation (22) the following result.

Corollary 3.10 In the case of penalised least-squares operators Ii : C(�) → Wi , the
multilevel interpolation operator AL : C(�) → VL has the representation (24) if the
cardinal functions χi,k are replaced by the functions χ̃i,k from (25).

4 The tensor product multilevel method

In this section, we will combine the kernel multilevel method of the previous section
with Smolyak’s formula. First, wewill describe the resulting tensor-product multilevel
method in more detail. In the second subsection we will then study the convergence
of this method.

4.1 Themethod and its representations

The main idea of the method is to use the multilevel method of Sect. 3 in Smolyak’s
construction (9). We will discuss various representations of the resulting operator. We
will start this by first looking at the residual correction scheme with general monotone
index sets � and then become more and more specific by looking at the isotropic
and anisotropic index sets �(q, d) and �ω(	, d) from (4) and (5), respectively. After
that, we prove representations if the kernel-based multilevel method is employed with
interpolation and penalised least-squares approximation.

In the most general case, we assume that the operators A( j)
i : U ( j) → V ( j) for

1 ≤ j ≤ d and 1 ≤ i ≤ L( j) between linear spaces U ( j) and V ( j) are now given by
our multilevel approximation operators from Lemma 3.4, i.e. by

A( j)
i ( f ( j)) :=

i∑
k=1

I( j)
k

(
e( j)
k−1

)
, f ( j) ∈ U ( j). (26)

In its original form, the Smolyak construction

A� :=
∑
i∈�

�
(1)
i1

⊗ · · · ⊗ �
(d)
id

(27)

heavily relies on the difference operators (8) rather than the approximation operators.
In our setting, the difference operators simplify to the local approximation operators,
i.e.

�
( j)
i

(
f ( j)

)
= A( j)

i

(
f ( j)

)
− A( j)

i−1

(
f ( j)

)
= I( j)

i

(
e( j)i−1

)
, 1 ≤ i ≤ L( j). (28)
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This is particularly helpful when approximating elements from an algebraic tensor
product space, as in this case all computations can be done independently for each
direction.

Proposition 4.1 Let U (1), . . . ,U (d) and V (1), . . . , V (d) be linear spaces with alge-
braic tensor products S = U (1) ⊗· · ·⊗U (d) and T = V (1) ⊗· · ·⊗V (d). Let � ⊆ N

d

be a monotone index set. For 1 ≤ j ≤ d let L( j) := max{λ j : λ ∈ �}. Assume that
the operators A( j)

i : U ( j) → V ( j), 1 ≤ i ≤ L( j), are given by the residual correction
operators in (26). Assume finally, f ∈ S has the form

f =
n∑

k=1

f (1)
k ⊗ · · · ⊗ f (d)

k , f ( j)
i ∈ U ( j).

For 1 ≤ j ≤ d let e( j)
i,k , 0 ≤ i ≤ L( j), 1 ≤ k ≤ n, be the errors defined in

the standard residual correction scheme applied to f ( j)
k . Then, the tensor product

multilevel operator applied to f is given by

A�( f ) =
n∑

k=1

∑
i∈�

I(i)
i1

(e( j)
i1−1,k) ⊗ · · · ⊗ I(d)

id
(e(d)

id−1,k).

However, if theU ( j) are normed spaces andwewant to extend the Smolyak operator
to the tensor product space

⊗
U ( j), we need the combination technique, to find a rep-

resentation of the tensor product multilevel method. To this end, we need to express the
dependence on the multilevel operator on f explicitly. This now follows immediately
if we employ the representation from Theorem 3.8 in each direction 1 ≤ j ≤ d.

Proposition 4.2 Let U (1), . . . ,U (d) and V (1), . . . , V (d) be linear spaces with alge-
braic tensor products S = U (1) ⊗· · ·⊗U (d) and T = V (1) ⊗· · ·⊗V (d). Let � ⊆ N

d

be a monotone index set. For 1 ≤ j ≤ d let L( j) := max{λ j : λ ∈ �}. Assume that
the operators A( j)

i : U ( j) → V ( j), 1 ≤ i ≤ L( j), are given by the residual correction
operators in (26). Then, the Smolyak operator (27) has for a general index set �, the
isotropic index set �(q, d) and the anisotropic index set �ω(	, d) the representations

A� =
∑

i∈�,β∈{0,1}d
i+β∈�

∑

u(1)⊆{1,...,i1}
1≤#u(1)≤i1

· · ·
∑

u(d)⊆{1,...,id }
1≤#u(d)≤id

cβ(u(1), . . . , u(d))I(1)
u(1) ⊗ · · · ⊗ I(d)

u(d) ,

A�(q,d) =
∑

i∈P(q,d)

∑

u(1)⊆{1,...,i1}
1≤#u(1)≤i1

· · ·
∑

u(d)⊆{1,...,id }
1≤#u(d)≤id

bi(u
(1), . . . , u(d))I(1)

u(1) ⊗ · · · ⊗ I(d)

u(d) ,

A�ω(	,d) =
∑

i∈Yω(	,d),β∈{0,1}d
i+β∈�ω(	,d)

∑

u(1)⊆{1,...,i1}
1≤#u(1)≤i1

· · ·
∑

u(d)⊆{1,...,id }
1≤#u(d)≤id

cβ(u(1), . . . , u(d))I(1)
u(1) ⊗ · · · ⊗ I(d)

u(d) ,
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respectively, where P(q, d) = {i ∈ N
d : q − d + 1 ≤ |i| ≤ q}, Yω(	, d) =

�ω(	, d)\�ω(	 − ‖ω‖1/minω j , d) and

cβ(u(1), . . . , u(d)) = (−1)|β|+d+#u(1)+···+#u(d)

,

bi(u
(1), . . . , u(d)) = (−1)q+d−|i|+#u(1)+...+#u(d)

(
d − 1

q − |i|
)

.

Proof Using (22) for each direction shows

A(1)
i1

⊗ · · · ⊗ A(d)
id

=
∑

u(1)⊆{1,...,i1}
1≤#u(1)≤i1

· · ·
∑

u(d)⊆{1,...,id }
1≤#u(d)≤id

(−1)#u1+···#ud+dI(1)
u(1) ⊗ · · · ⊗ I(d)

u(d) .

Inserting this into (10) yields the first stated representation for a general index set �.
If we insert this formula into (11), this gives the second representation for the index
set �(q, d) and inserting it into (12) yields the final representation for the anisotropic
set �ω(	, d). �


After these general results for the residual correction scheme, we now turn to
the kernel-based multilevel approximation method. Here, we can further specify the
approximation operators.

Consequently, we fix for each direction 1 ≤ j ≤ d a sequence of data sites

X ( j)
i = {x( j)

i,1 , . . . , x
( j)

i,N ( j)
i

} ⊆ �( j) ⊆ R
n j , 1 ≤ i ≤ L( j),

where L( j) = max{λ j : λ ∈ �}. The corresponding mesh norms h( j)
i and the

employed support radii δ( j)
i are coupled, as explained above by

h( j)
i+1 = μ( j)h( j)

i , 1 ≤ i ≤ L( j) − 1, 1 ≤ j ≤ d,

δ
( j)
i = ν( j)h( j)

i , 1 ≤ i ≤ L( j), 1 ≤ j ≤ d,

with fixed parameters μ( j) ∈ (0, 1) and ν( j) > 1.
Next, for each direction, we choose a smoothness parameter σ j > n j/2 and a

function 
( j) : Rn j → R satisfying (13) with σ = σ j . The kernels K ( j)
i : Rn j ×

R
n j → R defined by K ( j)

i (x( j), y( j)) = δ
−n j
i 
( j)((x( j)−y( j))/δi ) yield the direction-

dependent approximation spaces

W ( j)
i = span

{
K ( j)
i (·, x( j)) : x( j) ∈ X ( j)

i

}
, V ( j)

i = W ( j)
1 + · · · + W ( j)

i .

Finally, for each 1 ≤ j ≤ d we have the local approximation operators

I( j)
i f ( j) =

N ( j)
i∑

k=1

α
( j)
i,k K

( j)
i (·, x( j)

i,k ), f ( j) ∈ C(�( j)),
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where the coefficients α
( j)
i ∈ R

N ( j)
i are either determined by interpolation or penalised

least-squares, though other methods are obviously possible as well. This finally yields
the also direction-dependent multilevel approximation operators A( j)

i : C(�( j)) →
V ( j)
i defined by

A( j)
i ( f ( j)) =

i∑
k=1

I( j)
k (e( j)

k−1), f ( j) ∈ C(�( j)),

where e( j)
k are the error functions defined in the multilevel process, depending now

also on the direction 1 ≤ j ≤ d.
For interpolation, we can rewrite the interpolation operator as

I( j)
i f ( j) =

N ( j)
i∑

k=1

f ( j)(x( j)
i,k )χ

( j)
i,k ,

using now also direction-dependent Lagrange functions χ
( j)
i,k ∈ W ( j)

i . For penalised

least-squares approximation, we have the same representation after replacing χ
( j)
i,k

with the modified functions χ̃
( j)
i,k ∈ W ( j)

i . Hence, we will mainly concentrate on the
interpolation case. To derive the representation of the Smolyak operator in this situation
we can employ Proposition 4.2. Hence, we only need to derive representations for the
combined operators I(1)

u(1) ⊗ · · · ⊗ I(d)

u(d) appearing in that proposition as functions of
the target function. This representation, however, follows with Theorem 3.9. We have

Iu( j) f ( j) =
∑

k( j)≤N
u( j)

a( j)
(
u( j),k( j)

)
f ( j)

(
x( j)

u( j)
1 ,k( j)

1

)
χ

( j)

u( j)

#u( j) ,k
( j)

#u( j)

.

This then gives the following result, which, together with Proposition 4.2 yields the
combination technique for the multilevel approximation operator.

Proposition 4.3 Let �( j) ⊆ R
n j , 1 ≤ j ≤ d, and � = �(1) × · · · × �(d). Let

I( j)
i : C(�( j)) → V ( j)

i be the interpolation operators previously defined. Then, for
any f ∈ C(�), and sets u(1), . . . , u(d), the combined operator has the form

I(1)
u(1) ⊗ · · · ⊗ I(d)

u(d) ( f )

=
∑

k(1)≤N
u(1)

· · ·
∑

k(d)≤N
u(d)

d∏
j=1

a( j)(u( j),k( j)) f

(
x(1)

u(1)
1 ,k(1)

1

, . . . , x(d)

u(d)
1 ,k(d)

1

)
·

·χ
u(1)
#u(1) ,k

(1)
#u(1)

⊗ · · · ⊗ χ
u(d)

#u(d)
,k(d)

#u(d)

.
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4.2 Convergence results

Wewill now analyse the error of our tensor product multilevel approximation method.
We will do this first for the isotropic case, i.e. for index sets of the form � = �(q, d)

and then for the anisotropic case, i.e. for index sets � = �ω(	, d).
For both cases it is helpful to summarise the general set-up, though wewill simplify

it significantly for the isotropic case.
As outlined above, we consider function spaces over domains �( j) ⊆ R

n j . To be
more precise, we will use U ( j) = Hβ j

(
�( j)

)
with β j > n j/2 and V ( j) = L2(�

( j)).
Then, with � = �(1) × · · · × �( j), the associated tensor product spaces are,

d⊗
j=1

Hβ j (�( j)) = Hβ
mix(�),

d⊗
j=1

L2(�
( j)) = L2(�).

This follows for the L2 case and for the case that β ∈ N
d
0 from Lemma 2.10. For

general β ∈ R
d+ this can be derived in the same way if the standard Sobolev spaces

Hβ j (�( j)) are defined, for example, by interpolation.
Note that the condition β j > n j/2 ensuresU ( j) ⊆ C(�( j)) by the Sobolev embed-

ding theorem such that all our operators are well defined.
Next, we need bounds on all involved operators.

Lemma 4.4 Assume that the local approximations A( j)
i : U ( j) → V ( j) satisfy the

conditions of Proposition 3.6. For a uniform notation we will simply set β j = σ j for
the first and third case of Proposition 3.6.

Let E ( j) : U ( j) → V ( j) be the embedding operator. Then, for 1 ≤ j ≤ d, the
following bounds on the norm hold

‖E ( j)‖
Hβ j (�( j))→L2(�( j))

= 1,

‖E ( j) − A( j)
i ‖Hβ j (�( j))→L2(�( j))

≤ C ( j)
[
C ( j)
1 (μ( j))β j

]i =: C ( j)εij , 0 ≤ i ≤ L( j),

‖�( j)
i ‖

Hβ j (�( j))→L2(�( j))
≤ C ( j)

[
εij + εi−1

j

]
= C ( j)

(
1 + 1

ε j

)
εij

≤ 2C ( j)εi−1
j , 1 ≤ i ≤ L( j).

Proof The bound on the embedding E ( j) : Hβ j
(
�( j)

) → L2
(
�( j)

)
is obviously

true. The second bound follows directly from Proposition 3.6. The final bound follows
because of

�
( j)
i = A( j)

i − A( j)
i−1 = A( j)

i − E ( j) + E ( j) − A( j)
i−1

immediately from the second one. �

4.2.1 The isotropic case

in the isotropic case we use the index set � = �(q, d) = {i ∈ N
d : |i| ≤ q}.

As the index set does not distinguish between the directions, it is reasonable and
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custom to assume this also for everything else. Hence, in this situation, we have
�( j) = �(1) ⊆ R

n and β j = β for 1 ≤ j ≤ d. Thus, we have U ( j) = Hβ(�(1)) and
V ( j) = L2(�

(1)).
In the multilevel method we also choose the point sets also direction-independent,

i.e. X ( j)
i = Xi = {xi,1, . . . , xi,Ni } ⊆ �(1). This means that the fill distances h( j)

i =
hi are independent of j and hence we choose the support radii δ

( j)
i = δi and the

parameters μ( j) = μ and ν( j) = ν also direction-independent.
In this simplified situation Lemma 4.4 simplifies as follows.

Lemma 4.5 In the isotropic case, for 1 ≤ j ≤ d, the following bounds on the norm
hold

‖E (1)‖Hβ(�(1))→L2(�(1)) = 1,

‖E (1) − Ai‖Hβ(�(1))→L2(�(1)) ≤ C
[
C1μ

β
j

]i =: Cεi , 0 ≤ i ≤ L

‖�i‖Hβ(�(1))→L2(�(1)) ≤ C

(
1 + 1

ε

)
εi , 1 ≤ i ≤ L .

Using the fact that all involved norms are reasonable and compatible crossnorms,
it is now possible to derive a bound on the error of the tensor product multilevel
approximation, i.e. on E (d) − A�(q,d) using Lemma 2.18. However, this has already
been in done in a general context in [33, Lemma 2] which is as follows.

Lemma 4.6 In the situation of Lemma 2.18, assume that there are constants B, c, c̃
and D such that the bounds

‖E (1)‖Ui→Vi ≤ B

‖E (1) − Ai‖Ui→Vi ≤ cDi , i ≥ 0,

‖�i‖U1→Vi ≤ c̃Di , i ≥ 1,

hold. Then, the error for the Smolyak operator can be bounded by

‖E (d) − A�(q,d)‖S→T ≤ cBd−1Dq−d+1
d−1∑
j=0

(
c̃D

B

) j (1 − d + j

j

)

≤ cHd−1
(

q

d − 1

)
Dq ,

with H = max{B/D, c̃}.
Combining Lemmas 4.5 and 4.6 gives our first main error estimate.

Theorem 4.7 Let �(1) ⊆ R
n be a bounded domain with Lipschitz boundary and

let σ ≥ β > n/2. Let � = �(1) × · · · × �(1). Assume that the low-dimensional
reconstructions Ai : C(�(1)) → Vi are given by the multilevel RBF interpolants
(15). Assume further that these multilevel RBF interpolants are built using compactly
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supported reproducing kernels of Hσ (Rn) and support radii and data sets as outlined
in Proposition 3.6. Finally, assume that the parameter μ ∈ (0, 1) is chosen in such a
way that ε := C1μ

β < 1. Then, the error E (d) − A�(q,d) : Hβ
mix(�) → L2(�) can

be bounded by

‖E (d) − A�(q,d)‖Hβ
mix(�)→L2(�)

≤ 2d−1Cd
(

q

d − 1

)
εq−d+1, (29)

where C is the constant from Lemma 4.5.

Proof From Lemma 4.5 we know that the constants in Lemma 4.6 are given by B = 1,
c = C , c̃ = C(1 + 1/ε) and D = ε. This leads for C ≥ 1 to

H = max{B/D, C̃} = max

{
1/ε,C(1 + 1

ε
)

}
= C

(
1 + 1

ε

)
≤ 2C/ε.

Hence, Lemma 4.6 yields

‖E (d) − A�(q,d)‖Hβ
mix(�)→L2(�)

≤ CHd−1Dq
(

q

d − 1

)
= 2d−1Cdεq−d+1

(
q

d − 1

)
,

which is the stated estimate. �

As we assume q ≥ d, estimate (29) shows also convergence for ε → 0. However,
this is not desirable as we have ε = C1μ

β , where μ is the refinement factor of the
mesh norms of the involved grids, i.e. it is a fixed number in (0, 1) and hence so is ε.
A smaller and smaller μ would lead to a too expensive refinement of the data sets.

The involved constant, unfortunately but also expectedly, depends exponentially

on the space dimension d. Using the bound
( q
d−1

) ≤ qd−1

(d−1)! , the error bound becomes

‖E (d) − A�(q,d)‖Hβ
mix(�)→L2(�)

≤ cdq
d−1εq−d+1, (30)

with cd = 2d−1Cd

(d−1)! , which converges for q → ∞.

4.2.2 The anisotropic case

We will now discuss the more general case of the anisotropic index �ω(	, d) from
(5). The purpose here is to analyse the approximate reconstructions of functions f ∈
Hβ
mix(�) with a possibly different smoothness β j in each direction 1 ≤ j ≤ d.

This, of course, is reflected by choosing direction-dependent functions 
( j) leading
to reproducing kernels of Hσ j (�( j)) as outlined at the beginning of this section.

In the rest of this subsection, we will, without restriction, assume that the elements
of the weight vector ω are ordered as ω1 ≤ ω2 ≤ · · · ≤ ωd such that we in particular
have min j ω j = ω1.
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Though the representation in Lemma 2.19was used in [8] to derive an error analysis
for univariate operators A( j)

i given by polynomial interpolation in Chebyshev points,
a general bound like the one in Lemma 4.6 has not been provided. Hence, we will use
Lemma 2.19 directly. Accordingly, we have the error representation

E (d) − A�ω(	,d) =
d−1∑
k=1

⎛
⎝R(	, k) ⊗

d⊗
j=k+2

E ( j)

⎞
⎠+

(
E (1) − A(1)

	+1

)
⊗

d⊗
j=2

E ( j)

(31)

with

R(	, k) :=
∑

i∈�ω(	,k)

k⊗
j=1

�
( j)
i j

⊗
(
E (k+1) − A(k+1)

îk+1−1

)

and, for i ∈ �ω(	, k),

îk+1 =
⎢⎢⎢⎣2 + 	

ω1

ωk+1
−

k∑
j=1

(i j − 1)
ω j

ωk+1

⎥⎥⎥⎦ .

We will now use this representation to bound the error in the situation that the low-
dimensional interpolation operators are given by themultilevel RBF interpolant. Using
the fact that all involved norms are reasonable and compatible crossnorms we can
use the estimates from Lemma 4.4, to bound the single terms in (31). To simplify the
notation,wewill fromnowon suppress the index at the occuring norms. Essentially,we
are only dealing with operator norms ‖·‖

Hβ j (�( j))→L2(�( j))
or ‖·‖

Hβ
mix(�)→L2(�)

and it

should be clear from the context, which norm is meant. DefiningC := max1≤ j≤d C ( j)

we have

∥∥∥∥∥∥
(
E (1) − A(1)

	+1

)
⊗

d⊗
j=2

E ( j)

∥∥∥∥∥∥
= ‖E (1) − A(1)

	+1‖ ≤ Cε	+1
1

and for 1 ≤ k ≤ d − 1 also

∥∥∥∥∥∥
R(	, k) ⊗

d⊗
j=k+2

E ( j)

∥∥∥∥∥∥
= ‖R(	, k)‖ ≤

∑
i∈�ω(	,k)

k∏
j=1

‖�( j)
i j

‖‖E (k+1) − A(k+1)
îk+1−1

‖

≤
∑

i∈�ω(	,k)

k∏
j=1

[
2Cε

i j−1
j

]
Cε

îk+1−1
k+1 = 2kCk+1

∑
i∈�ω(	,k)

ε
îk+1−1
k+1

k∏
j=1

ε
i j−1
j .
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This gives the first bound

‖E (d) − A�ω(	,d)‖ ≤
d−1∑
k=1

∥∥∥∥∥∥
R(	, k) ⊗

d⊗
j=k+2

E ( j)

∥∥∥∥∥∥
+
∥∥∥∥∥∥
(
E (1) − A(1)

	+1

)
⊗

d⊗
j=2

E ( j)

∥∥∥∥∥∥

≤ Cε	+1
1 +

d−1∑
k=1

⎡
⎣2kCk+1

∑
i∈�ω(	,k)

ε
îk+1−1
k+1

k∏
j=1

ε
i j−1
j

⎤
⎦ . (32)

To understand this estimate, we need to look at the coefficient îk+1 − 1 and, as εk+1 ∈
(0, 1), we need a lower bound. This can, for example, be reached by noticing that
ω1 ≤ ωk for all 2 ≤ k ≤ d and hence

îk+1 − 1 =
⎢⎢⎢⎣2 + 	

ω1

ωk+1
−

k∑
j=1

(i j − 1)
ω j

ωk+1

⎥⎥⎥⎦− 1

≥
⌊
	

ω1

ωk+1

⌋
+ 1 −

k∑
j=1

(i j − 1).

With this, (32) becomes

‖E(d) − A�ω(	,d)‖ ≤ Cε	+1
1 +

d−1∑
k=1

⎡
⎣2kCk+1

∑
i∈�ω(	,k)

ε

⌊
	

ω1
ωk+1

⌋
+1−∑k

j=1(i j−1)

k+1

k∏
j=1

ε
i j−1
j

⎤
⎦

= Cε	+1
1 +

d−1∑
k=1

⎡
⎣2kCk+1

∑
i∈�ω(	,k)

ε

⌊
	

ω1
ωk+1

⌋
+1

k+1

k∏
j=1

(
ε j

εk+1

)i j−1
⎤
⎦ .

To simplify this further we will make the assumption that we choose the local
refinement factors μ( j) in such a way that ε j = ε for all 1 ≤ j ≤ d. Such a choice
seems natural as it reflects also the different smoothness β j in each direction. The
larger β j is, the larger we can also choose μ( j) ∈ (0, 1). Under the assumption
ω1 ≤ ω2 ≤ · · · ≤ ωd we can use (7) to bound the number of indices in �ω(	, k) as

#�ω(	, k) ≤
k∏
j=1

(
	ω1

jω j
+ 1

)
≤

k∏
j=1

(
	

j
+ 1

)
=
(

	 + k

	

)
≤ (	 + k)k

k! .

With this, our error bound becomes

‖E (d) − A�ω(	,d)‖ ≤ Cε	+1 +
d−1∑
k=1

2kCk+1ε

⌊
	

ω1
ωk+1

⌋
+1

#�ω(	, k)

≤ Cε	+1 + ε

⌊
	

ω1
ωd

⌋
+1

d−1∑
k=1

2kCk+1 (	 + k)k

k! ,
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where we also have used ωk+1 ≤ ωd and hence ω1/ωk+1 ≥ ω1/ωd . The final sum
can further be bounded by

d−1∑
k=1

2kCk+1 (	 + k)k

k! ≤ (	 + d − 1)d−1
d−1∑
k=1

2kCk+1

k! ≤ C(	 + d − 1)d−1e2C ,

Taking this all together yields the following error bound.

Theorem 4.8 For 1 ≤ j ≤ d let �( j) ⊆ R
n j be bounded domains with Lipschitz

boundary and let σ j ≥ β j > n j/2. Set � = �(1) × · · · × �(d). Let ω1 ≤ · · · ≤ ωd .

Assume that the low-dimensional reconstructions A( j)
i : C(�( j)) → V ( j)

i are given
by the multilevel RBF interpolants (15). Assume further that these multilevel RBF
interpolants are built using compactly supported reproducing kernels of Hσ j (Rn j ) and
support radii δ

( j)
i and data sets X ( j)

i as outlined in Proposition 3.6. Finally, assume

that the factors μ( j) are chosen so that all ε j := C ( j)
1 [μ( j)]β j satisfy ε j = ε ∈ (0, 1).

Then, the interpolation error E (d)−A�ω(	,d) : Hβ
mix(�) → L2(�) satisfies the bound

‖E (d) − A�ω(	,d)‖Hβ
mix(�)→L2(�)

≤ c(	 + d − 1)d−1ε

⌊
	

ω1
ωd

⌋
+1

(33)

with c := C
(
1 + e2C

)
.

For 	 → ∞, the asymptotic behaviour of the error bound is given by

‖E (d) − A�ω(	,d)‖Hβ
mix(�)→L2(�)

≤ cd	
d−1ε

�	 ω1
ωd

�+1

with cd from (30). Hence, we have again exponential convergence for 	 → ∞.
Moreover, in the case of a constant weight vector ω = (ω, . . . , ω)T �= 0 we have
�ω(	, d) = �(q, d) with q = 	 + d. In this case, the error bound (33) becomes

‖E (d) − A�ω(	,d)‖Hβ
mix(�)→L2(�)

≤ c(q − 1)d−1εq−d+1,

which recovers exactly the same behaviour that we have seen in (30).
A closer look at the proof above shows that we can rewrite one of the intermediate

steps of the error as follows

‖E (d) − A�(	,d)‖ ≤
d∑

k=1

2k−1Ck
∑

i∈�ω(	,k)

εL
(k)

k

k∏
j=1

(
ε j

εk

)i j−1

,

using L(k) = max{λk : λ ∈ �ω(	, d)} = �	ω1
ωk

� + 1. Obviously, from our assumption
ω1 ≤ ω2 ≤ · · · ≤ ωd it follows that the maximum number of levels in each direction
is decreasing, i.e. L(1) ≥ L(2) ≥ · · · ≥ L(d).

Unfortunately, in the above formula we have two competing terms. We want each
εL

(k)

k to become small. If we want to balance them, it seems natural to assume that
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ε1 ≥ ε2 ≥ · · · ≥ εk , i.e. we can choose a larger ε j for smaller indices as the corre-
sponding exponents L( j) are also larger. However, this collides with the other term∏k

j=1(ε j/εk)
i j−1 as these products then become larger than one. We have resolved

this issue by assuming that all ε j are equal. This allowed us to neglect the damaging
products but leads to the bound

‖E (d) − A�(	,d)‖ ≤
d∑

k=1

2k−1Ck
(

	 + k − 1

	

)
εL

(k)
,

which is dominated by the worst term εL
(d)
.

Remark 4.9 So far, we have not coupled the smoothness β of the target function with
the weight vector ω of the index set. However, our arguments above suggest that we
should choose ω = β. This leads to all the desired properties. Because of L(1) ≥
L(2) ≥ · · · ≥ L(d) we use more levels in the direction of the least smoothness, as
expected. Because of ε j = C ( j)[μ( j)]β j = ε we also have μ(1) ≤ μ(2) ≤ · · · ≤ μ(d).

As the number of points N ( j)
i is proportional to [μ( j)]−i/n j , this means that we also

have more points in those directions of lower smoothness. The error can then be
expressed using the smoothness of the target function via

‖E (d) − A�β (	,d)‖Hβ
mix(�)→L2(�)

≤ cd	
d−1ε

�	 β1
βd

�+1
.

5 Numerical tests

We will now provide numerical examples to demonstrate that the new tensor product
multilevel method works as theoretically predicted and to validate the error bounds
we derived in the previous section.

The details of the algorithmic realisation of themethod aremostly already described
in Sect. 4. However, we recall the important parts here. Once we fixed the index set
�ω(	, d), where the weight vector ω ∈ R

d+ and threshold 	 ∈ N serve as input

parameters for the algorithm, we determine the low-dimensional point sets X ( j)
i with

refinement parameter μ or μ( j) such that the conditions of Theorems 4.7 and 4.8,
respectively, are satisfied.After choosing a reproducingkernel K ( j) for every direction,
we compute the Lagrange functionsχ

( j)
i,k for every level 1 ≤ i ≤ L( j) and every anchor

xk ∈ X ( j)
i , 1 ≤ k ≤ N ( j)

i . All this can be done in an offline phase as soon as the input
parameters are determined. The interpolants then are computed following the formulas
of Propositions 4.2 and 4.3.

We test two different settings: First, an isotropic, high-dimensional example and
second a fully anisotropic one. In any case we use the compactly supported Wendland
kernels

φ1,1(r) = (1 − r)3+(3r + 1),
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Fig. 1 Error plot for the isotropic case: 	∞([0, 1]7)-error evaluated on 50 randomly drawn points. The
dashed lines are the theoretical error bounds (	 + 6)6ε	+1 with ε = C1μ

β−0.5

φ1,2(r) = (1 − r)5+(8r2 + 5r + 1),

φ1,3(r) = (1 − r)7+(21r3 + 19r2 + 7r + 1),

which are the reproducing kernels of H2(R), H3(R) and H4(R), respectively.

5.1 Seven-dimensional isotropic example

For the isotropic example we follow the ideas of [3] and use the oscillatory function
f : [0, 1]7 → R with the choice w1 = 1, i.e.,

f (x) = cos

⎛
⎝

7∑
j=1

c j x
( j)

⎞
⎠ ,

as the target function. The components of the difficulty parameter c are chosen
randomly in [0, 1] and then renormalised such that

∑7
j=1 c j = 9.0. Obviously,

f ∈ C∞([0, 1]7) and thus f ∈ Hβ
mix((0, 1)

7) for every β ∈ R
7 with β j > 1/2,

1 ≤ j ≤ 7.
As direction-wise point sets X ( j)

i ⊆ [0, 1] we use uniformly distributed points

with #X ( j)
i = 2i+2, i.e. we use a uniform refinement parameter μ = μ( j) = 0.5.

The overlap parameter, which dictates how the support radius δi is coupled to the fill
distance hi , is chosen as ν = ν( j) = 8.0.

In Fig. 1 we show an 	∞-error plot for the interpolation with the first two kernels
given above. We follow again [3] and compute the error for both examples on the
same 50 randomly drawn points. Though our theory is based on L2-estimates, it can
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easily be modified for L∞. Additionally, we give the theoretical bound (	 + 6)6ε	+1

as the dashed lines. We use ε = (C1μ)2−0.5, for the case φ1,1 and ε = (C1μ)3−0.5

if we use φ1,2. In both cases we use C1 = 1. As expected, approximating with a
smoother kernel leads to smaller errors and a faster convergence. We see that in the
case of the less smooth kernelφ1,1 themethod converges faster than the theory predicts.
Approximating with φ1,2 yields a convergence order similar to the one predicted by
the theory.

5.2 Two-dimensional anisotropic example

Looking at (33) in Theorem 4.8, we see that the convergence order depends only on
the weights of the first and last direction, ω1 and ωd , respectively. Hence, it suffices
to test a two-dimensional problem.

This time, we follow the ideas of [44] and use the function fα : [−1, 1]2 → R

defined by

fα(x) :=
2∏
j=1

f ( j)(x j ) =
2∏
j=1

|x j |α j

with α = (1.6, 3.6)T. We see that f (1) ∈ H2((−1, 1)) but not in H3((−1, 1)) and
f (2) ∈ H4((−1, 1)) but f (2) /∈ H5((−1, 1)). This means that fα is an element of
Hβ
mix(�) = H (2,4)

mix (�), but not in any Sobolev space of mixed, higher-order regularity.
Furthermore,wenowuse in thefirst direction the kernelφ1,1 and in the seconddirection
φ1,3. This way, the f ( j) are elements of the native spaces of the respective kernels.

As point sets X ( j)
i ⊆ [−1, 1] we use again uniformly distributed points such that,

for numerical reasons, #X ( j)
i =

⌈
1

μ( j)

⌉2+i
. We fix the refinement parameter in the

first direction to be μ(1) = 0.4 and compute μ(2) according to the assumption in
Theorem 4.8, i.e. such that

ε(1) =
(
C (1)
1 μ(1)

)β1 =
(
C (2)
1 μ(2)

)β2 = ε(2).

Assuming that C (1)
1 = C (2)

1 , this means

μ(2) =
(
μ(1)

) β1
β2 = 0.4

1
2 .

This leads to cardinalities #X (1)
i = 22+i and #X (2)

i = 32+i . Additionally, we set
the overlap parameter ν( j) to 8.0 for every direction j . This results in direction-
independent condition numbers of the kernel matrices.

To determine the anisotropy, characterised by the quotient of the components of
the weight vector ω ∈ R

d+, we couple ω j to β j , the smoothness of fα in direction j ,
and normalise it with respect to ω1. This leads to the weight vector ω = (1, 2)T.
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Fig. 2 Error plot for the anisotropic case: 	2([−1, 1]2)-error evaluated on 15000 × 15000 grid points

We compute the 	2-errors on a uniform 15000 × 15000 grid and show the error
in Fig. 2. Additionally, we give again as the dashed line the values of the expected

behaviour 	ε

⌊
	
2

⌋
+1

. To gain an impression of the convergence speed we provide a
linear fit for each graph, shown as a dotted red line. We note that the obvious steps in
the error graph are not surprising. We have the formula

L( j) =
⌊

	ω1

ω j

⌋
+ 1,

which indicates the maximum level L( j) per direction for a given 	. We see that this
L( j) exhibits steps due to the Gaussian braces. The mild but unexpected increase in the
error steps ismost likely due to numerical cancellation errors caused by parallelisation.

Again, we can see that themethod converges slightly faster than the theory suggests.

6 Summary

In this paper, we have, for the first time, combined the multilevel radial basis function
method with Smolyak’s algorithm. We have provided a rigorous error analysis for
both the isotropic and anisotropic situation. Some advantages of this new tensor prod-
uct multilevel method are as follows. The underlying domains � j do not have to be
intervals nor one-dimensional. Though the error analysis requires the low-dimensional
data to be quasi-uniform, this is not necessary for the actual computation. The method
can deal with arbitrary point locations in the low dimensional domains, leading to
sparse grids based on scattered data. The numerical examples provided show that
the method has the potential to perform well in moderately high-dimensional situa-
tions. However, more research is necessary for example to find computationally more
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efficient representations of the high-dimensional approximation operator. Here, opti-
mised combination techniques could and should be studied. Moreover, we plan to
further study the anisotropic case and make better use of the different smoothnesses
in different directions.
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